
Computer Programming in
Python

Chapter 6

Functions

• Functions
– As programs become longer and execute more tasks

• The main function grows

• Code may be repeated in order to repeat functionality

– The design process includes dividing the program into
logical sections of distinct functionality which will be
developed individually

• Referred to as modularization

Chris Simber 2021 - All Rights Reserved 2

Chapter 6 Functions

• Modularization
– Separating the program into distinct parts provides many

benefits
• The ability to reuse portions of the code

• The ability to divide the program development among
multiple programmers

• Simplify the task

– Sections can be developed in functions

– The functions can be called when needed, and as many
times as needed

Chris Simber 2021 - All Rights Reserved 3

Chapter 6 Functions

• Functions
– Functions are blocks of code that perform specific tasks

– Functions can be executed as many times and whenever
needed

– Functions can perform a task or compute a value for the
program

Chris Simber 2021 - All Rights Reserved 4

Chapter 6 Functions

Functions are blocks of code that perform a specific task

• Functions – Two Types
– Void functions that just perform a task

• The print function is an example of a void function

– Simply displays whatever is passed to it

– Value-returning functions that return a value
• The input function is an example of a value-returning function

– Returns something that is then assigned to a variable

Chris Simber 2021 - All Rights Reserved 5

Chapter 6 Functions

• Functions
– The code for a function is called the function definition

• Begins with the keyword def which is followed by a name
for the function, a pair of parentheses, and a colon

• This first line of the function definition is referred to as the
function header

Chris Simber 2021 - All Rights Reserved 6

Chapter 6 Functions

function header

• Functions
– The function definition

• The statements that will execute when the function is
called are indented and form a block of code and are
referred to as the function body

Chris Simber 2021 - All Rights Reserved 7

Chapter 6 Functions

function body

• The Main Function

– Program examples covered previously were run by the

IDLE interpreter without a main function

– The Main function will now be included

• Every program has a main function where execution begins

when the program is launched

• Main can execute code or call other functions

– Other functions can call other functions as well

Chris Simber 2021 - All Rights Reserved 8

Chapter 6 Functions

• The Main Function - simple example

Chris Simber 2021 - All Rights Reserved 9

Chapter 6 Functions

Defines main

Calls main

• The interpreter reads the

file top-down

• It understands that def is

the keyword for defining

a function

• When it reaches the call

to main, it executes the

function

Chris Simber 2021 - All Rights Reserved 10

Chapter 6 Functions

• Main and another Function

Chris Simber 2021 - All Rights Reserved 11

Chapter 6 Functions

• The interpreter reads through the
lines of code, and when it reaches
the last line it executes the main
function

• The main function executes the
print statement, then calls
show_output

– Control transfers to show_output

• Show_output executes the print
statement and ends, so control
returns to main

• Main then executes the second
print statement and the program
ends

Chris Simber 2021 - All Rights Reserved 12

Chapter 6 Functions

• Indentation reminder
– Indentation forms a block of code

• It is much easier to use the tab key for
indentation than to count spaces to be
sure they are always the same

– Function names, including main begin at
the margin

– Function bodies are indented forming a
block of code for the function

– The IDE highlights items by color-coding the
text to help

Chris Simber 2021 - All Rights Reserved 13

Chapter 6 Functions

• Variable Scope
– The part of a program where a variable is accessible

– A variable defined within a function is a local variable

• The variable’s scope is the function where it is defined

– This includes the main function

– A variable defined inside a function is not accessible
outside that function

Chris Simber 2021 - All Rights Reserved 14

Chapter 6 Functions

Variables defined in a function are local to that function

• Variable Scope
– Different functions could have variables with the same

name without causing any conflict

– Each of the variables would have its particular function
as its scope, and would not be accessible by another
function

– If several engineers are working on the same program,
but they are working on different functions, they may
name a local variable using the same name

Chris Simber 2021 - All Rights Reserved 15

Chapter 6 Functions

• Global Scope
– A variable defined outside of all functions (including

main) is a global variable

• It would be accessible by all parts of the program

– It has the whole program as its scope

• A function that needs to change it, precedes it with the
keyword global

Chris Simber 2021 - All Rights Reserved 16

Chapter 6 Functions

• Global Scope Example

– The variable num is
defined outside of any
function

– Main changes it by
preceding it with
‘global’

– The function displays the
value proving that it has
access to the global
variable and that it has
been changed

Chris Simber 2021 - All Rights Reserved 17

Chapter 6 Functions

• Global Variables
– Use them sparingly if at all

• Their use makes debugging very difficult since any part of
the program can change a global variable

– Difficult to determine which part of the program is causing the
problem

• Any function that accesses and uses a global variable is
dependent on that variable and cannot easily be used in
another program

Chris Simber 2021 - All Rights Reserved 18

Chapter 6 Functions

• Global Variables

– Two occasions for their use

• Consistency
– In a collaborative programming environment when

multiple engineers are working on the same project and a
consistent value is required.

• Efficiency
– A project that uses a value or set of values in many places,

and the value tends to change.

Chris Simber 2021 - All Rights Reserved 19

Chapter 6 Functions

Global Constants are typically used in these instances

• Global Constant

– A constant is a value that cannot (should not) be changed by

the program

– Python does not formally have constants, but they can be

implied by following the standard for naming constants with

all uppercase letters and underscores between words

Chris Simber 2021 - All Rights Reserved 20

Chapter 6 Functions

EARTH_DIAMETER = 3963

Global Constants are often used in large programs

• Global Constant
– Without using the keyword global, the value cannot be

changed by a function, but it will appear that it does even
though a new variable has actually been declared

• This will be very hard to debug

– Follow the rules for Global Constants
• Use all uppercase letters with underscores between words

• Don’t write any code to change them

Chris Simber 2021 - All Rights Reserved 21

Chapter 6 Functions

• Passing Values to Functions

– When a function needs to use a variable defined somewhere

else in the program, the variable is passed to the function as

an argument

– To the function receiving the argument, it is technically

referred to as a parameter

– Technically speaking, arguments are passed to functions and

parameters are received by them

Chris Simber 2021 - All Rights Reserved 22

Chapter 6 Functions

• Passing Values (arguments) to Functions

– When a variable is passed to a function as an argument,

what is actually passed to the function is the value of

the variable (a copy)

• What is being stored in the variable

– This is pass-by-value

Chris Simber 2021 - All Rights Reserved 23

Chapter 6 Functions

Pass-by-value passes a copy of the value to the function

• Passing Values to Functions

– It doesn’t matter what the receiving function calls the value it

receives, except that it must use that name internally

Chris Simber 2021 - All Rights Reserved 24

Chapter 6 Functions

the value 4 is passed

the value 4 is received

• Passing Values to Functions

– The parameter variable is actually a local variable to the

function and has the function as its scope

• It is assigned the value passed in

Chris Simber 2021 - All Rights Reserved 25

Chapter 6 Functions

local variable

When the function completes, the local variables are destroyed

• Passing Multiple Values to Functions

– Multiple arguments can be passed to functions as long as the

function has parameters to receive them

– They can be different data types

– They are received in the order that they are passed

Chris Simber 2021 - All Rights Reserved 26

Chapter 6 Functions

• Passing Multiple Values to Functions

Chris Simber 2021 - All Rights Reserved 27

Chapter 6 Functions

• Value-returning functions

– Return a value to the calling function

– Have a return statement

Chris Simber 2021 - All Rights Reserved 28

Chapter 6 Functions

• Value-returning Functions - Example

– The function returns the value of num to main which

assigns it to usernum

Chris Simber 2021 - All Rights Reserved 29

Chapter 6 Functions

Modular Programming

Chris Simber 2021 - All Rights Reserved 30

Chapter 6 Functions

• Functions - Modularization

– As more functions are written to perform functionality,

main becomes a series of function calls

– Most of the functionality that a program executes can

be placed in a function

– As requirements are decomposed and the Design Phase

begins, areas of the program that lend themselves to

being functions will surface

– Once, the functionality is determined, the functions can

be defined

Chris Simber 2021 - All Rights Reserved 31

Chapter 6 Functions

• Defining and Naming Functions

– When designing and creating functions

• Determine what the function will do

– Each function should accomplish one task

• Name the function what it does

– Follow the same naming conventions for variables with all

lowercase letter and words separated by underscores

– Since functions perform an action, verbs are usually used

to name functions

Chris Simber 2021 - All Rights Reserved 32

Chapter 6 Functions

• Defining and Naming Functions

– When designing and creating functions

• Determine what parameters the function needs in

order to accomplish the task

• Determine if the function will return a value and if

so, what data type will it return

Chris Simber 2021 - All Rights Reserved 33

Chapter 6 Functions

• Defining and Naming Functions - Example

– Write a function that receives an hourly rate and

number of hours worked and returns the gross pay.

• The function will compute gross pay

– Input: the function will need the hourly rate and

number of hours worked

– Processing: the function will compute the gross pay

– Output: the function will return the gross pay

Chris Simber 2021 - All Rights Reserved 34

Chapter 6 Functions

• Defining and Naming Functions - Example

– Gross pay function

Chris Simber 2021 - All Rights Reserved 35

Chapter 6 Functions

parameter
s

return value

• Functions calling other functions

– When a function calls another function, program control

transfers to that function.

– When the function completes, control transfers back

(returns) to the calling function

• Even if there is no returned value

• Even if there are no more lines to execute

Chris Simber 2021 - All Rights Reserved 36

Chapter 6 Functions

• Functions calling other functions

– Consider an example:

• Function “A” calls function “B” which calls function “C”

Chris Simber 2021 - All Rights Reserved 37

Chapter 6 Functions

A B C

B calls CA calls B

B returns
control to A

C returns
control to B

• Recursion

– A function can even call itself

– The calls will end when the base case is reached

– Similar to winding up a spring that unwinds when the

base case is reached

• Like a loop, there must be change that eventually ends

the recursion…this is the base case

Chris Simber 2021 - All Rights Reserved 38

Chapter 6 Functions

• Recursion

– The recursion ends when number reaches zero

Chris Simber 2021 - All Rights Reserved 39

Chapter 6 Functions

the function calls itself

• Recursion

– Moving the print statements changes the output

– The print statement doesn’t execute until the return

from the from the calls

Chris Simber 2021 - All Rights Reserved 40

Chapter 6 Functions

• Recursion

– Direct Recursion

• A function calls itself

– Indirect Recursion

• Function ‘A’ calls function ‘B’ which then calls function ‘A’

Chris Simber 2021 - All Rights Reserved 41

Chapter 6 Functions

A loop can always be implemented in place of Recursion

• Tools for Function (and program) Design

– An Input, Processing, Output document (IPO) is a helpful

tool for function design as well program design

• May be in the form of a chart or document

• Includes the name of the function, a brief description of what it

does, the input needed, the processing it will accomplish, and

the output or return value

• An IPO can also be used for the overall program

Chris Simber 2021 - All Rights Reserved 42

Chapter 6 Functions

Sometimes referred to as a Design Document

• IPO General Format
– Function IPOs:

get_input()
Description: Obtains user input
Input: number from user
Processing: none
Output: returns the number

compute_square(number)
Description: Computes the square of the number
Input: a number
Processing: square the number
Output: return the value

Chris Simber 2021 - All Rights Reserved 43

Chapter 6 Functions

• IPO General Format

– Program IPO:

Description: the program calls three functions to obtain user
input of a number, square the number, and display the square
of the number.

Input: number from user

Processing: square the number

Output: display the result

Chris Simber 2021 - All Rights Reserved 44

Chapter 6 Functions

IPO format and content differ, but the concept is consistent

• Functions and Methods
– Different programming languages use different

terminology with respect to functions
• Java uses both method and function

• C/C++ use the term function

• Python uses both function and method

– Python Terminology
• Function – a named block of executable statements

• Method - a function that exists inside of an object

Chris Simber 2021 - All Rights Reserved 45

Chapter 6 Functions

Modular Programming

and

Python Modules

Chris Simber 2021 - All Rights Reserved 46

Chapter 6 Functions

• Modular Programming using Files

– Using functions separates operations into manageable

chunks and enhances development and maintenance

– But multiple engineers cannot easily work on the same

program because it is in a single program file

– Adding files (modules) to a program allows multiple

engineers to work on the same program at the same

time, permitting collaborative development

Chris Simber 2021 - All Rights Reserved 47

Chapter 6 Functions

• Modular Programming using Files

– Large and complex program requirements are

decomposed during design into manageable sections

• Then further refined into functions

• Functions that are related are developed in their own files

(modules)

• The files are then imported into the main program

Chris Simber 2021 - All Rights Reserved 48

Chapter 6 Functions

• Modular Programming using Files - Example

– The Payroll Program main file is shown with pseudocode

comments that map out the program

Chris Simber 2021 - All Rights Reserved 49

Chapter 6 Functions

• Modular Programming using Files - Example

– Creating the second file for the functions

• Select File | New File from the menu of the main program file

• A new, unnamed file will appear

Chris Simber 2021 - All Rights Reserved 50

Chapter 6 Functions

• Modular Programming using Files - Example

– In software development, it is always best to use the “Build a

little, test a little” concept aka. Iterative Enhancement

• Develop a small part of the program and test and debug that

part until it is working correctly

• Then, develop another small part and test and debug the

program with the additional part

Chris Simber 2021 - All Rights Reserved 51

Chapter 6 Functions

Incremental programming eliminates wasted time debugging large
amounts of code

• Modular Programming using Files - Example

– The first function for the Payroll Program example obtains

the number of hours worked and is written in the new file

– The file is saved using a name that identifies what it contains

Chris Simber 2021 - All Rights Reserved 52

Chapter 6 Functions

• Modular Programming using Files - Example

– The file containing the function must be imported into the main file

– The function is called using the name of the file (omitting the .py

file extension), the dot operator, and the name of the function

Chris Simber 2021 - All Rights Reserved 53

Chapter 6 Functions

function call

import

• Modular Programming using Files - Example
– Other functions are added to the file

– Calls to the other functions from main are handled the
same way

– Note:

• Because of variable scope it does not matter if the variables in
the main function and another function have the same name

• They are local to their functions and there is no conflict

Chris Simber 2021 - All Rights Reserved 54

Chapter 6 Functions

• The Main File

Chris Simber 2021 - All Rights Reserved 55

Chapter 6 Functions

• The Function Module

Chris Simber 2021 - All Rights Reserved 56

Chapter 6 Functions

• Modular Programming Supports Reuse

– Python has an extensive set of modules that provide

functions for use in programs

• Often referred to as libraries because they contain groups

of related functions

• Code that has already been written can be used in our

programs

Chris Simber 2021 - All Rights Reserved 57

Chapter 6 Functions

Thousands of Python libraries have been developed

The Python Math Module

Chris Simber 2021 - All Rights Reserved 58

Chapter 6 Functions

• The Python Math Module

– Installed with Python

– Contains many mathematical functions

• Must be imported when used in program files

– The list of math functions includes: acos(x), asin(x),

atan(x), cos(x), hypot(), log(x), sin(x), sqrt(x), tan(x), and

others

Chris Simber 2021 - All Rights Reserved 59

Chapter 6 Functions

• The Python Math Module

– Defines a value for pi and e

– Provides conversions for degrees to radians, radians(x),

and radians to degrees, degrees(x)

– Contains a function for exponentiation, pow(x, y)

• Can be used instead of x**y

Chris Simber 2021 - All Rights Reserved 60

Chapter 6 Functions

• Python Math Module Square Root

– Import the module, and precede the function name with

math, and the dot operator

Chris Simber 2021 - All Rights Reserved 61

Chapter 6 Functions

import the math library

call square root

• The Python Math Module

– Math module value for pi

Chris Simber 2021 - All Rights Reserved 62

Chapter 6 Functions

import the math library

access the value for pi

• Random Numbers

– Many programs generate random numbers including

simulations and games

– They are used to determine random event occurrences,

and can be used for encryption

– Python includes random number generation with library

functions that require importing the random module

• The random module is installed with Python

Chris Simber 2021 - All Rights Reserved 63

Chapter 6 Functions

• Random Numbers

– Arguments can be passed to the random number

functions to determine the range of random numbers

that could be generated

– The four available functions are preceded by the

module name random and the dot operator

Chris Simber 2021 - All Rights Reserved 64

Chapter 6 Functions

• Random Numbers

– Python has a few different random number functions

that provide different benefits and results

• randint

• randrange

• random

• uniform

Chris Simber 2021 - All Rights Reserved 65

Chapter 6 Functions

• Random Numbers

– The randint function generates random integers

– Two arguments determine the range

Chris Simber 2021 - All Rights Reserved 66

Chapter 6 Functions

Returns a value between 1 and 100 inclusive

• Random Numbers

– The randrange function can accept one, two, or three

arguments

– When one argument is passed, zero is used as the start of the

range and the argument is the limit (which is excluded)

Chris Simber 2021 - All Rights Reserved 67

Chapter 6 Functions

Returns a value between 1 and 9

• Random Numbers

– When two arguments are passed, the first argument is

used as the start of the range and the second argument

is the limit (which is excluded)

Chris Simber 2021 - All Rights Reserved 68

Chapter 6 Functions

Returns a value between 1 and 100

• Random Numbers

– When three arguments are passed, the first argument is

used as the start of the range and the second argument

is the limit (which is excluded), and the third is the step

Chris Simber 2021 - All Rights Reserved 69

Chapter 6 Functions

Returns a value between 0 and 100 stepping by tens (0,10,20,…)

• Random Numbers

– Most random number generators in other programming

languages generate a number between 0.0 and 1.0

– Consider that there are actually many values in that range

and the returned value can be modified for any purpose

– Python provides the random function which generates

floating point random numbers between 0.0 and 1.0

Chris Simber 2021 - All Rights Reserved 70

Chapter 6 Functions

• Random Numbers

– Simulate rolling a die

• Generate random numbers between 0.0 and 1.0

• Modify the numbers for 1 through 6 inclusive

Chris Simber 2021 - All Rights Reserved 71

Chapter 6 Functions

eliminates the
decimal

• Random Numbers

– Simulate rolling a die (another way)

• Use randint with 1 and 7 as the arguments

Chris Simber 2021 - All Rights Reserved 72

Chapter 6 Functions

• Random Numbers

– The uniform function allows setting a range for random

floating point numbers

Chris Simber 2021 - All Rights Reserved 73

Chapter 6 Functions

Chapter 6 Functions

Chris Simber 2021 - All Rights Reserved 74

Chapter 6 Functions

