- 6.1 Electromagnetic Energy
- 6.2 The Bohr Model
- 6.3 Development of Quantum Theory
- 6.4 Electronic Structure of Atoms (Electron Configurations)
- 6.5 Periodic Variations in Element Properties

Figure 6.1

The Crab Nebula consists of remnants of a supernova (the explosion of a star). NASA's Hubble Space Telescope produced this composite image. Measurements of the emitted light wavelengths enabled astronomers to identify the elements in the nebula, determining that it contains specific ions including S^{+}(green filaments) and O^{2+} (red filaments). (credit: modification of work by NASA and ESA)

Learning Objectives

- 6.1 Electromagnetic Energy
- Explain the basic behavior of waves, including travelling waves and standing waves
- Describe the wave nature of light
- Use appropriate equations to calculate related light-wave properties such as frequency, wavelength, and energy
- Distinguish between line and continuous emission spectra
- Describe the particle nature of light

Electromagnetic Energy

- The nature of light has been a subject of inquiry since antiquity.
- In the seventeenth century, Isaac Newton:
- White light consists of the individual colors of the rainbow combined together.
- Light was composed of streams of extremely tiny particles travelling at high speeds according to Newton's laws of motion.
- Early in the nineteenth century, Thomas Young:
- Light passing through narrow, closely spaced slits produced interference patterns
- Could not be explained in terms of Newtonian particles but could be easily explained in terms of waves
- James Clerk Maxwell:
- Light was the visible part of a vast spectrum of electromagnetic waves.
- Particles and waves are connected on a fundamental level called wave-particle duality.
- A wave is an oscillation or periodic movement that can transport energy from one point in space to another.
- Examples of waves:
- Shaking the end of a rope
- Dropping a pebble into a pond
- The expansion of air that accompanies a lightning strike
- In each of these cases, kinetic energy is transferred through matter (the rope, water, or air) while the matter remains essentially in place.

Speed of Light

- Waves are not restricted to travel through only matter.
- Electromagnetic waves consist of an electric field oscillating in step with a perpendicular magnetic field, both of which are perpendicular to the direction of travel.
- Electromagnetic waves can travel through a vacuum at a constant speed.
- This speed is known as the speed of light (c).

$$
c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Wave Properties

- All waves are characterized by the following:

1) Wavelength (λ)

- Distance between two consecutive peaks or troughs in a wave

2) Frequency (v)

- Number of successive wavelengthsthat pass a given point in a unit time

3) Amplitude

- One-half the distance between the peaks and troughs

Frequency

- The unit for frequency, expressed as cycles per second $\left(s^{-1}\right)$, is the hertz (Hz).
- Common multiples of the hertz are often used.
- Megahertz, ($1 \mathrm{MHz}=1 \times 10^{6} \mathrm{~Hz}$)
- Gigahertz ($1 \mathrm{GHz}=1 \times 10^{9} \mathrm{~Hz}$)

Wavelength, Frequency, and Speed

- The product of a wave's wavelength (λ) and its frequency $(v), \lambda v$, is the speed of the wave.
- Thus, for electromagnetic radiation in a vacuum:

$$
c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}=\lambda v
$$

- Wavelength and frequency are inversely proportional:
- As the wavelength increases, the frequency decreases and vice versa.

One-dimensional sinusoidal waves show the relationship among wavelength, frequency, and speed. The wave with the shortest wavelength has the highest frequency. Amplitude is onehalf the height of the wave from peak to trough.

Electromagnetic Spectrum

- The electromagnetic spectrum is the range of all types of electromagnetic radiation.
- Visible light makes up only a small portion of the electromagnetic spectrum.
- Each of the various colors of visible light has specific frequencies and wavelengths associated with them.

Portions of the electromagnetic spectrum are shown in order of decreasing frequency and increasing wavelength. (credit "Cosmic ray": modification of work by NASA; credit "PET scan": modification of work by the National Institute of Health; credit "X-ray": modification of work by Dr. Jochen Lengerke; credit "Dental curing": modification of work by the Department of the Navy; credit "Night vision": modification of work by the Department of the Army; credit "Remote": modification of work by Emilian Robert Vicol; credit "Cell phone": modification of work by Brett Jordan; credit "Microwave oven": modification of work by Billy Mabray; credit "Ultrasound": modification of work by Jane Whitney; credit "AM radio": modification of work by Dave Clausen)

Example 6.1

- A sodium streetlight gives off yellow light that has a wavelength of $589 \mathrm{~nm}\left(1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}\right)$. What is the frequency of this light?
- We can rearrange the equation $c=\lambda v$ to solve for the frequency:

$$
=\underline{c}
$$

Example 6.1

- Since c is expressed in meters per second, we must also convert 589 nm to meters.

$$
v=\left(\frac{2.998 \times 10^{8} \mathrm{~ms}^{-1}}{589 \mathrm{~nm}}\right)\left(\frac{1 \times 10^{9} \mathrm{~nm}}{1 \mathrm{~m}}\right)=5.09 \times 10^{14} \mathrm{~s}^{-1}
$$

Radio and cell towers are typically used to transmit long-wavelength electromagnetic radiation. Increasingly, cell towers are designed to blend in with the landscape, as with the Tucson, Arizona, cell tower (right) disguised as a palm tree. (credit left: modification of work by Sir Mildred Pierce; credit middle: modification of work by M.O. Stevens)

Figure 6.5

This schematic depicts how amplitude modulation (AM) and frequency modulation (FM) can be used to transmit a radio wave.

- Interference patterns arise when light passes through narrow slits closely spaced about a wavelength apart.
- The dark regions correspond to regions where the peaks for the wave from one slit happen to coincide with the troughs for the wave from the other slit (destructive interference).
- The brightest regions correspond to the regions where the peaks for the two waves (or their two troughs) happen to coincide (constructive interference).
- Such interference patterns cannot be explained by particles moving according to the laws of classical mechanics.

Figure 6.6

Interference fringe patterns are shown for light passing through two closely spaced, narrow slits. The spacing of the fringes depends on the wavelength, with the fringes being more closely spaced for the shorter-wavelength blue light. (credit: PASCO)

Standing Waves

- Not all waves are travelling waves.
- Standing waves (also known as stationary waves) remain constrained within some region of space.
- Standing waves play an important role in our understanding of the electronic structure of atoms and molecules.
- A vibrating string that is held fixed at its two end points is an example of a one-dimensional standing wave.

A vibrating string shows some one-dimensional standing waves. Since the two end points of the string are held fixed, only waves having an integer number of half-wavelengths can form. The points on the string between the end points that are not moving are called the nodes.

Standing Waves

- Only those waves having an integer number, n, of half-wavelengths between the end points can form.
- A system with fixed end points restricts the number and type of possible waveforms.
- This is an example of b.
- Only discrete values from a more general set of continuous values are observed.

Standing Waves

- Harmonic waves (those waves displaying more than one-half wavelength) all have one or more points between the two end points that are not in motion.
- These special points are nodes.
- Vibrational patterns on a flat surface are examples of twodimensional standing waves.
- The nodes can be made visible by sprinkling the drum surface with a powder that collects on the areas of the surface that have minimal displacement.
- For one-dimensional standing waves, the nodes were points on the line.
- For two-dimensional standing waves, the nodes are lines on the surface.

Two-dimensional standing waves can be visualized on a vibrating surface. The surface has been sprinkled with a powder that collects near the nodal lines. There are two types of nodes visible: radial nodes (circles) and angular nodes (radii).

Blackbody Radiation and the Ultraviolet Catastrophe

- Sunlight consists of a range of broadly distributed wavelengths that form a continuous spectrum.
- A blackbody is a convenient, ideal emitter that approximates the behavior of many materials when heated.
- A good approximation of a blackbody that can be used to observe blackbody radiation:
- A metal oven that can be heated to very high temperatures.

Solar Radiation Spectrum

The spectral distribution (light intensity vs. wavelength) of sunlight reaches the Earth's atmosphere as UV light, visible light, and IR light. The unabsorbed sunlight at the top of the atmosphere has a distribution that approximately matches the theoretical distribution of a blackbody at $5250^{\circ} \mathrm{C}$, represented by the blue curve. (credit: modification of work by American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation)

Blackbody Radiation and the Ultraviolet Catastrophe

- The maxima in the blackbody curves, $\lambda_{\text {max }}$, shift to shorter wavelengths as the temperature increases.
- Theoretical expressions as functions of temperature fit the observed experimental blackbody curves well at longer wavelengths.
- But there were significant discrepancies at shorter wavelengths.
- This became known as the "ultraviolet catastrophe".

Blackbody spectral distribution curves are shown for some representative temperatures.

Blackbody Radiation and the Ultraviolet Catastrophe

- Around 1900, Max Planck derived a theoretical expression for blackbody radiation that fit the experimental observations exactly (within experimental error).
- Planck developed his theoretical treatment on the premise that the atoms composing the oven vibrated.
- The atoms vibrated at increasing frequencies (or decreasing wavelengths), as the temperature increased.

Planck's Constant

- Planck had to assume that the vibrating atoms required quantized energies, which he was unable to explain.

$$
E=n h v \quad n=1,2,3, \ldots
$$

- The quantity h is a constant now known as Planck's constant.

$$
h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

- The next paradox in the classical theory to be resolved concerned the photoelectric effect.
- It had been observed that electrons could be ejected from the surface of a metal.
- The light had to have a frequency greater than some threshold frequency.
- Surprisingly, the kinetic energy of the ejected electrons did not depend on the brightness of the light, but increased with increasing frequency of the light.
- According to classical wave theory, a wave's energy depends on its intensity (which depends on its amplitude), not its frequency.
- Albert Einstein was able to resolve the paradox by incorporating Planck's quantization findings into the particle view of light (Nobel prize).
- Light striking the metal surface should not be viewed as a wave, but instead as a stream of particles (later called photons).
- The energy of the photons depended on their frequency.
- According to Planck's formula:

$$
\begin{array}{ll}
E=h v \\
E=\underline{h c} & =\frac{c}{}
\end{array}
$$

$E=h v$

- Electrons were ejected when hit by photons having sufficient energy (a frequency greater than the threshold).
- The greater the frequency, the greater the kinetic energy imparted to the escaping electrons by the collisions.
- Somehow, at a deep fundamental level still not fully understood, light is both wavelike and particle-like. This is known as wave-particle duality.

$$
E=h \nu
$$

Photons with low frequencies do not have enough energy to cause electrons to be ejected via the photoelectric effect. For any frequency of light above the threshold frequency, the kinetic energy of ejected electron will increase linearly with the energy of the incoming photon.

Example 6.2

- When we see light from a neon sign, we are observing radiation from excited neon atoms. If this radiation has a wavelength of 640 nm , what is the energy of the photon being emitted?
- We use the form of Planck's equation that includes the wavelength, λ, and convert units of nanometers to meters so that the units of λ and c are the same.

$$
E=\frac{h c}{\lambda}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)}{(640 \mathrm{~nm})\left(\frac{1 \mathrm{~m}}{10^{9} \mathrm{~nm}}\right)}
$$

$$
E=3.10 \times 10^{-19} \mathrm{~J}
$$

- Scientists in the late nineteenth century struggled with understanding the light emitted from atoms and molecules.
- When solids, liquids, or condensed gases are heated sufficiently, they radiate some of the excess energy as light.
- Photons produced in this manner have a range of energies, and thereby produce a continuous spectrum in which an unbroken series of wavelengths is present.
- In contrast to continuous spectra, light can also occur as discrete or line spectra having very narrow line widths interspersed throughout the spectral regions.
- Exciting a gas at low partial pressure using an electrical current, or heating it, will produce line spectra.
- Each element displays its own characteristic set of lines.

Figure 6.12

Neon signs operate by exciting a gas at low partial pressure using an electrical current. This sign show the elaborate artistic effects that can be achieved. (credit: Dave Shaver)

- Each emission line consists of a single wavelength of light.
- This implies that the light emitted by a gas consists of a set of discrete energies.
- The origin of discrete spectra in atoms and molecules was extremely puzzling to scientists.
- According to classical electromagnetic theory, only continuous spectra should be observed.

Figure 6.13

Compare the two types of emission spectra: continuous spectrum of white light (top) and the line spectra of the light from excited sodium, hydrogen, calcium, and mercury atoms.

- In 1885, Johann Balmer was able to derive an empirical equation.
- The equation related the four visible wavelengths of light emitted by hydrogen atoms to whole integers.

$$
\frac{1}{\lambda}=k\left(\frac{1}{4}-\frac{1}{\mathrm{n}^{2}}\right), \quad n=3,4,5,6
$$

- Other discrete lines for the hydrogen atom were found in the UV and IR regions.

LineSpectra

- Johannes Rydberg generalized Balmer's work.
- He developed an empirical formula that predicted all of hydrogen's emission lines.

$$
\frac{1}{\lambda}=R_{\infty}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

- n_{1} and n_{2} are integers
- $n_{1}<n_{2}$
- R_{∞} is the Rydberg constant $\left(1.097 \times 10^{7} \mathrm{~m}^{-1}\right)$

Learning Objectives

- 6.2 The Bohr Model
- Describe the Bohr model of the hydrogen atom
- Use the Rydberg equation to calculate energies of light emitted or absorbed by hydrogen atoms
- The emission spectra for hydrogen was eventually explained by Niels Bohr in 1913.
- Bohr's work convinced scientists to abandon classical physics and spurred the development of modern quantum mechanics.

Atomic Model Priorto Bohr

- Atoms consisted of tiny dense nuclei surrounded by lighter and even tinier electrons continually moving about the nucleus.
- This classical mechanical description of the atom is incomplete, since an electron moving in an elliptical orbit would be accelerating.
- According to classical electromagnetism, the electron should continuously emit electromagnetic radiation.

Atomic Model Priorto Bohr

- This loss in orbital energy should result in the electron's orbit getting continually smaller until it spirals into the nucleus.
- Niels Bohr attempted to resolve the atomic paradox by ignoring classical electromagnetism's prediction that the orbiting electron in hydrogen would continuously emit light.

Bohr Model

- Bohr incorporated the following into the classical mechanics description of the atom.
- Planck's ideas of quantization.
- Einstein's finding that light consists of photons whose energy is proportional to their frequency.
- Bohr assumed that the electron orbiting the nucleus would not normally emit any radiation.
- Rather the electron emits or absorbs a photon if it moved to a different orbit.

Bohr Model

- The energy absorbed or emitted would reflect differences in the orbital energies according to this equation:

$$
|\Delta E|=\left|E_{f}-E_{i}\right|=h v=\frac{h c}{\lambda}
$$

- E_{i} and E_{f} are the initial and final orbital energies.
- Bohr assumed only discrete values for the energy difference (ΔE) were possible.

Bohr Model

- Bohr's expression for the quantized energies:

$$
E_{n}=\frac{k}{n^{2}} \quad n=1,2,3, \ldots
$$

- k is a constant comprising fundamental constants such as the electron mass and charge and Planck's constant.

Bohr Model

- Inserting the expression for the orbit energies into the equation for ΔE gives

$$
\Delta E=k\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)=\frac{h c}{\lambda}
$$

or

$$
\frac{1}{\lambda}=\frac{k}{h c}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

- Which is identical to the Rydberg equation for $R=\frac{k}{h c}$.

Quantum numbers and energy levels in a hydrogen atom. The more negative the calculated value, the lower the energy.

Bohr Model

- One of the fundamental laws of physics is that matter is most stable when it has the lowest possible energy.
- When the electron is in this lowest energy orbit $(n=1)$, the atom is said to be in its ground state.
- If the atom receives energy from an outside source, it is possible for the electron to move to an orbit with a higher n value (excited state), which has a higher energy.

Bohr Model

- When the atom absorbs energy as a photon, the electron moves from an orbit with a lower n to a higher n.
- When an electron falls from an orbit with a higher n to a lower n, the atoms emits energy as a photon.
- Since ΔE can only be discrete values, the photon absorbed or emitted can only have a wavelength with a discrete value (not continuous).
- This explained the line spectra for the hydrogen atom.

Energy, n

The horizontal lines show the relative energy of orbits in the Bohr model of the hydrogen atom, and the vertical arrows depict the energy of photons absorbed (left) or emitted (right) as electrons move between these orbits.

Example 6.5

- What is the energy (in joules) and the wavelength (in meters) of the line in the spectrum of hydrogen that represents the movement of an electron from Bohr orbit with $n=4$ to the orbit with $n=6$? In what part of the electromagnetic spectrum do we find this radiation?
- In this case, the electron starts out with $n=4$, so $n_{1}=4$. It comes to rest in the $n=6$ orbit, so $n_{2}=6$. The difference in energy between the two states is given by this expression where $k=2.179 \times 10^{-18} \mathrm{~J}$:

$$
\Delta E=k\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

$$
\Delta E=2.179 \times 10^{-18} \mathrm{~J}\left(\frac{1}{4^{2}}-\frac{1}{6^{2}}\right)=7.566 \times 10^{-20} \mathrm{~J}
$$

- This energy difference is positive, indicating a photon enters the system (is absorbed) to excite the electron from the $n=4$ orbit up to the $n=6$ orbit. The wavelength of a photon with this energy is found by the expression:

$$
\Delta E=\frac{h c}{\lambda}
$$

Example 6.5

- Rearrangement gives:

$$
\begin{aligned}
\lambda & =\frac{h c}{\Delta E}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)}{7.566 \times 10^{-20} \mathrm{~J}} \\
& =2.626 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

- This wavelength is found in the infrared portion of the electromagnetic spectrum.

Limitations of the BohrModel

- Bohr was unable to extend his theory to the next simplest atom, He, which only has two electrons.
- It is does not account for electron-electron interactions in atoms with more than one electron.
- Bohr's model was severely flawed, since it was still based on the classical mechanics notion of precise orbits.
- The Bohr model does introduce several important features of all models used to describe the distribution of electrons in an atom.
- The energies of electrons (energy levels) in an atom are quantized, described by quantum numbers: integer numbers having only specific allowed values and used to characterize the arrangement of electrons in an atom.
- An electron's energy increases with increasing distance from the nucleus.
- The discrete energies (lines) in the spectra of the elements result from quantized electronic energies.

Moving Forward

- Bohr won a Nobel Prize in Physics for his contributions.
- It became clear to most physicists at that time that the classical theories that worked so well in the macroscopic world were fundamentally flawed and could not be extended down into the microscopic domain of atoms and molecules.
- A proper model of quantum mechanics was later developed to supersede classical mechanics.
- 6.3 Development of Quantum Theory
- Extend the concept of wave-particle duality that was observed in electromagnetic radiation to matter as well
- Understand the general idea of the quantum mechanical description of electrons in an atom, and that it uses the notion of three-dimensional wave functions, or orbitals, that define the distribution of probability to find an electron in a particular part of space
- List and describe traits of the four quantum numbers that form the basis for completely specifying the state of an electron in an atom

Development of Quantum Theory

- Particles and waves are very different phenomena in the macroscopic realm.
- By the 1920s it became increasingly clear that very small pieces of matter follow a different set of rules from those we observe for large objects.
- The unquestionable separation of waves and particles was no longer the case for the microscopic world.

Figure 6.16

An interference pattern on the water surface is formed by interacting waves. The waves are caused by reflection of water from the rocks. (credit: modification of work by Sukanto Debnath)

- If electromagnetic radiation can have particle-like character, can electrons and other submicroscopic particles exhibit wavelike character?
- In 1925 Louis de Broglie extended the wave-particle duality of light that Einstein used to resolve the photoelectric-effect paradox to material particles.

$$
\lambda=\frac{h}{m v}=\frac{h}{p}
$$

- $h=$ Planck's constant
- m = particle mass
- $v=$ particle velocity
- $p=$ particle momentum
- $\lambda=$ de Broglie wavelength
- The de Broglie wavelength is a characteristic of particles, not electromagnetic radiation.

De Broglie Wavelength

- Bohr had postulated the electron as being a particle orbiting the nucleus in quantized orbits.
- De Broglie argued that Bohr's assumption of quantization can be explained if the electron is considered a circular standing wave.
- Only an integer number of wavelengths can fit exactly within the orbit.

If an electron is viewed as a wave circling around the nucleus, an integer number of wavelengths must fit into the orbit for this standing wave behavior to be possible.

- For a circular orbit of radius r, the circumference is $2 \pi r$, and so de Broglie's condition is:

$$
2 r=n, \quad n=1,2,3, \ldots
$$

Wave Nature of Electrons

- C. J. Davisson and L. H. Germer, demonstrated experimentally that electrons can exhibit wavelike behavior.
- They showed that electrons travelling through a regular atomic pattern in a crystal produced an interference pattern.
- The interference pattern is strikingly similar to the interference patterns for light.

(a) The interference pattern for electrons passing through very closely spaced slits demonstrates that quantum particles such as electrons can exhibit wavelike behavior. (b) The experimental results illustrated here demonstrate the wave-particle duality in electrons.

Wave-Particle Duality

- Thus, it appears that while electrons are small localized particles, their motion does not follow the equations of motion implied by classical mechanics.
- Instead some type of wave equation governs a probability distribution for an electron's motion.
- Thus the wave-particle duality first observed with photons is actually a fundamental behavior intrinsic to all quantum particles.
- Werner Heisenberg determined that there is a fundamental limit to how accurately one can measure both a particle's position and its momentum simultaneously.
- The more accurately we measure the momentum of a particle, the less accurately we can determine its position at that time, and vice versa.
- Heisenberg Uncertainty Principle: It is fundamentally impossible to determine simultaneously and exactly both the momentum and the position of a particle.

$$
(\Delta x)\left(\Delta p_{x}\right) \geq \frac{\hbar}{2}
$$

- $\Delta x=$ uncertainty in the position of the particle
- $\Delta p_{x}=$ uncertainty in the momentum of the particle in the x direction.
- Erwin Schrödinger extended de Broglie's work by incorporating the de Broglie relation into a wave equation.
- Today this equation is know as the Schrödinger equation.
- Schrödinger properly thought of the electron in terms of a threedimensional stationary wave, or wavefunction, represented by the Greek letter psi, Ψ.
- A few years later, Max Born:
- Electrons are still particles, and so the waves represented by ψ are not physical waves but, instead, are complex probability amplitudes.
- The square of the magnitude of a wavefunction $|\psi|^{2}$ describes the probability of the quantum particle being present near a certain location in space.
- Wavefunctions can be used to determine the distribution of the electron's density with respect to the nucleus in an atom.
- In the most general form, the Schrödinger equation can be written as:

$$
H \Psi=E \Psi
$$

- \hat{H} is the Hamiltonian operator, a set of mathematical operations representing the total energy of the quantum particle.
- ψ is the wavefunction of the particle.
- E is the total energy of the particle.

Quantum Mechanics

- Schrödinger's work, as well as that of Heisenberg and many other scientists following in their footsteps, is generally referred to as quantum mechanics.
- Electrons in atoms can exist only in discrete energy levels but not between them.
- The energy of an electron in an atom is quantized.
- The energy can be equal only to certain specific values and can jump from one energy level to another but not transition smoothly or stay between these levels.

Principle Quantum Number

- The energy levels are labeled with an n value, where $n=1,2,3, \ldots$.
- Generally speaking, the energy of an electron in an atom is greater for larger values of n.
- n is referred to as the principal quantum number or shell number.
- The principal quantum number defines the location of the energy level and is similar in concept to the Bohr model.

Different shells are numbered by principle quantum numbers.

Atomic Orbitals

- The principal quantum number is one of three quantum numbers used to characterize an orbital.
- An atomic orbital is a general region in an atom that an electron is most probable to reside.
- An atomic orbital is distinct from an orbit.
- The quantum mechanical model specifies the probability of finding an electron in a three-dimensional space around the nucleus.

Angular Momentum Quantum Number

- The angular momentum quantum number (ℓ) is an integer that defines the shape of the orbital.
- ℓ takes on the values, $\ell=0,1,2, \ldots, n-1$.
- For an orbital with $n=1 ; \ell=0$
- For an orbital with $n=2 ; \ell=0$ and 1
- Orbitals with the same value of ℓ form a subshell.

Angular Momentum Quantum Number

- Instead of using numbers, the angular momentum quantum number is often designated by letters.
- For $\ell=0: s$ orbital
- For $\ell=1: p$ orbital
- For $\ell=2$: d orbital
- For $\ell=3$: f orbital

Radial Nodes

- There are certain distances from the nucleus at which the probability density of finding an electron located in a particular orbital is zero.
- The value of the wavefunction ψ is zero at this distance for this orbital.
- Such a value of radius r is called a radial node.

Radial Nodes

- The number of radial nodes in an orbital is $n-\ell-1$.
- For a 1 s orbital ($n=1, \ell=0$)
- The number of nodes $=1-0-1=0$
- For a $2 s$ orbital ($n=2, \ell=0$)
- The number of nodes $=2-0-1=1$
- For a 3 s orbital ($n=3, \ell=0$)
- The number of nodes $=3-0-1=2$

The graphs show the probability (y axis) of finding an electron for the $1 s, 2 s, 3 s$ orbitals as a function of distance from the nucleus.

Orbital Shapes

- The s subshell has a spherical shape.
- The \boldsymbol{p} subshell has a dumbbell shape.
- The \boldsymbol{d} and f orbitals are more complex.
- These shapes represent the three-dimensional regions where the electron is likely to be found.

Figure 6.22

Shapes of s, p, d, and f orbitals.

Magnetic Quantum Number

- If an orbital has an angular momentum ($\ell \neq 0$), then this orbital can point in different directions.
- The magnetic quantum number, \boldsymbol{m}_{l}, specifies the orientation of the orbital in space.

Magnetic Quantum Number

- The value of $m \ell$ depends on the value of ℓ.
- $m \ell=-\ell . .-1,0,+1, \ldots+\ell$
- There are $2 \ell+1$ orbitals with the same ℓ value.
- One s-orbital for $\ell=0$
- Three p-orbitals for $\ell=1$
- Five d-orbitals for $\ell=2$
- Seven f-orbitals for $\ell=3$
- When referring to an orbital, usually both the n value and the letter designation for ℓ are reported.
- Examples: $2 s, 3 p$
- In the case of a hydrogen atom, energies of all the orbitals with the same n are the same.
- This is called a degeneracy, and the energy levels with the same principal quantum number, n, are called degenerate energy levels.
- However, in atoms with more than one electron, this degeneracy is eliminated by electron-electron interactions.
- Orbitals that belong to different subshells have different energies.
- Orbitals within the same subshell are still degenerate and have the same energy.

The chart shows the energies of electron orbitals in a multi-electron atom.

Spin Quantum Number

- The first three quantum numbers, n, I, and m_{l}, define the region of space where an electron is most likely to be located.
- The electron spin is a different kind of property.
- Electron spin describes an intrinsic electron "rotation" or "spinning".
- An electron can only "spin" in one of two quantized states.

Spin Quantum Number

- The spin quantum number, m_{s}, describes the two possible states.
- $m_{s}=+1 / 2$ or $-1 / 2$
- Any electron, regardless of the atomic orbital it is located in, can only have one of those two values of the spin quantum number.

Electrons with spin values $\pm 1 / 2$ in an external magnetic field.

- An electron in an atom is completely described by four quantum numbers: n, I, m_{l}, and m_{s}.
- Wolfgang Pauli, an Austrian physicist, formulated a general principle.
- The Pauli Exclusion Principle: No two electrons in the same atom can have exactly the same set of all four quantum numbers.
- Electrons can share the same orbital (the same set of quantum numbers n, l, and m_{l}).
- But only if they have different m_{s} numbers.
- Since the spin quantum number can only have two values ($\pm 1 / 2$), no more than two electrons can occupy the same orbital.
- If two electrons are located in the same orbital, they must have opposite spins.

Table 6.1 Quantum Numbers, Their Properties, and Significance

Name	Symbol	Allowed Values	Physical Meaning
principal quantum number	n	$1,2,3,4, \ldots$.	shell, the general region for the value of energy for an electron in the orbital
angular momentum quantum number	ℓ	$0 \leq \ell \leq n-1$	subshell, the shape of the orbital
magnetic quantum number	m_{l}	$-\ell \leq m_{l} \leq \ell$	orientation of the orbital spin quantum number $m_{s}$$\frac{1 / 2,-1 / 2}{} \quad$direction of the intrinsic quantum "spinning" of the electron

- 6.4 Electronic Structure of Atoms (Electron Configurations)
- Derive the predicted ground-state electron configurations of atoms
- Identify and explain exceptions to predicted electron configurations for atoms and ions
- Relate electron configurations to element classifications in the periodic table

Electronic Structure of Atoms (Electron Configurations)

- The energy of atomic orbitals increases as the principal quantum number, n, increases.
- As the principal quantum number, n, increases, the size of the orbital increases and the electrons spend more time farther from the nucleus.
- Thus, the attraction to the nucleus is weaker and the energy associated with the orbital is higher (less stabilized).
- In any atom with two or more electrons, the repulsion between the electrons makes energies of subshells with different values of / differ.
- The energy of the orbitals increases within a shell in the order $s<p<$ $d<f$.
- Electrons in atoms tend to fill low-energy orbitals first.

Generalized energy-level diagram for atomic orbitals in an atom with two or more electrons (not to scale).

Electron Configuration

- The arrangement of electrons in the orbitals of an atom is called the electron configuration of the atom.
- An electron configuration consists of symbols that contain three pieces of information:

1) The principal quantum shell, n.
2) The letter that designates the orbital type (/).
3) A superscript number that designates the number of electrons in that particular subshell.

The diagram of an electron configuration specifies the subshell (n and / value, with letter symbol) and superscript number of electrons.

- To determine the electron configuration for an atom we add a number of electrons equal to its atomic number.
- Beginning with hydrogen, and continuing across the periods of the periodic table, we add one electron to the subshell of lowest available energy.
- This procedure is called the Aufbau principle, from the German word Aufbau ("to build up").
- When writing electron configurations and orbital diagrams keep in mind the Pauli Exclusion principle.

This diagram depicts the energy order for atomic orbitals and is useful for deriving groundstate electron configurations.

This periodic table shows the electron configuration for the valence subshells of atoms. By "building up" from hydrogen, this table can be used to determine the electron configuration for atoms of most elements in the periodictable (electron configurations of the lanthanides and actinides are not accurately predicted by this simple approach, see Figure 6.29).

Electron Configurations and Orbital Diagrams

- Orbital diagrams are pictorial representations of the electron configuration, showing the individual orbitals and the pairing arrangement of electrons.

- An upward arrow represents and electron with $m_{s}=+1 / 2$.
- A downward arrow represents and electron with $m_{s}=-1 / 2$.

Electron Configurations and Orbital Diagrams

He

Li $1 s^{2} 2 s^{1} \underset{1 s}{\underset{2 s}{\mid 1}}$

$$
\mathrm{Be} \quad 1 s^{2} 2 s^{2} \frac{|1|}{\frac{1 s}{|c|} \frac{1 \downarrow}{2 s}}
$$

- Hund's rule: the lowest-energy configuration for an atom with electrons within a set of degenerate orbitals is that having the maximum number of unpaired electrons.

$$
\text { C } \quad 1 s^{2} 2 s^{2} 2 p^{2}
$$

Electron Configurations and Orbital Diagrams

Valence and Core Electrons

- The electrons occupying the orbital(s) in the outermost shell (highest value of n) are called valence electrons.
- The electrons occupying the inner shell orbitals are called core electrons.
- The core electrons represent noble gas electron configurations.
- Electron configurations can be expressed in an abbreviated format by writing the noble gas that matches the core electron configuration, along with the valence electrons.

$\mathrm{Na} \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
 Core electrons Valence electron

Abbreviation $[\mathrm{Ne}] 3 s^{1}$

A core-abbreviated electron configuration (right) replaces the core electrons with the noble gas symbol whose configuration matches the core electron configuration of the other element.

Abbreviated Electron Configurations

- Abbreviated electron configurations emphasize the similarity of the configurations of elements in the same group.
- Group 1:
- Li: [He]2s ${ }^{1}$
- $\mathrm{Na}:[\mathrm{Ne}] 3 \mathrm{~s}^{1}$
- K: [Ar]4s ${ }^{1}$
- Group 2:
- Be: [He]2s²
- Mg: [Ne]3s²
- Ca: [Ar]4s²

This version of the periodic table shows the outer-shell electron configuration of each element. Note that down each group, the configuration is often similar.

- Beginning with the transition metal scandium (atomic number 21), additional electrons are added successively to the $3 d$ subshell.
- d subshells are filled to capacity with 10 electrons.
- For $I=2$ [d orbitals], there are $2 l+1=5$ values of m_{l}.
- Five d orbitals have a combined capacity of 10 electrons.
- After the $3 d$ subshell is filled, electrons are next added to the $4 p$ subshell.
- For the two periods of inner transition metals, lanthanum (La) through lutetium (Lu) and actinium (Ac) through lawrencium (Lr).
- Electrons are added to an f subshell.
- For $I=3$ [f orbitals], there are $2 l+1=7$ values of m_{l}.
- Seven f orbitals have a combined capacity of 14 electrons.

Electron Configuration Exceptions

- There are some exceptions to the order of filling subshells.
- Examples: Cu and Cr
- There is stability associated with a half-filled or fully filled d subshell.
- An electron shifts from the 4 s into the $3 d$ subshell to achieve this stability.
- Cu:
- Expect: [Ar]4s ${ }^{2} 3 d^{9}$
- Actual: [Ar]4s ${ }^{13} d^{10}$
- Cr
- Expect: [Ar]4s ${ }^{2} 3 d^{4}$
- Actual: [Ar]4s ${ }^{13} d^{5}$

Example 6.10

Electron Configurations and the Periodic Table

- The periodic table arranges atoms so that elements with the same chemical and physical properties are in the same group.
- Elements in the same group have similar valence electron configurations.
- Valence electrons play the most important role in chemical reactions.
- This describes why elements in the same group have similar chemical reactivity.

Electron Configurations and the Periodic Table

- Main group elements or representative elements are those in which the last electron added enters an s or a p orbital in the outermost shell.
- The valence electrons for main group elements are those with the highest n level.
- Example: Gallium (Ga): [Ar]4s ${ }^{2} 3 d^{10} 4 p^{1}$
- Ga has three valence electrons ($4 s^{2}$ and $4 p^{1}$).
- The completely filled $3 d$ orbitals count as core, not valence electrons.

Electron Configurations and the Periodic Table

- Transition elements or transition metals are metallic elements in which the last electron added enters a d orbital.
- The valence electrons (those added after the last noble gas configuration) in these elements include the $n s$ and ($n-1$)d electrons.
- Example: Vanadium (V): [Ar]4s²3d ${ }^{3}$
- V has five valence electrons ($4 \mathrm{~s}^{2}$ and $3 \mathrm{~d}^{3}$).

Electron Configurations and the Periodic Table

- Inner transition elements are metallic elements in which the last electron added occupies an f orbital.
- The valence electrons (those added after the last noble gas configuration) in these elements include the $n s,(n-2) f$, and if present the ($n-1$)d subshells.
- Example: Promethium (Pm): [Ar]6s ${ }^{2} 4 f^{5}$
- Pm has seven valence electrons $\left(6 s^{2}\right.$ and $\left.4 f^{5}\right)$.

Electron Configurations of Ions

- Recall, ions are formed when atoms gain or lose electrons.
- A cation (positively charged ion) forms when one or more electrons are removed from an atom.
- For main group elements, the electrons that were added last are the first electrons removed.
- For transition metals and inner transition metals, the highest ns electrons are lost first, and then the $(n-1)$ d or ($n-2$)f electrons are removed.

Electron Configurations of Ions

- An anion (negatively charged ion) forms when one or more electrons are added to a parent atom.
- The electrons are added in the order predicted by the Aufbau principle.

Example 6.11

Predicting Electron Configurations of Ions

- What is the electron configuration of:
(a) Na^{+}
(b) P^{3-}
(c) Al^{2+}
(d) Fe^{2+}
(e) Sm^{3+}
- First, write out the electron configuration for the parent atom, and then add or remove the appropriate number of electrons from the correct orbital(s).

Example 6.11

(a) $\mathrm{Na}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$. Sodium loses one electron.

$$
\mathrm{Na}^{+}: 1 s^{2} 2 s^{2} 2 p^{6}
$$

(b) P: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$. Phosphorus gains three electrons.

$$
\mathrm{P}^{3-}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}
$$

(c) Al: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$. Aluminum loses two electrons.

$$
\mathrm{Al}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}
$$

(d) Fe: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$. Iron loses two electrons and, since it is a transition metal, they are removed from the $4 s$ orbital.

$$
\mathrm{Fe}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6}
$$

(e) $\mathrm{Sm}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 6 s^{2} 4 f^{6}$. Samarium loses three electrons. The first two will be lost from the $6 s$ orbital, and the final one is removed from the $4 f$ orbital.

$$
\text { Sm }{ }^{3+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{6} 4 f^{5}
$$

Learning Objectives

- 6.5 Periodic Variations in Element Properties
- Describe and explain the observed trends in atomic size, ionization energy, and electron affinity of the elements

Periodic Variations in Element Properties

- Many properties of the elements vary periodically as the electronic structure of the elements changes.
- These properties govern the chemical behavior of elements.
- These periodic properties include:

1) Size (radius) of atoms and ions
2) Ionization energies
3) Electron affinities

Variations in Covalent Radii

- The covalent radius is defined as one-half the distance between the nuclei of two identical atoms when they are joined by a covalent bond.
- Down a group:
- The principal quantum number, n, increases by one for each element.
- The electrons are added to a region of space that is increasingly farther from the nucleus.
- The size of the atom (and its covalent radius) increases down a group.
- Effective nuclear charge, $\boldsymbol{Z}_{\text {eff }}$ is the pull exerted on a specific electron by the nucleus, taking into account any electron-electron repulsions.
- For hydrogen, there is only one electron and so the nuclear charge (Z) and the effective nuclear charge ($Z_{\text {eff }}$) are equal.
- For all other atoms, the electron of interest are partially shielded from the pull of the nucleus by the other electron(s) present.
- Core electrons are adept at shielding, while electrons in the same valence shell do not block the nuclear attraction experienced by each other as efficiently.
- Each time we move from one element to the next across a period, Z increases by one, but the shielding increases only slightly due to electrons being added only to the valence shell.
- $Z_{\text {eff }}$ increases as we move from left to right across a period.

Variations in Covalent Radii

- Across a period:
- A stronger pull (higher effective nuclear charge) is experienced by the outermost electrons, drawing them closer to the nucleus.
- The size of the atom (and its covalent radius) decreases across a period.

(b)
(a) The radius of an atom is defined as one-half the distance between the nuclei in a molecule consisting of two identical atoms joined by a covalent bond. The atomic radius for the halogens increases down the group as n increases. (b) Covalent radii of the elements are shown to scale. The general trend is that radii increase down a group and decrease across a period.

Within each period, the trend in atomic radius decreases as Z increases; for example, from K to Kr. Within each group (e.g., the alkali metals shown in purple), the trend is that atomic radius increases as Z increases.

Variations in Ionic Radii

- Ionic radius is the measure used to describe the size of an ion.
- A cation always has fewer electrons and the same number of protons as the parent atom.
- As electrons are removed from the outer valence shell, the remaining electrons experience a greater $Z_{\text {eff }}$ charge and are drawn even closer to the nucleus.
- A cation is always smaller than the atom from which it is derived.

Variations in Ionic Radii

- An anion always has more electrons and the same number of protons as the parent atom.
- This results in a greater repulsion among the electrons and a decrease in $Z_{\text {eff }}$.
- This causes the valence electrons to be farther from the nucleus.
- An anion is always larger than the atom from which it is derived.

The radius for a cation is smaller than the parent atom (Al), due to the lost electrons; the radius for an anion is larger than the parent (S), due to the gained electrons.

- Atoms and ions that have the same electron configuration are said to be isoelectronic.
- Examples of isoelectronic species:
- $\mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Ne}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$, and $\mathrm{Al}^{3+}\left(1 s^{2} 2 s^{2} 2 p^{6}\right)$
- $\mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{Ar}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}$, and $\mathrm{Sc}^{3+}\left([\mathrm{Ne}] 3 s^{2} 3 p^{6}\right)$
- For atoms or ions that are isoelectronic, the number of protons determines the size.
- The greater the nuclear charge, the smaller the radius in a series of isoelectronic ions and atoms.
- The amount of energy required to remove the most loosely bound electron from a gaseous atom in its ground state is called its first ionization energy (IE_{1}).

$$
\mathrm{X}(g) \quad \rightarrow \quad \mathrm{X}^{+}(g)+\mathrm{e}^{-} \quad \mathrm{IE}_{1}
$$

- The energy required to remove the second most loosely bound electron is called the second ionization energy $\left(\mathrm{IE}_{2}\right)$.

$$
\mathrm{X}^{+}(g) \rightarrow \quad \mathrm{X}^{2+}(g)+\mathrm{e}^{-} \quad \mathrm{IE}_{2}
$$

- The energy required to remove the third electron is the third ionization energy, and so on.

Variations in Ionization Energies

- Energy is always required to remove electrons from atoms or ions, so ionization processes are endothermic and IE values are always positive.
- As size (atomic radius) increases, the ionization energy decreases.
- First ionization energies:
- Decrease down a group
- Increase across a period
- There are some deviations from this trend.

The first ionization energy of the elements in the first five periods are plotted against their atomic number.

This version of the periodic table shows the first ionization energy of $\left(\mathrm{IE}_{1}\right)$, in $\mathrm{kJ} / \mathrm{mol}$, of selected elements.

Deviations in Ionization Energy Trend

- Deviation: Beryllium (Be) has a higher IE_{1} than boron (B).
- The electron removed during the ionization of beryllium ([He]2s2) is an s electron.
- The electron removed during the ionization of boron ([He]2s $2 p^{2}$) is a p electron.
- The energy of a subshell increases as / increases.
- This means that an s electron is harder to remove from an atom than a p electron in the same shell.

Deviations in Ionization Energy Trend

- Deviation: Oxygen (O) has a lower IE_{1} than nitrogen (N).
- Removing one electron from O will eliminate the electron-electron repulsion caused by pairing the electrons in the $2 p$ orbital.

- This means that removing an electron from O is more energetically favorable than removing an electron from N .
- Removing an electron from a cation is more difficult than removing an electron from a neutral atom because of the greater electrostatic attraction to the cation.
- Likewise, removing an electron from a cation with a higher positive charge is more difficult than removing an electron from an ion with a lower charge.
- Thus, successive ionization energies for an element always increase.

Table 6.3 Successive Ionization Energies for Selected Elements (kj/mol)

Element	$\mathbf{I E}_{\mathbf{1}}$	$\mathbf{I E}_{\mathbf{2}}$	$\mathbf{I E}_{\mathbf{3}}$	$\mathbf{I E}_{\mathbf{4}}$	$\mathbf{I E}_{\mathbf{5}}$	$\mathbf{I E}_{\mathbf{6}}$	$\mathbf{I E}_{\mathbf{7}}$
K	418.8	3051.8	4419.6	5876.9	7975.5	9590.6	11343
Ca	589.8	1145.4	4912.4	6490.6	8153.0	10495.7	12272.9
Sc	633.1	1235.0	2388.7	7090.6	8842.9	10679.0	13315.0
Ga	578.8	1979.4	2964.6	6180	8298.7	10873.9	13594.8
Ge	762.2	1537.5	3302.1	4410.6	9021.4	not available	not available
As	944.5	1793.6	2735.5	4836.8	6042.9	12311.5	not available

Successive Ionization Energies

- At some point, there is always a large increase in successive ionization energies for an element.
- This large increase corresponds to the removal of core electrons, which are harder to remove than the valence electrons.
- Example:
- Sc and Ga both have three valence electrons.
- The large increase in ionization energy occurs after the third ionization.

Electron Affinity

- The electron affinity (EA) is the energy change for the process of adding an electron to a gaseous atom to form an anion.

$$
\mathrm{X}(\mathrm{~g})+\mathrm{e}-\longrightarrow \mathrm{X}-(\mathrm{g}) \quad \mathrm{EA} 1
$$

- This process can be either endothermic or exothermic, depending on the element.
- For some elements energy is released when the gaseous atom accepts an electron (negative EA).
- For other elements energy is required for the gaseous atom to accept an electron (positive EA).

Variations in Electron Affinities

- It becomes easier to add an electron as the effective nuclear charge of the atoms increases.
- Electron affinities becomes more negative across a period.
- There are some deviations from this trend.

Deviations in Electron Affinity Trend

- The noble gases, group 18, have a completely filled shell and the incoming electron must be added to a higher energy n level.
- Group 2 has a filled ns subshell, and so the next electron added goes into the higher energy $n p$ subshell.
- Group 15 has a half-filled $n p$ subshell and the next electron must be paired with an existing $n p$ electron.
- In all of these cases, the initial relative stability of the electron configuration disrupts the trend in EA.

This version of the periodic table displays the electron affinity values (in $\mathrm{kJ} / \mathrm{mol}$) for selected elements.

(y)

(z)

openstax"

This OpenStax ancillary resource is © Rice University under a CC-BY 4.0 International license; it may be reproduced or modified but must be attributed to OpenStax, Rice University and any changes must be noted.

