~omputer Programming In
’ Python

Chapter 8

Strings, Lists, Dictionaries, and
Sets

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

e Strings
— Used extensively in computer programs

— Python provides many ways to examine and
manipulate strings
* Including the ability to examine the individual
characters in a string

— Consider a program that validates a password to
ensure that it contains specific characters

— Each character of the password needs to be visited and
checkedto determine if it meets one of the
reguirements.

Chapter 8 Strings, Lists, Dictionaries, and
“Sets e

e Strings
— The loop can be used to walk the string one

character at a time

* It places a copy of the character in a variable that can
be used in statements within the loop

temp = 'something'

char temp:
print (char)

O H DTt 2 0 u

1

Chapter 8 Strings, Llsts chtlonarles and

- Sets P >
e Strings

— The for-in loop copies the characters, so any
changes to the character do not affect the original

string
temp = 'the'
char temp:
char == "t':
char = '3
print (char, end="") she
: the
print (char, end="")
print('\n' + temp)

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and
e Strings
— String characters can also be accessed using the

index of the character

— The index Is the position in the string beginning at
Zero

S o) m e W o) r d S ‘

0 1 2 3 4 5 6 7 8 9

String character indexes begin at zero

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and
“Sets R

e Strings
— To access the character using the index, the index is
placed in square brackets

my string[index]

a string = 'something'
print ('Index zero 13 ', a string[0])

Index zero i3 =

Chris Simber 2021 - All Rights
Reserved

Dictionaries, and

e Strings

— Any valid index can be used

a string = 'something'
print (a_string[0], a_string[3], a string[7])

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and
“Sets e

e Strings
— Negative indexes access character positions relative
to the last character in the string

— The index -1 is the last character in the string
* Negative numbers work backward from there

b string = 'negative'

—

print (b string[-1], b string[-4], b string[-6])

e £t g

Chapter 8 Strings, Lists, Dictionaries, and

« Strings
— An IndexError exception will be thrown if an index is out
of range

— The len function, which returns the length of the string,
can be used as a way of controlling loops to prevent

errors
temp = 'theater tickets'
initialized 5 index = 0
to
to zero index < len(temp):

print (temp[index], end='")
incremente ——> 1index = index + 1

d
theater tickets

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

e Strings

— Recall that strings in Python are immutable, and
cannot be changed

— The '+’ operator will concatenate strings

« This actually creates a new string and assigns it to the
variable name for the original string

« The original string can no longer be used because there is
no longer a variable referencing it

« Eventually, the Python interpreter will remove the original
string from memory

Chapter 8 Strings, Lists, Dictionaries, and

- Sets

e Strings

pa— 7

— When the concatenation occurs, a new string Is
created and Python assigns the variables name to
the new string

city string = 'New'

city string = city string + ' York' New York
partl = "New' New York

part2 = ' York'

partl = partl + part?

print (partl)

Chris Simber 2021 - All Rights

Reserved 1

Chapter 8 Strings, Lists, Dictionaries, and

- Sets par. 2

e Strings
— A third string can also be created by concatenating
two other strings

|

partl
part?2

1Ll
.
1 ==
I e
—

part3 = partl + partZ
print (part3)

San Diego

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

« String Slicing
— String IS used to select a portion of a string
« Obtain a substring
— There are optional start, end, and step specifiers

— When the first specifier is omitted, Python uses zero
as the start and the specifier as the end (or limit)
which is not included in the slice

my string[:end]

Chapter 8 Strings, Lists, Dictionaries, and
“Sets e

« String Slicing
— When two specifiers are used, the first is the start index

and the second specifier indexes the end of the slice and
IS not included in the slice

my string[start:end]

— When three specifiers are used, the third is the step Iin
the sequence

my string[start:end:step]

“hapter 8 Strin

Ists, Dictionaries, and
e onar

. -_—

« String Slicing

— Slicing example
sequence = '123456789"

first four = sequence[:4]

print (first four, end='"") \\\\\\\\A
rint ()

F 1234

second four = sequence[5:9] ———> 6789

print (second four, end='") 13579
print ()

every other = sequence[0:9:2]

print (every other, end='"")

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and
“Sets P

e String Searching

— Can use the in and not in operators to search strings

— Example searching for the word “time” in the string with

1N
phrase = 'A stitch iIn time saves nine.'
search word = "time'

search word phrase:
print {'Found it.")

print {('Not found.')
Found 1it.

Chris Simber 2021 - All Rights

Reserved 16

ﬁ haﬁter 8 String;, Lists, Dictionaries, and

e String Searching

— Reversed logic
— Example searching using not in

phrase = 'A stitch in time saves nine.'’
search word = 'time'
if search word not in phrase:
print ('Not found.')
else:

print {'Found it.")

Found it.

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and
« String Testing Methods
— Return true or false (Boolean), and test each

character

isalnum() True if the string contains only alphabetic
letters or digits

isalpha() True if the string contains only alphabetic
letters

isdigit() True if the string contains only numeric digits

islower() True if the string contains only lower case
alphabetic letters

isspace() True if the string contains only white space
characters

isupper() True if the string contains only uppercase
alphabetic letters

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

« String Methods

— Modification Methods include:

« Conversionto upper and lower case, and various strip
methods: lower(), upper(), Istrip(), rstrip(), and strip(char)

— Search and Replace Methods include:

« endswith(substring), find(substring), replace(old, new), and
startswith(substring),

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

e Lists

— Sequences of data that are mutable (can be
changed), dynamic (can grow and shrink), and can
be sliced

— Can hold different types of data

— Can be accessed using an index
* Begin at zero

list =[]

declares an empty
list

Chapter 8 Strings, Lists, Dictionaries, and
“Sets R

e Lists

— Lists are initialized using the assignment operator
and enclosing the members of the list in brackets

numbers = [5, 15, 25, 35] # numbers

words = ['the', "and', 'why'] # strings

mixed = ['first', 105, 15.6] # strings and numbers
Chris Simber 2021 - All Rights 21

Reserved

Chapter 8 Strings, Lists, Dictionaries, and

- Sets par. 2

 Lists - Accessing List Elements

— The first statement below assigns a list of numbers
to num_list

— Notice in the output that the first print statement
displays the list surrounded by square brackets

num list = [5, 15, 25, 35]
print (num list)
n num_li;::§\\\\‘~\\-s> [5, 15
print(n, end=' ') 5 15 2
2

print ()
print (num list[2])

Chapter 8 Strings, Lists, Dictionaries, and

- Sets par. 2

 Lists - Accessing List Elements

— The second set of statements use a for-in loop to
access each element in the list

— The last statement accesses a list element using an

iIndex
num list = [5, 15, 25, 35]

print (num list)

n num list: [5, 15
print(n, end=' ') —— 5 15 2
2

print () /

print (num list[2])

Chapter 8 Strings, Lists, Dictionaries, and
“rSets P

 Lists - Accessing List Elements

— The len function can be used to control a loop

— In this example, the loop counter index is incremented to
control the loop, and is used as the index for accessing
the list elements

word list = ['one', 'two', 'three']
index = 0 one
index < len(word list): WO

print (word list[index])
index = index + 1

three

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

e Lists

— Built in functions and methods
 Add elements

Insert elements

Remove elements
Change the order of the list
Find the minimum and maximum values in a list

Chapter 8 Strings, List%;_wDictionaries, and

e Lists

— To append an item to the end of a list

 Include the name of the list, the dot operator, the
append function, and the element to be added in

parentheses
nam list = [5, 15, 25, 35]
num list.append(45)
print (num list)

[5, 15, 25, 35, 45]

Appends to the end of the list

Chris Simber 2021 - All Rights
Reserved

26

Chapter 8 Strings, Lists, Dictionaries, and

*@

e Lists
— To Iinsert an item into a list

* Include the name of the list, the dot operator, the
Insert function, the index where the element is to be

Inserted, and the element to be inserted

num list = [5, 15, 25, 35]
num list.insert (2, 45)

print ::num_list}l/

[5, 15, 45, 25, 35]

Insert moves other elements toward the end of the list

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and

*@

e Lists

— To remove an item from a list

* Include the name of the list, the dot operator, the remove
function, and the element to be removed in parentheses

« Elements beyond the element removed are shifted toward the

front of the list
num list = [5, 15, 25, 35]

num list.remove (25)
print (num list)

[5, 15, 35]

The element must be in the list or an exceptionis raised

Chris Simber 2021 - All Rights
28
Reserved

Chapter 8 Strings, Lists, Dictionaries, and

Lists

— To reverse a list

 Include the name of the list, the dot operator, and the
reverse function

num list = [5, 15, 25, 35]
num list.reverse ()
print (num list)

[35, 25, 15, 5]

Chris Simber 2021 - All Rights
Reserved

29

Chapter 8 Strings, Lists, Dictionaries, and

S ——

- Sets g >

Lists

— To sort a list

 Include the name of the list, the dot operator, and the
reverse function

cities = ['Boston', 'Caldon', 'Albany']
cities.sort ()
print (cities)

['"Albany', 'Boston', 'Caldon']

Chris Simber 2021 - All Rights
Reserved

30

Chapter 8 Strings, Lists, Dictionaries, and
“Sets R

Lists

— To find the minimum or maximum value In a list, the
list Is passed to the min and max functions

numbers = [15, 3, 106, 27]
print (min (numbers))
print (max (numbers))

3
106

Chris Simber 2021 - All Rights
Reserved

31

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

e Lists
— Elements in a list can be changed using the index of
the element
— There is also an function that can be used to

find the index for a specific element
« But it will raise an exception if the element is not in the
list
* Determine first if the item is in the list using the °
operator

J

Chapter 8 Strings, Lists, Dictionaries, and

- Sets

e Lists

— Determine first if the item is in the list using the ‘in’

operator

numbers = [1, 2, 3, 4, 5]
3 numbers:
pos = numbers.index (3)

numbers [pos] = 99

print (numbers)

[1, 2, 99, 4, 5]

Chris Simber 2021 - All Rights
Reserved

33

ﬁhaiter 8 Stringa, Lis,\t}Dictionaries, and

* Lists
— Lists can be concatenated using the '+’ operator to
combine two lists

listl
list2

1 Il:.lr IEI’I I.:
I

[Ih'lr II:]_I’I Ifl’I

Il
fu

listl = listl 4+ list2
print (listl)
listl.sort ()
print (listl)

l’I ll::',. lel’I lgl'I l}:ul’I ll:]-l'I lfl’I lhl]
l’I lbl; II:::I’I ldlr lel’I lfl'I lg-l’I lhl]

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and
Lists

— Lists can be copied, but not using the assignment
operator

* Assigning one list to another would simply have both list
names reference the same list

new list = old list # referencing the same list

The assignment operator does not copy the list

Chris Simber 2021 - All Rights
Reserved

35

Chapter 8 Strings, Lists, Dictionaries, and

*@

e Lists

— To copy alist, define an empty list, and append
each element in the first list to the new list

® Can also concatenate the old list onto the new empty

list _ _
old list = [12, 22, 32]
new list = []
for element in old list:

new list.append(element)

Copy the individual elements to copy a list

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and

e Lists

— The Split method by default uses the space as a
separator and returns a list of items in a string

time string = 'hour minute second'’
time list = my string.split()
print (time 1ist[1])

minute

Chris Simber 2021 - All Rights

Reserved 37

Chapter 8 Strings, Lists, Dictionaries, and
“Sets R

« Lists
— A different separator can be specified for split
* Including “/" when a date is being parsed

time string = '10:23:59'
time list = time string.split(':")
print (time list[1])

23

Chris Simber 2021 - All Rights
Reserved

38

; ,I:ist:siDictionaries, and

_ <

Lists

— Lists can be passed to functions

def main() :

num list = [5, 15, 25, 35]

print('The sum 1s :', get sum(num list))
lef get sum(in list):

vals = 0

for num in in list:

vals = wals + num
return vals !
The sum is : 20

main ()

Chris Simber 2021 - All Rights

Reserved 39

5, Lists, Dictionaries, and

= P o = |
Lists
— Functions can return lists
def main() :
my list = get list()
print ('The list 1s :', my list)
def get list():
new list = [1, 2, 3, 4, 5]
return new list
main () The 1list is : [1, 2, 3, 4, 5]

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

e Lists

— Lists can be written to files with

 But there are no line feeds with this method

* Toinclude line feeds, a loop is needed and the
newline character needs to be added

— A tab or a space could be added the same way and
used as a delimiter when reading

Lists
— Adding line feeds when writing a list to a file

def main() :
pies = ['apple', 'banana', 'cherry']

out file = open('pies file.txt', 'w') line
: . . . / feed
for ple type in ples:

out file.write(pie type + '\n'")

out_file.close() File Edit Format View Help
: apple
main () banana
cherry
Chris Simber 2021 - All Rights 42

Reserved

g haﬁter 8 Strings, Lists, Dictionaries, and

« Aline can be read into a list from a file

def main() :

input file = open('plies file.txt', 'r')
ple list = input file.readlines ()
input file.close () remove
the

print (pie list) line féed
count = 0 K///fé
while count < len(pie list):

ple list[count] = ple list[count].rstrip('\n')

count = count + 1

print (pie list)
B ["apple\n', 'banana\n', 'cherry\n']
main () ['apple', 'banana', 'cherry']

Chris Simber 2021 - All Rights

Reserved 43

ﬁ haﬁter 8 String;, Lists, Dictionaries, and

« Reading into a List using Append

def main{() :
input file = open('piles file.txt', 'r')

remove

pie list = [] k(//////the
for line in input file: line feed

ple list.append(line.rstrip('\n'"))
input file.close ()

print (pie list)
- ['apple', 'banana', 'cherry']

main()

Chris Simber 2021 - All Rights

Reserved ad

Chapter 8 Strings, Llists, Dictionaries, and

« Two-dimensional Lists
— A list of lists has rows and columns

« Both indexes begin at zero

values[0][0]
values[1][0]
values[2][0]

values[3][0]

values[0][1]
values[1][1]
values[2][1]

values[3][1]

Chris Simber 2021 - All Rights

Reserved

values[0][2]
values[1][2]
values[2][2]

values[3][2]

45

Chapter 8 Strings, Lists, Dictionaries, and

« Two-dimensional Lists
— Access the elements in a nested loop
— Consider:

‘Amir’ [0][0] ‘Conner’ [0][1] @ ‘Darla’” [0][2]
1D 112’ [1][0] | D204’ [1][1] @ ‘D 157’ [1][2]
15.75" [2][0] 18.50" [2][1] @ ‘28.30" [2][2]

]

emp list = [['As Y ¥ per®, eia% 1,
]] A ' -

Chris Simber 2021 - All Rights
Reserved

ﬁhaiter 8 String;, ~I:isit§fDictionaries, and

« Two-dimensional List Access — Nested Loop

ROWS = 3

COLS = 3

emp list = [['Amir', 'Conner', 'Darla'],
[‘ID 112', 'ID 204', 'ID 157'],
[*15.75", '"18.50", '28.30"']1]

for in range (COLS) :

0

or r in range (ROWS) :
print(emp list[r][c], end="\t'")

print () Amir
Conner
Darla

Chris Simber 2021 - All Rights
Reserved

ID 112
ID 204
ID 157

15.75
18.50
28.30

47

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

* Tuples
- A IS a list that Is immutable and cannot be
changed
* Process faster
* Protects the data

« Support all list operations and built-in functions
— Except those that modify lists

Chapter 8 Strings, Lists, Dictionaries, and

- Sets

* Tuples

— To modify a tuple, it can be converted to a list, and
then back to a tuple

my tuple

my list2

tuple (my list) # convert list to tuple

list (my tuple) # convert tuple to list

Chris Simber 2021 - All Rights
Reserved

49

g haﬁter 8 Strings, Lists, Dictionaries, and

Plotting List Data with matplotlib

Version 3.4.2

matpl*

Chris Simber 2021 - All Rights
Reserved

50

Chapter 8 Strings, Lists, Dictionaries, and
“Sets P

« Plotting List Data
— One package for plotting in Python is matplotlib

« Enables plotting line, bar, histogram, scatterplots, pie
charts, and more using list data in an auto-scaling resizable
window

* Not part of the Python standard library, and must be
iInstalled separately using the Python pip installer

matpl:tlib

Chris Simber 2021 - All Rights
Reserved

51

Chapter 8 Strings, Lists, Dictionaries, and
“=sets T

* Plotting List Data

— Once matplotlib is installed, the module from the
package Is imported similar to the way that the math
package is imported

— Note the module name, dot operator, and package

* Typically the module is imported “as” a shortened name to
lessen the amount of typing each time it is accessed. Here
it is imported as “plt”

matplotlib.pyplot plt

Chapter 8 Strings, Lists, Dictionaries, and

“Sets R

* Using pyplot from matplotlib
— Establish the number of data points using lists
— The call to plot builds the graph in memory
— The call to show actually displays the plot

matpleotlib.pyplot plt
¥ coords = [10, 20, 30, 40, 50]
y coords = [175, 743, 360, 480, 212]

plt.plot (x coords, y coords)
plt.show()

Chris Simber 2021 - All Rights

Reserved o3

Chapter 8 Strings, ‘List_@/s&,;Dictionaries, and

« Using pyplot from matplotlib

“ Figure 1

— The data Is plotted

700 4

600 4

500 -

400 4

300 1

200 4

10 15 20 25 30 35 40 45 50

€[] Q)=

— The features are automatically added in the lower left-hand corner
including zooming in a rectangular shape, saving the image, and
others

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

« Using pyplot from matplotlib

— Many options for customizing charts is provided in
the module

« Axis labels, tick marks, data markers, the width of bars
for bar charts, and slice labels for pie charts
— Tic mark labels, axis labels, and a title for the chart
add clarity

* Using pyplot from matplotlib

iIctionaries, and

A5 <y

— The options provide for a more informative chart

axis
title

Cumulative Sales Data 2018 <

W 250

T Chart
title

}aln Fetl Méir .ﬂ;.:-r Mén,r ju.n j..ll .ﬂug Sep Olct Ntl:-'.' Dtlzc
Months

€2 +Q|=

tic mark
labels

Chris Simber 2021 - All Rights
Reserved

56

Chapter 8 Strings, Llsts _Dictionaries, and
“Sets >

* Using pyplot from matplotlib
— Plotting two lines requires two plot functions
— There is a legend option with labeling
— Line styles can be assigned

— Different markers can be useg_
— A grid background

— And a variety of other options

Chris Simber 2021 - All Rights
Reserved

57

ictionaries, and

 Plotting bar charts

def chart list(sales list):
x_coords = [0,10,20,30,40,50]
y_coords = sales list
plt.xticks([0,10,20,30,40,50],
['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'])

bar width = 2
E:} plt.bar(x_coords, y_coords, bar_width)
e - o x|

Cumulative Sales Data 2018

plt.title('Cumulative Sales Data 2018") "
plt.ylabel ('Sales in Thousands')
plt.xlabel ('Months"') e
plt.show() g
main () W_I
€l +al= B

Chris Simber 2021 - All Rights
Reserved

ljonaries, and
s |

Plotting Pie Charts T ———

Cumulative Sales Data 2018

def main():
sales = [212, 463, 355, 272, 512, 345]

pie list(sales)

def pie list(sales list):

slice labels = ['Jan', 'Feb', 'Mar',6 eleidioss)
'Apr', 'May', 'Jun']

|:> plt.pie(sales list, labels = slice labels)
plt.title('Cumulative Sales Data 2018')
plt.show()
main()

Chris Simber 2021 - All Rights

Reserved o9

ictionaries, and

« Plotting 3D

fig = plt.figure(figsize=(4,4))
ax = fig.add subplot(l1ll, projection='34d")

plt.show()

€2 $Ql=

Chris Simber 2021 - All Rights
Reserved

; ,I:ist:siDictionaries, and

P>

Dictionaries and Sets

Chris Simber 2021 - All Rights
Reserved

61

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

Containers that store and manage data are referred to
as data structures which can be used to implement

— Collections are objects that store other objects as
elements

— A listis an example of a collection

— A dictionary which stores elements as key/value pairs is a
collection

— Sets which contain no duplicates are collections

— There are benefits and limitations with each collection
type that should be,considered when using them in a
solution

Chapter 8 Strings, Lists, Dictionaries, and
- SEtS e /Q_ =< >

 Dictionaries

- A IS an associative array container with a key and a
value associated with the key

— Consider a data set of student ID numbers and student names

— A dictionary could store the ID number as the key, and the
name would be the associated value for the key

10310 Allison Knox
11298 Amir Cumber
10452 Cody Garfield

12034 Layna Camron

Chapter 8 Strings, Lists, Dictionaries, and
“Sets —

 Dictionaries

— A dictionary can be created by assigning key/value
pairs to a dictionary name

students = {10310:'Alison EKnox', 11298:'Amir Cumber',...}
— Typically, a dictionary is created by declaring an empty
dictionary and then adding key/value pairs

dictionary name = {}

dictionary name[key] = walue

Chapter 8 Strings, Lists, Dictionaries, and

e Dictionaries

— To add a key/value pair to a dictionary, the key Is
placed in the brackets and the value is assigned

students = {}

students[10310]
students[11298]
students[10452]
students[12034]

'Allison Knox'
'"Amir Cumber'

'"Cody Garfield'
'Layna Camron'

Chris Simber 2021 - All Rights

Reserved 65

ChapterSStrlngs Llsts Dictionaries, and

“Sets S

 Dictionaries
— To access an element in a dictionary, the key is
used
« If the key does not exist, there is an error

» Testto be sure the kev exists in the dlctlonarv
ID = int(input('Enter the student ID: "))

ID students:
print (students[ID])

print ('That ID is not walid'")

Chapter 8 Strings, Lists, Dictionaries, and
“rSets P

 Dictionaries

— There cannot be any duplicate keys in a dictionary

— When assigning a value to a key in a dictionary, if the key
exists, the value will be changed

— If the key does not exist, the key/value pair will be added to the
dictionary

— For testing and debugging, the a dictionary can be passedto
the print function

print (students)

{10310: 'Allison Knox', 11298: 'Amir Cumber', 10452: 'Cody Garfield’,
12034: 'Layna Camron'}

Chapter 8 Strings, Lists, Dictionaries, and
“Sets e

 Dictionaries

—To statement is used to delete an element from a
dictionary using the key

* If the key does not exist, an error will result

ID students:
students [ID]

print ('That ID is not wvalid'})

Chapter 8 Strings, Lists, Dictionaries, and

- Sets par. 2

 Dictionaries

— The len() function returns the number of key/value

print ('’ ' + str(len(students)) + ' students')

— The get() function can determine if an element exists
In a dictionary, and provides for a default value if the

k v AlAAnc nAt Aviet

stu name = students.get (10310, "Not found')

Chapter 8 Strings, Lists, Dictionaries, and
“Sets e

e Sets

— A IS a collection that cannot contain duplicates

— Set operations include union, intersection, difference, and
symmetric difference

— Sets are optimized in memory for fast searching

— A set can be declared and populated later or initialized
when declared

set name set ()

set name = ([element, element, ...])

Chapter 8 Strings, Llists, Dictionaries, and

e Sets

— The add() method is used to add an element

« Again a set cannot have duplicates

— A for-in loop accesses the elements
numset = set ([1,2,3,]1)
numset.add (4)

num numset:
print (num, end=":") 1:2:3:4:

Chris Simber 2021 - All Rights
Reserved

71

Chapter 8 Strings, Lists, Dictionaries, and
“Sets P

Sets

— There are two ways to remove an element

* remove — causes an error if the element is not in the
set

* discard — does not cause an error

numset = set([1,2,3,4])

numset.remove (3)
numset.discard(2)

num numset:
print (num, end=":")

Chris Simber 2021 - All Rights
Reserved

12

Chapter 8 Strings, Lists, Dictionaries, and

“Sets R

e Sets

— The in and not in operators can be used to
determine If an element is in a set

numset = =set([1,2,3,4,5])
print (str(len (numset)))
search value = 3

search wvalue numset:
print ('Found it')

Chris Simber 2021 - All Rights
Reserved

Chapter 8 Strings, Lists, Dictionaries, and
“Sets e

e Sets

— The method returns a set of elements that is
the union of both sets

 All of the elements that appear in the sets without

duplicates
* The “|” operator (referred to as a pipe) can also be
used

setl.union(set2)

setl | set’

Chapter 8 Strings, Lists, Dictionaries, and

S ——

- Sets g >

Sets

— The intersection method returns a set of elements
that appear in both sets

* The “&” operator (ampersand) can also be used.

setl.intersection (set2)

setl & set?

Chris Simber 2021 - All Rights
Reserved

75

Chapter 8 Strings, Lists, Dictionaries, and
“Sets R

Sets

— The difference method returns a set of elements
that appear in setl but do not appear in set2

€k N

* The subtraction “-" operator can also be used.

setl.difference (set2)

setl - set?

Chris Simber 2021 - All Rights
Reserved

76

Chapter 8 Strings, Lists, Dictionaries, and

— =

<4 Sets Pl 7

Sets

— The symmetric difference method returns a set of
elements that do not appear in both sets

* The “» operator (caret symbol) can also be used.

setl.symetric difference (setl)

setl ~ set?2

Chris Simber 2021 - All Rights
Reserved

77

Chapter 8 Strings, Lists, Dictionaries, and

e Sets

— The issubset method returns a Boolean value
* True if set? is a subset of setl
» False otherwise
« The comparison operator can also be used

set2.issubsset (setl)

set?2 <= setl

Chris Simber 2021 - All Rights
Reserved

78

Chapter 8 Strings, Lists, Dictionaries, and

e Sets

— The issuperset method returns a Boolean value
* True if setl is a superset of set2
» False otherwise
« The comparison operator can also be used

setl.issuperset (setl)

setl >= set?

Chris Simber 2021 - All Rights
Reserved

79

Chapter 8 Strings, Lists, Dictionaries, and
< Sets pa— ‘

Chapter 8 Strings, Lists, Dictionaries, and Sets

