
Introduction to
Computer Programming
with Java

OTC

Chris Simber

Computer Programming in Java: Starting Out in
Eclipse

Contributing Authors

Chris Simber, Rowan College at Burlington County

Original Publication Year 2022

Computer Programming in Java: Starting Out in Eclipse by Chris Simber is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise
noted.

To learn more about the Open Textbook Collaborative, visit
https://middlesexcc.libguides.com/OTCProject

Under this license, any user of this textbook or the textbook contents herein must provide proper
attribution as follows:

If you redistribute this textbook in a digital or print format (including but not limited to PDF and
HTML), then you must retain this attribution statement on your licensing page.

If you redistribute part of this textbook, then you must include citation information including the
link to the original document and original license on your licensing page.

If you use this textbook as a bibliographic reference, please include the link to this work
http://opennj.net/AA00001549 in your citation.

For questions regarding this licensing, please contact library@middlesexcc.edu

Funding Statement

This material was funded by the Fund for the Improvement of Postsecondary Education (FIPSE) of the
U.S. Department of Education for the Open Textbooks Pilot grant awarded to Middlesex College (Edison,
NJ) for the Open Textbook Collaborative.

Open Textbook Collaborative

The Open Textbook Collaborative. (OTC) project is a statewide project managed by Middlesex College
along with assistance from Brookdale Community College, Ocean County College, Passaic County
Community College, and Rowan University.

The project engages a consortium of New Jersey community colleges and Rowan University to develop
open educational resources (OER) in career and technical education STEM courses.

The courses align to career pathways in New Jersey’s growth industries including health services,
technology, energy, and global manufacturing and supply chain management as identified by the New
Jersey Council of Community Colleges.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://middlesexcc.libguides.com/OTCProject
http://opennj.net/AA00001549
mailto:library@middlesexcc.edu
https://middlesexcc.libguides.com/OTCProject
https://middlesexcc.libguides.com/OTCProject
https://middlesexcc.libguides.com/OTCProject/about#s-lg-box-wrapper-30684127

Computer Programming in Java

Starting Out with Eclipse

Chris Simber

Assistant Professor, Computer Science

Rowan College at Burlington County

This material was funded by the Fund for the Improvement of Postsecondary

Education (FIPSE) of the U.S. Department of Education for the Open

Textbooks Pilot grant awarded to Middlesex College for the Open Textbook

Collaborative.

Cataloging Data

Names: Simber, Chris, author.

Title: Computer Programming in Java

Starting out with Eclipse

Subjects: Java (Computer Programming Language)

Chris Simber

Assistant Professor of Computer Science

Rowan College at Burlington County

Author contact: csimber@RCBC.edu

mailto:csimber@RCBC.edu

Open Educational Resources Team and Contributors:

Steven Chudnick, Project Coordinator

Alison Cole, Librarian, Felician University

Joshua Gaul, Educational Technology Manager, Edge

Robert Hilliker, Curriculum Council Manager

Marilyn Ochoa, Director, Library Services, Middlesex College

Laura Wingler, Instructional Designer, Ocean County College

Computer Programming in Java: Starting out with Eclipse by

Christopher Simber is licensed under a Creative Commons

Attribution – NonCommercial-ShareAlike 4.0 International License,

except where otherwise noted. Images may not be distributed

individually.

All screenshots are included on the basis of Fair Use.

Creative Commons — Attribution-NonCommercial-ShareAlike 4.0 International

— CC BY-NC-SA 4.0

Under the following terms: Attribution — You must give appropriate credit,

provide a link to the license, and indicate if changes were made. You may do

so in any reasonable manner, but not in any way that suggests the licensor

endorses you or your use.

creativecommons.org

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/

Introduction

This book is intended for use in an introductory course in programming using

the Java programming language, and includes content for students who are not

familiar with programming. The book introduces general computer information

and basic computer operations, as well as software engineering principles and

processes used in industry to implement computer-based solutions. Algorithm

development and problem-solving techniques are introduced as well.

The Eclipse integrated development environment (IDE) is utilized and

instructions to obtain, install, and “Getting Started in Eclipse” are provided in

the appendices. The goal is to provide students with an overview of computers,

software engineering tools and techniques, and to introduce them to computer

programming in Java quickly for hands-on instruction.

The examples and exercises reinforce the material being introduced while

building on previous material covered, and follow the programming standards

for Java publicized by the World Wide Web Consortium (W3C) and set forth in

the Java Coding Guidelines created by Joe McManus MGR at Carnegie Mellon

University, Software Engineering Institute. Appendix F provides an adequate

abridgement of programming standards. The in-chapter exercises are numbered

for clarity using a shaded box, and can be used for in-class assignment purposes

in addition to the end-of-chapter assignments.

The Java version in use at the time of this writing is Version 8. The Integrated

Development Environment (IDE) selected is Eclipse which is free to download

and use. The Eclipse interface has the common look and feel associated with

most integrated development environments and is used extensively in industry.

Instructions for obtaining and installing Eclipse are provided in Appendix B,

including resolving some common JRE and JDK issues.

Getting started in Eclipse is provided in Appendix C with a sample start-up

program. Links to the Eclipse web site, Java Tutorials, and the Java Coding

Guidelines are included in Appendix E which also includes a link to the Java

Tutorial at the W3Schools website.

There are end-of-chapter assignments, and an answer key, exams with answer

keys, and accompanying lecture slides are available.

Contents

Chapter 1 Computers and Programming 1

Chapter 2 Java Language Basics 19

Chapter 3 Decision Structures and Boolean Logic 53

Chapter 4 Loops and Repetition Structures 81

Chapter 5 Methods, Modules, and Basic Graphics 111

Chapter 6 Arrays and ArrayLists 139

Chapter 7 File Operations and Exceptions 167

Chapter 8 Classes and Objects 191

Chapter 9 Inheritance and Interfaces 227

Chapter 10 Graphical User Interfaces 253

Chapter 11 GUI Programs 289

Appendix A ASCII Character Set (partial list)

Appendix B Obtaining and Installing Eclipse

Appendix C Getting Started with Eclipse

Appendix D Modular Programming

Appendix E Helpful Links to Information

Appendix F Java Programming Guidelines and Standards

Appendix G Multiple Panels and Layout Managers Example

“Five minutes of design time, will save hours of programming” –

Chris Simber

1

Chapter 1 Computers and Programming

Chapter 1

Computers and Programming

Computers are simply data processing devices. They are machines that receive

input, process it in some way, and produce output. Computer programs are

made up of a series of statements that tell a computer what to do and in what

order to do it. These programs provide a sequence of small steps for the

computer to execute and produce the desired result. Millions or even billions of

these small steps are being executed by the computer as we run programs. This

may seem odd to the casual computer user, but these small steps combine to

provide what appear to be seamless operations as we interact with the computer.

Computer programs are referred to as software and they are needed to make

the computer useful. People who design, write, and test software are commonly

referred to as software engineers, software developers, or computer

programmers. To better understand the computing process and programming in

general, a familiarity with the parts that make up a computer is necessary.

The Central Processing Unit (CPU)

Any part of the computer that we can physically touch (including inside the

casing) is referred to as hardware. One important piece of hardware is the

Central Processing Unit CPU which is the “Brains” of the computer. The CPU

performs millions of basic instructions per second and controls computer

operations. The CPU has two parts. The Arithmetic Logic Unit (ALU) handles

2

Chapter 1 Computers and Programming

basic arithmetic and comparisons of data such as less than, greater than,

equivalent, and not equivalent. The Control Unit retrieves and decodes program

instructions and coordinates activities within the computer.

Brown and Green Computer Processor Pixabay is licensed under CC0

Figure 1.1 - Central Processing Unit (CPU)

The CPU (shown upside down above) has pins that plug into a socket located on

a circuit board called the motherboard.

Main Memory

RAM stands for Random Access Memory and is often referred to as main

memory. RAM is a series of memory chips on a circuit board installed in the

computer on the motherboard along with the CPU. The memory in these chips

contains a series of memory addresses that enable the computer to store and

locate information. These memory addresses are volatile and when the

computer is turned off, RAM does not retain information. It is erased. When a

program is launched, the program is copied into RAM for the CPU to use.

RAM by Headup222 is licensed under Pixabay License

Figure 1.2 - Laptop Main Memory (RAM)

The CPU can access instructions and data from RAM very quickly, and RAM is

located close to the CPU on the motherboard. The RAM circuit card for a laptop

3

Chapter 1 Computers and Programming

computer is shown above. The large rectangles are the memory chips, the

notches are an aid for inserting the RAM into position on the motherboard, and

the gold edge makes the connections for data access. Since RAM is erased when

the computer is turned off, secondary storage is used to retain information.

Read Only Memory or ROM contains the startup instructions for the computer

including the BIOS or Basic Input Output System. It is non-volatile and retains

information between sessions.

Secondary Storage

Secondary storage devices are non-volatile and the information stored is not

erased when the power is off. Secondary storage devices include the hard drive

inside the computer, external drives connected to the computer, and flash drives.

The hard drive inside the computer may be a disk drive which houses a rotating

disk and data access arm (shown below), or a solid-state drive which has no

moving parts and operates faster than a traditional disk drive.

Laptop-hard-drive-exposed by Evan Amos is licensed under CC BY-SA 3.0

Figure 1.3 - Hard Drive (cover removed)

External drives are typically solid-state and connect to the computer through a

cable plugged into a USB (Universal Serial Bus) connector, or plug directly into

the USB port of the computer as in the case of flash drives. These drives use flash

memory, and do not have a disk drive.

4

Chapter 1 Computers and Programming

Input and Output Devices

Input devices are anything that provides input or data for a computer.

Common input devices are the keyboard, mouse, microphone, and camera.

Output devices include anything that accepts computer output such as

monitors, speakers, and printers.

Since data files located on storage devices can be used for reading data into a

computer or writing output from a computer, they could be considered both

input and output devices.

Software

Computers are machines that follow an input, processing, output sequence of

operations and need to be told what to do and in what order to do it. This is

accomplished through sets of instructions called software. There are essentially

two types of software: system software (Operating Systems), and application

programs (all other software).

The operating system (OS) provides an interface for us to use computers more

easily. Originally a command line interface was used, followed by menu

interfaces, and the Graphical User Interface (GUI) replaced that and has been

used since. The operating system provides the Graphical User Interface that is

now commonly used to interact with the computer, and acts like an orchestra

conductor by controlling computer hardware, managing devices connected to

the computer, and interacting with programs that are running. Operating

systems commonly in use today are Windows, macOS, and Linux.

Application software includes the computer programs that we commonly use to

accomplish work such as word processors, spreadsheet programs, collaboration

tools, and audio/video editing tools, as well as gaming software.

The Language of Computers

The language of computers is a binary language consisting of ones and zeros.

This is the beauty and simplicity of the computer. At the basic level, everything

is a 1 or a 0, is either On or Off, Yes or No, True or False. The bit, or binary digit

5

Chapter 1 Computers and Programming

used in computing represents a logical state that can be 0 or 1. It is the smallest

information representation in a computer. A Byte is 8 bits consisting of a

combination of 0s and 1s, and in computers, each letter, number, and special

character consists of a binary representation. For example, a lower case “f” is

represented in binary as 01100110 in accordance with the ASCII standard

(pronounced askee). ASCII stands for the American Standard Code for

Information Interchange which was developed as a character encoding standard.

The ASCII table consists of binary representations for the 26 uppercase and 26

lowercase letters, and the 9 digits, as well as special characters, punctuation

marks, and other symbols and keyboard keys. Appendix A provides a partial list

of the binary and decimal representations for the upper and lowercase letters,

digits, and punctuation. A portion is shown here with the decimal equivalent.

ASCII Table (excerpt)

The Unicode standard incorporates the 256 item ASCII standard and expands to

include the binary representations for symbols and characters for most of the

world’s languages. Unicode 13.0 contains representations for 143,859 characters.

Instructions for the computer must be in its’ language including numbers that

are stored or used in computations. Numeric integers (whole numbers) are

represented in computers using the positions of the bits and powers of 2 starting

from right and working left.

Binary Number Bit Representations

6

Chapter 1 Computers and Programming

As an example, the number 90 would be represented in binary as 01011010. Each

bit is either 0 or 1 and is multiplied by the power of 2 at its position. The results

are then added together.

Binary Number Conversion

The limit to the numbers that can be stored using 8 bits is 255 with all 8 bits being

1’s. To store larger numbers, two Bytes would be used with a combination of

sixteen 1’s and 0’s. That would allow storing numbers as large as 65535. To store

larger numbers, more Bytes could be used. To store negative numbers and

floating-point numbers (numbers with a decimal or fractional part), other

numbering schemes are used such as the two’s complement and floating-point

notation.

Images (which are made up of pixels) are stored by converting each pixel to a

numeric value which is then stored in binary. Sound is stored using samples that

are converted to the nearest numeric value.

Programming Languages

Although the computers’ language, referred to as machine language, is a binary

language, it would be tedious for us to write instructions for computers in

Binary. Machine language is one of the two languages commonly referred to as

low-level languages for computers, the other being Assembly language.

Assembly language consists of very basic instructions like move a value into

memory, add another value to that one, and store the result in memory. An

assembler is used to convert Assembly language programs into executable

machine code. Both of these low-level languages mirror the operations of the

CPU in simplicity and basic operations.

0 1 0 1 1 0 1 0

0 x 27 + 1 x 26 + 0 x 25 + 1 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 0 X 20

(0 x 128) + (1 x 64) + (0 x 32) + (1 x 16) + (1 x 8) + (0 x 4) + (0 x 2) + (0 x 1)

0 + 64 + 0 + 16 + 8 + 0 + 2 + 0

= 90

7

Chapter 1 Computers and Programming

The CPU goes through what is called a machine cycle in which it performs the

same series of simple steps: fetch, decode, execute, and store. The instructions

executed during a machine cycle are very simple, but billions of instructions can

be processed per second.

CPU Machine Cycle

1. fetch the required piece of data or instruction from memory

2. decode the instruction

3. execute the instruction

4. store the result of the instruction

CPU Machine Cycle

The processing power of a CPU is dependent upon the number of instructions

that the CPU can execute per second, and is measured in hertz (cycles-per-

second). This is often referred to as the CPU clock-speed. This does not refer to a

wall clock, but the computer’s clock or the internal timing of the computer. A

one-gigahertz (1 GHz) CPU can execute one billion cycles (instructions) per

second, and the clock-speed would be one-gigahertz.

Writing software (programming) in a low-level language is possible, but high-

level languages provide a much easier way. As more software was written,

high-level languages were introduced to make programming easier and more

efficient. In high-level languages, multiple instructions are combined into a

single statement. There are hundreds of high-level languages (700+) that have

been developed. Today there are approximately 250 high-level programming

languages in use by programmers. Some of these are used extensively, others

not so much. Each language was created for a purpose and has benefits and

limitations as well as a following, proponents, and detractors. The following is a

short list of some popular high-level languages and their intended uses.

8

Chapter 1 Computers and Programming

 BASIC Beginners All-purpose Symbolic Instruction Code

 C, C++ powerful general-purpose programming

 COBOL Common Business-Oriented Language - business programs

 FORTRAN FORmula TRANslator for math and science

 Pascal teaching programming

 Java applications running over the internet

 JavaScript Web site operations (not related to Java)

 PHP web server applications and dynamic web pages

 Python general-purpose applications and data handling

Popular High-level Programming Languages

Writing software in any of these languages is much easier than the low-level

languages of Machine and Assembly, but the computer is still only interested in

machine language. To translate programs written in a high-level language to the

machine language for the computer, compilers and interpreters are used.

A compiler translates the high-level language into a separate machine language

program. Software engineers refer to this as compiling or “building” the

program. A “Build” is a compiled version of the software and the program can

then be run whenever needed because it is a stand-alone executable program.

Java uses a compiler.

An interpreter on the other hand, reads, translates, and executes the program

one line at a time. As an instruction in the program is read by the interpreter, it

converts the instruction into machine language and then executes that one

instruction. The Python programming language is an interpretive language and

uses an interpreter to execute the instructions.

The instructions (programs) written by programmers are referred to as source

code, which is written using a text editor in an Integrated Development

Environment (IDE). IDE’s are software applications that include integrated

tools for software developers to write, execute, and test software. There are

many IDEs available, but they are very similar in the way that they look, are

used, and operate.

9

Chapter 1 Computers and Programming

Developing Software

There are specific phases in the process of developing software that provide for

the development of accurate, maintainable, and scalable software, that meets the

project or program requirements. These phases include design, development,

test and integration, and delivery and maintenance. But before any work can

begin, a complete understanding of what the program is supposed to do is

required. This is derived from the project or program requirements.

Requirements

The requirements for a computer program detail what the program is supposed

perform. How it will do what it is supposed to do will be determined as the

design phase is completed during the software development phase (SDP).

Requirements Decomposition is the act of discovering in detail from the

requirements what the program is required to accomplish. As requirements are

reviewed, additional information may be needed and questions may arise. It is

important to determine the specifics before moving forward. This process also

assists in decomposing the project into manageable “chunks” in terms of the

schedule and team assignments for development. Once the requirements are

thoroughly understood, the software development lifecycle begins.

Software Development Life Cycle (SDLC)

The Software Development Life Cycle includes the steps necessary to design,

develop, deliver, and maintain the computer program. The phases follow one

another and are often accomplished by different teams members with

collaboration as questions and issues arise. As an example, a software developer

may meet with a design engineer to clarify information in the design, or a Test

Team member may contact a software developer regarding test results.

Software Development Lifecycle

10

Chapter 1 Computers and Programming

Design

As the requirements are decomposed and documented, the design phase begins,

and the break-down of required tasks and logical steps in the program are

developed. Design is a very important part of the software development life

cycle due to the increased costs of making changes or fixing errors later in the

process (errors in code are referred to as bugs). The sooner an issue is resolved,

the less rework and testing of the code are needed. This is highlighted in the

chart below from the IBM Systems Sciences Institute.

Cost of Fixing Errors by Phase

Software engineering tools that assist in the design (and development stage as

well) include pseudocode (sort of code). Pseudocode is a short-hand version of

the order of operations for a program. Consider a requirement for a program

that obtains age and salary information from a user, computes Recommended

Net Worth, and displays the result. The pseudocode for the solution might be:

Step 1 Start the program

Step 2 Obtain the age and salary information

Step 3 Compute the RNW (age x salary divided / 10)

Step 4 Display the output

Step 5 End the program

Pseudocode

11

Chapter 1 Computers and Programming

A flowchart often provides a clearer representation of the algorithm (logical

steps to the solution). Various geometric shapes are used to indicate different

operations (shapes may vary depending on industry). The order of operations is

typically top down, and lines with arrows are used to indicate the order or flow

of control. Flowcharts can ensure that steps in the process haven’t been

overlooked and that there is a complete understanding of the operational flow of

the program. They can also be used to assist programmers when developing a

complex part of a program.

Example Flowchart

A flowchart can be a simple sketch or developed using a flowcharting

application such as LucidChart or SmartDraw. Flowcharts are often required

to be delivered to a development team or subcontractor together with specific

requirements for the code, and are often required in customer documentation.

Many software engineers use a combination of tools. Pseudocode may be used

for a high-level description of the program or a program area, and a flowchart

might be used for more complex sections. Either way, the goal is to have a

comprehensive understanding of the requirements at every level to ensure that

the final product meets the requirements and is as error-free as possible.

12

Chapter 1 Computers and Programming

Development

Once a design is complete (or nearly complete since some aspects of the solution

may not be knowable during design), the development phase begins. The

development phase includes writing the code that will be executed to produce

the desired result and meet the requirements. Most often, the development of a

program is divided among multiple programmers and requires collaboration

and regular discussion to ensure a cohesive solution. To manage software

development projects and enable multiple people to work on the same program

at the same time, a Configuration Management System (CMS) is used with a

source code repository that stores and maintains all of the program files.

Software Development Collaboration

Programmers access this repository to obtain a copy of a file containing the

source code to add functionality or make modifications. The code is written in

the copy of the file, and this changed file is tested with the other files in the

source code repository. After testing, the modified file is placed into the

repository and is used by all of the other programmers in place of the original

file. The original file is retained by the configuration management tool as a

version control mechanism.

If a new file needs to be created, it is created in the configuration management

tool and added to the source code repository. CMS tools facilitate collaborative

13

Chapter 1 Computers and Programming

development, and version control of the files and the overall project. Many

industries and customers require their use.

Many configuration management systems have integrated suites that include:

scheduling and tracking, task assignment, defect reporting, and issue tracking

systems. In addition, tools for software teams and software project managers are

commonly used in industry to plan and measure project progress, and to provide

visibility into the design, schedule status, cost, and quality of the code.

Software Development Processes

For the software development phase, the Agile Development Process is a

popular method in use today. Agile processes go by various names (a few listed

below), but all are iterative and incremental software methodologies. This

process of developing portions of the software and adding them to the overall

project incrementally is commonly referred to as Iterative Enhancement.

Common Agile Methodologies

• Scrum – regular meetings, with periodic cycles called sprints

• Crystal - methodology, techniques, and policies

• Dynamic Systems Development Method (DSDM)

• Extreme Programming (XP)

• Lean Development

• Feature-Driven Development (FDD)

Agile Software Development Methodologies

A key component of the Agile Development Process is the sprint (the

development period between status meetings). Sprint status meetings (scrums)

are review and planning events that occur regularly. Tasks completed from the

previous sprint plan are reviewed, and completed work is demonstrated to

stakeholders for feedback and approval. The tasks that were not completed from

the previous sprint plan are reviewed with a course of action (re-plan) for the

next development cycle. The scope of new work that will be completed during

the next sprint cycle is planned, and engineers are assigned to the tasks.

14

Chapter 1 Computers and Programming

The phases in the Agile Development Process include: Plan, Design, Develop,

Test, and Evaluate, and are repeated during each sprint. Once delivered, the

project would be in the maintenance phase.

Agile Development Process Phases

Another software development methodology is the Waterfall model which

uses similar phases, but they are sequential, and are non-repeating. Each phase

depends on the completion of the previous phase, although there may be some

overlap. The Waterfall model was used extensively in the past, and is still

common in some industries today. The maintenance phase follows the delivery

of the software and includes updates.

Waterfall Development Process Phases

15

Chapter 1 Computers and Programming

Test and Integration

As development is completed, the next phase in the software development life

cycle is test and integration. In the initial test phase, the programmer runs the

program to ensure that there are no errors in the code, and that it performs

correctly (meets the requirements). In large organizations, a test team or test

engineer will also run the program and report any errors found to the developer

for correction. On large-scale programs, a formal Test and Integration Team

would be responsible for this phase and would run a variety of tests including:

Unit Tests on the modules (portions of code being added or modified), and an

Integration Test which verifies that the parts of the program work well together

when the new code is integrated into the overall project. Adding the new or

modified code into the program may introduce new errors which must be

corrected. Regression testing compares new test results with previous results

and ensures that the program functions correctly.

Types of Errors

The three types of errors that are looked for during the test phase are syntax

errors, logic errors, and runtime errors.

Syntax errors have to do with violating language specific rules like indentation

and punctuation and are found by the compiler or interpreter and the code will

not execute. The programmer must correct these and most IDEs will highlight

them as an aid in development.

Logic errors are errors in the algorithm or the way that the algorithm was

written by the programmer. For example, if the requirement is that the program

multiply a number by two only if it is greater than ten, and the programmer

writes the code so that a number is multiplied by two if it is less than ten, that

would be a logic error. The program compiles and runs, but it produces

incorrect results.

Runtime errors are logic errors that cause the program to stop executing. An

example would be a part of the program attempting to divide a number by zero.

The IDE will provide a Traceback of the sequence causing the error. Runtime

errors can be avoided by thoroughly designing and testing the algorithm.

16

Chapter 1 Computers and Programming

Delivery and Maintenance

The final phase of the software development life cycle is the delivery and

maintenance phase. In this phase, the program is delivered to the client or

customer and a period of maintaining the program begins. Maintenance of a

program would include updates that fix errors or security issues found after

initial delivery, or upgrades that provide additional functionality or capability.

Updates to software programs are commonplace today.

Ergonomics

The set-up or arrangement of the computer and furniture to minimize the risk of

injury or discomfort is a field of engineering called ergonomics. It includes the

study of the physical effects of repetitive motion and working in a stationary

position for an extended period. As more people spent their days working at

computers, a variety of health issues surfaced. Some guidelines include:

• Monitor position – with respect to eye level (dry eyes)

• Eyes should be looking slightly downward

• Adjustable chair – arm posture (tennis elbow)

• Elbows should be at 90-degree angles

• Proper posture – back posture (lumbar issues)

• Lumbar support and back straight

• Taking periodic breaks – eye strain, posture, repetitive motion

• 20-20-20 rule says every 20 minutes look 20 feet way for 20

seconds

• Standing or walking away for few minutes

• Adequate lighting – eye strain

• Dark areas and dark backgrounds cause eye strain

Ergonomic Guidelines

17

Chapter 1 Computers and Programming

Chapter 1 Review Questions

1. Computers are simply _________ __________ devices.

2. The physical parts of the computer are referred to as _____________.

3. The CPU is considered the ___________ of the computer.

4. The CPU performs basic ____________ and controls computer _________.

5. Main memory (RAM) is ________ and is erased when a computer is turned off.

6. __________ Storage device memory is non-volatile and is retained when the

power is turned off.

7. A computer keyboard, mouse, and camera are examples of _________ devices.

8. Computer monitors, speakers, and printers are examples of __________devices.

9. Sets of programmed instructions for a computer are referred to as __________.

10. _____________ and _____________ are the two basic types of software.

11. The language of computers is a _________ language.

12. The smallest information representation in computing is a _____ or binary digit.

13. A binary digit can have a logical state of _____ or _____.

14. A Byte is a combination of ________ bits that are either one or zero.

15. The number represented by 0110 1001 is _______.

16. The binary representation of the number 255 is ___________.

17. The names of the two low-level languages are __________ and __________.

18. A Machine cycle consists of ________, ________, ________, and ________.

19. A 2 GHz (gigahertz) processor can execute __________ instructions per second.

20. High-level languages make programming a computer _____ and more _______.

21. Java is a _______ -level language.

22. A (n) ___________ translates a high-level language into a separate machine

language program.

23. A (n) ___________ reads, translates, and executes a program one line at a time.

24. The four steps in the Software Development Life Cycle are ________,

____________, _______________, and _________________.

25. The costs associated with fixing errors in code are __________ when caught

early in the process.

18

Chapter 1 Computers and Programming

26. A written shorthand version of the steps to complete a task in a computer

program is called _______________.

27. The act of discerning in detail from the requirements what the program is to

accomplish is called ___________________ ____________________.

28. A set of logical steps taken to complete a task is called a(n) _____________.

29. Plan, design, develop, test, and evaluate are the five steps in the ___________

development process.

30. The three types of programming errors are _________, __________ and

____________ errors.

Chapter 1 Short Answer Exercises

31. Explain the major difference between main memory and secondary storage.

32. List at least three (3) input devices.

33. List at least three (3) output devices.

34. List the two (2) types of software.

35. Write the word Java using the binary representations of the letters.

36. Write the binary representation for the number 176.

37. List the two low-level languages.

38. What is the purpose of a source code repository?

39. List the five phases of the Agile Development cycle.

40. Explain the difference between logic and syntax errors.

Chapter 1 Programming Exercises

41. Write the pseudocode for the steps required to determine the total

price for some number of items entered by the user priced at $9.00

each with a 7% sales tax.

42. Draw a flowchart of the steps in Programming Exercise 1 above.

43. Ensure that you have access to a copy of Eclipse (ref. Appendix B).

19

Chapter 2 Java Language Basics

Chapter 2

Java Language Basics

The Java programming language was initiated as a project in 1991 by James

Gosling, Mike Sheridan, and Patrick Naughton, and was originally designed for

embedded systems. With the introduction of web browsers, and the reduction in

prices and speed increases for computers in the 1990’s, Java developed into a

general-purpose programming language with the release of version 1.2 (Java 2)

in 1998. The current version is Java SE13 released in September 2019. Java is a

class-based, object-oriented language that is compiled to bytecode and runs on

any virtual machine.

JVM - The Java Virtual Machine (JVM) enables computers to run Java programs.

The JVM converts Java bytecode into machine language, manages memory, and

is part of the JRE. It allows Java programs to run on most devices and operating

systems.

JDK - The Java Development Tool-kit (JDK) is a development environment for

creating Java programs and applets that includes the JRE, an interpreter,

compiler, archiver, and documentation generator. There are a variety of JDK’s

for different operating systems and environments available.

JRE - The Java Runtime Environment (JRE) is an implementation of the Java

Virtual Machine that executes Java programs.

20

Chapter 2 Java Language Basics

The Eclipse IDE

The Eclipse IDE provides all of the Java development tools necessary to develop

programs in Java. It is the most widely used IDE for Java programming, is used

by many companies, and is suitable for starting out in Java as well as advanced

programming and collaboration. It is free to download and use, and is similar to

most IDEs in look-and-feel and capability. The Eclipse version used in this text is

2019-06. Obtaining a copy is covered in Appendix B and Getting started in

Eclipse is covered in Appendix C and should be completed before continuing.

The Eclipse IDE

Parts of a Java Program

The “Hello World” program from the appendix is repeated below with line

numbers for explanations of the parts. On line 1 is the package or project name.

The package in Java is used to group related classes and files. On line 3 is the

class name for the program. Every Java program has at least one class. The

word public is an access specifier indicating that the class is publicly accessible

for use. Other access specifiers will be covered later.

21

Chapter 2 Java Language Basics

The brace following the class name on line 3 begins a block of code for the class.

The closing brace for the class is at the margin on line 10 and aligns vertically

with the word public preceding the class. Aligning braces with the block of code

that they close is important for readability and the IDE will automatically align

and indent them. Line 5 is the header for the main method for the program. This

is where execution of the program begins when it runs. Note the brace at the end

of the line which begins another block of code. The closing brace is on line 8 and

is aligned with the indented header for the main method (the word public).

The parts of the main method header are:

• public – specifying that it is accessible outside the class

• static – designation that it is a class method and not associated with any

object

• void – indicating that it has no return value

• (String[] args) – a provision for command line arguments

Line 6 is a comment added by Eclipse indicating that the main method was

automatically created as a result of the checkbox when the class was created.

Line 7 is an output statement executed by the program. This line ends with a

semicolon which is the end-of-line marker in Java. To the compiler, a semicolon

indicates the end to a statement just as a closing brace indicates the end of a block

of code.

22

Chapter 2 Java Language Basics

Syntax and Grammar

Each programming language has some characteristics and rules that must be

followed when writing programs in that language. Two of these are the syntax

and grammar of the language.

The syntax of a language refers to the rules for properly combining symbols,

operators, and punctuation, as well as the proper use of operators.

The grammar of a programming language determines the structure of the

sentences containing the symbols, operators, and punctuation that make up the

instructions for the computer.

Another characteristic of programming languages is the use of keywords or

reserved words. Keywords are reserved by the language for a specific use and

cannot be used for another purpose. Eclipse will display them in a color font to

highlight them as shown below (package, public and class).

The following is a list of some of the Java keywords.

boolean catch char class double

else extends final finally for

if implements import int new

package private public return static

String throw try void while

Java Keywords (partial list)

Note: True, false, and null are literals and are reserved in Java as well.

Comments

In addition to the tools mentioned in Chapter 1 for designing and developing

software, comments within the code can be helpful and are often required.

23

Chapter 2 Java Language Basics

Comments in programs are lines of code that are not executed, and are ignored

by the compiler. They are provided for human readers, and are used to clarify

values or sections, or explain complex operations. This is important because

most software is maintained, updated, and expanded. Code is written once, but

is read many times, and the person who wrote the code may not be the person

making the modifications, or the person who wrote the code may not remember

why a section was written a certain way or why a specific value was used.

Adding comments to code while it is being written can save hours of reading

through the lines later when the code is being changed.

Comments can also be used as a development tool. Pseudocode can be written

in the edit window as a comment to act as a place-holder or reminder that will be

replaced later by actual code.

Single line comments in Java begin with two forward slashes. The Eclipse IDE

used in this text will color code comments in green font as the default. For multi-

line comments, a forward slash with an asterisk “/*” begins the paragraph and an

asterisk forward slash “*/” ends the paragraph. For the Javadoc documentation

generator, which creates HTML documents from Java source code, the opening

paragraph indicator is a forward slash and two asterisks “/**” and it ends the

same as the multi-line comment.

 // a single line comment in Java

 /* a multiline

 comment in Java

*/

/** A Javadoc comment for the document generator

*/

Java Comment Types

Variables

Variables are elements in programs that are used to allocate memory and store

information that the program will use. They are called variables because what is

stored in them can vary as the program runs. A variable is declared and named

24

Chapter 2 Java Language Basics

by the programmer to allocate memory for use by the program. The computer

remembers the memory address of where it is stored, and the programmer refers

to it in the program by the name that was used to declare it.

In the Hello world program, a literal string (sequence of characters) was passed

to the output statement. A variable could also be used as shown in Ex. 2.1 below.

In the example, a String variable is declared on line 7 and is assigned the value

“initially”. This is referred to as initializing the variable. The equal sign is the

assignment operator in Java and is used to assign a value to a variable. The

computer allocates memory for a String named myWord and stores the value

“initially” there. On line 8, the variable is passed to the output statement. The

variable is then assigned “currently” on line 10 which replaces the value that was

previously stored and line 11 displays it again. The Eclipse console output is

shown below the program. The use of println() instead of print on lines 8 and 11

causes the output to be on separate lines.

Ex. 2.1 – String Variable Declaration, Initialization, and Modification

Variable Declaration and Utilization

Notice in the example that when the variable myWord is assigned a

new value, it is not preceded by the word String. String is the data

type (covered next) of the variable which is only used when a variable

is being declared.

25

Chapter 2 Java Language Basics

Data Types

The example in Ex. 2.1 declared a String variable and assigned it a value that was

a literal string (a series of characters within double quotes). When a variable is

used to store a number, a different data type is declared. The data types in Java

include int for integers (whole numbers), and float and double for floating-point

numbers (numbers with a decimal). The data type tells the computer how much

memory to reserve for the variable. To store an integer, or float, 4 bytes are

allocated. To store a double, 8 bytes are allocated to accommodate more precise

numbers (the double data type is recommended for fractional numbers). The

numeric ranges for integers and doubles in Java are sufficient for most program

requirements and are used for whole and fractional numbers in this text.

Table 2.1 below lists some of the basic data types used in Java.

Table 2.1 - Java Primitive (simple) Data Types

The next example declares two integer variables and uses them in three different

output statements to highlight some additional considerations when working

with numbers in Java. Each of the output statements uses println() which adds a

line feed after the output is displayed. The first output statement adds the two

26

Chapter 2 Java Language Basics

values of the variables, but the second does not. The difference is the occurrence

of the literal string that precedes the expression. This causes Java to interpret the

plus sign as adding additional textual output and not numbers. Note that num1

could not be mathematically added to the literal string. The value stored in

num2 could be added to num1, but the individual values are displayed. The

third output statement forces the addition of the values using parenthesis.

Ex. 2.2 – Numeric Variable Declaration, Initialization, and Output

Program Output

Variable Names

The variable naming convention most used in Java is called uppercasing. A

single word variable is all lower case, and a two-word variable has the first word

in lower case and the first letter of the second word in uppercase. This aligns

with W3C (World Wide Web Consortium) as well as other Guides and Standards

for the language. When naming variables, there are a few rules that need to be

followed:

• none of the Java key words can be used as a variable name

• there cannot be any spaces in the name

• the first character must be a letter (or an underscore)

• uppercase and lowercase letters are distinct

27

Chapter 2 Java Language Basics

In addition, the name of a variable should describe the data that it stores.

Software Engineering Principles and Programming Standards require descriptive

variable names to enhance readability. A longer name is usually better. Using

variable names like var or pd are ambiguous and make removing errors

(debugging) and maintaining the code more difficult. If a comment is needed to

describe a variable, then the name of the variable is inadequate.

Table 2.2 below lists some examples of good and bad variable names.

Table 2.2 - Variable Naming

Error Notifications

Java is case sensitive and common programming errors include case errors and

misspelling a previously declared variable name. These types of errors will be

highlighted in most IDEs as they are introduced so they can be corrected

immediately. If errors exist in the code and an attempt is made to run the

program, it will cause a compiler error and will not run. In the error example

below, the variable number is declared with all lowercase letters, but an

uppercase letter is used in the output statement. The IDE underlines the variable

name with red and places an error indicator at the margin on the line containing

the error. Hovering over the indicator provides a description of the error.

28

Chapter 2 Java Language Basics

When an attempt is made to run the program, a compiler error is output to the

console area of Eclipse with a description and line number containing the error.

Error Example

Variable Assignments

When a variable is declared, it is typically assigned an initial value. This is

referred to as initialization. A single equal sign is the assignment operator, and

the variable being assigned is on the left side of the operator. The right side of

the assignment operator can be a value or an expression. In this statement, a

variable userAge is declared as an integer, and is assigned the integer value 29.

int userAge = 29; // userAge is assigned 29

As shown previously, a variable can be changed while the program is running.

The new value assigned to a variable overwrites the old value in memory where

the variable is stored.

Ex. 2.3 – Changing the Value Stored by a Variable

29

Chapter 2 Java Language Basics

In Ex. 2.3, a variable is declared and initialized. The variable is then changed

using the old value in the expression to assign a new value. Note that a variable

can be on both sides of the assignment operator. The right side is evaluated first

by the computer and the result is assigned to the left side.

Constant Variables (Named Constants)

A constant is a variable that cannot be changed by the program, must be

initialized when declared, and cannot be assigned a new value. There are several

situations when this is preferred. One is to eliminate the use of unidentified

numbers in programs, and another is to ensure that a specific value is used

throughout the program.

An unidentified number in programming is referred to as a magic number.

They are literal numbers in a program without an obvious meaning. When a

program is being modified and an expression uses a magic number, it may be

difficult to determine what the number means even by the original programmer.

As an example, the following line appears in a program that declares a double as

diameter, but the meaning of 3963.2 is unknown. Since the equation results in a

diameter, it appears to be a radius. It isn’t clear.

By using a named constant in the code, the meaning is clear. The constant is

declared and initialized and then used in place of the literal number wherever it

is needed in the program. Constants are declared using the final keyword

followed by the data type, name, and initialization. The naming convention for

constants is all uppercase letters with underscores between words.

Named constants are also used to ensure that the same value is used throughout

the program and by all programmers. If multiple programmers are working on a

program that calls for them to use the radius of the earth in various equations,

they can use a named constant to ensure that the same value is used. The earth is

not a sphere and there are multiple values for its radius.

30

Chapter 2 Java Language Basics

Named constants also prevent typographical errors when the same value is being

used multiple times. In addition, when a new value is needed for the constant,

the change is made in a single place in the code. As an example, a scientist

overseeing a program using EARTH_RADIUS may decide that the equatorial

radius being used in the program should be changed to the pole radius of 3950.0.

It will only need to be changed to the new value in one place in the code. This

eliminates the possibility of typographical errors or missing an occurrence when

updating all of the equations that use the value.

Global Variables

A global variable is a variable that is declared outside all methods including the

main method. This makes them accessible to all parts of the program. Most

programming standards do not permit their use except when they are global

constants because they could be changed arbitrarily by any part of the program.

This makes debugging more difficult. Since a constant cannot be changed, a

global constant provides for using a consistent value across all of the code in a

program. Java doesn’t explicitly have global variables since every variable must

belong to a class, but once declared, they can be accessed using the class name.

Mathematical Operators and Expressions

The operators for mathematical expressions in Java include: addition (+),

subtraction (-), multiplication (*), division (/), and the modulus operator (%).

Table 2.3 - Arithmetic Operators

31

Chapter 2 Java Language Basics

The mathematical operators combine with variables and expressions in programs

to perform operations. The lines of code in Ex. 2.4 declare three integers and use

them in various equations. Recall that the computer evaluates the right-hand

side of the assignment operator, and then assigns the result to the left-hand side.

Ex. 2.4 – Mathematical Operators

The results from division in Java are different for different data types and data

type combinations. If one of the values is a floating-point number (number with

a decimal), the result is a floating-point number. If both numbers are integers as

in the first example below, the result is truncated to an integer and the decimal

portion is discarded. One way to remember this is “int divided by int is an int”.

However, an integer divided by an integer results in a double if the variable it is

assigned to is declared as a double.

The modulus operator produces the remainder after division (sometimes

referred to as modulo divide). The operand on the left of the operator is divided

by the operand on the right and the result is the remainder after division.

32

Chapter 2 Java Language Basics

Precedence in Java is parenthetical expressions first, followed by multiplication,

division, modulo division, and lastly addition and subtraction. Operators with

the same precedence are handled left to right, and precedence can be forced

using parenthesis. The use of parenthesis is often preferred even when they

align with precedence. This enhances the readability of the expression and helps

to eliminate errors. The equations in the table below are the same, but the results

are quite different.

Table 2.4 - Precedence and Parentheses

Mixed-type expressions are promoted to the higher data type in use. In an

expression with an integer and a double, the integer is temporarily converted to

a double, and the expression is promoted resulting in a double. The same rule

applies to an expression with an integer and float.

When using floating-point (fractional) numbers, the double data type is

recommended over float for variables since it is more precise as the

results below illustrate.

33

Chapter 2 Java Language Basics

Programming Algebraic Expressions

When converting mathematical expressions into Java code, the translation may

require adding operators and parentheses to ensure the correct result. As an

example, the expression 3xy in algebra would produce a syntax error. The

multiplication operator must be inserted as in 3 * x * y. When an expression

contains fractions, precedence requires careful consideration to ensure that

operations occur in the correct order. With extremely complex equations,

breaking the expression into parts may be the best course of action.

Conversion examples:

Converting Algebraic Expressions

 Math Methods

The Java Math library contains constants like PI and methods for exponentiation,

rounding numbers, and other common operations. To use these operations, the

method is preceded by the library name “Math” as shown below. The functions

are passed arguments which are values passed to methods and functions for

their use. As an example, for rounding numbers, Java has a Math.round()

function. The line of code below passes the number 9.4 as an argument to the

round function. The function executes and the result is assigned to the variable.

34

Chapter 2 Java Language Basics

For operations with exponents, the Math.pow() function is used. In this case,

two arguments are required. The first argument is the number to be raised, and

the second is the exponent.

In addition to the round() and pow() functions, the java.lang.Math library contains

functions for performing other mathematical operations including: abs(x), acos(x),

asin(x), atan(x), cos(x), hypot(x), log(x), sin(x), sqrt(x), and tan(x) among others.

Below is an example that uses the square root function.

Converting Data Types

Converting from one data type to another is referred to as casting. The round

method in the example below returns a double, which is then cast to an integer

so that it can be assigned to the integer variable roundInt. The data type that the

value is being cast to is in parenthesis.

Obtaining Keyboard Input

To obtain input from the keyboard requires a Scanner. To use a Scanner, the

class java.util.Scanner must be imported. Import statements are located

between the project package and the class, and provide access to Java libraries.

Ex. 2.5 – Keyboard Input

35

Chapter 2 Java Language Basics

The line of code below declares a Scanner named in and assigns it a Scanner

using “new” and “System.in” which is the standard system input source (the

keyboard).

When a program needs to obtain keyboard input, a prompt is used to describe

the input being requested. Once the requested data is entered, the user will press

the Enter key. To obtain the input, a variation of the next() method is used. In

the example below, the prompt requests a number and nextInt() is used which

reads an integer. Note that nextInt() is preceded by the name of the scanner and

the dot operator to access the method.

When the program runs, the prompt is displayed and the program waits. Once a

value is entered in the console area of Eclipse and the Enter key is pressed,

nextInt() will obtain the value and it will be assigned to the variable. After the

output statement, the Scanner is closed (a recommended practice).

Obtaining Keyboard Input

The Scanner has methods to obtain input for various data types. During the

design phase of the program, different approaches and methods should be

considered depending upon how the data will be used. Examples using the

different versions of the method are shown below.

36

Chapter 2 Java Language Basics

Scanner Methods for Obtaining Input

Design Consideration

The next() method will read input until whitespace is encountered. Whitespace

can be a space, tab, or line feed. Consider a program that requires the user to

enter the name of a city. If the city name entered is Denver, then next() will read

the full name. If the name of the city is New Brunswick, then next() would only

read the word New. In this situation, using nextLine() would ensure that the

entire city name would be read.

Formatting Output

The print() function that was used in previous examples to display output has

two other versions. One version, println() adds a line feed after the output is

displayed.

Ex. 2.6 – Line Feed Output

Program Output

37

Chapter 2 Java Language Basics

The other version for output is printf() which is used when formatting output.

A format specifier is used to indicate the formatting to be applied. Arguments

are passed to the function: the format specification(s) in quotes, and the value(s)

or string(s) to be formatted. The specifier begins with “%”, is followed by the

formatting, and ends with the type: “f” (float), “d” (integer), and “s” (string). An

integer is placed after a decimal in the specifier for the number of decimal places.

In Ex. 2.7 below, three different decimal specifiers are used. Note that using

printf() eliminates the ability to use println(), so line feeds are added as separate

output statements in the example.

Ex. 2.7 – Formatted Output

Program Output

Previously the “+” operator was used in output statements that

combined text with numeric values. With format specifiers, a comma

separates the specifier and the variable as shown in Ex 2.7.

A decimal place specifier that is fewer than the number to be

formatted will cause rounding as shown in the example.

38

Chapter 2 Java Language Basics

When a literal String is part of the output, the format specifier can be located

within the same quotes as shown here.

When more than one variable is included in the output, the specifiers are

included in the string portion in the order in which they are to be used in the

output. The actual variables are included afterward as shown here. Notice that

the numbers in the output were rounded due to specifying two decimal places.

To add commas for large numbers, a comma is included in the specifier after the

percent sign. Other formatting techniques and methods will be covered later in

the text.

This line of code adds the dollar sign to the output.

39

Chapter 2 Java Language Basics

Numeric data is often output in columns and right-aligned. To designate a

specific amount of space to use for output, the number of spaces is added to the

format specifier before the decimal or designator if no decimal is used. A

negative sign before the spacing value is used for left alignment of the output. In

Ex 2.8, the descriptions are left-aligned and the prices are right-aligned.

Ex. 2.8 – Specifying Alignment and Output Spacing

Program Output

In Ex. 2.8, the word “Beverage” used all of the allocated space. If a String or

value does not fit in the specified space, the item will still be displayed entirely

but without any spaces.

Escape Sequences

To insert certain characters and formatting within literal strings, escape

characters are used. The escape sequences include: new line “\n”, tab “\t”,

40

Chapter 2 Java Language Basics

double quote \”, and back slash “\\”. The sequence is surrounded by quotes

unless it is within a literal string. When println can’t be used because printf is

being used, a line feed can be inserted as “\n” anywhere a line feed is needed.

Table 2.5 - Escape Characters

Ex. 2.9 – Escape Sequences

Strings

A string is a sequence of characters. When a literal string is written in the code,

it is surrounded by double quotes and is referred to as a string literal. A String

variable is the String data type in Java and can contain a large amount of text

41

Chapter 2 Java Language Basics

(2,147,483,647 characters). A character is also a data type that can store a single

character. It is declared using char and is assigned using single quotes. A String

can contain a single character, but is always surrounded by double quotes.

Characters are stored using their ASCII numeric values, so the assignment

statement above would actually store 65 as the value for “A” (see Appendix A).

The computer knows that the data type is char and handles the translation.

The characters contained in a String are in positions called indexes beginning

with index zero. In the String below, the “e” is at index 3 although it is the 4th

letter in the word.

To obtain a character from a String the charAt() method is used and is passed

the index of the character to obtain. Note that the method is preceded by the

String variable’s name and the dot operator (or dot notation). In the code below,

the character “e” would be assigned to the char variable letter.

To obtain a portion of a String, the substring() method is used. When two

arguments are passed to substring(), the first argument is the index of the starting

point of the substring to obtain, and the second argument is one index beyond

the portion to obtain. As an example, the following statements assign “friend” to

the String variable portion.

42

Chapter 2 Java Language Basics

When one argument is passed to substring(), the argument is the index of the

starting point of the substring to obtain, and the ending point is the end of the

String. The following statements assign “car” to the String variable ending.

Strings also have a method for obtaining their length. The length() method

returns the number of characters in a String including any spaces. In the code

below, 8 would be assigned to the variable len. Remember that the indexes for

the characters are 0 through 7, one less than the length.

Combining two or more Strings is referred to as concatenation. The “+”

operator is used to concatenate Strings. No space will be added between the

Strings. They are simply joined together as shown in Ex. 2.10 below.

Ex. 2.10 – String Concatenation

To add a space between the Strings, it can be added to either of the Strings being

combined or separately as shown here.

43

Chapter 2 Java Language Basics

The lines of code in Ex. 2.11 below prompt for a first and last name, and use the

next() method to obtain the input. The inputs are stored in String variables, and

concatenation is used in the output statement to add a space between the names,

and to add a period at the end.

Ex. 2.11 – String Concatenation

The ability to manipulate Strings is an important skill in programming.

Most interfaces receive input as Strings and perform error checking

and conversion of numeric values. Some of these techniques are

covered in the next chapter.

Methods, Functions, and Dot Notation

In this chapter, the examples used methods and functions to perform operations.

Although the terms tend to be interchangeable, for clarification, a method

typically refers to functionality associated with an object of a class, and a

function is not. As an example, the String variables declared in this chapter are

declared using an upper case “S” whereas the integer and double data types are

not capitalized. Classes are capitalized in accordance with programming

standards, and the String is a class. The String class has other methods available

including toLower() and toUpper() for converting. To use them, the variable name

44

Chapter 2 Java Language Basics

for the String is followed by the dot notation and the method name. In the

statements below, a String is declared called word. The variable is actually an

object of the String class and inherits the methods of that class. The methods are

accessed using the dot operator as shown on the line below that uses length().

The Scanner is also a class that provides methods some of which were used in

this chapter. Again, after declaring a Scanner, dot notation was used to utilize

the methods. The Math functions that were used did not require declaring a

Math object before using them, but did use dot notation. The Package (Library)

name Math, the dot operator, and the function name were used as shown here.

Classes and Objects are covered in a later chapter.

Programming Style and Standards

Proper programming style and format of the code make a program easier to read

and maintain, and help to prevent errors from being introduced. The cost to fix

errors increases dramatically as the software development cycle progresses.

Anything that decreases the chances of introducing bugs is welcome and

utilized. For these reasons, Programming Standards have been developed to

provide uniformity and enhance the readability and maintainability of code.

They include proper spacing and indentation among others. An entire program

could be written on a single line and the computer would have no problem with

it, but someone trying to debug the code or add functionality would have a very

difficult time. Appendix F contains a set of Programming Standards for Java.

Programming Standards and Style Guides are used in industry to

ensure the readability and maintainability of programs due to the time

and cost associated with poorly written and ambiguous code.

45

Chapter 2 Java Language Basics

Chapter 2 Review Questions

1. The characteristics and rules that must be followed when writing programs in a

high-level language are ___________ and ___________.

2. Words that are reserved in a programming language are called ____________.

3. Words added to programs to explain complex areas or to add clarity and are not

executed when the program runs are _______________.

4. __________ are used to store values in memory.

5. The __________ data type is used to store whole numbers.

6. Numbers with a decimal should be stored in the _________ data type.

7. The equal sign is used to ______________ a value to a variable.

8. The ______ side of the assignment statement is assigned to the ______ side.

9. A variable must be __________ before it can be used by the program.

10. Variable names (can or cannot) _______ begin with a number.

11. A ___________ should be used in place of a magic number.

12. A value passed to a method is called a(n) ___________ .

13. The __________ escape character is used to produce a tab.

14. Converting an item to a different data type is known as ___________.

15. Errors in programing are typically referred to as __________.

16. Which of the following variable names follow proper naming conventions?

a. average

b. 8pieces

c. netPay$

d. grossPay

e. hourlyRate

17. The first character in a String occupies index ________ in the String.

18. The _________ data type can store one character.

19. Concatenation refers to _____________ two or more Strings.

20. Programming _____________ provide uniformity and enhance the readability

and maintainability of code.

46

Chapter 2 Java Language Basics

Chapter 2 Short Answer Exercises

21. What type of variable is defined in this expression?

final double INTEREST_RATE = 0.07;

22. What do the following lines of code display?

double ouncesPerCan = 8.0;

System.out.print(ouncesPerCan);

23. What is the resulting output when the following lines of code are executed?

int number = 23;

number = 52;

System.out.print(number);

24. What do the following lines of code display?

int number = 12;

number = number + 8;

System.out.print(number);

25. What value is assigned to num3 in the lines below?

int num1 = 32, num2 = 6;

int num3 = num1 + num2;

26. What do the following lines of code output?

double num1 = 2.5;

int num2 = 5;

num1 = num1/num2;

System.out.print(num1);

27. In these expressions, what value will be assigned to the variable result?

a. result = 5 / 2.0;

b. result = 7 / 2;

c. result = 4 * 3 / 2;

d. result = 5 % 2;

47

Chapter 2 Java Language Basics

28. Express the following equations using Java expressions.

e. 4xy

f. z = 2ab

g. y = b2-4ac

h. 𝑡 =
𝑎 + 𝑏

𝑥 − 𝑦

29. In the expressions below, what will be the value assigned to the variable num1?

a. num1 = Math.round(2.3);

b. num1 = Math.pow(4,2);

c. num1 = Math.sqrt(25);

d. num1 = Math.sqrt(Math.sqrt(81));

30. In following statement, what does the number “8” specify?

System.out.printf(“%8.2f”, number);

31. After the lines below execute, what will be the output?

double number = 123.453;

System.out.printf(“%.2f”, number);

32. What is the output from the following statement?

System.out.print(“She said \”hello\”.”);

33. After the lines below execute, what will be stored in the variable name?

String first = “Angela”;

String init = “P.

String last = “Harad”;

String name = first + “ “ + init + “ “ + last;

34. After the lines below execute, what will be stored in the variable letter?

String name = “Sheila”;

char letter = name.charAt(1);

48

Chapter 2 Java Language Basics

35. After the lines below execute, what will be stored in the variable part?

String word = “cartoon”;

String part = word.substring(0, 4);

36. After the lines below execute, what will be stored in the variable portion?

String word = “classroom”;

String portion = word.substring(5);

37. After the lines below execute, what will be stored in the variable len?

String cafe = “Angelo’s”;

int len = café.length();

38. Which of the following should be used to read a line of text including spaces to

store in the variable phrase?

a. phrase = in.nextInt();

b. phrase = in.nextDouble();

c. phrase = in.nextLine();

d. phrase = in.next();

Chapter 2 Programming Exercises

39. Complete the “Hello World” exercise in Appendix C and provide a screen

capture of the IDE with the output.

40. Write a line of code that displays the following text.

Java is a high-level language.

41. Write a line of code that displays the following text with the quotes.

The waiter said “The special is good!”

42. Write a program that prompts the user to enter their name, stores the name

entered in a String variable, and then displays ‘Hello ‘, and the name that was

entered.

49

Chapter 2 Java Language Basics

43. Write a program with three integer variables: first, second, and third. Assign

the values 5, 6, and 7 to the variables and display each on a separate line using

the variable names.

44. Write a program that declares the constant below and displays “The interest

rate is “ followed by the constant and a percent sign.

INTEREST_RATE = 7

45. Write a program that assigns the variable tickets the value 125 and then

displays “The tickets sold today were “ followed by the variable.

46. Write a program that defines three String variables named word1, word2, and

word3. Assign abc to word1, def to word2, and then assign word1 and

word2 combined to word3 using concatenation. Then display word3.

47. Write a program that uses a double that is assigned 12345.678 and use a format

specifier to display the number with commas and two decimal places.

12,345.68

48. Write a program using variables to display the numbers below on separate lines,

with two (2) decimal places, and in fields that are eight (8) characters wide.

123.45 1452.56 56.80

49. Write a program that uses three (3) print statements to display the words No,

lines, and between all on one line with spaces between the words.

50. Write a program that prompts the user to enter their age, stores the age in a

variable named age, and then displays ‘Your age is’ and the age that was

entered.

51. Write a program that prompts the user to enter a number, and then a second

number. The program will add the numbers, store the result in a variable and

display “The sum of the numbers is: “ and the result.

52. Write a program that computes the total cost of a meal based on the meal price

entered by the user, plus a 20% tip, and 5% sales tax. The output should be

displayed as shown below and include a dollar sign and two (2) decimal places.

50

Chapter 2 Java Language Basics

53. Expand number 14 to include output of the tip, and tax amounts, before the

total price. The output should include a blank line between the input prompt

and the output, dollar signs, two (2) decimal, and amounts aligned right.

54. Write a program that prompts the user to enter a Fahrenheit temperature,

computes the Celsius temperature, and displays ”The Celsius temperature

is: “ and the result. The equation for the conversion is:

C = (F – 32) / 1.8 Test data: When F = 23, C = -5

55. Write a program that prompts the user to enter the lengths of the two sides of a

rectangle. The program will compute the area and perimeter, and assign the

values to two variables. Then display the computed values with their titles as

shown in the example below.

56. Write the pseudocode for a program for a Yogurt vendor that computes the

total sales and profit for a day’s sales based on the number sold at $6.50 each,

and the cost of the Yogurt to the vendor which is $4.25 each. The profit is the

total sales minus the total cost.

57. Write the program for the Yogurt vendor in #56 above. The program will display

the output as shown in the example below. Note the dollar signs and

alignment.

51

Chapter 2 Java Language Basics

58. Write a program that prompts the user for two integers (x and y) and computes

a result using the equation below. Note the output when y is entered as 1.

𝑎𝑛𝑠𝑤𝑒𝑟 =
𝑥 + 2

𝑦 − 1

59. Part #1: The surface area of a sphere is given by the equation below. Write a

program that prompts the user for the radius of a sphere as a double and the

units of measure (feet, miles, etc.), computes the surface area, and displays the

result with the square units. Use Math.pow() in the solution, and format the

output to 3 decimal places. Use 3.14159 as the value for PI.

Surface area = 4 π r2

Part #2: The volume of a sphere is given by the equation below. Write a

program that prompts the user for the radius of a sphere as a double and the

units of measure (feet, miles, etc.), computes the volume, and displays the

result with the units. Use 3.14159 as the value for PI.

𝑉𝑜𝑙𝑢𝑚𝑒 = 4𝜋
𝑟3

3

Part #3: Combine parts 1 and 2 into a single program and add the computation

and output for the circumference. The program will prompt the user for a

radius as a double and the units of measure. Two examples are provided using

3.14159 as the value for PI, for testing to validate the output.

𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 2𝜋𝑟

Volley Ball radius: approx. 4.1 inches

The Earth’s moon radius: approx. 1,080 miles (note the commas in the output)

52

Chapter 2 Java Language Basics

Chapter 2 Programming Challenge

Loan Calculator

Design and develop a program for a car dealer that computes the monthly payment,
total payback amount, and total interest paid for a car loan based upon the loan
amount, interest rate, and loan duration in months.

The equation for determining the monthly payment for a loan is:

Monthly Loan Payment Formula: MP = L * (r / (1 - (1 + r)-N)).

o MP = monthly payment amount

o L = principal, meaning the amount of money borrowed

o r = effective interest rate. Note that this is usually not the annual

interest rate (see below).

o N = total number of payments

Calculate the effective interest rate (r) - Most loan terms use the "nominal annual

interest rate", but that is an annual rate. Divide the annual interest rate by 100 to

put it in decimal form, and then divide it by the number of payments per year (12)

to get the effective interest rate. Note that the user enters the interest rate as a

percentage (i.e. 4 for 4%).

o Example, if the annual interest rate is 5%, and payments are made monthly

(12 times per year), calculate 5/100 to get 0.05, then calculate the rate:

Effective rate = 0.05 / 12 = 0.004167.

Sample output:

53

Chapter 3 Decision Structures and Boolean Logic

Chapter 3

Decision Structures and Boolean Logic

Decision structures determine the statements that execute based upon a

condition. A conditional expression is used to control which line or lines of code

execute. Decision structures provide multiple paths through a program based on

the status of the true or false condition. If the condition is true, then a statement

or statements are executed, otherwise they are not executed.

The if Condition

As an example, assume that a Theater has seating for 400 customers. Once the

Theater has sold 400 tickets, the show has been sold out. When this occurs, the

Theater displays a “Sold Out” sign at the box office. The decision to display the

sign is made based upon whether or not 400 tickets have been sold. The decision

structure is implemented using the if statement.

Ex. 3.1 – Conditional Statement Pseudocode

If 400 tickets have been sold

- Display the “Sold Out” sign

The condition tests if 400 tickets have been sold, and if it is true, the “Sold Out”

sign is displayed. If the condition is false and 400 tickets have not been sold,

then the sign will not be displayed.

54

Chapter 3 Decision Structures and Boolean Logic

Conditional expressions are represented in flowcharts as diamonds. The

different paths that the program can take are shown using lines from the corners

of the diamond, arrows indicate the direction, and text indicates the result.

These paths in the program are often referred to as the Flow of Control or the

Order of Operations. In the example, if the condition is true then the flow of

control follows the path to display the sign. Otherwise (if the condition is false),

the program continues without displaying the sign.

Conditional Expression Flowchart

When programming a conditional expression in Java, the syntax includes

parenthesis around the conditional expression, and braces to enclose the

statement(s) executed when the condition is true. The statements to be executed

are indented for readability (most IDEs automatically indent these lines). The

general format is shown below with the opening brace on the line with the

condition. Some programmers place the opening brace on the line following the

expression, however most Java Style Guides prefer the format shown here.

Ex. 3.2 – Theater Ticket Sales “if” Condition (note use of two equal signs)

55

Chapter 3 Decision Structures and Boolean Logic

When multiple statements are associated with a condition, they form a block of

code. A block of code is a group of associated statements. In this case, they are

associated with the conditional expression. If the condition is true, all of the

statements within the braces (the block of code) will be executed. If the condition

is false, all of the statements within the braces will be skipped over.

Continuing the Theater example, assume that when the show is sold out, the box

office is closed in addition to the sold-out sign being displayed. A standard

practice is to indent the pseudocode in line with the way that the lines would be

indented in the actual code.

If 400 tickets have been sold

- Display the “Sold Out” sign

- Close the box office

The flowchart for the Theater example has been modified to include closing the

box office if the condition is true.

Note how clearly the pseudocode and flowchart indicate the path taken if the

condition is true. The modified code is shown in Ex. 3.3 below.

56

Chapter 3 Decision Structures and Boolean Logic

Ex. 3.3 – Theater Ticket Sales “if” Condition Expanded

Boolean Expressions

Conditional expressions are either true or false, and are referred to as Boolean

Expressions named after the mathematician George Boole (1815-1864). Boolean

expressions are implemented using Relational Operators that resolve to either

true or false by testing relationships. The result of the expression determines the

next step or path for the program. For example, one value can be greater than

another, or less than another, or equal to another. One of these three cases must

be true, and the others would be false. Table 3.1 lists the Boolean operators

available in Java. Note that two equal signs are used to test for equivalence (a

single equal sign is the assignment operator).

Table 3.1 – Relational Operators

Some examples follow.

57

Chapter 3 Decision Structures and Boolean Logic

For the examples below: x = 5, y = 8, z = 5

x > y 5 > 8 False 5 is not greater than 8

x < y 5 < 8 True 5 is less than 8

x >= z 5 >= 5 True 5 is equivalent to 5

x <= z 5 <= 5 True 5 is equivalent to 5

x == y 5 == 8 False 5 is not equivalent to 8

x != y 5 != 8 True 5 is not equivalent to 8

x == z 5 == 5 True 5 is equivalent to 5

Relational Expressions

The else Condition

The Theater example conditionally displays “Sold Out” and “Box Office Closed”

if exactly 400 tickets have been sold. Otherwise the program does nothing. To

provide for other statements to execute when the condition is false, an else

clause is implemented which can be thought of as an “otherwise” condition for

when the relational expression is not true. When the “if” condition is true, the

statements in the “if” block will be executed and the “else” block will be skipped.

When the “if” condition is false, the “if” block will be skipped and the “else”

block will execute.

Continuing the Theater example, if 400 tickets have not been sold, tickets will

continue to be sold.

if 400 tickets have been sold

- Display the “Sold Out” sign

- Close the box office

else

- Continue to sell tickets

58

Chapter 3 Decision Structures and Boolean Logic

A flowchart highlights the two different paths that can be taken as a result of the

conditional expression, and that only one path will be executed. It also shows

that the two paths converge as the program continues.

“if-else” Condition Flowchart

The modified code in Ex. 3.3 below includes the Scanner and prompt as well as

the additional else clause.

Ex. 3.4 – Theater Ticket Sales “if-else”

59

Chapter 3 Decision Structures and Boolean Logic

Nested if Structures

When two (or more) conditions are being tested, there are several ways to

implement the logic. One of these is to use a nested if, which is an “if” condition

inside another “if” condition. If condition1 below is true, then condition2 is tested,

and if it is also true, then the statements will be executed. If condition1 is false,

then condition2 will not be tested and the statements are skipped.

To illustrate this, the Theater example now includes a balcony section in addition

to the main-floor seats. The tickets sales are tracked separately, and to determine

if the show is sold out requires testing both areas for the tickets sold.

if the 400 main floor seats are sold

if the 200 balcony seats are sold

o Display the “Sold Out” sign

o Close the box office

Nested “if” Condition Flowchart

60

Chapter 3 Decision Structures and Boolean Logic

The conditional expression for the balcony seats above is only tested if the main

floor is sold out. Later in the text, Boolean Logic will be covered which will

combine expressions and in most cases, eliminate the need for a nested if.

The if, else if, else Structure

To handle situations when different conditions result in different paths, an “if”

and an “else” are inadequate because there are only two paths. Additional “if”

statements may be appropriate, but more often the if, else-if, else structure is a

better solution. Note that else-if is not an otherwise condition, but another

conditional test that is only tested if the test before it is false. Once a condition is

found to be true, the others are skipped over. The final else clause handles the

situation when none of the conditions is true.

Notice in the example below that there is no test for equivalence with zero. If the

number is not positive and it is not negative then (otherwise) it must be zero.

Ex. 3.5 – Conditional Example with Three Conditions

61

Chapter 3 Decision Structures and Boolean Logic

When designing conditional logic, it is important to consider all possible

scenarios, and use the proper condition for the test. Consider the two examples

below and the results when a grade of 95 is entered. The code on the left would

test each condition and eventually assign “D” to the variable letter.

Logic Design

Ex. 3.6 – Discount Based on Total Sale

As an example, a store is having a Special that discounts the total sale price based

upon the amount of the sale. The pseudocode below tests for the proper

discount percentage. The logic only tests the second condition if the first

condition is false, and the third condition is only tested if the first and second

conditions are false. The final else handles the situation when all of the

conditions are false. Consider that a total sale amount of $120.00 is also greater

than $100.00 and greater than $90.00 and greater than $80.00, but after the first

condition resolves to true, Discount is 30%, and the other conditions are skipped

over. If the price were $95.00, then the first condition would be false and the

second condition would be tested. Since that condition would be true, the

discount would be 20%, and the other conditions would be skipped.

62

Chapter 3 Decision Structures and Boolean Logic

The following flowchart highlights the paths based upon the total sale, and that

only one path is taken as a result of the conditions. If all of the conditions are

false, then there is no discount.

“if, else-if, else” Condition Flowchart

The Java code for the discount conditions in the example are shown here.

63

Chapter 3 Decision Structures and Boolean Logic

Designing conditional expressions for computer programs is an

important skill to develop. Many difficult-to-find bugs are caused by

incorrect conditional expressions and relational evaluations, and the

use of break and continue which bypass conditional logic. Pseudocode

and flowcharts are helpful design tools, and careful testing during

development can eliminate most bugs.

Strings and Conditional Expressions

In addition to comparing numbers, very often strings of characters need to be

compared. When a password is created or changed, it is entered a second time

as confirmation. The two entries are compared to ensure that they match. In

computing, what is actually being compared is the ASCII representation of the

letters character by character. Recall from Chapter 1 that each character has a

binary representation in the ASCII character set (Appendix A). To compare

Strings in Java, the equivalence operator cannot be used. It would compare the

locations in memory for the Strings. The member function equals() is used.

As an example, “Play” and Plan” are compared in this code.

In the conditional statement, each character of each String is compared one at a

time using the ASCII representation for the letter. When ‘n and ‘y’ are compared

the condition returns false. The two Strings are not equivalent. The base-10

64

Chapter 3 Decision Structures and Boolean Logic

ASCII values for the letters are 110 for ‘n’ and 121 for ‘y’. Therefore, they are not

equal since ‘y’ has a different ASCII value than ‘n’.

String Character Comparison

When a String has more characters than another, they could not be equivalent.

Additional String methods and operations are covered in a later chapter, and the

next two sections cover String conversions for numeric input.

String to Numeric Conversion

When a program requires a user to enter numeric values, we cannot trust that

what is entered is truly a number. The methods nextInt() and nextDouble()

will fail if the value is not the correct data type. One way to resolve this is by

first reading the input as a String and then parsing the input to the data type

desired. There are two methods for the conversions to numeric values. The

method Integer.parseInt() converts the data type from a String to an integer,

and the method Double.parseDouble() converts the String to a double.

To covert a String to a double, Double.parseDouble() is used.

65

Chapter 3 Decision Structures and Boolean Logic

The code below fails and throws a NumberFormatException and does not complete

because the parsing attempt fails. The String cannot be parsed to an integer.

Handling exceptions is covered in a later chapter, but the next section provides

another way of checking the input first before attempting the conversion.

Conversion Attempt Failed

Validating Input

In the last section, nextInt() and other input methods were introduced with a

caution that they will fail if the value is not the expected data type. Since

nextInt() is attempting to read an integer, the way to ensure that an integer has

been entered is to look-ahead into the input to see if an integer is there. The

method hasNextInt() provides this ability and returns a Boolean value based

on the next input. In example Ex. 3.7, the input is only obtained if it is an integer.

Ex. 3.7 – Validating Input with hasNextInt()

To test for a double before assigning it to a variable, use hasNextDouble(), the

hasNext() method checks for any item, and hasNextLine() tests for a line.

66

Chapter 3 Decision Structures and Boolean Logic

Boolean Logic and Relational Operators

In an earlier example, a nested-if was used to test two conditions. The second

condition was tested only if the first condition was true. Both conditions need to

be true for the statements to execute. The pseudocode would be “if condition1 is

true AND then if condition2 is true, execute the statements”.

Both of the conditions above can be combined into a single compound

expression. When a program needs to make decisions based on complex

conditions, multiple conditions can be combined using the Logical Operators.

The logical operators are “&&” for AND, “||” for OR, and “!” for NOT.

With a logical AND, both sides of the expression must be true for the condition to

be true. If either one of the conditions is false, the expression is false.

Table 3.2 is a truth table for logical AND.

Table 3.2 – Logical AND Truth Table

67

Chapter 3 Decision Structures and Boolean Logic

This logic is often used to verify that a number is within a range, especially when

validating input. For example, if the program requires a number between 0 and

10, the conditions can be combined in a single expression. This is referred to as

range checking. Both conditions must be true, for the expression to be true. The

number entered below must be greater than 0 and less than 10.

Ex. 3.8 – Validating Input with AND (&&)

The Theater Ticket Sales example required main-floor seats and balcony seats to

be sold out for the Theater to display the “Sold Out” sign and close the box

office. Both conditions must be true and a nested “if” condition was used in the

example.

If the 400 main floor seats are sold

If the 200 balcony seats are sold

o Display the “Sold Out” sign

o Close the box office

This can be easily implemented with the AND operator, since both conditions

must be true.

Ex. 3.9 – Validating a Range with Logical AND (&&)

68

Chapter 3 Decision Structures and Boolean Logic

An either-or expression can also be used to test multiple conditions. Reversing

the previous logic for the Theater Ticket Sales example, if the main-floor is not

sold out, or the balcony is not sold out, then the Theater is not sold out. The

logical OR would be used in this case. The logical OR operator consists of two

pipes “||” (shift backslash on the keyboard). With a logical OR, if either side of

the expression is true then the expression is true.

As shown in Table 3.3, when either condition is true, the expression is true.

Table 3.3 – Logical OR Truth Table

Using the previous example to validate a number between 1 and 9 inclusive, a

logical OR can be used, but note the different values used to test outside the

range instead of inside. Also, the order of the output statements is reversed. If

either condition is true, then the expression is true, and the number is not within

the range required.

Ex. 3.10 – Validating Input with OR (||)

69

Chapter 3 Decision Structures and Boolean Logic

Short-Circuit Evaluation

For the logical AND and the logical OR operations, the computer uses what is

called short-circuit evaluation. With the logical AND, both sides of the

compound condition must be true for the expression to be true, so if the left side

is false, then the right side is not evaluated. It wouldn’t matter if the right side

were true since the expression is already false.

The reverse occurs with the logical OR. When either side of a compound

expression using OR is true, the expression is true. Therefore, if the left side of

the compound condition is true, the right side is not evaluated. It doesn’t matter

whether the right side is true or false since the expression is already true.

The Simple-OR operator in Java is a single pipe “|” that does not

perform shirt-circuit evaluation. It evaluates both expressions and

returns the result.

Some Common Logic Errors

Recall that logic errors are those errors that do not halt execution of the program

but produce incorrect results. Many of these occur due to incorrect logical

expressions. Pseudocode and flowcharts can help, but careful consideration of

the logic is required. Table 3.4 lists some examples and the numeric values that

would make the expressions true. Note the situation where any number is valid.

Table 3.4 – Logical Expressions

70

Chapter 3 Decision Structures and Boolean Logic

Boolean Variables

Boolean variables are variables that can only have a value of true or false. They

are often used to store the result of a condition, or as a flag that is set as the

result of some processing. The example below sets a Boolean variable to false,

and if the condition is true the Boolean variable (acting as a flag) is flipped to

true and is used to determine the next step in the program.

Boolean Variables

Some programmers prefer to write out the conditional expression for clarity. The

equivalent versions are shown here, although the version on the left is preferred.

The last of the logical operators is the NOT (!) operator. This operator returns

the opposite of a Boolean expression or operand. If the operand or expression is

true, the NOT operator returns false. If the operand is false, the NOT operator

returns true.

Table 3.5 – Logical NOT Truth Table

71

Chapter 3 Decision Structures and Boolean Logic

Caution should be exercised when using the NOT operator because it often

introduces bugs and confusion. In pseudocode, the expression below would

read “If x is greater than y is true, and x is greater than z is true, then return

false”. It isn’t clear what condition is being tested.

It is often easier to reverse the logic and remove the NOT operator. De Morgan’s

Law provides two forms: one for negation of an AND expression and one for an

OR expression.

De Morgan’s Law

When a Boolean variable is involved, the NOT operator can often be used

without adding confusion. Consider the valid user condition below, and the

second example that reverses the logic. Either one is a correct implementation of

the logic.

A logical and methodical approach when creating conditional statements and

compound expressions will save a lot of time spent debugging logic errors.

Test Cases

As programs become more complex, testing becomes more critical to ensure

accurate processing and output. Test Cases are actions executed to verify a

72

Chapter 3 Decision Structures and Boolean Logic

portion of or a complete software implementation. All possible paths through

the program must be verified. Consider the Theater Ticket program logic

repeated below as an example.

The compound conditional expression requires testing, and there are two

Boolean conditions within the expression that need to be tested. There is only

one scenario in which the expression as a whole is true as shown below.

Test Case # Values Entered Expected Result

 1 Floor Tickets < 400 and Balcony Tickets < 200 False

 2 Floor Tickets 400 and Balcony Tickets < 200 False

 3 Floor Tickets < 400 and Balcony Tickets 200 False

 4 Floor Tickets 400 and Balcony Tickets 200 True

Test Cases should be simple to execute, have the end user of the program in

mind, ensure 100% coverage, and be repeatable (the same results whenever run).

They should be numbered or labeled for tracking purposes and regression

testing to ensure that new functionality has not introduced an error.

Programming Style and Standards

Although it may be convenient in some cases to string multiple logical operators

together, it can add confusion and introduce bugs. Taking a logical and

methodical approach to compound conditional expressions will often produce a

simpler algorithm that is easier to understand and implement.

73

Chapter 3 Decision Structures and Boolean Logic

Chapter 3 Review Questions

1. Decision structures determine the statements that execute based upon a

____________.

2. A ___________ result is one that is either true or false.

3. The Flow of Control refers to the ________ in which statements will execute.

4. In a Flowchart, decisions are represented by ____________.

5. Statements that execute when an “if” condition is true are below the condition

and within braces forming a ________ of code.

6. Boolean expressions are implemented using ______________ operators.

7. In an if-else structure, when the “if” condition is false the ________ clause will

execute.

8. When two Strings are compared for equivalence, the ____________ value of

each character is compared individually.

9. Compound Boolean expressions are implemented using the _______ operators.

10. For a compound expression that uses a logical AND to be true, ________ of the

conditions must be true.

11. For a compound expression that uses a logical OR” to be true, ________ of the

conditions must be true.

12. The logical operator that is used to negate a Boolean value is the ____ operator.

13. Boolean variables can only be assigned a status of ______ or ______.

14. Test Cases are an important tool for _____________ the accuracy of a program.

Chapter 3 Short Answer Exercises

15. What do the following lines of code output if var1 = 6, and var2 = 8?

if (var2 > var1) {

System.out.print(“var2 is greater”);

16. What do the following lines of code output if var1 = 6, and var2 = 8?

if (var1 < var2) {

System.out.print(“var2 is greater”);

74

Chapter 3 Decision Structures and Boolean Logic

17. What do the following lines of code output if var1 = 6, and var2 = 8?

if (var1 <= var2) {

 var3 = var1 + var2;

System.out.print(“var3 is “, var3);

 }

18. What do the following lines of code output if var1 = 6, and var2 = 8?

if (var1 == var2) {

System.out.print(“They are the same.”);

 }

 else {

System.out.print(“They are not the same.”);

 }

19. What do the following lines of code output if first = 10, and second = 10?

if (first > second) {

System.out.print(“first is greater”);

 }

 else {

 System.out.print(“second is greater”);

 }

20. What do the following lines of code output if val1 = 3, val2 = 5, and val3 = 8

if (val2 > val1) {

val3 = val2 – val1;

 }

else if (val3 > val2) {

val3 = val2;

 }

 else {

 val3 = 99;

 }

System.out.print(“val3 is “, val3);

21. Write the word Java using the ASCII Base-10 (digit not binary) equivalences for

the letters (ref. Appendix A).

75

Chapter 3 Decision Structures and Boolean Logic

22. Are the following expressions true or false if first = true and second = false?

a. first && second

b. first || second

c. second || first

d. !first

e. !second

23. Write an “if” conditional expression using a logical operator that tests for a

number variable temp that is greater than 32 and less than 120.

24. Write an “if” conditional expression using a logical operator that tests for a

number variable num1 between 0 and 50, including 50 but excluding 0.

25. True or false, the following expressions test for the same condition.

if num > 9 && num < 21 if num >= 10 && num <= 20

26. What range of numbers assigned to num would make this expression true?

if num > 0 || num < 100

27. What range of numbers assigned to num would make the following expression

true?

if num > 0 && num > 100

28. What numbers are excluded by the following expression?

if num < 0 || num > 0

29. What value assigned to done would execute the print statement?

if (done) {

System.out.print(“That’s all.”);

Chapter 3 Programming Exercises

30. Write the code for a conditional clause that tests and outputs whether a

variable num1 is greater than zero.

76

Chapter 3 Decision Structures and Boolean Logic

31. Write a program that accepts an integer as input, stores the value in num1, and

displays whether it is positive, negative, or zero.

32. Write a program that accepts an integer as input and stores the value in a

variable named hours for the number of hours worked and executes the

following algorithm. If the number of hours worked are greater than 40, then

output “There is overtime”, otherwise output “There is no overtime”.

33. Expansion of the program in #32.

a. Draw a flowchart for following pseudocode. Consider the order of

operations and each possible condition.

Get the number of hours worked

Get the hourly rate of pay

if the number of hours worked > 40

– Compute overtime pay (1.5 * hourly rate for hours > 40)

Compute regular pay (hourly rate * hours up to and including 40)

Compute total pay

Output regular pay

Output overtime pay

Output total pay

b. Develop a program for the pseudocode in part (a) above. Consider each

variable that is needed, the order of operations, and formatting of the

output for dollar amounts. Design the solution in terms of input,

processing, and then output. The output statements should not be within

the conditional blocks.

Sample output

77

Chapter 3 Decision Structures and Boolean Logic

34. Modify Programming Exercise #33 to include double time pay (2 * hourly rate)

for hours above 50, and add the additional output. The hours from 41 to 50

remain time-and-a-half pay (1.5 * hourly rate). Sample output is shown below.

35. Write a program that requests a username and password from the user, and

then requests that they confirm the password. If the passwords match, output

“Account created for” and the username, otherwise output “Password

confirmation error”.

36. Write a program that accepts the price for an item and computes a discounted

price based on the criteria below, determines the 7% sales tax amount on the

discounted price, and display the original price, discounted price, sales tax, and

the total amount for the purchase. Include dollar signs, two decimal places, and

right align the dollar amounts as shown in the sample output below.

Discount criteria

Greater than $100.00 – 25%

Greater than $75.00 – 18%

Greater than $50.00 – 10%

Sample output

37. Write a program that prompts the user to enter a temperature and then “F or f”

or “C or c” if it is a Fahrenheit or Celsius temperature to convert. Display the

converted temperature and scale or “Cannot convert” if an incorrect letter was

entered. The equations for the conversions are:

C = (F – 32) / 1.8 F = (C * 1.8) + 32

78

Chapter 3 Decision Structures and Boolean Logic

38. Write a program for a Theater that computes the total sales receipts and profit

for an event based on the number of tickets sold and the following criteria:

• The 200 main floor tickets are sold first, and then the 75 balcony tickets

are sold once the main floor is sold out.

• Main floor tickets are $29.50 each, and Balcony tickets are $19.50 each.

Use constants for these amounts

• The program will request the total number of tickets sold (assume <=

275 as input) and “M” for Matinee or “E” for evening. The cost to hold

an event is $1,200.00 for Matinee and $1,450.00 for evening.

• The output will include the number of tickets sold and sales for each

section, the total sales receipts, the event cost, and the profit for the

event. Profit is total sales minus cost. See sample output below.

#38 (a) Write the pseudocode for the program

#38 (b) Draw a flowchart of the solution

#38 (c) Develop the program

#38 (d) Create and run two (2) Test Cases (not shown below) and screen

capture the results

Sample output A

Sample output B

79

Chapter 3 Decision Structures and Boolean Logic

39. The wind chill in North America is computed using temperature in Fahrenheit

and wind speed in miles-per-hour, however it is not valid for temperatures

above 50 degrees or when the wind speed is 3.0 mph or less. Write a program

that requests the temperature and wind speed from the user, and computes the

wind chill or displays that it is not valid and the particular reason that it is not

valid.

The equation for approximating the wind chill factor in North America is:

wind chill = 35.74 + 0.6215 Ta - 35.75V+0.16 + 0.4275 Ta V+0.16

 Ta is the air temperature in Fahrenheit, and

V is the wind speed in mph

Consider - Math.pow(windSpeed, 0.16)

Sample output A

Sample output B

Sample output C

Additional Test data:

https://www.weather.gov/safety/cold-wind-chill-chart

80

Chapter 3 Decision Structures and Boolean Logic

Chapter 3 Programming Challenge

Planet-days to Earth-days

Write a program that compares Planet-days to Earth-days.

• Request the name of the planet and a number of Earth-days

• Validate that the input is one of the planets listed below

• Validate that the number of days is greater than zero

• Compute and display the number of planet-days that would pass on the

chosen planet based upon the conversion values in hours provided (NASA).

• Display the result formatted to three (3) decimal places.

Planet Earth Equivalent Hours

Earth 24.0 hours

Mercury 4222.6 hours

Venus 2802.0 hours

Mars 24.7 hours

Sample output A

Sample output B

81

Chapter 4 Loops and Repetition Structures

Chapter 4

Loops and Repetition Structures

Repetition Structures (Loops)

Very often a statement or set of statements in a program need to repeat over and

over to accomplish a task or compute a result. An example would be computing

compound interest for a bank account over some period of time. The program

would begin with a balance, compute the interest amount, add it to the balance,

compute the interest on the new balance, add it to the balance, and so on. This

would continue for as many times as needed.

Start with an account balance

Compute the interest amount

Add it to the balance

Compute the interest on the new balance

Add it to the new balance

Compute the interest on the new balance

And so on…

In addition, it may be desirable to repeat an entire program instead of restarting

the program to enter different inputs. Repetition Structures or loops provide

a way of repeating steps without repeating the code. The loop statements

continue to execute until a final result has been reached and the loop ends. As an

example, the Theater program in Chapter 3 contained a conditional statement for

82

Chapter 4 Loops and Repetition Structures

closing the box office if enough tickets had been sold. The alternate path was to

display “Sell Tickets” and end the program. Consider that while there are tickets

to sell, they should be sold and that each time tickets are sold, the condition

should be tested again until all of the tickets are sold.

if 400 tickets have been sold

- Display the “Sold Out” sign

- Close the box office

else

- Continue to sell tickets

The While Loop

The while loop is a condition-controlled loop. The statement or statements

within the loop execute while some conditional expression is true, and each

execution of a loop is referred to as an iteration of the loop. Repetition

structures follow the same brace and indentation rules applied to conditional

statements. A conditional expression for the loop is enclosed in parenthesis and

braces form the block of code executed as long as the condition is true.

Indentation of the statements adds clarity. The general format is shown below

and can be read as “while this condition is true, do these things”.

Pseudocode for the Theater example using a loop would reverse the logic used

with the “if” condition shown above. While there are tickets to sell, sell tickets.

When there are no more tickets to sell, display the Sold-Out sign and close the

box office.

while (400 tickets have NOT yet been sold)

- Continue to sell tickets

Display the “Sold Out” sign

Close the box office

The flowchart depiction of a loop also uses a diamond for the conditional

expression, and arrowed lines representing the order of operations. The line

83

Chapter 4 Loops and Repetition Structures

after the statements returns to a point prior to the conditional expression

indicating that it is tested again after the loop body executes. When the

condition is false the loop ends and the program continues.

While Loop Flowchart

Since the conditional expression in a while loop is tested prior to the body of the

loop executing, it is referred to as a pre-test loop. This means that a while loop

may or may not execute depending on the result of the conditional expression.

Ex. 4.1 – Theater Ticket Sales Using a While Loop

While Loop Example

Notice in the actual code above that the final two output statements are outside

the braces and are not part of the loop. They execute when the conditional

expression is false and the loop ends. Also note that the variable ticketsSold

increases inside the loop to eventually make the conditional expression false.

84

Chapter 4 Loops and Repetition Structures

This is referred as an update expression, and is an important part of the loop.

There must be a change that occurs inside the loop that eventually makes the

condition false. Otherwise, the loop will continue to run resulting in an infinite

loop. When this occurs, the program must be ended to stop the loop.

Infinite loops occur due to programmer errors. As an example, the following

loop is an infinite loop because the variable value never changes (it will always

be less than ten) and therefore the conditional expression is always true.

Infinite Loop Example

A while loop can also be used to allow the body of a program to run multiple

times without the user having to restart the program. In Ex. 4.2 the user is

prompted for whether or not another temperature conversion is desired. Notice

that the String variable another is set to “y” to start the loop. Since a while loop

is a pre-test loop, the condition must be true or the loop will not be entered. At

the end of the loop, the user is asked if they would like to convert another. Any

character entered other than “Y” or “y” will end the loop.

Ex. 4.2 – Condition Controlled Loop

85

Chapter 4 Loops and Repetition Structures

The Increment and Decrement Operators

There are operators for adding one to a variable and for subtracting one from a

variable. The increment operator is two plus signs (++) and the decrement

operator is two minus signs (--). They are used frequently with counters in

programs, especially within loops, and they simplify update statements.

The statements on the left accomplish the same as the statements on the right.

The examples above are referred to as postfix mode since the operators follow

the variable. The operators also have a prefix mode as shown here.

The expressions on the right for both modes are the same because the statements

simply increment or decrement the variable. But when the operators are used in

other operations, there is a difference. Note the output from the following

statements and when the updates occur. The first output statement uses postfix

mode and value is accessed before the update occurs.

86

Chapter 4 Loops and Repetition Structures

The For Loop

Another type of loop used in programming is the for-loop which is a count-

controlled loop where the number of iterations is a specific number of times.

The programmer sets the number of times that the loop will execute when

designing the loop. Like the while loop, the for-loop is a pre-test repetition

structure. The general format includes the initialization for the loop, the

conditional expression, and the update on a single line and within parentheses.

When the loop above is encountered in the program, the integer var is declared

and initialized to zero. The conditional expression is tested, and if the condition

is true, the statements in the body of the loop are executed and the update occurs

last. After the update occurs, the condition expression is tested again, and if it is

true, the body of the loop is executed again and the update occurs again. This

continues until the conditional expression is false.

The update for the loop can be an expression. The following two examples

output even numbers.

87

Chapter 4 Loops and Repetition Structures

This example uses multiplication in the update expression to output the powers

of 2 up to 1000 formatted with right alignment. Since the condition is less than

1000, the loop ends when the variable i reaches 1024 which is not displayed.

For Loop Example

The update for a for-loop is included in the loop header and should not be

duplicated or modified within the for-loop body.

Using “i” and Scope

Many examples above use the variable “i” which is typical of for-loops. Loops

are used extensively in programming and this variable is used as a control

variable, sometimes referred to as throw-away variable. Since the variable is

declared within the loop header, it is local to the loop. This means that another

variable can be named “i” in another loop later in the program. The example

below shows that a variable declared within a loop is not available outside the

loop. Variable scope will be revisited in the chapter on Methods. Note the error

indicator when the program attempts to access number outside the loop.

88

Chapter 4 Loops and Repetition Structures

The Do Loop or Do-while Loop

The third loop structure is the do-while loop. It is similar to a while loop except

that the conditional expression is after the loop body. Therefore, the do-while

loop is a post-test loop, and will always execute at least once. The general

format is shown below and can be read as “do these things, and if the condition is

true, do them again”.

The do-while loop differentiates itself in several ways. It begins with the word

“do” followed by the body of the loop, and ends with the word while followed

by the conditional expression and a semicolon. The flowchart highlights the fact

that the body of the loop is executed before the conditional expression is

evaluated.

Do-While Loop Flowchart

Since the do-while loop executes the loop body first, it can be used in those cases

when the statements need to execute at least once. As an example, an account

login operation requests a username and password. Then, if the username or

password does not match those stored by the program, the user is again

requested to enter them. The statements need to execute the first time, and only

again if an invalid username or password is entered.

89

Chapter 4 Loops and Repetition Structures

Comparing Loop Structures

A while loop can be used to implement the operations of the other loops. A for-

loop can be used to implement most of the operations that a while and do-while

loop can implement, but not all. With a for-loop, the update always occurs last

after all of the statements in the loop execute. With a while loop and do-while

loop, the programmer can place the update anywhere within the loop. A while

loop may or may not execute based upon the conditional expression, but a do-

while loop will always execute the body at least once. The following three

examples implement the same loop using the different structures.

While loop implementation

For loop implementation

Do-while loop implementation

User Loop Control

For flexibility, a program can allow the user to determine the number of times a

loop will iterate. Example Ex. 4.2 above was a user-controlled loop. The user

was asked to enter “Y” to convert another temperature. In the example below

90

Chapter 4 Loops and Repetition Structures

the user is asked to enter the number of sales amounts to total. The number is

stored in the variable entries, which is used to control the loop.

Ex. 4.3 – User Controlled Loop

Notice in the for-loop above that the variable “i” is initialized to zero and that the

condition uses less-than the variable entries. It is important to implement the

condition correctly. The program could have initialized “i” to one, and used less-

than-equivalent-to entries as well. It could also be implemented using a while

loop as shown here. Note the conditional statement and that the variable entries

is decremented in the loop.

Loop Accumulator

When a program needs to compute a running total or accumulate values as it did

in Ex. 4.3, it uses what is referred to as an accumulator. The accumulator is a

variable that tallies the values as the loop iterates and contains the total when the

91

Chapter 4 Loops and Repetition Structures

loop finishes. As an example, the program below asks the user how many

grades will be entered, and totals them as they are input. The variable

totalGrades is initialized to zero and is used to accumulate the grades each time

the loop executes. The output statement displays the average of the grades.

Notice that numGrades is used to control the loop and to compute the average.

Ex. 4.4 – Grade Averaging Example Using an Accumulator

The accumulator inside the loop in Example Ex. 4.4 uses an expression common

in programming, but impossible in Algebra. In mathematics, a value can never

be equal to itself plus some value. In programming, this is an assignment

statement and is perfectly acceptable.

Assignment statements that have the same variable on both sides of the

assignment operator are common. It is important to understand this concept.

The right-hand side of an assignment statement is evaluated first by the

computer and then the result is assigned to the left-hand side.

Loop Counters

When the number of iterations a loop will execute is undetermined but is needed

by the program, a counter variable is placed inside the loop. For example, a

program that computes the average of a set of values needs to know the number

of values that were entered in order to compute the average. The next example

92

Chapter 4 Loops and Repetition Structures

uses a counter within the loop to count the iterations and then uses the count to

compute the average of the values entered. Note that the variables are initialized

and grouped together. This is in line with style and standards requirements.

The user is asked to enter a sales amount or “Q” to quit. The loop ends when

any character is entered and hasNextDouble() is false. Also notice that the prompt

occurs before the loop and at the end of the loop. The user may quit before

entering any amounts, and the loop will not execute. This is the reason for the

condition at the end that tests to be sure the program does not divide by zero.

Ex. 4.5 – Counting the Iterations of a Loop

Program Output

Common Loop Algorithms

Loops are commonly used in programming to implement algorithms including

accumulating a total and computing an average of values as shown previously.

93

Chapter 4 Loops and Repetition Structures

Others include validating input, finding the minimum or maximum of a set of

numbers, or finding a match. Ex. 4.6 below requests a number within a specific

range and the loop continues the request until a valid number is entered.

Ex. 4.6 – Input Validation

Program Output

The next example determines the minimum value from a series of inputs. Notice

that the first number entered is assigned to the variable smallest. Since it is the

only number entered so far, it is the smallest. Any number that is input that is

smaller than the one currently stored in smallest, is assigned to smallest

overwriting the previous value. When a character is entered, the loop ends.

Ex. 4.7 – Finding the Minimum

94

Chapter 4 Loops and Repetition Structures

The algorithm in Ex. 4.7 could easily be modified to determine the largest value

in the series, or to determine both the smallest and the largest. Note that the first

number entered is both the largest and the smallest. As additional numbers are

entered, the conditional statements assign new values to largest and smallest as

needed.

Sentinels

In some of the example programs, the user was asked to enter ‘y’ to continue. In

programming, a sentinel is often used to indicate that the end of the input has

been reached by having the user enter a character or a number that could not be

part of the set of values. As an example, if a program is requesting positive

integers as input, the user may be prompted to enter -1 when finished. If a

program is requesting numeric test grades, the user may be prompted to enter

999 when finished. The point is that a sentinel is a value that is outside the value

set being used by the program. It is intentionally beyond a reasonable input

value.

Nested Loops

When a loop is contained inside another loop, it is called a nested loop. An outer

loop is entered and an inner loop executes. When the inner loop completes, if

there are more outer loop iterations to complete, it again initiates the inner loop.

A good example of this operation is a set of rows and columns. The output

95

Chapter 4 Loops and Repetition Structures

would display a row of data across (each column), then the next row and all of its

columns.

While there is a row of values to print

While there is a column value to print

print the value

As an example, a program that displays four (4) rows of data having three (3)

values (3 columns) would have an outer loop that iterates four times (rows) and

an inner loop that iterates three times (columns). For each execution of the outer

loop, the inner loop executes three times.

Nested Loop Flowchart

The code for the nested loop is shown below. Notice that the line feed is within

the outer loop but outside the inner loop. After the iterations of the inner loop

complete, the line feed executes and row is incremented. For each repetition of

96

Chapter 4 Loops and Repetition Structures

the outer loop, the inner loop executes three repetitions. The output is shown

below. The output statement includes the values of row and col for clarity.

Ex. 4.8 – Nested Loop

Common Loop Errors

Common errors associated with loops include off-by-one errors, where the

programmer has written the conditional expression incorrectly and the loop is

executing one too many or one too few times. This is easily corrected after

running and testing the program. Others include confusing what should be

inside the loop and what should be outside the loop. When these types of issues

occur, adding print statements before, within, and after the loop can help to

determine where the specific problem is located.

Proper Loop Construction

Although they are part of the language the use of the break and continue

statements is not accepted by most Programming Standards. Break is used to

break out of a loop at a point where continuing the loop would cause an error.

Continue is used to jump to the end of the loop and bypass the loop logic, again

to avoid an error. Both are typically used instead of designing a well-formed

loop condition and loop body. Both increase debugging and maintenance time

and should be avoided.

97

Chapter 4 Loops and Repetition Structures

A Complete Example – Investment Program

Requirements:

Write a program for a Financial Adviser that computes the number of

years to double an investment at a given annual interest rate.

Program Pseudocode:

Step 1 Prompt for the investment amount

Step 2 Prompt for the interest rate

Step 3 Compute the interest on the balance

Step 4 Add the interest to the balance

Step 5 Increment the number of years

Step 6 Is the balance < 2 times the investment amount

 Yes, go back to Step 3

No, got to Step 7

Step 7 Display the number of years

Verbalizing and walking through the steps that the program will take while

visualizing the program running can help to determine the sequence of

events and the order of operations for the program.

“Set up the program by initializing the balance and years, and obtain the

investment amount and interest rate from the user. While the balance is

less than 2 * investment, compute the interest on the balance and add it

to the previous balance”.

“When the balance is no longer less than 2 * the investment amount,

display the number of years”.

Development

The development of the program follows the pseudocode. The number of

years is initialized to zero, and the investment amount and interest rate

are obtained from the user. Notice that balance is assigned the

investment amount. As long as (while) the balance is less than twice the

investment amount, compute the interest and add it to the balance, and

increment the years. The solution below includes an output statement

98

Chapter 4 Loops and Repetition Structures

within the loop for test purposes. Output statements are a great tool for

quick debugging and testing programs.

Program Output

99

Chapter 4 Loops and Repetition Structures

Testing and Debugging

The development isn’t complete until the program is tested and verified

for accuracy. Testing can also surface questions about the requirements

for the program. The output states that the balance doubled in 16 years,

but the balance is actually more than double the initial amount at that

point. Since interest is being computed and added annually, the program

meets the requirements, but it might be a good idea to ask the Financial

Advisor if this is what they had in mind.

Strings Revisited

Chapter 2 introduced Strings and the charAt() method. Loops are often used to

inspect Strings by accessing the individual characters and testing for a condition

or match. As an example, the program below replaces the occurrences of “t” in

the String with “s” in the output.

Ex. 4.9 – String Inspection

There are a few things to take note of in the example above. The for-loop begins

with zero and ends at one less-than the length of the String. Recall that String

indexes begin at zero. Second, the conditional statement is accessing each

character using charAt() and comparing them to a char (‘t’ has single quotes).

When a ‘t’ is found, ‘s’ is output, otherwise the character is output. Also note

that “i” is used as a loop control and as an index for the String.

Program Output

100

Chapter 4 Loops and Repetition Structures

To actually replace the character, the replace() method can be used which

returns a copy of a String object with all occurrences of a specified character

replaced by another specified character. Note the case sensitivity in the example.

Only the uppercase occurrences of “S” would be replaced with “T” and the

output would be “she Tells Tea shells”.

The Character class provides additional String testing methods including

isDigit(), isUpperCase(), isLowerCase(), isWhiteSpace(), and isLetter(). Each of these

returns a Boolean value. The following program declares a String and enters a

while loop to access and evaluate each character in the String.

Program Output

101

Chapter 4 Loops and Repetition Structures

The String modification methods include conversion to upper and lower case.

These do not affect items that are not letters or are already in the desired case.

Program Output

Random Numbers

Most programming languages include a way of generating random numbers.

Random numbers are used extensively in game scenarios, like card games and

games that use dice, and in modeling and simulation to determine the

occurrences of random events. It is often easier to simulate an occurrence than it

is to have the event actually happen. Java includes random number generation

within the Math class that returns a positive double from 0.0 to 1.0 inclusive.

Ex. 4.10 – Random Numbers

Program Output

102

Chapter 4 Loops and Repetition Structures

It might seem like these numbers couldn’t really be used for anything, but the

random number returned can be manipulated to handle various requirements.

A situation needing a random number between 1 and 100 inclusive requires

eliminating zero, and adjusting the random number. In Ex. 4.11, the random

number is multiplied by 100 with 1 added to eliminate 0 and produce a random

number between 1 and 100.

Ex. 4.11 – Random Number Ranges

To further explore this manipulation, consider one of the numbers that was

produced in Ex. 4.10 (0.849430898282955).

 Multiply by 100: 84.9430898282955

 Next, add 1: 85.9430898282955

 Next, the number is cast to an integer (discarding the fractional part).

Resulting number: 85

To show that zero can actually occur and must be removed by adding one,

consider another random number (0.007128528411940449).

 Multiply by 100: 00.7128528411940449

 Next, the number is cast to an integer (discarding the fractional part).

Resulting number: 0

Note that this type of manipulation can be used to generate any range of

numbers. The standard algorithm for obtaining a random number within a

range is shown here.

Simulations and digital games often use random numbers to determine random

events. For example, the Oregon Trail game used a formula for snowfall that

produced a U-shaped curve covering the trail from mountain range to mountain

103

Chapter 4 Loops and Repetition Structures

range. A random number was generated and if it fell under the curve, which

was likely at the beginning and end of the curve (near mountains), snow

occurred. If the number fell above the curve, which was typical between the

mountain ranges, no snow. The probability of snowfall changes as a function of

location along the trail. Assume that the graph below represents the journey

from mountain range to mountain range, and that the curve is the probability of

snowfall. High up in the mountains it is snowing or 100% probability.

A random number between 0 and 100 would be generated at each interval.

Let’s say that the traveler is at step 4 along the journey and a random number is

generated. Any number below 49 would result in snowfall. Any number

generated that is 49 or above would not result in snowfall.

Programming Style and Standards

The use of break and continue bypass logic and are not acceptable operations.

Performing computations in output statements is also ill-advised. A computed

value should be assigned to a variable, and the variable should be used in the

output statement. Output statements should perform output, not calculations.

Both of these increase debugging and maintenance time and should be avoided.

104

Chapter 4 Loops and Repetition Structures

Chapter 4 Review Questions

1. A structure that allows repeating steps without repeating code is referred to as

a _______________ structure.

2. A loop that repeats while some condition is true is a ________ controlled loop.

3. Each execution of a loop is referred to as a(n) ____________.

4. A while loop is a ___________ loop and may or may not execute depending on

the conditional statement.

5. A loop that repeats a specific number of times is a _________ controlled loop.

6. A loop that continues to run without a control or condition to stop it referred to

as a(n) ___________ loop.

7. A variable within a loop that tallies a running total is a(n) _____________.

8. A variable within a loop that counts the number of iterations of the loop is

referred to as a _____________.

9. A value entered by the user that is used by the program to indicate the end of a

data set is referred to as a ___________.

10. A loop within a loop is referred to as a __________ loop.

11. A nested loop structure can be thought of as a spreadsheet with _______ and

___________.

Chapter 4 Short Answer Exercises

12. What do the following lines of code output if var1 = 6, and var2 = 8?

while (var1 < var2) {

System.out.print(var1 + “ ”);

var1 = var1 + 1;

}

13. What do the following lines of code output if var1 = 6, and var2 = 8?

while (var1 < var2) {

System.out.print(var1 + “ ”);

var1 = var1 + 2;

 }

105

Chapter 4 Loops and Repetition Structures

14. What do the following lines of code output if var1 = 6, and var2 = 8?

while (var1 <= var2) {

 System.out.print(var1);

}

15. What do the following lines of code output if first = 10, and second = 10?

while (first < second) {

 System.out.print(“Enter a number “);

16. What do the following lines of code ensure?

System.out.print(“Enter a positive number “);

int value = in.nextInt();

while (value < 1) {

System.out.print(“Enter a positive number “);

value = in.nextInt();

}

17. How many times will the following loop display “Hello”?

for (int i = 0; i < 4; i++) {

System.out.println(“Hello”);

 }

18. In the following code, what term would be used to describe the variable total?

while (grades < 5) {

System.out.print(“Enter a grade “);

int grade = in.nextInt();

total = total + grade;

}

19. In the following code, what term would be used to describe the variable count?

while (count < 5) {

System.out.print(“Enter a grade “);

int grade = in.nextInt();

total = total + grade;

count = count + 1;

}

106

Chapter 4 Loops and Repetition Structures

20. In the following code, what term would be used to describe -99?

System.out.print(“Enter a grade and -99 when done“);

while (input != -99) {

int input = in.nextInt();

total = total + input;

System.out.print(“Enter a grade and -99 when done“);

}

21. Rewrite the following loop as a while loop.

int number = 10;

for(int count = 0; count < 10; count++) {

number = number – 1;

System.out.println(“Number is : “ + number);

System.out.println(“Count is : “ + count);

}

22. Correct the 3 errors in the following code to produce even numbers only.

for(int num = 1; num < 20; num--) {

if(num < 20) {

 num = num + 2;

System.out.println(“Number is : + num“);

}

Chapter 4 Programming Exercises

23. Write a program that sets a variable num to 0 and uses a while loop to display

the numbers 0 thru 9 separated by a space using the variable. Use the

increment operator in the solution.

24. Write a program that sets a variable num to 2 and uses a while loop to display

the even numbers 2 thru 20 separated by a space using the variable.

25. Write a program that sets a variable num to 2 and uses a while loop to display

the even numbers 2 thru 20 separated by a space using the variable, and use

the modulus operator in the solution.

107

Chapter 4 Loops and Repetition Structures

26. Write a program that prompts for a negative integer, and uses a while loop to

validate the input. If the number entered is not a negative number, the loop

will output the error message “Invalid input”, and request another number.

When a valid number has been entered, output “Thank you”.

27. Write a program using a for-loop that displays a heading and the columns of

data shown below containing the numbers 1 thru 10 and the squares of the

numbers. Use the tab escape character and width specifier as needed.

28. Write a program using a nested loop that displays the number shown below in

3 rows and 5 columns using the variable for the inner loop condition in the

output statement.

29. Write a program that prompts for a word from the user, stores it in a String, and

then displays each character in the word separated by a tab. Use the charAt()

method in the solution . As an example, if the word “Java” were entered:

30. Write a program that prompts the user for a temperature in Fahrenheit to

convert to Celsius. Display both of the temperatures and allow the user to

convert another temperature without restarting the program. Use integers for

the temperature values, and a String for the loop condition. The equation for

conversion is shown below.

C = (F – 32) / 1.8

108

Chapter 4 Loops and Repetition Structures

31. Write a program that will generate 6 random integers between 1 and 20

inclusive. As the numbers are generated, display the results in rows of asterisks

as shown below.

Sample program run:

32. When four random numbers are generated between 1 and 6 inclusive, the

probability is high that at least one 6 will be produced. Write a program that

produces four (4) random numbers and displays “Found a six” if a six was

produced and “No six” if none was produced. Include a loop in the program

that runs the scenario 20 times. Does six occur more than expected?

33. Write a program that requests a cable length (must be positive) from the user

and a cable thickness (must be between 0.1 and 2.5) in inches. Validate the

input and keep requesting until valid input is received. Write a loop that will

simulate applying one pound of tension and stretching the cable for each

repetition of the loop.

The cable will stretch its thickness times 0.28 feet for each pound of tension

applied. The cable will break when it is 112% of its original length. Output the

pounds of tension on the cable and the length for each pound applied, and

announce when the cable has broken.

Sample program run:

109

Chapter 4 Loops and Repetition Structures

Chapter 4 Programming Challenges

#1 Password Validation

Write a program that requests a password, and validates the password against the

criteria below. If the password is valid, display “Password Accepted” and end the

program.

If the password is not valid, display specifically why it is not valid (what it does not

contain) and end the program.

The password must be at least 9 characters long and have:

• At least one uppercase letter

• At least one lowercase letter

• At least one digit

Sample program runs:

110

Chapter 4 Loops and Repetition Structures

#2 Drainage Canal

A canal has a natural flow rate of 40 ft3 /s at 3.3 feet. Rainfall increases the water

level of the canal and a flood gate must be opened to remove the excess water.

Prompt the user for the water level in feet (must be > 3.3) and the number of feet to

open the flood gate (must be >= 1). Validate the input with loops that alert the user

of invalid input and request input again. Compute the time to lower the level to 3.3

feet while displaying the minutes passed, and the current level of the canal.

The program will simulate the discharge of water through the flood gate using a

loop at a rate of 0.03 feet of water per minute for each foot that the food gate is

open. This will continue until the water level in the canal has reached 3.3 feet.

The program will announce when the canal has reached the natural level of 3.3 feet

and end. Note the output alignment in the sample below.

Sample program run:

111

Chapter 5 Methods, Modules, and Basic Graphics

Chapter 5

Methods, Modules, and Basic Graphics

Methods

As programs become longer and execute more tasks, the main method grows

and code may be repeated in order to repeat operations. The design process

includes dividing the program into logical sections of distinct functionality

which will be developed individually. This is referred to as modularization.

Separating the program into distinct parts provides many benefits including the

ability to: reuse portions of the code, divide the program development among

multiple programmers, and simplify the task. Instead of writing one long

program, logical sections are developed in methods, and the methods are called

when needed, and as many times as needed. Some methods, like next(), round(),

length(), and substring() were used in previous programs. There are many more

available, and programmers write their own methods as well.

There are two types of methods, void methods that simply perform a task and

value-returning methods that return a value. The method System.out.print() is

a void method. It performs output, but does not return anything. The nextInt()

method on the other hand, is a value-returning method that returns an integer

which is received and used by the program. Note the difference in their use

below. The print() method varieties simply display what is passed to them.

112

Chapter 5 Methods, Modules, and Basic Graphics

The nextInt() method returns a value that is assigned to a variable.

Notice that we do not see the code that is executed when these methods are

called. The inner-workings are hidden. We use the methods knowing the task

that they perform, but it isn’t necessary that we know how the methods perform

their tasks. This is often referred to as the Black-box analogy. A car can be

driven even if the driver does not know the specifics of how the accelerator

works. The driver presses on the accelerator and the car moves.

Writing Methods

The code for a method is called the method definition and it begins with the

keyword public which is followed by the keyword static, a name for the method,

and a pair of parentheses. The parentheses will contain any parameters that are

passed to the method that it needs to perform its task. The first line of the

method definition is referred to as the method header.

The statements that will execute when the method is called are enclosed in braces

to form a block of the code called the method body and are indented. The

following void method displays the words “In displayString” when it is called.

The method is located outside of main, and is called from within main as shown

in Ex. 5.1 below. Note that the IDE italicized the method call in main.

113

Chapter 5 Methods, Modules, and Basic Graphics

Ex. 5.1 – Void Method

Program Output

When a method is called, program control transfers to the method. When the

method completes, control returns to the calling method at the point where the

method was called. The flow of control for Ex. 5.1 is shown here.

Value Returning Methods

A void method should not have a return statement because it does not return

anything, however a value returning method returns a value to the calling part of

the program. The data type of the return value replaces the word void in the

method header, and the method has a return statement. The general format is

shown below.

Notice that the last line of the method is the return statement. This follows

programming logic: input, processing, and output. A method should have only

one return statement and it should be the last statement in the method.

114

Chapter 5 Methods, Modules, and Basic Graphics

The method in Ex. 5.2 below obtains and returns the city of the program user.

Note that the data type (String) of the returned value is in the method header,

and that a variable city is declared within the method to store the input from the

user. The variable is then used in the return statement.

Ex. 5.2 – Value-returning Method

Calling the method in Ex. 5.2 requires receiving the return value. In the example

below, it is assigned to the String userCity when it is called by the main method.

Methods Cannot Return Multiple Values

Methods in Java cannot return multiple values. They should implement a

limited number of operations and return one value or no value at all. Java is an

Object-Oriented Language and Objects tend to contain multiple methods, each of

which has a single task.

Passing Values to Methods

Methods cannot access variables declared in other parts of the program, but

often they need to use them. When a method needs to use a variable defined

somewhere else in the program, the variable is passed to the method as an

argument. The method receives it as a parameter. Technically speaking,

115

Chapter 5 Methods, Modules, and Basic Graphics

arguments are passed to methods and parameters are received by them. In the

following example, main calls a method and passes a variable (argument) to the

method that receives it (parameter) into a local variable, and uses it in an

equation and output statement. Notice that argument is the name of the variable

passed as the argument, and parameter is the name of the variable receiving the

parameter in the method header. This highlights that a value is passed. The

computer goes to the memory location for the variable argument, finds out what

is stored there and passes a copy of it to the method. The method receives the

value and stores it in the memory location for parameter. This is referred to as

pass-by-value.

It doesn’t matter what the receiving method calls the value that it receives, except

that it must use that name internally.

Ex. 5.3 – Passing an Argument to a Method

The argument passed to a method does not need to be a variable. A literal can be

passed as well. The method in the example could be called as shown here.

Variables and Scope

The part of a program where a variable is accessible is referred to as the

variable’s scope. When a variable is declared within a method (including main),

the scope of the variable is the method. It is referred to as a local variable. A

variable declared inside a method is not accessible outside that method, so

116

Chapter 5 Methods, Modules, and Basic Graphics

different methods could have variables with the same name without causing any

conflict. The scope for each of the variables would be their particular method,

and they would not be accessible by another method. If several engineers are

working on the same program, but they are working on different methods, they

may name a local variable the same name. This is the reason that variables must

be passed to methods, and why methods return values. If a program attempts to

access a variable outside of its scope, an error occurs. Chapter 2 covered global

variables which have program scope, and should only be used as constants.

Passing Multiple Values to Methods

Multiple arguments can be passed to methods. The arguments can be different

data types, and are received in the order that they are passed. Example Ex. 5.4

demonstrates passing three arguments to a method. Note the data types in the

parameter list inside the parentheses. Each of the parameters is actually a

declaration of a variable that is local to the method. These variables receive a

copy of the values in the variables that are passed to them. In other words, a

copy of the value in arg1 is passed to the method and received into p1 which is

used within the method.

Ex. 5.4 – Passing Multiple Arguments to a Method

Program Output

117

Chapter 5 Methods, Modules, and Basic Graphics

Methods Calling Other Methods

Main is a method and as shown in the examples above, main can call other

methods. Those methods can also call other methods which can call other

methods. Each method will return control to the calling method. It is similar to

walking forward on a few stepping stones, and then back again using the same

stones.

In the example below, main calls a method which then calls the square root

function. Control transfers from the main method to getRoot(), and then to the

square root function. The square root function returns the value to the getRoot()

method, which then returns the value to the main method.

As previously noted, a method should accomplish a single task. They are used

to modularize programs, break down complex tasks, and increase reuse. When

multiple tasks are required, multiple methods should be used. The following

example calls three methods. The method getPassword() is called from main and

returns a String. The String is assigned to pw and is then passed to the method

longEnough() which returns a Boolean value (true or false). The Boolean value is

passed to the output() method which determines the correct print statement.

Notice that main simply consists of three method calls, and that the method

118

Chapter 5 Methods, Modules, and Basic Graphics

definitions are in the same order that the methods are called by the program.

This is a programming practice that enhances readability and maintainability.

Ex. 5.5 – Calling Multiple Methods

The example demonstrates a first step toward modular programming with the

majority of the code being executed in methods. The main method becomes a

series of method calls to execute the program. Most of the functionality that

programs execute can be placed in methods. As the requirements for a program

are refined and the Design Phase progresses and the order of operations becomes

clear, sections of the program will surface that should be implemented in

methods. Once, the functionality is determined, the methods can be defined.

119

Chapter 5 Methods, Modules, and Basic Graphics

Naming and Defining Methods

The method naming convention in Java is the same as the variable naming

convention. The first word is all lower case and the first letters of any additional

words are uppercase. When creating a method, there are several things to

consider and steps that can help in the process. First, determine what the

method will do. Each method should accomplish one task, and the name of the

method should describe what it does. Since methods perform an action, names

with verbs are typical, like computeNetPay or getTaxRate. Next, determine

what parameters the method will need. Then, determine if the method returns a

value and if so, what data type will it return, and any local variables it needs.

Step 1 name the method what it does

Step 2 determine the parameters that it needs

Step 3 determine if the method will return a value

- If yes, determine the return type

Step 4 determine if the method will need local variables

Step 5 write the method

Step 6 write the method call

Attempting to access a variable in a method before it has been declared will

cause an error. It is always best to declare all variables needed by a method

together and first within the method. This makes readability and maintenance

much easier and reduces the possibility for errors. Declaring variables where

needed runs the risk of duplicating a variable with a different name, and

introducing hard-to-find bugs.

Recursion

In the examples, the main method called other methods to perform operations,

but methods can call themselves as well (except for main). This is referred to as

Direct Recursion, and it occurs when a method calls itself with an argument

that is the result of the previous call to that same method. In other words, the

output from the method is the input into the next call to that same method. The

method will continue to call itself until a base case is reached similar to ending a

loop. As an example, consider a method that receives an integer, displays the

120

Chapter 5 Methods, Modules, and Basic Graphics

integer, and calls itself after decrementing the integer. The method will call itself

until the argument passed to it reaches zero (the base case).

When the method is called and passed 9, the output below shows the number

decreasing as the recursion occurs.

As noted previously, after a method completes, control returns to the calling

method at the point of the call. This is highlighted by moving the output

statement to the line after the recursive call.

The output now occurs after control returns and the numbers output count up.

121

Chapter 5 Methods, Modules, and Basic Graphics

Another type of recursion is Indirect Recursion where method ‘A’ calls method

‘B’ which then calls method ‘A’, and so on. Method ‘A’ could call ‘B’ which calls

‘C’ which calls ‘A’ or any variation as well.

Any repetitive algorithm can be implemented with a loop, and the use

of recursion is never required. Recursion also uses computer

resources for each call to the method especially if local variables are

being declared. If the solution is more easily implemented with a loop,

then a loop is a better choice.

Functions and Methods - Terminology

Some confusion may arise as a result of different languages using different

terminology with respect to methods and functions. For example, Java uses the

terms method and function (sometimes interchangeably), C/C++ uses the term

function, and Python uses both function and method. For clarification, the Java

definitions follow, but if either is used the listener will know what is meant.

Both are named blocks of code that execute when called.

Function – a static method (not associated with an object)

Method – associated with an object

Notice that when we use the Math.sqrt() function, we do not create an object of

the Math class. We simply precede the call with Math and the dot operator.

However, when we use the String length method, a String object is first created

and the method is accessed using the String variable name and the dot operator.

Again, it is really a matter of semantics with Java.

122

Chapter 5 Methods, Modules, and Basic Graphics

Design (IPO) Documents

A tool used to design and document programs is a Design Document called an

Input, Processing, Output document or IPO document. An IPO includes an

overall description of the program and the methods used. The method section of

the IPO includes the name of the method, a brief description of what it does, the

input (parameters) needed, the processing it will accomplish, and the output or

return value. The next example uses methods to obtain a number from the user,

compute the square of the number, and display the result. Notice that main

follows the methods in this example. In a single file program, the code for the

methods can be above or below main (the next section will take a further look at

modularization). An IPO for the program follows the code.

Ex. 5.6 – IPO (Input, Processing, Output) Documentation

The IPO or Design Document for the program first provides a general

description of the program, the input, processing, and output of the program,

and then handles each of the methods the same way. The IPO content is

subjective and differs among organizations that use them, but the overall concept

is consistent with its name. They provide a brief summary of the input,

processing, and output of the program and methods. They are another tool that

123

Chapter 5 Methods, Modules, and Basic Graphics

can be used in the design process to save time and produce modularized

programs.

Program IPO:

Description: the program calls three methods to obtain user input of a

number, square the number, and display the square of the number.

Input: number from user

Processing: square the number

Output: display the result

Method IPOs:

public static int getInput()

Description: Obtains user input

Input: number from user

Processing: none

Output: returns the number

public static int getSquare(int number)

Description: Computes the square of the number

Input: a number

Processing: square the number

Output: return the value

public static void output(int number)

Description: Produces output

Input: the value to display

Processing: none

Output: display the result

Modular Programming

Modularizing programs using methods separates operations into manageable

chunks and enhances maintenance, but multiple engineers cannot easily work on

the same program because it is in a single program file. Separating the program

124

Chapter 5 Methods, Modules, and Basic Graphics

into files (modules) allows multiple engineers to work on the same program at

the same time enhancing what is referred to as collaborative development.

Collaborative environments like Configuration Management Systems covered in

Chapter 1 facilitate the development and control of multi-file programs and

development by multiple engineers. As discussed previously, large and complex

program requirements are decomposed during design into manageable sections,

and are then further refined into methods. Methods that are related can be

developed in a file together, or if the method is large, in a file by itself. A step-

by-step walk-thru of creating a second file is provided in Appendix D.

Methods in Other Files

When a method is in another class file, and that file is part of the project package,

the method call includes the class name containing the method (see Appendix

D). The following package contains two files with the main method in one and

an example method in the other. The package explorer shows the two files.

The main method is located in the file named Two_files.java and contains the

method call to getSquaredVal() which includes the second file’s class name

followed by the dot notation and name of the method.

125

Chapter 5 Methods, Modules, and Basic Graphics

It is always best to use the “build-a-little, test-a-little” process when developing

programs. Develop a small part of the program and test and debug that part

until it is working correctly. Then, develop another small part and test and

debug the program again. If there is an error, it is most likely in the part that was

recently added. This process is referred to as incremental programming or

iterative enhancement. The method for the example program has not been

completed. The second file other_file.java contains the method, but it is

incomplete as shown below. It is a stub. A stub is an incomplete method that

returns a value that could not be a real value for the method.

Stub Example

As development continues, the stub is replaced with a complete method and

testing continues.

Program Output

126

Chapter 5 Methods, Modules, and Basic Graphics

If the method were in another package, the package and the class would be

imported the same way that the Scanner is imported from the java.util library.

Dialog Boxes

The JOptionPane class which is part of the swing components provides message,

information, input, and error dialog boxes for displaying messages and

obtaining input. The JOptionPane must be imported from javax.swing to use

them. The example below creates a message dialog box with the text “Hello

World!” The first argument is “null” which would be the parent window for the

program. In this this case there isn’t one and null causes the message box to be

located in the center of the display.

To show an error or alert, two additional arguments are passed to the dialog.

The third is the title on the title bar, and the fourth is a JOptionPane constant.

The class also contains an input dialog with two buttons (OK, and Cancel) that

returns a String when the user clicks the “OK” button. If the “Cancel” button is

clicked, an empty String is returned. The following program requests input

127

Chapter 5 Methods, Modules, and Basic Graphics

through the input dialog and assigns the return value to a variable input which is

used in a message dialog.

The show input dialog returns a String. If the program is obtaining a number

from the user, the String can be parsed to a number as shown below. The

example then uses the result in the message dialog.

There are many other dialog boxes including confirmation, and “YES, NO,

CANCEL” dialogs that can be used to enhance programs, as well graphical user

interfaces developed with frames which will be covered in a later chapter. Error

dialogs are most commonly used to alert a user of missing or invalid input.

128

Chapter 5 Methods, Modules, and Basic Graphics

Drawing Simple Graphics

One way to draw simple graphics in Java requires creating a frame, and then

adding a JComponent, JPanel, JTextComponent, or JLabel to the frame. In Ex.

5.7, a JFrame (window) is created which is a container in Java that can hold

components. To create a JFrame, the swing components library is imported.

Programmers often use the wildcard import javax.swing.* which imports all of

the classes in the package. The example below imports only the JFrame.

The code below creates a simple frame.

Ex. 5.7 – A Simple Frame (Window)

Line 3 creates a JFrame and assigns it to myFrame

Line 4 sets the initial size of the frame in pixels

Line 6 sets the default close operation to exit so that if the window is closed the

program ends. Other options are covered later in the text.

Line 7 makes the frame visible (by default, it would not be visible)

Program Output

129

Chapter 5 Methods, Modules, and Basic Graphics

The example above made the frame visible. By default, a frame is not visible

which allows control over what is visible as a program runs. To draw on the

frame, a JComponent is added and the paintComponent method does the

drawing. It is called automatically when the frame is created, and when the

window is resized, exposed after having been covered, or needs repainting (to be

redisplayed). The paintComponent receives the Graphics object being

redisplayed which has the graphics’ state (color, font, etc.) and methods for

drawing shapes. In Ex. 5.7A, the graphics object method fillRect() performs the

drawing of a filled rectangle. Notice the next to last line which adds the

JComponent to the frame.

Ex. 5.7A – Drawing on a Frame

Program Output

130

Chapter 5 Methods, Modules, and Basic Graphics

Drawing methods are provided to draw arcs, polygons, and for setting the color

and fonts, as well as those listed below. Note that in graphics, the x, y

coordinates 0, 0 are the top-left corner of the frame. To move the y coordinate

down requires a positive number. Both coordinates are in pixels.

Drawing Methods

The x and y arguments passed to the methods are the starting coordinates (top-

left) when drawing a shape. The drawString() method uses x and y as the

coordinates for the starting lower-left (base-point) of the String.

Oval and Rectangle drawing

Line drawing

131

Chapter 5 Methods, Modules, and Basic Graphics

String drawing

A method can be called to handle drawing. In Ex. 5.7B, the paintComponent

calls a method named drawShapes() that performs the drawing. The graphics

object is passed as the argument to the method. The drawing method receives

the Graphics object and draws a circle (an oval with the same width and height).

Ex. 5.7B – Drawing from a Method

132

Chapter 5 Methods, Modules, and Basic Graphics

Recall that x, y coordnates 0, 0 are the top-left corner of the frame, and the y

coordinate is a positive number down from the top. In Ex. 5.7C, multiple draw

methods were added to the previous drawShapes() method, and the use of

setColor() is shown. Note that the y coordinate for the String is 10 because it is

the basepoint of the text. If y were zero, the text wuld be ouside the frame

drawing area. The setColor() method accepts any of the Java colors, and sets the

color until it is set to another.

Ex. 5.7C – Combining Draw Methods

Program Output

Programming Style and Standards

Variables should be declared together and first in a method, and method names

should be descriptive and indicate what they perform. This programming style

makes readability and maintainability much easier and saves development time

and reduces bugs.

133

Chapter 5 Methods, Modules, and Basic Graphics

Chapter 5 Review Questions

1. Separating a program into distinct sections is referred to as ____________.

2. To execute a method, it must be ___________.

3. The two types of methods are ______ methods and ____________ methods.

4. The code within a method is called the method ___________.

5. The first line of a method that contains the name and parameter list for the

method is called the method ____________.

6. The area of a program where a variable is accessible is the variable’s ________.

7. A variable declared inside a method is referred to as a ________ variable.

8. A void method (should/should not) _____________ have a return statement.

9. Technically speaking, a value passed to a method is called a(n) __________.

10. Technically speaking, a value received by a method is called a(n) ___________.

11. A value-returning method must have a ___________ statement.

12. When a method calls itself, it is referred to as _____________.

13. An IPO document contains brief descriptions of the _______, __________, and

___________ of a program or method.

14. A term used to describe multiple programmers working together on the same

program is ______________ development.

15. An incomplete method that is used as a placeholder and usually returns a value

that could not be a real value for the method is called a _________.

16. A ______ _____ is a small graphical window that displays a message or requests

input.

17. In graphics, the x, y coordinates 0, 0 are located at the __________ of the

frame.

Chapter 5 Short Answer Exercises

18. Write a statement that calls the following method.

public static void showOutput() {

System.out.print(“Hello from my method”)

 }

134

Chapter 5 Methods, Modules, and Basic Graphics

19. Write a statement that calls the following method and passes it the phrase

“Hello World”.

public static void showOutput(String phrase) {

System.out.print(phrase);

 }

20. What does the method below output when it is called as shown?

smallest(6, 3);

public static void smallest(first, second) {

 if (first < second) {

System.out.print(“first is smaller”);

 }

else {

System.out.print(“second is smaller”);

 }

}

21. Write a statement that calls the following method and stores the return value in

a variable named num.

public static int getValue() {

int val = 200;

return val;

 }

22. Write a method doubleUp() that receives an integer and returns twice the

number that was passed in.

23. Write a method largestOne() that receives three doubles and returns the

largest of the three.

24. Write an IPO for the method in #23 above.

25. Write a method called displayNumber() that obtains a number from the user

and displays “You entered ”, and the number that was entered.

26. Write a method called getInput() that obtains an integer from the user and

returns the number that was entered.

135

Chapter 5 Methods, Modules, and Basic Graphics

Chapter 5 Programming Exercises

27. Write a program that calls a method named average that accepts three (3)

integers as arguments, and returns the average. The main method will store the

return value in a variable and then display “The average is “ and the number.

28. Write a program with two (2) methods. The first method will obtain and return

the radius of a circle from the user, and the second will compute and return the

circumference of the circle. Then, main will display “The circumference of the

circle is “ with the result formatted to two decimal places. The equation for

circumference is shown here. Use Math.PI in the solution.

𝐶 = 2𝜋𝑟

29. Modify the circle program in #28 to locate the methods in a separate module

(file) that is part of the same package.

30. Write an IPO for the program in #28, and include a method IPO for each of the

methods.

31. Write a program with three (3) methods located in a separate module. The

main method will prompt the user for the two side lengths of a rectangle and

validate the input (must be > 0). The first method called will compute and

return the area, the second method will compute and return the perimeter, the

third method will compute and return the diagonal, and then main will display

the values as shown in the sample below. Use the Pythagorean Theorem for the

diagonal.

Enter the length of side 1 3
Enter the length of side 2 4

The area is: 12.0
The perimeter is: 14.0
The diagonal is: 5.0

32. Write a sales program with five (5) methods located in a separate module. The

first method will obtain and return the price (double) of an item being

purchased. The second method will obtain and return the quantity (integer) of

the item being purchased. The third method will compute and return the total

price (double) for the items. The fourth method will compute and return the tax

136

Chapter 5 Methods, Modules, and Basic Graphics

amount (double) at 7% (0.07) for the purchase. The fifth method will display all

of the information as shown below.

Enter the price of the item 12.34
Enter the number of items 2

Price $12.34
Quantity 2
Subtotal $24.68
Sales tax $ 1.73

Total Sale $26.41

33. Write a program that requests the name of the user using an input dialog box,

and displays “Hello “ and the name entered using a message dialog box.

34. Write a program that creates a frame (300 x 300) and places three circles on the

frame as shown below. One circle is red and 50 pixels, one is blue and 70 pixels,

and the one is green and 150 pixels. Locate them similar to the image shown.

Remember to include the following import statements.

To add the title to the frame use:

137

Chapter 5 Methods, Modules, and Basic Graphics

Chapter 5 Programming Challenges

#1 Meteor Evacuation Status Simulation

Design and develop a program that determines the evacuation status for a city
based upon the size and distance of a meteor coming toward the city. The program
will accept a meteor size in meters and a distance from the city in miles, and
compute and display the meteor data and evacuation status. Allow the user to
enter another set of data without restarting the program.

Required five (5) methods located in a separate module:

• Method #1 - Prompt for and obtain, validate, and return the user input of the

meteor size in meters (must be > 0.0 and < 10.0),

• Method #2 - Prompt for and obtain, validate, and return the distance of the

meteor in miles (must be > 0.0 and < 500)

• Method #3 - Compute and return the meteor’s speed (120 mph * size)

• Method #4 - Compute and return the time to impact (distance/speed) in

minutes

• Method #5 - Determine and return the evacuation status as a String for the city

based on the criteria below.

Display the data from main as shown below.

Evacuation Status Criteria:

If the time to impact < 45 minutes, then Evacuation CANNOT BE COMPLETED
If time to impact > 45 and <= 90 minutes, then Evacuation is POSSIBLE
If the meteor time to impact is > 90, then Evacuation is PROBABLE

Note that speed is in mph, but time to impact is in minutes.

Enter the meteor size in meters: 3
Enter the meteor distance in miles: 400

 Meteor Data:

 Diameter in meters: 3.0
 Distance in miles: 400.00
 Speed in mph: 360.00
 Minutes to impact: 66.67

 Evacuation Status: Evacuation is POSSIBLE

138

Chapter 5 Methods, Modules, and Basic Graphics

#2 Quarterly Sales Bar Chart

Design and develop a program that accepts four sales figures in whole dollar

amounts (integers) from the user and graphs the amounts using vertical bars in a

frame (500 x 500). The bars should be 30 pixels wide and 30 pixels apart, and scaled

so that the largest amount entered is represented with a bar that has a vertical size

of 300 pixels. Add the frame title and lines as shown in the example below.

Use a method to determine the largest value for scaling the values. Drawing can be

handled inside the paintComponent method.

// x, y is the top-left corner of the rectangle

fillRect(x, y, width, height)

139

Chapter 6 Arrays and ArrayLists

Chapter 6

Arrays and ArrayLists

A variable can store a single value, but it is often necessary to use multiple

values. Consider a program that obtains 10 values and determines the lowest

and highest numbers. Ten variables would be needed to hold the ten values.

Another solution would be to use an array which can store multiple values of

the same data type. An array is an abstract data type that is defined by the

programmer. The declaration can be a two-step process where the first step

declares an array reference, and the second creates an array and assigns it to the

reference. The line below declares an array reference to an array of integers, but

it cannot store any values. The square brackets indicate that it references an

array.

The next step creates an array (allocates memory for storage) and assigns the

memory address of the array to the valuesArray reference variable. The

number 20 in the square brackets indicates the size of the array. Memory for 20

integers will be allocated, and the array will be able to hold 20 integers.

The two steps can be combined into a single statement as shown here.

140

Chapter 6 Arrays and ArrayLists

The computer will allocate enough memory to hold 20 integers in the example.

Integers are stored using 4 bytes, so 80 bytes of adjacent memory would be

allocated for an array that stores 20 integers. An array of 20 doubles would use

160 bytes since doubles are typically stored using 8 bytes of memory.

Array Indexes

The elements in an array are stored at indexes in the array in adjacent memory

locations. The indexes are numbered zero through the size of the array minus

one the same way that String characters are numbered. Notice that the name of

the array (valuesArray) references the zero index of the array.

Array Indexes – valuesArray[20]

The terminology associated with the array indexes varies. They are

sometimes referred to as slots or subscripts. The use of the term

index is common and is implied when using “i” in loops that access

array elements.

To store a value in the array, the index must be used. This statement assigns 12

to the first index in the array.

Loops are typically used to access the indexes in an array. The following loop

assigns 33 to each index in the valuesArray array. Note that “i” controls the

141

Chapter 6 Arrays and ArrayLists

loop and is also used as the index for the array. The conditional expression stops

the loop at 20 since 19 is the last index in the array.

An array can contain other data types including Strings, doubles, and even

arrays. The statements below declare an array of 100 doubles and an array of 60

Strings.

A variable can be used for the size of an array, but it must be an integer. Here a

constant is declared and used as the size (number of indexes) for the array.

Arrays can also be initialized with an assignment statement when they are

declared as shown below. The size of the array will automatically be the number

of items assigned. The indexes will be zero through the size minus one.

Example Ex. 6.1 below initializes an array and displays the elements. The

program also uses the length attribute of an array, and uses it to control the loop.

Notice that the loop condition used is less than the length (indexes begin at zero).

142

Chapter 6 Arrays and ArrayLists

Ex. 6.1 – Initializing an Array, Displaying the Contents, and Using length()

Program Output

Arrays are fixed-size containers. That is, the size or number of elements that an

array can hold cannot be changed once it is declared. This is one of the

limitations of arrays since a programmer may not know exactly how many

elements an array will need to store when a user runs the program. One solution

is to ask the user how many items will be entered and declare an array of that

size. However, if the user enters the wrong number, the array will be too large

or too small and the program will not run correctly.

Another solution is to declare an array size larger than what could be needed,

and keep track of the number of indexes used. As an example, if a payroll

program is written to process data for 42 employees, but the number of

employees may vary (the company may be hiring), an array of size 50 might be

143

Chapter 6 Arrays and ArrayLists

declared for the program. When the array is populated with data, only the

needed indexes will be populated. The other indexes would have invalid data in

them. This is referred to as a partially filled array, and the algorithm requires

counting the number of indexes that are populated with valid data. The count

would then be used to stop any loop in the program so that it only accesses

indexes with valid data.

A common error associated with arrays is an off-by-one error. A loop

iterates one too many or one too few times while accessing the array.

One too few will show up in the output, but if an index beyond the

array boundary is used in a program, it will cause an error and the

program will terminate. The ArrayList covered later is a similar

container that will simplify many tasks associated with arrays.

Copying Arrays

When copying an array, an assignment statement would only copy the reference,

not the array contents. The statements below would copy the reference.

There are two ways to copy and array. One is to visit each index from one array

and copy the contents to the corresponding index of the second array. Another

solution is to use the copyOf() method which accepts two arguments. The first

is the name of the array to copy and the second is the number of elements in the

second array. This means that the second array does not have to be the same size

as the one being copied. It can be larger to accommodate additional data. As an

example, to double the size of an array the second argument could be two times

the length of the first. The statements below create a copy of the array named

grades to tempGrades which is twice the size of grades. The second line assigns

the reference of the new array to grades. Since it is a copy, all of the data from

the original grades array is in the new array and it can now hold additional data.

144

Chapter 6 Arrays and ArrayLists

Passing Arrays to Methods

When passing an array to a method, the name of the array is the argument

passed to the method. In the receiving method, the square brackets are used in

the method header for the parameter. Since the array name is a reference to the

location in memory, the method has access to the actual memory locations and

can change the items stored in the array. Recall that the array name is a reference

to the zero index of the array. The computer can locate the other indexes since

they are in adjacent memory.

Ex. 6.2 – Passing Arrays to Methods

A method can also return an array as shown below. Note the return type in the

method header. The size of the array is passed to the method, and the method

creates an array of that size. The array is populated, and the method returns a

reference to the array.

145

Chapter 6 Arrays and ArrayLists

The method above would be called with an assignment statement to receive the

reference to the array.

Two-dimensional Arrays

The examples so far have dealt with one-dimensional arrays, but arrays can be

two, three, or more dimensions. Just as a spreadsheet has rows and columns, a

two-dimensional array can be used for storing related data or to represent a

matrix. When declaring a two-dimensional array, there are two sets of brackets

and two size declarators. The following statement declares a two-dimensional

array named table that has 4 rows and 3 columns.

Two-dimensional Array Indexes

Notice that both dimension indexes begin at zero, and to assign a value, two

indexes are required. The following statement assigns a value to the second row,

second column of the array.

146

Chapter 6 Arrays and ArrayLists

With a two-dimensional array, populating the array or accessing the data in the

array requires a nested loop to increment one dimension in the outer loop and

one dimension in the inner loop. Example Ex. 6.3 populates the table array using

constants named ROWS and COLS for clarity. The array is populated with the

value of “j” as the inner loop executes. The nested loop for output adds a space

after each element and a line feed each time that the inner loop completes.

Ex. 6.3 – Populating a Two-dimensional Array

Program Output

A modification to the output statement displays the row and column numbers as

the loops iterate.

147

Chapter 6 Arrays and ArrayLists

To display by column and row, the algorithm is modified so that the outer loop

uses the columns and the inner loop uses the rows. The order of the variables

changes in the output statement as well.

A two-dimensional array can also be initialized when it is declared. Braces

surround the initialization and the rows of data. Commas separate the rows of

data, and a semicolon follows the closing brace. The dimensions aren’t necessary

within the brackets as shown because of the initialization.

When passing a two-dimensional array to a method, the name of the array is

passed, but both sets of brackets are required in the receiving method header.

148

Chapter 6 Arrays and ArrayLists

Multi-dimensional Arrays

Arrays can be declared with more than two dimensions. Although a four- or

five-dimensional array might be difficult to picture and complex to implement, a

three-dimensional array can be seen as a cube with a height, width, and depth.

A three-dimensional array requires three sets of brackets as shown below.

Accessing the elements in a three-dimensional array would require an additional

nested loop within the other two.

Programmers commonly use “i” as the temporary variable with loops

especially when indexing an array. When a second variable is needed

for a nested loop, “j” is commonly used. With a three-level loop, as in

the case of a three-dimensional array, a “k” would be used for the

third variable.

149

Chapter 6 Arrays and ArrayLists

Array Algorithms

Common array algorithms include populating an array and sorting an array.

Examples have already shown populating an array. To sort an array, the method

Arrays.sort() is provided in the java.util.Arrays class. The following statement

would sort the values array.

To sort only a portion of the array, the indexes are passed as well as the name of

the array.

Other array algorithms include finding a value, computing the sum and average,

finding the minimum or maximum value in an array, and adding or removing an

element. Each of these algorithms requires visiting each index of the array. The

enhanced for loop will access each element and provide a copy of the value in

each index. In example Ex. 6.4, the loop declares a temporary variable num

which receives a copy of each value in the numbers array and adds that value to

the variable sum. Note that the loop is controlled by the enhanced for loop and

will end when the end of the array is reached.

Ex. 6.4 – Enhanced for-loop

Program Output

150

Chapter 6 Arrays and ArrayLists

Modifying this program to compute the average simply requires dividing the

sum by the number of elements in the array using the length attribute.

Finding the maximum or minimum value in an array requires traversing the

indexes while comparing the values. The following example sets a variable for

the minimum value to the first element in the array and then compares the

remaining values to determine the minimum. Finding the maximum value

would require a minor modification to the code.

Ex. 6.5 – Finding the Minimum Value

There are several ways to search for a value in an array. One routine is called

Linear Search which inspects each element in the array until the value is found

or until the end of the array is reached. This can be inefficient with large arrays

especially when the value is not found. A while loop with a logical AND can

stop the iterations when the value is found.

151

Chapter 6 Arrays and ArrayLists

Notice how similar this code is to the code for finding the minimum value above.

Ex. 6.6 – Linear Search

For larger arrays that are sorted, a search algorithm called Binary Search is

more efficient. With Binary Search, the array is divided in half as elements are

compared to the desired value. Consider a sorted array named values of size

1000 that is populated with the numbers 0 to 999, and the task of determining if

the number 567 is in the array. Binary Search would access index [499] to see if it

contains the desired number. If it does, the search ends. If it does not, the

algorithm determines if it is smaller or larger than the desired number.

Since values[499] contains 499, it is less than the desired number and since the

array is sorted, the desired number cannot be in the lower half of the array. The

lower half of the array can be eliminated from the search. The algorithm then

accesses the center index of the upper portion of the array to compare with the

desired number.

152

Chapter 6 Arrays and ArrayLists

Again, if it contains the desired number the search ends. If it does not, it is

determined whether it is smaller or larger than the desired number. Recall that

the example is searching for 567, which is less than 749 so the algorithm

continues.

Note that the array is not affected by the algorithm. It is the middle, lower, and

higher indexes being used for the search that are changing each time as shown in

the example below.

When using arrays and array algorithms, modifications are often needed to

produce the desired result, and their limitations need to be considered in the

design. Consider that Linear Search ends when the desired value is found, but

there may be duplicates of that value in the array. Also, an array is a fixed size

container, so adding or removing elements requires careful design as well. The

ArrayList class and the methods that are provided eliminate some of the issues

associated with using arrays.

153

Chapter 6 Arrays and ArrayLists

The ArrayList

The ArrayList class in Java is similar to an array and allows storing multiple

items of the same data type, but an ArrayList automatically expands as items are

added to it, and will shrink in size if items are removed. There are also methods

to simplify ArrayList handling including add(), size(), remove(), and set(). The

indexes of the ArrayList shift to accommodate a removed item or when an item

is inserted into the ArrayList. These features make the ArrayList easier to use

than an array. To use an ArrayList in a program, the following import statement

is required.

To declare an ArrayList, angled brackets surround the data type. The example

below declares an ArrayList of Strings named myList on the first line and creates

an ArrayList object on the second. The size of an ArrayList is not required.

The two-step process can be handled with one statement as shown below.

Items are added to an ArrayList using the add() method. In Ex. 6.7, three names

are added to the ArrayList myList. The items are added in order to the end of

the ArrayList, and the enhanced for loop displays the contents of the ArrayList.

Ex. 6.7 – Adding Items to an ArrayList

154

Chapter 6 Arrays and ArrayLists

Program Output

To insert an item at a specific index, the add() method is passed the index as an

argument before the item to be added. The statement below adds “Allison” to

index[0] and shifts the indexes of the other items in the ArrayList.

There are several other methods and features of ArrayLists shown in Ex. 6.8

including the use of the size() method to control the loop, and the use of the

get() method to access the items in the ArrayList.

Program Output

When removing an item, the index for the item to remove is needed. The

following statement would remove Betty from the example ArrayList.

The algorithm for removing an item would include finding the index for the

item. Example Ex. 6.8 below includes both operations.

155

Chapter 6 Arrays and ArrayLists

When using a loop to locate an item and remove it, the design of the

loop must consider that the indexes are shifted after the removal of

the item. If the item occurs twice, the loop could inadvertently skip

the second occurrence when the index variable is incremented.

The algorithms to find an item, the minimum, and the maximum in an ArrayList

are similar to those for an array except for the ArrayList methods and syntax.

Example Ex. 6.8 locates and removes “Allison” from an ArrayList named myList.

Ex. 6.8 – Finding and Removing an Item

To replace an item in the ArrayList, the set() method is used. The index is

passed as an argument along with the item, and the item replaces the item at the

index. Before and after graphics of the ArrayList are shown below for the

following statements.

156

Chapter 6 Arrays and ArrayLists

Primitive Data Types and Wrapper Classes

The primitive data types cannot be used with ArrayLists. Instead, the Wrapper

classes are used. Wrapper class names begin with uppercase letters, and Integer

and Character are spelled out. Conversion between primitive types and wrapper

classes is automatic (called auto-boxing), but the wrapper class must be used

when declaring an ArrayList. The Java Wrapper classes are listed below.

Table 6.1 – Wrapper Classes

For an ArrayList of floating-point numbers, the wrapper class “Double” is used

in place of “double” within the angled brackets for the ArrayList. The methods

covered previously are used to access, add, remove, and replace items when

using the wrapper classes.

When passing ArrayLists to methods, the name is passed and the parameter for

the method is an ArrayList and the data type as shown here.

Ex. 6.9 – Method Receiving an ArrayList

157

Chapter 6 Arrays and ArrayLists

A Complete Example – Random ArrayList

Requirements:

Write a program that creates an ArrayList of 20 random integers

between 0 and 100 inclusive. Call a method that removes the lowest

and highest numbers, and then call a method to compute and return

the average. Then display the average from the main method.

Program Pseudocode:

Step 1 Create the ArrayList

Step 2 Populate the list with random numbers

Step 3 Remove the highest and lowest numbers

- Consider how these could be easily found

Step 4 Call a method to determine and return the average

Step 5 Display the average

Design

Considering the requirements, removal of the lowest and highest values is

simplified if the list is sorted first. The lowest would be at index 0 and the

highest would be at index[size – 1]. The sort() method for an ArrayList

requires the import statement below and is preceded by Collections.

The decision regarding where to sort the list is subjective. It could be

done in main prior to the list being passed to the method that will remove

the lowest and highest numbers, or in the method itself. In the example,

it will be performed in the method.

Development

The development of the program follows the pseudocode step-by-step,

and includes the design consideration. The ArrayList is declared and

created, and then populated. The list is then passed to the method that

will sort the list and remove the lowest and highest values. Next, the list

is passed to the method which computes and returns the average, and

then the main method will display the average.

158

Chapter 6 Arrays and ArrayLists

Testing and Debugging

The development isn’t complete until the program is tested and verified

for accuracy. To determine that the program is performing as designed

requires actually seeing the numbers generated and manually checking

the output. To do this, output statements can be added that will display

the original list, show which numbers were removed as the lowest and

highest, and the resulting list for comparison. Displaying the list at each

interval would provide this information and a display list method can be

written quickly. The average will be calculated manually.

159

Chapter 6 Arrays and ArrayLists

The display method will be called prior to and after the method that

removes the lowest and highest numbers.

When the program runs, the output can be compared. The lowest number

in the first row is 3, and 92 is the highest. The second row shows that

they have been removed. The sum of the numbers in the second row is

848 and there are 18 numbers so 47 is the average (declared as int).

Other designs and implementations can be used without sorting the ArrayList.

Below is an algorithm to determine and remove the lowest number by locating

the index. Removing the highest would be similar.

160

Chapter 6 Arrays and ArrayLists

Arrays vs ArrayLists

Although any solution using an array could be implemented using an ArrayList,

arrays are common in programming. When the number of elements is a fixed

size, an array is efficient. For all other implementations, an ArrayList is usually

preferred because it is considered to be easier to use.

Array and ArrayList Boundaries

Java will not allow an index to be used that is negative or beyond the range for

an array or ArrayList. This is referred to as Bounds Checking and occurs at

runtime not compile time. The compiler will not display an error, but when the

program runs an exception will be thrown and the program will terminate. In

the example below, the loop condition tries to access beyond the ArrayList

boundary. Note the error message.

Programming Style and Standards

Since arrays and ArrayLists are passed to methods using their names, it is clearer what

is being passed if the name indicates that it is a collection of items. Adding a word such

as array or list to the name increases readability.

161

Chapter 6 Arrays and ArrayLists

Chapter 6 Review Questions

1. An array declared with a size [10] can hold _________ elements.

2. The items stored in an array must be the ________ data type.

3. Once declared, an array (can/cannot) _________ change size.

4. The _________ attribute of an array is the size of the array.

5. The ___________ method is used to copy the contents of an array.

6. When an array is passed to a method, the array _______ is passed.

7. A two-dimensional array requires ________ subscripts/indexes.

8. An ArrayList (can/cannot) ________ grow and shrink as needed.

9. ArrayLists can store primitive data types using the __________ classes.

Chapter 6 Short Answer Exercises

10. What data type can be stored in the array declared in this statement?

int [] values = new int [20];

11. How many items can be stored in the array declared by this statement?

int [] values = new int [30];

12. What value is assigned to x by the statements below?

int [] numbers = {34, 35, 36, 37};

x = numbers[1];

13. Rewrite the loop below using the enhanced for loop.

for(int i = 0; i < array.length; i++) {

System.out.print(array[i]);

 }

14. Write a method header for a void method called displayAll that receives an

array of Strings.

162

Chapter 6 Arrays and ArrayLists

15. Write a method called arraySum that receives an array of integers and returns

the sum of the values in the array. Do not use the enhanced for loop in the

solution.

16. Rewrite the method in #15 above using the enhanced for loop.

17. Declare a two-dimensional array of integers named matrix with 3 rows and 5

columns.

18. Write a declaration for an ArrayList of Strings called names.

19. Write a statement that adds the name “Jennifer” to the ArrayList declared in

#18 above.

20. Write a statement that removes “Dillon” from an ArrayList named contacts that

contains “Allison”, “Dillon”, “Coleen”, and “Olivia”.

21. Write a declaration for an ArrayList of doubles called sales.

Chapter 6 Programming Exercises

22. Write a program that declares an array of integers named numbers. Using a

loop, populate the array with the numbers 1 thru 20, then use an enhanced for

loop to display the array contents separated by spaces.

23. Using the array in #22 above, display only the even numbers in the array.

24. Declare the two arrays below in a program and write a loop to add the numbers

from the two arrays that occupy the same indexes and display the results.

25. Write a program that declares an ArrayList named values and populate the list

with numbers below. Display the numbers, and then call a method named

average that returns the average of the numbers and then display the average.

Use the length attribute in the method for division and two decimal places in

the output.

163

Chapter 6 Arrays and ArrayLists

26. Using the ArrayList in #25 above, display the contents separated by spaces, sort

the ArrayList using Collections.sort() (reference the Complete Example in the

chapter), remove the lowest value using the index, and display the contents

separated by spaces.

27. Write a program that populates a 3 x 3 two-dimensional array with the numbers

1 thru 9 and display the array by row and column as shown below using a tab

between columns.

 1 2 3
 4 5 6
 7 8 9

28. Write a program that populates an ArrayList with 20 random numbers from 1 to

6 inclusive, and call a method that displays the ArrayList separated by spaces

and display number of sixes that occur in the ArrayList.

29. Write a program that creates an ArrayList named contacts that contains

“Allison”, “Dillon”, and “Coleen”. Write a display method that displays the

ArrayList on a single line separated by commas as shown below (note there are

no commas at the ends of the lines). Then complete the steps below.

a. call the method to display the initial ArrayList

b. add “Olivia” to the list and call the display method

c. replace “Colleen” with “Reece”, and call the display method

d. remove “Dillon” and call the display method

30. Write a program that creates an ArrayList of integers named numbers and

passes it to a method named addEvens() that populates it with the even

numbers from 2 to 20. Then call a method named addOdds() that adds the odd

numbers from 1 to 19 to the ArrayList. Then sort the ArrayList using

Collections.sort() and call a method that displays the contents of the ArrayList

separated by a space and colon as shown below.

164

Chapter 6 Arrays and ArrayLists

Chapter 6 Programming Challenges

#1 Sales Data ArrayList

Write a program that creates an ArrayList named sales populated with the sales

data in the left column below, and create another ArrayList named cost populated

with the cost data in the center column below. Call a method to display the data in

columns including a third column with the profit for each pair (sale price minus

cost). Include column headers for the data and the column totals as shown below.

 Sale Price Cost Profit

 3.55 3.27

 12.34 10.61

 2.67 2.46

 4.99 4.59

 15.95 13.72

 39.50 34.65

#2 Theater Seating Program

Design and implement a computer program for a Theater that allows users to select

a seat by row and column. The program will display the seating price in row column

format with the Stage indication (see below). When a seat is selected the program

will redisplay the theater seating replacing the price of the seat selected with an “X”

to indicate that the seat has been sold. The program will not allow selected seats

(those indicated with an X) to be selected. The program will end when all of the

seats have been sold.

The program will have the following methods:

• A method to display the Theater seating

• A method that determines if the seat selected has already been sold

• A method to determine if the Theater is sold out

The main loop for the program can be in the main method.

The two-dimensional price array is provided below.

165

Chapter 6 Arrays and ArrayLists

 int[][] priceArray = { { 30, 40, 50, 50, 50, 50, 50, 50, 40, 30 },

 { 20, 30, 30, 40, 50, 50, 40, 30, 30, 20 },

 { 20, 20, 30, 30, 40, 40, 30, 30, 20, 20 },

 { 10, 10, 20, 20, 20, 20, 20, 20, 10, 10 },

 { 10, 10, 20, 20, 20, 20, 20, 20, 10, 10 },

 { 10, 10, 20, 20, 20, 20, 20, 20, 10, 10 },

 { 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 },

 { 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 },

 { 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 } };

The program will display the theater with higher priced seating at the bottom, a

line, and the word “Stage”. Note that higher priced seating is near the stage

and is row 1 to the user. After displaying the Theater seating, the program will

prompt the user to select a row, and then a column for a seat. Note that row 1

is closest to the stage.

The program will acknowledge the selection and price in the output, and

redisplay (refresh) the seating available showing the selected seat as “X” and

prompt for the next user to select a seat. Sold seats cannot be selected again.

166

Chapter 6 Arrays and ArrayLists

If the user attempts to select a seat has already been sold, output that it is not

available and prompt for another selection.

If all seats are sold (i.e. all “X”s), display “Theater Sold Out”, display the theater

seating, and do not accept input (end the program).

167

Chapter 7 File Operations and Exceptions

Chapter 7

File Operations and Exceptions

Recall that the data stored in RAM does not persist between runs of the program

or when the computer is turned off. Data is saved on secondary storage in files

which allow information to be stored until it is needed, changed when required,

and deleted when no longer needed. All files have what is referred to as a file

extension. This is the three or four letters that follow the period in the file name.

File extensions are used by most operating systems to associate an application

with the file. When a file is double-clicked, the operating system determines the

application to launch based upon the file’s extension and the application that was

used to open that type of file previously. For example, double-clicking a file

named “song.mp3” will launch an audio player because the audio player

application has been associated with the mp3 file extension. The example below

has a “txt” file extension which is typical for text files which are usually opened

with Notepad or Notes by the computer’s operating system.

File Names and Extensions

168

Chapter 7 File Operations and Exceptions

Different file types are usually opened by different applications, although some

applications like Notepad can open a variety of file types. Table 7.1 lists some

common file extensions with descriptions.

Table 7.1 – Common File Extensions

Files being read from are typically referred to as input files, and files being

written to as output files. There are three steps to using a file in a computer

program:

• the file is opened

• the file is processed (read from, written to, or both)

• the file is closed

File handling in Java uses the File class and two different classes depending upon

whether reading from or writing to the file. For reading from files, a file object is

created and assigned the actual name of the file that will be used. The name is in

quotes and includes the file extension.

169

Chapter 7 File Operations and Exceptions

The line above creates a file object named inputFile and assigns it the file

input.txt (a text file containing some data). This is the only time that the actual

file name (input.txt) is used in a program. It has been assigned to the file object

inputFile which will be used in the program.

Reading from a File

When reading from a file, the Scanner class is used similar to getting input from

the keyboard. Instead of System.in, the Scanner object is created using the file

object name (not the actual file name) as shown below.

Note that the two statements above can be combined into one.

The Scanner methods used for keyboard input include the variations of next(), as

well as the variations of hasNext(). Recall that next() consumes any leading

white-space and reads until it encounters white space. The method nextLine()

will read a complete line of text from a file including white space. The methods

used for reading and handling data from a file are dependent upon the data

format and operations being performed. The following code opens a file for

reading named input.txt, and reads the lines in the file and displays them until

the end-of-file is reached. The file is then closed.

Opening a File and Reading Text

170

Chapter 7 File Operations and Exceptions

In the example, the loop would read from the file until there are no more lines to read.

A flowchart of the operation is shown below.

File Reading Flowchart

When the file name is used, the program will search the default

directory (which is where the program is running) to find the file. If

the file is in another directory, the full path must be used. Since a

single backslash in a literal string is the escape character, two

backslashes are needed in the file path as shown here.

171

Chapter 7 File Operations and Exceptions

Writing to a File

The standard way to create and write to a file is with a PrintWriter which

requires importing java.io.PrintWriter. The PrintWriter object is created and

assigned the name of the file in quotes as shown below. If the file “output.txt”

does not exist, it will be created (if possible). If the file exists, it will be emptied

before writing (appending to a file is covered later).

The PrintWriter can use the System.out methods print(), println(), and printf(),

and is closed in the same way that the Scanner is closed. The following code

opens a file for writing named output.txt, and writes the three words on separate

lines in the file using println(). The file is then closed.

Opening a File and Writing Text

Closing Files

Data being written to a file is queued in a buffer (a holding area in memory) for

efficiency. If a program does not close a file, the operating system will

eventually close it, but will not check the buffer first. Using the close() method

ensures that anything in the write buffer is written to the file before it is closed.

172

Chapter 7 File Operations and Exceptions

File Not Found Exceptions

If a program attempts to open a file for reading and the file does not exist, the

program will terminate and throw what is called an exception. To highlight this,

the Eclipse IDE will show an error when the Scanner is declared.

The same issue exists when declaring a PrintWriter, since it will attempt to create

the file if it does not exist and the user may not have permission to create a file

on the system or there may not be enough space on the device to create one.

Hovering over the errors in the IDE will display an “Unhandled exception type

FileNotFoundException”, and two quick fixes.

The first of the two quick fixes is “Add throws declaration” which indicates the

type of exception that might be thrown by a method. Adding it as shown below

removes the error indicator but does not handle the issue.

Throws Declaration

The second of the “quick fixes available” is to “Surround with try/catch” which is

the format for an exception handler in Java. A try block that includes statements

that may throw an exception is followed by a catch block for handling the

173

Chapter 7 File Operations and Exceptions

exception. In this case, a FileNotFoundException may be thrown. Clicking on

the quick fix option will add the try/catch code or it can be entered manually.

The general format for a try/catch is shown here.

Try/catch Exception Handling

The try block is entered and if a statement throws an exception, the catch block

(handler) for that exception type is entered. Control is transferred to the catch

block matching the exception thrown, the handler statement(s) executes, and the

program continues. No other statements in the try block following the one that

threw the exception will execute including closing a file. As shown below, if

statement 2 throws an exception, the try block is exited, the catch block will

execute, and statement 3 will never execute.

Catch clauses are exception specific and are a way of handling issues

that may arise without ending the program. A thrown exception that

is not handled will halt execution of the program. There are two

general types, and a variety of exceptions that can be thrown. Other

exceptions are covered later in the chapter.

174

Chapter 7 File Operations and Exceptions

Example Ex. 7.1 adds the try/catch blocks and exception handlers for writing to a

file and then reading from that file. Note that the close() methods are within the

try block and will not execute if an exception is thrown. This will be addressed

going forward.

Ex. 7.1 – File Writing and Reading with Exception Handling

It is customary to use “e” as the exception parameter to receive the exception

object, and to print the stack trace during development for additional error

information. Below is the stack trace for Ex. 7.1 when the input file is not found.

Error Stack Trace

175

Chapter 7 File Operations and Exceptions

As mentioned, when a statement in the try clause throws an exception, no other

statements in the try block following the one that threw the exception will

execute including closing a file. The file cannot be closed in the catch block

because of scope issues. The error message below is “inFile cannot be resolved”

because it is declared within the try block and is not accessible in the catch block.

Unable to Use close() in the Catch Block

One way of executing clean-up statements is with a finally clause. The finally

clause will execute whether an exception is thrown or not, and can be used for

statements that must execute. However, the file cannot be closed in the finally

clause since the file is declared within the try block and is out of scope. The

general format is shown below.

Try-catch-finally

An efficient way to ensure that resources used will be closed if an error occurs is

to declare and instantiate the PrintWriter and Scanner resources within the try

clause (after the word “try” and prior to the opening brace). This is called a try-

with-resources statement. The resources will be closed automatically even if an

176

Chapter 7 File Operations and Exceptions

exception is thrown. Example Ex. 7.2 uses the try-with-resources statements to

write a line of text to a file and then read and display the line.

Ex. 7.2 – File Writing and Reading Using try-with-resources

Try-with-resources

Other Exceptions

There are many exceptions included in the Java Library that could be thrown

including NumberFormatExceptions, FileNotFoundExceptions, IOExceptions

and StringIndexOutOfBoundsExceptions. There are two types of exceptions:

checked and unchecked. A checked exception will be highlighted by the

compiler and require a solution (try/catch or throws statement) before compiling.

An unchecked exception occurs at runtime like accessing an out-of-bounds index

or an illegal argument used by the program. The compiler will not highlight

these. When an exception is thrown, the program will look for a catch clause that

matches the specific exception thrown. If it does not find one, the program will

terminate. Many exceptions are preventable with code depending on the

operation. The line below could throw a NumberFormatException because

hasNextInt() is not used to ensure that the String can be parsed to an integer.

177

Chapter 7 File Operations and Exceptions

Instead of surrounding the code with a try/catch and writing an exception

handler, the code can be rewritten to ensure that the data is an integer before

attempting the assignment. The trim() String method can be used to remove any

leading or trailing whitespace, and the isNumeric() method will return true or

false and can be used as a conditional expression as shown here.

A generic exception handler can also be written to catch any exceptions that are

not specifically handled. The catch clause could then output the message that is

contained in the exception as shown below. Note that this catch clause does not

handle the exception; it simply displays the error information.

Append an Existing File

When a file is opened by the PrintWriter, any data in the file is erased. To

append to an existing file requires creating an instance of the FileWriter class and

then assigning it to the PrintWriter. The first argument passed to the FileWriter

constructor is the name of the file in quotes, and the second is the Boolean value

true for appending. The FileWriter is then assigned to a PrintWriter as shown

below, and then the PrintWriter methods can be used for writing.

Reading and Writing Numeric Data

Numeric data is often stored in files, and since the Scanner is used for reading,

nextInt() and nextDouble() can be used to read integers and doubles. However,

178

Chapter 7 File Operations and Exceptions

they may run into trouble if what is read is not a numeric value. Using

hasNextInt() and hasNextDouble() will look ahead to ensure that the expected data

type is read. Recall from Chapter 3 that Integer.parseInt() and Double.parseDouble()

will convert the text to a numeric value if possible.

Example Ex. 7.3 below writes integers to a file on separate lines, then a String,

and closes the file. The program then reads the integers using hasNextInt() which

does not read the line feeds or the String. (Note: Exception handling is omitted.)

Ex. 7.3 – Writing and Reading Numeric Values from a File

Program Output

Delimiters

An earlier example read an entire line from a file into a String. If reading one

word at a time from the file is preferred, the next() method would be used which

179

Chapter 7 File Operations and Exceptions

reads until it encounters whitespace. A delimiter (data separator) can also be

used for reading using the Scanner method. As an example, a comma delimited

file could be read as shown below. A Scanner named inFile is declared, and it is

assigned the delimiter (“,”) to use. The next() method will read until the delimiter

and consume the delimiter just as it would a space or line feed. Note that the

commas are not in the output.

Reading Using a Delimiter

A delimiter does not have to be a character. In some files, the data may be tab or

space delimited. The next() methods including nextInt() and nextDouble() will

read until whitespace, and consume leading white space. Consider a data file

that has two columns of data separated by a tab. The requirement is to read the

two values on each line in the file and display their sum. The nextLine() method

could be used to read the line containing the two values and then split them

apart, but since next() will read until the tab, and then consume it, reading twice

for each line simplifies the solution.

Example Ex. 7.4 reads two values from a tab delimited file, adds the values

together, and displays their sum. Notice that the program uses try-with-

180

Chapter 7 File Operations and Exceptions

resources and a conditional statement before reading the second value to ensure

that it is a double before reading.

Ex. 7.4 – Two-column Tab Delimited File Reading

Data Format

Designing the data format for file storage is an important task that effects

program design and operation, data handling, and the scalability of the data and

the program. When designing data files, the format, text/binary, delimiters, and

any encryption would be considered. Many large-scale, data intensive programs

require a formal Data Dictionary which is a file separate from the data that

181

Chapter 7 File Operations and Exceptions

contains the data descriptions, format, delimiters, the ordering of the data, and

often additional information and comments. A data dictionary can provide

useful information about file contents and how to extract or parse the data for

use in display and analysis. Creating a data dictionary also allows the file to

contain only data and flexibility with respect to delimiters. Data dictionaries are

also typically used for databases, and often describe the contents and the

relationship between the database elements.

When a program stores and retrieves the information, the format for storing the

data can accommodate the way that the program retrieves and uses the data.

Consider the program that stores customer reservations for a restaurant in the

complete example below.

A Complete Example – Customer Reservations

Requirements:

Write a program that retrieves and displays customer reservation

information for the “Finest Dining” restaurant. The restaurant serves

prix fixe (fixed price), four course meals for $75.00 per person. A

deposit of 20% confirms the reservation, otherwise it is pending

confirmation. The data will include the customer last name, contact

phone number, number in the party, deposit amount, balance due,

and the date and time of the reservation. The data is comma

delimited.

Program Pseudocode:

While there is a line of data in the file to read

- Read a line of the data for a reservation

- Compute the balance due

- Display the information

Design

Since the data file format is known (shown below), the program will read

each piece of data, compute the balance and display the information. The

design would include parsing the deposit amount to determine the

182

Chapter 7 File Operations and Exceptions

reservation status and to compute the balance due. The data format

when written to the file is shown below. Consider the different ways that

the data could be written to the file.

File data (space delimited):

Development

The development of the program follows the pseudocode and includes a

Scanner for reading the data. The file is space delimited so next() will be

used for reading. A loop will read the data and convert the values needed

for computations and the output as follows:

Number in party – convert to integer to determine total bill amount,

deposit required, and balance due

Deposit – convert to double to determine balance, reservation status,

and balance due

The variables are declared and initialized.

183

Chapter 7 File Operations and Exceptions

The try block uses try-with-resources and the loop reads the file data and

parses the integer and double.

The output is formatted for display and the program is tested.

A conditional expression determines the reservation status based on the

deposit amount.

Testing and Debugging

Some testing would have been performed during development to ensure

that the file was being opened and read. The loop would be developed

incrementally with testing along the way. As an example, simply reading

and displaying data proves that the development is on the right track.

184

Chapter 7 File Operations and Exceptions

The program is tested and the output is checked against the file data to

ensure that it is producing the correct output for each of the reservations.

File Selection - JFileChooser

Java provides a swing component called the JFileChooser to select files. Rather

than type a file name, the component is used to obtain the filename and path.

JFileChooser

The following lines of code create the file dialog shown above, and include line

numbers for explanation. The program first obtains the directory the user is

currently working in on line 10, and then creates a JFileChooser named chooser

on line 12. Line 14 sets the directory for the file chooser to the working directory,

and line 16 creates the file chooser window (null is used in place of a parent

window for positioning). Line 16 also declares an integer to obtain the return

value from the file chooser. Line 18 tests the return value from the chooser for

185

Chapter 7 File Operations and Exceptions

the APPROVE_OPTION (a file was selected), and line 20 obtains the file name

including the path. Line 22 displays the path of the file selected for testing the

example.

To assign a Scanner in the program above, it is passed the file path assigned by

the file chooser as shown here.

To open the file using an application, use the Desktop, and open method.

Filtering Selectable Files

To filter the selectable files on a file type, a filter can be assigned to the

JFileChooser. The following code creates a file chooser and then a filter which

includes only .jpg file types. The filter is assigned to the JFileChooser using

setFilter(). The only file types displayed for selection will have the .jpg extension.

186

Chapter 7 File Operations and Exceptions

To save a file, the showSaveDialog() is used.

Programming Style and Standards

Data file naming recommendations include the use of all lowercase letters with

underscores between words, and not using spaces or special characters in the

name. Short names are considered best, but should adequately describe the

contents of the file.

Exceptions should be handled and not squelched with catch blocks that simply

catch the exception. A generic catch block (shown below) that omits the

exception type and will catch any exception is acceptable if it is included last in

the series. It should be considered a default catch block for testing and

debugging purposes.

Multiple exceptions can be caught by the same catch block as shown below, but

they would have the same handler which would not be specific to either one.

Programmers can also create their own exceptions by extending the Exception

class.

187

Chapter 7 File Operations and Exceptions

Chapter 7 Review Questions

1. The characters that follow the name of a file are referred to as the file

_____________.

2. A file opened for reading is referred to as an ____________ file.

3. A file opened for writing is referred to as an ________________ file.

4. In order to use a file in a program, the file must be ___________.

5. When a file is opened for writing, the data in the file is ___________.

6. For file handling, the directory where the program is running is referred to as

the ________ directory.

7. The _________ object is used to read data from a file.

8. The ____________ object is used to write data to a file.

9. An area in memory where data to be written is temporarily stored is referred to

as a ___________.

10. When a program is finished using a file, it should __________ the file.

11. Adding to the end of a file’s contents is referred to as ____________ to the file.

12. The ________________ class can be used to append data to an existing file.

13. A _____________ is a character used to mark the beginning or end of an item of

data, or as a data separator.

14. When an error occurs because a file cannot be found for reading or created for

writing, it is referred to as throwing a(n) _____________.

15. When a statement in a try block throws an exception, any remaining statements

in the try block (will/will not) _________ execute.

16. When an exception occurs and there is no catch clause matching the exception

thrown, the program will _____________.

Chapter 7 Short Answer Exercises

17. Write the statement(s) required to open a file named “dataFile.txt” for reading

and associate it with the reference inFile.

18. Write the statements required to open a file named “dataFile.txt” for writing

and associate it with the reference outFile.

188

Chapter 7 File Operations and Exceptions

19. Write the statements required to open a file named “dataFile.txt” for writing

and associate it with the reference outFile, and write “This is a test.” to the file.

20. Write the statements required to open a file named “dataFile.txt” for writing

and associate it with the reference outFile, write the statement “This is a test.”

to the file, and close the file.

21. Write the statements to open a file named “numbers.txt” for writing that do not

erase the existing data in the file. Associate the file with the name outFile.

22. Write the statements required to open a file named “data.txt” for reading in a

try block, and the exception handler for a FileNotFoundException that displays

“File not opened”. Use try-with-resources in the statements.

23. Write the statements required for a try block to read the contents from a file

named “names.txt” that has names on separate lines, display the contents on

separate lines, and handle a FileNotFoundException.

Chapter 7 Programming Exercises

24. Write a program that creates a file for writing called “data.txt” and write the

following lines to the file on separate lines and close the file.

The first line

The second line

The third line

The fourth line

The fifth line

The sixth line

25. Write a program that reads the “data.txt” file created from #24 above and

display the contents of the file with a line number and colon as shown below.

189

Chapter 7 File Operations and Exceptions

26. Write a program that creates a text file named “num_data.txt” and writes the

numbers 1001 thru 1020, separated by a tab with four numbers per line.

27. Create a text file named “sales_data.txt” with the sales data listed below each

on a separate line. Write a program that reads one value from the file at a time,

computes the discount price (20% off), and display the original and discount

prices in two (2) columns separated by a tab as shown, with headers for the

columns.

Sales data: 19.64, 3.56, 9.87, 16.33, 12.95, 6.50

28. Create a text file named “products.txt” with the product names, units, and

prices separated by a space as shown below left. Write a program that reads

the data from the file and displays the data for each item in a column with a

header as shown below right.

190

Chapter 7 File Operations and Exceptions

29. Using the data file from #28 above, write a program that adds the

products below to the file without deleting the existing products.

Post Card 50 1.99

Cooler 8 9.98

Chapter 7 Programming Challenges

#1 Employee Data File

Design and develop a program for a local company payroll that uses the employee

data file information shown. Create the data file shown below left and write a

program that will read the file and display the name and ID for the employee, and

the gross pay for each employee based upon the input file data (hourly rate * hours

worked). The format for the output is shown below. Include an exception handler

in the solution. (To add the dollar sign, insert it before the % sign in the format

specifier)

The data format for the input file is: name, ID number, hourly rate, and hours

worked.

#2 Employee Data File - Dialog

Modify the program in Programming Challenge #1 to use a File Open dialog to obtain
the name of the file.

191

Chapter 8 Classes and Objects

Chapter 8

Classes and Objects

In Object-oriented Programming (OOP), data and functionality are combined

in an object and are hidden from the rest of the program. The data items stored

by an object are referred to as attributes or members (sometimes member

variables or fields), and the methods within an object perform operations

(sometimes referred to as behaviors or procedures) on the data. Object oriented

terminology has changed over the decades and different terms are used

interchangeably and sometimes depend on the programming language. This is

unfortunate, but essentially objects have attributes (data elements) and methods

that operate on the data elements and provide an interface for other objects and

parts of the program.

Objects generally model real-world entities that have characteristics such as a

house that has doors and windows. The doors and windows would be the

attributes of the house. This is often referred to as the “has a” relationship. A

house has a door, and the house has a window.

The attributes of an object are typically hidden from outside the object to protect

the data from being corrupted or changed arbitrarily. This is called

encapsulation. Parts of a program and other objects are provided access to the

attributes through a public interface made up of methods that provide

protection for the attributes while allowing access to them when necessary. Since

interaction with an object is provided through the public interface, only

192

Chapter 8 Classes and Objects

knowledge of the interface is required to use them. This is referred to as

information hiding since programs can use an object without knowing the

inner workings. Any future changes to an object internally do not necessarily

require changes to a program that uses that object. Unless the public interface

has changed, there is typically no need to modify programs that use the object.

Classes

To create an object, there must be a class. A class is a framework or blueprint of

what an object will contain when one is created. As an example, an architect can

provide a detailed drawing of a building that shows a door, but the door cannot

be opened. It doesn’t exist. A building must be built from the drawing, and then

the physical door of the building can be opened. The building would be an

instance of the drawing the same way that an object is an instance of a class. In

addition, multiple buildings could be built from the same drawing and they

would all be identical, and they would each have their own door. Multiple

objects can be instantiated from a single class, and they would each have their

own set of class attributes.

Instances of a Class

193

Chapter 8 Classes and Objects

The class definition describes the data elements and methods for the class. The

general format for a class definition is shown below. The class definition begins

with the public access specifier, the class key word and the name of the class.

Class names begin with an uppercase letter and then begin each additional word

with an uppercase letter. The third line below is the constructor which has the

exact same name as the class, and looks like a method but has no return type.

Class Definition Format

Constructors

Every class has a constructor which is called when an object (instance of the

class) is created using the new operator. The constructor allocates memory and

constructs an instance (object) of the class. If a constructor is not written, the

compiler will generate one without parameters, and the attributes of the object

will be set to default values. Numbers will be set to zero, Boolean variables will

be initialized to false, and array and object references will be set to null.

However, a constructor is typically written to initialize the instance variables

(attributes) of the object. A written constructor may have parameters that receive

values to initialize the attributes, or it may initialize them with default values.

Since the attributes (data elements) only exist when an object

(instance of the class) exists, the attributes are often referred to as

instance variables.

194

Chapter 8 Classes and Objects

As an example, consider a Reservation class that has attributes for name, day,

time, and number of guests. When a reservation object is created, it could be

initialized with the reservation information passed to the constructor. The class

definition in example Ex. 8.1 includes the class declaration, and the attributes

(instance variables) for the class, followed by the constructor. The constructor

includes the parameters for name, day, time, and guests. When an object of this

class is created, four arguments must be passed to the constructor. The

constructor initializes the attributes with the values received in the parameters.

Ex. 8.1 – Reservation Class Definition

Example Ex. 8.2 below creates a Reservation object (instance of the class) and

passes “Walker”, “Mon”, 1730, and 5 to the constructor. A Reservation object is

created and assigned to r1. The output statements access the instance variables

directly using the name of the object, the dot operator, and the attribute name.

Ex. 8.2 – Reservation Class Object

Program Output

195

Chapter 8 Classes and Objects

Each Reservation object created from the class will have its own set of attributes

with their own values. The values stored in the instance variables are referred to

as the object’s state. The state for r1 is shown below.

Object State

To highlight this, example Ex. 8.3 creates two Reservation objects (r1 and r2) with

different values and accesses their instance variables.

Ex. 8.3 – Multiple Objects (instances of the class)

Program Output

Access Specifiers

In the examples, the class and constructor were preceded by the public access

specifier. Access specifiers provide control over those parts of a class that can be

accessed by other objects and other parts of a program. The three access

specifiers are private, protected, and public and provide different levels of

protection and access.

196

Chapter 8 Classes and Objects

Public: visible everywhere.

Protected: visible to the package and to subclasses.

Private: visible only to other members of the class.

Access Specifiers

Class attributes in OOP should be specified as private to enforce encapsulation

and information hiding. This protects the attributes from being accessed directly

and changed arbitrarily. The code below includes the private access specifiers

for the Reservation attributes. It also lists the instance variables on separate lines

which is typical and enhances readability.

Private Access Specifiers

197

Chapter 8 Classes and Objects

Public Interface

The Reservation example has a constructor that receives parameters to initialize

the instance variables of the object. Some classes do not receive parameters in

the constructor and there are methods within the class to assign values to them.

Also, consider that a value in an object may need to be changed such as a

Reservation time or day. Methods are added to the class definition, which allow

access to the private attributes to change the state of the object. Methods that

provide access to or the ability to change the attributes in a class form the public

interface. There are two types of methods in the public interface. Methods that

change the attributes of an object are referred to as mutator methods. Methods

that access an object’s attributes without changing them are referred to as

accessor methods. Mutators set and accessors get. For this reason, some

programmers refer to them as setters and getters.

Mutator and accessor methods should have names that indicate what they

change or access. Example Ex. 8.4 adds a method to the Reservation class to

change the time. The method validates the input to protect time from being set

to an invalid number. This is an important role for the public interface.

Ex. 8.4 – Public Interface Methods

198

Chapter 8 Classes and Objects

The accessor methods for the Reservation class are shown in example Ex. 8.4A

below. The accessors simply provide the current state (value) of the attributes.

Ex. 8.4A – Public Interface Methods for Reservation

Public Interface Accessor Methods

The output statements in the example program have been changed since the

attributes are now private. They must be accessed through the public interface of

the class. The example below uses the accessors and demonstrates changing the

time for a reservation using the mutator method.

Ex. 8.5 – Public Interface Methods for Reservation

Program Output

199

Chapter 8 Classes and Objects

Modularization and Class Files

Modularization, which was introduced in Chapter 5, also applies to classes. Class

definitions should be located in separated files. This aligns with the process of

modularizing programs which provides many benefits including the ability to:

reuse portions of the code, divide the program development among multiple

programmers, and simplify the overall project. Classes should be in their own

files, the file name should be the class name, and there can only be one public

class per file. If the file is in another package, the package is imported just as

java.util is imported. The file structure for Ex. 8.5 is shown below.

Ex. 8.5 File Structure

Class Variable Types

A class can contain any of the following variable types.

• Local variables − Variables defined inside methods, constructors or

blocks of code. The variable will be declared and initialized within the

method and destroyed when the method has completed.

• Instance variables − Variables within a class but outside any method, and

are initialized when an object is created. Instance variables can be

accessed from any method, constructor, or block of code within the class.

• Class variables − Variables declared within a class with the static

keyword, and outside any method (further explained in the next section).

Class-level Variables – Static

An attribute that is declared as static and outside any method in a class is a

class-level attribute and is shared by all objects of the class. They are useful for

class constants, tracking data across all instances of the class (similar to static

variables), and for defining default values. A class attribute can be accessed

200

Chapter 8 Classes and Objects

using the class name or an objects name. As an example, the restaurant using the

Reservation program may want to tally the total number of guests combined for

all reservations. A static variable could be added to the class that would be

shared by all instances (objects) of the class. When a new reservation object is

created, the constructor could add the number of guests for that reservation to

the class variable, and a method could be added to obtain the total number of

guests. Each Reservation would share the same variable.

Class-level Static Attribute

Example Ex. 8.6 includes the modifications to add the static variable, update the

variable in the constructor, and provide an accessor method for the variable.

Ex. 8.6 – Static Variable for Total Number of Guests

201

Chapter 8 Classes and Objects

The main method for the program has been modified below to create two

Reservation objects and display the total number of guests after the first object is

created and then again after the second is created. Note that the second call to

the method is also made using the name of the first object. Since totalGuests is

a shared variable, each of the objects would access the same value.

Program Output

Static Methods

Classes can also define static methods that are not invoked on an object. As an

example, the getTotalGuests has been redefined as a static method.

The method can now be called using the class name instead of the object name,

and can be called even when there are no objects.

Program Output

202

Chapter 8 Classes and Objects

Overloaded Constructors

To provide different initializations of an object, a class can have more than one

constructor. When a method (a constructor is a method) is defined more than

once it is referred to as an overloaded method (the parameter lists must be

different). The method’s signature is the name, parameter list, and return type.

This is the way that the methods are differentiated. As an example, consider that

reservations are frequently made at the restaurant for large groups and the exact

time is not known and will be provided later. A constructor could be added that

does not require the time argument. The proper constructor will be called based

upon the arguments that are passed when the object is created.

Overloaded Constructor

The program below creates two Reservation objects using the two different

constructors. In each case, the proper constructor is called.

203

Chapter 8 Classes and Objects

Notice in the output that the time attribute for r2 was initialized to zero by the

constructor.

Program Output

Passing Objects as Arguments

Objects can be passed to methods as arguments. The parameter of the method

receives a reference to the object which is the object’s memory address and it

provides access to the object’s methods and attributes. The example below

creates a Reservation object and passes it to a method.

Ex. 8.7 – Objects as Arguments to Methods

The method receives a Reservation object reference in the parameter which allows

access to the methods of the object. Note that the type of the parameter for the

method is a Reservation. The name used by the method to receive the reference

can be anything, and is used to access the attributes of the object by the method.

Ex. 8.7A – Objects as Arguments to Methods

Designing Classes

Before determining the classes for a project, a complete understanding of the

requirements is needed to ensure that all aspects of the project are known. The

204

Chapter 8 Classes and Objects

requirements and all possible real-world entities (classes), data elements

(attributes) and events that could occur (methods) are then listed. This is

referred to as the Problem Domain. Once the problem domain is established, the

nouns are considered to determine the class candidates, and the verbs are

considered to determine the methods. The Reservation project’s problem

domain might be as simple as the description below.

Reservation Project Problem Domain

A reservation system for a restaurant including name, day, time, and guests

Allow for updates and display of the reservation information

Before writing a class definition, time should be spent designing the class. This

includes considering the data attributes and the public interface (methods) that

will be needed to access and change the data. Methods should be included that

provide the necessary operations on objects of the class. A program that uses the

class should not have to include functionality pertaining to the object. Most

classes model real-world objects and should represent a clear and single

abstraction. That is, the class should not include functionality that is outside its

responsibilities like getting user input, or anything that is specific to a particular

program. One of the goals of OOP is reuse of the class. If a program provides

functionality that should be in the class, the class is not easily used in another

program. Another goal is cohesion which refers to the degree to which a class

represents a single abstraction without external dependencies. The degree to

which a class depends on another class or another part of the program is referred

to as coupling. A class should have cohesion (represent a stand-alone entity),

and loose coupling (no external dependencies).

One of the tools used in the design of classes is the brain-storming session. A

project design team meets, discusses, and documents ideas and suggestions for

classes, and the nouns and verbs used when describing the classes. The nouns

represent attributes (data elements) and the verbs represent the methods that

will act on the data including the public interface. The goal is to include all

possible elements, and refine the list as design continues. The lists of nouns and

verbs for the Reservation project would include at least those shown below.

Reservation Project

Nouns – reservation, customer name, day, time, and number of guests

Verbs – create a reservation, get the name, get/set day, get/set time, get/set

guests, and display the reservation information

205

Chapter 8 Classes and Objects

Unified Modeling Language (UML)

Another tool used for designing and documenting classes is the UML diagram

which describes a class, including the attributes, and methods. The top section of

a UML diagram contains the name of the class, followed by a section that

describes the data attributes, and the bottom section lists the methods for the

class. A UML diagram includes symbols and a specific format for identifying

data types and access specifiers. The plus sign represents public access, the

pound sign for protected, and a minus sign is used to represent private access.

Attribute data types follow a colon after the attribute name. Methods include the

name, and the parameters are listed with name, colon, and data type. The return

data type, including void, is listed after the closing parenthesis and a colon. For

the Reservation, the attributes are private and the methods including the

constructor for the class are public. A static variable would be underlined.

Unified Modeling Language (UML) Diagram

The UML format may differ slightly across industries or organizations, but all

capture the data attributes and methods and can be used in the design process.

UML behavior diagrams (object activity diagrams) are used to show the flow of

control, data, and transactions. UML Superstructure Specifications provide a

standard for object interaction depiction.

206

Chapter 8 Classes and Objects

The Behavior Diagram below illustrates the authentication of user activity with

Login Id and Password.

Object Behavior Diagram

The Object Sequence Diagram adds the chronological aspect to the operations as

well as the program sequence and order of operations.

Object Sequence Diagram

The Reservation Class Revisited

The Reservation class definition below has been modified to include the accessor

and mutator methods. Due to the increase in lines of code, most standards allow

single line method bodies for accessors and when appropriate.

207

Chapter 8 Classes and Objects

Ex. 8.8 – Reservation Class

208

Chapter 8 Classes and Objects

The UML Diagram for the Reservation Class below has been updated to include

the additional methods, the overloaded constructor, and the static variable. The

static designation uses angled brackets.

Updated Reservation Class UML Diagram

209

Chapter 8 Classes and Objects

Testing Classes

Classes are often part of a larger program that may contain multiple classes.

Before introducing a class into a larger program, the class should be thoroughly

tested. Testing a class in isolation is referred to as Unit Testing. The examples

created instances of Reservations from a main method and invoked some of the

methods. This approach is often used to test a class and might be considered a

driver program. Programs and classes can be designed to test parts or even

complete programs to automate the process. Automated testing reduces human

error, saves time, and makes testing more likely.

When testing classes, how the class will be used in the application determines the

level and type of testing. Each part of the class should be tested separately and

as a unit, and testing should be carried out during development as well. Recall

from Chapter 1 that the cost of fixing errors increases through the Software

Development Lifecycle. Developers should be aware of multiple test strategies

and tools, and choose the appropriate one for that point in development. When a

modification is made to an existing program, regression testing involves re-

running tests that previously passed to ensure that they still pass, or to compare

current program results with previous results. JUnit and BlueJ are popular

frameworks for regression and unit testing.

BlueJ Integrated Development Environment

210

Chapter 8 Classes and Objects

When a bug (error) is detected, there are multiple strategies for debugging as

well. Debugging tools are provided in integrated development environments

that highlight errors and often suggest corrective action. They also include what

are called breakpoints that allow stopping execution of the code at certain points

in the program to view variables and the state of the attributes.

Eclipse Debugging Tools Menu

Other debugging techniques include manual and verbal walkthroughs of the

code. Very often verbalizing the steps in the program or explaining what is

happening to someone else will surface the issue. Adding output statements is

another popular debugging tool because it does not require any special tools and

provides a quick look at what is happening at any point in the program.

Testing detects the presence of errors and debugging searches for the

source of errors. The error may be visible far from the source and

require extensive debugging.

211

Chapter 8 Classes and Objects

Thoroughly testing a class can reveal areas requiring additional consideration.

For example, the Reservation class will have user interaction for data entry. A

restaurant employee could accept reservation information over the phone, or a

customer could enter information on the restaurant website. Both of these

scenarios could introduce invalid data. The Reservation constructor and

methods in the examples did not all validate the entered data before assigning

values to the attributes. The mutators modify the attribute values, and they

should test the data before any updates as well. The Reservation class mutators

are modified below to include validation of the input values.

Updated Reservation Class Mutators

Rather than repeat input validation in the constructor, the constructor can call

the mutators which validate the data and assign the values. The constructor

212

Chapter 8 Classes and Objects

below has been modified to use the updated mutator methods and protect the

private attributes from erroneous values.

Updated Reservation Class Constructor

Modifications to the mutator methods and constructor were performed after the

fact, and could have been considered during the design phase. Very often testing

will reveal things that may have been overlooked or could be improved. The

goal is to provide a solution that is as error-free as possible.

A Complete Example – Garden Shed Company

Requirements:

Design and develop a program for a company that builds wooden

garden sheds. The program will determine the cost to build sheds

based upon the size of the shed, door type, and number of windows.

The program should allow the information for multiple sheds to be

input, and provide the total cost for all of the sheds.

Shed Options and Pricing:

Shed size options as width/depth and price:

 10 x 8 - $900, 12 x 10 - $1,800, and 16 x 12 - $2,600

Window options and price:

One (1) large $90.00 or two (2) medium at $80.00 each

Door options and prices:

Single door $160.00, Double door $240.00

Ramp:

Double door requires entry ramp $90.00

213

Chapter 8 Classes and Objects

Design

The program will have a Shed Class with a constructor that accepts the

size, the door type, and number of windows. The main method will test

the class by creating shed objects and displaying the total cost.

The constructor for the Shed class will receive the size of the shed as

integers for width and depth (to accommodate additional size sheds in the

future). The option for door type will be a String (“S” or “D”) which will

determine if the ramp cost is included, and an integer (1 or 2) will be used

for the number of windows.

After assigning values to the attributes, the constructor will call a method

to compute the cost for the shed that will also update a static variable for

the total cost.

The Shed Class (public interface methods omitted)

214

Chapter 8 Classes and Objects

The static method for the total cost

Testing and Debugging

The class must be tested and verified. A few different shed options should

be tested and verified for accuracy using calculated data. The main

method below creates three shed objects of different sizes and with

different options for doors. The expected results are calculated for

comparison with the output from the program.

215

Chapter 8 Classes and Objects

Test data:

Shed 1 10 x 8 $900.00

 Single door $160.00

 One window $90.00

 Total $1,150.00

Shed 2 12 x 10 $1,800.00

 Double door $240.00

 Ramp $ 90.00

 Two windows $160.00 $80.00 each

 Total $2,290.00

Shed 1 16 x 12 $2,600.00

 Double door $240.00

 Ramp $90.00

 Two windows $160.00 $80.00 each

 Total $3,090.00

Program Output

216

Chapter 8 Classes and Objects

Object References

In the Reservation examples, an instance or object of the class was created using

the new operator, and the class name. The object was created and a reference to

the object in memory was assigned to a variable (r1 below). The variable does

not hold the object.

This is different from an integer or any of the primitive data types. For example,

when an integer is declared and assigned a value, the variable holds the value

(not a reference to the variable).

The computer uses 4 bytes to store an integer, but an object could be very large

and require a lot of memory. It is more efficient to use a reference to an object. A

method that returns an object would return a reference to the object.

Methods Returning Objects

A method can return an object (actually a reference to an object). The receiving

data type would be the class name and the method would call the constructor.

Consider a method that returns a Reservation object. The method would call the

constructor and return a reference to the object.

The example above may seem like a two-step process that could be avoided by

having the main method call the constructor directly, but consider a file of

Reservations that is read by the program, an object for each Reservation is

217

Chapter 8 Classes and Objects

created, and then the objects are added to an ArrayList of Reservations. The

program can then use the ArrayList of Reservations for processing.

The this Reference

A reference variable that an object can use to reference itself is the this reference

variable. Instance methods implicitly receive it and it refers to the current object.

Programmers can used it to overcome shadow variables which can occur when

variables have the same name. As an example, if the Reservation constructor

parameter for name were modified to accept the argument as name, the instance

variable would cause the IDE to indicate that it is not used and that the

constructor assignment has no effect (note the yellow line under name = name).

When the program runs and an attempt to access the name variable is made, the

output is null.

Instance Variable Assigned null

218

Chapter 8 Classes and Objects

By using the key word this in the constructor, the assignment is made to the

attribute of the object. The variable on the left side of the assignment statement is

associated with the class. Using this is not required, but it can be used to avoid

shadow variables or to add clarity and highlight that the variable is an instance

variable and belongs to the object. It can also be used with class methods.

The this Key Word

Since a descriptive name should be used for parameters as well as attributes,

they may have the same name. Some programmers prefer to use the this key

word and avoid any issues with shadowing. In the Reservation example, the

first letter of the attribute was used for the constructor parameters. Since the

assignments and method calls are in view, it is easy to identify what the letters

indicate and the abbreviated parameter names are acceptable.

The null Reference

An issue that should be avoided occurs when an instance variable is not set by a

constructor. The variable reference will be set to null by default, and operations

219

Chapter 8 Classes and Objects

on that variable could cause a null pointer exception when the program runs.

This is why the previous example displayed null for the name when the

assignment in the constructor could not be made and the attribute was accessed.

If the Reservation constructor did not accept arguments, or a default constructor

was used, the instance variables would be assigned their default values

(numbers to zero and objects to null). A String is an object so the default

initialization is null. To avoid this situation, the default constructor could be

modified to initialize some or all instance variables. As shown below, the

instance variable name can be assigned the empty String which has a length of

zero, but is a valid String.

Initializing Instance Variables

Technically speaking, null is seen by the computer as memory address

zero. There is no address zero and therefore null is assumed to be

nothing. Recall in Chapter 5, null was used as an argument for a

dialog box to indicate that there was no parent window.

The Garbage Collector

The Java Virtual Machine periodically runs Garbage Collection to automatically

remove unreferenced objects from memory. The garbage collector performs a

mark operation that identifies memory in use and memory no longer in use. It

then performs a sweep operation that removes items marked as unused. This

automatically frees up memory that is no longer being used.

220

Chapter 8 Classes and Objects

Chapter 8 Review Questions

1. Hiding the implementation of a class is referred to as ______________.

2. The instance variables of a class are called ________________.

3. Program statements and other objects access an object’s attributes through the

_________ _________.

4. An object is a(n) _____________ of a class.

5. The class ____________ declares the data and methods for a class.

6. The method that creates an instance of the class and may initialize an object is

called the ____________.

7. The values stored in an object’s data attributes are referred to as the object’s

___________.

8. The three access specifiers are __________, _________, and __________.

9. Class attributes should be specified as _________ to enforce encapsulation.

10. Other objects and methods should access an object’s attributes through the

________ _________.

11. Methods that access an object’s data attributes are called ____________.

12. Methods that set or change an object’s data attributes (state) are called

_______________.

13. Modularization requires classes to be in separate __________.

14. Variables declared within a class with the static key word and outside any

method are __________ variables.

15. ___________ variables are shared by all of the objects of a class.

16. A _________ method is not invoked on an object and is called using the class

name.

17. A constructor with the same name as another constructor, but has a different

parameter list is a(n) _____________ constructor.

18. When an object is passed to a method, the method receives a ____________ to

the object.

19. ____________ refers to the degree to which an object represents a single

abstraction without external dependencies.

20. __________ refers to the degree to which an object is dependent upon another.

21. A _________ diagram describes the attributes and methods of a class.

221

Chapter 8 Classes and Objects

22. Testing a class in isolation is referred to as __________ testing.

23. The _________ reference is often used to overcome variable shadowing by

indicating the current object is being referenced.

24. A String attribute that is not initialized by a constructor will be initialized to

_________ when an instance of the class is created.

Chapter 8 Short Answer Exercises

25. What is the difference between a class and an object?

26. Why do classes have a public interface?

27. What is included in the public interface of a class?

28. What are the attributes of the following class?

29. How many parameters does the constructor require in the following class?

222

Chapter 8 Classes and Objects

30. Write an accessor method for the balance attribute of the Account class

above.

31. Write a mutator method for the balance attribute of the Account class above.

32. Write a default constructor that has no parameters, but initializes the attributes

of the Account class above.

33. Rewrite the assignments in the constructor below without changing the names

to eliminate the shadow variable issue.

Chapter 8 Programming Exercises

34. Create a program using the class definition below for a Circle class. In the main

method for the program, create an instance of the class called c1 with 2.0 as the

radius, and then display the diameter of the circle using the accessor method.

35. Using the Circle class above, add an accessor getCircumference() that uses the

radius to compute and return the circumference. Do not add an attribute for

circumference. Add a display statement in main to display the result.

Circumference = 2 * Math.PI * radius

223

Chapter 8 Classes and Objects

36. Using the Circle class in #34 above, add an accessor method getArea() that uses

the radius to compute and return the area. Do not add an attribute for area.

Area = Math.PI * radius * radius

From the main method, create a Circle object with a radius of 3.0 and display

the diameter, circumference, and area as shown below using 2 decimal places.

37. The value for the diameter is set when an object of the Circle class above is

created. There is also an attribute for diameter in the class.

a. Should there be an attribute for diameter?

b. If there were a mutator for radius, would the diameter be updated?

c. To resolve the issue, would it be preferred to have diameter computed

in the accessor, and remove the attribute?

d. Redesign the class to eliminate the attribute for diameter, and modify

the constructor and getDiameter() method.

38. Implement a Product class that has private data attributes for description,

price, and inventory. Write a constructor that accepts parameters for the

attributes and initializes them, and a method to display a product’s information.

Write a program to create the product objects below and display them as

shown.

39. Design and implement a Fuel Pump class that has private data attributes for

price per gallon for regular $4.29 and premium $4.44, fuel grade, and sale

amount. The constructor will accept a dollar amount, a “1” for regular or a “2”

for premium fuel, and will set the prices for the two fuel grades (the input does

not need to be validated). The class will have an accessor method to compute

and return the gallons pumped, and an accessor method for the price per gallon

based on the fuel grade selected. Create a UML diagram for the class.

224

Chapter 8 Classes and Objects

Write a main program that will prompt for the sale amount and fuel grade. It

will then create a Fuel Pump object and call the methods to display the number

of gallons that were pumped and the price per gallon. A sample constructor is

shown below.

Chapter 8 Programming Challenges

#1 Umpire Indicator

Many softball umpires use an Umpire Indicator to keep track of strikes, balls, outs,

and innings. Design and implement an Indicator class that allows incrementing

strikes to 3, balls to 4, outs to 3, and innings to 7. The class should have a

constructor that initializes the attributes and the following methods:

displayAll() - displays the current values for all of the attributes

newBatter() - resets balls and strikes

setstrikes() - increments strikes, at 3 it increments outs and is reset to 0

setBalls() – increments balls, at 4 is reset to 0

setOuts – increments outs, and at 3 is reset to 0

newInning - increments the inning and resets balls, strikes, and outs

When the attributes reach their maximum values (i.e. 3 strikes), the methods

should automatically update other attributes. In other words, after 3 strikes,

setOuts() and newBatter() should be called, and the total number of outs should

be monitored to automatically call newInning().

Sample output portion:

225

Chapter 8 Classes and Objects

Write a main method for unit testing and consider testing using nested loops as

shown here.

#2 – Elevator Class

Implement an Elevator Class with attributes for elevator number (1, 2, 3), floor (1-3),

and direction (going up or going down). The class should have a method to set the

elevator number, a method to travel to the next floor, and a display method that

displays the elevator number, current floor, and current direction (UP/DOWN).

Elevators travel one floor at a time and travel up until reaching the top floor and

then down until reaching the ground floor, and so on.

Write a program that creates three (3) elevators, and starts them each at the

ground floor. Using a loop with 14 iterations, randomly select one of the elevators

to move. The same elevator cannot be moved two times in a row. Display the

current state for each of the elevators at each execution of the loop in sets of three

as shown.

226

Chapter 8 Classes and Objects

#3 – ArrayList of Product Objects

Create a Product Class with attributes for name, price, units, and reorder point.

Write a program that creates an ArrayList of the six (6) products listed below, and:

1. Display the products and information.

2. Prompt the user for the name of the product they would like to change.

3. Prompt the user for the change – ‘p’ = price, ‘u’ = units, ‘r’ = reorder point

4. Update the product information with the change

5. Display the products and information

Include class methods as needed to accomplish the steps.

Product data

T-Shirt, 19.50, 24, 12

Mug, 5.99, 10, 3

Clock, 14.50, 6, 2

Frame, 12.99, 12, 4

Poster, 4.99, 20, 5

Lamp, 16.50, 6, 2

Sample Program Run

227

Chapter 9 Inheritance and Interfaces

Chapter 9

Inheritance and Interfaces

Inheritance

Objects are sometimes specialized versions of a more general class. For instance,

a restaurant is a business, a clothing store is a business, and so is a theater. They

have many things in common like employees, sales, and expenses, but they also

have some differences. The common characteristics could be implemented in a

Business class, and then each specific business type could be derived from that

class. The derived classes would inherit the common characteristics from the

Business class, and would implement the characteristics that are specific to them.

In other words, they would extend the Business Class, and would exhibit what is

called an “is a” relationship. This relationship between classes is established

through inheritance. The specialized classes (derived or subclasses) inherit the

characteristics of the general class (base or super class).

In the diagram, the Business Class is the base class, and the specific businesses

are the derived classes. As an example, suppose that a program is needed for a

228

Chapter 9 Inheritance and Interfaces

company with different businesses. Since all of the companies have a name and

employees, these could be implemented in the base class (Business) along with

common accessor and mutator methods. Notice that the class definition below

does not have a constructor. The default constructor will be used.

Ex. 9.1 – Business Class (base or super class) partial

A Clothing Store would have inventory, but could inherit the attributes from the

Business class (name and employees). This is implemented by defining the

Clothing Store Class as extending the Business Class using the extends key word.

The ClothingStore constructor would use the mutator methods of the Business

class to assign values to the Business class name and employees attributes.

Ex. 9.2 – ClothingStore Class extends Business Class

Notice in the constructor for the ClothingStore above that there is no indication

that the methods setName() and setEmployees() are in the base class. It might seem

229

Chapter 9 Inheritance and Interfaces

obvious, but programmers often add the super key word to highlight that an

attribute or in this case the methods belong to the base class (shown below).

Using super to Indicate Base Class Methods

When an object of the ClothingStore class is instantiated, the constructor for the

Business class is called first. The ClothingStore constructor executes next. When

a ClothingStore object is destroyed, it is destroyed first and then the Business

object. When a base class constructor requires parameters, the derived class

must provide the required arguments to the base class constructor and call the

constructor. In the example below, the Rectangle class constructor requires two

integers as parameters for the two side lengths.

230

Chapter 9 Inheritance and Interfaces

The Square class below which extends the Rectangle class only requires one

integer as a parameter, but must call the Rectangle constructor and pass the two

required arguments. Also note that the getArea() method obtains the base class

attributes for the side lengths through the accessor methods since they are

private.

Note in the example above that there is no area attribute declared to store the

value. It is always computed. If there were an attribute that stored the value,

and a side length was changed, the area attribute would need to be updated or it

would be incorrect. This is referred to as stale data. Some values should be

calculated when needed and not stored in attributes.

Protected Access

In the Rectangle/Square example above, the Square class used the Rectangle

accessor methods to obtain the values for the side length attributes to compute

the area. The Square class could not access them directly because they were

declared as private. The protected access specifier can be used in place of private

to allow access by derived classes. However, this should be done with caution.

If there is a public mutator in the derived class, the method would provide direct

access to the private attribute from outside the derived class. As an example, the

access specifier for the name attribute has been changed in the Business class.

Ex. 9.3 – Business Class Protected Access Specifier

231

Chapter 9 Inheritance and Interfaces

A derived Theater class can now assign a value to name directly in its

constructor since it is protected and derived classes can access it. The employees

attribute is still private and the mutator method is needed to assign a value.

However, there is also a public mutator in the Theater class to change the name.

This provides direct access by the program and removes the protection for the

name attribute as shown by this example.

Program Output

When the protected access specifier is used, public mutators should be reviewed

in the base class and any derived classes to ensure that the attributes are truly

protected. This is a consideration during initial design and when changes are

made to the class or derived classes. Of the three access specifiers for attributes,

protected is used the least and private is used the most.

232

Chapter 9 Inheritance and Interfaces

Overriding Inherited Methods

When designing derived classes, a review will be made of the base class to

determine what is being inherited. In some cases, the derived class may inherit a

method that is inadequate. Modifying the base class’ method may not be

possible because subclasses have attributes that are specific to them. As an

example, a display method has been added to the Business class below and is

called after an object of the class is created. Since inheritance is a “one-way

street”, the Business class does not know anything about the derived class and

cannot display the inventory for the clothing store.

Ex. 9.4 – Business Class Display Method Omits the Inventory

Program Output

To resolve this situation, a display method can be added to the ClothingStore

class that would include the inventory and would override the base class

method. A method that overrides another method has the same signature (name,

parameter list, and return type). This is not the same as overloading a method

where the parameter lists are different. When the method is invoked on a

ClothingStore object, the ClothingStore class method is used not the method in

the Business class. This is referred to as polymorphism, or the ability to take on

multiple forms. The method that is called is always determined by the type of

the actual object at runtime. This is referred to as dynamic method lookup, and

233

Chapter 9 Inheritance and Interfaces

allows objects to be treated the same way, even though the actual action taken

may be different. The display method below would override the display method

inherited from the Business class.

Ex. 9.5 – Business Class Display Method Overridden in ClothingStore

Polymorphism

To prevent a base class method from being overridden by derived

classes, the method can be declared with the final key word similar to

a constant variable declaration.

234

Chapter 9 Inheritance and Interfaces

Another way of handling the display method issue is to call the base class

method from the overriding method first before adding the inventory output.

This eliminates the need to access the base class attributes through the accessors,

and the output would be the same. The super key word is required in this case.

In the Unified Modeling Language (UML), inheritance is represented with an

open arrow head pointing to the base class. The base class diagram would

include all of its’ attributes, and each of the derived classes would contain theirs.

A partial UML diagram for the Business Class hierarchy is shown below.

UML Diagram - Inheritance

For the Business examples above, the classes were modified multiple times to

introduce various aspects of OOP. Typically, the design would be completed

235

Chapter 9 Inheritance and Interfaces

before the implementation including determining the nouns and verbs for

classes, and which class should contain which attributes.

Abstract Classes and Methods

To force a subclass to override a method of the base class, the method can be

declared as abstract. An abstract method does not have a method body. No

implementation is provided, only the declaration. As an example, consider that

the Business program has grown to include more businesses and the display

method in the Business class is now considered completely inadequate. The

method can be declared as abstract which would force each of the derived classes

to include a display method of their own. Since the abstract method does not

have an implementation, the Business class becomes abstract. An instance of the

base class cannot be created since there is a method within it that has no

implementation. In example 9.5, the display method of the Business class has

been declared as abstract which makes the class abstract as well.

Ex. 9.5 – Abstract Business Class and Method

Creating a Theater class that extends Business now requires the abstract method

to be implemented or the Theater class would have to be an abstract class as well.

236

Chapter 9 Inheritance and Interfaces

Abstract classes in UML are shown with italicized class and method names. The

abstract Business class is shown below. Note that a pound sign precedes the

protected attribute and method.

UML Diagram – Abstract Class and Method

Final Classes and Methods

To prevent a class from being extended, it can be declared with the final

modifier. This prevents derived classes from being created and inheritance is not

possible. Note that a class cannot be both abstract and final, since an abstract

class must be extended and a final class cannot be extended.

To prevent overriding of a method in a class, it can be declared with the final key

word as well.

Final Classes and Methods

237

Chapter 9 Inheritance and Interfaces

Aggregation

Objects are sometimes made up of other objects. This aligns with the practice of

code reuse but establishes an association between the classes. When an instance

of a class is an attribute of another class, aggregation occurs. This is referred to

as the “has a” relationship. As an example, when creating a Student class an

existing Address class could be added as an attribute of the Student class as

shown below. The constructor of the Student class creates the Address object.

The Address class attribute of the Student class is shown below. Note that it is a

public class and in a separate file.

Another way of accomplishing the “has-a” relationship is to add the Address

class to the Student class as an inner class (sometimes referred to as a subclass).

The Address class would be declared private (in Java there can be only one

public class per file), and the attributes would only be accessible from the outer

class. In example Ex. 9.6, the Address is a private attribute of the Student class.

The Student class constructor calls the Address constructor creating the object.

Note that the getAddress() method accesses the stuAddress attribute of the

Address class.

238

Chapter 9 Inheritance and Interfaces

 Ex. 9.6 – Student Class with Address Inner or Subclass

Aggregation in UML is represented with an open diamond and a line connecting

the classes. The diagram below shows the Student class as the aggregate, and the

Address class as the subclass which is also listed in the Student class attributes.

UML Diagram – Aggregation

239

Chapter 9 Inheritance and Interfaces

Class Substitution

Since a derived class inherits everything from a base class, a derived class can be

passed to a method that has the base class as a parameter. As an example,

consider the following simple base class and derived class.

The main method creates an instance of the derived class, and passes it to a

method that has the base class as the parameter. Notice the output also shows

the order of operations. The constructor for the base class executes first, and then

the derived class constructor.

Program Output

240

Chapter 9 Inheritance and Interfaces

Determining Class Identity

As classes become more complex and methods override other methods, it is often

necessary to determine if an object is an instance of the base class or a derived

class. Java provides the instanceof operator which returns true or false. The

general format is shown below.

Experts agree that programmers have a tendency to overuse

Inheritance. Technically, inheritance should be used when objects

behave differently, not because their values differ. If the solution can

be implemented easily with a single class, then that is preferred.

Interfaces

The interface is an abstract type that is used to designate a set of abstract

methods for classes to implement. All of the methods in an interface are static

methods and have no implementation (an exception is a default method shown

later). An interface cannot be instantiated as an object, and classes that use an

interface must inherit all of the abstract methods declared and implement

(override) them. All of the attributes declared in an interface are final (constants)

and must be initialized in the interface. In the example below, an interface has

been defined with the abstract animalMove() method. The word public can be

omitted because all interface methods must be public. Any class that implements

the interface must have an implementation of the animalMove() method with the

same signature (name, parameters, and return type). The relationship between

an interface and a class that uses it is known as a realization relationship. The class

realizes the interface.

241

Chapter 9 Inheritance and Interfaces

The Rabbit and Bird classes below use (realize) the interface and include

implements and the name of the interface in their class declarations. The classes

must implement the animalMove() method since they inherit it and it is abstract.

If a class inherits an abstract method and does not override it, the class then

becomes abstract as well and cannot be instantiated.

The main method for the program creates an object from each class and the

appropriate method for that object is called.

Program Output

242

Chapter 9 Inheritance and Interfaces

In UML, the << interface >> tag is included with the name of the interface, the

interface name and methods are italicized, and a dotted line connects classes that

use the interface.

UML Diagram – Interface

As mentioned above, all of the attributes declared in an interface are final

(constants) and must be initialized. When declaring an interface constant, the

standard for all uppercase letters is used, and there is no need to include public

static final since all variables in an interface are automatically public static final.

To use the constant in a program, the name of the constant is preceded by the

name of the interface, and the dot operator.

Static methods in an interface include the implementation and are called using

the name of the interface and the dot operator.

243

Chapter 9 Inheritance and Interfaces

Default methods include the implementation and the default key word. If a class

that uses the interface does not override the method, it inherits the default

method as is. Note that this particular type of interface method has a body. To

use the method, the interface name and dot operator precede the method name.

Default methods can be added to an existing interface without affecting classes

that implement the interface. Class methods can be modified to use or override

the default method, but it would not cause an error if they simply ignored the

default method.

Interfaces are often used to implement common operations on

different types of objects, and although Java does not support

multiple-inheritance, a class can implement multiple interfaces

achieving a similar result.

Functional Interfaces and Lambda Expressions

A functional interface has a single abstract method. Rather than define a class

that implements this interface, a lambda expression can be used to create an

object that implements the interface and overrides the abstract method. A

lambda expression is a short block of code that receives parameters and returns a

value. Lambda expressions are similar to methods, but they do not need a name

and the implementation can be the body of a method. A simple lambda

expression has a single parameter and an expression.

When there are multiple parameters, they are enclosed in parentheses.

244

Chapter 9 Inheritance and Interfaces

Lambda expressions cannot have variables, assignment statements, or

conditional expressions, and they can only be assigned to a reference of a

functional interface.

To use a lambda expression, an abstract method is declared within an interface

that includes the return type and parameter(s). The name of the method is used

when calling the overridden method (shown below).

To define the lambda expression, the parameter and method statements are

assigned to a reference to the interface. Recall that an interface cannot be

instantiated. This is where the body of the method is defined.

In the statement above, a reference to the interface is declared as lamb, and the

parameter as c which is also used in the method body. An example that uses the

lambda is shown below.

Program Output

245

Chapter 9 Inheritance and Interfaces

A lambda can be redefined as long as the parameter list and return type are the

same. As an example, the following interface is defined that accepts an integer as

a parameter and returns an integer.

The lambda is defined first to square the number and then to cube the number.

Program Output

Programming Style and Standards

One of the purposes of employing Programming Standards and Style Guides is

to ensure readability and maintainability. Introducing unnecessary derived

classes, subclasses or interfaces is counterproductive and should be avoided.

Removing Clutter

As programs are enhanced and modified, they tend to grow in size and level of

complexity, and the code becomes cluttered with duplication and inefficiency.

Programmers tend to be reluctant to revisit the design and implementation of a

program and clean it up. Refactoring is a tool that is used to improve existing

246

Chapter 9 Inheritance and Interfaces

code without changing it functionally. The goal is to enhance and simplify the

code to reduce the time and effort required to change or add functionality in the

future. Refactoring can also extend the life of code that has become increasing

difficult to maintain.

Lambda Expression Guidelines

A lambda expression should be concise, self-explanatory, and single-line as

opposed to a block of code. The compiler is able to determine the data types of

the parameters by type inference so adding them is optional, but clearer.

With one-line lambdas, braces and return statements are optional and can be

omitted, but adding them enhances readability.

Overriding and Overloading Guidelines

One common error is overloading a method instead of overriding. This occurs

when a parameter is changed or is added or omitted when overriding, and the

method is then overloaded. The definitions are repeated here for convenience.

Overloading – two methods have the same name, but different parameter lists.

Overriding - when a derived class defines a method with the same name and

exactly the same parameters as the base class (ref example Ex. 9.5). Overriding is

required when a derived class inherits an abstract method.

247

Chapter 9 Inheritance and Interfaces

Chapter 9 Review Questions

1. ____________ is the relationship between generalized and specialized classes.

2. A ________________ extends the base or super class. This is referred to as the

“is a” relationship.

3. Three access specifiers for classes are __________, __________, and

4. The ___________ access specifier prevents direct access to an attribute.

5. The ____________ access specifier allows access to base class attributes by

derived classes.

6. The ___________ access specifier allows universal access to an attribute or

method.

7. A derived class can ___________ an inherited method and implement it a

different way.

8. The ability to take on many forms is called _________________.

9. _________ ________ __________ allows objects to be treated the same way,

but with different actions.

10. To prevent a class method from being overridden, it can be declared with the

_________ modifier similar to a constant variable.

11. In a UML diagram, inheritance is represented with an open _____________

pointing to the base class.

12. A method declares as ___________ in the base class must be implemented in a

derived class.

13. When an instance of a class is an attribute of another class, _____________

occurs.

14. Since a derived class inherits all of the attributes of the base class, it can be

_____________ as an argument to a method that has the base class as a

parameter.

15. The _____________ method can be used to verify class identity.

16. A(n) ____________ is an abstract type that is used to designate a set of abstract

methods for classes to implement.

17. A __________ expression is a short block of code that receives parameters and

returns a value.

248

Chapter 9 Inheritance and Interfaces

18. _______________ is a tool that is used to remove duplication and inefficiencies,

and improve existing code without changing it functionally.

Chapter 9 Short Answer Exercises

19. In the following declaration, what is the base class?

20. In the following declaration, what is the derived class?

21. In the class below, what key word can be used to indicate that the methods in

the constructor for ClothingStore are inherited from the Business class?

22. In the Square class below, why is there a method getArea() and not an area

attribute?

249

Chapter 9 Inheritance and Interfaces

23. What attribute in the class below would be directly accessible by a derived

class?

24. What attribute in the Business class above would not be accessible by a derived

class?

25. In the Business class above, what does the word abstract indicate?

26. What is the abstract method in the Business class below?

27. Why can an object of the Business class above not be instantiated?

28. Can an object derived from the Business class above access the setName()

mutator method, and why or why not?

29. In the Business class above, should the name attribute access specification be

changed to private, or should the setName() method be deleted?

30. In the following class, what is the Address attribute?

250

Chapter 9 Inheritance and Interfaces

31. If a Student object “st1” were created from the class definition below, how

would the getAddress() method be called?

32. In the following class, what is the name of the interface?

Chapter 9 Programming Exercises

33 (a) Create a program with the class definition below for Aircraft and include

accessors and mutators for the attributes, and the display() method shown.

251

Chapter 9 Inheritance and Interfaces

33 (b) Add a derived class to the program named Commercial with a private

instance variable named seats and a display() method that overrides the display

method in Aircraft (see output below). Write a constructor for the derived class

with parameters for range, fuel capacity, and seats. In the main method, create

an instance of the Commercial class with 23 seats, a range of 1500 miles, and a

fuel capacity of 665 gallons, and call the display() method.

33 (c) Add a class definition to the program for a class named Cargo that is derived

from the Aircraft class. Include an instance variable for payload that is

initialized by the constructor, and a display() method to override the inherited

method as shown. In the main method, create an instance of the Cargo class

with a payload of 3680 pounds, a range of 870 miles, and a fuel capacity of 335

gallons, and call the display() method.

33 (d) Modify the Aircraft base class by deleting the body of the display() method

and make it abstract, and add the abstract modifier to the class.

33 (e) Add a static variable called planes to the Aircraft base class and modify the

constructors of the derived classes to increment the variable. Add an output

statement to the main method to display the number of planes before and after

they are created.

33 (f) Draw a UML diagram of the Aircraft and Commercial classes, their

attributes and methods, and indicate their relationship.

252

Chapter 9 Inheritance and Interfaces

Chapter 9 Programming Challenges

#1 Base and Subclasses

Create class named Base that has a static integer objects and two (2) private

subclasses named Sub1 and Sub2. The constructors for the subclasses will

increment the static variable in the Base class. The constructor for the Base

class will create an instance of each of the subclasses.

Use the main method below to create instances of the Base class and display

the value of the static variable.

#2 Lambda Expression

Write a program with the public interface named addTwo shown below, and

implement the expression in the main method as a lambda to accept two

integers and return the sum. Use the expression in an output statement.

253

Chapter 10 Graphical User Interfaces

Chapter 10

Graphical User Interfaces

Graphical User Interfaces (GUIs) were originally created by researchers at the

Xerox PARC (Palo Alto Research Center), were adopted by OS developers, and

quickly became the user-preferred choice for interfacing with computers in the

1980’s. Prior to this, command line interfaces (shown below) were used to

interact with computers, and in some areas they continue to be used.

Command Console Interface

The graphical user interfaces commonly used are event driven by the user. A

user may click on a button or tab, scroll information, or resize a window. The

254

Chapter 10 Graphical User Interfaces

program responds to user input and the user determines the sequence of many

of the events. Therefore, careful design is required to control access to the

events. For instance, a user may click a button to compute a result before

entering required values. Scenarios like this should be considered during

interface design, since they increase the input validation aspects of a program. A

value needed for computation must be entered by the user before allowing

computation, and the value entered must be within the correct range of values to

avoid issues such as division by zero.

Consider a program that computes the circumference of a circle based on an

input of radius.

1. The radius must be input prior to computation

2. The radius input must be a number

3. The radius input must be a positive number

The graceful handling of incorrect input is required for a user-friendly and well-

engineered solution. In a non-GUI program, we might use a loop that iterates

until a correct value is entered. It would display an error message to alert the

user, and re-prompt for input inside the loop. The same operations are used in a

GUI program, but with the added requirement of graphically handling the tasks.

Generating a main GUI interface requires creating a window and positioning

components (or controls) on it. A control is an element that enables a user to

accomplish some function or to access an area of the program. They are

commonly referred to as components.

Java is well suited for creating graphical user interfaces, and many Java packages

and libraries contain components that are easy to use including buttons, frames,

labels, panels, and more to develop user friendly interfaces.

The Abstract Window Toolkit (AWT) was Java's first package for creating

Graphical User Interfaces (GUIs). It was available in Java 1.0 (1996) and uses a

peer approach. Each Java control or component has a corresponding component

in the windowing system where it is running. Since some windowing systems

have different components, only those that are common were included.

The Swing components in the javax.swing package are part of Oracle’s Java

Foundation Classes which provide a user interface for Java programs. It is much

more extensive than the AWT and matches the look and feel of various

platforms.

255

Chapter 10 Graphical User Interfaces

The Java swing components include:

Java Swing Components

Before selecting components, a preliminary design should be completed as a

sketch. This allows for changes to the layout for the window and an idea of how

it will look and operate prior to writing any code. Walking through the program

operations step-by-step as a user is also helpful at this stage, and can surface

design changes prior to development. The user will interact with the program

through the GUI, and it should be user friendly, have intuitive controls, and

labels for instruction. A user should not have to wonder how to use the program

or what units to enter.

The components required for the interface depend on what the program does

and the user interaction. A few labels and buttons may be adequate, or radio

buttons or option lists may be best. These considerations during the design

phase will save time redesigning or reconfiguring an inadequate or problem

interface. Programmers often overlook essential aspects of the interface since

they know what the program does, how it functions, and the inputs required.

The Agile development process involves stakeholder reviews and in some cases

256

Chapter 10 Graphical User Interfaces

the customer. This provides an opportunity for people not familiar with the

planned design to offer suggestions for improvement, and eliminates surprises

when the final product is delivered.

Interface Design Example

Consider a weather program with a GUI that receives user input for temperature

and wind speed, and computes the wind chill factor when a button is clicked.

The pseudocode for the program lists the steps in the program and helps to

identify the order of operations and the components needed for the interface.

Ex. 10.1 – GUI program – Wind Chill Factor

Step 1 the user enters temperature data entry

Step 2 the user enters wind speed data entry

Step 3 the compute button is clicked button

Step 4 the input is validated

- if the input is valid

o compute the wind chill

o display the result label

- otherwise

o alert the user to the error dialog box

o clear the inputs

Step 5 go to Step 1

A sketch of the planned interface helps to verify the controls and components

that will be needed, and where they should be located.

Preliminary GUI Sketch

257

Chapter 10 Graphical User Interfaces

Windows (Frames)

Programmers should use an object-oriented approach to GUI development. The

example below defines a class with a window (frame) using a JFrame which is a

container in Java that can hold components. Inheritance is used and the JFrame

class will be extended, allowing the new class to inherit all of the members of the

JFrame class such as setSize() and other methods. The line numbers are included

for the explanations that follow.

Ex. 10.1 – A Simple Window

Line 1 begins the class definition and extends JFrame

Line 3 defines the JFrame

Line 5 is the constructor for the class

Line 7 creates a frame and assigns it to myFrame

Line 8 sets the initial size of the frame – setSize(width, height)

Line 9 places the frame in the center of the display area

Line 10 makes the frame visible (the default is false)

Line 11 sets the default close operation to exit so that if the window is

closed the program ends

Java will display components as small as possible to fit whatever is

placed on them. There are multiple size setting methods to resolve

this including setSize(), setPreferredSize(), and setMinimumSize()

which are used depending upon the component.

258

Chapter 10 Graphical User Interfaces

Example Ex. 10.1 defined the class for the window. To create an instance of this

class, an object of the class is created using the constructor as shown below. An

instance of a SimpleWindow is created and is assigned to myWin.

Program Output

Example Interface Window

There are three lines of text, two text entry boxes, and a button to compute the

wind chill factor planned for the example window. These components will need

to be defined, created, and positioned on the frame (window) for the interface.

259

Chapter 10 Graphical User Interfaces

Positioning Components

To position the components for an interface, they are placed on a JPanel, and

positioned with Java layout managers. The default is the Flow layout manager

which locates components left to right in the order they are added. Each of the

layout managers has benefits and limitations, but all provide control over the

locations of components. A partial list of layout managers is shown below, and

Appendix G demonstrates the use of multiple layout managers and panels.

Other layout managers are being introduced in JavaFX as well. The setBounds()

method can be used for quickly locating components and accepts four arguments

for positioning. The first two arguments are the x and y coordinates of the top

left corner of the component, the third is the width, and the fourth is height. The

panel layout must be set to null to override the default flow layout.

Java Layout Managers (partial list)

• BorderLayout – North, South, East, and West

• BoxLayout – vertical or horizontal arrangement

• FlowLayout – left to right

• GridBagLayout – row and column positioning and size variation

• SpringLayout – arrange using constraints

Depending on the layout manager, resizing a frame can shift the locations of the

components. The setResizable() method is used to prohibit resizing the window.

Iterative Enhancement

A project should be developed in steps while testing periodically. This is often

referred to as iterative enhancement. A portion of code is developed and tested,

and as new code is added, any errors that surface would be in the added code.

The example below places a single label on a panel, and the panel on a frame.

Proper naming conventions for variables and components, and using a step-by-

step approach will save time and effort as the program becomes more complex.

In example Ex. 10.2 below, the frame, panel, and label are declared first. In the

constructor, the frame is created, sized, and a title is added, the panel is created

with the layout assigned null since setBounds() will be used for locating the

components, and the label is created last and positioned. Finally, the label is

260

Chapter 10 Graphical User Interfaces

added to the panel, the panel to the frame, and the frame is made visible. The

main method creates an instance of the class. Note the methodical approach to

the code.

Ex. 10.2 – A Frame with a Panel and Label

Program Output

261

Chapter 10 Graphical User Interfaces

Text Entry Controls

The text entry control in Java is a JTextField and it will be positioned next to the

label requesting the input in the example. The text field constructor can accept

two arguments. The first argument is optional and can contain default text to

show in the field. The second is the character width of the field to display. In the

code below, the text field is positioned at x = 220 to move it to the right of the

prompting label, and y = 10 which is the same y coordinate for the label. The

width and height arguments are the same as well.

The display shows that the height argument of 50 for the label pushed the text

down and centered it vertically within the 50 pixels, and that it is not the

preferred height for the text field. The width argument for the text field was also

overridden by the width argument for setBounds(). The code modifications to

correct this are shown below. Some trial and error is to be expected.

262

Chapter 10 Graphical User Interfaces

The other labels are created and positioned the same way, and the code is added

in the order they are created for ease of maintenance. If Flow Layout were being

used, the order in which the components were added would determine their

position. The complete class without attributes is shown below.

Ex. 10.3 – The WeatherWin Class

Buttons

The JButton component has a label for text and various customizing methods:

setSize(), setBackground(), and setForeground(). They are created and positioned

similar to other components. The example has a button that will cause the wind

263

Chapter 10 Graphical User Interfaces

chill to be computed from the inputs in the text entry fields. This will require

that the program react when the button is clicked and obtain the text entered by

the user. JButtons generate an event when clicked that can be “listened” for

using an ActionListener interface.

Every mouse movement or action in a GUI generates an event.

Specific events can be captured and responded to by the interface.

Others can be disregarded. Listeners are used to catch specific events

from specific event sources.

The code for creating the button with “Compute” on its label, and positioning

the button on the panel is shown below with the updated display. The third and

fourth arguments passed to the setBounds() method determine the size of the

button in pixels, and will override other size methods used with buttons.

Ex. 10.4 – Adding the JButton

Program Output

264

Chapter 10 Graphical User Interfaces

The interface is now complete, although nothing happens when the button is

clicked. It will require an ActionListener. An action listener must implement the

ActionListener interface and the actionPerformed() method that receives the event

object which contains information about the event.

ActionListener Interface

Ex. 10.5 – Implementing the Listener for the Button

The lines below declare a listener class named ClickListener that implements the

interface. Notice that the action is an output statement indicating that the button

was clicked for testing purposes.

Once an action listener has been written, it must be assigned to the button. This

code constructs an instance of the ClickListener class above and assigns it to the

button for the example using the addActionListener() method.

Ex. 10.6 – Assigning the Listener to the Button

Note that the listener must be implemented before it can be assigned and is

typically written as an inner class (subclass). This is covered in the next section.

265

Chapter 10 Graphical User Interfaces

Subclass ActionListener

The code for the implementation of the listener class, the creation of the object,

and the assignment of the listener to the button can be located in various places

within the program. In most cases, an ActionListener that is an inner class or

subclass of the GUI is appropriate. The listener is defined within the class and

assigned to the button as shown below. Note that the class definition does not

have an access specifier. Different implementations may use different specifiers.

Ex. 10.7 – The Button ActionListener as a Subclass of the GUI

The GUI for the example is now complete in terms of the components and a

working button that displays “The button was clicked.” when it is clicked. The

code for obtaining and validating the input, and computing and displaying the

wind chill will be written next. This code could be implemented within the

actionPerformed() method, but that would place a large amount of code within the

listener. Writing a method and calling it from within the action listener is a

better approach, and aligns with modularizing the program. Depending on the

size of the method, it could be located in another module.

266

Chapter 10 Graphical User Interfaces

For the example, a method named computeWeatherData() will be called when the

button is clicked. The call replaces the output statement used previously.

Method Call from ActionListener

The method will obtain the user input from the JTextFields using the getText()

method which returns the text as a String. The Strings will need to be converted

to numeric data for the computations using Double.parseDouble() and a try/catch

block is required. The try block for the method is shown below.

If the temperature or wind speed value is not within the proper range, a message

dialog box appears to alert the user and the user is given the opportunity to

correct the error without restarting the program. The code for the dialog is

repeated below with sample output.

267

Chapter 10 Graphical User Interfaces

The output label is updated using the setText() method to indicate that the value

could not be computed.

268

Chapter 10 Graphical User Interfaces

If the try clause executes with no errors and the wind chill factor is computed,

the output label is updated using the setText() method to include the wind chill

factor.

If the input cannot be converted by Double.parseDouble(), the try block will be

exited and the catch clause will execute. A message dialog box will be displayed,

and the output label is updated.

The method used to right align the input in the text field is shown below. There

are a variety of options for JTextFields including foreground and background

color, fonts, and reacting to input directly with ActionListeners.

269

Chapter 10 Graphical User Interfaces

Other Input Controls

Many programs require that a user make a single selection or multiple selections

from a specific set of options. Allowing users to enter choices manually invites

mistakes and requires input validation and error handling. This can be avoided

using a control that allows a single selection from choices that are mutually

exclusive, or by allowing multiple selections from a specific set of options.

The Combo Box (option-list)

A combo-box provides mutually exclusive selections for a GUI application and

can be positioned like other components. Items can be added to the combo box

using the addItem() method and are listed in the order that they are added. When

an item is selected, it replaces the read-only text field at the top of the box.

Combo Box Example

An array of Strings can also be used to provide the options. The array is passed

to the JComboBox constructor as shown here.

To obtain the user selection, getSelectedItem() is used and is cast to a String.

270

Chapter 10 Graphical User Interfaces

Radio Buttons

Radio buttons can be mutually exclusive depending on the implementation. The

creation is similar to a combo box, and the buttons must be added to a group to

create the mutually exclusive relationship. In addition, radio buttons generate an

action event when selected which can be handled with an action listener. This

may add complexity since the user may want to change their mind and select a

different button. The isSelected() method resolves this and obtains the input at a

determined time. In the example below, two radio buttons are created, added to

a group, and then to a panel. To set a radio button by default, add true as a

second argument after the text.

Next, a group is created for the radio buttons.

The buttons are added to the group to make them mutually exclusive. Only one

button in a button group can be selected at a time.

And finally, they would be located using a layout manager and added to the

panel. Note that the buttons are added, not the group.

Radio Button Example

271

Chapter 10 Graphical User Interfaces

To obtain the user selection in an event handler, the getSource() method is used to

determine the source of the event. This code reacts to a button being clicked.

To obtain the user selection within code, each radio button would be tested

individually. This code would be in an event handler for a button that the user

clicks after all of the selections have been made.

Check Boxes

Check Boxes are components that can be mutually exclusive, but typically allow

the user to select multiple options. The boxes generate an action event when

selected by the user which can be handled with an action listener, or their state

can be accessed with the isSelected() method. The code for the example below

follows.

Check Button Example

272

Chapter 10 Graphical User Interfaces

In the code below, after the panel is created and the layout is set to null to allow

setBounds() to be used for positioning, the four check boxes are created and

positioned, and they are added to the panel.

To obtain the selections for the example program, the ActionListener for the

button includes inspecting each check box using isSelected() as shown below.

273

Chapter 10 Graphical User Interfaces

A Complete Example – Garden Shed Company

Requirements:

Design and develop an interface for the Garden Shed Company

program in Chapter 8 that determines the cost to build sheds based

upon the size of the shed, door type, and number of windows. The

interface will accommodate selection of the options using an option

list for the sizes, radio buttons for the window choices and door

choices (including the ramp). The interface will compute the total

price whenever a selection is made or changed, and a purchase

button will acknowledge the purchase.

Shed Options and Pricing:

Shed size options as width/depth and price:

 10 x 8 - $900, 12 x 10 - $1,800, and 16 x 12 - $2,600

Window options and price:

One (1) large $90.00 or two (2) medium at $80.00 each

Door options and prices:

Single door $160.00, Double door $240.00

Ramp:

Double door requires entry ramp $90.00

274

Chapter 10 Graphical User Interfaces

Planning the components and positions, and considering the use of options

can save time after the fact. Although the types of controls were provided in

the requirements, the arrangement and positions were left to the developer.

A top-down and left-right configuration is typical as shown above.

Developing the program using a methodical approach, organizing the code,

and using descriptive names for variables and methods will save time as the

program becomes complex. The code below declares variables for the

individual prices, and includes the constructor with the frame, frame title, and

panel. The panel layout is assigned null to permit setBounds() to be used for

positioning.

The next section declares and initializes the title label, shed size label, and

the combo box for the size selection.

275

Chapter 10 Graphical User Interfaces

The section of code below declares and initializes the window selection label

and radio buttons, and the door selection label and radio buttons.

The code in this section declares and initializes the purchase button and total

label.

After establishing the components, they are all positioned in the next section

to allow for adjustments without scrolling through lines of code to locate a

specific component for adjustment.

276

Chapter 10 Graphical User Interfaces

Next the components are added to the panel, and the panel to the frame.

The close operation is assigned and the frame is made visible.

The listener for the button is created, declared, and assigned to the button

next.

Recall that the total price is to be recomputed anytime the user changes any

selection. In the next section, a generic listener for the controls is declared

that will be assigned to all of the components. They each generate an event,

and the event will be tested to determine which control was clicked. The

result will change the pricing for that item, and the total will be recomputed.

277

Chapter 10 Graphical User Interfaces

The output statements help with testing through development. Note that the

code inside the ActionListener could be placed in a method.

(Continued on next page)

The remaining code for the ActionListener (shown below) recalculates the

total price, formats the result, stores the value as a String using

String.format(), and then overwrites the total price label.

278

Chapter 10 Graphical User Interfaces

A single listener is declared and assigned to all of the controls. When any

control is selected or changed by the user, the total is recomputed.

Program Output

The design of GUI requires a combination of controls, dialogs, and operations

that satisfy the requirements of program. The program determines the different

interactive components that will be used, and the user determines the order of

279

Chapter 10 Graphical User Interfaces

operations to a degree. A control can be disabled until a specific value is entered

or enabled and used to validate input and display error dialogs. In the Complete

Example above, the window was a class, and the main method simply created an

instance of the class. This is the appropriate design and structure for a GUI

program and accommodates unit testing the class.

Assigning Different Fonts

Different fonts can be used to highlight specific text or to introduce a group or

section of text. To assign a font to a label (or any component), use the setFont()

method with the font type in quotes, the style constant can be italic, bold, and

plain, and the point size is an integer. Several styles are used in the Complete

Example above.

Multiple styles can be assigned as shown below with italic and bold.

When displaying columnar data, it is preferred that monospaced fonts be used to

simplify alignment. Monospaced font characters are fixed-width and occupy the

same amount of space. Monospaced fonts include Consolas and Courier among

others.

Adding Images

To add an image to a panel, it can be placed on a label which is then placed on a

frame. A try block surrounds the statements due to file handling. Image files

can be added as resources to the project or placed in the project file for access by

the program. There are several ways to incorporate images depending on the

application, and the size of the image, label, and panel need to be considered.

The example below uses the BufferedImage subclass of the Image class and

ImageIcon which paints icons for buttons and labels. The actual size of the

image for this example is 434 x 360 pixels. The frame and panel are set a bit

larger. The default directory is assumed for the image file location.

280

Chapter 10 Graphical User Interfaces

Ex. 10.8 – An Image on a Panel

“Gracie at the fence” courtesy of Elaine Simber

Program Output

GUI Options and Layouts

Additional features that can be added to GUIs include borders (titled, etched,

raised, lowered, and others), background or component color, and images. The

example below uses the border layout manager with labels positioned North,

281

Chapter 10 Graphical User Interfaces

West, East, and Center, and a button located in the South area. Note that the

North and South sections span the width of the panel.

The example below uses the default flow layout and an etched title border. The

setBorder() option and button color settings are shown below.

An example implementation of an interface with multiple panels and various

layout managers is shown in Appendix G.

282

Chapter 10 Graphical User Interfaces

Chapter 10 Review Questions

1. GUIs are event driven by _________ input.

2. GUI program design requires carefully considering the order of events and how

the user will ____________ with the program.

3. A _________ of the interface with component locations before writing code is a

helpful design tool for GUIs.

4. The GUI component used to generate a window in Java is the _________.

5. The GUI component used to obtain a single line of user input from the keyboard

is a ____________.

6. The GUI component used to display a line of text on a frame is a __________.

7. Using the setDefaultCloseOperation() method ensure that the program will

_______ if the window is closed.

8. For a window to be displayed, the frames ______________ method must be set

to true.

9. The __________ ____________ are used to position components on a frame.

10. For the click of a button to cause a reaction, a(n) _________________ must be

written and assigned to the button.

11. ______________ are often used in GUI programs to alert the user to an error.

12. A combo box provides multiple ___________ for a user to choose from.

13. Mutually exclusive means that ________ selection can be made by the user.

14. Check boxes allow _____________ selections to be made by the user.

Chapter 10 Short Answer Exercises

15. Write a statement that creates a label called label1 with the text “Java is fun!”

16. Write a statement that creates a JTextField called userInput that allows for 10

characters of input.

17. Write a statement that creates a JPanel called myPanel.

18. Write a statement that creates a JFrame called myFrame.

283

Chapter 10 Graphical User Interfaces

19. Write the statements required to add the components from #15 and 16 above

to the panel in #17, and to add the panel to the frame in #18 above.

20. In the following button creation, what is the text on the button?

JButton compBtn = new JButton(“Compute”);

21. In the following statement, why is null used?

myFrame.setLocationRelativeTo(null);

22. What does the following statement accomplish?

String myString = userInputField.getText();

23. Write a statement for a show message dialog box with the title “Error” and the

text “Invalid data”.

24. What does the following statement accomplish?

myLabel.setText(“New data”);

25. What does the following statement accomplish?

myLabel.setFont(new Font(“Consolas”, Font.BOLD, 14);

Chapter 10 Programming Exercises

26. Implement a class definition that generates the window below which is 300w x

200h with a title “Main Window” and a panel with a label on the panel that says

“This is a JLabel.” Write a statement in the main method that creates an

instance of the class and displays the window.

284

Chapter 10 Graphical User Interfaces

27. Using the Class from #26 above, add a button to the panel with the words “Click

Me” on the button. Write a statement in the main method that creates an

instance of the class and displays the window.

28. Using the Class from #27, set the panel layout to null, and position the label

using setBounds(100,30,100,30) and the button using setBounds(100,90,90,30).

Set the frame so that the user cannot resize the window. Write a statement in

the main method that creates an instance of the class and displays the window.

29. Implement a class InputWin that creates a GUI 300 x 300 with the title “Input

Window” and a panel. Add a label to the panel that prompts the user to input

their name into an entry component that is 20 characters wide. Add a button

that obtains the input and updates a second label and displays “Have a nice day

” and the name that was entered. Position the components using setBounds()

as shown below, and use setLocationRelativeTo() so that the window appears in

the center of the display area. Write a statement in the main method that

creates an instance of the class and displays the window.

285

Chapter 10 Graphical User Interfaces

30. Implement a class TheaterWin that creates the GUI shown below. Use two

entry components to obtain the users name and the number of tickets being

purchased. The button text should be “Purchase”, and the output label text

should be “Thank you “ and the name entered. If the number of tickets entered

is not a positive integer, an error dialog box should appear. Display the Total

cost based on a ticket price of $29.50 as shown below. Note the dollar sign and

two decimal places in the output. To use setText() with a formatted value, it is

best to convert to a formatted String as shown here.

286

Chapter 10 Graphical User Interfaces

31. Implement a Create Account class with a GUI that obtains a user name and

password from the user and validates the password (at least 9 characters, at

least one digit, upper, and one lower case letter). If the password is valid,

display “An account has been created.” in a dialog box, otherwise use a dialog

box to display “Invalid Data Entered”. The title on the window should be

“Create Account”, and the window should display the password requirements to

the user.

32. Modify the program in #31 above to display the specific error when an invalid

password is entered.

287

Chapter 10 Graphical User Interfaces

Chapter 10 Programming Challenges

#1 – Theater Ticket GUI with Seat Level Pricing

Design and implement a Class for a Theater GUI that obtains the number of tickets

being purchased from the user and allows seat selection: General Admission, Main

Floor, and Balcony at the prices shown below. The program should use an option

list or radio buttons for seat selection, which must be mutually exclusive. When the

“Purchase” button is clicked, the program should obtain the number of tickets and

the seat selection, and compute the total price. The program should display an

error dialog if invalid data is entered for the number of seats. Use a label to display

the total price as shown below.

 Seating prices:

General Admission $18.50

Main Floor $37.50

Balcony $26.00

#1A – Theater Ticket GUI with Seat Level Pricing and Image

Add an appropriate image to the Theater Ticket program.

288

Chapter 10 Graphical User Interfaces

#2 – Pizza Size and Topping GUI

Design and implement a GUI for the Downtown Pizza shop that obtains an order for

a pizza by size and topping. The size selection is mutually exclusive and should be

implemented with radio buttons or an option list, and the topping selection with

check boxes to accommodate multiple selections. A purchase button will compute

the price and display it to the user based upon the prices below.

Medium $12.50

Large $15.50

Anchovies $2.50

X-cheese $3.00

Onions $2.50

Pepperoni $3.50

#2A – Pizza Size and Topping GUI with Image

Add an appropriate image to the Pizza program.

289

Chapter 11 – GUI Programs

Chapter 11

GUI Programs

Although computer programs today perform many of the same duties they had

in the past, today there is a graphical component to all user interactive programs.

The interactive interface is one aspect of the program, and there are display and

data representation aspects as well. The information resulting from program

operations may be written to a file and displayed in a window either as text, a

chart, or both. The data displayed may also be updated in real-time as the user

interacts with the program. The design and layout of the interface should

complement the operation of the program and user interaction. For example, a

Theater Ticket program running on a kiosk may provide real-time updates of

ticket sales to the theater manager. The updates may be in text, graphics, or both.

The data may also be saved to a file periodically and when selected by the

manager. A confirming email or text message may be sent to a user when tickets

are purchased, and an alert when the theater show time is sold out may include

playing a sound. This chapter covers some typical operations that are often

required and some that can be used to enhance a program.

Programs often display prior calculations for reference as well as new values

being computed. Adding a new label for the new data to the interface each time

a new value is computed is not practical. A better solution is to display the

output in a scrollable area that is updated with each new set of data. Java

provides the JTextArea and JScrollPane for this purpose.

290

Chapter 11 – GUI Programs

JTextArea

The JTextArea class provides a multi-line area that allows editing and display of

multiple lines of text. The constructor accepts three optional arguments. The

String (first) argument is the top row of text for a title or headers for columns.

It allows appending which provides for adding data as it is computed without

erasing previous values. The JTextArea can be added to a panel or directly to a

frame. In example Ex. 11.1, two panels are placed on the frame. The top panel

contains the label, entry component, and a button. The bottom panel (dataPanel)

contains the JTextArea which is appended with each new computation (see

example Ex. 11.4). This code includes the bottom panel and text area.

Ex. 11.1 – Multi-line Output with JTextArea

Program Output

291

Chapter 11 – GUI Programs

Multiple Windows

When a second window is used for data display and updates, there are a variety

of designs and implementations in terms of when and where the second window

appears. The user will interface and enter data in one window and the resulting

values will be displayed in the other. The program will need access to both in

order to obtain the input and to update the data being displayed. The second

window can be an attribute of the main window class and created in the

constructor for the main window. The following example expands the Weather

Program from Chapter 10 to include updating the text on a label that is located

on a second window. The second window is in a separate class and file. An

instance of the second window is created in the constructor for the main window

as shown below.

Ex. 11.2 – Main Window Attribute and Constructor

Ex. 11.2A – Output Window Class

292

Chapter 11 – GUI Programs

The update to the output window can be added to the action listener after the

wind chill is computed as shown below, or in a separate method. Since the

output display window is an attribute (subclass) of the main window, the label

can be accessed and updated directly.

Ex. 11.3 – Listener Modification to Update the Label

When the program runs, the windows are created and the compute button

updates the label on the main interface and the display window.

Program Output

To provide the user with previous results for reference, a JTextArea can be added

to the output display window either on a panel or directly on the frame. The

code below adds the JTextArea to the output display window and sets options

for the size, background color, whether or not the user can edit the text area (set

to false), and assigns a monospaced font for consistent spacing and alignment of

the output text. A header is formatted for the first row in the area and is passed

to the JTextArea as the first argument.

293

Chapter 11 – GUI Programs

Ex. 11.4 – Adding the JTextArea

The update to the JTextArea is added to the listener and includes formatting a

String and appending it to the text area after the wind chill calculation. The line

feed is included with the String.

Program Output

Java also provides a JTable that accepts row/column data, a JTextPane, and

JEditorPane. Each of these components has benefits and limitations.

294

Chapter 11 – GUI Programs

Scrollbars

If the output data could exceed the viewable area of the window, scrollbars can

be added. The JScrollPane provides vertical and horizontal options for scroll

bars including “Always”, “Never”, and “As Needed”. The JTextArea is added to

the JScrollPane and the pane is added to the frame as shown here.

Scrollbars can be added directly to panels, but need to be positioned on the

panel. Since multiple panels can be used on a frame, placing a JTextArea on a

JScrollPane which is then added to a panel eliminates positioning the scrollbar.

Program Output

Closing Programs and Multiple Windows

The use of the setDefaultCloseOperation() method is recommended to end a

program when the user closes the interface. However, when multiple windows

are used in a program the user could close any one of the windows. Depending

on which window is closed, the program may need to continue or it may need to

end. If the program is to end when any of the windows is closed, the default

close operation must be added to each frame. Closing one frame would then end

the program and close all of the frames. The JFrame constants provide various

options for what should happen when a window is closed.

295

Chapter 11 – GUI Programs

The statement below ends the program when a frame is closed.

For other situations including the case when some additional processing must be

completed, there are other options available. The close operation can be set to

dispose of the frame but allow the program to continue to run, or it can be set to

do nothing and a window listener can be used to react to the window closing.

The statement below disposes of the frame when it is closed, but allows the

program to continue to run.

Another option is to have the program do nothing when the frame is closed, and

allow the program to continue to run. The window listener handles the reaction

to the window being closed and disposes of the frame and ends the program.

This provides a way to complete other operations as the program ends.

The notation, @Override used above allows defining specific behaviors for a

particular class that override the existing method. It is not required, but is

considered a best practice and alerts the compiler that this method is overridden.

Drop-down Menus

Drop-down menus on the border of a window are typically used for file

handling and program features selected by users. Java provides classes for

menus including the menu bar, menu, and menu item. A menu bar is created

and the menus are created and added to the bar. Individual menu items are

296

Chapter 11 – GUI Programs

created and assigned to the respective menu. The code below creates a file

handling menu on a window. The menu items including the separator are added

in the order they will appear. Comments are included to highlight the steps.

Ex. 11.5 – File Menu

The separator for the menu example was added between “Save As” and “Exit”.

Additional drop-down menus would be added the same way and are positioned

left to right in the order they are added to the menu bar.

Program Output

297

Chapter 11 – GUI Programs

To react to the selection of a menu item, each item could have an ActionListener

assigned to it that would perform the proper operation.

Since the menu items create an event, the items can be assigned the same listener

and the getSource() method can be used in the action listener to determine the

item that was selected.

Recall from Chapter 7 that dialog boxes are typically used for file choosing and

save/save as operations. The dialog code is repeated here for convenience. The

code obtains the working directory of the user, creates a file chooser, sets the

working directory, opens the dialog, and if the user selects a file, opens the file

using the appropriate application on the system.

298

Chapter 11 – GUI Programs

For the “Save” and “Save As” operations, writing to a file requires a PrintWriter,

but the selection of the file and code are similar to the open operation.

Changing Title Bar Icons

The icon on a frame can be changed using the setIconImage() method. In the

statements below, an image is assigned to an icon using the ImageIcon() class

which creates images from GIF, JPEG, and PNG files. The setIconImage() method

assigns it to the frame. The image is adjusted automatically for the size, but

generally the icon sizes are 16x16 or 32x32 pixels.

299

Chapter 11 – GUI Programs

Program Output

Charts

Drawing shapes was covered in Chapter 5, and data can be displayed graphically

as a bar or line chart. As a reminder, drawing cannot be done on a JPanel object.

A JComponent, JFrame, JTextComponent, or JLabel are used for drawing. The

data for the chart must be available to the paintComponent method to perform

the drawing, and whenever new data is available the output must be repainted.

These considerations are covered in the example in the next section on plotting.

Plotting Data

To plot values as the user enters data in real-time requires a call to redraw

(repaint) the plot as data is entered. The solution requires having the paint

component update the frame each time a value is entered and computed. Since

Java repaints the entire panel, earlier data must be preserved and repainted

along with new data. An ArrayList can be used to store the values, with a loop

to access them for repainting. Assuming that the x coordinate is used for

horizontal spacing, the y coordinates could be the values in the ArrayList. Some

scaling may be required depending on the data set. Consider that the height of

the plot area would be 100% and all heights for plotting would be adjusted to

whatever value being plotted was largest. The Complete Example below uses a

simple window to obtain integer input and a second window to plot the values.

The input is added to an ArrayList that is an attribute of the plot window, and

the plot window is an attribute of the main interface. The code to generate the

interface is shown below and the code for for the PlotWin class follows.

300

Chapter 11 – GUI Programs

Ex. 11.6 – Plotting in a Second Window

The button listener code below obtains the input from the text field which

returns a String, converts it to an integer (which would be in a try block), adds it

to the ArrayList, and then calls repaint() for the plot window. The plot window

is repainted using the paintComponent method shown later.

301

Chapter 11 – GUI Programs

The ArrayList is an attribute of the plot window and is created in the constructor

when an instance of PlotWin is created. Note the use of getContentPane() which

is required to modify the background color. It returns the contentPane object for

the plot window.

The code that does the drawing (shown below) includes the fillRect() method for

the markers and the drawString() method which is used to display the values

associated with the markers. The algorithm includes an offset to locate the text

values above and slightly to the right of the rectangles in the display area. Axis

lines could be added using the drawLine(x1, y1, x2, y2) method. For the example,

the numbers 23, 143, 96, and 42 were entered in that order, and no scaling factor

was implemented. The heights are the number of pixels for that value. The

frame is 300x300 and the y-offset is 240 pixels. Recall that the y coordinate is a

positive number down from the top-left corner of the display area.

302

Chapter 11 – GUI Programs

Program Output

Drawing line charts from data sets would be a bit more complex since each line

in the chart would require start-x, start-y, end-x, end-y specifiers. The lines

below draw a simple triangle.

303

Chapter 11 – GUI Programs

Charting Tools

There are Java charting tools available including JFreeChart which is free to

download and use, and the JavaFX charts and methods in the javafx.scene.chart

package. The JavaFX charts are maturing into comprehensive charting tools with

extensive capability, and all standard chart types; Pie, Line, Area, Scatter, Bar

charts are included.

javafx.scene.chart Example

304

Chapter 11 – GUI Programs

The following code with comments develops the basic line chart above using

JavaFX.

305

Chapter 11 – GUI Programs

Date and Time

The java.util package provides date and time classes for the current date and

time including Date, LocalTime, and LocalDateTime.

The output of this code is: Sun Jan 23 15:29:17 EST 2022

The DateTimeFormatter class can provide specific date/time formatting. Some

common formats are shown below.

A DateTimeFormatter is created and assigned the format using the ofPattern()

method. The LocalDateTime is obtained and assigned to the now LocalDateTime

object, and the format() method is used to covert the date/time and assign the

result to a String.

The output of this code is: 01/23/22

The output of this code is: 26-01-2020 15:58:01

To include time that is continually updating, a Timer is available that accepts two

arguments, a tic interval in milliseconds and an ActionListener. In the code

306

Chapter 11 – GUI Programs

below, the listener obtains the current date and time and updates two labels. The

timer interval is set to one second (1000 milliseconds).

Program Output

HTML in Java

To mix fonts or colors within text, or for formatting such as multiple lines, HTML

can be used in Java. HTML formatting can be used in all Swing buttons, menu

items, labels, tool tips, and tabbed panes, as well as in components such as tables

that use labels to render text. To specify that a component's text has HTML

307

Chapter 11 – GUI Programs

formatting, the <html> tag is placed at the beginning of the text. Below is an

example that uses HTML for the text on a button.

HTML in Java

Playing Sound

One way to play sound in a program is to assign a String that includes the

executable application that will play the file, and the path to the sound file to be

played. The String is then passed to a RunTime object which is assigned to a

process. This works fine as long as there is a player to select by code

(wmplayer.exe in the example). The escapes are for the quotes on both portions

of the String.

308

Chapter 11 – GUI Programs

Sound…Another Way

Another way to play sound in a program uses an AudioInputStream and a Clip

resource. The input stream is assigned the sound file information and the Clip is

used to open the sound file and start play. The Clip is a special kind of data line

that allows audio data to be loaded before playback (instead of real-time). The

Clip methods include: open, start, stop, loop, and close among others.

The rest of the try block and the exception handling, and a thread handling while

loops is shown below. Windows 10 issues not yet completely resolved require

the while loops. The program assumes that the *.wav file is located in the java

project folder (or jar file), otherwise a full path to the file would be required.

309

Chapter 11 – GUI Programs

Launching a Browser, E-Mail, and Applications

The Desktop class allows a Java application to launch associated applications

registered on the native desktop to handle a URI (Uniform Resource Identifier)

or a file. Available Desktop methods include: browse() which launches the

system default browser, edit() which launches the associated editor application

and opens the file, getDesktop() which returns the Desktop instance of the current

browser content, isDesktopSupported() which determines if the current desktop is

supported, mail() which opens the default mail client and opens a mail window,

open() which opens a file with the associated application, and print() which prints

a file in the desktop default printing application using the file’s associated

application’s print command.

Examples below include: launching the user-default browser, launching the user-

default mail client, and launching a registered application to open, edit or print a

specified file.

310

Chapter 11 – GUI Programs

Animation

Implementing animation in Java can be accomplished with a sequence of images

and an AWT Timer, or with the JavaFX 2.2 Animation class. The code below

includes the declaration of a timer with a 125 millisecond delay between ticks.

At each tick of the timer, an ActionListener() reacts to the tick of the timer by

calling the repaint() method. The paintComponent can update images or call

methods to update whatever is being displayed. The Timer has a stop() method

to end the animation.

For a bouncing ball animation that lowers the bounce height each time, only the

y coordinate needs to change as the ball moves up and down. With each bounce,

the height of the bounce would be reduced.

311

Chapter 11 – GUI Programs

Recall that the y coordinate system for graphics has 0 at the top and a positive

number down. Assuming a frame that is 250 pixels in height, the ball might

initially start at a height of 100 pixels and travel down to 200 pixels (the baseline

or lower y limit). The ball would then travel up to perhaps 90 pixels simulating

the bounce, and then back down to the baseline (200 pixels). The direction of the

ball determines whether the y coordinate is increased or decreased, and the

direction is changed when y reaches one of the limits. The timer is stopped when

the ball settles at the baseline.

In JavaFX, a Timeline, Duration, and Bounds control the specifics and sequence

of operations. The JavaFX packages also provide for drawing basic shapes and

transitioning including fade, fill, and rotate.

Repainting

A cautionary note about repainting: in Java, calling repaint() may not result in the

component or applet window being repainted. The interpreter will ignore calls

to repaint() if it can't process them as quickly as they are being called, or if

another task is taking up most of its time.

Painting via the paint() method is either System or App-triggered. When the

AWT determines that a component needs to be repainted, it causes paint() to be

invoked on the component. It is not recommended that paint() be invoked

directly by a program.

312

Chapter 11 – GUI Programs

Chapter 11 Review Questions

1. The design of the ____________ should complement the operation of the

program and user interaction.

2. Data displayed by a GUI program may be updated in real-time for the user

through the _______________ of a component.

3. A multi-line area in Java used to display multiple lines of text is the

_____________.

4. The _________ method is used to add a line of output to a JTextArea.

5. A ______________ is used to add scrollbars to a display window.

6. Setting the setDefaultCloseOperation for a JFrame to EXIT_ON_CLOSE will

ensure that the program will ________ if the window is closed.

7. The _____________ provides the ability to place program level menu items on a

window title bar.

8. The ______________ method can be used to determine the source of an event.

9. The _____________ method forces a refresh/redisplay of a display window.

10. A __________ can be used to implement incremental actions for animation.

Chapter 11 Short Answer Exercises

11. Write a statement that creates a JTextArea named area with the header text

“Five columns” that has 30 rows and 5 columns.

12. Write a statement that creates a JScrollPane named scroll and assigns the

JTextArea named area to it.

13. Write a statement that sets the scroll policy for the JScrollPane scroll to never

contain a horizontal scroll bar.

14. Write a statement that creates a JMenuBar named mBar.

15. Write the statement required to have the program do nothing when a JFrame

named frame is closed.

16. Write the statements required to obtain the current date and time and display

the result.

313

Chapter 11 – GUI Programs

17. Write the statements required to obtain the current time using a

DateTimeFormatter and display the current time as HH:mm:ss.

18. Write a statement to launch a browser that opens to https:www.java.com.

Chapter 11 Programming Exercises

19. Implement a class called CircleArea with a frame, label, entry component, and

button. The program will create an instance of the class which will accept a

radius through the entry component, compute the area of the circle, and display

the radius and area in a JTextArea as shown below. Append each new entry.

Area = Math.PI * radius * radius

20. Implement a class called FileMenu that has a frame 300x300, with a frame title

“Menu Example”, and a menu on the title bar with the items shown below. The

main method will create an instance of the frame, and when the menu items

are clicked, the program will print the name of the item clicked. A single listener

may be used.

314

Chapter 11 – GUI Programs

21. Add the statements required in program #20 above to prevent the window from

being resized, and to have the frame centered in the display area when the

program runs.

22. Implement a class MainWin with a frame 300x300 that has a button labelled

“Click”. Implement a subclass of MainWin called SubWin that is created in the

constructor of MainWin. When the button on MainWin is clicked, a label on

SubWin will display how many times the button was clicked. Add the

statements required to end the program when either of the windows is closed.

The main method should create an instance of the class.

The count variable and label should be private members of the SubWin class.

Therefore, a public mutator method is needed to update the counter and label.

Consider:

23. Develop a program with a frame that is 375 x 340, and plot (drawstring) the text

below at those coordinates. Make the font for the text Consolas, 12, and bold.

50, 50 250, 50 150,150

50, 250 250, 250

What do you notice about the frame size versus the coordinates?

315

Chapter 11 – GUI Programs

Chapter 11 Programming Challenges

#1 – Draw Rising Bars

Implement a 500x500 window with “Rising Bars” on the title bar. Add a panel to the

lower section of the frame that is 400x150, has three (3) radio buttons that select a

color (red, blue, and green), and a “Draw” button. When the button is clicked, draw

a rising set of 19 bars in the color selected. The bars should be 10 pixels wide, 10

pixels apart, and increase in height by 10 pixels from left to right.

#2 – Output Display Window

Modify the program from #19 (repeated below) to display the output in a second

display window that has a vertical scrollbar. The output display window should be a

subclass of the main interface window.

(Recall that a scroll pane can be placed directly on a frame)

Implement a class called CircleArea that has a frame, label, entry component, and

button. The program will accept a radius in the entry component, compute the area

of the circle, and display the radius and area in a JTextArea as shown below.

Area = Math.PI * radius * radius

316

Chapter 11 – GUI Programs

#3 – Bouncing Ball Animation

Implement the Bouncing Ball program mentioned at the end of the chapter using a

class for the frame and a timer and timer listener for animation. The display should

be a 300 x 250 frame. Each time the ball bounces, the height of the bounce will

decrease by 10 pixels until the ball settles on a line drawn at 170 pixels. When the

ball settles, stop the timer. The main method should create an instance of the

frame with the ball.

#3A – Bouncing Ball Animations

Modify the constructor to accept a color for the ball, and modify the main method

to create two (2) instances of the frame with different color balls.

317

Chapter 11 – GUI Programs

#4 – Circle Program with File Menu

Implement or modify the Circle program from #19 above, add the file menu from

#20, and add the statements to execute the file menu items. Use JFileChooser

dialogs (ref Chapter 7) for the operations, and for “Save” and “Save As”, write the

data in the text area to a text file. The open item should open the text file for

viewing and the exit item should end the program.

1

Appendix A

Decimal Binary ASCII Decimal Binary ASCII Decimal Binary ASCII

 32 0010 0000 space 64 0100 0000 @ 96 0110 0000 `

 33 0010 0001 ! 65 0100 0001 A 97 0110 0001 a

 34 0010 0010 “ 66 0100 0010 B 98 0110 0010 b

 35 0010 0011 # 67 0100 0011 C 99 0110 0011 c

 36 0010 0100 $ 68 0100 0100 D 100 0110 0100 d

 37 0010 0101 % 69 0100 0101 E 101 0110 0101 e

 38 0010 0110 & 70 0100 0110 F 102 0110 0110 f

 39 0010 0111 ‘ 71 0100 0111 G 103 0110 0111 g

 40 0010 1000 (72 0100 1000 H 104 0110 1000 h

 41 0010 1001) 73 0100 1001 I 105 0110 1001 i

 42 0010 1010 * 74 0100 1010 J 106 0110 1010 j

 43 0010 1011 + 75 0100 1011 K 107 0110 1011 k

 44 0010 1100 , 76 0100 1100 L 108 0110 1100 l

 45 0010 1101 - 77 0100 1101 M 109 0110 1101 m

 46 0010 1110 . 78 0100 1110 N 110 0110 1110 n

 47 0010 1111 / 79 0100 1111 O 111 0110 1111 o

 48 0011 0000 0 80 0101 0000 P 112 0110 0000 p

 49 0011 0001 1 81 0101 0001 Q 113 0110 0001 q

 50 0011 0010 2 82 0101 0010 R 114 0110 0010 r

 51 0011 0011 3 83 0101 0011 S 115 0110 0011 s

 52 0011 0100 4 84 0101 0100 T 116 0110 0100 t

 53 0011 0101 5 85 0101 0101 U 117 0110 0101 u

 54 0011 0110 6 86 0101 0110 V 118 0110 0110 v

 55 0011 0111 7 87 0101 0111 W 119 0110 0111 w

 56 0011 1000 8 88 0101 1000 X 120 0110 1000 x

 57 0011 1001 9 89 0101 1001 Y 121 0110 1001 y

 58 0011 1010 : 90 0101 1010 Z 122 0110 1010 z

 59 0011 1011 ; 91 0101 1011 [123 0110 1011 {

 60 0011 1100 < 92 0101 1100 \ 124 0110 1100 |

 61 0011 1101 = 93 0101 1101] 125 0110 1101 }

 62 0011 1110 > 94 0101 1110 ^ 126 0110 1110 ~

 63 0011 1111 ? 95 0101 1111 _ 127 0110 1111 DEL

1

Appendix B

Obtaining Eclipse

• Eclipse is available from Eclipse.org https://www.eclipse.org/

• Eclipse will run on most machines

• The JRE and JDK will be installed with Eclipse

• Eclipse will run fine on a flash drive for portability and easy access

• Copying the JRE to the flash drive simplifies running

Browse to the Eclipse web site shown here and select “Downloads”.

From the Downloads window shown select the appropriate version for your

computer. On most Windows machines, select the “Download 64 bit” button.

Eclipse Foundation screenshots from eclipse.org used under Fair Use

https://www.eclipse.org/
https://www.eclipse.org/

2

Appendix B

The appropriate download page will be displayed.

Download or save the zip file. (Eclipse will run fine on a flash drive and can be

installed there if you prefer.)

Once the zip file downloads, create a folder called “Eclipse” on your drive or flash

drive and place the zip file there, then right mouse click and “extract all” to that

folder. This will take a while…

3

Appendix B

The directories and files shown below are installed with Eclipse. The eclipse.exe file

launches the program.

The Java Development Kit

Installing the JDK in this directory with Eclipse will ensure that Eclipse will always

have (find) the JRE as well. The issues below usually have to do with Eclipse not

finding supporting files.

Launch Eclipse

If you launch Eclipse and get exit code 13 (shown below) or the “A Java Runtime

Environment…” error (shown below), Eclipse cannot find the JRE (Java Runtime

Environment) or jdk (Java Development Kit).

You may need to add the following code before the line that includes -vmargs in the

eclipse.ini file.

-vm

C:\Program Files\Java\jdk1.7.0_40-64\bin\javaw.exe

Note: The second line may be different depending upon version of the java jdk

installed in your machine, or if you are pointing it to a jdk on your flash drive.

4

Appendix B

A Few important points to remember while configuring eclipse.ini file:

1. The Java File’s Path must be Relative Path or Absolute Path. It should not just

point to the Java Home Folder.

2. The -vm option and its path should be on a separate line.

3. The -vm option should be before -vmargs

Error…exit code=13

5

Appendix B

Error…Eclipse cannot find the JRE or JDK. Notice that it looked for it.

The eclipse.ini file is an initialization file that tells Eclipse where to find things like

the jdk and the location of your last used Workspace. To modify it, use a text editor

like Notepad

Be sure that java is installed on your machine. Check the Program Files directory.

• The jdk (Java Development Kit) is used by the Eclipse.

• If you install on a flash drive, it is easier to place a copy of the jdk in the

Eclipse folder on the flash drive and point the eclipse.ini file to that folder.

6

Appendix B

• You may need to add the path to javaw.exe in the eclipse.ini file and it must be

before the line that includes –vmargs. Find the jdk on your machine or flash

drive and open bin to find javaw.exe. Use the full path for the eclipse.ini file.

-vm

E:\Eclipse\jdk-9.0.1\bin\javaw.exe

• The second line above will be different depending upon the version of the java

jdk installed and the directory (folder) where you placed the jdk.

Important point to remember if running from a flash drive:

• When you use the flash drive in a different machine, note the drive letter for the

flash drive. In the example above the drive letter is “E”, but may be “D” or

another letter depending on the machine. If this is the case, open the eclipse.ini

file and change the drive letter…just remember to change it back when you move

to another machine.

• Help Documentation is available:

http://www.eclipse.org/users/

http://www.eclipse.org/users/

1

Appendix C

Getting Started in Eclipse

To launch Eclipse, use the short-cut on the desktop that was created when Eclipse was

installed, or double-click the Eclipse icon from the Eclipse directory.

The Workspace

When Eclipse is launched for the first time, a “Workspace” needs to be created. The

Workspace organizes programs and projects and adds supporting files. Choose the

“Browse” button, and decide where the program files will be stored. It is important to

keep files organized in directories and the Workspace will help with this.

After choosing a location for the projects, click “OK” and the “Select Workspace

Directory” window will appear (shown below). This is where the actual directory or

folder is created.

2

Appendix C

Select the “Make New Folder” button. Name the folder something appropriate for your

projects and select the “OK” button.

Then, back in the “Workspace Launcher” window, select ‘OK’ again.

Eclipse will open to the “Welcome” window.

3

Appendix C

After unchecking the “Always show” box (bottom right), close the “Welcome” window

by clicking the “X” (top left).

The IDE will be displayed.

Creating a Project

When creating a new program, always create a “Project” and not a “File”. Eclipse

creates important supporting files for a project in the Workspace. The next time Eclipse

is started and the Workspace is selected, all of the projects in the Workspace and their

supporting files will be loaded automatically.

Select File | New | Java Project from the menu

4

Appendix C

The ‘Create a Java Project’ box will appear. Give the project a name, “HelloWorld” in the

example. As it is typed, the location box will add the text. Select the “Use project

folder…” radio button. Then click “Finish”.

The project will appear in the Package Explorer on the left side of the IDE.

5

Appendix C

Creating a Package

The first step to programming in Java is to create a “package” which will contain the

project files. With the project name still highlighted, click on the package icon.

The New Java Package window will appear. Give the package a name that is relevant to

the project (helloPackage shown here). Then click “Finish”. Note: if the Source folder is

not shown, click the Browse button to select the one you created.

6

Appendix C

Creating a Class

The package will now appear in the project explorer. Be sure that the package is still

highlighted and select the class icon (green circle with a gold star.

The class creation window will appear. Give the class the same name as the project

name that was chosen earlier. In the screen capture below, notice that the “Source

Folder” name and the class name are the same.

Check the “public static void main(String[] args)” box, and click the “Finish” button.

7

Appendix C

The project is now created with a package and a class, and the main method has been

added to the program. The main method was created by Eclipse and is where the code

for the program will be written.

Running a Program

Creating the customary “Hello World” program first accomplishes writing, compiling,

and running a program to produce output. Add the line of code shown below on line 10

exactly as it is written. This line uses the Java Utility Class System, the out object of the

System Class, and the print method which sends characters to the console display area.

8

Appendix C

After adding the line of code, run the program by clicking on the green circle with a

white triangle inside.

The ‘Save and Launch’ window will be displayed. Eclipse ensures that changes are

saved before the program runs. Click “OK” and the program will run.

The output will be displayed in the console area at the bottom of the IDE.

9

Appendix C

Programming Errors

Errors in Eclipse are shown in several ways. To highlight this, remove the semicolon

from the end of the line of code from the example.

The red circle containing the white “x” at the margin indicates an error on the line (the

semicolon at the end of the line is missing), and at the location where the semicolon

should be there is a red wavy underline.

Hovering over either error indicator with a mouse will display a pop-up message with

suggestions for correcting the error. Often a list of “Quick Fixes” will be shown that

includes a variety of options. The screen capture below shows the suggestion displayed

when the red circle containing the white “x” is hovered over. The most common errors

in programming include misspelled words, forgetting closing quotes, and forgetting

10

Appendix C

closing parentheses. The IDE will highlight this type of error, but logic errors must be

found by thoroughly testing the program.

Exiting Eclipse

To leave Eclipse, save any changes by choosing "File" on the menu bar, and "Save" from

the drop-down menu, or just use Control-S, and then close the program. Workspace

information will be saved as the program shuts down.

Eclipse – Quick Start

• Launch Eclipse, select the workspace folder from the list, Eclipse will start

• Select File > New > Java Project

– The ‘Create a Java Project’ box will popup

– Name the project, and the project will appear in the Package Explorer

• With the project name highlighted, add a Package by clicking the 'New Java

Package' icon, and give it a name.

• With the package name highlighted, add a class by clicking the ‘New Java Class’

icon, and the class creation window will popup.

• Give the class a name the same as the Source/Project name.

– Check the ‘public static void main(String[] args)’ box

• Click on the ‘Finish’ button

1

Appendix D

Modular Programming - Creating a Second File in Eclipse

Multiple files are used to separate various parts of the program. This is referred to as

modularization. By creating modules (files), the program is easier to maintain and add

functionality, portions can be easily reused, and multiple engineers can work on various

parts of a large program at the same time.

The example creates a project with a main method, and a second file that is part of the

project package. The second file contains a method that is used by the main program.

Create a project and main program. For the example, “Modular_Program” is the project

and the package is “ModularPackage”. The Class is also “Modular_Program”.

To create the second file, the package for the program should be highlighted in the

Package Explorer (click on it if it isn’t highlighted).

2

Appendix D

Then select File | New | Class from the menu.

The Java Class window will appear. For the example, the class has been named

Second_File and the check box for public static void main(String[] args) is not checked.

3

Appendix D

Click the Finish button, and the file is added to the program as shown in the Package

Explorer.

There are now two tabs for the program in the IDE. Clicking on the tabs is a quick way

of switching between files when writing code.

For the example, a method with an output statement is added to the second file.

4

Appendix D

The method in the second file will be called from the main method using the class name

and dot operator.

To see both files at once, click on the Second_File.java tab and drag it to the right of the

edit panel and release the mouse.

As the output shows, the main method successfully calls the method in the second file.

1

Appendix E

Resource Links

Eclipse.org

https://www.eclipse.org/

Eclipse User Guide

https://help.eclipse.org/2019-09/index.jsp

Java Development Guidelines – Carnegie Melon University:

https://wiki.sei.cmu.edu/confluence/display/java/Java+Coding+Guidelines

Java Downloads and Information:

https://www.java.com/en/

JFreeChart charting tool:

http://www.jfree.org/jfreechart/samples.html

W3Schools Java Tutorial:

https://www.w3schools.com/java/default.asp

https://www.eclipse.org/
https://help.eclipse.org/2019-09/index.jsp
https://wiki.sei.cmu.edu/confluence/display/java/Java+Coding+Guidelines
https://www.java.com/en/
http://www.jfree.org/jfreechart/samples.html
https://www.w3schools.com/java/default.asp

1

Appendix F

Java Programming Guidelines and Standards

Software Engineering standards provide a critically consistent way of designing and developing

computer-based solutions that reduce errors, debugging time, maintenance costs, and ensure a

consistency across the organization. Virtually all businesses (including Microsoft, NASA, all

Defense Contractors, NOAA, et.al) impose standards similar to those listed here. The following

standards including style and techniques shall be utilized when writing programs. Note the

emphasis on technique and style in the quotes below.

“Superior coding techniques and programming practices are hallmarks of a

professional programmer.” – Bob Caron, Microsoft

“The purpose of the process is to develop source code that is traceable, verifiable,

consistent, and correctly implements the requirements.” – NASA Langley

Variable naming conventions

Variables shall be declared using the upperCasing format and descriptive names. A

single letter or ambiguous abbreviation is unacceptable unless local to a method when

no ambiguity is introduced (see below). Variables should be declared together

whenever possible. Declaring a variable when needed increases maintenance time.

Unacceptable:

Acceptable:

Constants

Constants shall be named using all uppercase letters with underscores between words.

2

Appendix F

Braces

Opening and closing braces may be on separate lines and aligned horizontally, although
the current preference is to have the opening brace on the first line of the code and the
closing brace as the last line aligned with the first line as shown below.

Unacceptable:

Acceptable:

Preferred:

Indentation, White Space, and Alignment

Programming style is critical to the readability and maintainability of source code. The

following standards apply:

1. The tab key shall be used for indentation and alignment

2. Blocks of code associated with conditions, loops, and methods shall be indented and

aligned

3. Blank lines shall be used to separate logical sections of code

4. Blank spaces shall surround operators and variables, and be placed after a comma

Unacceptable:

Acceptable:

3

Appendix F

Unacceptable:

Acceptable:

Unacceptable:

Acceptable:

4

Appendix F

Using while (true), while (1), break, and continue are unacceptable

These expressions and operations show an inability to design and use functional logic
and shall not be used. Break and continue bypass logic hindering debugging and
readability.

Loop conditions shall consist of logical Boolean expressions.

Unacceptable:

Acceptable:

Unacceptable:

Acceptable:

Note that it takes less code to implement the logic correctly.

5

Appendix F

Comments

Comments shall be used to introduce and explain complex areas of the code and
equations. Comments may appear before code or in line with code. Inline comments
should be tabbed for alignment.

Methods

Method names shall follow the upperCasing style and describe the operation the method

performs or the value that it returns.

The body of the method shall be indented and follow the standards above for style. A
comment should be included when an explanation adds clarity.

Acceptable:

Preferred:

6

Appendix F

Methods that return a value shall have one return statement. Void method shall not have a
return statement. Returning from multiple lines or to bypass code is unacceptable.

Unacceptable:

Acceptable:

Unacceptable:

7

Appendix F

Acceptable:

Package names

Package names shall be descriptive and all lowercase letters

Class names

Class names shall begin with an uppercase letter followed by uppercasing.

Program Layout/Logic

Programs shall be developed in a logical and organized manner. The order of operations

shall be easy to determine and follow by anyone viewing the code. Programming should be

deliberate and anticipate that another programmer will be reading the code in the future.

1

Appendix G

Multiple Panels and Layout Managers Example

Design and creation of an interface requires careful consideration, and a design sketch can be a

valuable tool for component placement and development. This example combines multiple

panels and layout managers for placement of the component areas and controls. The example

(sketch below) has a main frame, a main panel, and four (4) smaller panels for locating various

components and positioning. The four panels will be built with their components and then

added to the main panel.

Design Illustration

The main interface has five (5) panels as shown, and is implemented by creating a frame and the

main panel, and then the four smaller panels which are placed on the main panel. A border

layout was used and the background colors were added to the panels on the right to highlight

their locations.

Notice that without the color, we cannot see where one panel ends and another begins. Also

note the differences in the sizes of the panels. The panels will be sized to accommodate the

controls and components that will be located on them as things develop.

2

Appendix G

The border layout used in this example for the main panel provides North, South, East, and West

positioning. The default placement locates them outermost in their quadrants.

The code below declares the main frame, all of the panels (including the main panel), and the

labels. The constructor sets the sizes, provides the background colors, and then adds the sub-

panels to the main panel which is then added to the frame.

public class CombinedLayouts {

 JFrame mainFrame = new JFrame("Combined Layouts Example");

 JPanel mainPanel = new JPanel(); // declare the panels

 JPanel topPanel = new JPanel();

 JPanel leftPanel = new JPanel();

 JPanel rightPanel = new JPanel();

 JPanel bottomPanel = new JPanel();

 JLabel topPanelLabel = new JLabel("Top Panel"); // declare the labels

 JLabel leftPanelLabel = new JLabel("Left Panel");

 JLabel rightPanelLabel = new JLabel("Right Panel");

 JLabel bottomPanelLabel = new JLabel("Bottom Panel");

 public CombinedLayouts() { // constructor

 mainFrame.setSize(700, 700);

 // Set the specifics for each panel and add the label

 topPanel.setPreferredSize(new Dimension(700, 80)); // width, height

 topPanel.setBackground(new Color(153,102,255));

 topPanel.add(topPanelLabel);

 leftPanel.setPreferredSize(new Dimension(180, 200));

 leftPanel.setBackground(new Color(153,204,255));

 leftPanel.add(leftPanelLabel);

 rightPanel.setPreferredSize(new Dimension(380, 200));

 rightPanel.setBackground(new Color(153,153,102));

 rightPanel.add(rightPanelLabel);

 bottomPanel.setPreferredSize(new Dimension(700, 80));

 bottomPanel.setBackground(new Color(255,102,102));

 bottomPanel.add(bottomPanelLabel);

 mainPanel.add(topPanel, BorderLayout.NORTH); // add the panels

 mainPanel.add(leftPanel, BorderLayout.WEST);

 mainPanel.add(rightPanel, BorderLayout.EAST);

 mainPanel.add(bottomPanel, BorderLayout.SOUTH);

3

Appendix G

 // add the main panel to the Frame.

 mainFrame.add(mainPanel);

 mainFrame.setLocationRelativeTo(null);

 mainFrame.setVisible(true);

 mainFrame.setDefaultCloseOperation(1);

 } // end of constructor

Creating the individual panels should be done in methods to modularize the program and

separate the code. This will be added next. For now, the program runs and produces a

preliminary layout of the interface. The code in main to generate an instance of the class is

shown here.

 public static void main(String[] args) {

 CombinedLayouts CL = new CombinedLayouts();

 }

Main creates an instance of the Frame as “CL” and it can manipulate the Frame and any of its

members (attributes) or pass the CL object to a method that can do the same. To show this, the

code below changes the color of the bottom panel to blue from main after the object is created.

 public static void main(String[] args) {

 CombinedLayouts CL = new CombinedLayouts();

 CL.bottomPanel.setBackground(Color.BLUE);

 }

Next, the individual sections will be built and will be divided up (Step-wise Refinement) by

handling the panels separately in methods. This places code that is specific to a panel in a

separate area of the project (a method) which is then called by the constructor to “build” the

pieces individually before they are added to the main panel.

4

Appendix G

The top panel simply contains the title text, so that is a good place to start writing methods to

build the panels. The default font is used by the program, and should be changed to a larger font

and maybe a different style. The existing code for this panel (shown below) in the constructor

will be moved to the method, and replaced with a call to the method that will build the panel.

After declaring the method (note the name), and movement of the code from the constructor,

the declaration of the label for the top panel can also be moved to the method. The goal is to

locate as much code as possible that relates to creating this panel in the method.

A call to the method now replaces the code that was in the constructor.

After the label is created, a customized font can be assigned to it as shown here.

An italic Arial font is tried with a guess at the size. The result is shown below and although the

text is centered horizontally, it is not centered vertically.

5

Appendix G

There are several options for centering the label vertically. Since there is only one component,

adding an empty border allows setting pixel spacing around the label. In the code below, the

font has been changed and an empty border with top spacing has been added.

The details of the panel and the components are all within the method keeping them out of the

constructor, and with the exceptions of the color background, the top panel is now complete.

Note that at each step, running the program ensures that any errors introduced are corrected

immediately. Frequent testing can save hours of debugging and fixing minor errors.

6

Appendix G

The default layout for a JPanel is Flow Layout, and that was used on the top panel. A flow layout

simply allows components to flow left to right, then down and left to right in the order they are

added. For more complex panels, other layouts provide greater flexibility. Recall that the main

panel uses a Border Layout with North, South, East, and West quadrants, and each of the

smaller panels is positioned in one of those quadrants when added to the main panel.

The left panel will be implemented next.

The method for the left panel will be set up the same way as the top panel and the code will be

moved out of the constructor as well including the label declaration.

The call to the method is added to the constructor after the top panel.

The left panel requires two labels and an image and will use a Grid Bag Layout to position them.

This layout allows row and column placement using “constraints”. First the layout is assigned,

7

Appendix G

and constraints are declared. The insets put padding around the components and the weight for

x establishes the definitive columns. The anchors place the components within the cell of the

grid. When the labels are added to the panel, the second argument is the constraints.

Next the image for the left panel requires file handling and is placed a in a try block, and

positioning is accomplished with constraints and anchoring.

The insets used on the left panel space the components apart and they are fixed should the

window be resized. The results for the left panel code are shown here. The image is a screen

capture of the design sketch.

8

Appendix G

Again testing (running the program) is accomplished at each step to ensure things are working

and to determine where additional tweaking is needed. In addition, the sizes of the smaller

panels have not been changed and no changes have been made to the main panel. After the

individual panels are built and their components placed appropriately, then the overall program

interface will be adjusted. Any changes made to the main panel now would probably need to be

changed again once everything is finished.

The next panel (right panel) will be done the same way with a method that builds the panel and

is called from the constructor of the class after the left panel.

The choice of what layout to use for this or any other panel is subjective, and programmers tend

to use the layouts that they are more familiar with. The right panel has text and option lists. This

could be done top-down and a flow layout would work, or a grid. Left alignment would be

appealing (a design choice), and a flow layout would work with some tweaking.

Since the flow layout simply places the components on the panel left to right in the order that

they are added, the number of items or components that fit in a row is dependent upon the size

of the component and the width of the panel. As an example, in the code below the

components were just created and added to see what happens….where they end up.

9

Appendix G

A shown below, the components are centered horizontally and each row contains as many

components as it can fit. The design calls for a label, option list, label, option list configuration.

Tailoring the layout to the sketch comes next.

Java provides rigid areas and struts that can be used as spacers to position components. A rigid

area can be a custom size and added to the panel to “push” other components around. It is

invisible and acts as a spacer. A strut is similar but has no height dimension.

10

Appendix G

In the code below, a rigid area has been declared and added to the right panel. The order in

which components are added to a flow layout determines their positioning. The rigid area is

added first, and the result is that it pushes all of the components down.

The first dimension, which is the width of the rigid area, is almost the width of the panel to

ensure that nothing fits on that row. The height determines the number of pixels that it will fill

vertically. The resulting display is shown below.

Additional rigid areas could be created and added between each of the components to force

them to the next row, and they would be centered by default.

The result of the added rigid areas is shown below

11

Appendix G

.

The horizontal alignment of the components is centered as a default. A grid layout would allow

them to be aligned by row columns using constraints and allow placement within each column

(EAST, WEST). However, the Flow Layout constructor can accept arguments for alignment that

apply to all of the components on the panel. The choices are left, right, center, leading, and

trailing, and two arguments for horizontal and vertical gaps between components.

As an example, the code has been modified to include the alignment, horizontal gap, and

vertical gap arguments when the layout is assigned to the panel. This eliminates the need for a

few of the rigid areas.

The result is left alignment of the components and vertical spacing as shown here. Some

adjustment in vertical positioning is needed, but the panel is complete.

12

Appendix G

The final panel (bottom panel) requires a label and two buttons and currently is not sized or

positioned in line with the design sketch. The buttons and labels must be moved to the far right

side of the panel and aligned. A rigid area could be created to push the bottom panel

components to the right, but it would fill the row height. Two rigid areas (one on each row)

would work easily, and allow a flow layout to be used. A method also needs to be created to

populate the bottom panel.

To better highlight the example, the color of the panel has been changed back. Recall that an

earlier example showed how to access the panel from main and change it to blue.

A method for the bottom panel is created and added to the constructor.

The components for the panel are now moved to the method, and each time something is

moved the program is run to ensure that none of the changes introduces an issue.

Notice in the code above that the button sizes can be set. This helps with consistency when the

text on one button is shorter than the other, since the buttons will automatically size to fit the

text. Also note that the flow layout (at least for now) uses centering, and the hGap and vGap are

13

Appendix G

guesses. The running program now produces the window below. Note that the right panel has

been partially obscured and the right panel rigid area will need to be adjusted.

Adding two rigid areas to the bottom panel can push the bottom panel components to the right.

If it seems more logical to add one to the main panel, doing that would cause an issue since the

bottom panel fills the SOUTH quadrant of the main panel. It would override the rigid area.

The code to set the labels and buttons in place on the bottom panel is shown below. The button

declarations have also been moved into the method from the class and Label1 has been given a

set size to push Label2 to the right for spacing.

There will be a few more changes for positioning, but the panel is complete.

14

Appendix G

Next the final sizing and positioning will be accomplished and trial and error can become

tedious. Listing all of the dimensions for the panels can make things a bit easier and much faster.

The current dimensions are as follows:

 Panel width height

 Main 700 700 defaults to the frame size

 Top 700 80

 Left 300 200

 Right 380 200

 Bottom 700 120

The height of the main panel is 700 pixels, and the combined heights for the left and right sides

are 600 pixels, so the height for the main frame is changed to 600.

The width of the right panel is 380 compared to 300 for the left panel, and when the colors are

turned off, the text and option lists will be a bit too far to the left compared to the design

sketch.

15

Appendix G

Comparing the design sketch while making minor changes to various dimensions, makes things

much easier and saves time.

The first change made was to shorten the height of the main frame, and the left and right sides

by 40 pixels. That forced an adjustment to the right panel spacing. The height of the topmost

rigid area of the right panel was easily adjusted to 60 to realign things,

In addition, the flow layout hGap value was changed to 100 to move everything to the right.

The results are more in line with the sketch.

16

Appendix G

To ensure that resizing the window by the user does not skew the panel locations, the main

frame method setResizable() is used and set to false.

The methods that set the background colors for the panels are now commented out (not

removed since they may be needed later), and the program is run again.

The last tweak would be to move the image and labels on the left panel toward the center. This

can be done by adding an empty border to the main panel or changing the insets that were used

on the left panel itself which is much easier. The insets “left” argument has been increased in

the code below.

Again, trial and error is used to get the right number of pixels for the left inset to position the

components appropriately. The results are shown in the display that follows.

17

Appendix G

The interface is now complete in terms of the components and positioning them. Separating the

interface areas into individual panels allows for the use of multiple layouts and modularizing the

program with methods. This organizes the development and enhances the quality and

maintainability of the program. The class code after modularization is included below.

The final User Interface is shown below

18

Appendix G

1

Index

A

acos(x) 34

Abstract Window Toolkit 254

ActionEvent 264

actionPerformed() 264

ActionListener, class 263

add(), method

 ArrayList 153

 ButtonGroup 270

 JFrame 260

 JMenu 296

 JMenuBar 296

 JPanel 260

addActionListener() 263

addWindowListener() 295

Agile Development 13

Agile Methodologies 13

Addition (+) operator

 defined 30

 concatenation 42

alignment, output 39

anchor Appendix G (7)

and operator && 66

Animation 310

appending data, files 177

append() 177

Arguments, passing 33

ArrayList 153

 declaring 153

 add() 153

 get() 154

 remove() 154

 set() 155

 size() 154

 sorting 157

asin(x) 34

Assignment operator 56

atan(x) 34

AudioInputStream 104

AudioSystem 307

 getClip() 308

AWT Abstract Window Toolkit 254

B

Backslash, displaying “\\” 40

bar chart 303

Boolean data type 70

 expressions 56

 logic 66

border

 JPanel Appendix G (5)

BorderFactory 281

BorderLayout 281

Bounds checking 160

BoxLayout 259

browse() 309

Browser, launch 309

BufferedImage 279

Button

 addActionListener() 264

 create 263

 labels 262

 listener 264

 radio 270

 setBackground() 262

 setForeground() 262

 text 263

2

Index

ButtonGroup 270

 add() 270

Byte 5

C

calling methods 111

casting 34

case-sensitive 27

Centering windows 257

Char data type 41

characters 41

 comparing 41

 escape 39

 finding in Strings 41

 indexing 41

 newline 39

 tab 39

Charts 299

 bar 303

 flow 11

 line 303

 Tools 303

check box 271

Classes 191

 wrapper 156

Class Name, method call 32

Clip, audio 307

close(), Scanner 35

Closing programs 294

Columnar data 279

Collections.sort() 157

Combo Box 269

Comments 22

Concatenation 42

Conditional statements 53

Constants 29

D

data types 25

Date 305

DateTimeFormatter 305

Decision structures 53

delimiter 178

Desktop 185

Design Phase 35

Development

 Agile 13

 cycle 13

 methodologies 14

Dialog boxes 126

 confirmation 127

 File, Save As 186

 JFileChooser() 184

 showInputDialog() 127

 showMessageDialog() 126

Dimension Appendix G (2)

display output 36

dispose() 295

Division 30

do-while loop 88

double 25

Double.parseDouble() 64

drawLine() 130

drawOval() 130

drawRect() 130

drawString() 130

Drop-down menus 295

3

Index

E

Eclipse, IDE 29

else condition 57

enhanced for loop 149

Email, launching 309

Equal sign, assignment 56

Equivalence operator 56

Errors 10

 cost by phase 10

 dialogs 126

 IDE notification 27

 StackTrace 174

Escape sequences 39

Event listener 264

exec() 307

Exceptions 167

 Checked 176

 FileNotFound 172

 Handlers 172

 IndexOutOfBounds 160

 NumberFormat 65

 Unchecked 176

exponentiation 34

F

File 167

 appending 177

 close() 171

 opening 169

 read 169

 read numeric data 177

 writing numeric data 177

 writing text 171

File selection dialog 184

File “Save As” dialog 298

FileNameExtensionFilter() 185

FileWriter class 177

fillOval() 130

fillRect() 130

final, key word 29

float data type 25

floating point division 29

Flowchart 11

FlowLayout 259

font

 create 279

 setFont() 279

for loop 86

for-each loop 149

format(), String 277

formatted output 37

format specifier 37

Frame component 128

 methods 257

G

get(i), ArrayList 154

getAbsoluteFile() 308

getAudioInputStream() 308

getClip() 308

getContentPane() 301

getDesktop() 309

getRunTime() 307

getSelectedFile() 185

getSelectedItem() 269

getSource() 271

getText() 266

4

Index

Global variables 30

Graphics object 129

GridBagLayout Appendix G (6)

GUI 253

 design 256

 positioning components 259

 Layout Managers 259

H

hasNext() 65

hasNextDouble() 65

hasNextInt() 65

hasNextLine() 65

Hello World 20

HTML 306

hypot(x) 34

I

if-else 57

images 279

ImageIcon() 279

imageIO.read() 280

import 34

 wildcard 128

indentation 44

indexes

 characters 41

 ArrayLists 154

 Strings 41

Information dialog box 126

Insets Appendix G (7)

instance 192

integer 25

Integer.parseInt() 64

Interface Design 254

IPO document 122

isDesktopSupported() 309

isdigit() 100

isLetter() 100

isLowerCase() 100

isUpperCase() 100

isWhiteSpace() 100

Iterative Enhancement 125

J

Java 8

Java Foundation Classes 254

JavaFX 303

JButton 262

JComboBox 269

JComponent 129

JDK 19

JFileChooser 184

JFrame 257

JFreeChart 303

JLabel 260

JOptionPane 126

JPanel 260

JScrollPane 294

JTextField 261

JDK 19

JRE 19

JVM 19

K

keyboard input 34

5

Index

key words 22

L

Label component 260

Layouts

 multiple Appendix G

layout manager 259

length() 42

Line drawing 130

Line Chart, JavaFX 303

Line, drawLine() 130

line feed 39

LocalDateTime 305

log() 34

Logical operators 66

Loops 81

M

Main method 21

Mathematical operators 30

Math Methods 33

Math.PI 33

Math.pow() 34

Math.random() 101

Math.round() 33

Menu 295

Methods 111

 calling 113

 naming 119

Mixed-type expressions 32

Modulus (%) operator 30

Multi-file Programs 124

Multiplication (*) operator 30

N

New, keyword 193

Newline (\n) character 39

next() 35

nextDouble() 36

nextInt() 35

nextLine() 36

not operator “!” 66

Numbers

 floating point 6

 formatting 37

 random 101

NumbeFormatException 176

O

Objects 191

Object Behavior Diagram 206

Object Oriented 191

Object Sequence Diagram 206

Open file dialog 184

Operators

 logical 66

 mathematical 30

 precedence of 32

 relational 56

Option Lists 255

or operator || 66

Output

 displaying 24

 file 171

 formatting 37

Override 246

6

Index

 Notation 295

P

Package, Java 20

Package Explorer 124

Package, import 34

paintComponent() 129

Panel 259

 add() 260

 setBackground() 262

 setBorder() 281

 setVisible() 128

Panels, Multiple Appendix G

Parameter 112

Passing arguments 114

Pie Chart 303

plotting 299

Precedence 32

Primitive data types 156

print function 36

printf() 37

print formatted 37

println() 36

PrintWriter 171

private 196

Process 9

Program design 93

protected 196

Pseudocode 10

public 196

Q

Quick Fix 172

quotes, displaying \” 39

R

Radio buttons 270

 groups 270

random numbers 101

Read, file 169

Read, keyboard input 34

Relational operators 56

remove(), ArrayLists 153

repaint() 300

replace(), Strings 100

Requirements 9

return statements 113

rounding 33

S

“Save As” dialog 298

Scanner 34

Scene 304

Scroll bars 294

Scrum 13

Sequence Diagram 206

set(), ArrayList 155

setBackground() 262

setBorder() 281

setColor() 132

setCurrentDirectory() 185

setDefaultCloseOperation() 257

setFilter() 185

setFont() 279

setForeground() 262

setIcon() 280

7

Index

setJMenuBar() 296

setLocationRelativeTo() 274

setResizable() 259

setSize() 262

setText() 267

setTitle() 260

setVisible() 257

showInputDialog() 126

showMessageDialog() 126

sin(x) 34

Sprint 13

Software Development Process 13

Sound 307

SpringLayout 259

sqrt() 34

Stage 304

Standards Appendix F

static 121

String 40

 concatenate 42

 conversion 64

 comparing 64

 StringBuilder() 67

 charAt() 41

 equals() 63

 format() 277

 isNumeric() 177

 length() 42

 replace() 100

 substring() 43

 toLowerCase() 101

 toUpperCase() 101

 split() 67

 trim() 177

Subclass 227

Substring 43

Subtraction (-) operator 30

super 229

swing components 254

T

tab \t” 40

tan(x) 34

Text files 167

Time 305

Timer 305

 start() 306

 stop() 310

TimerListener 306

toLower() 43

toUpper() 43

Toolkit 254

Traceback 15

trim(), Strings 177

Truncation 31

try/catch 172

try-with-resources 175

Types, data 25

U

UML 205

Unified Modeling Language 205

UML Diagram 205

UML Superstructure 205

UnsupportedAudioFile 308

URI 309

Uniform Resource Identifier 309

8

Index

useDelimiter() 179

User interface 4

V

Validating Input 65

Variables 18

 assignment 28

 constants 29

 Naming conventions 26

 Types 25

W

W3C 26

W3Schools, link Appendix E

Web browser, launch 309

weightx, weighty Appendix G (7)

While loop 82

Wildcard import 128

Window

 JFrame 128

 image 279

 menu 295

 parent 126

 setDefaultCloseOperation() 294

 setLocationRelativeTo() 257

 setSize() 257

 setTitle() 136

 setVisible() 257

WindowAdapter() 295

WindowClosing() 294

WindowEvent 295

WindowListener 295

Workspace, Eclipse Appendix C (1)

World Wide Web Consortium 26

Wrapper Classes 156

X

x axis, line 301

x coordinate 130

Y

y axis, line 301

y coordinate 130

	Simber_Java_Cover
	Simber_Java_Title
	Simber_Java_Licensing
	Computer_Programming_in_Java_08_20_22

