‘Computer Programming in
Python

Chapter 11
Menus, Images, and Windows

Chapter 11 Menus,/Images, and Windows

* GUI User interaction

— Menus
* Provide program-level operations

— lmages
* Enhance the user experience
* Provide information

— Charts and Plotted Data
* Enhance information presentation

— Interface Operation Control

* Window icons, centering, resizing, closing

Chapter 11 Menus, Images, and Windows

* Drop-down Menus

— Provide program-level operations
* File handling - Open, Save, and Save as
* Exit the program

— Rests on the window frame, and drops down to reveal the
options

Chris Simber 2021 - All Rights Reserved

Chapter 11 Menus,}lmaggs, and Windows

 Drop-down Menus

— A drop-down is created by assigning a Menu()

— The items listed on the menu are added using add command

a label (text), and a function to respond to the selection

Similar to the way the callback function is assigned to a button

L —

self.menubar = Menu/()
self.file menu = Menu(self.menubar, tearoff=0)
self.file menu.add command(label="New",

///////)7 command=self.new file)

Chris Simber 2021 - All Rights Reserved

adlRIERaRue, Imoggsrand Windows

Drop-down Menus

— The other menu items and commands are added the

same way

self.file menu.
self.file menu.

self.file menu.

self.file menu

add command (label="Open
add command (label="Save",

.add _command (label="Save as...",

add command (label="New",

command=self.new file)

LA

command—self open file)

command= self.save _file)

command—self save as file)

Chris Simber 2021 - All Rights Reserved

: Chapter 11 Menus,jlmag_gs, and Windows

Drop-down Menus

— The functions handle the dialogs and operations

The open file function with a test loop

open file(self):

print ("Open clicked.")

infile = tk.filedialog.askopenfile ()
line infile:
print (line)

Chris Simber 2021 - All Rights Reserved

S5 2erd Windows

 Drop-down Menus

— A separator can be added between selections using
add _separator

self.file menu.add_separator()

* Menu Example

File

New
Open

Save
\ Save as...

Exit

Chris Simber 2021 - All Rights Reserved

_ Chapter 11 Menus, Images, and Windows

 Drop-down Menus
— The destroy method closes the window and ends the
program

self.file menu.add separator()
self.file menu.add command(label="Exit",
command=self.main win.destroy)

7

Chris Simber 2021 - All Rights Reserved

Chapter 11 Menus, Images, and Windows

* Images

— An image on an interface can enhance the user
experience and provide information

Weather Data Analysis Progra m - [m] =

Weather Data Analytics Interface

Select the Data Set to Extract:

Chris Simber 2021 - All Rights Reserved

| Chapter 11 Menus,jlmaggs, and Windows

* Images

— Tkinter has a Photolmage class for handling images
* Supports the GIF, PGM/PPM, and PNG formats

* The image file can be located with the program files, which is the
default directory, or a path to the file can be used

tkinter PhotoImage # import PhotoImage
tkinter tk # imports tkinter as tk

Chris Simber 2021 - All Rights Reserved

10

| Chapter 11 Menus,jlmaggs, and Windows

Wildcard Note

— Some programmers may use an import statement with a
wildcard (asterisk) as shown here which imports the entire
tkinter module

tkinter - # NOT RECOMMENDED

— Avoid using wildcard import statements especially when
multiple modules are imported

e Name clashes can occur when modules have functions or classes
with the same name

Chris Simber 2021 - All Rights Reserved

11

Chapter 11 Menus,}lmaggs, and Windows

Images

— The code to apply an image consists of three lines
* First, assign the file to a Photo/mage object

* Second, place the image on a label
— A canvasor frame can also be used

* Third - retain a reference to the image

phOtC) — PhC)tOImage (file:”;l; T el " 3] 2. \ :n)
self.main win.image label = tk.Label (image=photo)
self.main win.image_label.image=photo # retain a reference

Chris Simber 2021 - All Rights Reserved

12

Chapter 11 Menus, Images, and Windows

* Images

— A reference to the image must be retained or Python’s
interpreter could eliminate it even if it is being displayed

Chris Simber 2021 - All Rights Reserved

13

/__Chapter 11 Menus, Images, and Windows

* Images

— Since the image is attached to a label, it can be
positioned using a geometry manager

self.main win.image label.grid(row=1, column=1)

Chris Simber 2021 - All Rights Reserved

14

/_,Chapter 11 Menus, Images, and Windows

e Centering the Window
— A simple method for centering uses geometry

— Changes what tkinter sees as the top-left corner
* Display resolution dependent

Geometry Arguments - no spaces
= window size 400 x 300
T + x position + vy position

self.main win.geometry('400x300+500+300")

Resolution dependent centering

Chris Simber 2021 - All Rights Reserved

15

Chapter 11 Menus,)lmaggs, and Windows

* Centering the Window

— Use the tkinter geometry method
* Determine the display area size

» Subtract the window size and divide by two

window size - width = 400, height = 300
Use screenwidth and screenheight to calculate centering

X Left = int((self.main win.winfo screenwidth()- 400) /2)
y Top = int((self.main win.winfo screenheight()- 300) /2)

self.main win.geometry ('sdx%d+3d+sd"' %(400,300,x Left,y Top))

Chris Simber 2021 - All Rights Reserved 16

Chapter 11 Menus,/Image_s, and Windows

e Disabling Window Resizing

— When window controls are positioned using a specific height
and width for the window. If a user stretches the window in

any direction, the components may move and ruin the desired
arrangement

— The function can be set to false

* Two versions are shown

self.main win.resizable(,)

self.main win.resizable (height = width =)

Chapter 11 Menus, Images, and Windows

Window lcons

— Changing the icon requires an image in the .ico format,
and using the iconbitmap() method

— Once theicon is created, the filename or path is passed
to the method

self.main win.iconbitmap('myIcon.ico')

Chris Simber 2021 - All Rights Reserved

18

Chapter 11 Menus,/lmaggs, and Windows

e Window lIcons

— Another method for changing the icon is iconphoto()
* Accepts other image formats

— The first argument indicates only this window is to get

the icon
image = tk.PhotolImage(file = 'mylcon.png')
self.main win.iconphoto(, 1lmage)

Chris Simber 2021 - All Rights Reserved 19

Chapter 11 Menus,)lmaggs, and Windows

 Updating a Second Window

— Many GUI programs display data to the user as it is being
computed and display the previous results for comparison

— This is often in a second display window

— As an example, consider a program that computes a value
when new data is entered and a second window that displays
the historical results

Loan Calculator
" Loan Calculation History - 0O

Amount Interest Duration Payment

Enter the loan amount. $ 11750 $ l1o0,000.00
$ 9,800.00 $219.52

$450.58

N W
” n =»

$ 27,500 .00 5.6
Fnter the interest rate an a nercent 7o

Chris Simber 2021 - All Rights Reserved

20

Chapter 11 Menus,{lmages, and Windows

* Updating a Second
Window

— The main GUI includes
three prompt labels, three
entry components for the
data, and a “Compute
Payment” button

Loan Calculator

Enter the loan duration in months

The monthly payment 1s: $232 66

Compute Payment

Chapter 11 Menus,{lmages, and Windows

* Updating a Second Window

— To display the history of loan computations, once the payment
amount has been calculated, the data is formatted for display

— The example below formats the loan amount for the display
window

* Notethat a dollarsign precedes the opening brace and the entire
expression is inside quotes followed by a dot and format

fltA = float (amt) # convert the value
fltA string = '${:>12, .2f}'.format (f1tA)

Chapter 11 Menus,’lmaggs, and Windows

Formatting Data

— The new Python formatting types use placeholders (braces)
and additional specifiers

precede the output insert commas
with a dollar sign

\ rlght justify ﬂ/oat

e >12 2f}

/ \ 2 decimal places

format specifier indicator show decimal

12 character spaces

Chris Simber 2021 - All Rights Reserved

23

 Chapter 11 Menus, Images, and Windows

 Updating a Second Window

— Once the data is formatted, a new label is created and placed
on the next row of the output display

self.dd win.data_lbl = tk.Label (self.dd win,
font=('Consolas',10), bg='white', \
rc is a rowcounter text= fltA string + fltI string +

that s incremented --.__~_-~’>~ intD_string + f1tMP_string)

self.dd win.data lbl.grid(row=rc,column=1,sticky="'W', columnspan=4)

Loan Calculation History

Amount Interest Duration Payment

s 10,000.00 4.5% @ $186.43
s 9,800.00 3.6% 43 $219.52
$ 27,500.0 S.6% 72 $450.58
$ 11,750.00 7.e% &0 $232.66

Chris Simber 2021 - All Rights Reserved 24

Chapter 11 Menus,’lmaggs, and Windows

* Plotting to a Second Window

— Plotted data is often shown in a separate window

— Data can be plotted on a Canvas added to a display
window

/

Temperature Conversions

Chris Simber 2021 - All Rights Reserved

25

Chapter 11 Menus,jlmaggs, and Windows

* Plotting to a Second Window

— This example will compute a Fahrenheit temperature from a
Celsius input and plot both values in a separate display

— The window owning the canvas is the first argument when it
is created

self.plot win = tk.Tk()
self.plot win.geometry ('
self.plot win.title('Te

0 ()3 J.f:-'l"':|

c
emperature Conversion Chart')

self.canvas = tk.Canvas(self.plot win,width=600,height=340,
bg="white')
self.canvas.create text (300, 30, font='Helvetica 16 bold',
text="Temperature Conversions')
self.canvas.pack()

Chris Simber 2021 - All Rights Reserved 26

Chapter 11 Menus, Images, and Windows

* Plotting to a Second Window

— Drawing on a canvas uses the x, y coordinate system
— Working relative to the top-left corner which is 0, 0

— The “baseline” for data values is down from the top

0,0

200, 200

N

140,300 o
300 value

N

80, 400 @

N

e
20, 500 100 value

200 value

® 0O value 600x600
display area

Chris Simber 2021 - All Rights Reserved 27

Chapter 11 Menus,zlmage_s, and Windows

* Plotting to a Second Window - Design

— The plotting coordinates require determining an optimum
size for the window based upon:

* The possible range of values that will be displayed
* The scaling factor (pixels)

* And moving the “x” coordinate for each set of values
computed

Chapter 11 Menus,/Images, and Windows

* Plotting to a Second Window - Design

— The program accepts a range of Celsius inputs from -10 to 100
degrees Celsius
* There are 110 Celsius data points
— The conversion range for this set of values would be 14 to 212
degrees Fahrenheit
* There are 198 Fahrenheit data points

— The total range to be plotted is then -10 to 212 which is 222
data points

Chapter 11 Menus, Images, and Windows

* Plotting to a Second Window
— One pixel could represent one degree, so the window
needs to be at least 222 pixels in height

* Consider that a title for the chart and spacing requires
additional height

A few minutes designing can save hours programming

Chris Simber 2021 - All Rights Reserved

30

ghagter 11 Menus, Images, and Windows

* Plotting to a Second Window

— A design sketch makes it easier to approximate locations

pixels
40 Chart Title
30
—_— @
T~ 12 degrees
- ~340 pixels
display height
/ 0 degrees
°
0 _ | o «— -10degrees
30

Chris Simber 2021 - All Rights Reserved 31

, and Windows

Plotting to a Second Window

— An offset of 5 pixels is used for the text

— Qvals are used to create the circles

self.canvas.create_ text(self.data num*40, 280-self.fahrenheit, \
text= str(self.fahrenheit)+ ' F')

self.canvas.create_oval (self.data num*40, 290-self.fahrenheit, \
5 + self.data num*40, 295-self.fahrenheit)

self.canvas.create_text (self.data num*40, 280-self.celsius, \
text=str(self.celsius)+ ' C')

self.canvas.create oval (self.data num*40, 290-self.celsius, \
5 + self.data num*40, 295-self.celsius)

Chris Simber 2021 - All Rights Reserved

* Plotting to a Second Window

Temperature Conversions

Temperature Conversion Program

Enter the Celsius temperature: 5d
1328F
°
109: F Fahrenheit temperature: 1328
86.0F
°
66.2 F 56.0C Convert to Fahrenheit Quit I
4810 F o 430C o
26.6F ~ o T
190C
140F ° 90cC o ®
©_-30C o

Chris Simber 2021 - All Rights Reserved 33

Chapter 11 Menus,zlmage_s, and Windows

* Interacting with a Second (Toplevel) Window

— Windows created in addition to the main window, are
referred to as windows

— The following is a simple example that creates a main
window with a button, and a second window that reacts
to the button click

— The change is handled through a StringVar

— Note that the second window is declared as a tk.Toplevel,
and that the StringVar is not assigned to a window

I\ Wi

class TwoWins:
def _ init_ (self):

L

main_win = tk.Tk() ™

main win.title('Main Win') -

main win.geometry('300x200")

main_win.btn = tk.Button(text='Click Here', \
width=18, command=self.update)

d

sec_win = tk.Toplevel()
sec_win.title('Second Win')
sec_win.geometry('300x200")

main win.btn.pack()

self.update_var = tk.StringVar()
self.update var.set ('The label')

sec_win.lbl = tk.Label (sec_win, k(////

textvariable=self.update_var)
sec_win.lbl.pack()

tk.mainloop ()

L
D
h

update (self):
self.update_var.set ('The button has been clicked.')

iWin = TwoWins ()
Chris Simber 2021 - All Rights Reserved

Shapislidagues Imegss-and Windows
* Interacting with a Second (Toplevel) Window

The button has been clicked.

Click Here ‘

Chris Simber 2021 - All Rights Reserved

36

Chapter 11 Menus,zlmage_s, and Windows

* Closing Windows

— When a user exits a program either by clicking on a
“Quit” button (if provided) or by clicking on the “X” at the
top right corner of the window, the program should end

— This includes closing any other windows created by the

program

— There are several ways of handling this

: Chapter 11 Menus,}lmaggs, and Windows

Closing Windows

— The first example includes a quit button that calls a function
assigned to the command, that uses the destroy method to
end the program (and the main loop)

* The destroy method cannot be assigned directly to the command

self.quit button = tk.Button(text = 'Quit', width=12,
command = self.close prog)
self.quit button.grid(row=1l, column=1)

tk.mainloop ()

close prog(self):
self.main win.destroy()

Chris Simber 2021 - All Rights Reserved 38

: Chapter 11 Menus,flmaggs, and Windows

* Closing Windows

— The function can provide any clean-up needed by the program

including closing other windows

close prog(self):
self.main win.destroy()
self.second win.destroy()

Chris Simber 2021 - All Rights Reserved

39

Chapter 11 Menus,/Images, and Windows

 Lambda Expressions

— Alambda expression is an inline function

Lambda expressions are not necessary, but in some situations, they
make writing the code easier

When a function is simple and will only be called once, a lambda
expression makes sense

It can be anonymous (no name) and defined where it will execute

One frequent use of alambda is in programming “callbacks” for the
command assigned to a button

A button requires a function object to be assigned to the command

Chapter 11 Menus,/lmaggs, and Windows

Lambda Expressions

— Since a button requires a function object to be assigned to the
command, one way of handling this is to have the command
be a call to a function, and have the function perform the

operation
self.new buttonl = tk.Button(text='Button 1', width=16,
command=self.on click)

on_click(self):
print ('Button selected’')

Chris Simber 2021 - All Rights Reserved

41

Chapter 11 Menus,/Imagqs, and Windows

 Lambda Expressions

— Using a lambda function would eliminate the call to the
function
* The keyword lambda is followed by a colon and the function

self.new button2 = tk.Button(text='Button 2', width=16,
lisibda 1)

command= : print ('Laml

Chapter 11 Menus,/Imagqs, and Windows

 Lambda Expressions

— The earlier example that used a function that called
destroy to close the window can be rewritten using a
lambda expression as well

* Aslong as there is no other clean-up required

self.quit button = tk.Button(text = 'Quit', width=12,
command = :self.main win.destroy())

| Chapter 11 Menus,jlmaggs, and Windows

Using Protocol

— Can also use protocol and the event of the window closing so
that when a user clicks on the “X”, the program has control and
can execute other statements like closing other windows

— Below, both windows react to being closed by the system and
call the function that closes them both

self.main win.protocol ("WM DELETE WINDOW", self.close prog)
self.sec win.orotocol ("WM DELETE WINI

S
elf.sec win.protocol ("WM DELETE WINDOW", self.close prog)

close prog(self):
self.main win.destroy ()
self.sec win.destroy()

Chris Simber 2021 - All Rights Reserved 44

Chapter 11 Menus,/Images, and Windows

Chapter 11 Menus, Images, and Windows

