
Introduction to
Computer Programming
with Python

OTC

Chris Simber

Computer Programming with Python: Starting Out
with IDLE

Contributing Authors

Chris Simber, Rowan College at Burlington County

Computer Programming: Python

Starting Out with IDLE

Chris Simber
Assistant Professor, Computer Science

Rowan College at Burlington County

Cataloging Data
Names: Simber, Chris, author.
Title: Introduction to Python Programming
Starting Out with IDLE
Subjects: Python (Computer Programming Language)

(2021)

Chris Simber
Assistant Professor of Computer Science
Rowan College at Burlington County
Author contact: csimber@RCBC.edu

This work is licensed under CC BY-ND 4.0. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nd/4.0/

mailto:csimber@RCBC.edu

Preface

This book is designed for use in an introductory course in programming using
the Python programming language, and is intended for students who are not
familiar with computer programming. The book follows the flow of an
introductory text in computer programming and introduces general computer
information and basic computer operations, as well as software engineering
principles and processes used in industry.

The IDLE integrated development environment (IDE) is used throughout the text
which is installed with Python, has a simplified interface, and provides for a
short learning curve. The goal is to provide students with an overview of
computers, software engineering tools and techniques, and to introduce
programming in Python quickly.

The examples and exercises in the text follow the PEP 8 Style Guide for Python
Code and reinforce the material being introduced while building on previous
material covered. The chapter exercises are numbered for clarity using a shaded
box, and can be used for assignment purposes.

There are end-of-chapter assignments, and an answer key, exams, and
accompanying lecture slides are available.

Instructions for obtaining and installing Python with IDLE are provided in
Appendix B. Instructions for using the PIP installer which is included in Python
are provided in Appendix C for utilizing matplotlib. Links to the Python web
site, Python Tutorials, and the PEP 8 Style Guide are included in Appendix D.

Python version 3.9.5 was in use at the time of this writing. The modules utilized
include Tkinter, random, PhotoImage, and matplotlib.

Contributors:

Steven Chudnick, Project Coordinator
Alison Cole, Librarian, Felician University
Joshua Gaul, Educational Technology Manager, Edge
Robert Hilliker, Curriculum Council Manager
Janet Marler, Innovation and Technology Curriculum Committee Chair
Laura Wingler, Instructional Designer, Ocean County College

Contents

Chapter 1 Introduction 1

Chapter 2 The Python Shell and IDLE 19

Chapter 3 Getting Started in Python 29

Chapter 4 Decision Structures and Boolean Logic 65

Chapter 5 Logic, Loops, and Functions 89

Chapter 6 Functions 111

Chapter 7 File Operations and Dialogs 139

Chapter 8 Strings, Lists, Dictionaries, and Sets 161

Chapter 9 Classes and Objects 193

Chapter 10 Graphical User Interfaces (GUIs) 219

Chapter 11 Menus, Images, and Windows 251

Appendix A ASCII Representations 269

Appendix B Installing Python with IDLE 270

Appendix C the PIP Installer 272

Appendix D Resource Links 274

Index

“Five minutes of design time, will save hours of programming” –
Chris Simber

1

Chapter 1 Introduction

Chapter 1

Introduction

Computers are simply data processing devices. They are machines that receive
input, process it in some way, and produce output. Computer programs are
statements that tell a computer what to do and in what order to do it. These
programs provide a sequence of small steps for the computer to execute and
produce the desired result. This may seem odd to the casual computer user, but
millions or even billions of these small steps are being executed by the computer
as we run programs. The small steps combine to provide what appear to be
seamless operations as we interact with the computer. Programs are referred to
as software and they are needed to make the computer useful…tell it what to do
and in what order to do it. People who design, write, and test software are
commonly referred to as software engineers, software developers, or computer
programmers. To better understand the computing process and programming, a
familiarity with the parts that make up a computer is necessary.

The Central Processing Unit (CPU)

Any part of the computer that we can physically touch (including inside the
casing) is referred to as hardware. The “Brains” or heart of the computer is the

CPU (Central Processing Unit). The CPU performs the basic instructions and
controls computer operations. There are two parts to the CPU. The Arithmetic
Logic Unit (ALU) handles basic arithmetic and the comparison of data such as

2

Chapter 1 Introduction

less than, greater than, or equivalence. The Control Unit retrieves and decodes
program instructions and coordinates activities within the computer.

Central Processing Unit (CPU)

The CPU plugs into a socket located on a circuit board called the Motherboard
which houses other components including main memory or RAM.

Main Memory

RAM stands for Random Access Memory and is a series of memory chips on a
circuit board installed in the computer, and is often referred to as main memory.
The memory in these chips is a series of memory addresses that enable the
computer to locate information. These memory addresses are volatile meaning
that when the computer is turned off, RAM no longer holds data in these
addresses. It is erased. When RAM is energized (the computer is running), there
is always a value in the memory addresses. This data is commonly referred to as
“garbage data” since it is random and was not loaded into memory by a
program. When a program is launched, the program is copied into RAM
overwriting the garbage data.

Laptop Main Memory (RAM)

3

Chapter 1 Introduction

The CPU can access instructions and data from RAM very quickly, and RAM is
usually located close to the CPU on the motherboard. The RAM circuit card for a
laptop computer is shown above. The large rectangles are the memory chips, the
notches are an aid for inserting the RAM into position on the motherboard, and
the gold edge makes the connection for data access. Since RAM is erased when
the computer is turned off, secondary storage is used to retain information
permanently.

Secondary Storage

Secondary storage devices are non-volatile and the information stored in them
is not erased when they are not energized. Secondary storage devices include
the hard drive inside the computer, external drives connected to the computer,
and flash drives. The hard drive inside the computer may be a disk drive which
houses a rotating disk and data access arm, or a solid-state drive which has no
moving parts and operates faster than a traditional disk drive.

Hard Drive (cover removed)

External drives are typically solid-state and connect to the computer through a
cable plugged into a USB (Universal Serial Bus) connector, or plug directly into
the USB port of the computer as in the case of flash drives. These drives use flash
memory, and do not have a disk drive.

4

Chapter 1 Introduction

Input and Output Devices

Input devices are anything that provides input or data for a computer.
Common input devices are the keyboard, mouse, microphone, and camera.

Output devices include anything that accepts computer output such as
monitors, speakers, and printers. Since data files located on storage devices can
be used for reading data into a computer or writing output from a computer,
they could be considered both input and output devices.

Software

Computers are machines that follow an input, processing, output sequence of
operations and need to be told what to do and in what order to do it. This is
accomplished through sets of instructions called software. There are essentially
two types of software: system software (operating systems), and application
programs (all other software).

The operating system (OS) provides an interface for us to use computers more
easily. A computer does not need an OS, but it is much easier for us to interact
with the computer through an operating system. Originally a command line
interface was used to operate a computer. Menu driven programs followed soon
after, and the Graphical User Interface (GUI) replaced them and has been used
since. The operating system provides the Graphical User Interface that is now
commonly used to interact with the computer, and acts like an orchestra
conductor by controlling computer hardware, managing devices connected to
the computer, and interacting with programs that are running. Operating
systems commonly in use today are Windows, macOS, and Linux.

Application software programs are the software that we commonly use to
accomplish work on a computer such as word processors, spreadsheet
applications, gaming software, and presentation programs.

The Language of Computers

The language of computers is a binary language consisting of ones and zeros.
This is the beauty and simplicity of the computer. Everything is a 1 or a 0, is
either On or Off, Yes or No, True or False. The bit, or binary digit used in

5

Chapter 1 Introduction

computing represents a logical state that can be 0 or 1. It is the smallest
information representation. A Byte is a combination of 8 bits of 0s and 1s, and in
computers, each letter, number, and special character consists of a binary
representation. For example, a lower case “f” is represented in binary as
01100110 in accordance with the ASCII standard for information exchange.
ASCII (pronounced askee) stands for the American Standard Code for
Information Interchange which was developed as a character encoding standard.

The ASCII table consists of binary representations for the 26 uppercase and 26
lowercase letters, and the 9 digits, as well as special characters, punctuation
marks, and other symbols and keyboard keys. Appendix A provides a partial list
of the binary and decimal representations for the upper and lowercase letters,
digits, and punctuation. A portion is shown here.

ASCII Table (excerpt)

The Unicode standard incorporates the 256 item ASCII standard and expands to
include the binary representations for symbols and the text used in most of the
world’s languages. Unicode 13.0 contains representations for 143,859 characters.
Whatever we want to tell the computer to do must be in its’ binary language.
This includes numbers that are used in computations. Numeric integers (whole
numbers) are represented in computers using the positions of the bits and
powers of 2 starting from right and working toward the left.

Binary Number Bit Representations

6

Chapter 1 Introduction

As an example, the number 90 would be represented in binary as 01011010. Each
bit is either 0 or 1 and is multiplied by the power of 2 at its position, and the
results are added together.

Binary Number Conversion

The limit to the numbers that can be stored using 8 bits is 255 with all 8 bits being
1’s. To store larger numbers, two Bytes would be used with a combination of
sixteen 1’s and 0’s. In case you are curious, that would allow storing numbers as
large as 65535. To store larger numbers, more Bytes could be used. To store
negative numbers and floating point numbers (numbers with a decimal or
fractional part), other numbering schemes are used such as the two’s
complement and floating-point notation.

Since any data stored in the computer must be in binary, images (which are
made up of pixels) are stored by converting each pixel to a numeric value which
is then stored in binary. Sound is stored using samples that are converted to the
nearest numeric value.

Programming Languages

Although the computers’ language, referred to as machine language, is a binary
language, it would be tedious for us to write instructions for computers in
Binary. Machine language is one of the two languages commonly referred to as
low-level languages for computers, the other being Assembly language.
Assembly language consists of very basic instructions like move a value into
memory, add another value to that one, and store the result in memory. Both of
these low-level languages mirror the operations of the CPU in simplicity and
basic operations.

0 1 0 1 1 0 1 0

0 x 27 + 1 x 26 + 0 x 25 + 1 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 0 X 20

(0 x 128) + (1 x 64) + (0 x 32) + (1 x 16) + (1 x 8) + (0 x 4) + (0 x 2) + (0 x 1)

0 + 64 + 0 + 16 + 8 + 0 + 2 + 0

= 90

7

Chapter 1 Introduction

CPU operations include a process that is repeated many times very quickly. It
completes a machine cycle in which it performs the same series of simple steps:
fetch, decode, execute, and store. These machine cycles (or clock cycles) are
occurring millions or even billions of times per second.

1. fetches the required piece of data or instruction from memory

2. decodes the instruction

3. executes the instruction

4. stores the result of the instruction

CPU Machine Cycle Steps

A CPU’s processing power is measured in hertz (cycles-per-second), and a one-
gigahertz (1 GHz) CPU can execute one billion cycles per second.

Writing software (programming) in low-level languages is possible, but high-
level languages provide a much easier way. As more and more software was
being written, high-level languages were introduced to make programming
easier and more efficient. In high-level languages, multiple instructions are
combined into a single statement. Some of these have been used extensively,
others not so much. Today there are hundreds of high-level languages with
approximately 250 in use. Each has benefits and limitations as well as a
following, proponents, and detractors. The following is a short list of some
popular high-level languages and their intended uses.

 Ada Department of Defense programs

 BASIC Beginners All-purpose Symbolic Instruction Code

 C, C++ powerful general-purpose programming

 COBOL Common Business-Oriented Language - business programs

 FORTRAN FORmula TRANslator for math and science

 Pascal teaching programming

 Java applications running over the internet

 Python general-purpose applications and data handling

Popular High-level Programming Languages

8

Chapter 1 Introduction

Writing software in any of these languages is much easier than the low-level
languages of Machine and Assembly, but the computer is still only interested in
machine language. To translate programs written in a high-level language to the
machine language for the computer, compilers and interpreters are used.

A compiler translates the high-level language into a separate machine language
program. Software engineers refer to this as compiling or “building” the
program. A “Build” is a compiled version of the software and the program can
then be run whenever needed because it is a stand-alone executable program.

An interpreter on the other hand, reads, translates, and executes the program
one line at a time. As an instruction in the program is read by the interpreter, it
converts the instruction into machine language and then executes that
instruction. The Python programming language uses an interpreter. Since
interpreters translate and execute instructions, they do not typically create stand-
alone machine language programs. However, there are applications such as
PyInstaller that package Python programs into stand-alone executables.

The instructions written by programmers are referred to as source code. The

code is written using a text editor in an Integrated Development Environment
(IDE). IDE’s are software applications that include integrated tools for software
developers to write, execute, and test software.

Syntax and Grammar

Each programming language has some characteristics and rules that must be
followed when writing programs in that language. Two of these are the syntax
and grammar of the language.

The syntax of a programming language refers to the rules for properly
combining symbols, operators, and punctuation, as well as the proper use of
operators.

The grammar of a programming language determines the structure of the
sentences containing the symbols, operators, and punctuation that make up the
instructions for the computer.

In addition, a characteristic of languages is the use of keywords. Keywords are
reserved by the language for a specific use and cannot be used for another

9

Chapter 1 Introduction

purpose. Most IDEs will display them using a color font to highlight them. The
following is a list of some of the Python keywords.

False except else import in

True class finally is return

and continue for lambda try

as def from nonlocal while

assert del global not with

async elif if or yield

Python Key Words (partial list)

Developing Software

There are specific phases in the process of developing software including design,
development, test and integration, and delivery and maintenance. But before
any work can begin, a complete understanding of what the program is supposed
to do is required. This is derived from the project or program requirements.

Requirements

The requirements for a computer program detail what the program is supposed
to do. How it will do what it is supposed to do will be determined as the design
phase is completed during the software development phase. Requirements
Decomposition is the act of discovering in detail from the requirements what
the program is to accomplish. This process also assists in decomposing the
project into manageable “chunks” in terms of the schedule and team assignments
for development. Once the requirements are vetted, the software development
lifecycle begins.

Software Development Life Cycle (SDLC)

The Software Development Life Cycle includes the steps necessary to design,
develop, deliver, and maintain the computer program. Although the phases
follow one another and are often accomplished by different teams, they overlap
to a degree as questions and issues arise in the process. As an example, a

10

Chapter 1 Introduction

developer may meet with a design engineer to clarify information in the design,
or a Test Team member may contact a developer regarding test results.

Software Development Lifecycle

Design

As the requirements are decomposed and documented, the design phase begins,
and the break-down of required tasks and logical steps in the program are
developed. Design is a very important part of the software development cycle
because of the cost increase of changes and fixing errors further on in the process.
This is highlighted in the chart below from the IBM Systems Sciences Institute.

Cost Increase of Fixing Errors by Phase

Software engineering tools that assist in the design (and development stage as
well) include pseudocode (sort of code). Pseudocode is a short-hand version of
the order of operations for a program. Consider a requirement that a program

11

Chapter 1 Introduction

obtain user input, compute Recommended Net Worth, and display the results.
The pseudocode for the solution might be:

Step 1 Start the program

Step 2 Obtain age and salary information

Step 3 Compute the RNW (age x salary divided / 10)

Step 4 Display the output

Step 5 End the program

Pseudocode

Since we think in pictures and not text, a flowchart often provides a faster and

clearer depiction of the algorithm (logical steps to the solution). A flowchart is a
diagram of the steps in a program. Various geometric shapes are used to
indicate different processes. The order of operations is typically top down, and
lines with arrows can be used to indicate the order.

Flowchart

Flowcharts can ensure that steps in the process haven’t been overlooked and that
there is a complete understanding of the operational flow of the program. It is
also common for large organizations to divide the design and development tasks

12

Chapter 1 Introduction

among teams or to subcontract software development out-of-house (to another
company). In these instances, flowcharts are often required to be delivered to the
development team or subcontractor together with specific requirements.

Many software engineers use a combination of tools. Pseudocode may be used
for a high-level description of the program or a program area, and a flowchart
might be used for more complex sections. Either way, the goal is to have a
comprehensive understanding of the requirements at every level to ensure that
the final product meets the requirements.

Development

Once a design is complete (or nearly complete since some aspects of the solution
may not be knowable during design), the development phase begins. The
development phase includes writing the code that will be executed to produce
the desired result and meet the requirements. Often the development of a
program is divided among multiple programmers and requires collaboration
and regular discussion to ensure a cohesive solution. To manage software
development projects and enable multiple people to work on the same program
at the same time, a Configuration Management System (CMS) is used with a
source code repository that stores and maintains all of the program files.

Software Development Collaboration

13

Chapter 1 Introduction

Programmers access this repository to obtain a copy of a file and add
functionality or make modifications to the code. The code is written in the
copied file, and this changed file is tested with the other files in the source code
repository. After testing, the modified file is placed into the repository and is
used by all of the other programmers in place of the original file. The original
file is retained by the configuration management tool as a version control
mechanism.

If a new file needs to be created, it is created in the configuration management
tool and added to the source code repository when completed and tested. CMS
tools provide for collaborative development, and version control of the files and
the overall project, and many industries and clients require their use.

Many configuration management systems have integrated suites that include:
scheduling and tracking, task assignment, defect reporting, and issue tracking
systems. In addition, tools for software teams and software project managers are
commonly used in industry to plan and measure project progress, and to provide
visibility into the design, schedule status, cost, and quality of the code.

Software Development Processes

For the software development phase, the Agile Development Process is a
popular method in use today. Agile processes go by various names, but all are
iterative and incremental software methodologies. This iterative process of
developing software is commonly referred to as Iterative Enhancement.

• Scrum – regular meetings, with periodic cycles called sprints

• Crystal - methodology, techniques, and policies

• Dynamic Systems Development Method (DSDM)

• Lean Development

• Feature-Driven Development (FDD)

Agile Software Development Methodologies

A key component of the Agile Development Process is the sprint (the
development period between status meetings). Sprint status meetings (scrums)
are review and planning events that occur regularly (typically weekly). Tasks

14

Chapter 1 Introduction

completed from the previous sprint plan are reviewed, and completed work is
demonstrated to stakeholders for feedback and approval. The tasks that were
not completed from the previous sprint plan are reviewed with a course of action
(re-plan). The scope of work that will be completed during the next sprint cycle
is planned, and engineers are assigned to the tasks.

Agile Development Process Phases

Another popular process for software development is the Waterfall model. The
waterfall model uses the same phases, but they are sequential. The phases of the
process may overlap to a degree, but are non-repeating and each phase depends
on the completion of the previous phase. The Waterfall model was used
extensively in the past, but has been replaced for the most part in recent years by
the Agile Process.

Waterfall Development Process Phases

15

Chapter 1 Introduction

Test and Integration

The next phase in the software development life-cycle is integration and testing.
In the test phase, the programmer runs the program to ensure that there are no
errors in the code, and that it performs correctly (meets the requirements). In
large organizations, there is a Test and Integration Team responsible for this
phase. Any errors found by the Test Team are relayed back to the developer.

The two types of errors that are looked for during the preliminary test phase are
syntax errors and logic errors.

Syntax errors have to do with language specific rules like indentation and
punctuation and are found by the compiler or interpreter and the code will not
be compiled or executed. These errors would be resolved during development.

Logic errors are errors in the algorithm or the way that the algorithm was written
by the programmer. For example, if the requirement is that the program multiply
a number by two only if it is greater than ten, and the programmer writes the
code so that a number is multiplied by two if it is less than ten, that would be a
logic error.

As mentioned above, if the code is part of a larger project, it must be integrated
into the overall project and tested again with the complete program. The
configuration management system provides this capability as well.

Delivery and Maintenance

The final phase of the software development life-cycle is the delivery and
maintenance phase. In this phase, the program is delivered to the client or
customer and a period of maintaining the program begins. Maintenance of a
program would include updates or patches that fix errors or security issues
found after delivery, or upgrades that provide additional functionality or
capability. Updates to software programs are commonplace today.

Ergonomics

The set-up or arrangement of computers and furniture to minimize the risk of
injury or discomfort from repetitive motion and working in a stationary position
from extended periods is a field of ergonomics.

16

Chapter 1 Introduction

Chapter 1 Review Questions

1. Computers are simply ___________________ devices.

2. The physical parts of the computer are referred to as _____________.

3. The CPU is considered the ___________ of the computer.

4. The CPU performs basic ____________ and controls computer _________.

5. The main memory in a computer is often referred to as _________.

6. Main memory is volatile and is erased when the computer is _____________.

7. __________ Storage device memory is non-volatile and is retained when the
power is turned off.

8. A computer keyboard, mouse, and camera are examples of _________ devices.

9. Computer monitors, speakers, and printers are examples of __________devices.

10. Computers follow a 3-step process of _________, _________, and _________.

11. Sets of instructions for the computer are commonly referred to as _________.

12. _____________ and _____________ are the two basic types of software.

13. The language of computers is a _________ language.

14. The smallest information representation in computing is a _____ or binary digit.

15. A binary digit can have a logical state of _____ or _____.

16. A Byte is a combination of ________ bits that are either one or zero.

17. The number represented by 0110 1001 is _______.

18. The binary representation of the number 255 is ___________.

19. The names of the two low-level languages are __________ and __________.

20. A Machine cycle consists of ________, ________, ________, and ________.

21. A 2 GHz (gigahertz) processor can execute __________ instructions per second.

22. High-level languages make programming a computer _____ and more _______.

23. Python is a _______ -level language.

24. A (n) ___________ translates a high-level language into a separate machine
language program.

25. A (n) ___________ reads, translates, and executes a program one line at a time.

26. The characteristics and rules that must be followed when writing programs in a
high-level language are called ___________ and ___________.

17

Chapter 1 Introduction

27. Words that are reserved in a programming language are called ____________.

28. The rules for combining symbols, operators, and punctuation in a programming
language are referred to as the languages __________.

29. Plan, design, develop, test, and evaluate are the five steps in the ___________
development process.

30. A shorthand version of the steps to complete a task in a computer program is
called _______________.

31. A set of logical steps taken to complete a task is called a(n) _____________.

32. The act of discerning in detail from the requirements what the program is to
accomplish is called ___________________ ____________________.

33. The four steps in the Software Development Life-cycle are ________, ________,
________, and ________.

34. The two types of programming errors are _________ and _________ errors.

Chapter 1 Exercises

1. Explain the differences between main memory and secondary storage.

2. List at least three (3) input devices.

3. List at least three (3) output devices.

4. List the two (2) types of software.

5. Write the word Python in binary.

6. Write the binary representation for the number 176.

7. List the two low level languages.

8. List the four steps in a machine cycle.

9. List the four steps in the Software Development Life Cycle

10. Write the pseudocode for the steps required to determine the total
price for some number of items priced at $9.00 each with a 7% sales tax.

11. Draw a flowchart of the steps in exercise 2 above.

12. What is the purpose of a source code repository?

13. List the five phases of the Agile Development cycle.

14. Explain the difference between logic and syntax errors.

18

Chapter 1 Introduction

15. Obtain a copy of Python with IDLE. Python is free to download and use, and
can be installed and run on any computer. The website URL and steps to obtain
and install Python are provided in Appendix B.

19

Chapter 2 The Python Shell and IDLE

Chapter 2

The Python Shell and IDLE

Python is a high-level, general-purpose language. It was created by Guido van
Rossum and introduced in 1991, and emphasizes code readability and is similar
in many respects to pseudocode. The name Python comes from the famous
British comedy Monty Python’s Flying Circus. Python is an interpretive
language in that it uses an interpreter to translate the code one line at a time and
execute it. Interpretive languages tend to be slower than direct native machine
code, and can be reverse engineered more easily, so their use should be restricted
to areas where this is not an issue.

Python supports procedural programming and object oriented programming. It
is a simple yet strong language with many supporting libraries (code written by
others that we can use) as well as a standard library containing extensive
capability.

Python Versions

Python is Open Source and is developed under an OSI-approved open source
license, which makes it free to use and distribute including for commercial use.
The current version in use is Python 3.9.5 which is available from Python.org for
Windows and Mac OS X along with additional information and Tutorials. The
current version of Python 3 will not run on Windows 7 or earlier versions of the

20

Chapter 2 The Python Shell and IDLE

operating system. Python.org also maintains versions of Python 2 which has
been used for more than a decade with 2.7.18 currently available. The two
versions (2 and 3) are not compatible. In other words, code written in Python
3.x.x will not run in Python 2.x.x. Python 3 (and above) is used exclusively in
this text. Additional information is available at Python.org.

Installing and Running Python

Python is free to download and use, and can be installed and run on any
computer. The website URL and steps to obtain and install Python are provided
in Appendix B. Installing Python should be completed before continuing in this
chapter.

The installation for Python includes the interpreter for executing Python code,
the IDLE Integrated Development Environment for developing programs, and
many libraries that provide functionality without having to write the code.

Once Python is installed, IDLE is launched using the idle.bat which is a batch file
in the Lib/idlelib directory. Displaying file extensions should be enabled on the
computer to ensure the correct file is double-clicked and to become familiar with
file extensions. A short-cut can be created at a higher level to eliminate drilling
down into the sub-directory each time IDLE is launched.

Python Batch File Location

21

Chapter 2 The Python Shell and IDLE

The Python Shell

When double-clicked or accessed from the short-cut, idle.bat will open the
Python shell shown below. This is the Python interpreter in interactive mode.

The Python Shell

Python statements can be run directly in the shell. Typing a single line in the
shell and pressing Enter will execute the line using the interpreter. A print
statement is an easy way to demonstrate this and to highlight a few things.

Ex. 2.1 - A line of code entered into the shell will execute when Enter is pressed.
The prompt waiting for input in the shell is ‘>>>’, and the words in the
statements are color coded to highlight that they are different items. Also notice
that the ‘>>>’ prompt appears again after the output waiting for an additional
statement to execute.

Executing Code in the Python Shell

22

Chapter 2 The Python Shell and IDLE

Ex. 2.2 – The added line of code in the next example includes an equation. When
Enter is pressed, the text and the result of the equation are displayed. Notice that
for the first print statement, the text to output is surrounded by single quotes, but
in the second print statement they are double quotes. In Python either can be
used, but it is important to be consistent. Single quotes are used in this text.

Executing Code in the Python Shell

Programming in the shell and executing one line works well for code snippets or
examples, but the goal is to write complete Python programs. The shell simply
uses the interpreter to execute the line that was typed when Enter is pressed.
Files will be used to write and execute more complex programs using the
interpreter in script mode in which the interpreter reads the contents of a file to
execute multiple lines of code (a program).

The IDLE Integrated Development Environment

IDLE, which stands for Integrated Development and Learning Environment, is
intended to be a simple Integrated Development Environment (IDE) that is cross-
platform (runs on multiple operating systems and computers), and is suitable for
starting out in Python especially in an educational setting. IDLE provides a
multi-window text editor and Python shell with syntax highlighting and smart
indent. IDLE features an integrated debugger with breakpoint capability and
call stack visibility which will be covered later. IDLE is free to download and use
(it is installed with Python), and it does not have the host of features that tend to
clutter many IDEs with limited benefit.

23

Chapter 2 The Python Shell and IDLE

Python Shell with IDLE and Code Files

Starting the IDLE Text Editor

Ex. 2.3 – The IDLE editor is started by choosing File | New File from the shell
menu. The new window is the edit window where sequences of Python
commands are entered and then executed. Unlike the shell where the lines
execute when Enter is pressed, the lines in the editor will be executed as a group
to form a program. The title of the window below will change from “untitled”
when it is saved. The drop-down menus provide basic IDE functionality.

New File Window

24

Chapter 2 The Python Shell and IDLE

Ex. 2.4 – The lines of code in the edit window below have an intentional error.
Errors in programming are called bugs and are removed by “debugging” the
program. Type the lines into the file exactly as shown, and running the program
will reveal one way that IDLE indicates errors. Also note that pressing the Enter
key causes a line feed in the file instead of executing the line of code.

Edit Window Syntax Error

Running Programs in the IDLE Text Editor

Running the program in the IDLE editor is accomplished by pressing the
function key F5 on the keyboard, or selecting Run and then Run Module from the
menu as shown below.

Running a Program File

IDLE will force saving the file before it will run the program. Choose an
appropriate name and the “.py” file extension will be added. After the file has

25

Chapter 2 The Python Shell and IDLE

been saved, Python will run the program and the prompt to enter your name will
appear in the Python shell.

Program Output in the Python Shell

When a response to the prompt is entered and Enter is pressed, the intentional
error in the code will surface. The red text in the Python shell provides
information about the error.

Traceback and Error Information

The error information includes a “Traceback” of the function call or calls
causing the error, the file name and line number for the error, as well as the line
of code itself, and the type of error. The line numbers for the program can be
seen at the bottom right of the IDLE editor window, or selected from the Option
menu.

26

Chapter 2 The Python Shell and IDLE

The error is the result of the function call len(name) returning an integer which is
the length of the string passed to it in name. Python cannot concatenate (join) an
integer onto the string “Your name has “, so execution stops and the error message
appears. To correct this, the return value from the function call to len() can be
converted to a string using str as shown below. Python can then concatenate
(join) the resulting string to the literal string of characters before it and
concatenate the literal string after it. These operations will be covered later.

Ex. 2.5 – After correcting the code, saving it, and running it again (F5), the
program now runs correctly. Notice that the space between Jane and Doe was
counted by the len function.

Corrected Error Example

Another type is a syntax error. In many cases IDLE will highlight the actual code
where the error occurs by boxing it in red and producing an error dialog. In the
example below, the character “B” was erroneously typed at the end of the line.

Syntax Error and Dialog

27

Chapter 2 The Python Shell and IDLE

Programming Errors

Syntax errors and Logic errors were described in Chapter 1, and are summarized
below with the addition of a third type of error in programming - the Runtime
error.

• Syntax error – incorrect use of language specific rules like indentation
and punctuation which will be found by the interpreter and the code will
not execute

• Logic error – the program runs, but does not perform the task it was
intended to perform or it produces incorrect results

• Runtime error – logic error that causes the program to stop executing

The most common errors in programming include misspelling words, forgetting
closing quotes, and forgetting closing parentheses. The interpreter helps by
highlighting these types of errors, but logic errors must be found by thoroughly
testing the program.

Exiting Python and IDLE

To leave IDLE, just close the windows.

Since IDLE insists that files are saved before each execution, it's hard to
lose changes when exiting IDLE.

To be really safe, save the program manually before closing the editing
window.

Choose "File" on the menu bar and "Save" from the drop-down
menu or use Control-S.

Exiting Python with IDLE

28

Chapter 2 The Python Shell and IDLE

Chapter 2 Review Questions

1. Python is an __________________ language.

2. Python uses an interpreter to _______ and ______________ lines of code.

3. The Python interpreter executes _______ of code at a time.

4. In ___________ mode, the interpreter executes a single line at a time from the
shell when the Enter key is pressed.

5. The interpreter reads files and executes their contents in _________ mode.

6. Errors in programing are typically referred to as __________.

Chapter 2 Exercises

1. Complete chapter example 2.1 in the Python shell and provide a screen capture
of the window with the output.

2. Complete chapter example 2.2 in the Python shell and provide a screen capture
of the window with the output.

3. Complete chapter example 2.3 and 2.4 in a separate file (IDLE Editor) and
provide a screen capture of the file with the code and the error in the shell.

4. Complete chapter example 2.5 by correcting the program from example 2.4 and
provide a screen capture of the file with the code and the output in the shell.

5. Explain the contents of a Traceback when an error occurs.

6. List the three (3) types of programming errors.

29

Chapter 3 Getting Started in Python

Chapter 3

Getting Started in Python

As mentioned previously, five minutes of design time will save hours of
programming. This is because a plan has been determined before any code has
been written, bugs discovered during the design phase are easier to find and
faster to eliminate, and the solution is viewed as a comprehensive program.
Very often one part of a program has a direct impact on other parts of the
program. A poor design in one area can impact other areas, introduce bugs,
require hours of debugging, and force re-writing of code and increasing costs.

Comments

In addition to the tools mentioned in Chapter 1 for designing and developing
software, comments within the code can be helpful and are often required.
Comments in programming are lines of code that are not executed, they are
provided for human readers, and are used to clarify values or sections, or explain
complex operations. This is important because most software is maintained,
updated, and expanded. Code is written once, but is read many times, and the
person who wrote the code may not be the person making the modifications, or
the person who wrote the code may not remember why a section was written a
certain way or why a specific value was used. Adding comments to code while it
is being written can save hours of reading through the lines later when the code
is being changed.

30

Chapter 3 Getting Started in Python

Comments are also used as a development tool. Pseudocode is written in the
program as a comment to act as a place-holder or reminder that will be replaced
later by actual code.

The source code written in programs is often referred as SLOCs, and includes
comments as well as executable lines. The executable lines by themselves are
referred to as ELOCs.

SLOC – Source Line of Code (include all text)

ELOC – Executable Line of Code (omits comments)

Comments in Python can be single-line or multi-line. Single-line and end-of-line
comments begin with the pound sign (hashtag or octothorp), and multiline
comments are surrounded by three single or three double quotes. Comments
will be ignored by the interpreter, and most IDEs including IDLE will color code
comments to highlight them. Comments add clarity and explain complex areas
of the program.

Comment Styles in Python

Displaying Output

The print function in Python displays output to the shell. The text inside the

parentheses and quotes is a string (group of characters) and is an argument
passed to the print function (any piece of data passed to a function is referred to
as an argument). The argument contains the item or items to display. Single or
double quotes can be used with string arguments, and the print function will
automatically add a line feed in the output.

31

Chapter 3 Getting Started in Python

A function is code that exists and must be called in order to execute. In the
example, the print function is being called and the argument being passed to the
function is “The Python Language”. The function executes and displays the text.

The previous example ran in the shell, but to use the interpreter in script mode,
a new file is created using File | New from the shell menu. Example 3.1 displays
four lines of output by calling the print function four different times and passing
four different strings of characters. The print function adds the line feeds to the
output automatically.

Ex. 3.1 – The print function is called four times in this program with different
arguments passed to the function each time. The shell window on the right
below shows the output when the program in the editor on the left runs.

Program File and Shell Output

Strings

In the previous example, four different phrases (strings) were passed to the print
function. A string is a sequence of characters and is the str data type in Python.
When a string is written in the code as in Example 3.1, it is referred to as a string
literal. The example also uses single quotes surrounding the strings, but double
quotes can be used. The PEP 8 Style Guide for Python does not provide a
recommendation, except to be consistent. There are however cases when one
choice is required. When an apostrophe or quotes are part of the literal string to
be output, they must be accommodated. This is shown in the next example.

32

Chapter 3 Getting Started in Python

Ex. 3.2 – To display a single quote (apostrophe) in the output, the string is
surrounded by double quotes. To include double quotes in output, surround the
string by single quotes. To display both, use three sets of quotes.

Including an Apostrophe or Quotes in Output

Note: Escape sequences covered later can also be used to include an apostrophe
or quotation marks in the output.

Variables

In the example in chapter 2 that was used to display errors, a name was entered
into the program and was stored in a variable called name (repeated below).
The input function extracted what was entered on the keyboard when Enter was
pressed, and assigned it to name. This is called an assignment statement, and

the equal sign is the assignment operator. The right side of an assignment
statement is evaluated first, and the result is assigned to the left side.

Variable Assignment from input

Variables are used to allocate memory and store information that the program
will use. They are called variables because what they store can vary as the
program runs. A variable name is a name given by the programmer to a piece of
data that is stored in memory, and the assignment operator is used to assign a
value to a variable. In the example below, the value 15 is assigned to a variable
declared as number. This defines the variable. The value 15 will be stored by

33

Chapter 3 Getting Started in Python

the computer and it will be accessed (used by the program) by its’ name number.
The second line prints the value stored in number.

Notice that there are no quotes around the word number in the print statement.
The variable number is passed to the print function and the value that was stored
in memory by the assignment operator will be displayed in the shell as shown
below.

Programs often use multiple variables to store multiple values and each of the
variables must have a distinct name. Notice the underscore used in the variable
names below. Although the PEP 8 Style Guide lists multiple styles for naming
variables in Python, none is recommended or preferred. The following style will
be used in this text. If the variable name is one word, it will be all lowercase. If
two or more words are used, they will be lowercase and separated by an
underscore.

Defining Multiple Variables

Python is case sensitive and case errors as well as misspellings will be caught by
the interpreter and a Traceback error will identify the line number for the error.

34

Chapter 3 Getting Started in Python

In the next example, number is defined with all lowercase letters, but an
uppercase letter is used in the print statement.

When the lines of code are interpreted and run, the error displayed in the shell is
a NameError and indicates that Number was not defined. The interpreter doesn’t
know anything about a variable called Number. It only knows about number.

Case Sensitivity - Undefined Variable Error

A similar error occurs when a variable has not been assigned a value. Python
does not know what type of data to store without an assignment statement. It
determines how to store the data for a variable in memory based on the type of
data it is assigned. In addition to the string data type (and others), the Python
numeric data types include: int (integer), and float (floating point number). In
the code below, the variable is declared without assigning it a value (defining it),
and it is then passed to the print function. Since a value was not assigned to the
variable, it is undefined to the interpreter.

The interpreter error message indicates that the variable is not defined since it
was not assigned a value.

Undefined Variable Error

In the code below, three different variables are assigned different types of data.

35

Chapter 3 Getting Started in Python

Ex. 3.3 – Defining variables with different types of data

Defining Different Data Type Variables

In Python, a number can be assigned to a variable and then a string can be
assigned to the same variable. Python will handle the change. The program
below assigns an integer to number, then a string, then an integer again, and uses
the variable in an equation before the final call to the print function.

Ex. 3.4 – Assign the variable number different types of data

The output shows the different data types stored in number at different points in
the program, and that the addition was handled by Python without an issue.

Re-assigning a Variable a Different Type

36

Chapter 3 Getting Started in Python

Data types categorize values in memory: int for integers, float for real

numbers, and str is used to store strings. Floating point numbers are stored with
double precision although the data type double is not used in Python. In addition
the bool data type can be assigned either True of False. The table below shows
the basic data types in Python. Others will be covered later.

Table 3.1 - Python Basic Data Types

Variable Names

When naming variables, there are a few rules that need to be followed:

• none of Python’s key words can be used as a variable name
• there cannot be any spaces in the names
• the first character must be a letter (or an underscore)
• uppercase and lowercase letters are distinct

The convention for naming variables in Python is to use all lowercase letters for
single word names like interest or balance, and for multi-word names to include
underscores between words as shown here.

 interest_rate or daily_average

In addition, the name of a variable should describe the data that it stores. Most
programming standards require descriptive names for variables, and a longer
name is usually better. Using names like var or pd are ambiguous and make
maintaining the code more difficult. If a comment is needed to describe a
variable, then the name of the variable is probably inadequate.

37

Chapter 3 Getting Started in Python

Table 3.2 below lists some good and bad examples of variable names.

Table 3.2 - Variable Naming Rules

Named Constants

A named constant variable is a value in programing that is not changed by the
program. Named constants are defined using all uppercase letters with
underscores between words. They are used to eliminate magic numbers, and to
ensure that a specific value is used throughout the program.

A magic number is a literal number in a program without an obvious meaning.
When a program is being modified and an expression uses a literal value, it may
be difficult to determine what the number means even by the original
programmer. As an example, the following line appears in a program and the
meaning of 3963.2 is unknown. Since the equation results in a circumference, it
appears to be a radius.

 circumference = 2 * PI * 3963.2 ?

By using a named constant in the code, the meaning is clear. It is defined and
then used in place of the literal number wherever needed in the program.

EARTH_RADIUS = 3963.2

 circumference = 2 * PI * EARTH_RADIUS

38

Chapter 3 Getting Started in Python

Named constants are also used to ensure that the same value is used throughout
the program and by all programmers. As an example, if multiple programmers
are working on a program that calls for them to use the radius of the earth in
various equations, they can use the named constant instead of typing in different
values. The earth is not a sphere and there are multiple values for its radius.

Named constants also prevent typographical errors when the same value is being
used multiple times. In addition, when a new value is needed for the constant,
the change is made in a single place in the code. As an example, the scientist
overseeing the program using EARTH_RADIUS decides that the equatorial radius
being used in the program should be changed to the pole radius of 3950.0. It will
only need to be changed to the new value in one place in the code. This
eliminates the possibility of typographical errors when changing all of the
equations that use the value, time spent debugging the program if an equation is
overlooked and the output is incorrect.

Printing Multiple Elements

When multiple arguments are passed to the print function, the plus sign or
comma is used depending on the data types. A comma is used when a literal
string and numeric value are being displayed as shown below.

 Ex. 3.5 – the literal string and numeric value are separated by a comma.

Printing Strings and Numeric Values

Notice in the print statement above that there is not a space after the word “is”,
but it is included in the output. The print function automatically adds a space
which is the default separator (when none is provided) for multiple arguments.

39

Chapter 3 Getting Started in Python

Ex. 3.6 – the print function and spacing

In this example an integer variable is surrounded by two string literals. Commas
separate the arguments being passed to the print function, and they are
automatically separated by spaces in the output. This is the default separator for
the print function to use between items when none is provided, and it can be
eliminated or changed.

Printing Multiple Arguments and Spacing

Separators

The print function automatically places a space between items in the output.
When the space is not needed or another separator is required, the argument sep
can be passed to specify the separator to be used. In the first print statement
below, sep=’’ is used to tell the print function to separate elements using nothing
(there is no space between the two single quotes). In the second print statement,
the print function is told to use the semicolon as the separator. Any character or
string can be used to separate the elements in the output.

Assigning Output Separators

40

Chapter 3 Getting Started in Python

String Concatenation

The plus operator in Python performs concatenation which joins two or more
strings together to form a single item. In example Ex. 3.7, note the missing
spaces between the words in the output.

Ex. 3.7 – string concatenation in output

Example 3.7a concatenates a string onto the original string that was stored in the
variable word1.

Ex. 3.7a – string concatenation

String Concatenation

As a technical note, strings in Python are immutable, that is they cannot be
changed. In Example 3.7a, Python created a new string containing the combined
words and then pointed the variable name word1 to that new string in memory.
This is typically not an issue, and the interpreter will free the previously used
memory. In addition, Python provides another solution which is covered later.

Formatted Output

When dollar amounts or other numbers requiring decimal places are part of the
output, the format function provides a solution for output formatting. Two
arguments are passed to the format function: the numeric value or variable to be
formatted and the format specification. The format function returns a string

41

Chapter 3 Getting Started in Python

holding the formatted number which can then be stored as a string in a variable
or passed to the print function directly.

Ex. 3.8 – format function and specifiers for output

The format specifiers are enclosed in quotes and follow the item to be formatted
after a comma. The first call to print below formats the value 5 with two decimal
places, and the second formats a variable to two decimal places. The “.2” in the
specifier calls for two decimal places to be used in the output (this will cause
rounding), and the “f” indicates formatting for a floating-point number.

Formatting Decimal Output

Ex. 3.8a – the format function rounds numbers

When required to fit within the number of decimal places specified for
formatting, the number will be rounded (down from 5 and up from 6).

Formatted Output Rounded

42

Chapter 3 Getting Started in Python

Values can also be formatted when assigning them to variables. The formatted
variables can then be passed to the print function as shown below.

Assigning Formatted Values to Variables

When the number being output requires a comma or commas, the specifier (a
comma) is added prior to the decimal in the format specification.

.

Adding Commas to Output

To format integers, “d” replaces the “f” in the specifier. Note that using zero for
precision has the same effect when an “f” is used.

Formatted Integer Output

43

Chapter 3 Getting Started in Python

For scientific notation, “e” is the specifier. Preceding it with a decimal point and
an integer designates the number of places after the decimal to use in the output.

Scientific Notation

Numbers can also be specified as percentages using “%” and the number will be
multiplied by 100 and include the “% sign. In the example, zero is used for the
number of decimal places, but it can be any digit.

Formatting Percentage

For columns or right-aligned output, a minimum width specifier is placed before
the decimal point. In this example, the width is designated as nine characters
wide. A number with more than nine digits would not be trimmed.

Specified Field Width Output

44

Chapter 3 Getting Started in Python

Recall that after the print function executes, it adds a line feed to the output. To
suppress the line feed that is automatically added, pass end= ‘‘ to the function.

Ex. 3.9 – suppressing line feeds.

Suppressing Line Feeds

The automatic line feed added by the print function is suppressed above, but
spaces were required before the words between and these. This is because Python
simply concatenates (joins) the strings. Consider the print statements below and
their output.

String Concatenation and Spaces

Escape Characters

Example 3.2 showed ways of including apostrophes and quotes in output.
Escape characters (sequences) provide another way with some additions.
Escape sequences in programming are special commands that begin with a
backslash and can be embedded in strings for output. When used by themselves,
they must be surrounded by quotes. They can be used to format output with a
tab or line feed, or to include an apostrophe, quotes, or backslash.

45

Chapter 3 Getting Started in Python

In the example program below, spaces have been added around the escape
characters for a line feed, single quote, and double quote for clarity.

Escape Sequences

Escape sequences are seen by the computer as a single character. Table 3.3 lists
commonly used escape sequences.

Table 3.3 - Escape Sequences

Keyboard Input

As shown earlier, Python has a built-in function called input that reads input
from the keyboard. The function returns the value entered on the keyboard as a
string which can then be converted to the data type desired.

46

Chapter 3 Getting Started in Python

The first line of code below obtains user input as a string and assigns it to the
variable words. The second receives a value from the user and converts it and
stores it as an integer in the variable integer. The third line receives the user
input and converts it to a floating point number and stores it as a float in the
variable decimal. The print function with no arguments (empty parentheses)
produces an extra line feed. The third print function is using a plus sign for
addition of the numbers, not concatenation since they are numeric values.

Ex. 3.10 – keyboard input and conversion.

Notice below that the second call to the print function displays each of the items
separated by a space. The third print function call completes the addition of the
integer and floating point number and displays the result. With strings, the
result is concatenation but the data types for the addition in the print statement
are an integer and floating point number. The result is a floating point number.

Keyboard Input Conversion

Type Conversion (Casting)

Converting an item to a different data type is referred to as casting. Casting is
accomplished by surrounding the item to be cast with parentheses, and preceding
it by the resulting data type needed. Note that casting will only succeed if the
item being cast is valid for the conversion. For instance trying to convert “Hello”
to an integer will fail.

47

Chapter 3 Getting Started in Python

In the next example, the variable first is assigned a floating point number (123.45)
which is then cast to an integer. In the second part, the variable second is
defined with an integer (5) which is then cast to a float. The output shows the
successful conversions.

Casting – Converting Data Types

If an attempt is made to cast an item that is not convertible to a numeric value,
the interpreter indicates an error.

Invalid Type Error

Arithmetic Operators

Python arithmetic operators include addition, subtraction, multiplication, two
types of division, the modulus operator (modulo divide), and exponentiation.
The values on the left and right side of the operator are referred to as operands.
As shown in Table 3.4 below, the operators for addition and subtraction are the
plus and minus signs, and the multiplication operator is the asterisk. The two
division operators include a single forward slash for floating point division and
two forward slashes for integer division with positive results being truncated

48

Chapter 3 Getting Started in Python

and negative results being rounded away from zero. The modulus or remainder
operator is the percent sign, and the exponentiation operator is two asterisks.

Table 3.4 – Arithmetic Operators

Precedence for operators in Python follows PEMDAS, parenthetical expressions
first, followed by exponentiation, then multiplication, division, modulo division,
and then addition and subtraction. Operators with the same precedence are
handled left to right. The importance of parentheses is highlighted in the
examples below in which the result differs depending on the precedence forced
by the parentheses.

4 * 2 + 15 / 5 – 2 the result is 9

4 * (2 + 15) / 5 – 2 the result is 11.6

4 * (2 + 15 / 5 – 2) the result is 12

(4 * 2 + 15) / 5 – 2 the result is 2.6

4 * 2 + 15 / (5 – 2) the result is 13

4 * (2 + 15) / (5 – 2) the result is 22.666

(4 * 2) + (15 / 5) – 2 the result is 9

When writing mathematical expressions, including parentheses even when they
align with precedence improves readability. Complex mathematical expressions
can be broken into multiple statements to simplify the expression.

49

Chapter 3 Getting Started in Python

Mixed-type expression results depend upon the data types in use.

Two int values the result is an int
Two float values the result is a float
An int and float the int is temporarily converted to a float and the

result of the operation is a float.

When a float is added to an integer, the result is a floating point number as
shown in the example below.

Addition with Integers and Floats

The same results occur with subtraction. When an integer is subtracted from an
integer the result is an integer. When a float is subtracted from an integer the
result is a float, and when an integer is subtracted from a float the result is a float.

Subtraction with Integers and Floats

50

Chapter 3 Getting Started in Python

The two operators for division are a single or two forward slashes. A single
forward slash is used for floating point division and two forward slashes for
integer division. The division operators override the mixed-type results that
were previously covered. Floating point number division using the integer
division operator will produce a floating point result, but it is truncated.

Table 3.5 – Division Operators

The Round Function

To deliberately round numbers, Python has a round function that will round
numbers to an integer or to a specified number of places. The number of decimal
places is passed as the second argument to the function.

number = round(9.4) number is 9

number = round(9.6) number is 10

number = round(12.2733, 2) number is 12.27

number = round(12.2755, 2) number is 12.28

number = round(-2.7777, 2) number is -2.78

Round Function

The modulus or remainder operator produces the remainder after division
(sometimes referred to as modulo divide). The operand on the left of the

51

Chapter 3 Getting Started in Python

operator is divided by the operand on the right and the result is the remainder.
Remainder division is often used to determine if a number is even or odd, and to
extract a digit from a number. Python supports remainder division with floating
point and negative numbers as well.

result = 5 % 2 result is 1
result = 7 % 2.0 result is 1.0
result = -5 % 2 result is 1
result = -5 % -2 result is -1
result = 8.5 % 2 result is 0.5

Remainder Operator

For exponentiation or raising a number to a power, the operator is two
asterisks. The operand to the left of the operator is raised to the power of the
operand on the right.

result = 2 ** 4 result is 16
result = 2 ** 4.0 result is 16.0
result = 2 ** 1.5 result is 2.8284271247…
result = 2 ** 0 result is 1
result = 2 ** -1 result is 0.5

Exponentiation

Programming Algebraic Expressions

When converting mathematical expressions into Python code, the translation
may require adding operators and parentheses to ensure the correct result. As
an example, the expression 3xy in algebra would not be accepted by the
interpreter. It would produce a syntax error. The multiplication operator must
be inserted as in 3 * x * y. In addition, when an expression contains fractions,
precedence requires careful consideration to ensure that operations occur in the
correct order. With extremely complex equations, breaking the expression into
parts may be the best course of action.

52

Chapter 3 Getting Started in Python

Conversion examples.

Converting Algebraic Expressions

Breaking Long Statements

Statements in Python can be broken across lines using the line continuation
indicator (backslash) shown in the first example below. However, the backslash
is not necessary when a statement is enclosed in parenthesis as in the second and
third examples.

wind_chill = 35.74 + (0.6215 * tempF) - (35.75 * (wind_speed**0.16)) + \
 0.4275 * tempF * (wind_speed**0.16)

result = (item1 + item2 + item3 +
 item4 + item5)

print (“User 1 gross pay is $“, gross_pay,
“ and the net pay is “, net_pay)

Breaking Long Statements across Lines

The next section follows the development of a complete computer-based solution
from requirements decomposition and design through development and testing.

53

Chapter 3 Getting Started in Python

A Complete Example – Theater Program

Requirements:

Write a program for a Theater Manager that computes the total sales
receipts and profit for an event based on the number of tickets sold at
$29.50 each, and the cost to hold an event which is $1,475.00.

The project begins by determining what the program does, what it needs to
complete the task (input), the operations it will perform (process), and what it
will produce (output).

Program Requirements Decomposition:

1. The program computes total sales and profit for a Theater Manager.

2. The program input is the number of tickets sold.

3. The program computes total sales based on the number of tickets sold
and price for each ticket

4. The program computes the profit for the event based on the total sales
from tickets and the cost to hold the event.

5. The program will output the total sales amount and the profit.

Pseudocode or a flowchart can help to determine the correct order of operations.

Step 1 Start and announce the program

Step 2 Prompt for tickets sold and store the value

Step 3 Compute total sales - Tickets sold * $29.50

Step 4 Store the total sales in a variable

Step 6 Compute profit – total sales - $1,475.00

Step 7 Store the profit in a variable

Step 7 Display the total sales and profit

Step 8 End the program

54

Chapter 3 Getting Started in Python

Development

1. Development begins by creating a file, naming it appropriately, and
adding a description of the program for future reference.

2. The variables needed by the program are defined next. These can be
determined by the program input and output, and the processing that will
be performed. The ticket price and event cost are provided, the number
of tickets sold will be input, the total sales and profit will be computed.

3. An announcement to the user of what the program does is added, and the
input section which prompts for and obtains the number of tickets sold.

55

Chapter 3 Getting Started in Python

4. The processing section computes the total sales from the tickets sold,
and the profit once the total sales are computed.

5. Finally, the output section is completed with dollar signs and format
specifiers for the dollar amounts (two decimal places). Note the blank
lines between sections of code to enhance readability.

6. Testing the program includes initially using input data that is easy to
verify. Since 100 * $29.50, and $2950 – $1475 are easily checked,
testing begins with 100 tickets. Then other ticket amounts are tested.

56

Chapter 3 Getting Started in Python

Project Summary:

A step-by-step approach forms good program design and development habits
that are critical in developing complex programs. As complexity increases, so
does the chance that errors will be introduced. The goal is to minimize errors
and debugging time, and deliver a computer-based solution that meets the
requirements.

Step 1 Review the program requirements

 Ensure an accurate understanding of the task

Step 2 Requirements Decomposition

 Break down the task in sub-tasks

Use pseudocode and a flowchart to determine the solution

Step 3 Development – programming the solution

Step 4 Testing and debugging

57

Chapter 3 Getting Started in Python

Chapter 3 Review Questions

1. Words added to programs to explain complex areas or to add clarity and are not
executed when the program runs are _______________.

2. The ________ function is used to display output in Python.

3. In Python, literal strings can be surrounded by single or double __________.

4. In order to execute a function, it must be _________.

5. A ___________ is an item passed to a function.

6. A __________ is a sequence of characters in code surrounded with quotes.

7. The equal sign is used to ______________ a value to a variable.

8. The ______ side of the assignment statement is assigned to the ______ side.

9. __________ are used to store values in memory.

10. A variable must be __________ before it can be used by the program.

11. Integer, float, and string are examples of data ________.

12. The ________ data type can be only true or false.

13. Variable names (can or cannot) _______ begin with a number.

14. _______________ should be used in place of magic numbers.

15. Floating point numbers in Python are stored with __________ precision.

16. When multiple arguments are passed to the print function, they are separated
by _________ in the output by default.

17. To suppress or replace the default separator for multiple arguments when
calling the print function, the __________ argument is used.

18. Concatenation refers to _____________ two or more strings.

19. The term immutable means that strings in Python cannot be ___________.

20. The ___________ function is used to set the number of decimal places in the
output of a number.

21. To suppress the automatic line feed after a print function call, the _________
argument is passed.

22. The __________ escape character is used to produce a tab.

23. The _________ function is used to obtain input from the keyboard.

24. Converting an item to a different data type is known as ___________.

58

Chapter 3 Getting Started in Python

Chapter 3 Short Answer Exercises

1. What do the following lines of code output?

ounces_per_can = 6
print(‘Ounces: ‘, ounces_per_can)

2. What is the result when the following lines of code are executed?

number = 23
print(‘The number is ‘ + number)

3. What do the following lines of code output?

num = 123.4567
print(‘Number is ‘, format(num, ‘.2f’))

4. What do the following lines of code output?

num = 12
print(‘Number is ‘, format(num, ‘.2f’))

5. What do the following lines of code output?

num = 8.367
print(‘Number is ‘, format(num, ‘.1f’))

6. In following expression, what does the number “8” specify?

print(format(var1, ‘8.4f’))

7. In following expression, what does the letter “d” specify?

print(format(var1, ‘,d’))

8. Which of the following variable names follow proper naming conventions?

a. average
b. 8pieces
c. netPay$
d. gross pay
e. hourly_rate

59

Chapter 3 Getting Started in Python

9. What type of variable is defined in this expression?

INTEREST_RATE = 0.07

10. What is the output from the following statement?

num = 850
print(‘The number twice is ‘, num, num, sep=’’)

11. What is the output from the following statement?

var1 = ‘my’
var2 = ‘dog is’
var3 = ‘happy’
print(var1, var2, var3)

12. What is the output from the following statement?

print(format(24, ‘.3f’))

13. What is the output from the following statement?

print(format(98765.378, ‘,.2f’))

14. What is the output from the following statements?

print(‘Press the Enter key ‘, end=’’)
print(‘when ready.’)

15. What is the output from the following statements?

print(‘She said \”Hello\”. ‘)

16. In each of the expressions below, what will be the value assigned to the variable
result?

a. result = 5 // 2
b. result = 7 / 2
c. result = 4 * 3 / 2
d. result = 5 % 2
e. result = 2**3

60

Chapter 3 Getting Started in Python

17. In each of the expressions below, what will be the value assigned to the variable
balance?

a. balance = round(5.4)
b. balance = round(3.6)
c. balance = round(6.767, 2)
d. balance = round(-13.5)

18. In the code below, what data type will be stored in salary? Is it the correct data
type for the request?

salary = int(input(‘Enter your salary: ‘)

19. Express the following equations in Python code.

a. 4xy

b. z = 2ab

c. y = b2 - 4ac

d. 𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏
𝑥𝑥 − 𝑦𝑦

Chapter 3 Programming Exercises

1. Write a program that displays the following text.

Python is an interpretive language.

2. Write a program that displays the following text with Python in quotes.

The language is “Python”.

3. Write a program that displays the following text with the apostrophe.

That doesn’t add up!

4. Write a program that prompts the user to enter their name and then displays
‘Hello ‘, and the name that was entered.

61

Chapter 3 Getting Started in Python

5. Write a program with three variables: first, second, and third. Assign the
values 5, 6, and 7 to the variables and display each on a separate line.

6. Write a program that uses the Named Constant below to display ‘The interest
rate is ‘, followed by the constant value.

INTEREST_RATE = 7

7. Write a program that assigns a variable tickets the value 125 and then displays,
‘The tickets sold today were ‘, followed by the variable.

8. Write a program that defines three variables named word1, word2, and
word3. Assign ‘abc’ to word1, ‘def’ to word2, and then assign word1 and
word2 combined to word3 using concatenation. Then display word3.

9. Write a program that uses a format specifier to display the number 12345.678
formatted with commas and two decimal places as shown.

12,345.68

10. Write a program that displays the numbers below on separate lines, with two
(2) decimal places, and in fields that are eight (8) characters wide.

123.45 1452.56 56.80

11. Write a program that uses three (3) print statements to display the words No,
lines, and between all on one line with spaces between the words.

12. Write a program that prompts the user to enter their age and then displays
‘Your age is’ and the age that was entered

13. Write a program that prompts the user to enter a number, and then a second
number. The program will add the numbers, and display ‘The sum of the
numbers is: ‘, and the result.

14. Write a program that computes the total cost of a meal based on the meal price
entered by the user, plus a 20% tip, and 5% sales tax. The output should be
displayed as shown below and include a dollar sign and two (2) decimal places.

62

Chapter 3 Getting Started in Python

15. Expand number 14 to include output of the tip, and tax amounts, before the
total price. The output should include a blank line between the input prompt
and the output, and include dollar signs and two (2) decimal places for dollar
amounts.

16. Write a program that prompts the user to enter a Fahrenheit temperature,
computes the Celsius temperature and displays the ‘The Celsius
temperature is: ‘, and the result. The equation for the conversion is:

C = (F – 32) / 1.8 Test data: When F = 23, C = -5

17. Write a program that prompts the user to enter the lengths of the two sides of a
rectangle. The program will compute the area and perimeter, and assign the
values to two variables. Then display the computed values with their titles as
shown in the example below.

18. Write a program for a Yogurt vendor that computes the total sales and profit for
a day’s sales based on the number sold at $6.50 each, and the cost of the Yogurt
to the vendor which is $4.25 each. The profit is the total sales minus the total
cost. The program will display the output as shown in the example below.

19. Write a program that prompts the user for two integers (x and y) and computes
a result using the equation below. Note the output when y is entered as 1.

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑥𝑥 + 2
𝑦𝑦 − 1

63

Chapter 3 Getting Started in Python

20. Part #1: The surface area of a sphere is given by the equation below. Write a
program that prompts the user for the radius of a sphere as a float and the units
of measure (feet, miles, etc.), computes the surface area, and displays the result
with the square units. Use the operator for exponentiation in the solution, and
format the output to 3 decimal places. Use 3.14159 as the value for PI.

Surface area = 4 π r2

Part #2: The volume of a sphere is given by the equation below. Write a
program that prompts the user for the radius of a sphere as a float and the units
of measure (feet, miles, etc.), computes the volume, and displays the result with
the units. Use 3.14159 as the value for PI.

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 4𝜋𝜋
𝑟𝑟3

3

Part #3: Combine parts 1 and 2 into a single program that prompts the user for a
radius as a float and the units of measure, and in addition to the surface area
and the volume of the sphere, display the circumference. Two examples are
provided using 3.13159 as the value for PI, to validate the output.

Earth radius at the equator: 3,963.2 miles

Volley Ball radius: approx. 4.1 inches

64

Chapter 3 Getting Started in Python

Chapter 3 Programming Challenge

Loan Calculator

Design and develop a program for a car dealer that computes the monthly payment,
total payback amount, and total interest paid for a car loan based upon the loan
amount, interest rate, and loan duration in months.

The equation for determining the monthly payment for a loan is:

Monthly Loan Payment Formula: MP = L * (r / (1 - (1 + r)-N)).

o MP = monthly payment amount

o L = principal, meaning the amount of money borrowed

o r = effective interest rate. Note that this is usually not the annual
interest rate (see below).

o N = total number of payments

Calculate the effective interest rate (r) - Most loan terms use the "nominal annual
interest rate," but that is an annual rate. Divide the annual interest rate by 100 to
put it in decimal form, and then divide it by the number of payments per year (12)
to get the effective interest rate.

o Example, if the annual interest rate is 5%, and payments are made monthly
(12 times per year), calculate 5/100 to get 0.05, then calculate the rate:

Effective rate = 0.05 / 12 = 0.004167.

Sample output:

65

Chapter 4 Decisions Structures and Boolean Logic

Chapter 4

Decision Structures and Boolean Logic

Decision or control structures determine the statements that execute based upon
a condition that is either true or false. A conditional statement is used to
determine whether or not a line or lines of code execute. Conditional statements
provide multiple paths through a program based on the status of a Boolean
(true or false) condition. If the condition is true, then a statement or statements
are executed, otherwise they are not executed. The decision structure is
implemented using the if statement.

As an example, assume that a Theater has seating for 400 participants. Once the
Theater has sold 400 tickets, the show has been sold out. When this occurs, the
Theater displays a “Sold Out” sign at the box office. The decision to display the
sign is made based upon whether or not 400 tickets have been sold.

Ex. 4.1 – executing a statement based upon a condition

If 400 tickets have been sold

- Display the “Sold Out” sign

The condition is tested (have 400 tickets been sold), and if it is true, then the
“Sold Out” sign is displayed. If the condition is false and 400 tickets have not
been sold, then the sign will not be displayed.

66

Chapter 4 Decisions Structures and Boolean Logic

Conditional expressions are represented in flowcharts as diamonds. The
different paths that the program can take are shown using lines from the corners
of the diamond with arrows indicating the direction with text to indicate the
result. These paths in the program are often referred to as the Flow of Control
or the Order of Operations. If the condition is true, then the flow of control
follows the path to display the sign. Otherwise (if it is false), the program
continues.

Decision Structure Flowchart

The if Statement

When writing a conditional statement in Python, the condition begins with the
word if, followed by the condition, and ends with a colon. The statement that is
to be executed based upon the condition is below the condition and indented
(one tab space). This is often referred to as the “if clause”. The auto-indent
feature in the IDE will automatically indent the next line after the semicolon
when Enter is pressed. The interpreter associates the indented statement with
the condition. If the condition is true, the statement will be executed. If the
condition is false, then the statement will be skipped. The general format is:

Multiple statements can be associated with a condition and form what is
commonly referred to as a block of code. A block of code is a group of
associated statements. In this case, they are associated with the condition. If the

67

Chapter 4 Decisions Structures and Boolean Logic

condition is true, all of the indented statements (the block of code) will be
executed. If the condition is false, all of the indented statements will be skipped
by the interpreter. The general format is:

Ex. 4.2 – conditional statements and blocks of code

Continuing the Theater example, assume that when the show is sold out, in
addition to the sold out sign being displayed, the box office is closed. A standard
practice is to indent in the pseudocode since the lines would be indented in the
actual code.

If 400 tickets have been sold

- Display the “Sold Out” sign

- Close the box office

The flowchart for the Theater example has been modified to include closing the
box office if the condition is true.

Conditional Blocks of Code

68

Chapter 4 Decisions Structures and Boolean Logic

Boolean Expressions

Since conditional statements are either true or false, they are referred to as
Boolean Expressions named after the mathematician George Boole (1815-1864).

Boolean expressions are implemented using Relational Operators that resolve
to either true or false. For example, one value can be greater than another, or less
than another, or equal to another. One of these three choices must be true. Table
4.1 lists the Boolean operators available in Python.

Table 4.1 – Relational Operators

Relational operators in conditional statements are used to test the relationship
between items. The result of the expression is used to determine the next step for
the program. Relational expressions are used extensively in programming.

For the examples below: x = 5, y = 8, z = 5

x > y 5 > 8 False 5 is not greater than 8
x < y 5 < 8 True 5 is less than 8
x >= z 5 >= 5 True 5 is equivalent to 5
x <= z 5 <= 5 True 5 is equivalent to 5
x == y 5 == 8 False 5 is not equivalent to 8
x != y 5 != 8 True 5 is not equivalent to 8
x == z 5 == 5 True 5 is equivalent to 5
x != z 5 != 5 False 5 is equivalent to 5

Relational Expressions

69

Chapter 4 Decisions Structures and Boolean Logic

Ex. 4.3 – conditional statements and relational operators

The Theater example conditionally displayed a “Sold Out” sign and closed the
box office if 400 tickets had been sold. A Boolean expression with a relational
operator would be used in the conditional statement for the code. The number of
tickets sold is 400 and the expression is true, or 400 tickets have not been sold
and the expression is false.

The code above obtains the number of tickets sold from the input, and tests for
exactly 400 tickets. There could not be more than 400 tickets sold since the box
office closes, therefore there are either 400 or less tickets sold.

The if-else Statement

In Example 4.3 the print statements execute when there are exactly 400 tickets
sold. Otherwise the program does nothing. To provide for other statements to
execute when the condition is false, an else clause is implemented using the
word “else” followed by a colon. An else clause can be thought of as an
“otherwise” condition for when the relational expression is not true.

When the “if” condition is true, the statements in the “if” block will be executed
and the “else” block will be skipped. When the “if” condition is false, the “if”
block will be skipped and the “else” block will execute. The general format is:

70

Chapter 4 Decisions Structures and Boolean Logic

Ex. 4.4 – the if-else statement

Continuing the Theater example, if 400 tickets have been sold, the “if” block will
execute, otherwise the else block will execute. The pseudocode is shown here.

If 400 tickets have been sold:

- Display the “Sold Out” sign

- Close the box office

else:

- Continue to sell tickets

A flowchart highlights the two different paths that can be taken as a result of the
conditional expression, and that only one path will be executed. It also shows
that the two paths converge afterward and the program continues.

The code below highlights a few points. Indentation is required to form a block
of code, and the “if” and “else” are aligned.

If-else Condition

71

Chapter 4 Decisions Structures and Boolean Logic

Nested if Structures

When two (or more) conditions are being tested, there are several ways to
implement the logic. One of these is to use a nested if, which is an “if” condition
nested inside another “if” condition. The implementation is similar to an “if”,
and indentation is again critical. If condition1 below is true, then condition2 is
tested, and if it is also true, then the statements will be executed. If condition1 is
false, then condition2 will not be tested and the statements are skipped.

To illustrate this, the Theater example now includes a balcony section with 200
seats. The tickets sales are tracked separately, so to determine if the show is sold
out requires testing both seating areas.

If the 400 main floor seats are sold
If the 200 balcony seats are sold

o Display the “Sold Out” sign
o Close the box office

Nested if Flowchart

72

Chapter 4 Decisions Structures and Boolean Logic

The conditional expression for the balcony seats above is only tested if the main
floor is sold out. Later, Boolean Logic will be covered which will combine
expressions and in most cases eliminate the need for a nested if.

The if-elif-else Structure

To handle situations where multiple conditions result in different paths, an “if”
and an “else” are inadequate because there are only two paths. Additional “if”
statements may be appropriate, but more often the if-elif-else structure is a

better solution. The “elif” statement can be thought of as a short version of
“else-if”.

Ex. 4.5 – the if-elif-else structure

The pseudocode below tests for a proper discount percentage based on the price
of an item. The logic only tests the second condition if the first condition is false,
and the third condition is only tested if the first and second conditions are false.
The final else handles the situation when all of the conditions before it are false.

Consider that a price of $120.00 is also greater than $100.00 and greater than
$90.00 and greater than $80.00, but after the first condition resolves to true,
Discount is 30%, and the other conditions are skipped over. If the price were
$95.00, then the first condition would be false and the second condition would be
tested. Since it would then be true, the discount would be 20%, and the other
conditions after it would be skipped.

Pseudocode

If the price > $100.00
Discount is “30%”

Otherwise-if the price > $90.00
Discount is “20%”

Otherwise-if the price is > $80.00
Discount is “10%”

Otherwise
No discount

If-elif-else Pseudocode

73

Chapter 4 Decisions Structures and Boolean Logic

The following flowchart highlights the paths based upon the price of the item,
and that only one path is taken as a result of the conditions. If all of the
conditions are false, then there is no discount which would be the else condition.

If-elif-else Flowchart

The code for the if-elif-else structure example is shown below.

If-elif-else

74

Chapter 4 Decisions Structures and Boolean Logic

Comparing Strings

In addition to comparing numbers, very often strings need to be compared.
When a password is changed it is typically verified and is entered twice. The
two are compared to ensure that they match. In computing, what is actually
being compared is the ASCII representation of the letters character by character.
Recall from Chapter 1 that each character has a binary representation in the
ASCII character set (Appendix A). To compare strings to see if they match, the
equivalence operator (two equal signs) is used.

word1 = ‘Play’
word2 = ‘Plan’

if word1 == word2:
print(‘The words match’)

else:
print(‘They don’t match’)

In the conditional statement, each character of each string is compared one at a
time using the ASCII representation for the letter. When ‘n and ‘y’ are compared
the condition is false. The two strings are not equivalent. The base-10 ASCII
values for the letters are 110 for ‘n’ and 121 for ‘y’. Therefore, Play is greater
than Plan since ‘y’ has a higher ASCII value than ‘n’.

String Comparison

When a string has more characters than another, they would not be equivalent
and the longer string would be greater.

75

Chapter 4 Decisions Structures and Boolean Logic

Compound Boolean Expressions (and, or, not)

When a program needs to make decisions based on complex conditions, multiple
conditions can be combined using the Logical Operators and, or, and not. In an
earlier example, a nested-if was used to test two conditions. The second
condition was tested only if the first condition was true. Both conditions need to
be true for the statements to execute. The pseudocode would be “if condition1 is
true AND then if condition2 is true, execute the statements”.

Both of the conditions above can be combined into a single compound expression
using the logical “and” operator. For the expression to be true, both sides of the
expression must be true. If either of them is false, then the expression is false.
The general format is:

Combined Expressions with “and”

As shown in Table 4.2 below, the combined expression is only true when both
conditions are true.

Table 4.2 - Logical “and” Truth Table

76

Chapter 4 Decisions Structures and Boolean Logic

This logic is often used to verify that a number is within a range, especially when
validating input. The expression “Garbage in, garbage out” or GIGO is common
in programming. The program should validate any input before continuing.

Ex. 4.6 – input validation with “and”

Assume that a program requires the user to enter a number between 1 and 100.
A logical and can be used to validate the input for the required range. Both
conditions must be true, for the expression to be true. The number entered must
be greater than 0 and less than or equivalent to 100.

Input Validation with “and”

Ex. 4.7 – the Theater example revisited using “and”

The Theater ticket sales scenario from Chapter 3 included a balcony section in
addition to the main-floor seats that needed to be sold out for the Theater to
display the “Sold Out” sign and close the box office. Both conditions must be
true and a nested “if” condition was used in the example.

If the 400 main floor seats are sold
If the 200 balcony seats are sold

o Display the “Sold Out” sign
o Close the box office

This can be easily implemented with an “and” operator, since both conditions
must be true.

Logical “and”

77

Chapter 4 Decisions Structures and Boolean Logic

Another way of testing multiple conditions is to reverse the logic. For example,
if the main_tickets_sold is less than 400 or balcony_tickets_sold is less than 200
then there are more tickets to sell. The logical or is used to test an either-or
situation. The general format is:

As shown in Table 4.3, when either condition is true, the combined expression is
true.

Table 4.3 - Logical “or” Truth Table

Ex. 4.8 – input validation with “or”

Using the previous example of validating a number between 1 and 100, a logical
or can be used to test both conditions as well. Note the different values used to
test outside the range instead of inside, and the change to the print statement.
Again, the number must be greater than 0 and less than 101, but the test is
reversed. If either condition is true, then the expression is true, and the number
is not within the range required.

Input Validation with “or”

78

Chapter 4 Decisions Structures and Boolean Logic

Short-Circuit Evaluation

The logical “and” and the logical “or” operators both use what is called short-
circuit evaluation. With the logical “and”, both sides of the compound condition
must be true for the expression to be true, so if the left side is false, then the right
side is not evaluated. It wouldn’t matter if the right side were true since the
expression is already false.

The reverse occurs with the logical “or”. When either side of a compound
expression using “or” is true, the expression is true. Therefore, if the left side of
the compound condition is true, the right side is not evaluated. It doesn’t matter
whether the right side is true or false since the expression is already true.

Some Common Logic Errors

Recall that logic errors are those errors that do not halt execution of the program
but produce incorrect results. Many of these occur due to confusion associated
with logical “and” and “or” expressions. The wording associated with conditions
in requirements can be vague and result in poor translation to code. Pseudocode
and flowcharts can help, but careful consideration of the logic is required. Table
4.4 lists some example expressions and the numeric values that would make the
expressions true. Notice that there are two situations were any number is valid.

Table 4.4 - Logical Expressions

The last of the logical operators is the not operator. This operator returns the
reverse value of the logical value of a Boolean operand. If the operand is true,

79

Chapter 4 Decisions Structures and Boolean Logic

the “not” operator returns false. If the operand is false, the “not” operator returns
true.

Table 4.5 - Logical “not” Truth Table

Caution should be exercised when using the “not” operator because it often
introduces bugs and confusion. In pseudocode, the expression below would
read “If x is greater than y is true and x is greater than z is true, then return
false”. It isn’t clear what condition is being tested.

if not (x > y and x > z):

It is often easier to reverse the logic and remove the “not” operator. De Morgan’s
Law provides two forms: one for negation of an “and” expression and one for an
“or” expression.

! (A and B) !A or !B
! (A or B) !A and ! B

A logical and methodical approach when creating conditional statements and
compound expressions will save a lot of time debugging logic errors.

Boolean Variables

Boolean variables are available in Python as the bool data type which operates
as true or false. They are often used as flags or signals in code when something
has occurred or a condition has been met, and can be used in conditional
statements. The example below uses the Theater example and sets a Boolean
variable to true when enough tickets have been sold. The flag is used to
determine if the print statements should execute.

80

Chapter 4 Decisions Structures and Boolean Logic

 Ex. 4.9 – the Theater revisited using the bool data type

A bool variable sold_out is assigned False, and the condition is tested. If the
conditional expression is true, then it is assigned True. It can then be used as a
flag in the second “if” conditional expression.

Notice that the second “if” expression above can be written “if sold_out:”. Since
the variable is Boolean, it is interpreted correctly. The expression also highlights
an occasion to use the not operator as shown below. The logic is reversed and
the expression is clear.

Common Errors

Some of the most common errors in programming have to do with logical
operators and writing conditional expressions. Most are easily found when
testing around the conditional value or values being tested.

if value < 90 # excludes 90

if value <= 90 # includes 90

Other common errors include confusing when to use “and”, when to use “or”,
and the “not” operator. A careful review of the requirements and using tools like
pseudocode or a flowchart will save time debugging and testing to find and
correct errors.

A surprisingly common error is using a single equal sign when two are required.

value = num # assigns num to value

value == num # tests for equivalence

81

Chapter 4 Decisions Structures and Boolean Logic

Since Python relies on indentation to associate lines of code with conditions,
forgetting to indent or out-dent will cause issues as well. Note the output
statements associated with the conditional expressions below.

The interpreter will help with errors in syntax and grammar, but logic errors can
only be avoided by careful implementation of the code. The best solution may be
more deliberate and intentional than the use of complex statements. It is also a
fact that code is written once, but read many times, so readability is always a
consideration.

Consider that all three of the following solutions accomplish the same thing. The
choice of which one to use is up to the programmer.

82

Chapter 4 Decisions Structures and Boolean Logic

Chapter 4 Review Questions

1. Decision structures determine the statements that execute based upon a
______________.

2. A ___________ result is one that is either true or false.

3. The Flow of Control refers to the ________ in which statements will execute.

4. In a Flowchart, decisions are represented by ____________.

5. Statements that execute when an “if” condition is true are below the condition
and __________.

6. When multiple statements are associated with an “if” condition, they are
referred to as a __________ of code.

7. Boolean expressions are implemented using ______________ operators.

8. In an if-else statement, when the “if” condition is false the ________ clause will
execute.

9. An “if” conditional statement that directly follows another “if” conditional
statement and is indented is referred to as a ___________ if.

10. When two strings are compared for equivalence, the ____________ value of
each character is compared individually.

11. Compound Boolean expressions are implemented using the _______ operators.

12. For a compound expression that uses a logical “and” to be true, ________ of the
conditions must be true.

13. For a compound expression that uses a logical “or” to be true, ________ of the
conditions must be true.

14. The logical operator that is used to negate a Boolean value is the ____ operator.

15. Boolean variables can only be assigned a status of ______ or ______.

16. Boolean variables are often used as _________ in code.

Chapter 4 Short Answer Exercises

1. What do the following lines of code output if var1 = 6, and var2 = 8?

if var2 > var1:
print(‘var2 is greater’)

83

Chapter 4 Decisions Structures and Boolean Logic

2. What do the following lines of code output if var1 = 6, and var2 = 8?

if var1 >= var2:
print(‘var2 is greater’)

3. What do the following lines of code output if var1 = 6, and var2 = 8?

if var1 <= var2:
 var3 = var1 + var2

print(‘var3 is’, var3)

4. What do the following lines of code output if var1 = 6, and var2 = 8?

if var1 == var2:
print(‘They are the same’)

 print(‘They are not the same’)

5. What do the following lines of code output if first = 10, and second = 10?

if first == second:
print(‘They are the same’)

 print(‘They are not the same’)

6. What do the following lines of code output if first = 10, and second = 10?

if first > second:
print(‘first is greater’)

 else:
 print(‘second is greater’)

7. What do the following lines of code output if val1 = 3, val2 = 5, and val3 = 8

if val2 > val1:
val3 = val2 – val1

elif val3 > val2:
val3 = val2

 else:
 val3 = 99

print(‘val3 is’, val3)

84

Chapter 4 Decisions Structures and Boolean Logic

8. Write the word Python using the Base-10 digit equivalences for the letters (ref.
Appendix A).

9. Are the following string relationships True or False?

a. Many > Mare
b. Tent > Tens
c. dress == Dress
d. Cod != cod
e. python >= python

10. Are following expressions true or false if first = true and second = false?

a. first and second
b. first or second
c. second or first
d. second and first
e. !first
f. !second

11. Write an “if” conditional expression using a logical operator that tests for a
number that is greater than 32 and less than 120.

12. Write an “if” conditional expression using a logical operator that tests for a
number between 0 and 50, including 50 but excluding 0.

13. True or false, the following expressions test for the same condition.

if num > 9 and num < 21 if num >= 10 and num <= 20

14. What range of numbers assigned to num would make this expression true?

if num > 0 or num < 100

15. What range of numbers assigned to num would make the following expression
true?

if num > 0 and num > 100

16. What numbers are excluded by the following expression?

if num < 0 or num > 0

85

Chapter 4 Decisions Structures and Boolean Logic

17. What value assigned to done would execute the print statement?

if done:
print(‘That’s all’)

Chapter 4 Programming Exercises

1. Write a program that accepts an integer as input and displays whether or not it
is greater than zero.

2. Write a program that accepts an integer as input and displays whether it is
positive, negative, or zero.

3. Write a program that accepts an integer as input for the number of hours
worked and executes the following algorithm. If the number of hours worked
are greater than 40, then output “There is overtime”, otherwise output “There
is no overtime”.

4. Expansion of the program in #3. Draw a flowchart of the algorithm and write a
program that implements the following pseudocode. Consider each variable
that is needed, the order of operations, and formatting of the output for dollar
amounts. Design the solution in terms of input, processing, and then output.

Get the number of hours worked
Get the hourly rate of pay
Compute regular pay (hourly rate * hours up to and including 40)
if the number of hours worked > 40

– compute overtime pay (1.5 * hourly rate for hours > 40)
Output regular pay
Output overtime pay
Output total pay

Sample output

86

Chapter 4 Decisions Structures and Boolean Logic

5. Modify program #4 to include double time pay (2 * hourly rate) for hours above
50, and add the additional output for the double time pay. The hours from 41
to 50 remain time-and-a-half pay (1.5 * hourly rate). Sample output is shown
below.

6. Write a program that requests two words from the user and sorts them
alphabetically based on relational operators. Display the words in the correct
order, or if the same word is entered twice, output “They are the same”.

7. Write a program that requests a username and password from the user, and
then requests that they confirm the password. If the passwords match, output
“account has been created for” and the username, otherwise output “Invalid
password confirmation”.

8. Write a store program that accepts the price for an item and computes a
discounted price based on the criteria below, determines the 7% sales tax
amount on the discounted price, and display the original price, discounted price,
sales tax, and the total amount for the purchase. Include dollar signs, two
decimal places, and right align the dollar amounts as shown in the sample
output below.

Discount criteria
Greater than $100.00 – 27%
Greater than $90.00 – 22%
Greater than $80.00 – 16%
Greater than $60.00 – 8%

Sample output

87

Chapter 4 Decisions Structures and Boolean Logic

9. Write a program that prompts the user to enter a temperature and then “F or f”
or “C or c” if it is a Fahrenheit or Celsius temperature to convert. Display both
of the temperatures or “Cannot convert” if an incorrect letter was entered. The
equations for the conversions are:

C = (F – 32) / 1.8 F = (C * 1.8) + 32

10. Write a program for a Theater that computes the total sales receipts and profit
for an event based on the number of tickets sold and the following criteria:

• The 200 main floor tickets are sold first, and then the 75 balcony tickets
are sold once the main floor is sold out.

• Main floor tickets are $29.50 each, and Balcony tickets are $19.50 each.

• The program will request the total number of tickets sold and “M” for
Matinee or “E” for evening. The cost to hold an event is $1,200.00 for
Matinee and $1,450.00 for evening.

• The output will include the number of tickets sold and sales for each
section, the total sales receipts, the event cost, and the profit for the
event. Profit is total sales minus cost.

#10 (a) Write the pseudocode for the program

#10 (b) Draw a flowchart of the solution

#10 (c) Develop the program

Sample output A

Sample output B

88

Chapter 4 Decisions Structures and Boolean Logic

11. The wind chill in North America is computed using temperature in Fahrenheit
and wind speed in miles-per-hour, however it is not valid for temperatures
above 50 degrees or when the wind speed is 3.0 mph or less. Write a program
that requests the temperature and wind speed, and computes the wind chill or
displays that it is not valid and the particular reason that it is not valid.

The equation for approximating the wind chill factor in North America is:

wc = 35.74 + 0.6215 Ta - 35.75V+0.16 + 0.4275 Ta V+0.16

 Ta is the air temperature in Fahrenheit, and

V is the wind speed in mph (consider windSpeed ** 0.16)

Chapter 4 Programming Challenge

Planet-days to Earth-days

Write a program that compares Planet-days to Earth-days.

• Request the name of the planet and a number of Earth-days
• Validate that the input is one of the planets listed below
• Validate that the number of days is greater than zero
• Compute and display the number of planet-days that would pass on the

chosen planet based upon the conversion values in hours provided (NASA).
• Display the result formatted to three (3) decimal places.

Planet Earth Equivalent Hours
Earth 24.0 hours
Mercury 4222.6 hours
Venus 2802.0 hours
Mars 24.7 hours

Sample output A

Sample output B

89

Chapter 5 Repetition Structures - Loops

Chapter 5

Repetition Structures - Loops

In a computer program, very often a statement or set of statements need to
repeat over and over to accomplish a task or compute a result. An example
would be computing compound interest for a bank account over some period of
time. The program would begin with a balance, compute the interest amount,
add it to the balance, compute the interest on the new balance, add it to the
balance, and so on. This would continue for as many times as needed.

Start with an account balance
Compute the interest amount
Add it to the balance
Compute the interest on the new balance
Add it to the new balance
Compute the interest on the new balance
And so on…

In addition, it may be desirable to repeat an entire program instead of restarting
the program to enter different inputs. Repetition Structures or loops provide
a way of repeating steps without repeating code. The loop statements continue
to execute until a final result has been reached and the loop ends. As an
example, the Theater program in Chapter 4 contained a conditional statement for
closing the box office if enough tickets had been sold. The alternate path was to

90

Chapter 5 Repetition Structures - Loops

display “Sell Tickets” and end the program. Consider that while there are tickets
to sell, they should continue to be sold and that each time tickets are sold, the
condition should be tested again until all of the tickets are sold.

The While Loop

The while loop is a condition controlled loop. The statement or statements
within the loop execute while some conditional expression is true. Each
execution of a loop is referred to as an iteration of the loop. The loop structure
is similar to conditional structures previously covered with a colon after the
condition and indentation for the statements associated with the loop (the body
of the loop). The general format is:

In flowcharts, the conditional expression is represented by a diamond, and the
arrowed lines representing the order of operations indicate returning to test the
conditional expression again when the condition is true. When the condition is
false, the loop ends and execution continues.

Since the conditional expression in a while loop is tested prior to the body of the
loop executing, it is referred to as a pre-test loop. This means that a while loop
may or may not execute depending on the result of the conditional expression.

91

Chapter 5 Repetition Structures - Loops

Ex. 5.1 – Theater ticket sales enhanced with a while loop

A while loop could be used to enhance the Theater program so that it does not
end until the Theater is sold out. The pseudocode and code follow.

While there are Theater tickets to sell
Sell another ticket
Increase the number of tickets sold

Display the sign and close the box office

Notice in the actual code below that the final two print statements are out-dented
and are not part of the loop. They execute when the conditional expression is
false. Also note that tickets_sold increases inside the loop to eventually make the
conditional statement false. This is an important point. There must be a change
that occurs inside the loop that eventually makes the condition false to end the
loop. Otherwise, the loop will continue to run resulting in an infinite loop.
When this occurs, the program must be ended to stop the loop.

While Loop

Infinite loops occur due to programmer errors. As an example, the following
loop is an infinite loop because the variable value never changes (it will always
be less than ten) and therefore the conditional expression is always true.

Infinite Loop

92

Chapter 5 Repetition Structures - Loops

A while loop can be used to allow the body of an entire program to run multiple
times without the user having to restart the program. In this example, the user is
prompted for whether or not another temperature conversion is desired. Notice
that the variable another is set to ‘y’ to start the loop. Since a while loop is a pre-
test loop, the condition must be true or the loop will not be entered. The last
statement within the loop asks the user if they would like to convert another.
Any character entered other than ‘y’ will end the loop.

Ex. 5.2 – Temperature Conversion – condition-controlled loop

Condition-controlled Loop

The For Loop

Another type of loop used in programming is the count-controlled loop where
the number of iterations is a specific number of times. The programmer sets the
number of times that the loop will execute when designing the loop.

The count-controlled repetition structure in Python is a for loop. It is designed
to be used with a sequence or a range of items. One implementation provides a
sequence of items in square brackets for use by the loop statements. For each of

93

Chapter 5 Repetition Structures - Loops

the items in the sequence, the loop body will execute. This is the reason that this
loop is sometimes referred to as the “for-each” loop. The general format is:

The keyword “for” is followed by a variable that will be used to store a copy of
the items that are in the sequence one at a time. The sequence of items follow the
word “in” and are enclosed in square brackets and separated by commas. The
expression ends with a colon, and the statements to be executed in the loop body
are indented.

One at a time, a copy of each value in the brackets will be placed in the variable
and used in the loop statement or statements. In this example, the names are
copied into the variable person and the print function is executed three times
using each one.

The next example highlights that a string is a sequence of characters. Each
character in the string “Word” is placed in the variable letter one at a time and is
then passed to the print function. Since the print function adds a line feed, the
letters are output vertically.

Ex. 5.3 – FOR loop accessing characters in a string

94

Chapter 5 Repetition Structures - Loops

The Range Function and For Loop

The second implementation of the for loop uses the Python range() function to
simplify writing count-controlled loops. The function can accept one, two, or
three arguments. When one argument is passed to the function, the range begins
at zero and the argument that was passed is used as an ending limit for the range
and is not included in the range. In the example, the print statement includes
end=’ ‘ to replace the line feed with a space.

Ex. 5.4 – For loop using the range function and a single argument

When the code executes, the output begins at 0 and ends at 9 as shown below.
Note that the argument passed to range is the limit 10 which is not included.

Ex. 5.5 – For loop using the range function and two arguments

When two arguments are passed to range, they are used as the starting and
ending limits of the series. Again, note that twenty is the limit and is not
included in the output.

When three arguments are passed to the range function, the third argument is
used as the step value for the series. Lines feeds have been replaced by a space.

Ex. 5.6 – For loop using the range function and three arguments

95

Chapter 5 Repetition Structures - Loops

Each of the integer literals in the range() function examples can be replaced with
variables. In the next example, all three literals are replaced with variables.

Ex. 5.7 – range function using variables instead of integer literals.

User Loop Control

For flexibility, a program often allows the user to determine the number of times
a loop should iterate. As an example, the temperature conversion program
below could convert a range of temperatures entered by the user. The arguments
passed to the range() function must be integer values.

Ex. 5.8 – Temperature Conversion - user loop control

96

Chapter 5 Repetition Structures - Loops

Loop Accumulator

When a program needs to compute a running total or accumulate values, it uses
what is referred to as an accumulator. The accumulator is a variable that tallies
values as a loop iterates and contains the total when the loop finishes. As an
example, the program below asks the user how many grades will be entered and
totals them as they are input. The variable total is initialized to zero and is used
to accumulate the grades each time the loop executes. The print statement
displays the average of the grades. Notice that counter is only used to control
the loop.

Ex. 5.9 – grade averaging using an accumulator

Loop Accumulator

The accumulator inside the loop in Example 5.9 uses an expression common in
programming, but impossible in Algebra. In mathematics, a value can never be
equal to itself plus some value. In programming, this is an assignment statement
and is perfectly acceptable. Assignment statements that have the same variable
on both sides of the assignment operator are common. It is important to
understand this concept. The right-hand side of an assignment statement is
evaluated first by the computer and then the result is assigned to the left-hand

97

Chapter 5 Repetition Structures - Loops

side. In this example, total is assigned the result of the current value of total
plus grade.

total = total + grade

What the statement tells the computer is to go to the memory location for total
and find out the value that is there. Then go to the memory location for grade
and find out what is there. Next, add the two together and place the result in the
memory location for total (over-writing the previous value).

Loop Counters

When the number of iterations a loop will execute is undetermined but is needed
by the program, a counter variable is placed inside the loop. For example, a
program that computes the average of a set of values needs to know the number
of values that were entered in order to compute the average. The next example
uses a counter within the loop to count the iterations and then uses the count to
compute the average of the values entered. Note that the variables are
initialized.

Ex. 5.10 – counting iterations of the loop

 Loop Counter

98

Chapter 5 Repetition Structures - Loops

Common Loop Algorithms

Loops are commonly used in programming to implement algorithms including
accumulating a total and computing an average of values as shown previously.
Others include validating input, finding the minimum or maximum of a set of
numbers, or finding a match. This example requests a number within a specific
range and the loop continues the request until a valid number is entered.

Ex. 5.11 – input validation

Input Validation Loop

The next example determines the minimum value from a set of inputs. Notice
that the first number entered is assigned to the variable smallest. Since it is the
only number entered so far, it is the smallest. An explanation follows the code.

Ex. 5.12 – Find the Minimum

99

Chapter 5 Repetition Structures - Loops

Any number that is input that is smaller than the one currently stored in
smallest, is assigned to smallest. When the condition is false, the loop ends and
the final print statement executes.

Determining the Smallest Value

The algorithm for finding the smallest can be modified to determine the largest.
The code below stores the smallest and the largest values in a single loop.

Determining the Smallest and Largest Value

Sentinels

In some of the example programs, the user was asked to enter ‘y’ to continue. In
programming, a sentinel is often used to indicate that the end of the input has
been reached by having the user enter a number that could not be part of the set
of values. As an example, if a program is requesting positive integers as input,
the user may be prompted to enter -1 when finished. If a program is requesting
numeric test grades, the user may be prompted to enter 999 when finished. The
point is that a sentinel is a value that is outside the set of values being used by
the program. It is intentionally beyond a reasonable input value.

100

Chapter 5 Repetition Structures - Loops

Nested Loops

When a loop is contained inside another loop, it is called a nested loop. An outer
loop is entered and an inner loop executes. When the inner loop completes, if
there are more outer loop iterations to complete, it again initiates the inner loop.
A good example of this operation is a set of rows and columns. The output
would display a row of data across (each column), then the next row and all of its
columns, and so on.

While there is a row of values to print
While there is a column value to print

print the value

As an example, a program that displays four (4) rows of data having three (3)
values (3 columns) would have an outer loop that iterates four times (rows) and
an inner loop that iterates three times (columns). For each execution of the outer
loop, the inner loop executes three times.

Nested Loop Flowchart

101

Chapter 5 Repetition Structures - Loops

The code below for the example shows the nested loop and a print statement that
displays the row and column numbers. For each repetition of the outer loop, the
inner loop executes three repetitions.

Ex. 5.13 – Nested Loop

Nested Loop

Common Loop Errors

Common errors associated with loops include off-by-one errors, where the
programmer has written the conditional expression or range incorrectly and the
loop is executing one too many or one too few times. This is easily corrected
after running and testing the program. Others include confusing what should be
inside the loop and what should be outside the loop. When these types of issues
occur, adding print statements before, within, and after the loop can help to
determine where the problem is located.

102

Chapter 5 Repetition Structures - Loops

A Complete Example – Investment Program

Requirements:

Write a program for a Financial Adviser that computes the number of
years to double a $10,000 investment at a given annual interest rate.

Program Pseudocode:

Step 1 Prompt for the interest rate

Step 2 Compute the interest on the balance

Step 3 Add the interest to the balance

Step 4 Increment the number of years

Step 5 Is the balance < $20,000.00

 Yes, go back to Step 2

No, got to Step 6

Step 6 Display the number of years

Verbalizing and walking through the steps that the program will take is
referred to as Storyboarding, and can often help with determining the
sequence and order of operations for the program.

“Set up the program by initializing the balance and years, and obtain the
interest rate from the user. While the balance is less than $20,000.00,
compute the interest on the balance and add it to the previous balance”.

“When the balance is no longer less than $20,000, display the number of
years”.

Development

The development of the program follows the pseudocode and storyboard.
The balance and years are initialized, and the interest rate is obtained from
the user. As long as (while) the balance is less than the target amount,
compute the interest and add it to the balance, and increment the years. The
solution below includes a print statement within the loop for test purposes.

103

Chapter 5 Repetition Structures - Loops

Investment Program Code

The print statement within the loop can be removed after testing.

Testing and Debugging

The development isn’t complete until the program is tested and verified for
accuracy. Testing can also surface questions about the requirements for the
program. The output states that the balance doubled in 16 years, but the
balance is actually more than double the initial amount at that point. Since
interest is being computed and added annually, the program meets the
requirements, but it might be a good idea to ask the Financial Advisor if this
is an adequate solution.

104

Chapter 5 Repetition Structures - Loops

Chapter 5 Review Questions

1. A structure that allows repeating steps without repeating code is referred to as
a _______________ structure.

2. A loop that repeats while some condition is true is a ________ controlled loop.

3. Each execution of a loop is referred to as an ____________.

4. A while loop is a ___________ loop and may or may not execute depending on
the conditional statement.

5. A loop that repeats a specific number of times is a _________ controlled loop.

6. A loop that continues to run without a control or condition to end the loop, it is
referred to as a(n) ___________ loop.

7. The range function provides a simplified way to write _______ controlled loops.

8. When one argument is passed to the range function, it is the ________.

9. When two arguments are passed to the range function, the first argument is the
_________ and the second is the _________.

10. When three arguments are passed to the range function, the third argument is
the ________.

11. A variable within a loop that tallies a running total is an _____________.

12. A variable within a loop that counts the number of iterations of the loop is
referred to as a _____________.

13. A value entered by the user that is used by the program to indicate the end of a
data set is referred to as a ___________.

14. A loop within a loop is referred to as a __________ loop.

15. Verbalizing and stepping through program operation is known as __________.

Chapter 5 Short Answer Exercises

1. What do the following lines of code output if var1 = 6, and var2 = 8?

while var1 < var2:
print(var1, end=’’)
var1 = var1 + 1

105

Chapter 5 Repetition Structures - Loops

2. What do the following lines of code output if var1 = 6, and var2 = 8?

while var1 < var2:
print(var1, end=’’)
var1 = var1 + 2

3. What do the following lines of code output if var1 = 6, and var2 = 8?

while var1 <= var2:
 print(var1)

4. What do the following lines of code output if first = 10, and second = 10?

while first < second:
 print(‘Enter a number’)

5. What do the following lines of code ensure?

value = int (input(“Enter a positive number’)

while value < 1:
value = int (input(“Enter a positive number’)

6. What do the following lines of code output?

for counter in range(3):
print(counter, end=” ”’)

7. How many times will following loop display “Hello”?

for counter in range(3, 7):
print(‘Hello’)

8. How many times will following loop display “Another”?

for counter in range(2, 10, 2):
print(‘Another’)

9. In the following code, what term would be used to describe the variable total?

for counter in range(3):
grade = float(input(‘Enter a grade’)
total = total + grade

106

Chapter 5 Repetition Structures - Loops

10. In the following code, what term would be used to describe the variable num?

for counter in range(3):
grade = float(input(‘Enter a grade’)
total = total + grade
num = num + 1

11. In the following code, what term would be used to describe 999?

while grade != 999:
grade = float(input(‘Enter a grade or 999 when finished.’)

Chapter 5 Programming Exercises

1. Write a program that sets a variable num to 0 and uses a while loop to display
the numbers 0 thru 9 separated by a space using the variable.

2. Write a program that sets a variable num to 0 and uses a while loop to display
the even numbers 0 thru 20 separated by a space using the variable.

3. Write a program with a for-in-range loop that displays the numbers 0 thru 9
separated by a space using a variable.

4. Write a program with a for-in-range loop that displays the even numbers 0 thru
20 on a single line separated by a colon using a variable.

5. Write a program that prompts for a positive integer, and uses a while loop to
validate the input. If the number entered is not a positive number, the loop will
output the error message “Invalid input”, and request another number.

6. Write a program that prompts for a number between 1 and 10 inclusive, and
uses a while loop to validate the input. The loop will output the error message
“Invalid input”, and request another number. When a valid number has been
entered, output “Thank you.”

7. Write a program that displays a heading and the columns of data shown below
containing the number 1 thru 10 and the squares of the numbers. Use the tab
escape character and width specifier as needed. Sample output below.

107

Chapter 5 Repetition Structures - Loops

8. Write a program that uses two variables num1 and num2, and uses a nested
loop to display the following output of 3 rows with 5 columns. Consider where
the line feed should be located in the loop structures.

9. Write a program that prompts for a word from the user, and then displays each
character in the word separated by a tab. As an example, if the word “Python”
were entered:

10. Write a program that prompts for a word from the user, and then displays every
other letter with a space between them. As an example, if the user entered
“Exceptional”:

11. Modify the program from chapter4 that prompts the user for a temperature and
then “F or f” if it is a Fahrenheit temperature or “C or c” if it is a Celsius
temperature to convert. Display both of the temperatures or “That the letter is
invalid” if an incorrect letter was entered. Allow the user to convert another
temperature without restarting the program. A sample run is shown below.

C = (F – 32) / 1.8 F = (C * 1.8) + 32

108

Chapter 5 Repetition Structures - Loops

Sample program run:

12. Modify the Wind Chill program from chapter 4 to allow the user to compute
multiple wind chill factors without restarting the program. Validate the input
for temperatures less than or equal to 50 degrees and wind speeds > 3.0 mph.
Display an error message and prompt again when invalid data is entered.

Sample program run:

13. Write a program that requests a cable length (must be positive) from the user
and a cable thickness (must be between 0.1 and 2.5) in inches. Validate the
input and keep requesting until valid input is received. Write a loop that will

109

Chapter 5 Repetition Structures - Loops

simulate applying one pound of tension and stretching the cable for each
repetition of the loop.

The cable will stretch its thickness times 0.28 feet for each pound of tension
applied. The cable will break when it is 112% of its original length. Output the
pounds of tension on the cable and the length for each pound applied, and
announce when the cable has broken.

Sample program run:

Chapter 5 Programming Challenge

Drainage Canal

The canal has a natural flow rate of 40 ft3 /s at 3.3 feet. Rainfall increases the water
level of the canal and a flood gate must be opened to remove the excess water.

Prompt the user for the water level in feet (must be > 3.3) and the number of feet
(in 1 foot increments) to open the flood gate (must be >= 1), and compute the time
to lower the level to 3.3 feet while displaying the hours passed, and the current
level of the canal to two (2) decimal places.

The program will simulate the discharge of water through the flood gate at a rate of
0.03 feet of water per minute for each foot that the food gate is open. This will
continue until the water level in the canal has reached 3.3 feet.

The program will validate the input only allowing a water level > 3.3 and a gate
opening >= 1, and then start a loop to simulate draining the canal and display the
hours passed and current water level each time the loop executes. The program will
announce when the canal has reached the natural level of 3.3 feet and end.

Note the output alignment in the sample below.

110

Chapter 5 Repetition Structures - Loops

Sample program run:

111

Chapter 6 Functions

Chapter 6

Functions

As programs become longer and execute more tasks, the main function grows
and code may be repeated in order to repeat functionality. The design process
includes dividing the program into logical sections of distinct functionality
which will be developed individually. This is referred to as modularization.
Separating the program into distinct parts provides many benefits including the
ability to: reuse portions of the code, divide the program development among
multiple programmers, and simplify the task. Instead of writing one long
program, sections can be developed in functions, and then the functions can be

called when needed, and as many times as needed. Some functions, like print,
input, range, and round have already been used in previous programs. There are
many more available, and programmers write their own functions as well.

There are two types of functions, void functions that just perform a task and

value-returning functions that return a value. The print function is a void
function, and input is an example of a value-returning function. Note the
difference in their use below. The print function simply displays what is passed
to it, but the input function returns something that is assigned to a variable.

112

Chapter 6 Functions

Void Functions

The code for a function is called the function definition and it begins with the

keyword def which is followed by a name for the function, a pair of parentheses,

and a colon. This first line is of the definition is referred to as the function
header. The statements that will execute when the function is called are
indented and form a block of code and are referred to as the function body. The
general format is:

The program below prints a statement, then calls a function, and then prints
another statement. There are a few differences in this program. First, the main
function is defined, and the general format for main is similar to the format for a
void function. Every program has a main function where execution begins when
the program is launched. The programs covered previously were run by the
IDLE interpreter without a main function, but now is a good time to include the
main function. Second, after the definition for the show_output function, there is
a call to main. This is what executes the program. The interpreter reads through
the lines of code, and when it reaches the last line it executes the main function

Ex. 6.1 – Function definition including “main”

Function Definition with Main

113

Chapter 6 Functions

As shown in example 6.1, the function call is made at the point in the code when
it is to be executed. The function definition that contains the lines that will be
executed when the function is called, are located separately. When the function
is called, control of the program moves to the function, it executes, and then
control returns to the point where it was called. This is shown by the output
from the example.

The program in Example 6.1 is repeated here with line numbers for explanation.

Notice that the function definition starting on line 10 seems to be inside main,
but it is below main and out-dented the same as main. Line 14 is the call to main
which begins execution of the program. On line 5, the output function is called
and executes, and when it completes, control returns to main.

Step 1 the interpreter reads through the program

Step 2 the main function is called (line 14)

Step 3 the print statement in main executes (line 3)

Step 4 the show_output function is called (line 5)

Step 5 the body of the function executes (line 10)

Step 6 the print statement back in main executes (line 7)

Function Program Order of Operations

114

Chapter 6 Functions

A reminder about indentation is warranted. Indentation forms a block of code
in Python. The function names, including main begin at the margin, and the
function bodies are indented forming a block of code for the function. The IDE
highlights items by color-coding the text as shown below. Also note that it is
much easier to use the tab key for indentation than to count spaces to be sure
they are always the same.

Variables and Scope

The part of a program where a variable is accessible is referred to as the
variable’s scope. When a variable is declared within a function (including main),

the scope of the variable is the function. It is referred to as a local variable. A
variable defined inside a function is not accessible outside that function, so
different functions could have variables with the same name without causing
any conflict. Each of the variable’s scope would be their particular function, and
would not be accessible by another function. If several engineers are working on
the same program, but they are working on different functions, they may name a
local variable using the same name. Again, there would not be a conflict. To

115

Chapter 6 Functions

demonstrate this, the following program has a function and a main function, and
each one defines a variable called word. The print statements are used to
highlight that they are different variables (with different memory locations)
although they have the same name.

The output of the program highlights the scope of each of the variables. Even
though they have the same name, because of scope, they are different variables
with different values.

If the program attempted to access a variable outside of its scope, an error would
occur. In addition, attempting to access a variable in a function before it has been
defined will cause an error. It is always best to declare all variables needed by a
function together and first within the function. This makes readability and
maintenance much easier and eliminates the potential for errors.

Global Variables

Defining a variable outside any function in Python makes it global and
accessible to all areas of the program. A function that needs to change the
variable precedes it with the keyword global. Other functions can just use it as
needed. Global variables should be used sparingly if at all because their use
makes debugging very difficult since any part of the program can change a

116

Chapter 6 Functions

global variable. In addition, any function that accesses and uses a global variable
is dependent on that variable and cannot easily be used in another program.

This example defines a global variable, assigns it the value 2, and main changes
the value since it is preceded by the word global. The function displays the value
proving that it has access to the global variable and that it has been changed.

Ex. 6.2 – Global variable access

There are two occasions when having global variables in a program is beneficial
and improves efficiency.

1. In a collaborative programming environment when multiple engineers
are working on the same project and a consistent value is required. For
example, if a project involves multiple engineers working in multiple files
and they are writing equations that use the diameter of the Earth, a global
variable for the diameter may be declared. The Earth is not a perfect
sphere and there are variations in the diameter.

2. A project that uses a value or set of values in many places, and the values
tend to change. For example, financial programs need to be changed
frequently or at least annually since tax percentages and ranges change.
Declaring them as global variables requires only changing them in one
place, as opposed to searching through all of the code to ensure that
everywhere they are used is updated with the new value.

117

Chapter 6 Functions

In these instances, global variables are typically handled as global constants.
As noted in Chapter 3, a constant is a value that cannot (should not) be changed
by the program. Python does not formally have constants, but they can be
implied by following the standard for naming constants with all uppercase
letters and underscores as shown here.

GLOBAL_CONSTANT = 2.76

Without using the keyword global, the value cannot be changed by a function,
but it will appear that it does even though a new variable has actually been
declared. Note the output of the following example that attempts to change a
global variable, but is really declaring a new variable with the same name. The
global constant is not changed by the function. The function simply has a
variable of the same name.

Ex. 6.2A – Global variable incorrect use

Preceding the global variable with the keyword global allows it to be changed,
but this cannot be done in a single step. The variable must be defined as global
first and then an assignment can be executed as shown here.

118

Chapter 6 Functions

The following example modifies the global variable in the function. Note that
two lines of code are required. First, the variable is acknowledged as being
global, and then the assignment changes the value.

Ex. 6.2B – Global variable modified by a function

Passing Values to Functions

Functions cannot access variables outside their scope, but often they need to use
them. When a function needs to use a variable defined somewhere else in the
program, the variable is passed to the function as an argument. To the function

receiving the argument, it is referred to as a parameter. Technically speaking,
arguments are passed to functions and parameters are received by them. In the
following example, main calls a function and passes a variable (argument) to the
function that receives it (parameter) into a local variable, and uses it in an
equation and print statement. Notice that argument is the name of the variable
passed as the argument, and parameter is the name of the variable receiving the
parameter in the function header. This highlights that a value is passed. The
computer goes to the memory location for the variable argument, finds out what
is stored there and passes a copy of it to the function. The function receives the

119

Chapter 6 Functions

value and stores it in the memory location for parameter. This is referred to as
pass-by-value.

It doesn’t matter what the receiving function calls the value that it receives,
except that it must use that name internally. The parameter variable is actually a
local variable to the function and has the function as its scope.

Ex. 6.3 – Passing an Argument to a Function

Passing an Argument to a Function

The argument passed to a function does not need to be a variable. A literal can
be passed as well. The function in the example could be called as shown here.

Passing Multiple Values to Functions

When needed, multiple arguments can be passed to functions as long as there are
parameters to receive them. The arguments can be different data types, and they
will be received by the function in the order that they are passed (see the
Technical note below). Example 6.4 demonstrates passing three arguments to a
function. The first argument is a number, the second is a string, and the third is
another number. They are received into p1, p2, and p3 and are used
appropriately. If the code tried to multiply p1 and p2, the output would be quite
different since p2 is a string.

120

Chapter 6 Functions

Ex. 6.4 – Passing multiple Arguments to a Function

Passing Multiple Arguments to a Function

Technical note: Python allows keyword arguments which specify the parameter that an
argument is assigned to by the receiving function. The item to be received by the
parameter is assigned to it in the function call argument list. The function below has two
parameters, and when the function is called the arguments are assigned to the receiving
parameters in a different order than they are passed. They are assigned correctly. The
use of keyword arguments requires specific knowledge of the function’s parameter list,
and can negatively affect readability and reuse.

121

Chapter 6 Functions

Value Returning Functions

Value returning functions are different from the void functions covered so far in
two ways. They return a value to the calling part of the program, and they have
a return statement. The general format is shown below.

Notice that the last line of the function is the return statement. This follows the
practice of logical programming: input, processing, and output. The variable
something would be defined in the function, assigned a value, and its’ value
would be returned by the function.

Ex. 6.5 – Value-returning function

The function get_input() is called from main first. The function obtains user input
and assigns it to num. The function returns the value stored in num and it is
received back in main and is assigned to the variable usernum. Then the print
statement executes.

Value-returning Function

122

Chapter 6 Functions

Functions can return Boolean values (True/False) and strings as well.

Ex. 6.6 – Value-returning function data types

The function get_password() is called from main and returns a string. The string is
assigned to pw and is then passed to the function long_enough() which returns a
Boolean value (true or false). The Boolean value is passed to the function output()
which determines the print statement. Notice that main simply consists of three
function calls, and that the function definitions are in the same order that the
functions are called. This is a programming practice that enhances readability.

The example demonstrates modular programming with most of the code being
executed in functions. The main function becomes a series of function calls to
execute the program. Most of the functionality that a program executes can be
placed in a function. As the requirements are decomposed and the Design Phase
begins, areas of the program that lend themselves to being functions will surface.
Once, the functionality is determined, the function can be defined.

123

Chapter 6 Functions

Technical note: Python allows returning multiple values from functions. The general
format is:

return value1, value2, etc.

The return values must be received in the order that they are returned and are separated
by a comma.

first, second = get_two_values()

Writing a function that returns multiple values could be considered too specific to a
particular use or program since the function could not easily be reused elsewhere. Their
use can also negatively affect the readability of the program.

Defining and Naming Functions

When creating a function, there are several things to consider and steps that can
help in the process. First, determine what the function will do. Each function
should accomplish one task, and the name of the function should describe what
it does. Function names follow the same rules and conventions for variables
with all lowercase letter and words separated by underscores. Since functions
perform an action, verbs are usually used to name functions like get_tax_rate, or
compute_gross_pay. Once the function task and name have been decided,
determine what parameters the function needs in order to accomplish the task.
Then, determine if the function will return a value and if so, what data type will
it return.

Step 1 name the function what it does

Step 2 determine the parameters that it needs

Step 3 determine if the function will return a value

- If yes, determine the return type

A tool that is helpful with function design as well program design is an Input,
Processing, Output document or IPO. An IPO may be in the form of a chart or
document, and includes the name of the function, a brief description of what it
does, the input needed, the processing it will accomplish, and the output or
return value. An IPO can also be used for the overall program. The next
example uses functions to obtain a number from the user, compute the square of
the number, and display the result. An IPO for the program follows the code.

124

Chapter 6 Functions

Ex. 6.7 – IPO (Input, Processing, Output) Documentation

Program IPO:

Description: the program calls three functions to obtain user input of a
number, square the number, and display the square of the number.

Input: number from user
Processing: square the number
Output: display the result

Function IPOs:

get_input()
Description: Obtains user input
Input: number from user
Processing: none
Output: returns the number

compute_square(number)
Description: Computes the square of the number
Input: a number
Processing: square the number
Output: return the value

125

Chapter 6 Functions

output(number)

Description: Produces output

Input: the value to display

Processing: none

Output: display the result

IPO Documentation

The IPO content is subjective and differs among organizations that use them, but
the overall concept is consistent with its name. They are another tool that can be
used in the design process to save time and produce modularized programs.

Flowcharts which were covered previously can help with modularization as well
and to visualize the order of operations. The flowchart symbol typically used to
depict a function is a rectangle with side-bars. A partial flowchart of the example
program is shown below.

Function Flowchart Symbol

Functions and Methods - Terminology

Some confusion may arise as a result of different languages using different
terminology with respect to functions. For example, Java uses the term method,

126

Chapter 6 Functions

C/C++ uses the term function, and Python uses both function and method. For
clarification, the Python definitions follow.

Function – a named block of executable statements

Method - a function that exists inside of an object

Modular Programming with Files

Modularizing programs using functions separates operations into manageable
chunks and enhances maintenance, but multiple engineers cannot easily work on
the same program because it is in a single program file. Separating the program
into files (modules) allows multiple engineers to work on the same program at
the same time, permitting collaborative development. Collaborative
environments like CMS covered in Chapter 1 facilitate the development and
control of multi-file programs. As discussed previously, large and complex
program requirements are decomposed during design into manageable sections,
and are then further refined into functions. Functions that are related are
developed in their own files, and the files are then imported into the main
program. Example 6.8 is a payroll program that computes gross pay from the
number of hours worked and hourly rate of pay for a user. The functions will be
developed in a separate file which will be imported into the main file.

Ex. 6.8 – placing functions in a separate file

The main file is shown above with pseudocode comments to map out the
program. Note that main is defined and the last line in the file calls main.

127

Chapter 6 Functions

Ex. 6.8A – creating the accompanying file for the program

The file that will contain the function is created using File | New File from the
menu of the main program file. The directory location for the new file defaults to
the current directory keeping the files together.

An unnamed (untitled) file is created.

Ex. 6.8B – developing an imported function

It is always best to use the “build-a-little, test-a-little” process when
developing programs. In other words, develop a small part of the program and
test and debug that part until it is working correctly. Then, develop another
small part and test and debug the program with the additional part. This process
is often referred to as incremental programming or iterative enhancement. The
first function for the example program obtains the number of hours worked, and

128

Chapter 6 Functions

the function definition is written in the new file. The file is saved and given a
name that identifies what it contains.

In order to use this function, the file must be imported into the main file and the
function is called using the name of the file (omitting the .py file extension), the
dot operator, and the name of the function as shown below.

The other functions are added and their calls from main are handled the same
way. Notice that because of variable scope it does not matter if the variables in
the main function and another function have the same name. They are local to
their functions and there is no conflict. The completed definition for the main
function is shown below.

129

Chapter 6 Functions

The completed file containing the functions is shown here.

Function Module

Modular programming supports the reuse of code that has already been written
and a lot of code has been written over the years. To take advantage of this,
Python has an extensive set of modules that provide functions for use in
programs. They are often referred to as libraries because they contain groups of

130

Chapter 6 Functions

related functions. There are currently thousands of Python libraries. A couple of
them are used extensively and will be covered next.

The Python Math Module

The Python mathematical functions are contained in the math module. This
module is readily available in the Python shell, but must be imported when used
in program files. The list of math functions includes: acos(x), asin(x), atan(x),
cos(x), hypot(), log(x), sin(x), sqrt(x), and tan(x). The module also defines a value
for pi and e, and provides conversions for degrees to radians, radians(x), and
radians to degrees, degrees(x). All of these functions return float values. A
complete listing of math functions is available at Python.org. When using the
math functions, the word math and the dot operator precede the functions.

Ex. 6.9 – math library square root function

Math Library Square Root Function

The values for pi and e are used in the same way. They are preceded by the word
math and the dot operator. The next example uses the math library value for pi
to compute the surface area for a sphere. The equation is:

Surface area = 4 π r2

131

Chapter 6 Functions

Ex. 6.10 – math library constant value for pi

Math Library Constant pi

The Random Module

Many programs generate random numbers including simulations and games.
They are used to determine random event occurrences, and often for encryption.
Python includes random number generation with library functions that require
importing the random module. Arguments are passed to the functions that are
used to determine the range of random numbers that could be generated. The
functions are preceded by the module name random and the dot operator. The
random number functions accept arguments that determine the selection
specifics for the random numbers they generate.

The first line below imports the random library and the second line uses randint
to assign num a random integer within the range of 1 to 100 inclusive. Note that
the range includes 1 and 100.

Similar to the range function covered previously, this line uses randrange to
assign a random integer from 0 thru 9 to num. Note that 10 is excluded.

132

Chapter 6 Functions

This line of code assigns a random integer to num between 0 and 100 by passing
101 as the limit for the range.

This line of code assigns a random integer between 0 and 100 to num, stepping
by 10s (0, 10, 20, 30, etc.). Note again that 101 is used as the limit.

Most random number generators in other programming languages generate a
number between 0.0 and 1.0. Consider that there are actually many values in
that range and the returned value can be modified for any purpose. Python
provides for floating point random numbers between 0.0 and 1.0 as well. The
random function is used as shown here and an example follows.

The following code uses random to generate a random number between 0.0 and
1.0 and modifies the number to generate an integer between 1 and 6 inclusive to
simulate rolling a die. This process can be used for any range of values.

The randint function simplifies simulation of rolling a die as shown here. Recall
that the second argument is the limit and is not included.

The uniform function allows setting a range for random floating point numbers
as shown here.

133

Chapter 6 Functions

Chapter 6 Review Questions

1. Separating a program into distinct sections is referred to as _______________.
2. A section of code that contains a group of associated statements that perform a

specific task is referred to as a ________.
3. To execute a function, it must be ____________.

4. The two types of functions are _________ functions and _____________
functions.

5. The code within a function is called the function ___________.

6. The first line of a function that contains the name and parameter list for the
function is called the function __________.

7. Indentation in the program forms _________ of code.

8. The area of a program where a variable is accessible is referred to as the
variable’s _________.

9. A variable declared inside a function is referred to as a _______ variable.

10. A variable that is declared outside all functions is referred to as a _______
variable.

11. A variable that should not be changed by the program and is named with all
uppercase letters with words separated by underscores is referred to as a
______________.

12. Technically speaking, a value passed to a function is called an ___________.

13. Technically speaking, a value received by a function is called a __________.

14. A value-returning function must have a __________ statement.

15. A term used to describe multiple programmers working together on the same
program is ______________.

16. An IPO document contains brief descriptions of the _____________,
______________, and ______________ of a program or function.

17. The statement used to access the functions in a module, is the __________
statement.

18. The module available in Python that contains functions for square root and
others is the _______ module.

19. The module in Python that provides random number functions is called the
___________ module.

134

Chapter 6 Functions

Chapter 6 Short Answer Exercises

1. Write a statement that calls the following function.

def show_output():
print(‘Hello from my function’)

2. What does the following statement declare?

EARTH_DIAMETER = 3963

3. Write a statement that calls the following function and passes it the phrase
‘Hello World’.

def show_output(phrase):
print(phrase)

4. What do the following lines of code output when the program is executed?

def main():
 smallest(6, 3)

def smallest(first, second):

 if first < second:
print(‘first is smaller)

else:
print(‘second is smaller’)

 main()

5. Write a statement that calls the following function and stores the return value
in a variable named num.

def get_value():
val = int(input(‘Enter an integer ‘))
return val

6. What data type does the following function return and what will it return if it is
called and the number 5 is passed to it?

135

Chapter 6 Functions

def is_even(num):
 even = False

 if num % 2 == 0:
even = True

return even

7. What do the following lines of code output?

num = math.sqrt(math.sqrt(16))
print(num)

8. Write a statement that will assign the variable num a random integer between
1 and 100.

9. Write a statement using randrange that will assign the variable num a random
number between 1 and 100 inclusive.

10. Write a statement that will assign the variable num a number between 1 and
100 that is a multiple of 5 (5, 10, 15, 20, etc.).

11. Write a statement that will assign the variable num with a random number
between 0.0 and 1.0.

12. What does the following loop produce?

for x in range(10):
print(int(random.random() * 10 + 1), end=’,’)

Chapter 6 Programming Exercises

1. Write a function called display_num that obtains a number from the user and
prints ‘You entered‘, and the number that was entered.

2. Write a function called get_input that obtains a number from the user and
returns the number that was entered.

3. Write a program that calls a function average, passes it three arguments, and
the function returns the average of the numbers. Print the average that is
returned from the function from main. Write an IPO for the function.

136

Chapter 6 Functions

4. Write a program with three (3) functions. The first function will obtain the
radius of a circle from the user, the second function will compute and return the
circumference of the circle, and the third function will display ‘The
circumference of the circle is ‘ with the result. The equation for circumference
is shown here.

𝐶𝐶 = 2𝜋𝜋𝜋𝜋

5. Modify the circle program in #4 to locate the functions in a separate module,
and import the module into the main file.

6. Write a program with four (4) functions located in a separate module. The
program will prompt the user for the two side lengths of a rectangle and
validate the input (must be > 0). The first function called will compute and
return the area, the second function will compute and return the perimeter, the
third function will compute and return the diagonal, and the fourth function will
display the output as shown in the sample below. Use the Pythagorean
Theorem for the diagonal and import math in the module.

7. Write a sales program with five (5) functions located in a separate module. The
first function will obtain and return the price of an item being purchased, the
second function will obtain and return the quantity of the items being
purchased, the third function will compute and return the total price for the
items, the fourth function will compute and return the tax amount at 7% (0.07)
for the purchase, and the fifth function will display all of the information as
shown (output alignment is not critical).

137

Chapter 6 Functions

8. Write a program that displays 10 random numbers between 1 and 20 inclusive.
No functions are required.

9. Write a program that displays 10 odd random integers between 1 and 100
inclusive separated by colons. Consider how to display only odd values. No
functions are required.

10. Write a program that displays random number variation graphically using
asterisks. The program will generate 20 random integers between 1 and 20
inclusive, and display that many asterisks as a row. A six row sample is shown
below.

11. When four random numbers are generated between 1 and 6 inclusive, the
probability is high that at least one 6 will be produced. Write a program that
calls a function that produces four (4) random numbers and returns true if a six
was produced and false if not. If true is returned output “A six” otherwise
output “No six”. Call the function 20 times in the program. Are there more
sixes than expected?

12. Write a program uses the last random number generated as the upper limit for
the next random number. The program will generate a random number
between 0 and 100 inclusive, then it will use that number as the upper limit for
another random number between 0 and that number, then use that number as
the upper limit , and so on... Output the random number each time and end
the program when the number generated is zero. Run the program 10 times.
On average, how many numbers are displayed?

Chapter 6 Programming Challenge

Meteor Evacuation Status Simulation

Design and develop a program that determines the evacuation status for a city
based upon the size and distance of a meteor coming toward the city. The program
will accept a meteor size in meters and a distance from the city in miles, and

138

Chapter 6 Functions

compute and display the meteor data and evacuation status. Allow the user to
enter another set of data without restarting the program.

Required six (6) functions located in a separate module:

• obtain, validate (must be > 0.0), and return the user input of the meteor size in
meters

• obtain, validate (must be > 0.0), and return the distance of the meteor in miles

• compute and return the meteor’s speed (120 mph * size)

• compute and return the time to impact (distance/speed) in minutes

• determine and return the evacuation status for the city based on the criteria
below

• display the data as shown below

Evacuation Status Criteria:

If the time to impact < 45 minutes, then Evacuation CANNOT BE COMPLETED
If time to impact > 45 and <= 90 minutes, then Evacuation is POSSIBLE
If the meteor time to impact is > 90, then Evacuation is PROBABLE

Note that speed is in mph, but time to impact is in minutes.

139

Chapter 7 File Handling

Chapter 7

File Operations and Dialogs

The applications and information or data used by computers is stored in files.
Recall that the data stored in RAM does not persist between runs of the program,
or when the computer is turned off. Files allow information to be stored until it
is needed, changed when required, and deleted when no longer needed. All files
have what is referred to as a file extension. This is the three or four letters that
follow the period in the file name. File extensions are used by most operating
systems to associate the file with an application. When a file is double-clicked,
the operating system determines the application to launch based upon the file’s
extension and the application that was used to open that type of file previously.
Double-clicking a file named “song.mp3” will launch an audio player because
the audio player application has been associated with the mp3 file extension.
The example below has a “txt” file extension which is typical for text files which
are usually opened with Notepad or Notes by the computer’s operating system.

File Names and Extensions

140

Chapter 7 File Handling

Different file types are usually opened by different applications, although some
applications like Notepad can open a variety of file types. For example, the .py
files created for Python programs can be opened with Notepad and viewed as
text. Table 7.1 lists some common file extensions.

Table 7.1 - Common File Extensions

Files being read from are typically referred to as input files, and files being

written to as output files. There are three steps to using a file in a computer
program:

• the file is opened
• the file is processed (either written to or read from)
• the file is closed

Opening a File

When a file is opened using Python, it is associated with the program through a
file object that has a variable reference. The variable reference is the name to be

141

Chapter 7 File Handling

associated with the file in the program. This is not that different from when an
integer or float is defined except that the name is associated with a file object.
The general format for opening a file is shown here.

The open function is passed two arguments. The first is the actual name of the

file (in quotes if a literal string), and the second argument is the mode in which
the file will be opened. The mode determines the way that the file will be
opened, and what will occur if the file exists or if it does not.

Table 7.2 - File Opening Modes

When the file name is used as the first argument, the program will search the
default directory for the file. The default directory (folder) is where the
program is running. The statement below would search the default directory for
the file “some_data.txt” and if it finds it, it will open the file in “read” mode, and
associate it with the variable reference my_file.

If the file is in another directory or sub-directory, or it is to be created in another
directory, the full path is included and is preceded by the letter “r” without
quotes. The “r” tells Python to treat the backslashes in the path literally as
backslashes and not as the escape sequence. A path begins with the drive letter,
colon, backslash, and the directories and sub-directories to the file. It is common

142

Chapter 7 File Handling

today to use a dialog window to obtain file names, or to accomplish saving a file.
This is easier for users and eliminates the chance for typographical errors.

As mentioned, the variable reference is a name for a file object, and file objects
have methods that simplify some file handling processes. Once a file object is
associated with a variable, the variable name is used to access the methods. The
only time that the actual file name is used is when the file is being opened.

Writing to a File

When writing to a file, the write() method is used and is passed what is to be
written. The variable reference assigned to the file is followed by the dot
operator, and the method name. The following example opens a file for writing
and assigns the file object to my_file. Then a phrase is written to the file, and the
last line closes the file using the close() method. Note that the close method is
not passed any arguments.

Ex. 7.1 – writing a string to a file

Notice in the example that the only time that the actual file name is used is when
it is associated with the variable using the open function. After that, the variable
reference for the file object is used. Closing the file ensures that no data is lost.
Data being written to a file is queued in a buffer (a holding area in memory) for
efficiency. Closing the file deliberately in the program forces anything being
held in the buffer to be written to the file before it is closed. If the program did
not close the file, the operating system would eventually close it, but would not
check the buffer first.

Writing to a file requires some consideration. The write() method will do as it is
told, and if the data is to be written on separate lines, then line feeds need to be
incorporated into the write statement. The escape sequence ‘\n’ is the newline
character and is used to produce a line feed in the file. The next example opens a

143

Chapter 7 File Handling

file named “test_file.txt”, and associates it with out_file, writes three phrases on
separate lines in the file, and then closes the file. The complete program is
shown.

Ex. 7.1 – writing on separate lines in a file

File Writing and Line Feeds

Writing the contents of a variable to a file is handled much like the print
function, and to add a line feed, the newline character is concatenated onto a
string variable. If the value is not a string, the str() function must be used to
convert it to a string. Numeric values cannot be written to files as numeric
values in Python and must be converted to strings.

The example below defines a string, integer, and float, and then opens a file
named “another_file.txt” in write mode and associates it with out_file. The string
is then written to the file with a line feed, and the next line writes the integer
which is converted to a string that has a line feed concatenated onto it. The next
line converts the floating point number to a string for writing, and then the file is
closed.

144

Chapter 7 File Handling

Ex. 7.2 – writing numeric values to a file using str

File Writing Numeric Values

If a numeric value is not converted to a string for writing, an error will occur.

Appending to a File

Opening an existing file in write mode erases any data that had been stored in
the file. What actually takes place is that the old file is deleted, and a new empty
file is created. To append data to existing data in a file, the file is opened in
append mode using ‘a’ and any existing data in the file is preserved.

145

Chapter 7 File Handling

The next example opens a file in write mode, writes a string, and closes the file.
It then re-opens the file in append mode and writes another string to the file and
closes the file. Note that the use of two different modes requires that the file be
closed before re-opening in the new mode.

Ex. 7.3 – appending data to a file

In the output file below, a line feed was not written. The first write statement
did not include a newline character, and when the file was opened a second time
to append information, it was appended to where the last write command ended.

Appending Data to a File

Reading from a File

To read from a file, it is opened using ‘r’ as the mode. There are file object
methods for reading from a file including read() which returns the entire file

contents as a string, and readline() which will read one line from the file (until
‘\n’ is encountered). Since the read() method also reads the newline characters,
the information read in will include any line feeds.

As an example, the file that was written in Ex. 7.1 (repeated below) can be read
into a single string and displayed. The text and line feeds are read from the file
and stored in file_data. When file_data is passed to the print function, the line

146

Chapter 7 File Handling

feeds are included in the output. Later it will be shown that these lines can be
split or parsed from the single string.

Ex. 7.4 – reading data from a file into a single string

Reading from a File with read()

The following program reads a single line from the file in Ex. 7.4.

Ex. 7.4A – reading a single line from a file into a string

147

Chapter 7 File Handling

Reading Numeric Data

When reading numeric values from a file, they are returned as strings and must
be converted to a numeric data type in order to use them as a numeric value.
Chapter 3 introduced casting for type conversion and it is used when reading
from a file. There are a few circumstances that may arise when doing this
depending on how the data was written to the file. Several examples follow.

For the first example, three numbers have been written to a text file called
numbers.txt. When they were written, they were converted to strings, and a line
feed was concatenated so they are on separate lines in the file. The readline()
method will be used to read each value, and the values will be cast to numeric
values. This is straight forward because readline stops at the line feed.

Ex. 7.5 – reading and casting numeric data from a file

In Ex. 7.5, the lines were read one at a time and the returned data was stored into
three separate variables. Typically, a loop would be used to read a line or value,
process the data, and output some result. The file is read until there are no more
values. Every file contains an end of file (EOF) marker that indicates where the
file ends. When it is reached, a value cannot be read by the Python method being
used. This ends the loop that is reading from the file. A flowchart follows.

148

Chapter 7 File Handling

File Reading Flowchart

The code for a loop that reads and prints data from a file is show here.

Next, consider a file that was written with columnar data with tabs between the
values. This is referred to as tab-delimited data. A delimiter is a character used
to mark the beginning or end of an item of data. When a delimiter is present,
using read() would include the delimiter (tabs in this case) in the returned string.
Using readline() would also include any delimiter within a line including spaces
between items. It is common to read files one line at a time in a loop and process

149

Chapter 7 File Handling

the data, and there are several methods in Python that help to convert the data to
a useful format.

Removing Newline Characters

When writing data to a file, a tab ‘\t’ or newline ‘\n’ is often added to separate
data or data sets. When Python reads from a file, the data is returned as a string
and may include tabs, line feeds, and spaces. To remove them, there are several
methods including rstrip which will remove white space (\n, \t, and space) from
the right side of the string. Table 7.3 lists common string modification methods.

Table 7.3 - String Modification Methods

The string modifications are used to convert what has been read into a usable
format and ensure that white space characters are not part of any data being
converted to a numeric value.

In addition, there is a split() method that can split (parse) a line of data using a
delimiter. The default delimiter is any white space, but another could be used.
As an example, a data file contains the phrase “She sells sea shells by the

150

Chapter 7 File Handling

seashore” on two lines. The entire phrase (both lines) is read into a string and
the split() method is used to extract each word from the phrase in a loop.

Ex. 7.6 – reading text from a file into a string and parsing the data

String Parsing

When the data is numeric, the algorithm (solution) is similar except that each
item is read individually using a for-in loop and it must be cast before it can be
used as a number. It could also be read all at once using read(), parsed using
split(), and cast as needed. Both examples will be shown.

This next example reads a data file named numbers2.txt containing the numbers
shown on separate lines, and sums the values. When the data is read using a for-
in loop, it is read as a string and must be cast in order to be used as a number.
The file contents are shown below.

151

Chapter 7 File Handling

Ex. 7.7 – reading numbers from a file in a loop

The for-in loop reads each item in the file one at a time, assigns the item to num,
and num is cast to a float for use with addition.

Example 7.7A reads the entire file into a string and parses the individual items
using split() and casts them.

Ex. 7.7A – reading numbers from a file with read and parsing them

The technique used for reading and handling data from a file is often dependent
upon the task required. The data can be read one item or line at a time, or the
entire contents can be read at once. Loops are typically used when reading one
item or line at a time into a variable, and it is not always necessary to read the
items into a variable first before handling them.

The next example reads numeric values directly from a file and processes them.
A data file has been created called numbers3.txt containing 222, 444, 555, and
1221. The numbers will be read within the for-in loop expression, processed, and
displayed until the end of the file is reached.

152

Chapter 7 File Handling

Ex. 7.8 – reading numbers from a file while processing them

This is a simpler algorithm and does not require additional methods. Notice in
the output that the numbers are displayed as floating point numbers. The
promotion occurs since they are being multiplied by 3.5 (a float).

Exceptions

An exception is a type of error that occurs when a program is running.
Exceptions are raised or thrown and must be handled or the program will
terminate. When a file cannot be created or cannot be opened, or when there is a
data type mismatch, an exception will occur. The format for an exception
handler in Python is the try/except statement, and there are several variations
that will be covered. The general format is shown below.

 The try block is entered and if a statement raises an exception, the handler

immediately following the except clause that matches the type of exception
raised executes and the program continues.

153

Chapter 7 File Handling

Ex. 7.9 – file-not-found exception handler

This program could be read as “try to open the file, and if an error occurs print
‘No file exists’. The exception name is IOError which is the type of exception
that would be raised if the file did not exist or could not be opened. Once an
exception is raised, the try block is exited and any statements following the one
that raised the exception will not be executed.

Each type of exception that could be raised should have an exception handler for
that specific exception. An exception that is not handled will halt the program,
but an exception clause that does not list a specific exception, will handle any
exception that is raised in the try suite. This could be considered a default
handler as shown below.

Ex. 7.10 – handling multiple exception types

The two anticipated exceptions are the file error and a type error. Any other
exceptions would be handled by the exception handler with no exception name.

154

Chapter 7 File Handling

An exception raised is actually an object and contains information about the
error. If it were displayed, it would show the same message that would be seen
in the Traceback error message. The contents can be accessed by assigning the
exception to a variable.

 except ValueError as e:
 print(e)

The try-except expressions can include an else clause (or else suite) which will
execute only if no exceptions were raised. If an exception is raised, then the else
clause is skipped. It can be thought of as “try to execute these, and if an
exception is raised, execute the exception handler, otherwise execute these”.

There is a finally clause (or finally suite) which executes regardless of whether
an exception was raised or not to perform cleanup. If a try suite opens a file and
then executes other statements, one of those other statements may throw an
exception. But the file is still open. A finally suite allows closing the file, or any
other cleanup needed whether an exception was raised or not.

Ex. 7.11 – the finally suite and closing an input file

This section covered common exceptions that could be thrown when
handling files. Other exceptions can be reviewed at Python.org. The
Traceback error message will describe the error during testing so that a
handler can be written, or a generic handler could be used that displays

155

Chapter 7 File Handling

the contents. The goal is to anticipate and handle as many exceptions as
possible. Exceptions that are not handled will terminate the program.

File Open Dialog

The tkinter module provides dialogs for handling files. Using them requires the
specific import statement shown below.

Ex. 7.12 – Open File Dialog – Python 3.0+

When the dialog appears, the default directory is the directory where the
program is running.

Open File Dialog

The dialog returns a string containing the full path to the file and the name of the
file. The string is used to open the file as shown below.

156

Chapter 7 File Handling

Chapter 7 Review Questions

1. The characters that follow the name of a file are referred to as the file
_____________.

2. A file opened for reading is referred to as an _________ file.

3. A file opened for writing is referred to as an __________ file.

4. In order to use a file in a program, the file must be __________.

5. When a file is opened in a program, it is associated with a ____________ that
has a variable reference.

6. A file opened by a program is opened in a specific _________ such reading,
writing, or appending.

7. For file handling, the directory where the program is running is referred to as
the __________ directory.

8. The _______ method is used to output data to a file.

9. An area in memory where data to be written is temporarily stored is referred to
as a __________.

10. When a program is finished using a file, it should _________ the file.

11. The escape sequence or newline character is ________.

12. To write a numeric value to a file, it must first be converted to a __________
using the _______ function.

13. When a data file is opened for writing using ‘w’, any data existing in the file will
be __________.

14. Adding to a string or combining two strings is referred to as ___________.

15. Adding to the end of a file’s contents is referred to as ______________ to the
file.

16. When numeric data is read from a file, it must be ______ before using it in an
equation.

17. A ____________ is a character used to mark the beginning or end of an item of
data.

18. The ___________ method is used to strip off trailing white space characters.

19. The ___________ method is used to parse items of data from a string.

20. When an error occurs because a file cannot be found for reading or created for
writing, it is referred to as raising an ______________.

157

Chapter 7 File Handling

Chapter 7 Short Answer Exercises

1. Write the statements required to open a file named “test_file.txt” for writing
and associate it with the variable reference my_file, write “This is a test.” to the
file, and close the file.

2. Write the statements required to open a file named “test_file.txt” for writing
and associate it with the variable reference my_file, write “This is a test.” to the
file, and close the file. Then reopen the file for reading, read a line of text, print
the line of text, and close the file.

3. Write the statements required to open a file named “numbers.txt”, write the
numbers 1, 2, and 3 to the file, and close the file.

4. Write the statement to open a file named “numbers.txt” for writing that does
not erase the existing data in the file. Associate the file with the name my_file.

5. Write the statements required to open a file named “data.txt” for reading in a
try block, and the exception handler for an IOError that displays “The file could
not be opened”.

6. Write the statements required for a try block to read all of the data from a file
named “data.txt” and print the contents, and handle an exception.

Chapter 7 Programming Exercises

1. Write a program that creates a file for writing called “data.txt” and write the
following lines to the file on separate lines and close the file. Open the file for
reading and display the contents of the file.

The first line
The second line
The third line
The fourth line
The fifth line
The sixth line

158

Chapter 7 File Handling

2. Write a program that reads the “data.txt” file created from #1 above and display
the contents of the file with a line number and colon as shown below.

3. Write a program that creates a text file named “num_data.txt” and writes the
numbers 1001 thru 1020, separated by a tab with four numbers per line.

4. Write a program that creates a text file named “line_data.txt” and writes the
numbers 1001 thru 1020, on separate lines. Then open the file and display the
numbers in two columns separated by a tab as shown below. Hint: use strip() to
remove the line feed.

159

Chapter 7 File Handling

5. Create a text file named “sales_data.txt” with the sales data listed below each
on a separate line. Write a program that defines main which reads one value
from the file at a time and calls a function to compute and return the discount
price (20% off), and display the original and discount prices in two (2) columns
separated by a tab as shown.

Sales data: 19.64, 3.56, 9.87, 16.33, 12.95, 6.50

6. Create a text file named “products.txt” with the product names and prices listed
below them on separate lines. Write a program that reads the data from the file
and calls a function to compute and return the discount price for the item (20% off),
and display the item name, original price, and sale price in columns with column
headers as shown.

7. Create a text file named “some_data.txt” with the following single line in
the file.

1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, sales

Write a program that opens and reads the file, displays the numbers vertically,
totals the numbers, and displays the total. Include a try block and exception
handling for an IOError and a ValueError that display appropriate messages. Include
a finally clause that closes the file.

160

Chapter 7 File Handling

Chapter 7 Programming Challenges

#1 Employee Data File

Design and develop a program for a local company payroll that uses the employee
data file information shown below. Create the data file shown below left and write
a program that will read the file and display the name and ID for the employee, and
the gross pay for each employee based upon the input file data. The format for the
output is shown below. Include two (2) exception handlers in the solution.

The date format for the input file is: name, ID number, hourly rate, and hours
worked.

#2 Employee Data File - Dialog

Modify the program in Programming Challenge #1 to use a File Open dialog to obtain the
name of the file.

161

Chapter 8 Strings, Lists, and Tuples

Chapter 8

Strings, Lists, Dictionaries, and Sets

Strings are used extensively in computer programs and Python provides many
ways to examine and manipulate strings including the ability to examine the
individual characters in a string. Consider a program that validates a password
to ensure that it contains specific characters. Each character of the password
needs to be visited and checked to determine if it meets one of the requirements.
To access the individual characters of a string, the for-in loop walks the string
one character at a time while placing a copy of the character in a variable that can
be used in statements within the loop. This example assigns a string to temp and
the loop prints each character in the variable.

162

Chapter 8 Strings, Lists, and Tuples

As each letter is copied into the variable, it can be examined or manipulated, and
since the letter in the variable is a copy, any changes made to it do not affect the
original string. This example substitutes the letter “s” for “t” in the output
without changing the original string.

String characters can also be accessed using the index of the character. The index
is the position in the string beginning at zero. Note that the string is ten (10)
characters long (including the space), yet the indexes are 0 through 9.

String Indexes

To access the character using the index, the index is placed in square brackets.
The format is shown below.

Ex. 8.1 – indexing strings

163

Chapter 8 Strings, Lists, and Tuples

In Python, negative indexes can be used to access character positions relative to
the last character in the string. The index -1 is the last character in the string, and
negative numbers work backward from there.

Ex. 8.2 – negative string indexes

The index can also be used to obtain a copy of a single character from a string.

Ex. 8.3 – copying a character from a string

If an index is used that is out of range, an IndexError exception will be thrown.

The len() function, which returns the length of the string, can be used as a way of
controlling loops when accessing string characters to prevent errors. Note in the
example below that index is initialized to zero and incremented in the loop. The
length of the string controls the loop, and the space between the two words is
included in the output.

164

Chapter 8 Strings, Lists, and Tuples

Recall that strings in Python are immutable, and cannot be changed once created.
The ‘+’ operator is used to concatenate strings which actually creates a new string
and assigns it to the variable name for the original string. The original string can
no longer be used because there is no longer a variable referencing it. Eventually,
the Python interpreter will remove the original string from memory.

Ex. 8.4 – concatenating strings

When the second statement in Ex. 8.4 executes, a new string is created and
Python assigns the variable name to the new string. This modification can be
accomplished with multiple string variables as well.

A third string could also be created by concatenating two others.

String Slicing

String slicing is used to select a portion of a string using optional start, end, and
step specifiers. The general format allows one, two, or three specifiers. When the
first specifier is omitted, Python uses zero as the start and the specifier as the end
which is not included in the slice.

165

Chapter 8 Strings, Lists, and Tuples

When two specifiers are used, the first is the start index and the second specifier
indexes the end of the slice and is not included in the slice.

When three specifiers are used, the third is the step in the sequence.

Ex. 8.5 – slice expressions with strings.

In and Not In

Searching for content in strings can be handled using the in and not in
operators. The example would search for and find the word “time” in the string.

Ex. 8.6 – searching for content in strings.

166

Chapter 8 Strings, Lists, and Tuples

The logic also works in reverse using “not in”.

 The next example searches for the character ‘6’ in the string. Note that a single
character can be a string. It is just a string that is one character long.

String Testing and Modification

The string testing methods return true or false, and test each character in the
string. If the string is not at least one character long, the result is false.

Table 8.1 - String Testing Methods

167

Chapter 8 Strings, Lists, and Tuples

The string modification methods (ref Table 7.3) include conversion to upper and
lower case, and various strip methods: lower(), upper(), lstrip(), rstrip(), and
strip(char).

The search and replace methods include: endswith(substring), find(substring),
replace(old, new), and startswith(substring), and return true or false.

Lists

Lists in Python are sequences of data that are mutable, dynamic, and can be
indexed and sliced. They can hold different types of data, and can be accessed in
the same way as strings. Initializing a list with values is accomplished using the
assignment operator and enclosing the members of the list in brackets.

There are several ways to access the elements in a list. As an example, the first
statement in the example below assigns a list of numbers to num_list. Notice in
the output that the first print statement displays the list surrounded by square
brackets. The second set of statements use a for-in loop to access each element in
the list, and the last statement accesses the list element using an index. There are
a variety of ways to access list elements.

Ex. 8.7 – numeric lists

168

Chapter 8 Strings, Lists, and Tuples

The len() function works with lists, and can be used to control a loop. In the next
example, the loop counter index is incremented to control the loop, and is also
used as the index for accessing the list elements.

Ex. 8.8 – string lists and the len() function

There are also built in functions for lists to add elements, insert elements, remove
elements, change the order of the list, and to find the minimum and maximum
values in a list.

To append an item to the end of a list, the statement includes the name of the
list, the dot operator, the append function, and the element to be added in
parentheses.

To insert an item into a list, the statement includes the name of the list, the dot
operator, the insert function, the index where the element is to be inserted, and
the element to be inserted.

To remove an item from a list, it must be in the list or an exception is raised. The
format includes the name of the list, the dot operator, the remove function, and

169

Chapter 8 Strings, Lists, and Tuples

the element to be removed in parentheses. If there are elements in the list
beyond the element being removed, they are shifted toward the front of the list.

To reverse the order of a list, the statement includes the name of the list, the dot
operator, and the reverse function.

To sort a list, the statement includes the name of the list, the dot operator and
the sort function.

To find the minimum or maximum value in a list, the list is passed to the min
and max functions.

Elements in a list can be changed using the index of the element. There is an
index() function that can be used to determine the index for a specific element,
but it will raise an exception if the element is not in the list. To determine first if
the item is in the list, the ‘in’ operator can be used. Once it has been determined

170

Chapter 8 Strings, Lists, and Tuples

that the element is in the list, the index function can be used to obtain the
position in the list for changing the element.

Lists can be concatenated using the ‘+’ operator to combine two lists. In this
example two lists are combined and then sorted to maintain the order.

Lists can be copied, but not using the assignment operator. Assigning one list to
another would simply have both list names reference the same list.

To copy a list, an empty list is defined and each element in the first list is
appended to the new list. It could also be accomplished by concatenating the old
list onto the new empty list.

171

Chapter 8 Strings, Lists, and Tuples

Split

The Split method by default uses the space as a separator and returns a list of
items in the string. A different separator can be specified including “/” when a
date is being parsed. In this example, a string is split into a list.

Ex. 8.9 – split a string without a specified separator

Ex. 8.9A– split a string with a specified separator

Lists can be passed to functions and functions can return lists. In the next
example, the list num_list is passed to get_sum which returns a sum of the
numbers in the list.

Ex. 8.10 – passing a list to a function

172

Chapter 8 Strings, Lists, and Tuples

Ex. 8.11 – returning a list from a function

Lists can be written to files with writelines(list_name), but there are no line
feeds with this method. To include line feeds, a loop is needed and the newline
character needs to be added. A tab or a space could be added the same way and
used as a delimiter when reading.

Ex. 8.12 – writing a list to a file

173

Chapter 8 Strings, Lists, and Tuples

When reading from a file to populate a list, the newline character ‘\n’ will be
included when each line is read. The newline character can be removed in a loop
by visiting each index in the list and stripping it off. The example below prints
the list before and after the newline character has been removed.

Ex. 8.12 – reading into a list from a file and removing ‘\n’

Ex. 8.12A – reading into a list from a file and removing ‘\n’ with rstrip

174

Chapter 8 Strings, Lists, and Tuples

Two-dimensional Lists

A list can have lists as elements and are considered two-dimensional as in having
rows and columns. When a two-dimensional list is indexed there are two
dimensions to consider and both begin at zero.

For a two-dimensional list, a nested loop is used to access the entire list. As an
example, consider a list of names, ID numbers, and hourly pay rates. The cell
indexes are shown for clarity.

The list is initialized using sets of square brackets with a comma between sets,
and a set of square brackets surround the lists. The nested (inner) loop accesses
each row for the column designated in the outer loop. Once each row has been
accessed, the outer loop accesses the next column, and so on.

175

Chapter 8 Strings, Lists, and Tuples

 Tuples
A tuple is simply a list that is immutable and cannot be changed. Tuples process
faster and since the data cannot be changed, a tuple protects the data. Tuples
also support all list operations and built-in functions except those that modify
lists including: append, remove, insert, reverse and sort. To modify a tuple, it
can be converted to a list, and then back to a tuple.

Plotting List Data (matplotlib)

There is a Python package for plotting called matplotlib that enables plotting
line, bar, histogram, scatterplots, pie charts, and more using list data in an auto-
scaling resizable window. The package is not part of the Python standard
library, and must be installed separately using the Python pip installer. This is

covered in Appendix C. Once matplotlib is installed, the module pyplot from
the package is imported similar to the way that the math package is imported,
but note the module name, dot, and package. Typically the module is imported
“as” a shortened name to lessen the amount of typing each time it is accessed.
Here it is imported as “plt”.

There are many features and functions available in pyplot beyond those
explained in this section. There are also other packages and modules that have
been developed for use with Python that provide additional features and
capabilities. The goal of this section is to introduce basic plotting functionality
using the pyplot module in matplotlib.

The example shown below first establishes the number of data points for each
axis using the x_coords and y_coords lists. The number of x-axis tick marks is
established from the number of coordinates in the list and is augmented with
interim five values. The number of y-axis tick marks and their values are
established by the values in the y_coords list. The call to plt.plot actually builds

the graph in memory, and it is then displayed when plt.show() is called.

176

Chapter 8 Strings, Lists, and Tuples

Ex. 8.13 – simple plot example

The data is plotted and the window has features that are automatically added in
the lower left-hand corner including zooming in a rectangular shape, saving the
image, and others.

There are many options available for customizing the charts including: axis
labels, tick marks, data markers, the width of bars for bar charts, and slice labels
for pie charts. The next example uses a function which is passed a list of sales
data, and customizes the chart with x-tic mark labels, axis labels, and a title for
the chart. Note that the x coordinates use a list that is also needed to position the
x-tic labels. The y coordinates are the sales amounts from the sales list. The
result is a more informative plot.

177

Chapter 8 Strings, Lists, and Tuples

Ex. 8.14 – line graph of sales data with customization

Some additional enhancements include changing the window title on the title bar
of the window using gcf(), which is “get current figure”, and then “canvas set
window title”. Shapes can be added to the data points using the marker option
for the plot function, and adding a background grid to the chart is implemented
by setting it to true. These enhancements are included in the next example.

178

Chapter 8 Strings, Lists, and Tuples

Ex. 8.14 – line graph of sales data enhanced

Plotting multiple lines requires two plot functions, and there is a legend option
with labeling, and linestyles can be assigned.

179

Chapter 8 Strings, Lists, and Tuples

There are additional line markers that can be used including ‘s’ for squares, ‘*’
for asterisks, ‘^’ for triangles, and ‘D’ for diamonds.

Ex. 8.15 – bar chart of sales data

This example uses six months of sales data to create a bar chart. The new items
to consider include using the x_coords as the bar’s left edge, the y_coords (sales
data) as the height for the bar, and including a width for the bars. The x_coords
and xticks need to accommodate the width of the bars, so they are increased.

Additional features and customizations are available for bar charts including
changing the color for the bars, and can be found at various websites.

180

Chapter 8 Strings, Lists, and Tuples

 Ex. 8.16 – pie chart of sales data

This example uses six months of sales data to create a pie chart. The new items
to consider include the slice labels, but there are fewer items needed to draw a
simple pie chart.

A pie chart can also be customized with different colors, 3D affects, segmented
slices, and other features.

181

Chapter 8 Strings, Lists, and Tuples

Pyplot also provides for creating 3D plots which can also be customized. A
simple example is provided below.

Modules like pyplot are easy to use and provide extensive functionality. A
tutorial and additional information for pyplot is available at the matplotlib.org
website.

Dictionaries

Organizing and storing data is often required when implementing solutions.
Containers that store and manage data are referred to as data structures which
can be used to implement collections. Collections are objects that store other
objects as elements. A list is an example of a collection. Others include a
dictionary which stores elements as key/value pairs, and sets which contain no
duplicates. There are benefits and limitations with each collection type that
should be considered when using them in a solution.

182

Chapter 8 Strings, Lists, and Tuples

A dictionary is an associative array container with a key and a value associated
with the key. Consider a data set in a file consisting of student ID numbers and
student names (partial set shown below). A program that needed to access and
manage the data would need to read the data and store it. Earlier in the chapter,
examples using a string or list were used for similar data, but assume that names
need to be found quickly by searching for the ID number. A dictionary could
store the ID number as the key, and the name would be the associated value for
the key. Python provides many dictionary operations that simplify the process.

A dictionary can be created by assigning key/value pairs to a dictionary name as
shown below, but collections are more often used for large amounts of data.

Typically, a dictionary is created by declaring an empty dictionary and then
adding key/value pairs.

The first statement below declares a dictionary named students, and the second
adds the first student to the dictionary. The key in brackets is the student ID and
the value is the name of the student.

To access a value from a dictionary requires the use of a key. If the key searched
for does not exist in the dictionary, an error will occur. Testing beforehand is

183

Chapter 8 Strings, Lists, and Tuples

required to ensure that the key exists. The next examples will use the student
dictionary populated here.

Ex. 8.17 – testing for a key in a dictionary

When assigning a value to a key in a dictionary, if the key exists, the value will
be changed. There cannot be duplicate keys in a dictionary. If the key does not
exist, the key/value pair will be added to the dictionary.

To display the contents of a dictionary, the name of the dictionary can be passed
to the print function, but note the output format.

To delete a key/value pair, the del statement is used with the dictionary name
and the key. Again, if the key does not exist, there will be an error.

184

Chapter 8 Strings, Lists, and Tuples

To determine the number of key/value pairs that are contained in a dictionary,
the len() function can be used, and to iterate over the keys a dictionary, a for loop
can be used.

The get() function is another way to determine if a key exists in a dictionary. It
provides for a default value if the key does not exist and does not cause an error.
If the key does exist, it returns the value associated with the key.

There are some additional dictionary functions that provide additional features
and access to keys, values, and both.

Sets

Recall that a set is a collection that cannot contain duplicates. They provide
some set operations that may be familiar like union, intersection, difference, and
symmetric difference. Sets are optimized in memory for fast searching, so they
may provide a solution when speed is an issue. A set can be declared and
populated later or initialized when declared. Note the use of parentheses when
declaring an empty set.

When adding to a set, the add method is used with the element to be added in
parentheses.

185

Chapter 8 Strings, Lists, and Tuples

A for loop can be used to access the elements in a set.

There are two ways to remove an element from a set: remove and discard. The
remove method causes an error if the element is not in the set, the discard
method does not.

To determine if an element exists in a set, the in and not in operators can be used,
and the len function returns the number of elements in the set.

The methods for set comparisons and relationships provide for determining
union, intersection, differences, and symmetric differences, as well as subsets
and supersets. The format for each of these and a brief explanation follows.

186

Chapter 8 Strings, Lists, and Tuples

The union method returns a set of elements that is the union of both sets - all of
the elements that appear in the sets without duplicates. The “|” operator
(referred to as a pipe) can also be used.

The intersection method returns a set of elements that appear in both sets. The
“&” operator (ampersand) can also be used.

The difference method returns a set of elements that appear in set1 but do not
appear in set2. The subtraction operator “-“ can also be used.

The symmetric difference method returns a set of elements that do not appear
in both sets. The “^” operator (caret symbol) can also be used.

The issubset method returns a Boolean value - True if set2 is a subset of set1,
and False otherwise. The relational operators provide the same functionality.

The issuperset method returns a Boolean value – True if set1 is a superset of
set2, and False otherwise. The relational operators provide the same
functionality.

187

Chapter 8 Strings, Lists, and Tuples

Chapter 8 Review Questions

1. The _________ in a string can be accessed individually using an index.

2. The first position or index of a character in a string is _________.

3. The index [-1] accesses the __________ character in the string.

4. If an index is used that is out of range, a _________ exception will be raised.

5. The term ___________ indicates that strings cannot be changed.

6. Adding one string to another is referred to as ________________.

7. Lists are data sequences that are mutable, meaning that they can be ________.

8. The _______ function is used to determine the size of a list.

9. The append function is used to add an item to the _______ of a list.

10. The ________ of an element in a list is used to access the element.

11. A tuple is a list that cannot be _____________.

12. A dictionary stores elements as ____________ pairs.

13. A set is a collection that cannot contain ____________.

Chapter 8 Short Answer Exercises

1. What do the following lines of code output?

a_string = ‘some words’
print(a_string[1], end=’’)
print(a_string[-1])

2. What do the following lines of code output?

a_string = ‘nothing here’
for ch in a_string:
 if ch == ‘e’:
 print(‘Found one.’)

3. What do the following lines of code output?

a_string = ‘Thank you.’
print(a_string[11])

188

Chapter 8 Strings, Lists, and Tuples

4. What will the string part1 contain after the following lines of code execute?

part1 = ‘a good ’
part2 = ‘thing’
part1 = part1 + part2

5. What will the string part3 contain after the following lines of code execute?

part1 = ‘a good ’
part2 = ‘thing’
part3 = part1 + part2

6. What do the following lines of code output?

letters = ‘ABCDEFGHIJ’
afew = letters[:3]
print(afew)

7. What do the following lines of code output?

letters = ‘ABCDEFGHIJ’
afew = letters[1:6:3]
print(afew)

8. What do the following lines of code output?

find_it = ‘Once’
phrase = ‘once upon a time’
if find_it in phrase:
 print(‘Found.’)

9. What do the following lines of code output?

phrase = ‘some words’
phrase = phrase.strip(‘s’)
print(phrase)

10. What do the following lines of code output?

names = [‘Amy’, ‘Beth’, ‘Darrus’]
print(names[1])

189

Chapter 8 Strings, Lists, and Tuples

11. What will be the output after the following lines of code execute?

search_num = 2
values = [1, 2, 3, 4]
if search_num in values:

pos = values.index(search_num)
values[pos] = 0

print(values)

12. What do the following lines of code output?

date_string = ‘10/17/22’
date_list = date_string.split(‘/’)
print(date_list[1])

13. What do the following lines of code output?

numbers = [5, 10, 20, 40, 50]
numbers.append(60)
numbers.insert(3, 30)
numbers.remove(5)
print(numbers)

14. What do the following lines of code output?

pies = {1:‘cherry’, 2:’apple’, 3:’pumpkin’}
print(pies[2])

15. What do the following lines of code output?

pies = {1:‘cherry’, 2:’apple’, 3:’pumpkin’}
pies[2] = ‘peach’
print(pies[2])

16. What elements will the set contain after the following statement?

set1 = set(‘Python’)

17. What elements will the set contain after the following statement?

word = set(‘radar’)

190

Chapter 8 Strings, Lists, and Tuples

18. What elements will be output after the following statements?

word1 = set(‘abc’)
word2 = set(‘def’)
print(word1.union(word2)

Chapter 8 Programming Exercises

1. Write a program that creates the list numbers below, then adds 7 to the list,
sorts the list, and prints the list.

numbers = [8, 6, 12, 9, 11, 10]

2. Write a program that creates the list cities below and removes ‘Albany’ after
making sure that it is in the list, then print the list.

cities = [‘Dodge’, ‘York’, ‘Albany’, ‘Moor’]

3. Write a program that requests five integers from the user and creates a list of
the numbers. Then sorts the list, and prints the lowest number, the highest
number and the sum of the numbers.

4. Write a program that creates the list shown below. Then insert the number 15
in the proper index to maintain the order of the list (do not use sort). Then
remove the number 11, and reverse the order of the list and print the list.

numbers = [11, 12, 13, 14, 16, 17, 18]

5. Write a program that creates a string called date and assign it “10,10,22”. Then
split the string into a list and print the list as 10/10/22.

6. Create the list shown below and write the list on separate lines to a file called
“pets.txt”.

pet_list = [‘cat’, ‘dog’, ‘hamster’, ‘iguana’]

7. Write a program that creates the list below in main, and passes it to a function
called get_squares that squares the numbers in the list and returns the modified
list. Then output the resulting list from main.

values = [2, 4, 6, 8, 10]

191

Chapter 8 Strings, Lists, and Tuples

8. Create a file with the data below called “sales.txt”, and write a program that
reads the file and create two lists. One list will contain the month names and
one list will contain the sales numbers (floats). Plot the data with the month on
the X axis and the amount on the Y axis using pyplot.

9. Modify program #8 to include “Company Sales Data’ as the chart title,
“Thousands” as the y-label, “Months” as the x-label, and diamonds as the
marker symbols, and add a grid to the background.

10. Complete Program #8 plotting a pie chart instead of a line chart.

11. Write a program that creates a dictionary called “values” with the key/value
pairs below. Then add the pair 6:’six’, replace ‘number’ with ‘three, and print
just the values (not the keys).

1: ‘one’, 2:‘two’, 3:’number’, 4:’four’, 5:’five’

12. Write a program that creates an empty set named “myset” and adds the even
numbers from 2 through 20 using a loop, and displays the set.

13. Write a program that creates three empty sets named “even”, “odd”, and
“both”. Using a single loop, populate “even” with the even numbers 2 through
20, and populate “odd” with the odd numbers 1 through 19. Assign the union
of “even” and “odd” to the set named “both”, and display “both”.

14. Write a program that creates the two sets below, and creates and displays a
third set that is the union of the two.

set1 = set([1, 2, 3, 4, 5, 6, 7])

set2 = set([5, 6, 7, 8, 9, 10, 11])

192

Chapter 8 Strings, Lists, and Tuples

15. Write a program that creates the two sets below, and creates and displays a
third set that is the intersection of the two.

set1 = set([1, 2, 3, 4, 5, 6, 7])

set2 = set([5, 6, 7, 8, 9, 10, 11])

Chapter 8 Programming Challenges

#1 – Decryption

Type or copy/paste this single line of text into a file named “message.txt” and
write a program that reads the file and decrypts the text using the key below.

thg:tgllt:tga:thgllt:by:9Thg:tga:thorg:and:makgt:9a:fgw:dollart:To:fggd:hgr:9t
ga:TurTlgt:from:Thg:thgllt:ThaT:9thg:hat:told.

Key: ‘t’ is ‘s’, ‘:’ is space, ‘T’ is ‘t’, ‘g’ is ‘e’, and ‘9’ is newline

#2 - Reverse lines and Text

Create a file named “reverse.txt” with the lines exactly as shown in the
sample file below. Do not include spaces at the ends of the lines.

Write a program that reads the file and uses lists and strings to reverse the
order of the lines and to reverse the words in each line. Then display the
resulting five (5) lines of text.

Hint: consider a function to split, reverse and print.

reverse.txt:

193

Chapter 9 Classes and Objects

Chapter 9

Classes and Objects

The two approaches to programming in use today include procedural and object-
oriented programming. The programs written so far in this text have been
procedural, and the order of operations follows a flow of control where a specific
task is completed, and then another, and then another, and so on. The functions
have been called and in some cases passed data to complete a specific task. The
data and the functionality have been separate. In Object-oriented
Programming (OOP), data and functionality are combined in an object and are

hidden from the rest of the program. This is referred to as encapsulation. The

data items stored by an object are referred to as attributes or members
(sometimes member variables), and the functionality within an object is referred
to as methods or behaviors. Object oriented terminology has changed over the
decades and different terms are used depending on the programming language.
This is unfortunate, but essentially objects have data elements (attributes) and
methods (behaviors) that operate on the data elements, and provide an interface
for other objects and other parts of the program to operate on them.

The purpose of hiding the data from outside the object is to protect the data from
being corrupted or changed arbitrarily. Parts of a program and other objects can
access the object’s attributes through a public interface which provides
protection for the data while allowing access to data elements when necessary.
This is sometimes referred to as information hiding since programs can use an

194

Chapter 9 Classes and Objects

object without knowing the inner workings. They interact with an object
through the public interface which only requires knowledge of the interface.
Any future changes to an object internally do not necessarily require changes to a
program that uses that object. Unless the public interface has changed, there is
typically no need to modify programs that use the object.

Classes

To create an object, there must be a class. A class is a framework or blueprint of
what the object will contain when it is created. An architect can provide a
detailed drawing of a building that shows a door, but the door cannot be opened.
A building must be built from the drawing, and then the door of the building can
be opened. The building would be an instance of the drawing the same way that
an object is an instance of a class. In addition, multiple buildings could be built
from the same drawing and they would all be identical, and they would each
have their own door. Multiple objects can be instantiated from a single class,
and they would each have their own set of attributes.

Instances of a Class

195

Chapter 9 Classes and Objects

The attributes for a class are defined in the class definition which outlines the
data attributes and methods for the class.

The general format for a class definition in Python is shown here.

Class Definition

The class definition begins with the class key word and the name of the class.
The naming convention for classes is to begin each word with an uppercase
letter. The next line defines the constructor which looks like a function or

method header but includes the word __init__ (short for initializer) which is
preceded and followed by two underscores. The constructor executes when a
new object of the class is created. Any parameters used by the constructor would
be included on this line along with the parameter self which is a reference to the
object being created. Any word can be used, but self is typical and considered
the standard although root and others are common.

As an example, consider a Reservation class with attributes for name, day, time,
and number of guests. (The examples use the 24-hour clock)

Ex. 9.1 – Reservation class definition example

The class definition begins with the class key word and the name of the class.
The next line is the constructor which includes the parameters for self, name,
day, time, and guests. When an object of this class is created, the four parameters

196

Chapter 9 Classes and Objects

for name, day, time, and guests must be passed to the constructor. Recall that
the parameter self refers to the object that is being created and is not passed as an
argument to the constructor. The next four lines declare and initialize the
instance attributes using the values of the parameters that were passed to the
constructor. Example 9.2 creates a Reservation object (instance of the class) and
passes ‘Lake’, ‘Monday’, 1830, and 4 to the constructor. A Reservation object is
created in main, and assigned to “r1”. The print statement accesses the attributes
using the name of the object, the dot operator, and the attribute names.

Ex. 9.2 – creating a Reservation object

Each Reservation object created will have its own set of attributes with its own set
of values. The values stored in the instance attributes are referred to as the
object’s state.

State of an Object

197

Chapter 9 Classes and Objects

To highlight this, the next example creates two Reservation objects (r1 and r2)
with different attribute values (states).

Ex. 9.3 – multiple Reservation objects

The Reservation example had a constructor that received parameters to initialize
the attributes of the object. Some classes do not receive parameters when an
object is created and there are methods within the class for assigning values to
the attributes. Also, consider that a Reservation may need to be changed. To
provide for this capability, a method would be added to the class definition
which would allow a change to the state of the object.

Methods

The behavior of an object is specified by writing methods in the class definition.
A method is like a function, but it is inside an object and interacts with the data
elements of the object. As an example, the Reservation class has been modified
below to include a method that allows changing the time attribute of an object.
The method is included in the class (note the indentation alignment), and the
first parameter is the object on which the method is being called, and it is
received as self by the method.

198

Chapter 9 Classes and Objects

After an object of the class is created, the method can be called using the object
name, the dot operator, and the method name. Note that only one argument is
passed by main to the method in the example below, but that two are received by
the method in the class above. The object reference is passed automatically.

Ex. 9.4 – object method call

Methods could also be added to enable changing each of the Reservation
attributes. Or, consider if the constructor for a class did not have parameters and
the attributes for the class were all set through methods. Different requirements
call for different solutions.

Access Specifiers

Different parts of an object are designated for access using what are referred to as
access specifiers. Python does not have an effective way of specifying or
enforcing public, protected, and private access like other languages, but a

convention uses a single preceding underscore to indicate protected, and two

199

Chapter 9 Classes and Objects

underscores preceding an item to indicate that it is private. Since Python uses
name mangling (beyond the scope of this text), some protection is afforded
private elements (although they are still accessible).

Public Access Modifier: The members declared as public (which is the
default) are deemed accessible from outside an object of the class.
Protected Access Modifier: The members designated as protected
(preceded by a single underscore) are deemed accessible only from a class
derived from it (in a subclass).

Private Access Modifier: These members are designated (preceded by two
underscores) as only accessible from within the class. Access from
outside the class is deemed inappropriate.

In the above example, the name, day, time, and guests attributes of a Reservation
object could be accessed by the main program or other objects. To specify them
as private and that they should only be accessed through the methods, two
underscores are placed in front of the attribute names. As mentioned before,
they are still accessible, but this indicates that they are private and should not be
directly accessed. The same two-underscore convention is used with private
methods as well. The following example specifies the attributes as private.

Ex. 9.5 – instance attributes as private

The Reservation class examples included a method to change the time attribute.
Methods that change the state (attributes) of an object are referred to as mutator
methods. Methods that access an object’s attributes without changing them are
referred to as accessor methods. Mutator methods should have names that
indicate what they change and typically begin with the word set. Accessor
methods should have names that indicate what they obtain and typically begin
with the word get. For this reason these methods are often referred to as setters
and getters. A complete example is shown later in the chapter.

200

Chapter 9 Classes and Objects

Class Attributes

An attribute that is declared outside the __init__ function is a Class attribute and
is shared by all objects of the class. They are useful for class constants, tracking
data across all instances of the class (similar to static variables), and for defining
defaults values. The class attribute can be accessed using the class name or the
objects name. As an example, a business program that has an invoice class might
have a class attribute for a state tax. The attribute would be shared by all
instances (objects) of the class. Another example would be creating a list of the
invoices processed. When a new invoice object is created, the constructor adds it
the list.

Modularization and Class Files

The examples above included a main function and the class definition together in
the same file, but class definitions are typically located in separate files. This
aligns with the process of modularization, or separating a program into distinct
parts. Recall that modularizing a program provides many benefits including the
ability to: reuse portions of the code, divide the program development among
multiple programmers, and simplify the overall project. Classes should be in
separate files as well, and then imported into a program for use.

201

Chapter 9 Classes and Objects

As an example, the Reservation class program has been modified to place the
class in a separate file.

Ex. 9.6 – Reservation program class file example

The main program imports the class file, and the file name precedes the call to
the constructor. Note that the call to change the time is preceded only by the
object reference.

Ex. 9.6A – Reservation program main program file

202

Chapter 9 Classes and Objects

Displaying the State of an Object

Adding the print statement “print(r1)” to the Reservation program might imply
that the contents of “r1” would be displayed. But the output would not be the
objects state, but a default Python message with the value’s type and address in
memory where it is stored. The output from the statement is shown below.

In order to display an object’s state, Python provides the __str__ method (two
underscores before and after) which accepts only one parameter (self) and
returns a programmer defined string representing the state of the object. The
Reservation class has been modified to include this method below. Note the use
of self in the string that is returned to access the instance attributes.

The __str__ method is not called directly, but is called automatically when the
object is passed to the print function.

Since the string returned by the __str__ method is programmer defined, it can
contain as much information about the object’s state as needed and in any
format. It can be a valuable tool for testing and debugging the program.
Another version is shown below.

203

Chapter 9 Classes and Objects

Objects as Arguments

When passing objects as arguments to functions and methods, the parameter is a
reference to the object. This provides access to the object’s methods and
attributes by using the name of the object. The example below creates a
Reservation object and passes it to a function. The function receives the object as a
reference in the parameter obj which allows access to the attributes of the object.
Note that the name used by the function to receive the object reference can be
anything, and is used to access the name attribute of the object by the function.

Ex. 9.7 – objects as arguments (class definition omitted)

In Ex. 9.7 above, a separate function is used to show an example of passing an
object to a function. The name attribute is accessed directly which is not
consistent with OOP. When designing and developing classes, methods should
be included that provide the functionality and operations on objects of the class.
A program that uses the class should not have to include functionality pertaining
to the object. The class should have a method to get the name and return it.

Designing Classes

Before writing a class definition, time should be spent designing the class and
considering the data attributes and the public interface (methods) needed to
access and change the data when appropriate. Most classes model real-world
objects and should represent a clear and single abstraction. That is, the class
should not include functionality that is outside its responsibilities like getting
user input, or anything that is specific to a particular program. One of the goals

204

Chapter 9 Classes and Objects

of OOP is reuse of the class. Another goal is cohesion which refers to degree to
which a class represents a single abstraction without external dependencies. The
degree to which a class depends on another is referred to as coupling. A class
should have cohesion (represent a stand-alone entity), and loose coupling (no
external dependencies).

One of the tools used in the design of classes is CRC cards (Class Responsibility
and Collaborators) cards. Using an index card, teams brain-storm ideas and note
the nouns and verbs used when describing a class. The nouns represent instance
variables (data elements) and the verbs represent the methods that will act on the
data including the public interface. The goal is to capture all possible data
elements and methods, and then refine the lists as the design evolves.

Another tool that is used to design and document classes are Unified Modeling
Language (UML) diagrams which describe a class, the attributes, and methods.
The top section contains the name of the class, the next section describes the data
attributes, and the bottom section lists the methods for the class. A generalized
example for the Reservation class is shown here.

Ex. 9.8 – UML Diagram

UML Diagram

The UML format may differ across industries or organizations, but all capture
the data attributes and methods and can also be used in the design process.
UML behavior diagrams (often referred to as object activity diagrams) are used
to show the flow of control, data, and transactions. UML Superstructure
Specifications provide a standard for object interaction depiction. The Behavior

205

Chapter 9 Classes and Objects

Diagram below illustrates the authentication of user activity with Login Id and
Password.

Object Behavior Diagram

The Object Sequence Diagram adds the chronological aspect.

Object Sequence Diagram

The Reservation Class Revisited

The Reservation class in the previous examples had limitations to highlight
specific concepts. A more cohesive and complete design would include private
data attributes and additional capability, and is worth revisiting. A CRC card
could be used to list nouns (things) and verbs (actions).

Nouns (data attributes): name, day, time, and number of guests

Verbs (methods): create a reservation, set/return day, set/return the time,
set/return the number of guests, and display the reservation (state)

206

Chapter 9 Classes and Objects

The Reservation class has been modified to specify the data attributes as private,
and to provide mutator and accessor methods for each.

Ex. 9.9 – Reservation Class

The UML Diagram for the Reservation Class would be updated as follows:

207

Chapter 9 Classes and Objects

Earlier an example incorrectly accessed an attibute of an object directly. Now
that the Reservation Class is more complete, proper access can be shown using
the set and get methods. The example creates an instance of the class, prints the
day using the accessor method, changes the time using the mutator method, and
displays the state of the object.

Ex. 9.10 – Reservation Class in use

Pickling

The Reservation class examples covered designing and creating the class with
access to and changes to attributes, and creating objects. A program that uses the
class would create a complete reservation list for the business, and provide
additional functionality. The business would want to review the reservations for
the day, add new reservations that it can accommodate, and remove reservations
when there are cancellations. These operations would be carried out by the
program, not the class. When the business closed and the program was ended,
the objects would be saved in a file either as text or they could be serialized.

Python provides a way to serialize objects called pickling which converts objects

into byte streams (0s and 1s). The pickle module’s dump function serializes an

object and writes it to a file, and the load function retrieves an object from a file
and de-serializes it. This allows preserving an object’s state, and for streaming
objects across networks from one server to another.

208

Chapter 9 Classes and Objects

Using the Reservation class, the following program creates a Reservation object
and serializes it to a file using pickle.dump. It then de-serializes it and calls the
display method. Note the file modes used when opening the files. The mode for
writing binary is ‘wb’ and reading binary mode is ‘rb’. To highlight the object
reference, “r1” and “res” are used.

Ex. 9.11 – Business Class

A portion of the pickled file is shown below.

209

Chapter 9 Classes and Objects

Inheritance

Objects are often specialized versions of a general class. For instance, a
restaurant is a business, a clothing store is a business, and so is a theater. They
have many things in common like employees, sales, and expenses, but some
differences or special characteristics as well. The common characteristics could
be implemented in a Business class, and then each specific business type could be
derived from that class. The derived classes would inherit the common
characteristics from the Business class, and would implement those that are
specific to them. In other words, they would extend the Business Class, and
would have what is called an “is a” relationship. This relationship is established
through inheritance. The specialized classes (derived classes or subclasses)
inherit the characteristics of the general class (base or super class).

In the diagram, the Business Class is the base class, and the specific businesses
are derived classes or subclasses. As an example, suppose that a program is
needed that can be used by a company with different businesses. The common
characteristics for all businesses would be implemented in the Business Class,
and the derived classes would contain their specific items and methods. Since all
of the companies have a name, and employees, these could be implemented in
the base class. Not all of the businesses have an inventory, so that would not be
included. The get_name() method is included for an example that follows.

Ex. 9.12 – Business Class

210

Chapter 9 Classes and Objects

Consider a Clothing Store class and a Theater class implementation. The
Clothing Store would have inventory, but can inherit the items from the Business
class (name and employees). There is no need to include the items that are in the
Business class if the Clothing Store Class is derived from the Business Class. This
is implemented by defining the Clothing Store Class as inheriting from or
extending the Business Class.

In the example below, the class is defined as a derived class of Business. The
initializer for the Clothing Store class calls the __init__ function for the Business
class, and passes the three parameters including self that the Business class
initializer requires. It then assigns inventory to its’ own inventory data attribute.
The get_inventory() method is included for an example that follows.

A Clothing Store object would inherit all of the attributes in the Business Class
including the methods. A simple example follows that creates an instance of the
Clothing Store and calls the get_name() and get_inventory() methods. Note in the
example that “b1” is a ClothingStore object and inherits the get_name() method
from the Business Class.

211

Chapter 9 Classes and Objects

The Theater business would be handled the same way. The Theater Class would
be implemented including any specifics (seats in the example) and inherit
everything from the Business Class. The initializer for the Theater class calls the
__init__ function for the Business class, and passes the three parameters
including self that the Business class initializer requires. It then assigns seats to
its’ own seats data attribute. The get_seats() method is included for the example
that follows.

The object creation and method calls would operate the same as well.

The following example creates instances of both derived classes and an instance
of the Business class.

212

Chapter 9 Classes and Objects

In the Unified Modeling Language (UML), inheritance is represented with an
open arrow head pointing to the base class. The base class diagram includes all
of its’ attributes, and each of the derived classes would contain theirs. A UML
diagram for the Business Class example follows. Inheritance is one way, and
base classes no nothing about derived classes.

UML Inheritance

Polymorphism

In the examples, there was a single method for each operation. A derived class
can actually have a method with the same name as a method in the base class
that operates differently. This is known as polymorphism, or the ability to take

on many forms. The derived class method can override the base class method.
Consider a situation where the Business Class has a display method, and the
Theater, and Clothing Store derived classes have a display method as well. The
proper method would be called based upon which object is calling the method.

Multiple Class Inheritance

A class can inherit (be derived) from multiple classes. The derived class inherits
all of the attributes of both classes. The hierarchy diagram below indicates the

213

Chapter 9 Classes and Objects

direct inheritance of Derived Class B from Derived Class A which inherits from
the Base Class. A class can also inherit from two or more distinct classes. The
diagram below indicates indirect inheritance. A careful review of both base
classes is required to ensure that there are no conflicts.

When defining a class with multiple-inheritance, both classes are listed as
parameters for the derived class, and both initializers for the classes are called.

Both forms of multiple-inheritance add complexity and make the code and
classes harder to use in other programs because both of the base classes need to
be copied as well. This also lowers cohesion and increases coupling.

Determining Class Identity

As the classes become more complex and methods override other methods, it is
often necessary to determine if a class is an instance of or a derived class of
another. The isinstance function returns True if it is and False if it is not. The
general format is shown below where object is the reference to the object being
tested, and Class is the name of the class (can be base class).

Before a task is completed, a test for the proper object can occur.

214

Chapter 9 Classes and Objects

Chapter 9 Review Questions

1. Hiding the implementation of a class is referred to as _____________.

2. The data and methods of a class are called ____________.

3. Program statements and other objects access an object’s attributes through the
______________.

4. An object is an ___________ of a class.

5. The ________________ declares the data and methods for a class.

6. The method that creates and initializes an object is called the _____________.

7. The values stored in an object’s data attributes are referred to as the object’s
__________.

8. Two underscores preceding a class data attribute indicate that the element is
_________.

9. Methods that access an object’s data attributes are called ______________.

10. Methods that set or change an object’s data attributes are called __________.

11. The _________ function provides a way to output an objects state.

12. _________ refers to the degree to which an object represents a single
abstraction without external dependencies.

13. _________ refers to the degree to which an object is dependent upon another.

14. A way in Python to serialize objects into byte streams is called __________.

15. A _______ diagram can be used to document the data and method attributes of
a class.

16. ______________ allows a base (super) class to contain common elements for
derived (sub) classes.

17. ______________ is the ability to take on many forms.

18. The __________ function can be used to determine if an object is an instance of
or derived class of another class.

Chapter 9 Short Answer Exercises

1. What is the difference between a class and an object?

2. What is an instance of a class?

215

Chapter 9 Classes and Objects

3. What is the object reference in the following statement?

account.get_balance()

4. What parameters need to be passed to the following constructor?

def __init__(self, name, age)

5. What change is needed to indicate that a data attribute is private?

6. What is the __str__ method used for and how is it called?

7. In the following statement, what is the base (super) class? What is the derived
(sub) class?

class Car(Vehicle)

Chapter 9 Programming Exercises

1. Write a class definition for a Circle Class that has a data attribute for radius, a
constructor that accepts a radius and initializes the instance attribute, and the
following methods:

get_circumference()
get_area()

2. Using the Circle Class from #1, write a program that creates a Circle object with
a radius of 6, and displays the circumference and area of the circle.

3. Implement a Product class that has data attributes for description, price, and
inventory. Write a constructor that accepts parameters for the attributes and
initializes them, and a method to display a product’s information. Write a
program to create the product objects below and display them.

Product Price Inventory
Mug 8.50 23
T-shirt 12.95 45
Towel 18.50 36

4. Implement a Gas Pump class that has data attributes for gallons pumped, price
per gallon, and total sale. The constructor will accept a dollar amount for the
gas purchased. The class will have a method to allow setting the price per

216

Chapter 9 Classes and Objects

gallon, and a method to display the gallons pumped and the sale. Then write a
program that will prompt for the price per gallon and the amount in dollars to
pump. It will then create a Gas Pump object and display the results. The
program will have a loop to create a new pump without restarting the program.
Sample main and output shown below.

5. Write a program using the class definition below that creates a Date object, and
sets the day, month, and year, then displays the date in mm/dd/yyyy format.

6. Create a UML diagram for the Date Class in #5.

217

Chapter 9 Classes and Objects

7. Implement an Oven Class for a microwave oven that accepts a time to cook in
minutes that is greater than 0 and less than 12, three power levels (1, 2, 3 – for
low, medium, high), and start. The class methods will validate the input, and
use default values when invalid data is entered and display an error. Write a
program that creates an object and prompts for the input. The program will
have a loop to create a new object without restarting the program. Sample
output shown below.

8. Implement the Business Class from Ex. 9.9 with the data attributes for name
and employees and methods for accessing them. Then implement a derived
class Restaurant that inherits from the Business Class and has data elements for
tables, and seats.

Write a program that creates an instance of the Restaurant Class named Sally’s
with 14 employees, 15 tables and 65 seats. Add a method to the program that
displays all of the information for Sally’s Restaurant.

Sample output:

Chapter 9 Programming Challenges

#1 – Product Pickling

Using the Product Class from #3, create the three products, and serialize (dump)
them and write them to a file, and close the file. Open the file and load the
products (retrieve and de-serialize) them into object references (names) that are
different from the names they were given when they were created. Then display
the information for the products.

218

Chapter 9 Classes and Objects

#2 – Elevator Class

Implement an Elevator Class for elevators that can travel to floors 1 - 8, “know”
what elevator they are (1, 2, 3), “know” what floor they are on, and “know” whether
they are active or waiting.

Write a program that creates three (3) elevators, and starts them each at the
ground floor. Using a loop with 10 iterations, randomly select one of the elevators
to move (this one is active and the others are waiting) and send it to a random floor.
The same elevator cannot be moved two times in a row. Display the current state
for each of the elevators at each execution of the loop in columns and sets of three
as shown. Only one elevator should be active at each interval and the others should
remain on their current floors.

219

Chapter 10 Graphical User Interfaces (GUIs)

Chapter 10

Graphical User Interfaces (GUIs)

Graphical User Interfaces (GUIs) were originally created by researchers at the
Xerox PARC (Palo Alto Research Center) and quickly became the user-preferred
choice for interfacing with computers in the 1980’s. Prior to this, command line
interfaces (shown below) were used to interact with computers, and in some
cases they continue to be used.

GUIs are event driven by user input such as clicking on a button or tab, scrolling,
or resizing a window. The program responds to user input which determines
the sequence of many of the events. Therefore, careful design is required to
control access to the events. For instance, a user may click a button to compute a
result before entering required values. Scenarios like this should be considered

220

Chapter 10 Graphical User Interfaces (GUIs)

during interface design, since they increase the input validation aspects of a
program. A value needed for computation must be entered by the user before
allowing computation, and the value entered must be within the correct range of
values to avoid issues such as division by zero. Consider a program that
computes the circumference of a circle based on an input of radius.

1. The radius must be input prior to computation
2. The radius input must be a positive number

The graceful handling of incorrect input is required for a robust and well-
engineered solution. In a non-GUI program, we might use a loop that iterates
until a correct value is entered. It would display an error message to alert the
user, and re-prompt for input inside the loop. The same concept is true for a GUI
program, but with the added requirement of employing windows to handle the
tasks. This situation will be explored later. Generating a main GUI is the first
step which requires creating a window with controls (widgets or components).
A control is an element that enables a user to accomplish some function or to
access an area of the program. Python is a well suited language for creating
graphical user interfaces through the Tkinter module. The module is installed
with Python and provides windows and controls that are easy to program. The
Tkinter package is the standard Python interface into TK GUI Toolkit which is
used by developers in other languages as well. The name Tkinter is short for TK
Interface. Some Tkinter controls are listed here.

Tkinter Controls

221

Chapter 10 Graphical User Interfaces (GUIs)

Before selecting controls for an interface, a preliminary design should be
completed to provide a layout for the window and an idea of how it will look
and operate. Walking through the program operation steps the way that a user
would is helpful at this stage. The user will interact with the program through
the GUI, and should be easy to use, have intuitive controls, and labels. A user
should not have to wonder how the use the program or what units to enter.

The controls required for the interface depend on what the program does and the
user interaction. A few labels and buttons may be adequate, or radio buttons or
option lists could be employed. These considerations during the design phase
will save time redesigning or reconfiguring an inadequate or problem interface.
Programmers often overlook essential aspects of the interface since they know
what the program does, how it functions, and the inputs required. The Agile
process typically involves stakeholder reviews and in some cases the customer.
This provides an opportunity for people not familiar with the planned design to
offer suggestions for improvement. It also eliminates surprises when the final
product is delivered.

Interface Example

Consider a GUI weather program that receives user input for temperature and
wind speed, and computes the wind chill factor when a button is clicked. The
pseudocode for the program lists the steps in the program and helps to identify
controls.

Ex. 10.1 – GUI program – Wind Chill Factor example

Step 1 the user enters temperature data entry
Step 2 the user enters wind speed data entry
Step 3 the compute button is clicked button
Step 4 the input is validated

- if the input is valid
o compute the wind chill
o display the result

- otherwise
o alert the user to the error dialog
o clear the inputs

Step 5 go to Step 1

222

Chapter 10 Graphical User Interfaces (GUIs)

A sketch of the planned interface helps to verify requirements and locate the
controls that will be needed.

Generating the Interface Window

Programmers use an object oriented approach to GUI development, and the
window for the example will be created as an instance of a class (WeatherWin).
The class below is a single window with a minimum size setting, a title, and a
label. The line numbers are included for the explanations that follow. Line
numbers in IDLE can be displayed by selecting them from the options menu.

Ex. 10.2 – GUI program example

223

Chapter 10 Graphical User Interfaces (GUIs)

Line 3 imports the Tkinter module as “tk” which allows using tk as an alias
when accessing the library as shown on line 8 when the window is
created and on line 12 when the label is created

Line 5 declares the class (in this example WeatherWin)

Line 6 begins the constructor (initialization function)

Line 8 creates the window

Line 9 adds a title to the window border

Line 10 sets a minimum size for the window

Lines 12-14 create a label with text, font style and size options, and color

Line 15 positions the label created on line 12 using grid geometry

Line 18 starts the tkinter main loop

Line 20 creates an instance of the WeatherWin class called wWin

The tkinter main loop in the program is used to “listen” for events like a button
click when the program is running. It executes when the program starts and
continues running until the user ends the program. When executed, the code
generates the window below with the title on the border, and the label. Notice
that there is no main function for this program. The code (repeated here) that
generates an instance of the class creates the window.

Building a portion of the project and testing that portion before moving on is
referred to as the “build a little, test a little” approach. As new code is added,
any issues or errors that surface would be in the added code. It is easier to debug
five lines of code than it is to debug fifty lines of code.

Window with Title and Label

224

Chapter 10 Graphical User Interfaces (GUIs)

Positioning Controls

To position controls on an interface, Tkinter provides Geometry Managers that
include the pack(), grid(), and place() methods.

pack() organizes within a block using a few available options

grid() organizes using rows and columns with customizing options

place() organizes using x, y coordinates

Due to the flexibility and options available in grid, it will be used in the
examples. The line of code in the example that positioned the label (repeated
below) assigns row 1 and column 2, but the label is positioned top-left in the
window. This is because grid will size each row and column to the smallest size
required for the items that are in them. In this case there is nothing in row 0 or 1
and nothing in column 0, so the position of the label doesn’t display where the
code indicated. This can be resolved by setting row and column sizes.

GUI Design

Positioning elements should be completed in the design phase. The sketch for the
example window included the program title, labels for prompts, entry controls
for the user, and a compute button. Since grid positions elements in rows and
columns, adding lines to the preliminary sketch provides a better representation
of the interface and where elements will be located.

Interface Sketch Highlighting Rows and Columns

225

Chapter 10 Graphical User Interfaces (GUIs)

The modified sketch with row/column lines shows that some rows have a greater
height than others and that the labels span multiple columns. This is not an issue
since there are grid options for setting the row height and column width
individually using configure and for allowing a control to span multiple
rows/columns. The lines below set the first row height to 50 pixels and the first
column width to 100 pixels. The first argument is the row or column number,
and the second is the size. Numbering begins at zero for rows and columns.

Table 10.1 shows some of the grid options available and their descriptions.

Table 10.1 – Grid Geometry Options

Planning the positions of the controls and considering the use of options can save
time adjusting after the fact. Adding padding or a span option to one control can
move others which then forces changes to them as well. Then adjusting the
options for those controls can counteract the original change or create more
needed adjustments. For the example, the columns will be the same width and
the row heights will be customized to accommodate the controls. Positioning the
labels will be the first step.

226

Chapter 10 Graphical User Interfaces (GUIs)

Ex. 10.3 – grid configuration and positioning controls on a GUI

In the code above, a loop is used as an example for setting the column sizes since
they are the same. The rows are configured individually. The sizes for the rows
and columns are really a guess at this point, and will be adjusted after the
window is displayed and reviewed. After each label is created with text and the
font option, the location on the grid is assigned. It is best to handle this as a two-
step process. The updated code output is shown below, and the labels are
centered within the column by default. An option for alignment in grid is called
sticky and it accepts an assignment of N, S, E, or W. Using W for west would
put the text against the left hand side of the GUI, but a tab can be added to the
label text to move it to the right (as a simple solution).

Positioning Labels

227

Chapter 10 Graphical User Interfaces (GUIs)

The modified code adds a tab to the text for each label and the sticky option is
assigned “W” when assigning the grid rows and columns for the label positions.

The result is aligned labels and space away from the left edge of the window.

Positioning Labels and Alignment

Entry Controls

Next, the entry controls that allow the user to enter the input will be added on
the same rows as the prompts for temperature and wind speed, but in the next
column. The entry controls accept a width in characters, justification for the text
entered by the user, and a font option among others. The focus for temperature
is forced so that the curser is in the text entry control when it is created.

Ex. 10.4 – entry controls creation and grid positioning

228

Chapter 10 Graphical User Interfaces (GUIs)

The wind speed entry control is handled the same way, but without the forced
focus. The resulting display is shown here. The GUI is starting to take shape.

Positioning Entry Controls

There are options for entry controls to customize the foreground, background,
font, relief, and there is a show option to display a character such as “*” instead
of what the user is typing. The methods include get() which returns the text in
the entry control. This will be used when the button (added next) is clicked.

Button Controls

GUIs typically contain button controls that allow some action to take place when
they are clicked. The Tkinter button has many options for customization and can
be positioned using grid. In the example, a button that reacts when it is clicked
will call a function that gathers the input text, computes the wind chill factor,
and displays the result. This is commonly referred to as a callback function.
The command option for the button assigns the action to be performed when the
button is clicked. In the code below a compute_wc function will be called. To
center the button in the interface, the columnspan option is used allowing it to
span all three columns (centered by default).

Ex. 10.5 – button creation and grid positioning

229

Chapter 10 Graphical User Interfaces (GUIs)

There are options for buttons that allow for customization. The commonly used
options are listed in the table below.

Table 10.2 – Button Options

Note that the code for the actual computation of the wind chill factor has not
been written yet. Once the button is positioned and displayed, the function for
computing will be added. The result of adding the button code is shown below.

230

Chapter 10 Graphical User Interfaces (GUIs)

The interface controls for the example have been created and positioned, but
there is no functionality. The callback function for the button will be created
within the class to simplify the process and provide access to the interface
controls. Later an example will show how this can be located in another module
or by using what is called a lambda expression. For now, the command option
assignment will execute a function within the class.

The function will include verification of the input, computing the wind chill
factor if valid data was entered, and updating the label to show the result of the
computation. A simple output statement can be used for testing purposes.

The callback function will use the entry control’s get() function to retrieve the
input as a string. To use the input in calculations requires casting them to floats
(if possible). Print statements are used below for testing.

Ex. 10.6 – compute function obtaining input

When the data entered is invalid, the user must be alerted to the problem and be
given the ability to correct the issue without restarting the program. A dialog
box can be used for this purpose.

Dialog and Information Boxes

Issues associated with GUI operation are typically handled using a dialog or
message box that explains the issue and has an “OK” button that must be clicked

231

Chapter 10 Graphical User Interfaces (GUIs)

to continue. The tkinter.messagebox module provides information boxes for
this purpose and requires importing that module. Available functions are listed
below.

Message Box Functions

The arguments and options for the functions include:

The different functions produce different message boxes, and there are options
including setting the window title and text in the dialog as shown below. The
example produces the standard showinfo message box which includes text and
the “OK” button.

This line of code produces the ask-ok-cancel box shown below.

232

Chapter 10 Graphical User Interfaces (GUIs)

Message boxes provide a simplified way of handling errors. For the compute
function, the input will be obtained from the entry controls and checked before a
calculation is performed. If the input is invalid, a message box in the except
clause will alert the user.

Ex. 10.7 – compute function with message box

The message box alerts the user and allows the program to continue after the
“OK” button is clicked.

Invalid Data Dialog Box

The final part of the example program includes calculating and displaying the
wind chill factor when valid data is entered and the button is clicked. The result
of the calculation could be handled using an additional label, but the existing

233

Chapter 10 Graphical User Interfaces (GUIs)

label can be updated to include the results by appending the wind chill factor to
the text, and using the config method to update the label.

Ex. 10.8 – compute function with label update using config

The results of the changes are shown below.

Updating a Label Using Config

StringVar

Another way to update/change a label is to use a StringVar object. The StringVar
modifies any control that uses it whenever the contents of the StringVar is
changed. This provides the ability to have an immediate update to a control
anytime the value that is stored in the StringVar object changes. A StringVar is

234

Chapter 10 Graphical User Interfaces (GUIs)

declared and assigned to a control using the textVariable assignment. Below, a
StringVar is declared, and then assigned to a label.

my_svar = tk.Stringvar()

my_label = tk.Label(textVariable= my_svar)

The StringVar can be updated by a variety of sources using the set() method.
The example has been updated to include declaring a StringVar and assigning it
to the output label. An IntVar is the integer version of the object, and operates
the same way.

The compute function is modified to use set() to update the StringVar.

Radio Buttons

Very often the design or operation of the program requires that only one
selection be made by the user. Radio buttons accommodate this because they are
mutually exclusive, and if a second button is selected, the button that was
previously selected is unselected. The options for radio buttons are similar to
other controls including text and fonts, and they can be located using grid
locations.

The first statement below declares a StringVar named radio_var to store the radio
button selection. The next line uses set ‘1’ to set one of the buttons as a default.
The next lines declare a radio button with text and font options, a StringVar is
assigned to the radio button’s variable, and a value for the button is assigned.
The button is then positioned using grid.

235

Chapter 10 Graphical User Interfaces (GUIs)

The example below expands on the lines above and implements three radio
buttons. The complete program is shown, and an explanation follows.

Ex. 10.9 – Radio Buttons

236

Chapter 10 Graphical User Interfaces (GUIs)

The radio buttons are positioned using grid, and all of the buttons are assigned
the same variable radio_var, but are assigned a different integer in value. After a
selection is made, the user clicks on the Display Selection button which has a
command to call the radio_react function, and the function obtains the value of
the selected radio button using get(). The default button is initially selected, and
when another button is selected, that button is deselected. For the example, the
output from the function is displayed whenever the button is clicked.

After retrieving the selected button using get(), conditional statements can be
used to respond with specific operations.

237

Chapter 10 Graphical User Interfaces (GUIs)

Option Lists

The option list is another mutually exclusive control that allows the user to select
from a drop-down list when it is clicked. The option list can be positioned using
grid geometry, and has font and other options including state (disabled/active).

Ex. 10.11 – Option List (window code omitted)

The implementation is much the same as the radio buttons. A StringVar stores
the value selected and a command is linked to the list. The function called needs
to receive the arguments and use the get() method to obtain the selection.

Check Boxes

Check boxes allow multiple selections by the user, and require individual
variables for each check box. The code example below includes the declaration
of an IntVar for each check box, and the assignments to the variable in the
declaration of the checkboxes. An on-value and off-value option assigns an

238

Chapter 10 Graphical User Interfaces (GUIs)

integer to each of the checkboxes (selected/unselected). The button command is
assigned a function that will determine the boxes that are checked by calling the
get() function for each checkbox.

Ex. 10.10 – Check Buttons (window code omitted)

239

Chapter 10 Graphical User Interfaces (GUIs)

Frames

The tkinter frame (panel) is a container that can hold other controls. It displays
as a rectangle and is used to organize other controls and provide additional
customization. Multiple frames can hold different controls arranged in different
ways, and the frames can be positioned in the main window using grid
geometry. The frame example creates two frames with a button on each, and
uses padding for x and y around the buttons to expand and display the frames.
The color has been added to highlight the frames.

Ex. 10.12 – Frame example

240

Chapter 10 Graphical User Interfaces (GUIs)

Frame options include:

bd size of the border (defaults to 2 pixels)

bg background color

height height of the frame

relief type of border: flat, groove, raised, ridge, solid, or sunken

width width of the frame

The default relief for a frame is flat. To use the other relief options the border
size must be increased using the bd option. The default size for a row and
column is 1 pixel, so they must be resized to accommodate the frame.

Canvas

The tkinter module also provides some essential functionality for drawing
graphics. A canvas can be used to draw graphs, charts, plots, lines, and
geometric shapes. It can also be used with the Matplotlib module. The key to
drawing on a canvas is remembering that the x, y coordinate system for the
canvas locates 0, 0 at the top-left of the canvas and the units are pixels. The
general formats for drawing are:

create_line(x1, y1, x2, y2, options...)

create_rectangle(x1, y1, x2, y2, options...)

create_oval(x1, y1, x2, y2, options...)

create_text(x, y, text=’ ‘, options...)

Creating an oval or rectangle requires providing a starting and ending opposite-
corner coordinate pair. In the case of the oval, it is a bounding rectangle as
shown here.

241

Chapter 10 Graphical User Interfaces (GUIs)

The example below creates a window and Canvas, and draws a line, rectangle,
circle (an oval with equal height and width), and text. The canvas is then
positioned on the frame (window) using grid.

Ex. 10.13 – Canvas example

Commonly used options include:

lines – arrow (arrow heads), dash, fill (color), and (line) width

rectangles – dash (line), fill (color), outline (color), and (line) width

ovals – dash (line), fill (color), outline (color), and (line) width

text – anchor (positioning), fill (color), font, and justify

242

Chapter 10 Graphical User Interfaces (GUIs)

The font used with create_text can be customized using anchor and justify for
positioning, as well as the tkinter font module which provides the ability to
assign a font family (Courier, Consolas, etc.), a size in points, a weight (bold and
normal), slant (italic), underline, and overstrike (crossed out text). The example
below creates two fonts and assigns each to a different line of text.

Ex. 10.14 – Font example

Chapter 8 covered the use of matplotlib for plotting, and creating charts.
Drawing can also be accomplished with tkinter or the turtle graphics package
that is installed with Python.

243

Chapter 10 Graphical User Interfaces (GUIs)

Turtle Graphics

The turtle package is a pre-installed Python library that enables drawing pictures
and shapes. The “pen” used for drawing is called the turtle although it is shaped
like an arrow. Turtle graphics are mainly used to introduce children to
computers and a fun way to draw shapes and learn computer commands. The
following program imports the turtle package and draws a triangle using three
lines, and adds a line of text.

Turtle graphics use a coordinate system with 0, 0 at the center of the turtle output
window. The turtle begins at these coordinates and is pointing east which is 0
degrees for the turtle, with 90 degrees being north, 180 degrees being west, and
270 degrees being south. By default the turtle pen is down (writing position), but
can be lifted to move it to another location without drawing a line. There are
options for pen color, background color, changing the angle and pen size, and
various shape commands. The animation speed can be set so that the drawing is
completed slowly instead of all at once.

The following example draws 36 circles while changing the angle left 10 degrees,
and surrounds the shape with a green square.

244

Chapter 10 Graphical User Interfaces (GUIs)

Ex. 10.15 – Turtle graphics example

245

Chapter 10 Graphical User Interfaces (GUIs)

Chapter 10 Review Questions

1. GUIs are _________ driven by _________ input.

2. The ___________ module in Python can be used to develop GUI programs.

3. The GUI control used to display one line of text is a ___________.

4. The GUI control used to obtain a single line of user input from the keyboard is
an ___________.

5. A function or method that is called when an event occurs is referred to as a
________function.

6. The three geometry managers provided by tkinter are: _________, ________,
and ________.

7. Mutually exclusive means that _________ item in a group can be selected.

8. The Grid Geometry Manager can be used to ___________ controls in a GUI
using rows and columns.

9. _________ is the method used to obtain input from an entry control.

10. The button option that assigns a callback function is the _________ option.

11. The small window used to alert a user to an issue in a GUI application is called a
_________________.

12. The _________ object and _________ object provide an immediate update to
the controls they are assigned to.

13. _________ and ___________ are mutually exclusive controls and users can
select only one, whereas _________ are not and multiple selections can be
made.

Chapter 10 Short Answer Exercises

1. Write a statement that creates a label called label1 for self.win with the text
“Python is fun!”

2. Write a statement that creates an entry control called user_input for self.win
that allows for 10 characters of input.

3. What does the following statement accomplish/allow?

import tkinter as tk

246

Chapter 10 Graphical User Interfaces (GUIs)

4. In the following compute button creation, what is the text on the button?

self.btn1 = tk.button(text=’Compute’, font=(‘Arial’,14),
 command = self.compute_value)

5. In the following compute button creation, what is the callback function?

self.btn1 = tk.button(text=’Compute’, font=(‘Arial’,14),
 command = self.compute_value)

6. What does the following statement accomplish?

my_string = self.my_entry.get()

7. Write a statement for a show message dialog box with the title “Error” and the
text “An error has occurred”.

8. What does the following statement accomplish?

self.win.columnconfigure(1, minsize=50)

9. Where are the coordinates (0, 0) located on a tkinter Canvas?

Chapter 10 Programming Exercises

1. Implement a class definition for a MyWin Class that generates the window
below which is 300w x 200h with a title “Main Window” and a label that says
“This is the Label”. Pack can be used to display the label.

247

Chapter 10 Graphical User Interfaces (GUIs)

2. Using the MyWin Class from #1, add a button to the window with the word
“Click Me” on the button. Pack can be used to display the button.

3. Implement a class InputWin that creates a GUI and uses the grid geometry
manager with six (6) rows configured with a minimum size of 30 pixels and three
(3) columns configured with a minimum size of 50 pixels. Add a label that
prompts the user to input their name into an entry control that is 20 characters
wide. Add a button (width=18) that obtains the input from the entry control
using a command that calls a function that updates a second label and displays
“Have a nice day ” and the name that was entered. Position the control as
follows:

Prompt Label row 1 column 0

Entry row 1 column 1

Output Label row 3 column 0, columnspan=3

Button row 5 column 0, columnspan=3

248

Chapter 10 Graphical User Interfaces (GUIs)

4. Implement a class TheaterWin that creates the GUI in program #3 with the same
row and column configurations. Add another label and entry control and
request a number of tickets to purchase. The button text should be changed to
“Purchase”, and the output label text should be changed to “Thank you “ and
the name entered. Modify the font for the labels to be “Consolas” 12 and the
output label text to blue.

If the number of tickets entered is not a positive integer, an error dialog box
should appear (import tkinter.messagebox). The error dialog box text should
alert the user to the issue.

5. Modify program #4 to display the Total cost based on a ticket price of $29.50 as
shown below. Note the dollar sign and two decimal places in the output.

249

Chapter 10 Graphical User Interfaces (GUIs)

6. Implement a Create Account class with a GUI that obtains a user name and
password from the user and validates the password (at least 9 characters, at
least one digit, upper, and one lower case letter). If the password is valid,
display “An account has been created.” in a dialog box, otherwise use a dialog
box to handle the error. The title on the window should be “Create Account”,
and the window should display the password requirements to the user.

Chapter 10 Programming Challenges

#1 – Theater Ticket GUI with Seat Level Pricing

Design and implement a Class for a Theater GUI that obtains the number of
tickets being purchased from the user and allows seat selection: General
Admission, Main Floor, and Balcony. The program should use an option list
or radio buttons for seat selection, and display an error dialog if the number
of seats entered is invalid. Use a label to display the total price based upon
the number of tickets sold and the cost for seating as shown below.

General Admission $18.50

Main Floor $37.50

Balcony $26.00

Reminders: the row and column configure values can be assigned individually
and as need to accommodate the GUI design. The “sticky” option allows

250

Chapter 10 Graphical User Interfaces (GUIs)

further alignment using “N”, “S”, “E”, and “W”. Radio buttons can use an
IntVar or StringVar assignment.

#2 – Pizza Size and Topping GUI

Design and implement a GUI for the Downtown Pizza shop that obtains an
order for a pizza by size and topping. The size selection should be done with
radio buttons or an option list, and the topping selection with check boxes to
accommodate multiple selections. A purchase button will compute the price
and display it to the user based upon the prices below.

Medium $12.50

Large $15.50

Anchovies $2.50
X-cheese $3.00
Onions $2.50
Pepperoni $3.50

251

Chapter 11 Menus, Images, and Windows

Chapter 11

Menus, Images, and Windows

Menus

Adding a drop-down menu to a window can provide program-level operations
such as file handling, and allow users to Open, Save, Save As, and Exit the
program. The menu rests on the window frame, and drops down to reveal the
options when it is clicked. Multiple drop-down menus can be added.

The Python drop-down is created by assigning a Menu(). The items listed on the

menu are added using add_command and a function to respond to the selection
much the way the callback function is assigned to a button. There is a separator

252

Chapter 11 Menus, Images, and Windows

that can be added between selections using add_separator as shown in the
display above and included in the code below.

Ex. 11.1 – Menu (drop-down) example

In the example, the menu is declared as menubar which is then the first
argument when creating the file_menu. The add_command method is used for
each of the drop-down selections, and add_separator places the line on the menu.
Items are positioned on the menu in the order they are added. The add_cascade
method provides the label for the menu and places the file_menu on the
menubar. To react to the individual menu items, separate functions are assigned

253

Chapter 11 Menus, Images, and Windows

except in the case of the item to “Exit” the program. The destroy method closes
the window and ends the program. The file handling operations are simplified
with tkinter file dialogs covered in an earlier chapter.

Images

Adding an image to a window using the tkinter module is similar to other
components. Python’s Tkinter has a PhotoImage class for handling images that
supports the GIF, PGM/PPM, and PNG formats. If other file formats are needed,
the Python Image Library (PIL) contains classes that can handle over 30 formats
and convert them to Tkinter compatible image objects. The image file can be
located with the program files, which is the default directory, or a path to the file
can be used.

To use a PhotoImage instance, the method must be imported from the tkinter
module as shown here above the import for tkinter to import the method.

As a technical note, some programmers may use a wildcard import statement
with an asterisk as shown here which imports the entire tkinter module.

It is best to avoid using wildcard import statements when multiple modules
are imported because name clashes can occur when modules have functions or
classes with the same name. To avoid using “star” imports as they are often
called, run the code. If Python says “Tk” is not defined, then add “from tkinter
import Tk, and run the program again. If it then says PhotoImage not found,
then add a comma after Tk, and add PhotoImage. Keep doing this to ensure that
only the required parts of the library are added.

A reference to the image must be retained or Python’s interpreter could eliminate
it even if it is being displayed. The code to apply an image consists of three lines.
The first line assigns the file to a PhotoImage object, the second places the image

254

Chapter 11 Menus, Images, and Windows

on a label (a canvas or frame can also be used), and the third retains a reference
to the image. The fourth line below positions the image using the grid geometry
manager.

Ex. 11.2 – adding an image to a label

Centering a Window in the Display Area

When windows are created they are displayed in the top-left corner of the
display monitor. A simple method for centering uses geometry to change what
tkinter sees as the top-left corner. The statement below provides window
dimensions and the window placement information in pixels.

255

Chapter 11 Menus, Images, and Windows

Note the use of quotes around the expression and the use of “x” for the
dimensions and “+” for the window placement. There cannot be any spaces in
the expression. The window in the example is 400 by 300 and is positioned 500
pixels from the left edge of the display area and 300 pixels down from the top of
the display area. In display graphics, 0, 0 is the top left corner. Note that these
placement values are display resolution dependent. On a computer with a
different resolution setting, the window would not be centered.

For accurate centering, the display area’s width and height are obtained and the
window size is subtracted. These values are then divided by two, and the
arguments are cast to integers and then passed to geometry as a string using the
format required for geometry. Note the “x” after the first “%d” in the formatting.
The geometry arguments are the top left corner of the window being centered.
This is the reason for dividing by two.

Ex. 11.3 – accurate centering of a window in the display area

Freezing Window Size

The controls on a window are often positioned using a specific height and width
for the window. If a user stretches the window in any direction, the controls may
move and ruin the desired arrangement. To avoid this situation, the resizable
function can be set to false for height and width which prevents resizing by the
user. Two versions are shown.

Ex. 11.4 – freezing window size

256

Chapter 11 Menus, Images, and Windows

Window Icons

Changing the icon requires an image in the .ico format, and using the iconbitmap()
method. There are software packages such as GIMP and others available online
for creating icons or converting other image formats. Once the icon is created,
the filename or path is passed to the method.

Ex. 11.5 – changing the window icon

Another method for changing the icon is iconphoto() which accepts other image
formats. The first argument indicates that only this window is to get the icon.
Note that tkinter’s PhotoImage method would need to be imported.

Updating a Second Window

Many GUI programs display data to the user as it is being computed and display
the previous results for comparison. This may be often in a second display
window. As an example, consider a program that computes a value when new
data is entered and a second window that displays the historical results.

257

Chapter 11 Menus, Images, and Windows

The example is a GUI program that computes a loan payment based on user
input of the loan amount, interest rate, and duration of the loan. Entry controls
on the main window obtain the input and a button click calls a compute function
to compute the monthly payment amount. A StringVar is used to update the
output label on the main interface with the monthly payment amount (in a
previous example, the config method was used). Recall that whenever a
StringVar is changed, the control that it is assigned to is immediately updated. A
second window displays the computation history (this will be addressed later in
the example).

The GUI design includes three prompt labels, three entry controls for the data,
and a “Compute Payment” button. The code to create and assign the StringVar
is shown here including the initial text using the set() method.

Ex. 11.6 – creating and assigning a StringVar

The payment amount is displayed on the main window by modifying the
StringVar in the function that computes the payment amount. A change to the
StringVar using set() automatically updates the label.

258

Chapter 11 Menus, Images, and Windows

To display the history of loan computations, the second window is created when
the first payment is computed and includes the column headers. Once the
payment amount has been calculated, the data is formatted for display. The new
Python formatting types use placeholders (braces) and additional specifiers. The
example below formats the loan amount for the display window. Note that a
dollar sign precedes the opening brace and the entire expression is inside quotes
followed by format.

Ex. 11.7 – data format specifiers

An expanded view of the formatting follows.

Once the data is formatted, a new label is created and placed on the next row of
the output display (rc increments the row). This provides the historical data.

Reading data from a file and displaying it could be handled in a similar way. A
loop would read from the file and display the data by creating the labels as the

259

Chapter 11 Menus, Images, and Windows

values are read. They could also be read into a list or tuple and again a loop
would be used to create labels.

Plotting to a Second Window

Data can also be plotted to a display window by drawing on a canvas. The
following example computes a fahrenheit temperature from a Celsius input and
plots both values in a separate display. The window owning the canvas is the
first argument when it is created.

Ex. 11.8 – plotting on a canvas in a second window

A consideration when drawing on a canvas is the x, y coordinate system and
working relative to the top-left corner which is 0, 0. To move something upward,
the “baseline” must be determined first down from the top. An example follows.

260

Chapter 11 Menus, Images, and Windows

The image above is an example sketch to plot four circles representing some
values (0, 100, 200, 300). The value for each “y” coordinate must be related to the
lowest value and the size of the window. The sketch contains a 600x600 window,
the circle for the lowest value is drawn at the “y” coordinate of 500 (500 pixels
down from the top), and the others are relative to that point. The display size
and positioning of the lowest point determines the “y” coordinates for the other
data points.

The Celsius to Fahrenheit example below uses the same algorithm by first
determining an optimum size for the window based upon the output range of
values, the scaling factor (pixels), and moves the “x” coordinate for each set of
values computed. The program accepts a range of Celsius inputs from -10 to 100
degrees Celsius so there are 110 Celsius data points. The conversion range for
this set of values would be 14 to 212 degrees Fahrenheit, so there are 198
Fahrenheit data points. The total range to be plotted is then -10 to 212 which is
222 data points.

 Celsius range -10 to 100
 Fahrenheit range 14 to 212

Total range -10 to 212 = 222 data points

Consider that one pixel could represent one degree, so the window needs to be at
least 222 pixels in height. Consider that a title for the chart and spacing requires
additional height. A design sketch makes it easier to determine locations.

261

Chapter 11 Menus, Images, and Windows

The starting (lowest) point for reference is a “y” coordinate of 290 (down) and
the others are relative to that point. The Celsius plot statement is shown below.

The first argument is a counter called data_num that is used for the “x”
coordinate to move each new computation to the right 40 pixels. The second is
the relative point of 290 (down) with the Celsius temperature subtracted (up).
The next two arguments are the “x2” and “y2” cordinates for the oval.

All four plotting statements are shown below. The text is placed 5 pixels above
the oval as an offset.

The display with sample output is shown below.

Chapter 8 included creating charts using matplotlib, and there are other charting
packages as well, but basic charts can be created using the tkinter module.

262

Chapter 11 Menus, Images, and Windows

Interacting with a Second (Toplevel) Window

Windows created in addition to the main window, are referred to as Toplevel
windows. The following is a simple example that creates a main window with a
button, and a second window that reacts to the button click. The change is
handled through a StringVar. Note that the second window is declared as a
tk.Toplevel, and that the StringVar is not assigned to a window.

263

Chapter 11 Menus, Images, and Windows

Closing Windows

When a user exits a program either by clicking on a “Quit” button (if provided)
or by clicking on the “X” at the top right corner of the window, the program
should end. This includes closing any windows created by the program. There
are several ways of handling this and a few examples are necessary. The first
example includes a quit button that calls a function assigned to the command.
The function uses the destroy method to end the program (and the main loop),
since the destroy method cannot be assigned directly to the command.

Ex. 11.9 – command assigned function for closing a window

Clicking the “X” on the window would also end the program, however there
may be other statements to execute when the program ends and the function
provides a way to execute them.

The next example adds a second window to the close function, but if the user
clicks on the “X” of either window, only that window is destroyed. The other
window would still be displayed.

For the next example, an understanding of a lambda expression is needed.

Lambda Expressions

A lambda expression is an inline function with no name. Lambda expressions
are not necessary, but in some situations, they make writing the code easier.
When a function is simple and will be called only once, a lambda expression

264

Chapter 11 Menus, Images, and Windows

makes sense. It can be anonymous (no name) and defined where it will execute.
One frequent use of a lambda is in programming “callbacks” for the command
assigned to a button. A button requires a function object to be assigned to the
command. A way of handling this is to have the command be a call to a function
and then to have that function perform the operation as shown here.

Ex. 11.10 – button command for print function

In the above example, the print command cannot be assigned directly to the
button. The command must call the function on_click which then handles the
print function. Using a lambda function would eliminate the call to the function
as shown below. The keyword lambda is followed by a colon and the function.

Ex. 11.11 – lambda button command

The earlier example that used a function that called destroy to close the window
can be rewritten using a lambda expression as well.

The final example uses protocol and the event of the window closing so that
when a user clicks on the “X”, the program has control and can execute other
statements like closing other windows. Below, both windows react to being
closed by the system and call the function that closes them both.

265

Chapter 11 Menus, Images, and Windows

Chapter 11 Review Questions

1. A drop-down menu on a window can provide ____________ operations.

2. The _____________ method closes a window and ends the program.

3. An asterisk with an import statement is referred to as a _______________.

4. The ____________ method is used to center a window in the display area.

5. The ___________ function can be used to prevent a window from being resized.

6. The _________ file format is used with the iconbitmap() method to change the
window icon.

7. When a StringVar is assigned to a control, any change to the StringVar value
immediately _________ the control.

8. When plotting on a canvas, the 0, 0 coordinates are located at the _________ of
the canvas.

9. A _______ expression is an inline function with no name.

Chapter 11 Short Answer Exercises

1. What function is assigned to the “Exit” menu item in the following statement?

self.file_menu.add_command(label=”Exit”,
command=self.main_win.destroy())

2. Where will the following statement place the window when it is created?

self.main_win.geometry(‘300x300+100+200’)

3. What is the size of the window in the following statement?

self.main_win.geometry(‘300x300+100+200’)

4. Where will the following statement place the window when it is created?

x_crd = int((self.main_win.winfo_screenwidth() – 300)/2)

x_crd = int((self.main_win.winfo_screenheight() – 300)/2)

self.main_win.geometry(‘%dx%d+%d+%d’, %(300,300,x_crd,y_crd’)

266

Chapter 11 Menus, Images, and Windows

5. What does the following statement accomplish?

self.main_win.resizable(False,False)

6. In the following expression, how much character space is allocated in the
formatting?

value_string = ‘{:>10}’.format(value)

7. In the following expression, what is the effect of the greater than character?

value_string = ‘{:>10}’.format(value)

8. In the following expression, why is the word lambda included?

tk.Button(text=’Click’, command = lambda : print(‘Click’)

9. What window is the “owner” of the canvas in the following statment?

self.canvas = tkCanvas(self.plot_win, width=500, height=500)

Chapter 11 Programming Exercises

1. Implement a window with the title and menu shown below. When the menu
items are clicked, call a function that prints that an item was clicked. A single
function can be used.

2. Implement a 400x400 non-resizable window that is centered in the display
area when the program runs.

267

Chapter 11 Menus, Images, and Windows

3. Implement a window with an image. The window should be 410x410 and
the image 200x200. Center the image in the window.

4. Implement a program with a window that has a button that updates a label
that displays how many times the button was clicked. Use a StringVar in the
solution.

5. Implement a window with a button that creates a second window when it is
clicked.

6. Implement a two window program. The first window will have a button that
updates a label on the second window and displays how many times the
button was clicked. Use a StringVar in the solution. The second window
should be a Toplevel window.

268

Chapter 11 Menus, Images, and Windows

7. Implement a window that is 300 x 300 with a canvas, and plot the text below
at those coordinates. Make the font for the text Consolas, 12, and bold.

50, 50 250, 50 150,150

50, 250 250, 250

Chapter 11 Programming Challenges

#1 – Two-window Close Both

Design and implement a program with two windows. When either window is closed
the other window should be destroyed and the program should end.

#2 – Display and Plot Values

Design and implement a GUI program that allows the user to input a radius (in
pixels) for a circle that is drawn on a canvas in a second window. The circle should
be centered in the window.

#3 – Draw Rising Bars

Implement a 600x600 window with a 400x400 canvas with a background, three (3)
radio buttons that select a color, and a “Draw” button. When the button is clicked,
draw a rising set of 19 bars in the color selected.

269

Appendix A

Appendix A – ASCII Representations

Decimal Binary ASCII Decimal Binary ASCII Decimal Binary ASCII

 32 0010 0000 space 64 0100 0000 @ 96 0110 0000 `

 33 0010 0001 ! 65 0100 0001 A 97 0110 0001 a

 34 0010 0010 “ 66 0100 0010 B 98 0110 0010 b

 35 0010 0011 # 67 0100 0011 C 99 0110 0011 c

 36 0010 0100 $ 68 0100 0100 D 100 0110 0100 d

 37 0010 0101 % 69 0100 0101 E 101 0110 0101 e

 38 0010 0110 & 70 0100 0110 F 102 0110 0110 f

 39 0010 0111 ‘ 71 0100 0111 G 103 0110 0111 g

 40 0010 1000 (72 0100 1000 H 104 0110 1000 h

 41 0010 1001) 73 0100 1001 I 105 0110 1001 i

 42 0010 1010 * 74 0100 1010 J 106 0110 1010 j

 43 0010 1011 + 75 0100 1011 K 107 0110 1011 k

 44 0010 1100 , 76 0100 1100 L 108 0110 1100 l

 45 0010 1101 - 77 0100 1101 M 109 0110 1101 m

 46 0010 1110 . 78 0100 1110 N 110 0110 1110 n

 47 0010 1111 / 79 0100 1111 O 111 0110 1111 o

 48 0011 0000 0 80 0101 0000 P 112 0110 0000 p

 49 0011 0001 1 81 0101 0001 Q 113 0110 0001 q

 50 0011 0010 2 82 0101 0010 R 114 0110 0010 r

 51 0011 0011 3 83 0101 0011 S 115 0110 0011 s

 52 0011 0100 4 84 0101 0100 T 116 0110 0100 t

 53 0011 0101 5 85 0101 0101 U 117 0110 0101 u

 54 0011 0110 6 86 0101 0110 V 118 0110 0110 v

 55 0011 0111 7 87 0101 0111 W 119 0110 0111 w

 56 0011 1000 8 88 0101 1000 X 120 0110 1000 x

 57 0011 1001 9 89 0101 1001 Y 121 0110 1001 y

 58 0011 1010 : 90 0101 1010 Z 122 0110 1010 z

 59 0011 1011 ; 91 0101 1011 [123 0110 1011 {

 60 0011 1100 < 92 0101 1100 \ 124 0110 1100 |

 61 0011 1101 = 93 0101 1101] 125 0110 1101 }

 62 0011 1110 > 94 0101 1110 ^ 126 0110 1110 ~

 63 0011 1111 ? 95 0101 1111 _ 127 0110 1111 DEL

270

Appendix B

Appendix B - Getting Python with IDLE

Obtaining Python with IDLE

• Python and IDLE can run on any machine, and can be installed and runs fine on
a flash drive

• The IDLE IDE is installed with Python version 3.7.1 and above

• The tkinter module is installed with Python

• Python is available from Python.org https://www.python.org

Browse to the Python web site shown here and select “Downloads”.

In the Downloads window shown below, select the “Download Python 3.7.4” button
or select as appropriate for your computer. A later version may be available.

Select the folder where to install the program and download or save it to a folder for
installation by double clicking on the file.

271

Appendix B

Appendix B - Getting Python with IDLE

The folders and files shown below are installed with Python.

Note: The IDLE executable is not at this level. It is in Lib/idlelib and is launched with
idle.bat. Double clicking idle.bat will launch the IDE. To simplify launching IDLE
each time, creating a shortcut is recommended. In some cases a desktop shortcut
may have been installed when the program was installed.

IDLE is launched by double-clicking: Lib\idlelib\idle.bat

Documentation can be found at:

https://docs.python.org/2/library/idle.html

https://docs.python.org/2/library/idle.html

272

Appendix C

Appendix C - The PIP Installer

The PIP Module Installer

PIP is already installed if you are using Python 3.4 or above. PIP is a command line
program (no GUI), and is run typically from a command prompt. To confirm that PIP is
installed, open the Python folder and then Scripts folder which will include PIP files.

PIP can also be verified by opening the Python folder and then the Lib folder, and then
the site-packages folder. The PIP installer is run from the Scripts directory. To test for
PIP and the proper directory, open a command prompt and type the path to
python\Scripts and then pip3 then minus minus version. In this example, Python 3.9.0 is
installed (which comes with pip3). The directory is Python\Python_3_9_0.

C:\Python\Python_3_9_\Scripts\pip3 - - version

273

Appendix C

Appendix C - The PIP Installer

It is important to use complete paths when using PIP, and to be careful of typographical
errors. The example below is installing the matplotlib module which is a Python plotting
tool. It installs the module using PIP which is being run from the following subdirectory:

 E:\Python\Scripts

The first command shown below omitted the letters “on” from “Python” in the
command. The second successfully used the installer.

If running from a command console is an issue, PIP can be run through the Python
interpreter. The complete User Guide for PIP is available at:

 https://pip.pypa.io/en/stable/user_guide/

https://pip.pypa.io/en/stable/user_guide/

274

Appendix D

Appendix D – Resource Links

Links to Helpful Information

Matplotlib:

https://matplotlib.org/

Matplotlib Tutorial:

https://matplotlib.org/3.1.1/tutorials/introductory/pyplot.html

PEP 8 Style Guide for Python Code:

 https://www.python.org/dev/peps/pep-0008/

Python Organization: Downloads, Documentation, etc.

 https://www.python.org/

Python Tutorial:

https://docs.python.org/3/tutorial/index.html

W3Schools Python Tutorial:

https://www.w3schools.com/python/

https://matplotlib.org/
https://matplotlib.org/3.1.1/tutorials/introductory/pyplot.html
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/
https://docs.python.org/3/tutorial/index.html
https://www.w3schools.com/python/

1

Index

A
abstraction 203

access specifiers, classes 198

accessor 199

accumulator, loop 96

acos(x) 130

active (state) 237

add_cascade() 252

add_command() 251

add_separator() 251

Addition (+) operator

 defined 47

 concatenation 40

Agile Development 13

 Process 14

Algebraic Expressions 51

algorithm 11

and operator 75

Animation Speed 243

apostrophe, displaying 32

append() 168

appending data

 file (mode) 144

application software 4

Argument, passing 30

 functions 118

Arithmetic Operators 47

ASCII 5

asin(x) 130

Assignment operator 32

atan(x) 130

attributes, object 193

axis labels 176

B
bar chart 179

binary 4

bit 4

block of code 66

bool data type 36

 example 80

Boolean 65

 expressions 68

 logic 68

 return values 122

 variables 79

breaking long statements 52

buffer 142

Button

 callback function 228

 command 229

 create 228

 lambda 264

 options 229

 text 228

Byte 5

C
callback function 228

calling functions 31

Canvas 240

case-sensitive 33

casting 46

Centering windows 254

Central Processing Unit (CPU) 1

characters 30

 comparing 74

2

Index

 escape 44

 finding in strings 161

 indexing 162

 newline 45

 tab 45

 stripping 149

Charts

 bar 179

 flow 11

 line 176

 pie 180

check button, checkbox 237

centering, window 254

Class 194

 attribute 200

 constructor 195

 definition 195

 identity 213

 initializer 195

cohesion 204

collaborative development 126

Collections 181

Comments 29

compiler 8

Compound expressions 75

concatenation 37

Concatenation 40

 lists 170

condition-controlled loops 90

Conditional statements 65

config 233

configure 225

Configuration Management 12

Constant 37

Controlled loops 90

Controls 220

constructor, class 195

Copying

 characters 163

cos(x) 130

Count-controlled loops 92

coupling 204

CRC Cards 204

create_line() 240

create_oval() 240

create_rectangle() 240

create_text() 240

D
Data

 appending to files 144

 file design 142

 formatting 258

 reading from files 145

 writing to files 142

Data types 36

Decision structures 65

def, keyword 112

default directory 141

define, variable 32

degrees(x) 130

del 184

delimiter 148

Delivery and Maintenance 15

derived 209

destroy() 253

Development

 Agile 13

3

Index

 cycle 14

 methodologies 13

 process 13

Dialog boxes

 Error 231

 File Open 155

 Information box 231

 Message box 231

Dictionaries 181

difference() 186

Division 50

Drop-down menus 251

dump() 207

E
e variable 130

elif 72

ELOC 30

else clause 69

else with try/except 154

encapsulation 193

end = 44

endswith() 167

Entry control

 Text entry 227

 focus 227

Errors

 cost by phase 10

 dialogs 230

 IndexError 163

 IOError 153

 object 154

 Traceback 25

 SyntaxError 26

 TypeError 153

 ValueError 47

Escape characters 44

Event handler

 main loop 223

Exceptions 152

 handling 152

exponentiation 51

extend 209

F
Files 139

 extensions 140

File modes 141

File objects 140

 appending 144

 close() 142

 mode 141

 open() 140

 open dialog 155

 read() 145

 readline() 145

 read numeric data 147

 writing numeric data 144

 writing text 142

 writeline() 172

File dialog 155

finally clause 154

find() 167

float data type 36

floating point division 50

Flowchart 11

Flow of Control 66

Font

4

Index

 defining 242

 label 222

 button 228

 entry control 228

 style 223

for loop 92

format() 40

Format, New 258

Frame 239

Functions 27

 callback 228

 calling 112

 definition 112

 keyword arguments 120

 main 112
 naming 123

 passing argument to 118

 value-returning 121

 void 112

G
gcf() 177

get() 228

getters 199

global constant 117

global variable 115

grammar 8

Graph 240

Graphical User Interface 219

Grid geometry 224

GUI

 controls 220

 defined 219

 design 222

 positioning controls 224

H
hardware 1

hard drive 3

header, function 112

high-level language 7

hypot(x) 130

I
Icon, window 256

iconphoto() 256

IDE 8

IDLE

 launching 21

 obtaining B

 Shell 21

 Text Editor 23

if 66

if-else 69

if-elif-else 72

Image 253

Immutable 40

import

 statements 45

 wildcard 253

In operator 165

indentation 70

IndexError 163

indexes

 characters 162

 lists and tuples 168

 negative 163

5

Index

 out of range 163

 strings 162

infinite loop 91

Info dialog box 230

Inheritance 209

Initializer method 195

Input

 devices 4

 keyboard 45

instance, class 194

instantiated, class 194

int() - casting 46

integer 5

interpreter 8

intersection() 186

IntVar 234

Investment Program 102

IOError exception 153

IPO document 123

isalnum() 166

isalpha() 166

isdigit() 166

isinstance() 213

islower() 166

issubset() 186

issuperset() 186

isupper() 166

iteration 90

Iterative Enhancement 13

J
Java 6

K
keyboard input 45

keywords 8

keyword arguments 120

L
Label control 222

Lambda 263

len() 163

Libraries 19

Line graph 177

List 167

 append() 168

 concatenate 170

 index() 169

 insert() 168
 max() 169

 min() 169

 remove() 168

 reverse() 169

 sort() 169

 split() 171

 two-dimensional 174

list() 175

load() 207

local variable 114

log(x) 130

logic errors 15

Logical operators 75

Loop 89

 accumulator 96

 counter 97

 for 92

6

Index

 nested 100

 while 90

low-level language 6

lower() 149

lstrip() 149

M
machine cycle 7

magic numbers 37

Main Function 112

Main loop 223

main memory 2

Math module 130

Mathematical operators 48

matplotlib 175

 module 175

 plotting 175

max() 169

Memory 3

Menu 251

Methods, defined 15

methods, objects 197

min() 169

minsize() 222

Mixed-type expressions 49

Modular Programming (files) 126

Modularization 111

Modules 126

Modulus (%) operator 51

Multiplication (*) operator 48

Mutable 167

mutator 199

N
Named constant 37

Negative indexes 163

Nested if 71

Nested loop 100

Newline (\n) character

 adding 172

 defined 142

 removing 149

non-volatile memory 3

not operator 78

not in operator 165

Numbers

 floating point 6

 formatting 41

 integer 5

 random 131

Numeric Lists 167

O
Objects 193

 access specifiers 198

 as arguments 203

 attributes 193

 file 142

 methods 193

 pickling 207

 public interface 193

 state 196

 StringVar 233

Object Behavior Diagram 205

Object Oriented 193

Object Sequence Diagram 205

7

Index

OOP 193

open function 141

Open file dialog 155

operands 47

Operators

 AND, OR, NOT 75

 IN and NOT IN 165

 logical 75

 mathematical 48

 precedence 48

 relational 68

Option List 237

or operator 77

Order of Operations 66

Output 2

 devices 4

 displaying 30

 file 146

 formatting 40

 window 256

override 212

P
pack() 224

Parameter 118

pass-by-value 119

Passing arguments 119

PhotoImage 253

pi variable 130

pickling 207

pie chart 180

pip installer 175

place() 224

plot() 175

Polymorphism 212

Precedence 48

pre-test loop 90

print() 30

private access 199

protected access 198

Pseudocode 10

public interface 193

public access 198

Pyplot 175

Python 19

 Installing and running 20

 Shell 21

 Exiting 27

Q
Quit button 263

Quotes, displaying 32

R
radians(x) 130

Radio buttons 234

randint() 131

random numbers 131

randrange() 131

range() 94

read(), file 145

readline(), file 145

Relational operators 68

remove characters 149

remove() 168

repetition structures 89

replace() 167

8

Index

Requirements Decomposition 9

resizable() 255

return statements 121

reverse() 169

round() 50

rstrip() 149

Runtime errors 27

S
Saving programs 24

scope, variable 114

Script Mode 31

Scrum 13

SDLC 9

search() 167

secondary storage 3

sentinel 99

sep = 39

serialize 207

Sets 184

 add() 184

 difference() 186

 discard() 185

 intersection() 186

 issubset() 186

 issuperset() 186

 remove() 185

 symmetric difference() 186

 union() 186

set() 234

setters 199

Short—circuit Evaluation 78

show() 175

Showerror() 231

Showinfo() 231

Showwarning() 231

sin(x) 130

Slicing 164

SLOC 30

Software 4

 Development Lifecycle 9

 Development Process 14

sort() 169

source code 8

split() 149

sprint 13

sqrt(x) 130

state, obejct 196

startswith() 167

Storyboarding 102

str type 31

String 30

 concatenation 40

 comparing 74

 modification methods 149

 slicing 164

 testing methods 166

StringVar object 233

strip() 149

Subtraction (-) operator 48

symmetric difference() 186

Syntax 8

 syntax errors 15

System software 4

T
tan(x) 130

Test and Integration 15

9

Index

Text files 147

textVariable 234

Theater Example 53

tick marks 175

tkinter module 220

tkinter main loop 223

Toplevel, window 262

Traceback 25

Truncation 47

try/except 152

Tuple 175

Turtle 243

Two-dimensional Lists 174

type conversion 46

U
UML Diagram 204

Unified Modeling Language 204

uniform() 132

union() 186

upper() 167

V
value-returning function 121

Variables 32

 constants 37

 global 115

 local 114

 naming 36

 scope 114

void function 112

volatile memory 2

W
Waterfall Model 14

Weight 242

While loop 90

Widget 220

Wildcard import 253

Window

 border title 222

 centering 254

 chart 176

 destroy 253

 IDLE edit 23

 interaction 262

 menu 251

 minsize() 252

 resizable() 255

writelines() 172

X
x axis 175

x cords 175

Y
y axis 175

y cords 175

Z
Zooming, plots 176

	Simber_Python_Cover
	Simber_Python_Title
	Computer_Programming_Python_V2_11_07_22
	Computer Programming: Python
	Protected Access Modifier: The members designated as protected (preceded by a single underscore) are deemed accessible only from a class derived from it (in a subclass).
	Private Access Modifier: These members are designated (preceded by two underscores) as only accessible from within the class. Access from outside the class is deemed inappropriate.

