

Systems Integration
A Project Based Approach

Ryan Tolboom

Table of Contents
Legal. 1

Preface. 2

Acknowledgements . 3

Project . 4

Project Proposal . 4

Milestones . 5

Deliverables . 7

1. Git . 8

1.1. Version Control . 8

1.2. Installation . 9

1.3. Basic Git Actions . 9

1.4. Example. 10

1.5. Resources . 13

1.6. Questions . 13

2. GitHub . 15

2.1. Purpose . 15

2.2. Remote Repositories. 15

2.3. Issues . 16

2.4. Pull requests. 16

2.5. Documentation . 17

2.6. Resources . 18

2.7. Questions . 18

3. YAML . 19

3.1. Introduction . 19

3.2. Parts of a YAML Stream. 19

3.3. Editors . 21

3.4. Resources . 22

3.5. Questions . 22

4. Docker . 23

4.1. Purpose . 23

4.2. Installation . 24

4.3. Concepts . 25

4.4. Commands . 26

4.5. Examples. 27

4.6. Resources . 32

4.7. Questions . 33

5. Messaging . 34

5.1. Purpose . 34

5.2. Frameworks . 35

5.3. RabbitMQ and Docker . 35

5.4. Resources . 38

5.5. Questions . 38

6. Database . 40

6.1. Introduction . 40

6.2. Popular RDMS . 42

6.3. Example. 42

6.4. Resources . 46

6.5. Questions . 47

7. Front End . 48

7.1. Introduction . 48

7.2. Example. 49

7.3. Resources . 56

7.4. Questions . 57

8. Back End . 58

8.1. Introduction . 58

8.2. Example. 58

8.3. Resources . 63

8.4. Questions . 64

9. Midterm Example. 65

9.1. Introduction . 65

9.2. Messaging . 66

9.3. Database . 67

9.4. Back End . 68

9.5. Front End . 72

9.6. Questions . 78

10. Replication . 79

10.1. Background . 79

10.2. Implementation . 81

10.3. High Availability . 86

10.4. Load Balancing . 89

10.5. Questions . 90

11. Kubernetes . 91

11.1. Introduction. 91

11.2. Minikube. 92

11.3. Debugging. 95

11.4. Conclusion . 99

11.5. Questions . 99

12. Database in Kubernetes . 100

12.1. Introduction. 100

12.2. PersistentVolumeClaims . 100

12.3. Services . 101

12.4. Deployments . 102

12.5. Running the Example . 105

12.6. Conclusion . 110

12.7. Questions . 110

13. Messaging in Kubernetes . 112

13.1. Introduction. 112

13.2. RabbitMQ . 112

13.3. Kubernetes . 112

13.4. Example . 113

13.5. Resources . 124

13.6. Questions . 124

14. Front End in Kubernetes . 125

14.1. Introduction. 125

14.2. Kubernetes . 125

14.3. Example . 126

14.4. Questions . 133

15. Back End in Kubernetes . 134

15.1. Introduction. 134

15.2. Example . 135

15.3. Questions . 141

16. Google Kubernetes Engine . 142

16.1. Introduction. 142

16.2. Setting up gcloud . 142

16.3. Pushing Images . 145

16.4. Creating Objects . 148

16.5. Cleaning Up . 150

16.6. Resources . 150

16.7. Questions . 151

Legal
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

All product names, logos, and brands are property of their respective owners. All company, product
and service names used in this text are for identification purposes only. Use of these names, logos, and
brands does not imply endorsement.

1

http://creativecommons.org/licenses/by-sa/4.0/

Preface
The goal of this text is to provide a practical introduction to systems integration by designing and
implementing an actual system. Modern tools like Docker and Kubernetes are used to allow the reader
to develop the system on their own machine, but still be able to deploy to an enterprise cluster by the
end of the text. A computer that meets these minimum specifications will be required to complete the
coursework.

The process of systems integration can be thought of as building a jigsaw puzzle. Every puzzle is
unique because the pieces and the way they fit together are different. It would be impossible to create
a text that outlines step-by-step how to solve every puzzle. In the same way it is impossible to create a
text that tells you how to integrate all types of systems. This text aims to provide the basic scaffolding
to build a project with ample materials for further research. The readers is expected to use these
resources as they tackle the issues within their own project.

In accordance with the show-me-the-code attitude of the open source software movement, all of the
code for the text and examples is available at https://github.com/rxt1077/it490.

The philosophy of this text can probably best be summed up in a quote:

Knowledge isn’t power until it’s applied.

— Dale Carnegie

2

https://ist.njit.edu/fall-2020-recommended-specs/
https://github.com/rxt1077/it490

Acknowledgements
The author would like to acknowledge the hard work of DJ Kehoe, whose devotion to the success of his
students led him to create a rigorous, project-based Systems Integration course. Without his work,
none of this would be possible.

This book also would not have been possible without Asciidoctor an open source text processor and
publishing toolchain. Thank you to Dan Allen, Sarah White, Ryan Waldron, Nick Hengeveld and the
Asciidoctor project contributers for making this publishing tool free and open.

PlantUML was used for diagram creation and the author would like to thank Arnaud Roques for
creating such a versatile, open source diagram tool.

The cover photo was taken by Captain Albert E. Theberge, NOAA Corps (ret.)

3

https://asciidoctor.org
https://plantuml.com

Project

This text is meant to accompany the creation of a group project. The project is designed to be
completed by a four person group over a 15 week semester. If you are using this text as part of a
course, all parts of this section are subject to change / augmentation by your instructor. If you are using
this text as an independent, self-study tool you should still be able to complete all of the milestones and
create the deliverables although it may take you longer. What follows is the typical assignment
structure for developing the project:

Project Proposal
The project proposal and the comments on it function as a record of dialog between the instructor and
the group. You can think of the proposal as a contract showing what is required to achieve a good
grade on the project. The instructor may specify additional deliverables depending on what your group
has chosen to work on, or they may walk-back your proposal if they believe it is too difficult.

Developing a Proposal

A data-first approach often helps in coming up with a project. Think of a data source that could be used
to create a marketable software as a service (SaaS) product. For the purposes of this project, the data
source needs to be freely available. Use the following questions to guide your proposal:

• What data will you use?

• What service will you offer with this data?

• Why would people be willing to pay money for your service?

• Who would be willing to pay money for your service?

Here is an example that you can not use:

4

Example 1. Project Proposal

My group will design a web app that allows people in New Jersey to create itineraries for
upcoming events based on the current weather forecast. We will use data from
OpenWeatherMaps.org as well NJ.com to plan separate events based on how filled people want
their schedule and what the weather is predicted to be. Our target demographic is busy
professionals who are comfortable using technology. Since they already use services like Google
Calendar for keeping track of their events, why not try using a service that will suggest upcoming
events? The time they save planning would easily be worth the cost of the service.

Milestones
Milestones exist to encourage groups to keep pace with the project. This is not the kind of project that
can be completed in the last week of class. All milestones should be entered in GitHub and linked with
Issues assigned to specific members of the group. Individual contributions of group members will be
assessed through GitHub activity so be sure you are actively participating.

One

• The group has four members.

• Each member of the group has read the Git, GitHub, YAML, and Docker chapters.

• Each member of the group has Docker up and running on their machine.

• Each member of the group has a GitHub login that utilizes their school email.

• The group has designed and submitted a Project Proposal.

• The group has created a GitHub repository with all of the members as collaborators.

Two

• Each member of the group has read the Messaging, Database, Front End, and Back End chapters.

• The group has created a docker-compose.yml file in the group repository that brings up a messaging
service, database service, front end service, and back end service.

• Front End has a "Hello World" page available on a port accessible from the local host.

• Back End can read from and write to a queue on Messaging.

• The completion of this milestone is documented through the use of Issues in the group GitHub
repository.

Three

• Back End can read and write from Database.

• Front End has a register new user page and a login page. They do not have to be functional, but the

5

https://openweathermaps.org
https://www.nj.com

HTML for the page is being served.

• Database has a user table in a database on a persistent volume and the database can be accessed
by Back End.

• Documentation is developed that describes how to use the RabbitMQ management interface to
check to see if queues are being created. The documentation is in the form of a README file in any
GitHub supported format within the messaging directory.

• The completion of this milestone is documented through the use of Issues in the group GitHub
repository.

Four

• Each member of the group has read the Replication and Kubernetes chapters.

• Each member of the group has minikube up and running on their machine.

• Database has moved from a single instance to a replicated, high availability, load balancing cluster.
For now, the instances can be statically configured inside a docker-compose.yml file.

• The completion of this milestone is documented through the use of Issues in the group GitHub
repository.

Five

• Each member of the group has read the Database in Kubernetes and Messaging in Kubernetes
chapters.

• Database has been migrated to Kubernetes using the minikube environment. All of the Kubernetes
objects for Database are in one file named db-k8s.yml in the group GitHub repository.

• Messaging has been migrated to Kubernetes using the minikube environment. All of the
Kubernetes objects are in one file named messaging-k8s.yml in the group GitHub repository.

• The completion of this milestone is documented through the use of Issues in the group GitHub
repository.

Six

• Each member of the group has read the Front End in Kubernetes and Back End in Kubernetes
chapters.

• Front End has been migrated to Kubernetes using the minikube environment. All of the
Kubernetes objects are in one file in the named front-end-k8s.yml in the group GitHub repository.

• Back End has been migrated to Kubernetes using the minikube environment. All of the Kubernetes
objects are in one file named back-end-k8s.yml in the group GitHub repository.

• The completion of this milestone is documented through the use of Issues in the group GitHub
repository.

6

Deliverables
Deliverables are larger assessments designed to show a running system. Given the containerized
nature of the project, it should be easy to bring up the deliverables on any system to test them. Groups
are encouraged to test their system on different machines to make sure that everything will go well
when it is time to assess their project. Groups are also encouraged and expected to keep the
deliverables in mind over the course of the entire project.

Midterm

• Front End (Python, PHP, or Node) interacts with the user via HTTP and communicates with
Messaging via a messaging library.

• Messaging (RabbitMQ) brokers the exchange of information between Front End and Back End.

• Database (PostgreSQL, MariaDB, or MySQL) is used by Back End for the storage of persistent
information. All database files are stored in a Docker volume.

• Back End gathers information from data sources, stores information on Database, and interacts
with Messaging.

• These four services are working with each other to provide a registration and authentication
system for users.

• The project is fully testable on any machine running Docker by cloning the group git repository and
running docker-compose up in the root of the project.

Final

• Front End, Database, Messaging, and Back End are all running in pods on a minikube Kubernetes
Cluster. Each has three replicas.

• Front End, Database, Messaging, and Back End are all able to scale horizontally and recover from
the failure of pods.

• The project is fully testable on any machine running minikube by cloning the group git repository,
building the custom images locally (with an environment configured for the Docker daemon
running within minikube), and running kubectl apply -f . in the root of the project.

7

Chapter 1. Git

1.1. Version Control
In the simplest sense, version control tracks changes to a group of files. Building off of this premise,
teams can use version control to cooperatively change a group of files and revert to a previous state if
needed.

The benefits of a version control system can be more readily understood if we consider a few
examples:

Example 2. Programming Project

You are working on a project for your CS101 class and you need to write a Python program that
plays tic-tac-toe. It must support player-vs-computer and player-vs-player. It’s due in two days. On
the first day you write the initial code and implement player-vs-player. It works great and you fall
asleep knowing tomorrow you will finish it and turn it in on time. The next morning you update it
to support player-vs-computer and everything stops working. What do you do now?

If you were working with a version control system, you could easily see what you changed and even
roll-back your changes.

Example 3. Working with a Team

You are working working with a team of people to build a complex system that utilizes several
files in several different directories. How do you make sure everyone has the most up-to-date
version of the files? What happens if two people work on the same file at the same time?

In a version control system, you could set up a centralized repository for the files and have everyone
pull from one location.[1] In the case of two people working on the same thing at the same time, a
version control system could help with merging their changes by examining the lines that where
changed, finding conflicts, and suggesting resolutions.

8

1.2. Installation
Depending on the OS you are using, there are a few different ways to install git.

Windows

• git for windows: Installs git, git BASH, and a GUI. The git command is put in your path and can
be run from PowerShell, CMD, or the BASH shell (which it installs).

Mac

• git for Mac Installer: Provides an easy installer for git on MacOS.

• Xcode: Xcode installs a command line git and you may have it installed already.

Linux

• Basically all distributions have git available in their standard package manager. Chances are, if
you’re running Linux you have it installed already, so I’ll take the opportunity to highlight the
strangest distro I can think of: You can install git in Hannah Montana Linux with the command
apt-get install git.

1.3. Basic Git Actions

1.3.1. Creating a Repository

Any directory can be made into a git repository by running the git init command. This will add the
.git directory which stores information about the state of the repository and configuration.

1.3.2. Cloning a Repository

If you want to make a copy of an already existing repository, typically done when you start working on
a project, the git clone command will do that using any supported protocol.

1.3.3. Tracking / Staging Files

You need to tell git which files you want it to track and when you want to stage them to be committed.
These both use the same command git add. The first time you use git add it begins tracking the file
and stages it for a commit. The second time you use git add only stages that file for a commit.

1.3.4. Committing Changes to a Repository

Once you have made some changes to your repository and staged those files with git add you can use
the git commit command to commit your changes. All commits must have a message, and git will use a
default editor depending on your installation. This can be changed. To complete the commit, add a
message, save the file, and exit the editor. If you don’t want to use an editor, the -m option allows you to
specify a commit message on the command line.

9

https://gitforwindows.org/
https://sourceforge.net/projects/git-osx-installer/files/
https://developer.apple.com/xcode/
http://hannahmontana.sourceforge.net/
https://help.github.com/en/github/using-git/associating-text-editors-with-git

Working Directory Staging Area Repository
git add git commit

Figure 1. Staging and Committing Changes

1.3.5. Setting Up a Remote

Git repositories are often linked to a remote repository. This could be a service, like GitHub, GitLab, or
SourceHut or more simply another server that the team has access to. The git remote add origin
command adds a remote URL as the default target for actions. You can then git push your changes to
the remote or git pull to get the latest changes from the remote. The git clone command
automatically sets the origin.

1.4. Example
Let’s take a look at an example of two people, Jessica and Darsh, working with the same remote
repository:

10

https://github.com
https://gitlab.com
https://sr.ht

Jessica’s First Session (PowerShell)

PS jess> mkdir example ①

 Directory: jess

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 4/22/2020 10:02 PM example

PS jess> cd example
PS jess\example> git init ②
Initialized empty Git repository in jess/example/.git/
PS jess\example> Set-Content -Path 'test.txt' -Value 'Hello from git!' ③
PS jess\example> git add . ④
PS jess\example> git commit -m "Initial Commit" ⑤
[master (root-commit) 46c7c75] Initial Commit
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 test.txt
PS jess\example> git remote add origin ssh://git@192.168.10.1/home/git/example.git ⑥
PS jess\example> git push origin master ⑦
git@192.168.10.1's password:
Enumerating objects: 3, done.
Counting objects: 100% (3/3), done.
Writing objects: 100% (3/3), 249 bytes | 249.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To ssh://192.168.10.1/home/git/example.git
 * [new branch] master -> master

① Jessica will be creating the repository, so she makes a new directory

② Inside the directory, she uses git init to initialize it

③ She adds some content so she has something to commit

④ The form git add . means stage all files in this directory. It is a common invocation of git add.

⑤ Jessica commits her work. The -m option allows her to add a commit message without needing to
open an editor.

⑥ She adds a remote as the default. This does require configuration on the remote server, a local
machine in our case, but we will talk about how that is usually handled in the GitHub section.

⑦ She pushes her changes to the remote so that Darsh can get them.

11

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/set-content?view=powershell-7

Darsh’s Session (BASH)

darsh@laptop:~$ git clone ssh://git@192.168.10.1:/home/git/example.git ①
Cloning into 'example'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (3/3), done.
darsh@laptop:~$ cd example ②
darsh@laptop:~/example$ cat test.txt
Hello from git! ③
darsh@laptop:~/example$ echo "Hello Jess!" >> test.txt ④
darsh@laptop:~/example$ git add . ⑤
darsh@laptop:~/example$ git commit -m "Added my message"
[master 55dc946] Added my message
 1 file changed, 1 insertion(+)
darsh@laptop:~/example$ git push
Counting objects: 3, done.
Writing objects: 100% (3/3), 271 bytes | 271.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To ssh://192.168.10.1:/home/git/example.git
 182a481..55dc946 master -> master

① Darsh isn’t creating a new repository so he uses the git clone command to clone the repository
Jessica has made.

② By default, cloned repositories are put in their own directory based on the repository name. You can
specify a different directory by adding an argument after the URL: git clone
ssh://git@192.168.10.1:/home/git/example.git new-directory

③ Jess’s content is there!

④ Darsh appends a message of his own.

⑤ He follows the standard add, commit, push work flow to sync his changes.

12

Jessica’s Second Session (PowerShell)

PS jess\example> Get-Content -Path 'test.txt'
Hello from git! ①
PS jess\example> git pull origin master ②
git@192.168.10.1's password:
From ssh://192.168.10.1/home/git/example
 * branch master -> FETCH_HEAD
Updating 182a481..55dc946
Fast-forward
 test.txt | 1 +
 1 file changed, 1 insertion(+)
PS jess\example> Get-Content -Path 'test.txt'
Hello from git! ③
Hello Jess!

① When Jess goes to check on Darsh’s work, it isn’t there! Why?

② Because she hasn’t pulled from the remote yet.

③ Once she does, she can see Darsh’s work.

This scenario begs the question, "What would happen if Jess didn’t pull Darsh’s work and kept working
on her local, unsynced copy?" Assuming they were both working on the same file, when Jess goes to
push there would be a merge conflict. Git is very good at resolving conflicts and team members tend to
be working on different parts of the codebase, making the resolution simpler.

1.5. Resources
• The entire Pro Git Book can be found online. It is a comprehensive text that will cover much more

than the brief outline presented here.

• GitHub has some excellent and interactive resources for learning to use git.

1.6. Questions
1. What are the advantages of using version control?

2. What does it mean that files are staged for a commit?

3. What are the two things that the git add command can do?

4. How do you create a new repository in a directory?

13

https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts
https://git-scm.com/book/en/v2
https://try.github.io

5. What is a remote and what does the git push command do?

[1] It is important to note that although this is the dominant way git is used, it is not actually the way git was intended to be used. With
git you can work in a group, merging changes from multiple contibuters, all without a central server.

14

Chapter 2. GitHub

2.1. Purpose
GitHub is a service that provides a space for remote git repositories. It features an extensive web
interface and several project management features.

GitHub has become a popular service for open source projects and is a great way to showcase your
projects to prospective employers. It is free to sign up for GitHub and we will be using it for project
management. It is recommended that you sign up with your .edu email address. This way you will
have an academic account to showcase your work.

2.2. Remote Repositories
To set up a remote repository in GitHub, follow these steps:

1. Create a local git repository as shown in the previous section. Choose a repository name that is
simple. Avoid spaces or trailing dashes as various tools may have trouble with them.

2. Sign in to GitHub and navigate to Create a New Repository

3. Put in the repository name (make sure it matches the local repository name) and a description.

4. GitHub now offers unlimited private repositories with unlimited collaborators. This means you
could complete your project in a private repository. If you choose to use a private repository, be
sure to add your instructor as a collaborator. Later when you want to showcase your work you can
make this repository public. You could also start with a public repository which can provide good
practice for learning to keep secrets (passwords, API keys, etc.) out of your commits. In this case
you will still need to add group members as collaborators, but your instructor should have read-
only access without any additional setup.

5. Once you click "Create Repository", instructions will be provided for setting the remote on your
local repository. It is very similar to the scenario covered in the previous section. Follow the
directions.

6. Now your group members should be able to clone the repository, but they will not be able to make
commits until you invite them as collaborators.

15

https://github.com
https://pydanny.blogspot.com/2011/08/github-is-my-resume.html
https://github.com/new

7. Go to Settings (top right gear icon) → Manage access → Invite a Collaborator within the GitHub web
interface for your repository. Add all of your group members as collaborators.

2.3. Issues
GitHub has a built-in bug tracker called Issues. It can be found next to the Code tab, under the
repository name when viewing a repository. An issue is typically a bug that needs to be fixed or a
feature that needs to be implemented. It can be assigned to a project collaborator and it can be closed
when it is resolved. Issues can also be linked to a milestone, which can be thought of as as group of
things that need to be done to reach a particular phase.

We will be using the GitHub Issues to monitor individual contributions to a project and to assess how
well a team functions. Do not be afraid to create issues and use the discussion features inside of them.
They help groups document their progress. Groups will also have milestones assigned as they progress
through the text. Groups should create those milestones in GitHub and assign the goals to collaborators
as issues.

2.4. Pull requests
For complex projects or projects that have external contributers GitHub supports a fork-based pull
request (PR) workflow. Although we probably won’t be using it too much, it is helpful to know how it
works in case you end up working on larger projects, you want to contribute to another project, or
your instructor wants to contribute to your project.

In GitHub, a typical PR workflow looks like this:

16

repo

Accept PR?
yes no

apply changes to repo

commit

do not apply changes

copy of repo

staged repo

updated repo

pull request

make changes

commit

create diff

fork

submit PR

Project Contributer

Figure 2. Pull Request

A contributer forks a project (makes their own personal copy), which is as easy as clicking the Fork
button in the upper-right when viewing a project repository. They change the parts of the repository
that they want to in their personal copy and commit their changes. Then they click on Pull Requests →
Create Pull Request on the project’s repository. GitHub defaults to creating PRs across branches (a good
technique when working on a large project with lots of contributers), but you can select PRs across
forks as well. The owner of the project can review the PR and if they like the changes they have the
option to merge them with their repository.

2.5. Documentation
GitHub supports several styles of documentation, but the most common is Markdown. Files written in
Markdown and ending in the .md extension will be rendered and displayed when viewed in the GitHub
web interface. If a file named README.md exists in a directory, it will be automatically displayed at the
bottom of a directory listing. This makes it easy to build documentation right into your repository.
Learn Markdown and be sure to have a README.md in your repository.[2]

17

https://en.wikipedia.org/wiki/Markdown

2.6. Resources
• Mastering Issues

• Making a Pull Request

• About Pull Requests

• The Markdown Guide

• Markdown Tutorial

2.7. Questions
1. What does GitHub provide for a project?

2. What is the difference between using git and GitHub?

3. A new member joins your team. As the maintainer of the repository on GitHub, what steps do you
need to take so that they have commit access to the repository? What steps does the group member
need to take to get set up?

4. What is the purpose of issues in GitHub?

5. Why might a team want to use pull requests instead of adding all contributers as collaborators to a
project?

[2] If you’re looking to take things a bit further AsciiDoc, reStructuredText, and scribble are worth exploring too. This book was written
using AsciiDoc.

18

https://guides.github.com/features/issues
https://www.atlassian.com/git/tutorials/making-a-pull-request
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests#draft-pull-requests
https://www.markdownguide.org
https://www.markdowntutorial.com
https://asciidoctor.org/docs/asciidoc-writers-guide/
https://docutils.sourceforge.io/rst.html
https://docs.racket-lang.org/scribble/

Chapter 3. YAML

3.1. Introduction
In the long-standing tradition of informal, recursive acronyms, YAML stands for YAML Ain’t Markup
Language. It is designed to be a plain text way to represent complex objects. It is easier to read than
JavaScript Object Notation (JSON), but not as complex as Extensible Markup Language (XML). YAML
uses indentation to specify scope, like Python, and therefore spacing matters.

The vast majority of what we will be creating is written in YAML so it pays to give it at least a cursory
treatment. It’s even become a bit of an inside joke that modern system architects are simply YAML
engineers.

3.2. Parts of a YAML Stream


This section is parts of a YAML stream, not a YAML document because technically a
single file could have multiple YAML documents.

Let’s look at some sample streams to get a clearer picture of how YAML is used:

Sample Docker Compose YAML

source: https://docs.docker.com/compose/gettingstarted/ ①
--- ②
version: '3' ③
services: ④
 web:
 build: .
 ports:
 - "5000:5000" ⑤
 redis:
 image: "redis:alpine"

① Anything following a # in YAML is considered a comment. Don’t be afraid to use them!

② YAML documents start with --- and optionally end with …. This allows multiple documents to

19

https://en.wikipedia.org/wiki/Recursive_acronym#Early_computer-related_examples
https://yaml.engineering/
https://yaml.engineering/

included in a stream.

③ keyword: value signals a mapping. This mapping maps the keyword version to the string '3'.

④ Mappings can be nested. This mapping maps the keyword services to mappings with keywords web
and redis.

⑤ Sequences can be shown as a block of lines starting with -. In this case ports is mapping to a
sequence with one item, the string "5000:5000".


YAML strings can use single, ', or double, ", quotes. Double quotes support escape
sequences: \n, \t, \", etc.

Sample Kubernetes YAML

source: https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-
configmap/
apiVersion: v1
kind: ConfigMap
metadata:
 creationTimestamp: 2016-02-18T18:52:05Z ①
 name: game-config
 namespace: default
 resourceVersion: "516"
 uid: b4952dc3-d670-11e5-8cd0-68f728db1985
data:
 game.properties: | ②
 enemies=aliens
 lives=3
 enemies.cheat=true
 enemies.cheat.level=noGoodRotten
 secret.code.passphrase=UUDDLRLRBABAS
 secret.code.allowed=true
 secret.code.lives=30
 ui.properties: |
 color.good=purple
 color.bad=yellow
 allow.textmode=true
 how.nice.to.look=fairlyNice

① YAML supports ISO8601 date elements.

② The | indicates block scalar style. The keyword game.properties is mapped to a string where the
newlines are preserved but the leading spaces are removed. The string, with newlines shown as '\n',
is 'enemies=aliens\nlives=3\nenemies.cheat=true\n…'. This is a common way of defining files or
scripts within YAML.

20

https://en.wikipedia.org/wiki/ISO_8601


Learn to use | and |- for multiline strings. |- will do the same thing as | (as explained
above), but will not add the newlines (everything will be on one line).

3.3. Editors
Given YAML’s strict whitespace requirements, you will need to use a text editor that supports
configuring spacing and expanding tabs into spaces. At a minimum, you should be able to do the
following with your text editor:

• Translate tab keystrokes into spaces. This is sometimes referred to as expanding tabs. YAML files
that mix tabs and spaces will not work.

• Adjust tab spacing. Typically you will see YAML files with two spaces of indentation for their
blocks. This allows you to have many nested blocks without the lines becoming too wide.

• Increase/Decrease the indentation level of several lines at once. As you make changes, you may
have to change the indentation level of a block being able to do this quickly, without having to visit
every line will save you time.

• Cut/Copy/Paste - You should be able to copy things between your web browser and the file your are
editing. If you can copy things between multiple tabs/buffers in your text editor, even better.

• Convert between DOS/UNIX line endings. Most of the tools you will be working with come from the
UNIX world, where a line ends with '\n'. Some older DOS utilities still end lines with '\r\n'. You need
to be able to save documents with UNIX line endings in your text editor.

There are many editors that meet these requirements. Choosing an editor is a matter of personal taste
and the subject of unending flame wars. With this in mind the following list is not meant to be
exhaustive and I’m sure the comments may be subject of some debate. Popular editor choices:

• vim/neovim/ vi - Some form of vi is almost always installed on any *NIX/BSD system. Knowing how
to use it can be a lifesaver when remotely logged in to a machine. You can also find versions for
Windows. Since most of your work will be in a terminal, having an editor that runs directly inside a
terminal can be an advantage. That being said, the learning curve is steep. If you are interested in
learning vi, you may want to start with either vimtutor (packaged with vim) or :Tutor inside
neovim.

• Visual Studio Code - vscode is more akin to a modern IDE. It is rapidly gaining more adoption and
is certainly worth checking out if that is the type of experience you are looking for.

• Notepad++ - Notepad++ is a popular Windows GUI text editor. It starts quickly, and many things
work right out of the box. If you want something like notepad, but a little more versatile (the next
iteration you could say) then this is for you.

• TextMate - TextMate is a popular MacOS GUI text editor. It is simple to get started, but offers the
advanced features you may need as you progress.

21

https://en.wikipedia.org/wiki/Editor_war
https://www.vim.org/download.php
https://neovim.io/
http://ex-vi.sourceforge.net/
https://twitter.com/iamdevloper/status/435555976687923200
https://code.visualstudio.com/
https://notepad-plus-plus.org/downloads/
https://macromates.com/

3.4. Resources
• The Official YAML Web Site

• YAML Multiline Strings

3.5. Questions
1. How does YAML signify different blocks?

2. Are nested structures possible in YAML? Give an example.

3. What are the two components of a YAML mapping?

4. How would you comment out a line in a YAML file?

5. What does the expandtab or "replace by spaces" option do in a text editor and why is it important to
use when working with YAML?

22

https://yaml.org/
https://yaml-multiline.info/

Chapter 4. Docker

4.1. Purpose
Traditionally, virtualization has made use of a virtual machine (VM) to provide an isolated
environment in which an operating system (OS) and applications can run. This allows the application
to have a completely custom environment and ultimately makes it easier to deploy.

Example 4. Maintaining a Legacy Application

Prithi is in charge of maintaining a payroll system that uses Perl, a web server, and a CGI module.
This system requires specific, older versions of each of those components to function.
Unfortunately all of the web servers that her company uses are upgrading to newer versions and
removing Perl and the CGI module from their environment.

In order to continue running the system, Prithi asks the team that maintains the servers if they
will run a VM for her. Prithi can install the version of Linux that she needs on the VM and use the
packages the payroll system requires. If appropriately isolated, any problems on the VM would be
limited to just the payroll system. The web servers can be upgraded and Prithi can maintain the
payroll system thanks to virtualization with VMs.

If you expand this example a bit, and have a team that runs a datacenter, provides VMs to customers,
and charges for the amount of resources the VM uses, you have the beginnings of infrastructure as a
service (IaaS). As servers run multiple VMs, you end up with a system that looks like this:

Physical Machine

Host Operating System

Virtual Machine 1

Guest Operating System

Application

Virtual Machine 2

Guest Operating System

Application

Virtual Machine 3

Guest Operating System

Application

Figure 3. VM Server Architecture

Every VM having to run its own OS creates and emulate a unique machine creates a lot of overhead.

23

Containers allow for similar isolation as VMs, but at a reduced resource cost since. As opposed to VMs
which emulate a physical machine, containers use control groups, namespaces, and chroot to allow
containers to share the same operating system, but still be isolated. A server running containers has
significantly less overhead and looks like this:

Physical Machine

Host Operating System

Container Runtime

Container 1

Application

Container 2

Application

Container 3

Application

Figure 4. Container Server Architecture

There are many different container runtime environments including: LXC, containerd, rkt, and Docker
(on containerd at this point). We will be using Docker due to its popularity and its ability be easily
installed on various operating systems. By using Docker, we will be able to create a system that can be
tested and used on any other machine that runs Docker.

4.2. Installation
There are several options for installing Docker on your device, depending on the operating system and
hardware that you use:

Windows

• Docker Desktop should run fine on any Windows system that has Hyper-V (a virtualization
feature) available.

• Windows 10 Home does not have Hyper-V available, but you can easily Upgrade to Windows 10
Education (typically this is provided by your University) and then instal it. This should be your
first step if Docker Desktop does not work out-of-the-box.

• Docker Toolbox is an older version of Docker, running under a VM in VirtualBox. It can be
difficult to work with and Docker Desktop is preferred.

Mac

• Docker Desktop should run fine on most Macs. We will be running it from the terminal so do not
be alarmed if you install it and do not see an application running.

24

https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Linux_namespaces
https://en.wikipedia.org/wiki/Chroot
https://linuxcontainers.org/
https://containerd.io/
https://coreos.com/rkt
https://www.docker.com/
https://hub.docker.com/?overlay=onboarding
https://answers.microsoft.com/en-us/windows/forum/windows_10-update/how-to-convert-windows-10-home-to-education/5a6e42b0-51fc-4e53-9497-454c3adc671c?auth=1
https://answers.microsoft.com/en-us/windows/forum/windows_10-update/how-to-convert-windows-10-home-to-education/5a6e42b0-51fc-4e53-9497-454c3adc671c?auth=1
https://docs.docker.com/toolbox/
https://hub.docker.com/?overlay=onboarding>

• If for some reason your computer is not supported you can try the MacOS version of Docker
Toolbox, but Docker Desktop is preferred.

Linux

• Docker can easily be installed natively on Linux and packages for Docker exist for all major
distributions.

4.3. Concepts
An image is the complete file system of a Linux instance. You can think of it like the hard drive of a
server that someone has already set up. Images can be tagged using the format name:version. One of
the reasons Docker is so popular is because there are many pre-built images available. If you try to use
an image that does not exist on the local machine, Docker will automatically attempt to pull that image
from the Docker Hub container registry.

Docker can run containers by taking images, copying the file system, and running commands on that
file system within an isolated environment. This is called running a container. You can run several
containers from the same image since the file system is cloned.

Container Registry

Local Machine

Images

Containers

Image 1 Image 2

Image 1 Image 2 Image 3 (locally created)

Container 1 Container 2 Container 3 Container 4

Figure 5. Images, Containers, and the Registry

In the above image, you can see that two images were pulled from the container registry: Image 1 and
Image 2. Once images are pulled, they are locally cached. Image 3 was built locally and is available on
the local machine, but is not available from the registry. From those images, four containers have been
run. Container 1 and Container 2 are both using the same image, but keep in mind they have their own
copy of the file system.

25

https://docs.docker.com/toolbox/
https://docs.docker.com/toolbox/
https://hub.docker.com/

4.4. Commands
Docker commands are run via the docker command line interface (CLI) in a terminal. Here is a brief
listing of some of the most useful commands:

images

Lists images that are locally available.

ps

Lists the currently running containers.

pull

Downloads an image from the container registry (Docker Hub by default).

run

Creates a container from an image and starts that container. If a command is specified that
command is run, otherwise the default command for the image is run.

exec

Executes a command on an already running container.

stop

Stops a running container.

rm

Removes a container.

image rm

Removes an image.

build

Builds the Dockerfile in the directory specified into an image.


It is easy to forget that the build command takes an option as that option is sometimes
the current directory: .. Don’t forget the period at the end of a docker build .
command.


Both the run and exec commands need to be passed the -it option if you want to run
something interactively. This is often the case if you run a command like bash where
you will by typing in shell commands.

As you use Docker, it will download / create a lot of resources and it can be helpful to clean those
resources up periodically. Here are some commands to do just that:

26

system prune

Removes resources that aren’t in use by any containers. This includes inactive containers: stopped
containers that may be used again.

image prune --all

Removes all images that aren’t currently being used. After you have been running Docker for a
while, this can free up gigabytes (GB) of space.

4.5. Examples
For the following examples, it is assumed that you have Docker installed and that you are in a terminal
with an environment that can run the docker command. This may be PowerShell if you installed
Docker Desktop on Windows, Terminal if you are in MacOS, or even the Docker Quickstart terminal if
you installed Docker Toolbox on Windows.

4.5.1. Running a Web Server

Let’s take a look at just how easy it is to run a web server in a Linux container with Docker:

PS > docker run -d -p 8080:80 httpd:2.4.43 ①
Unable to find image 'httpd:2.4.43' locally
2.4.43: Pulling from library/httpd ②
54fec2fa59d0: Pull complete
8219e18ac429: Pull complete
3ae1b816f5e1: Pull complete
a5aa59ad8b5e: Pull complete
4f6febfae8db: Pull complete
Digest: sha256:c9e4386ebcdf0583204e7a54d7a827577b5ff98b932c498e9ee603f7050db1c1
Status: Downloaded newer image for httpd:2.4.43

fa13023485993c9ec47c805d0ce06b69b305ddf61657fbb6ec58674abb5a057b ③

① Here we are telling Docker we want to run a container , -d in the background (daemon mode), -p
8080:80 with port 8080 on our local machine forwarded to port 80 on the container, and the image is
version 2.4.43 of httpd. You can read more about this image here.

② Because we don’t have the image locally, it is pulled from the Docker Hub container registry.

③ Each running container is given a unique hash.

Now let’s see what containers we have running with the docker ps command:

27

https://hub.docker.com/_/httpd

PS > docker ps ①
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
fa1302348599 httpd:2.4.43 "httpd-foreground" 5 seconds ago Up 5
seconds 0.0.0.0:8080->80/tcp eager_heyrovsky ②

① docker ps shows all running containers, to see all containers, including stopped containers, we could
have used docker ps -a.

② This displays the container id (enough of the hash to identify it for commands), the image that the
container is copied from, when it was started, what its status is, which ports are being forwarded,
and a friendly name for the container (automatically generated if you don’t specify one) that you
can use in place of the container id in commands.

If you’ve been following along with these commands, you should be able to open a web browser, go to
http://localhost:8080, and see a page stating, "It works!"

Now let’s clean up:

PS > docker stop fa1302348599 ①
fa1302348599

PS > docker ps ②
CONTAINER ID IMAGE COMMAND CREATED STATUS
PS > docker ps -a ③
CONTAINER ID IMAGE COMMAND CREATED STATUS
fa1302348599 httpd:2.4.43 "httpd-foreground" 18 minutes ago Exited
(0) 5 seconds ago

PS > docker rm fa1302348599 ④
fa1302348599

PS > docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS

① We know the id from the previous docker ps command, by running docker stop we can stop the
container.

② Now we won’t see it in the plain docker ps command.

③ It is still there, but stopped. We can see it with the docker ps -a command.

④ docker rm will remove the stopped container.

In most situations, docker rm isn’t really necessary as stopped containers do not actively consume
resources other than local storage. Try browsing to http://localhost:8080 again to confirm that the
container is not running. You should be unable to connect.

28

http://localhost:8080
http://localhost:8080

4.5.2. Building a Custom Image

Sometimes the stock images are not enough to do what you want. In this example we will be building
an image for a web server that still uses httpd:2.4.43 as its base, but adds an extra file to change the
default page. To do this, we need to create a directory with a Dockerfile and our new index.html page.
We’ll do this in the docker-demo directory:

docker-demo/index.html

<h1>Hello from a container running a custom image!</h1>

docker-demo/Dockerfile

FROM httpd:2.4.43
COPY index.html /usr/local/apache2/htdocs/

A Dockerfile is a list of basic instructions for building an image. Instructions are typically capitalized
and in this case our Dockerfile is using two of them: FROM and COPY. FROM tells Docker that you want to
build an image on top of another image. In this case we want to build our image on top of the
httpd:2.4.43 image. We also use the COPY instruction to copy a local file into the image we are building.
In this case we copy our index.html into the directory that the Apache web server serves files from.


Details about what directories an image uses can often be found in the image’s
documentation on Docker Hub.

To build our Dockerfile into an image, we are going to use the build command:

29

https://httpd.apache.org/

PS docker-demo> docker build -t docker-demo:v1 . ①
Sending build context to Docker daemon 3.072kB
Step 1/2 : FROM httpd:2.4.43 ②
 ---> b2c2ab6dcf2e
Step 2/2 : COPY index.html /usr/local/apache2/htdocs/
 ---> Using cache
 ---> 7a8122895898
Successfully built 7a8122895898
Successfully tagged docker-demo:v1
SECURITY WARNING: You are building a Docker image from Windows against a non-Windows
Docker host. All files and directories adde
d to build context will have '-rwxr-xr-x' permissions. It is recommended to double check
and reset permissions for sensitive fil
es and directories. ③

PS docker-demo> docker images ④
REPOSITORY TAG IMAGE ID CREATED SIZE
docker-demo v1 7a8122895898 17 minutes ago 166MB
httpd 2.4.43 b2c2ab6dcf2e 2 weeks ago 166MB

① Here we specify that we want to build an image and we want to tag it as docker-demo:v1. This
command takes one argument, the directory which contains the Dockerfile. In our case we pass it .
to signify the current directory.

② You can see each instruction and the results as they are performed.

③ Windows does not support the same file permissions as Linux so you may see this warning if you
are building on Windows.

④ Finally we look at the images currently available. We should see that the one we built is available.

Now let’s run our custom image in a container with the docker run command:

PS docker-demo> docker run -p 8080:80 docker-demo:v1 ①
AH00558: httpd: Could not reliably determine the server's fully qualified domain name,
using 172.17.0.2. Set the 'ServerName' directive globally to suppress this message
AH00558: httpd: Could not reliably determine the server's fully qualified domain name,
using 172.17.0.2. Set the 'ServerName' directive globally to suppress this message
[Sat May 09 15:09:48.016060 2020] [mpm_event:notice] [pid 1:tid 140614148256896] AH00489:
Apache/2.4.43 (Unix) configured -- resuming normal operations
[Sat May 09 15:09:48.016154 2020] [core:notice] [pid 1:tid 140614148256896] AH00094:
Command line: 'httpd -D FOREGROUND'

① Notice that we didn’t pass the -d option to Docker run, meaning we are running in the foreground.
This is useful if we want to run something quickly as the log messages are printed directly in your
terminal.

30

If you open a web browser and navigate to https://localhost:8080 you should see the message "Hello
from a container running a custom image!" When you are done, you can type Ctrl+C in the terminal to
stop running the container, use docker ps to get its ID, and then use docker stop to stop it.

4.5.3. Using Docker Compose

Having to specify command line arguments for the docker command can get tedious, especially as your
environment becomes more complex. Docker Compose is a tool bundled with Docker that can be used
to store the configuration for a multi-container setup in a single docker-compose.yml file. The best way
to learn about it is to see it in action, so let’s start by looking at an example:

docker-demo/docker-compose.yml

version: '3'

services:
 web:
 build: .
 ports:
 - "8080:80"

This file defines a Docker Compose service named web that builds an image from the directory that
docker-compose.yml is in. A container is run with the image and local port 8080 is forwarded to port 80
in the container.

Here is a brief listing of some of the most useful docker-compose commands:

up

Brings up all services in docker-compose.yml

down

Brings down all services in docker-compose.yml

stop

Stops all services or a service specified

exec

Runs a command on running service

logs

Prints the logs for a service

Now that we know a few commands, let’s bring up the web service:

31

https://localhost:8080

PS docker-demo> docker-compose up ①
Creating network "docker-demo_default" with the default driver ②
Building web
Step 1/2 : FROM httpd:2.4.43
 ---> b2c2ab6dcf2e
Step 2/2 : COPY index.html /usr/local/apache2/htdocs/
 ---> 6ac4e496ced0
Successfully built 6ac4e496ced0
Successfully tagged docker-demo_web:latest
WARNING: Image for service web was built because it did not already exist. To rebuild
this image you must use `docker-compose build` or `docker-compose up --build`. ③
Creating docker-demo_web_1 ... done
Attaching to docker-demo_web_1
web_1 | AH00558: httpd: Could not reliably determine the server's fully qualified domain
name, using 172.18.0.2. Set the 'Serve
rName' directive globally to suppress this message
web_1 | AH00558: httpd: Could not reliably determine the server's fully qualified domain
name, using 172.18.0.2. Set the 'Serve
rName' directive globally to suppress this message
web_1 | [Sat May 09 17:05:42.377243 2020] [mpm_event:notice] [pid 1:tid 140538714080384]
AH00489: Apache/2.4.43 (Unix) configur
ed -- resuming normal operations
web_1 | [Sat May 09 17:05:42.377338 2020] [core:notice] [pid 1:tid 140538714080384]
AH00094: Command line: 'httpd -D FOREGROUND
'
web_1 | 172.18.0.1 - - [09/May/2020:17:05:57 +0000] "GET / HTTP/1.1" 304 - ④

① Remember this command brings up all the services in the docker-compose.yml file in the current
directory.

② Docker Compose also creates a network for your services to run in. This provides isolation for your
services and helps with service discovery.

③ This often trips up people the first time they use Docker Compose. If you make changes to a
Dockerfile you will have to rebuild the image, or specify --build to docker-compose up, otherwise you
won’t see your changes.

④ Docker Compose runs in the foreground by default and displays the aggregate log information from
all of the services running. Log messages are prefixed by the service name. This can be very useful
for debugging.

We can test that things are working by going to http://localhost:8080. When we are all done we can
close things down with by typing Ctrl+C in the terminal.

4.6. Resources
• Docker overview

32

http://localhost:8080
https://docs.docker.com/get-started/overview/

• Docker Quickstart

• Best practices for writing Dockerfiles

• Dockerfile reference

• Overview of Docker Compose

4.7. Questions
1. What is the difference between a VM and a container?

2. What is the difference between a Docker image and a Docker container?

3. How would you run a shell on an already running container?

4. What does the -d option do when passed to the docker run command? When may you want to use it?
When may you not want to use it?

5. What does Docker Compose do and how it is different from the docker command?

33

https://docs.docker.com/get-started/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/compose/

Chapter 5. Messaging

5.1. Purpose
Messaging allows multiple components to use a common medium to exchange information. The goal is
to create a system that is more extensible, resilient, and scalable. By using a messaging framework you
can establish the interfaces between components and worry less about idiosyncrasies of
communication.

One of the easiest ways to understand the advantages of a messaging layer is to view it as a bus
carrying information between components. While you may only have a few components now, what
happens if you want to expand?

Messaging

iOS_Client Android_Client MacOS_Client Linux_Client Windows_Client Web_Interface Point_of_Sale Back_End

It would be arduous to have to write unique code for eight components to facilitate communication. By
using a messaging framework, this is taken care of.

If the interfaces are well thought out, messaging frameworks can also take advantage of caching.
Examine the following scenario:

Front End

Front End

Messaging

Messaging

Back End

Back End

Database

Database

GET Picture USER 42

GET Picture USER 42

"SELECT Picture FROM Users WHERE id=42;"

1KB of Data

1KB of Data

1KB of Data

GET Picture USER 42

1KB of Data (cached)

The second time a GET Picture USER 42 request is received, Messaging already knows the answer and
can respond with a cached copy. A well-designed messaging framework will allow you to adjust cache
parameters to achieve significant performance gains without serving stale data. Cache invalidation is a

34

famously difficult problem, but at least with a messaging framework you are not trying to solve it by
yourself.

Messaging frameworks allow components to be built and profiled independent of other components.
Want to know how many requests a client is generating so you can better build a back end to support
it? Check the statistics of the messaging queues you are using. Want to be able to completely swap out a
component without any of the other components noticing? Use a messaging framework.

That’s not to say that all projects take advantage of a messaging layer. Often it’s viewed as "just another
thing to get in the way" or another possible bottleneck. Many projects attempt to shoe horn the
messaging framework in later on, a difficult feat. We will avoid that here by mandating that a
messaging framework must be used from the start.

5.2. Frameworks
The two most popular messaging frameworks are RabbitMQ and Kafka. We will briefly discuss each
platform, but it is important to note that we will be using RabbitMQ in this text. Milestones and
deliverables in the project will require things specific to RabbitMQ. All systems must function within
constraints and one of the constraints on the system we are going to design is that it must use
RabbitMQ.

RabbitMQ is built with Erlang and OTP, a system meant for solving the large-scale, distributed
problems that are prevalent in the telecom industry. It is hard to think of a platform more suited to the
task of messaging. RabbitMQ supports traditional messaging paradigms and uses a standard messaging
protocol: AMQP. This allows for application libraries in many different languages including Python,
Java, Ruby, PHP, C#, JavaScript, Go, Elixir, Objective-C, Swift, and Spring AMQP.

Kafka was built by the Apache project in Java. It uses the publish and subscribe model, the most
common messaging model. It includes a broker by default meaning it often requires less set up for
standard messaging scenarios. While it may not offer as much choice in exactly how messages are
handled it does support large data streams incredibly well.

5.3. RabbitMQ and Docker
The documentation for the official RabbitMQ Docker image is quite good and covers many of the topics
we will touch on in here in greater detail. Please refer to it for further explanation.

The stock RabbitMQ image uses different versions to specify if the management interface should be
enabled. You will probably want to use the web-based management interface at first to see what is
going on. To do so you will need to run a management version and you will also need to expose port
15672 on your container to your local machine.

RabbitMQ can also use a few different environment variables to store secrets:

35

https://martinfowler.com/bliki/TwoHardThings.html
https://www.rabbitmq.com/
https://kafka.apache.org/
https://www.erlang.org/
https://erlang.org/doc/design_principles/users_guide.html
https://www.amqp.org/
https://hub.docker.com/_/rabbitmq

RABBITMQ_DEFAULT_USER

By default, RabbitMQ will use the user name guest. Technically we should only be able access our
RabbitMQ container internally, but it is still a good practice to change this to something specific to
our project.

RABBITMQ_DEFAULT_PASS

By default, RabbitMQ will use the password guest. It would be a good idea to change this as well.

RABBITMQ_ERLANG_COOKIE

Erlang nodes use this for authentication. As far as we are concerned this will only become
important when we run multiple instances of a RabbitMQ container and they need to communicate
with each other.

Let’s start up a container running the management interface and take a look:

36

PS > docker run --env RABBITMQ_DEFAULT_USER=example --env RABBITMQ_DEFAULT_PASS=example
-p 15672:15672 rabbitmq:3.8.3-management①
Unable to find image 'rabbitmq:3.8.3-management' locally ②
3.8.3-management: Pulling from library/rabbitmq
23884877105a: Pull complete
bc38caa0f5b9: Pull complete
<snip>
2020-05-02 20:45:37.812 [info] <0.278.0>
 Starting RabbitMQ 3.8.3 on Erlang 22.3.3 ③
 Copyright (c) 2007-2020 Pivotal Software, Inc.
 Licensed under the MPL 1.1. Website: https://rabbitmq.com

 ## ## RabbitMQ 3.8.3
 ## ##
 ########## Copyright (c) 2007-2020 Pivotal Software, Inc.
 ###### ##
 ########## Licensed under the MPL 1.1. Website: https://rabbitmq.com

 Doc guides: https://rabbitmq.com/documentation.html
 Support: https://rabbitmq.com/contact.html
 Tutorials: https://rabbitmq.com/getstarted.html
 Monitoring: https://rabbitmq.com/monitoring.html

 Logs: <stdout>

 Config file(s): /etc/rabbitmq/rabbitmq.conf

 Starting broker...2020-05-02 20:45:37.814 [info] <0.278.0>
 node : rabbit@53c4ff237fcd
 home dir : /var/lib/rabbitmq
 config file(s) : /etc/rabbitmq/rabbitmq.conf
 cookie hash : mCbpvRz5+sUotXe8uIyiKQ== ④
 log(s) : <stdout>
 database dir : /var/lib/rabbitmq/mnesia/rabbit@53c4ff237fcd
2020-05-02 20:45:37.827 [info] <0.278.0> Running boot step pre_boot defined by app rabbit
<snip> ⑤
2020-05-02 20:45:38.683 [info] <0.9.0> Server startup complete; 3 plugins started.
 * rabbitmq_management
 * rabbitmq_management_agent
 * rabbitmq_web_dispatch
 completed with 3 plugins. ⑥

① Notice how we specify a new user and password, forward a port from our local machine, and
request the management image.

② Since we don’t have the image, it will be pulled from Docker Hub automatically.

③ RabbitMQ tells you what version of Erlang it is using. Clustering requires nodes to run similar

37

versions, so this can be an important bit of information.

④ If you don’t specify an Erlang cookie, one will be chose randomly. This is it, base64 encoded.

⑤ There are a lot of startup messages and it can take some time for RabbitMQ to start. I’ve cut them
out of the output here.

⑥ Once you see this, you’re node is up and running.

Now, we should be able to visit http://localhost:15672 and see the management interface running.
Using our user name / password of example / example, we can sign in. Take a moment to look around
the interface. Queues are created automatically by applications so you won’t need to configure
anything, but once you have components up and using RabbitMQ you can look here to see the queues
they’ve created and to make sure that everything is working. When you are all done type Ctrl+C to
detach from the docker run command and use docker stop to stop the container:

PS > docker ps ①
CONTAINER ID IMAGE COMMAND CREATED
53c4ff237fcd rabbitmq:3.8.3-management "docker-entrypoint.s…" 12 minutes ago
PS > docker stop 53c4ff237fcd ②
53c4ff237fcd
PS > docker ps ③
CONTAINER ID IMAGE COMMAND CREATED STATUS

① List all running containers

② Stop rabbitmq by ID

③ Double-check to make sure nothing is running

5.4. Resources
• AMQP

• RabbitMQ Getting Started

• RabbitMQ Docker Hub Image

• Docker Networking Overview

5.5. Questions
1. Why would a project choose to use a messaging framework?

2. What is caching and what are its benefits?

3. What is AMQP?

38

https://en.wikipedia.org/wiki/Base64
http://localhost:15672
https://www.amqp.org/
https://www.rabbitmq.com/getstarted.html
https://hub.docker.com/_/rabbitmq
https://docs.docker.com/network/

4. How can you specify that you want to enable the management interface in the official RabbitMQ
Docker image?

5. Why should you change the RabbitMQ default password and how do you change it?

6. How would you start up a RabbitMQ instance in Docker Compose, with the same options we used in
the example?

39

Chapter 6. Database

6.1. Introduction
Databases are used to store and organize information in a manner consistent with the relationships in
that data. This allows for more natural queries to retrieve information. For example, if you typically
look up a car part by its ID, it would make sense to have a table of part IDs with names and
descriptions. A car can be thought of as a collection of parts, therefore you could have a car table and a
car_part table that relates a car ID to multiple part IDs:

car

car_id: INTEGER

make: VARCHAR(64)
model: VARCHAR(256)
year: DECIMAL(4, 0)

car_part

car_id: INTEGER
part_id: INTEGER

part

part_id: INTEGER

name: VARCHAR(256)
description: VARCHAR(1024)
manufacturers_partnum: VARCHAR(256)
price: DECIMAL(10, 2)

Figure 6. Tables in a Relational Database

40

Entity Relationship (ER) Diagrams

ER diagrams in this text are based on the Information Entineering notation as supported by
PlantUML:

• leading dots are used to represent mandatory (NOT NULL) attributes

• primary attributes are listed immediately under the entity name

• other attributes are listed following the primary attributes

• types (in SQL syntax) follow the : on the attribute line

Lastly, crows feet are used to represent the arity of relations:

One

One

One

Many

Many

Many

Relational databases maintain the integrity of their relations at the cost of being rigid and requiring
more setup. In our system we will employ a relational database for multiple reasons:

• Relational databases are the most popular databases in use today.

• SQL is the most marketable computer language in the world and with the growth of data science,
this is not changing any time soon.

• Relational databases present unique challenges with regard to replication. This will provide a good
learning opportunity later in the text.

A database will be used for the persistent storage of information. In a container environment, it is very
important to make the distinction between ephemeral and persistent storage. A container may have lots
of information on its filesystem but if that container is stopped, that information is lost. All persistent
information, that is information that needs to survive the container lifecycle, should be stored on a
database which utilizes an external volume. Having persistent storage needs makes a container
stateful.

41

https://plantuml.com/ie-diagram

Persistent

Volume

Ephemeral

Container

Database Files
RDBMS

Figure 7. Containerized Database using a Volume

As can be seen above, the volume exists outside of the container running the relational database
management system (RDBMS). The volume holds the database files the RDBMS uses to store
information and if the container is stopped or removed, the files remain.

6.2. Popular RDMS
For our project we can use any one of the following RDMS:

MySQL

MySQL is an RDMS that has grown out of the practical need for a relational database in Linux. It
quite literally puts the 'M' in the venerable LAMP stack (Linux Apache MySQL PHP). It has native
support for replication and many other practical features that make it an excellent choice for any
project.

MariaDB

MariaDB is a RDMS that aims to be be feature and syntax compliant with MySQL. It was originally
forked from MySQL and developed as a response to Oracle’s purchase of Sun Microsystems, who
owned MySQL. It as actively developed and widely popular.

PostgreSQL

PostgreSQL is an object relational database management system that aims to be more SQL
compliant than MySQL. Where MySQL was borne out of workplace need, PostgreSQL has an
academic lineage. It is enterprise ready, massively scalable (although it relies on several other tools
for replication), and has fewer licensing issues than MySQL. PostgreSQL is seeing growing adoption.

6.3. Example
In this example we will start a MySQL container, initialize it with the SQL file shown below, and
connect to it with the mysql client. The setup.sql file that initializes our database can be found in the
db-demo directory. It sets up a simple car part database for our example:

db-demo/setup.sql

CREATE TABLE car (
 car_id INTEGER,
 make VARCHAR(64) NOT NULL,

42

https://www.mysql.com/
https://mariadb.org/
https://www.postgresql.org/
https://dev.mysql.com/doc/refman/8.0/en/mysql.html

 model VARCHAR(256) NOT NULL,
 year DECIMAL(4, 0) NOT NULL,
 PRIMARY KEY(car_id)
);

CREATE TABLE part (
 part_id INTEGER,
 name VARCHAR(256) NOT NULL,
 description VARCHAR(1024),
 manufacturers_partnum VARCHAR(256),
 price DECIMAL(10, 2),
 PRIMARY KEY(part_id)
);

CREATE TABLE car_part (
 car_id INTEGER,
 part_id INTEGER,
 FOREIGN KEY(car_id) REFERENCES car(car_id),
 FOREIGN KEY(part_id) REFERENCES part(part_id),
 PRIMARY KEY(car_id, part_id)
);

INSERT INTO car VALUES (0, 'HONDA', 'CIVIC', 2005);
INSERT INTO car VALUES (1, 'TOYOTA', 'COROLLA', 2010);
INSERT INTO car VALUES (2, 'FORD', 'F-150', 2009);
INSERT INTO part
VALUES (0, 'Brake Pads', 'Duralast ceramic brake pads', 'MKD621', 19.99);
INSERT INTO part
VALUES (1, 'Alternator', 'Duralast gold new alternator', 'DLG12308', 175.99);
INSERT INTO part
VALUES (2, 'Radiator Cap', 'Duralast Radiator Cap', '7036', 10.99);
INSERT INTO part
VALUES (3, 'Alternator', 'Duralast gold new alternator', 'DLG5540-17-2',
 256.99);
INSERT INTO part
VALUES (4, 'Rear Leaf Spring', '1500lbs capacity', '43-1781', 129.99);

INSERT INTO car_part VALUES (0, 0);
INSERT INTO car_part VALUES (0, 1);
INSERT INTO car_part VALUES (0, 2);
INSERT INTO car_part VALUES (1, 2);
INSERT INTO car_part VALUES (1, 3);
INSERT INTO car_part VALUES (2, 2);
INSERT INTO car_part VALUES (2, 4);

Be sure to check the documentation for the Docker image you are using to see how to initialize a
database and to learn about which environment variables you will need to use. In this case, we will

43

https://hub.docker.com/_/mysql

bind mount the current directory to /docker-entrypoint-initdb.d/ on the container so our setup.sql
file is run the first time the container is started. We will also use environment variables to set up a
database, username, and password.

Now let’s create a volume, and run our container:

PS db-demo> docker volume create db-data ①
db-data
PS db-demo> docker volume ls ②
DRIVER VOLUME NAME
local db-data
PS db-demo> docker run -d --mount "type=volume,src=db-data,dst=/var/lib/mysql" --mount
"type=bind,src=$(pwd),dst=/docker-entrypoint-initdb.d" -e MYSQL_ROOT_PASSWORD=changeme -e
MYSQL_DATABASE=cars -e MYSQL_USER=car_user -e MYSQL_PASSWORD=changeme mysql:8.0.20 ③
32193c2a74a16f73c44dc186a9b368fafd4b0d1fadc000c58ee8e3357fc24a6e
PS db-demo> docker ps ④
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
32193c2a74a1 mysql:8.0.20 "docker-entrypoint.s…" 12 seconds ago Up
12 seconds 3306/tcp, 33060/tcp youthful_euler
PS db-demo> docker logs 32193c2a74a1 ⑤
2020-05-11 17:04:07+00:00 [Note] [Entrypoint]: Entrypoint script for MySQL Server 8.0.20-
1debian10 started.
2020-05-11 17:04:07+00:00 [Note] [Entrypoint]: Switching to dedicated user 'mysql'
2020-05-11 17:04:07+00:00 [Note] [Entrypoint]: Entrypoint script for MySQL Server 8.0.20-
1debian10 started.
2020-05-11 17:04:07+00:00 [Note] [Entrypoint]: Initializing database files
<snip>
2020-05-11 17:04:17+00:00 [Note] [Entrypoint]: Creating database cars
2020-05-11 17:04:17+00:00 [Note] [Entrypoint]: Creating user car_user
2020-05-11 17:04:17+00:00 [Note] [Entrypoint]: Giving user car_user access to schema cars

2020-05-11 17:04:17+00:00 [Note] [Entrypoint]: /usr/local/bin/docker-entrypoint.sh:
running /docker-entrypoint-initdb.d/setup.sql ⑥

2020-05-11 17:04:18+00:00 [Note] [Entrypoint]: Stopping temporary server
<snip>
2020-05-11T17:04:21.787429Z 0 [System] [MY-010931] [Server] /usr/sbin/mysqld: ready for
connections. Version: '8.0.20' socket: '/var/run/mysqld/mysqld.sock' port: 3306 MySQL
Community Server - GPL.

① We create a volume named db-data

② and now we can see it listed in the available volumes.

③ This lengthy command translates to:

44

• run: mysql version 8.0.20

• -d: in the background

• --mount "type=volume,src=db-data,dst=/var/lib/mysql": mount the volume named db-data to
/var/lib/mysql on the container

• --mount "type=bind,src=$(pwd),dst=/docker-entrypoint-initdb.d": mount the current directory,
we have to use pwd here because it wants an absolute path, to /docker-entrypoint-initdb.d on
the container. This is a bind mount which is a quick linkage between a directory on the host and
a directory on the container. Bind mounts may not support all of the features you need, but for
our purposes it works well here. Our current directory has the setup.sql file that we use to
initialize our database.

• -e MYSQL_ROOT_PASSWORD=changeme: use an environment variable to set the root password for
mysql access

• -e MYSQL_DATABASE=cars: use an environment variable to set the database we initialize

• -e MYSQL_USER=car_user: use an environment variable to create a new user that can access the
database we set up

• -e MYSQL_PASSWORD=changeme: use an environment variable to set a password for the user we
created above

④ Check to see that our container is running and get the ID

⑤ Examine the log output for our container (by ID)

⑥ We can see here in the output, that our setup.sql script was run

With our container running in the background, we can now connect and make sure that our database
was initialized. To avoid having to download a mysql client on the host, we will exec the mysql
command on the running container:

PS db-demo> docker exec -it 32193c2a74a1 mysql -u car_user -p cars
Enter password: ①
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 12
Server version: 8.0.20 MySQL Community Server - GPL

Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

45

mysql> show tables; ②
+----------------+
| Tables_in_cars |
+----------------+
| car |
| car_part |
| part |
+----------------+
3 rows in set (0.00 sec)

mysql> select * from car; ③
+--------+--------+---------+------+
| car_id | make | model | year |
+--------+--------+---------+------+
0	HONDA	CIVIC	2005
1	TOYOTA	COROLLA	2010
2	FORD	F-150	2009
+--------+--------+---------+------+
3 rows in set (0.00 sec)

mysql> SELECT name, description, price
 -> FROM car, car_part, part
 -> WHERE car.car_id=car_part.car_id AND
 -> part.part_id=car_part.part_id AND
 -> car.make='FORD' AND car.model='F-150' AND car.year='2009'; ④
+------------------+-----------------------+--------+
| name | description | price |
+------------------+-----------------------+--------+
| Radiator Cap | Duralast Radiator Cap | 10.99 |
| Rear Leaf Spring | 1500lbs capacity | 129.99 |
+------------------+-----------------------+--------+
2 rows in set (0.00 sec)

① recall the we set the password to changeme via an environment variable

② check that all the tables were created

③ check that the data was inserted into the tables

④ perform a sample query looking up all parts for a 2009 Ford F-150


docker volume prune is a useful command for getting rid of volumes not in use by any
container. Just be sure that you don’t need the data on those volumes anymore!

6.4. Resources
• MySQL Docker Image

46

https://hub.docker.com/_/mysql

• MariaDB Docker Image

• PostgreSQL Docker Image

• Creating Users / Granting Privileges in MySQL/MariaDB

• Volumes in Docker

• MySQL Connector Python Module

• Psycopg Python Module

6.5. Questions
1. What is the difference between persistent and ephemeral data?

2. What is a Docker volume and why should a containerized RDMS use it?

3. Pick one RDMS from the list above. What are the advantages of this particular RDMS over the others?

4. How do you set an environment variable via the docker command?

5. How do you initialize a database in the default MySQL docker image?

6. The command we used to run our database container was very complex and it would be quite tedious
to type it out over and over. How would you run the example in Docker Compose instead?

47

https://hub.docker.com/_/mariadb
https://hub.docker.com/_/postgres
http://www.daniloaz.com/en/how-to-create-a-user-in-mysql-mariadb-and-grant-permissions-on-a-specific-database/
https://docs.docker.com/storage/volumes/
https://dev.mysql.com/doc/connector-python/en/
https://www.psycopg.org/

Chapter 7. Front End

7.1. Introduction
The purpose of a front end is to interact with the user. Web applications are applications that use a
web server to present their front end. In our case, we will build a web application that interacts with
the user via a web server, but uses Messaging for any other communication:

User

Front End Messaging
web interface messaging library

To provide the web interface, most applications use some sort of web framework. The decision of
which web framework to use depends largely on the language(s) the Front End developer is
comfortable with and what features they would like. The most common web frameworks for various
languages are shown below. You are encouraged to research them and determine what would best fit
your needs.

Python

• Flask

• Django

• Bottle

JavaScript

• Plain NodeJS

• Express

• Koa

PHP

Largely employed as a templating language, PHP is still popular and can be used in conjunction
with a web server as a framework.

To communicate with Messaging a library is used. Ultimately this will allow for a more scalable
application. The decision of which library to use is mostly dependant on what language Front End is

48

https://www.python.org/
https://flask.palletsprojects.com/en/1.1.x/
https://www.djangoproject.com/
https://bottlepy.org/docs/dev/
https://en.wikipedia.org/wiki/JavaScript
https://nodejs.org/en/
https://expressjs.com/
https://koajs.com/
https://www.php.net/

using. Fortunately RabbitMQ has extensive documentation on using the most popular messaging
libraries for various languages:

Python pika

JavaScript amqp

PHP php-amqplib

A Front End developer should be comfortable with HTML for the creation of views that the user will
see and they should be mindful that at some point their code will need to be run on a production
server. There are many options for production servers depending on what language Front End is
using:

Python Frameworks use WSGI for which there are many options.

JavaScript Frameworks make use of Node and typically use managed node processes.

PHP Usually served using CGI or a module for a standard web server.

7.2. Example
As an example, we are going to set up a PHP application that presents a web interface and
communicates with Messaging. We will be basing our code off of the RabbitMQ RPC tutorial for PHP
and using the official PHP Docker Hub image.

The first problem we have to solve is how to include php-amqplib with our application. To do this, we
will follow php-amqplib’s recommendation and use composer. No matter what language you are using
for Front End it is very important that you learn to use its package management system. To start, we
create a composer.json file that lists what version of PHP we wish to build for, what PHP extensions are
needed, and what our application’s requirements are:

49

https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://www.rabbitmq.com/tutorials/tutorial-one-javascript.html
https://www.rabbitmq.com/tutorials/tutorial-one-php.html
https://www.fullstackpython.com/wsgi-servers.html
https://deploybot.com/blog/guest-post-how-to-set-up-and-deploy-nodejs-express-application-for-production
https://www.rabbitmq.com/tutorials/tutorial-six-php.html
https://hub.docker.com/_/php
https://github.com/php-amqplib/php-amqplib
https://getcomposer.org/

front-end-demo/web/composer.json

{
 "config": {
 "platform": {
 "php": "7.4.5",
 "ext-bcmath": "1",
 "ext-sockets": "1"
 }
 },
 "require": {
 "php-amqplib/php-amqplib": ">=2.9.0"
 }
}


The PHP extensions bcmath and sockets are both required by php-emqplib. We request
them in the composer file, but will also install them in the Dockerfile

Now we need to use composer to download and install packages in the vendor directory of our
application. Fortunately the official composer Docker image makes this easy. We can run composer on
the image and store the output through careful use of a bind mount:

PS front-end-demo\app> docker run --rm -it -v "$(pwd):/app" composer install ①
Loading composer repositories with package information
Updating dependencies (including require-dev)
Package operations: 2 installs, 0 updates, 0 removals
 - Installing phpseclib/phpseclib (2.0.27): Downloading (100%)
 - Installing php-amqplib/php-amqplib (v2.11.2): Downloading (100%)
phpseclib/phpseclib suggests installing ext-libsodium (SSH2/SFTP can make use of some
algorithms provided by the libsodium-php extension.)
phpseclib/phpseclib suggests installing ext-mcrypt (Install the Mcrypt extension in order
to speed up a few other cryptographic operations.)
phpseclib/phpseclib suggests installing ext-gmp (Install the GMP (GNU Multiple Precision)
extension in order to speed up arbitrary precision integer arithmetic operations.)
Writing lock file
Generating autoload files
1 package you are using is looking for funding.
Use the `composer fund` command to find out more!

① The --rm option removes the container after it finishes. Notice how we bind link the app directory
front-end-demo/app (which we are in) with the /app directory on the container. This way all the files
that composer creates are stored locally in our app directory.

We will also need a PHP image with some extra PHP extensions enabled and our application code in
the /var/www/html directory. To do this, we use a simple Dockerfile:

50

front-end-demo/Dockerfile

FROM php:7.4.5-apache
RUN docker-php-ext-install bcmath sockets
COPY app/ /var/www/html/

Since we are using a container for Messaging as well as one for Front End, it would be easiest to use
Docker Compose to bring them both up at the same time. For that, we need to create a docker-
compose.yml file:

front-end-demo/docker-compose.yml

version: "3"

services:
 front-end:
 build: .
 ports:
 - "8080:80"
 environment:
 - RABBITMQ_USER=${USER}
 - RABBITMQ_PASS=${PASS}
 # uncomment for development
 volumes:
 - "./app:/var/www/html"
 messaging:
 image: rabbitmq
 environment:
 - RABBITMQ_DEFAULT_USER=${USER}
 - RABBITMQ_DEFAULT_PASS=${PASS}

Notice how even though the Dockerfile copies the app files to /var/www/html the docker-compose.yml still
creates a bind mount over top of them. This allows us to actively develop the PHP code while the
container is running. When we are done developing we can comment out the bind mount and the
container will use the copied files when the image is rebuilt and run.

You may also notice that docker-compose.yml uses some environment variables. It sets them in the
container, which we have seen before, and it uses the USER and PASS variables from its own
environment. These variables are set in the .env file, which Docker Compose reads by default:

front-end-demo/.env

USER='front-end-demo'
PASS='changeme'

Now that our environment is set up. We can develop our PHP application. We start by augmenting the

51

example RpcClient class to use environment variables for the username and password and messaging
for the hostname. We will also add an send method that sends JSON data.


Within the Docker Compose environment, service names will resolve to the IP
addresses of the container within that service. This makes service discovery much
easier.


Give some thought to what exchange format you want to use. Try to use something
that both Front End and Back End can support. JSON is currently the most common
choice.

front-end-demo/app/rpc_client.php

<?php

require_once __DIR__ . '/vendor/autoload.php';
use PhpAmqpLib\Connection\AMQPStreamConnection;
use PhpAmqpLib\Message\AMQPMessage;

class RpcClient
{
 private $connection;
 private $channel;
 private $callback_queue;
 private $response;
 private $corr_id;

 public $timeout = 10;
 public $hostname = 'messaging';

 public function __construct()
 {
 $user = $_ENV['MSG_USER'];
 $pass = $_ENV['MSG_PASS'];

 $this->connection = new AMQPStreamConnection(
 $this->hostname,
 5672,
 $user,
 $pass
);
 $this->channel = $this->connection->channel();
 list($this->callback_queue, ,) = $this->channel->queue_declare(
 "",
 false,
 false,
 true,

52

https://www.json.org/json-en.html

 false
);
 $this->channel->basic_consume(
 $this->callback_queue,
 '',
 false,
 true,
 false,
 false,
 array(
 $this,
 'onResponse'
)
);
 }

 public function onResponse($rep)
 {
 if ($rep->get('correlation_id') == $this->corr_id) {
 $this->response = json_decode($rep->body);
 }
 }

 public function send($action, $data)
 {
 $this->response = null;
 $this->corr_id = uniqid();
 $json = json_encode(array('action'=>$action, 'data'=>$data));

 $msg = new AMQPMessage(
 $json,
 array(
 'correlation_id' => $this->corr_id,
 'reply_to' => $this->callback_queue
)
);
 $this->channel->basic_publish($msg, '', 'requests');
 while (!$this->response) {
 $this->channel->wait(null, false, $this->timeout);
 }
 return $this->response;
 }
}

To test out our RpcClient class, let’s create a action.php endpoint that takes a POST parameters of action
and data and calls the send procedure with those parameters:

53

front-end-demo/app/action.php

<?php

require('rpc_client.php');

$action = $_POST['action'];
$data = $_POST['data'];

echo "Establishing connection to messaging service... ";
$rpc = new RpcClient();
echo "[SUCCESS]
";

echo "Sending {action: \"$action\", data: \"$data\"} to the send procedure and waiting
for response...";
$response = $rpc->send($action, $data);
echo "[SUCCESS]
";
echo "Response:
";
echo "<pre>";
print_r($response);
echo "</pre>";

We’ll also need a basic form to test it out:

front-end-demo/app/action.html

<html>
 <form action="/action.php" method="post">
 <label for="action">Action:</label>
 <input type="text" name="action">
 <label for="data">Data:</label>
 <input type="text" name="data">
 <input type="submit" value="Submit">
 </form>
</html>



Try to avoid using GET parameters for these kinds of endpoints. It makes it too easy
for a third party to give a user (presumably authenticated) an evil link that they can
just click on and take an action, ie: http://localhost:8080/action.php?
action=DO+BAD+THINGS.

Now with these components we should be able to run docker-compose up in our front-end-demo
directory, watch the services start up, and then open up http://localhost:8080/action.html to test the
functionality:

54

http://localhost:8080/action.php?action=DO+BAD+THINGS
http://localhost:8080/action.php?action=DO+BAD+THINGS
http://localhost:8080/action.html

PS front-end-demo> docker-compose up
Starting front-end-demo_web_1 ... done
Starting front-end-demo_messaging_1 ... done
Attaching to front-end-demo_messaging_1, front-end-demo_web_1
web_1 | AH00558: apache2: Could not reliably determine the server's fully
qualified domain name, using 172.19.0.3. Set the 'ServerName' directive globally to
suppress this message
web_1 | AH00558: apache2: Could not reliably determine the server's fully
qualified domain name, using 172.19.0.3. Set the 'ServerName' directive globally to
suppress this message
web_1 | [Thu May 14 01:24:32.120352 2020] [mpm_prefork:notice] [pid 1] AH00163:
Apache/2.4.38 (Debian) PHP/7.4.5 configured -- resuming normal operations
web_1 | [Thu May 14 01:24:32.120940 2020] [core:notice] [pid 1] AH00094: Command
line: 'apache2 -D FOREGROUND'
messaging_1 | 2020-05-14 01:24:37.668 [info] <0.9.0> Feature flags: list of feature
flags found:
<snip>
messaging_1 | 2020-05-14 01:24:38.252 [info] <0.9.0> Server startup complete; 0 plugins
started.
messaging_1 | completed with 0 plugins.
web_1 | 172.19.0.1 - - [14/May/2020:01:36:09 +0000] "GET /action.html HTTP/1.1"
200 484 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:76.0) Gecko/20100101
Firefox/76.0" ①
web_1 | 172.19.0.1 - - [14/May/2020:01:36:09 +0000] "GET /favicon.ico HTTP/1.1"
404 489 "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:76.0) Gecko/20100101
Firefox/76.0"
messaging_1 | 2020-05-14 01:36:13.729 [info] <0.1183.0> accepting AMQP connection
<0.1183.0> (172.19.0.3:60104 -> 172.19.0.2:5672) ②
messaging_1 | 2020-05-14 01:36:13.731 [info] <0.1183.0> connection <0.1183.0>
(172.19.0.3:60104 -> 172.19.0.2:5672): user ''front-end-demo'' authenticated and granted
access to vhost '/'
messaging_1 | 2020-05-14 01:36:23.756 [warning] <0.1183.0> closing AMQP connection
<0.1183.0> (172.19.0.3:60104 -> 172.19.0.2:5672, vhost: '/', user: ''front-end-demo''):
messaging_1 | client unexpectedly closed TCP connection ③
web_1 | 172.19.0.1 - - [14/May/2020:01:36:13 +0000] "POST /action.php HTTP/1.1"
200 718 "http://localhost:8080/echo.html" "Mozilla/5.0 (Windows NT 10.0; Win64; x64;
rv:76.0) Gecko/20100101 Firefox/76.0" ④

① The front-end service will report the pages being served as you are testing it.

② The messaging service will show you the PHP code connecting.

③ At some point we should make RpcClient shut down gracefully.

④ Because of how logging is handled, you may not see log messages in the order you expect.

If you test it, this example used the ECHO action and the text "This is a test", you should see the
following output after 10 seconds:

55

Establishing connection to messaging service... [SUCCESS] ①
Sending {action: "ECHO", data: "This is a test"} to the send procedure and waiting for
response...[SUCCESS]
Fatal error: Uncaught PhpAmqpLib\Exception\AMQPTimeoutException: The connection timed out
after 10 sec while awaiting incoming data in /var/www/html/vendor/php-amqplib/php-
amqplib/PhpAmqpLib/Wire/AMQPReader.php:141 Stack trace: #0 /var/www/html/vendor/php-
amqplib/php-amqplib/PhpAmqpLib/Wire/AMQPReader.php(163): PhpAmqpLib\Wire\AMQPReader-
>wait() #1 /var/www/html/vendor/php-amqplib/php-
amqplib/PhpAmqpLib/Wire/AMQPReader.php(106): PhpAmqpLib\Wire\AMQPReader->rawread(7) #2
/var/www/html/vendor/php-amqplib/php-
amqplib/PhpAmqpLib/Connection/AbstractConnection.php(566): PhpAmqpLib\Wire\AMQPReader-
>read(7) #3 /var/www/html/vendor/php-amqplib/php-
amqplib/PhpAmqpLib/Connection/AbstractConnection.php(623):
PhpAmqpLib\Connection\AbstractConnection->wait_frame(10) #4 /var/www/html/vendor/php-
amqplib/php-amqplib/PhpAmqpLib/Channel/AbstractChannel.php(234):
PhpAmqpLib\Connection\AbstractConnection->wait_channel(1, 10) #5
/var/www/html/vendor/php-amqplib/php-amqplib/PhpAmqpLib/Channel/AbstractChannel.php(352):
PhpAmqpLib\Channel\Abstrac in /var/www/html/vendor/php-amqplib/php-
amqplib/PhpAmqpLib/Wire/AMQPReader.php on line 141 ②

① We can connect to messaging, so we know that works

② But there is nothing listening and responding to our RPC request… yet.

7.3. Resources

7.3.1. Python

• Dockerize Your Flask Application

• Flask Web Framework

• Python: RabbitMQ Tutorial 6 - Remote Procedure Call

7.3.2. JavaScript

• node - Docker Hub

• Node: RabbitMQ Tutorial 6 - Remote Procedure Call

7.3.3. PHP

• php - Docker Hub

• Easy installation of PHP extensions in official PHP Docker images

• composer - Docker Hub

• PHP: RabbitMQ Tutorial 6 - Remote Procedure Call

56

https://runnable.com/docker/python/dockerize-your-flask-application
https://www.palletsprojects.com/p/flask/
https://www.rabbitmq.com/tutorials/tutorial-six-python.html
https://hub.docker.com/_/node/
https://www.rabbitmq.com/tutorials/tutorial-six-node.html
https://hub.docker.com/_/php
https://github.com/mlocati/docker-php-extension-installer
https://hub.docker.com/_/composer
https://www.rabbitmq.com/tutorials/tutorial-six-php.html

7.4. Questions
1. Why are we using a messaging layer for communications with Front End?

2. What does RPC stand for and what is it?

3. What are the most important criteria when picking a language to develop a front end in?

4. Describe the most common package management option for one of the following environments:
Python, PHP, or JavaScript.

5. How are environment variables used in Docker Compose and what kinds of things can they be used
for?

57

Chapter 8. Back End

8.1. Introduction
Back End is responsible for reading messages from Front End, storing things in Database, and
acquiring any other data needed. It has no user-facing component, which spares us the trouble of
having to run another web server. Everything can basically be done with a single script.

8.2. Example
For this example we will be implementing a script in JavaScript that reads and replies to messages via
Messaging, reads and writes from / to Database, and performs some web scraping. JavaScript is being
used in contrast to our previous Front End coding in PHP to highlight one of the benefits of having a
Messaging component: we can use different programming languages but still share a common
interface. This code is based off of the RabbitMQ Javascript RPC Tutorial.

As stated in Front End, one of the most important parts of being able to work with a programming
language is knowing its how it handles package mangement. For node (server-side Javascript), that’s
the Node Package Manager (NPM). NPM utilizes a package.json file that tells it what dependencies to
install and how to run the application:

back-end-demo/app/package.json

{
 "name": "back-end",
 "version": "1.0.0",
 "description": "Example back end for Systems Integration",
 "main": "server.js",
 "start": "server.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Ryan Tolboom",
 "license": "ISC",
 "dependencies": {
 "amqplib": "^0.5.6",
 "mariadb": "^2.3.1"
 }
}

58

https://www.rabbitmq.com/tutorials/tutorial-six-javascript.html
https://www.npmjs.com/

As you can see, we will be using amqplib to connect to Messaging and mariadb to connect to
Database.

It will also make our lives simpler if we create a custom Docker image that uses npm to install the
packages we need before our app is run. We will base our’s off of the official node image:

back-end-demo/Dockerfile

FROM node:12.16.2
COPY ./app/ /home/node/app
WORKDIR /home/node/app
RUN npm install
CMD sh -c 'sleep 10; npm start'


If Back End comes up before Messaging it will be unable to connect. This can be
handled in the code for the component, via a separate script, or simply by delaying the
start of the component as shown on the CMD line above.

Finally, we will need a docker-compose.yml that brings up Messaging, Database, Front End, and Back
End, since Back End is the only component that actually uses all three. You’ll notice we try not to
repeat ourselves by using images that have already been created in the other demos. As we did
previously, we will be using environment variables to store some configuration data. These variables
can be found in .env.

back-end-demo/.env

MSG_USER=back-end-demo
MSG_PASS=changeme
DB_ROOT_PASS=changemetoo
DB_USER=car_user
DB_PASS=changemethree
DB_DATABASE=cars

59

https://hub.docker.com/_/node/
https://docs.docker.com/compose/startup-order/

back-end-demo/docker-compose.yml

version: "3"

services:
 front-end:
 build: ../front-end-demo
 ports:
 - "8080:80"
 environment:
 - MSG_USER=${MSG_USER}
 - MSG_PASS=${MSG_PASS}
 messaging:
 image: rabbitmq:3.8.3
 environment:
 - RABBITMQ_DEFAULT_USER=${MSG_USER}
 - RABBITMQ_DEFAULT_PASS=${MSG_PASS}
 db:
 image: mariadb:10.5.3
 environment:
 - MYSQL_USER=${DB_USER}
 - MYSQL_PASSWORD=${DB_PASS}
 - MYSQL_ROOT_PASSWORD=${DB_ROOT_PASS}
 - MYSQL_DATABASE=${DB_DATABASE}
 volumes:
 - "../db-demo:/docker-entrypoint-initdb.d"
 back-end:
 build: .
 environment:
 - NODE_ENV=development
 - MSG_USER=${MSG_USER}
 - MSG_PASS=${MSG_PASS}
 - DB_USER=${DB_USER}
 - DB_PASS=${DB_PASS}
 - DB_DATABASE=${DB_DATABASE}


We use different (albiet bad) passwords for different services. Even though no one
outside our Docker network should be able to access these services this is still a good
idea.

Our Back End script is a basic dispatcher that listens for commands in the Messaging requests queue,
performs actions, and responds via each message’s exclusive reply-to queue:

back-end-demo/app/server.js

#!/usr/bin/env node

60

const https = require('https')

// Messaging configuration
const messaging_host = 'messaging';
const messaging_user = process.env.MSG_USER;
const messaging_pass = process.env.MSG_PASS;
const queue = 'requests';
const messaging_url = `amqp://${messaging_user}:${messaging_pass}@${messaging_host}`;
const amqp = require('amqplib/callback_api');

// Database configuration
const db_host = 'db';
const db_user = process.env.DB_USER;
const db_pass = process.env.DB_PASS;
const db_database = process.env.DB_DATABASE;
const mariadb = require('mariadb/callback');
const db_pool = mariadb.createPool({host: db_host, user: db_user,
 password: db_pass, database: db_database});

function send_response(channel, msg, response) {
 channel.sendToQueue(msg.properties.replyTo, Buffer.from(JSON.stringify(response)), {
 correlationId: msg.properties.correlationId
 });
 channel.ack(msg);
}

amqp.connect(messaging_url, function(error0, connection) {
 if (error0) {
 throw error0;
 }
 connection.createChannel(function(error1, channel) {
 if (error1) {
 throw error1;
 }
 channel.assertQueue(queue, {
 durable: false
 });
 channel.prefetch(1);
 console.log('Listening for requests...');
 channel.consume(queue, function reply(msg) {
 console.log(`Received: ${msg.content}`);
 var received_json = JSON.parse(msg.content);
 var action = received_json['action'];
 switch(action) {
 case 'ECHO':
 data = received_json['data'];
 console.log(`Echoing ${data}`);

61

 send_response(channel, msg, {'status': 'OK', 'data': data});
 break;
 case 'CARS':
 console.log('Returning a list of cars from the database');
 db_pool.getConnection((err, conn) => {
 if (err) {
 send_response(channel, msg, {'status': 'ERROR',
 'message': `Unable to connect to database: ${err}`});
 } else {
 conn.query("SELECT * FROM car", (err, rows) => {
 if (err) {
 send_response(channel, msg, {'status': 'ERROR',
 'message': `Unable to execute query: ${err}`});
 } else {
 send_response(channel, msg, {'status': 'OK', 'data': rows});
 }
 });
 conn.end();
 }
 });
 break;
 case 'SCRAPE':
 var date = received_json['data'];
 console.log(`Returning a list of events from NJ.com for ${date}`);
 https.get(
 'https://www.nj.com/web/gateway.php?' +
 'affil=nj&site=default&hidemap=1&tpl=v3_regular_event_grid&' +
 `date=${date}`,
 (res) => {
 res.setEncoding('utf8');
 res.on('data', (body) => {
 var json_data = JSON.parse(body);
 send_response(channel, msg, json_data);
 });
 res.on('error', (error) => {
 send_response(channel, msg, error);
 });
 });
 break;
 default:
 console.log('Unknown action');
 send_response(channel, msg, {'status': 'ERROR', 'message': 'Unknown action'});
 break;
 }
 });
 });
});

62



You almost certainly want to cache replies that are network or computationally
intensive. The SCRAPE action is a good example of something that could benefit from
caching. Do you really need to reach out to NJ.com to get the daily events every time?
Perhaps they’re only updated every 24 hours.


Web scraping is notoriously difficult to keep up with. What happens if NJ.com changes
their endpoints? What happens if they detect excessive traffic and decide to throttle
your connections?

As you can see the three actions it current supports are:

ECHO reply with whatever data was sent

CARS get list of of cars from our database

SCRAPE get a list of events from NJ.com for a date

While these actions are not particularly useful as currently configured, they do demonstrate the tasks
that Back End needs to perform: reading / writing from Messaging, reading / writing from Database,
and obtaining additional information from websites.

You should be able to run docker-compose up in the back-end-demo and test actions with the
http://localhost:8080/action.html form. Try the following:

• Action: ECHO Data: This is a test

• Action: CARS Data: ``

• Action: SCRAPE Data: 2020-05-18

Take note of the date format, it is the ISO 8601 standard, very common in web development. Also note
that JSON is used as the exchange format, which can be converted easily into native objects on Front
End and Back End.

8.3. Resources
• node - Docker Hub

• docker-node/README - How to use this image

• Beginners Guide to Node Package Manager

• MariaDB Callback API Documentation

• Making HTTP Requests with Node.js

63

http://localhost:8080/action.html
https://en.wikipedia.org/wiki/ISO_8601
https://hub.docker.com/_/node/
https://github.com/nodejs/docker-node/blob/master/README.md#how-to-use-this-image
https://www.sitepoint.com/beginners-guide-node-package-manager/
https://github.com/mariadb-corporation/mariadb-connector-nodejs/blob/master/documentation/callback-api.md
https://nodejs.dev/making-http-requests-with-nodejs

8.4. Questions
1. What is the common package manager for Node.js?

2. What three things does Back End have to do?

3. How do Back End and Front End communicate?

4. What is an exchange format and why is it important?

5. In this example, Back End is running in an event loop. What main event does it respond to?

64

Chapter 9. Midterm Example

9.1. Introduction
This section summarizes the content so far and provides an example of a system that implements basic
the midterm milestones. This example is just one way to build a system . It’s not the only way, in fact
it’s not even the best way. Your system will likely be quite different to meet the individual needs of
your project. The example’s purpose is to show you a solution that avoids common pitfalls. Hopefully
you can integrate some of the lessons of this example into your project.

The project is structured in such a way that Front End and Back End never communicate directly and
Back End is the only service that can write to the Database:

Users

Front End Back EndMessaging Database

This allows for more scalability when we introduce replication in the second half of the semester.

The entire example can be found in the example-midterm directory which has the following directory
structure:

65

│ .env
│ docker-compose.yml
│
├───back_end
│ app.py
│ Dockerfile
│ requirements.txt
│
├───db
│ Dockerfile
│ setup.sql
│
└───front_end
 │ app.py
 │ Dockerfile
 │ requirements.txt
 │ wait-for-it.sh
 │
 └───templates
 base.html
 login.html
 register.html



Notice the .env file in the directory structure. docker-compose will load environment
variables from this file that you can then use in the docker-compose.yml file. This keeps
you from having to repeat yourself when multiple services need the same
information. For example, both Database and Back End need to know the
POSTGRES_PASSWORD. It also allows you to have a single secret file that you can put in
.gitignore to keep out of your repository.

9.2. Messaging
In our example, the Messaging can be run straight from the RabbitMQ Docker Hub image via the
docker-compose.yml file, hence the absence of a messaging directory with a Dockerfile in the directory
structure. The image allows for sufficient configuration via its environment variables. At this point it is
recommended that you still run the management interface and forward the management interface
port, 15672, so that you can see how the queues are being used. The messaging service will be used in
the request / reply pattern detailed in the diagram below:

66

https://hub.docker.com/_/rabbitmq
https://www.rabbitmq.com/tutorials/tutorial-six-python.html

Messaging

Requests Queue

Reply Queues

Client 1

Client 2

. . .

Front End Back End

AMQP AMQP AMQP AMQP

Fortunately this works out-of-the-box since queue creation is handled by the by the clients. The service
simply has to be up and running to function.

The service definition in docker-compose.yml can be seen here:

example-midterm/docker-compose.yml (excerpted)

 messaging:
 image: 'rabbitmq:3-management'
 environment:
 RABBITMQ_DEFAULT_USER: ${RABBITMQ_DEFAULT_USER}
 RABBITMQ_DEFAULT_PASS: ${RABBITMQ_DEFAULT_PASS}
 RABBITMQ_ERLANG_COOKIE: ${RABBITMQ_ERLANG_COOKIE}
 ports:
 - 15672:15672

9.3. Database
Database is responsible for storing the persistent information the system uses. It only communicates
with Back End.

Back End
Database

USERS

. . .

In this example, Database creates a database and the appropriate tables if the database is currently
empty. This can be done by placing the SQL file that we want executed in /docker-entrypoint-initdb.d/
of the image. Our example-midterm/db/Dockerfile handles copying our initialization SQL appropriately:

67

example-midterm/db/Dockerfile

FROM postgres
COPY setup.sql /docker-entrypoint-initdb.d/

example-midterm/db/setup.sql

CREATE DATABASE example;
\c example
CREATE TABLE users(
 email VARCHAR(255) PRIMARY KEY,
 hash VARCHAR(255) NOT NULL
);

The schema in this example is quite simple, consisting of a database and a single table for holding
emails and hashes. It should be noted that the \c command is specific to PostgreSQL and it is the
equivalent of a USE statement in MySQL, meaning use that particular database.

The relevant service definition in the docker-compose.yml file can be seen here:

example-midterm/docker-compose.yml (excerpted)

 db:
 build: ./db
 environment:
 POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}
 volumes:
 - data-volume:/var/lib/postgresql/data

The database files are stored in a Docker volume named data-volume and the password for our
database is loaded from an environment variable defined in .env.


The adminer image is a great way to see what’s going on in your database. It provides
a web interface to many different types of databases that can be easily accessed via
port 8080. See the example docker-compose.yml file for an example of its use.

9.4. Back End
Back End brokers the exchange of information between Messaging and Database. It also provides an
area to perform the tasks needed to support the complete system such as web scraping or computation.
At this point, our example does not include any of the latter and mainly focuses on storing / utilizing
authentication information in the database.

You can think of Back End as providing an API that is accessible through Messaging. Any language can

68

https://hub.docker.com/_/adminer/

be a good choice for the Back End as long as it has libraries to interface with Database and
Messaging.

Popular Libraries used by Back End

Python

• psycopg2 (PostgreSQL)

• mysql.connector (MySQL / MariaDB)

• pika (RabbitMQ)

PHP

• mysqli (MySQL / MariaDB)

• php-amqplib (RabbitMQ)

JavaScript

• node-postgres (PostgreSQL)

• mariadb (MySQL / MariaDB)

• amqplib (RabbitMQ)

Back End

mysql.connector / psycopg2 / mysqlipika / php-amqplib

Messaging

Database

AMQP

DB proto over TCP

The code for the Back End example is entirely contained in example-midterm/back_end/app.py. Back
End starts by connecting to both Messaging and Database using the pika and psycopg2 libraries
respectively. With Docker Compose you don’t know when the services will become available so the
example repeatedly attempts to connect, waiting up to 60 seconds and backing off exponentially each
time. Below is an example of typical startup output:

69

https://www.psycopg.org/
https://dev.mysql.com/doc/connector-python/en/
https://github.com/pika/pika
https://www.php.net/manual/en/book.mysqli.php
https://github.com/php-amqplib/php-amqplib
https://node-postgres.com/
https://mariadb.com/kb/en/getting-started-with-the-nodejs-connector/
http://www.squaremobius.net/amqp.node/
https://en.wikipedia.org/wiki/Exponential_backoff

PS example-midterm> docker-compose logs --tail=100 back_end | Select-String -Pattern root

back_end_1 | INFO:root:Waiting 1s...
back_end_1 | INFO:root:Connecting to the database...
back_end_1 | INFO:root:Connecting to messaging service...
back_end_1 | INFO:root:Waiting 2s...
back_end_1 | INFO:root:Connecting to the database...
back_end_1 | INFO:root:Connecting to messaging service...
back_end_1 | INFO:root:Waiting 4s...
back_end_1 | INFO:root:Connecting to the database...
back_end_1 | INFO:root:Connecting to messaging service...
back_end_1 | INFO:root:Waiting 8s...
back_end_1 | INFO:root:Connecting to the database...
back_end_1 | INFO:root:Connecting to messaging service...
back_end_1 | INFO:root:Starting consumption...

The example then creates the required database cursor, messaging channel, messaging queues, and
sets up a callback for messages arriving in the requests queue. This is where the majority of work is
performed and the function can be seen here:

70

example-midterm/back_end/app.py (excerpted)

def process_request(ch, method, properties, body):
 """
 Gets a request from the queue, acts on it, and returns a response to the
 reply-to queue
 """
 request = json.loads(body)
 if 'action' not in request:
 response = {
 'success': False,
 'message': "Request does not have action"
 }
 else:
 action = request['action']
 if action == 'GETHASH':
 data = request['data']
 email = data['email']
 logging.info(f"GETHASH request for {email} received")
 curr.execute('SELECT hash FROM users WHERE email=%s;', (email,))
 row = curr.fetchone()
 if row == None:
 response = {'success': False}
 else:
 response = {'success': True, 'hash': row[0]}
 elif action == 'REGISTER':
 data = request['data']
 email = data['email']
 hashed = data['hash']
 logging.info(f"REGISTER request for {email} received")
 curr.execute('SELECT * FROM users WHERE email=%s;', (email,))
 if curr.fetchone() != None:
 response = {'success': False, 'message': 'User already exists'}
 else:
 curr.execute('INSERT INTO users VALUES (%s, %s);', (email, hashed))
 conn.commit()
 response = {'success': True}
 else:
 response = {'success': False, 'message': "Unknown action"}
 logging.info(response)
 ch.basic_publish(
 exchange='',
 routing_key=properties.reply_to,
 body=json.dumps(response)
)

71



Notice that psycopg2 functions are used to put variables into the SQL statements. Do
NOT use Python string formating to build your SQL statements. You may be thinking
that we are in Back End and the parameters we receive are already sanitized by
Front End but this is not always the case.

9.5. Front End
Front End can be created using any web framework, but the most popular choices are PHP or Flask.
The most popular Docker Hub images for those frameworks are php:apache and python respectively.
For interacting with Messaging there are a few options, but groups tend to gravitate towards php-
amqplib for PHP and pika for Python Flask. This is probably due to the fact that the documentation for
RabbitMQ references those libraries.

Front End

php-amqplib / pikaphp / Flask

Users

Messaging

HTTP

AMQP

A custom example-midterm/front_end/Dockerfile is used for creating the image:

example-midterm/front_end/Dockerfile

FROM python
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
ENV FLASK_APP=app.py
CMD ["./wait-for-it.sh", "messaging:5672", "--", \
 "flask", "run", "--host=0.0.0.0"]

A script called wait-for-it.sh is included with the image. It is used as recommended by the Docker
documentation to make sure Messaging is up before Front End starts. This way Front End will not
give errors to users who attempt to use it before the full system has started.

example-midterm/front_end/Dockerfile is built in the service section of the example-midterm/docker-
compose.yml file:

72

https://xkcd.com/327/
https://www.php.net
https://palletsprojects.com/p/flask
https://hub.docker.com/_/php
https://hub.docker.com/_/python
https://github.com/php-amqplib/php-amqplib
https://github.com/php-amqplib/php-amqplib
https://github.com/pika/pika
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
https://github.com/vishnubob/wait-for-it
https://docs.docker.com/compose/startup-order/
https://docs.docker.com/compose/startup-order/

example-midterm/docker-compose.yml (excerpted)

 front_end:
 build: ./front_end
 ports:
 - 5000:5000
 environment:
 RABBITMQ_DEFAULT_USER: ${RABBITMQ_DEFAULT_USER}
 RABBITMQ_DEFAULT_PASS: ${RABBITMQ_DEFAULT_PASS}
 FLASK_ENV: development
 FLASK_SECRET_KEY: ${FLASK_SECRET_KEY}
 volumes:
 - "./front_end:/app"

There are a few things in this service definition that should be noted:

• Port 5000 needs to be forwarded as it will be accessed externally

• The FLASK_ENV environment variable is useful for development. It causes Flask to print more
friendly error messages right inside the web browser.

• front_end/ is bind mounted to /app in the container even though the Dockerfile copies those files to
the /app directory when the image is created. This allows for easier development, the container can
be running while you edit the files Flask is using. The development server will automatically
restart if changes are detected.

To make communication with Messaging easier, example-midterm/front_end/messaging.py defines a
Messaging class that initializes the connection, shuts down the connection, and provides a send and
receive function. All messages are sent to the general requests queue and replies are returned via an
exclusive reply queue.

example-midterm/front_end/messaging.py

import pika
import json
import time
import logging
import os

class Messaging:
 """
 Helper class for dealing with the messaging service
 """
 request_queue_name = 'request'

 # Get credentials from the environment
 credentials = pika.PlainCredentials(os.environ['RABBITMQ_DEFAULT_USER'],
 os.environ['RABBITMQ_DEFAULT_PASS'])

73

 # docker-compose will resolve this host to our messaging service
 host = 'messaging'

 def __init__(self):
 """
 Establishes connection and creates queues as needed
 """
 logging.info("Messaging: Establishing connection")
 self.connection = pika.BlockingConnection(
 pika.ConnectionParameters(host=self.host, credentials=self.credentials))
 self.channel = self.connection.channel()
 logging.info("Messaging: Creating queues")
 self.channel.queue_declare(queue=self.request_queue_name)
 self.result_queue = self.channel.queue_declare(queue='', exclusive=True).method
.queue

 def __del__(self):
 """
 Closes down the connection
 """
 logging.info("Messaging: Closing down connection")
 self.connection.close()

 def send(self, action, data):
 """
 Sends an action and data to the request queue in JSON. Sets the
 reply_to property to the custom result queue.
 """
 logging.info(f"Messaging: send(action={action}, data={data})")

 self.channel.basic_publish(
 exchange='',
 routing_key=self.request_queue_name,
 properties=pika.BasicProperties(
 reply_to=self.result_queue),
 body=json.dumps({'action': action, 'data': data}
)
)

 def receive(self):
 """
 Waits for a single message and returns it. Waits up to 1s, checking
 every 0.1s.
 """
 attempts = 0
 while True:
 method_frame, properties, body = self.channel.basic_get(

74

 self.result_queue, auto_ack=True)
 if method_frame:
 received = json.loads(body)
 logging.info(f"Messaging: received={received}")
 return received
 elif attempts > 10:
 logging.info("Messaging: receive did not get message")
 return None
 else:
 time.sleep(0.1)
 attempts += 1


Every HTTP request received by Front End will result in a full connection sequence
with Messaging which is not optimal. A better solution is to have the Messaging class
run in its own thread and maintain a permanent connection.

Let’s take a look at a registration sequence involving the User, Front End, and Back End:

User

User

Front End

Front End

Messaging

Messaging

HTTP GET /register

register.html

HTTP POST /register email password

REGISTER email hash

SUCCESS or FAILURE

redirect OR error

The relevant code in example-midterm/front_end/app.py follows:

75

https://github.com/eandersson/python-rabbitmq-examples/blob/master/Flask-examples/pika_async_rpc_example.py

example-midterm/front_end/app.py (excerpted)

@app.route('/register', methods=['GET', 'POST'])
def register():
 if request.method == 'POST':
 email = request.form['email']
 password = request.form['password']
 msg = messaging.Messaging()
 msg.send(
 'REGISTER',
 {
 'email': email,
 'hash': generate_password_hash(password)
 }
)
 response = msg.receive()
 if response['success']:
 session['email'] = email
 return redirect('/')
 else:
 return f"{response['message']}"
 return render_template('register.html')

Fortunately password hashing functions are readily available in the werkzeug.security module.
Werkzeug is a WSGI utility library that Flask already uses, so we don’t need to add anything to
requirements.txt. We can use the functions check_password_hash and generate_password_hash.



Do NOT store user passwords in cleartext. There are plenty of good hashing options in
both PHP and Python. Try to minimize systems that come in contact with unencrypted
passwords as well. In this example it is hashed before it is even passed to the Back
End. For the same reason, in production your users should only be able to connect via
TLS (HTTPS). This will secure the channel between User and Front End which passes
the password when the user registers or logs in.

The register function will also set email in the user session upon successful completion. This is akin to
having a user log in automatically once they have created an account. Flask sessions are a good way of
storing things on the client that can’t be modified. They default to a lifetime of 31 days.

A similar sequence is used to log in a user:

76

https://palletsprojects.com/p/werkzeug/
https://flask.palletsprojects.com/en/1.1.x/api/#flask.session

User

User

Front End

Front End

Messaging

Messaging

HTTP GET /login

login.html

HTTP POST /login email password

GETHASH email

hash OR error

redirect OR error

The relevant code in example-midterm/front_end/app.py follows:

example-midterm/front_end/app.py (excerpted)

@app.route('/login', methods=['GET', 'POST'])
def login():
 if request.method == 'POST':
 email = request.form['email']
 password = request.form['password']
 msg = messaging.Messaging()
 msg.send('GETHASH', { 'email': email })
 response = msg.receive()
 if response['success'] != True:
 return "Login failed."
 if check_password_hash(response['hash'], password):
 session['email'] = email
 return redirect('/')
 else:
 return "Login failed."
 return render_template('login.html')

Compared to the register function, handling a login is simpler. A few other routes of interest with brief
descriptions are:

/ serves index.html

/logout removes email from the user’s session and redirects to /

/secret protected by the @login_required decorator (see below), serves secret.html

Python decorators are used for routing in Flask so it is a natural fit to use them to protect routes as

77

https://realpython.com/primer-on-python-decorators/

well. The @login_required decorator does exactly that:

example-midterm/front_end/app.py (excerpted)

def login_required(f):
 """
 Decorator that returns a redirect if session['email'] is not set
 """
 @wraps(f)
 def decorated_function(*args, **kwargs):
 if 'email' not in session:
 return redirect('/login')
 return f(*args, **kwargs)
 return decorated_function

9.6. Questions
1. What is the advantage of using a .env file and referencing it from docker-compose.yml?

2. Why do we store password hashes instead of just the passwords?

3. Why is port 5000 the only port that needs to be forwarded to the local host?

4. What does the adminer image do?

5. What role does Messaging play in this system?

78

Chapter 10. Replication
Replicating a service can provide many benefits. In this section we will replicate a PostgreSQL
database service to analyze the advantages and complexity costs. PostgreSQL was purposefully chosen
because it leaves much of work, which is understandably outside the purview of a Database
Management System (DBMS), to the user. We will be using Docker compose so that we do not have to
introduce a new tool as well.

10.1. Background

Database

db2db1

Figure 8. Basic Replication

In the simplest sense, replication is running more than one service for a given component of our
system. We can do this in Docker Compose by declaring more than one service:

replication-demo/docker-compose.yml (excerpted)

 db1:
 build: ./db
 environment:
 POSTGRES_PASSWORD: asdffdsa
 POSTGRES_REPLICA_PASSWORD: asdffdsa
 POSTGRES_NODES: "db1 db2"
 db2:
 build: ./db
 environment:
 POSTGRES_PASSWORD: asdffdsa
 POSTGRES_REPLICA_PASSWORD: asdffdsa
 POSTGRES_NODES: "db1 db2"


A better solution would be to use a more complete orchestration solution than Docker
Compose. For syntax that you are used to, see the deploy option and Docker Swarm.
You could also bite the bullet and migrate to kubernetes.

In most DBMS, replication can be implemented via Volume Sharing or Hot / Warm Standby:

79

http://postgresql.org
https://docs.docker.com/compose/compose-file/#deploy
https://kubernetes.io

Database

db2 (RW)db1 (RW)

User

Network Storage
NFS

AFS

GlusterFS

DRBD

Ceph

S3

. . .

Volumes
data

backup
. . .

Figure 9. Volume Sharing

Database

Volumes

db2 (Standby R)db1 (Primary RW)

data1 data2

User

log records

Figure 10. Hot / Warm Standby

Volume Sharing has the advantage of being easy to implement if you already have network storage.
You can scale simply by increasing the amount of database instances (db3, db4, db5…). Each instance
has full read / write access, making it easy to load balance. Despite that, reading / writing from network
storage tends to be a bottleneck. Also, shared access to files and the issues that arise (file locking, etc.)
are difficult problems. Your DBMS may not be able to handle them. Even if they can be handled,
performance can be an issue. Lastly, this method puts all of your eggs in one basket with regard to
where your data is stored. There may be no duplicates of the data depending on how you handle your

80

network storage.

Hot / Warm Standby mode is typically already implemented by the DBMS. It is usually performed via
Log Shipping, sending logs of all actions between a primary node and standby nodes. The standby
nodes can keep up with transactions and be promoted in the event of an issue. Each node maintains a
separate data volume. With this system, only the primary node is capable of performing write
operations. If the standby node is a hot standby node it can perform reads as well. Fortunately, write
operations tend to be less frequent that read operations, meaning you may see significant performance
gains from scaling with this type of system.



What’s the difference between a hot and warm standby? A hot standby can perform
read operations while replicating the primary. This allows for load balancing to be
performed. A warm standby simply keeps up with the primary so that it can be
brought up in the event of a problem.

10.2. Implementation
This example implements a Hot Standby in PostgreSQL. Actually implementing replication is largely
handled for us by the DMBS. It is simply a matter of setting configuration variables, starting the
databases are in the correct state, and bringing up the services in the right order. We can handle this in
the docker-entrypoint.sh file that is used as the ENTRYPOINT for the container. In the official Docker
image this script is responsible for setting up the database and running the user-specified command,
postgres by default.

A basic Dockerfile that builds from this image and adds some extra needed utilities will be used:

replication-demo/db/Dockerfile

FROM postgres
RUN apt-get -y update && \
 apt-get -y install iputils-ping dnsutils
COPY docker-entrypoint.sh /usr/local/bin

Rather than create separate primary and standby images, this example employs one image that detects
the status of the cluster on startup and creates either a primary or standby node accordingly. The logic
for startup is as follows:

81

https://www.postgresql.org/docs/current/hot-standby.html
https://hub.docker.com/_/postgres
https://hub.docker.com/_/postgres

Start

Become a STANDBY

Become a PRIMARY Wait 10 seconds

Search again for a PRIMARY node

Now become a STANDBY Now become a PRIMARY

Is there a PRIMARY node?

yes no

Are we first in the node list?

yes no

Is there a PRIMARY node now?

yes no

By passing a list of all nodes in an environment variable, we can create a bash function to see who is
up and who is the primary when docker-entrypoint.sh is called at container creation:

82

replication-demo/db/docker-entrypoint.sh (excerpted)

function find_primary() {
 # Goes through all the nodes in POSTGRES_NODES and looks for one that is up
 # and is a PRIMARY
 echo "Looking for a primary node..."
 PRIMARY=""
 for NODE in $POSTGRES_NODES; do
 NODE_IP=$(dig +short $NODE)
 if [-z $NODE_IP] || [$NODE_IP != $MY_IP]; then
 # https://stackoverflow.com/questions/11231937/bash-ignoring-error-for-a-
particular-command
 EXIT_CODE=0
 pg_isready -h $NODE || EXIT_CODE=$?
 if [$EXIT_CODE -eq 0]; then
 echo "$NODE:5432:postgres:postgres:$POSTGRES_PASSWORD" >> ~/.pgpass
 VALUE=$(psql -U postgres -t -h $NODE -d postgres -c "select
pg_is_in_recovery()")
 if [$VALUE == "f"]; then
 echo "$NODE is primary node"
 if [! -z $PRIMARY]; then
 echo "Two primary nodes detected! Exiting..."
 exit 1
 fi
 PRIMARY=$NODE
 fi
 fi
 fi
 done
}


If a situation arises where there are two primaries on the network, this function will
prevent a new db container from being created. No sense adding to the confusion.

Now all that is left is to configure either a primary or a standby node. The code to configure a primary
node follows:

83

replication-demo/db/docker-entrypoint.sh (excerpted)

 echo "Configuring a PRIMARY instance..."

 if [-s "$PGDATA/PG_VERSION"]; then
 echo "Database already exists, NOT creating a new one"
 else
 echo "Creating a new database..."

 initdb --username=postgres --pwfile=<(echo "$POSTGRES_PASSWORD")

 # Start a temporary server listening on localhost
 pg_ctl -D "$PGDATA" -w start

 # Create a user for replication operations
 psql -v ON_ERROR_STOP=1 --username "$POSTGRES_USER" --dbname "$POSTGRES_DB" <<
EOSQL
 CREATE USER repuser REPLICATION LOGIN ENCRYPTED PASSWORD
'$POSTGRES_REPLICA_PASSWORD';
EOSQL

 # Stop the temporary server
 pg_ctl -D "$PGDATA" -m fast -w stop

 # Set up authentication parameters
 echo "host replication all all md5" >> $PGDATA/pg_hba.conf
 echo "host all all all md5" >> $PGDATA/pg_hba.conf
 fi

 # if, for some reason, a cold standby is being brought up as a primary
 # remove the standby.signal file
 if [-f $PGDATA/standby.signal]; then
 rm $PGDATA/standby.signal
 fi

The code is self-explanatory, but it should be noted that the actual building of the database, including
auth configuration, and the create of a replication user is a rare occurrence. That should only happen
once when the volume is initialized.

The code to configure a standby node is shown below:

84

replication-demo/db/docker-entrypoint.sh (excerpted)

 echo "Configuring a STANDBY instance..."

 # Set up our password so we can connect to replicate
 echo "$PRIMARY:5432:replication:repuser:$POSTGRES_REPLICA_PASSWORD" >>
/var/lib/postgresql/.pgpass

 # Clone the primary database
 rm -rf $PGDATA/*
 pg_basebackup -h $PRIMARY -D $PGDATA -U repuser -v -P -X stream
 chmod -R 700 $PGDATA

 # Add connection info
 cat << EOF >> $PGDATA/postgresql.conf
 primary_conninfo = 'host=$PRIMARY port=5432 user=repuser
password=$POSTGRES_REPLICA_PASSWORD'
EOF

 # Notify postgres that this is a standby server
 touch $PGDATA/standby.signal

 # Make sure there is a primary server and failover if there isn't
 monitor &

When a standby is brought up, any database on the volume is removed and the entire database from
the primary is backed up You may want to revisit this design decision if your database becomes large.
Connection info is also added to the end of postgres.conf. This does mean that if a standby is promoted
the previous connect line will be synced to any new standbys that are brought up. This will result in an
ever growing postgres.conf file. The monitor function will be covered in the next section.


You may notice that primaries and standbys have a very similar configuration. This is
by design in PostgreSQL >= 12, to simplify the failover procedure.

Let’s take a look at the relevant log messages of db1 and db2 when we bring them both up with docker-
compose up:

85

db1 - Looking for a primary node...
db1 - db2:5432 - no response
db1 - Configuring a PRIMARY instance...
db2 - Looking for a primary node...
db2 - db1:5432 - no response
db2 - Giving the first node a 10s head start...
db2 - Looking for a primary node...
db2 - db1:5432 - accepting connections
db2 - db1 is primary node
db2 - Configuring a STANDBY instance...

As can be seen, db2 wasn’t able to detect db1 at first but the additional 10s delay prevented a multiple-
primary situation.


Having multiple primaries in a cluster is bad. So bad, that most solutions implement a
STONITH policy. It is quite possibly the greatest acronym in all of technology.



Just because we have our database replicated on two volumes does not mean that we
have backups. Those volumes are designed to be used as part of a running system and
are not a reliable long-term solution. Create and implement a reliable backup plan as
you would for any other database.

10.3. High Availability
Even though we now have a replicated database, it isn’t doing us much good. If we want to make our
database service highly available (HA) we will need to monitor for problems and promote a standby
server if the primary server fails. This is referred to as failover and is often handled by a a separate
component. In this simple example it is implemented in the monitor function shown below:

86

https://en.wikipedia.org/wiki/STONITH
https://wiki.clusterlabs.org/wiki/Pacemaker
https://wiki.clusterlabs.org/wiki/Pacemaker

replication-demo/db/docker-entrypoint.sh (excerpted)

function monitor() {
 while true; do
 # spread out our checks to avoid the chance of two nodes promoting at
 # the same time
 WAIT=$((20 + $RANDOM % 10))
 sleep $WAIT
 find_primary
 if [-z $PRIMARY]; then
 echo "Can't find a primary failing over..."
 pg_ctl promote
 # we don't need to monitor any more if we are the primary
 exit
 fi
 done
}

This function is run in the background on every standby instance. The timeout is randomized to
decrease the likelihood that two standby instances will promote themselves at exactly the same time.
To better understand this, let’s examine the non-randomized scenario shown in the following
diagram:

Node 1

Primary Failed

Node 2

Standby Check Standby Check Primary

Node 3

Standby Check Standby Check Primary

0 10 20 30 40 50 60 70 80

Figure 11. Dual Promotion

In the above scenario each standby node is checking to see that there is a primary node every 30s. The
primary fails at 50s and both nodes check for a primary at exactly 60s. At that moment, neither node is
a primary, no primary can be found, and they both begin the promotion process. This leaves the cluster
with two primary nodes. This can be largely avoided by randomizing the check intervals.

Finally, lets simulate a failure and a recovery to see that our HA system is working. The following
commands were executed and the Docker Compose logs were captured. Each command was run with
about a minute pause between them:

1. docker-compose up

2. docker-compose stop db1

87

3. docker-compose up db1

The relevant, simplified log messages and descriptions follow:

db2 - Looking for a primary node...
db1 - Looking for a primary node...
db2 - db1:5432 - no response
db1 - db2:5432 - no response
db2 - Giving the first node a 10s head start...
db1 - Configuring a PRIMARY instance...
db2 - Looking for a primary node...
db2 - db1:5432 - accepting connections
db2 - db1 is primary node
db2 - Configuring a STANDBY instance...

Both db1 and db2 are brought up at the same time. db1 ends up being the primary.

db2 - Looking for a primary node...
db2 - db1:5432 - accepting connections
db2 - db1 is primary node
db2 - Looking for a primary node...
db2 - db1:5432 - accepting connections
db2 - db1 is primary node

db1 begins checking to make sure there is a primary node about every 30s.

db1 - LOG: shutting down
db2 - Looking for a primary node...
db2 - db1:5432 - no response
db2 - Can't find a primary failing over...
db2 - server promoted

db1 is shut down. db2 performs its regularly scheduled check and self promotes because it cannot find
a primary.

88

db1 - Looking for a primary node...
db1 - db2:5432 - accepting connections
db1 - db2 is primary node
db1 - Configuring a STANDBY instance...
db1 - Looking for a primary node...
db1 - db2:5432 - accepting connections
db1 - db2 is primary node
db1 - Looking for a primary node...
db1 - db2:5432 - accepting connections
db1 - db2 is primary node

db1 is brought back up, finds another primary and makes itself a standby. db1 begins checking to make
sure the primary is available at regular intervals.

10.4. Load Balancing
Another advantage to replication is the ability to split the work among different nodes in the cluster. In
our particular case, the primary node can handle any request, while the standby node can only handle
read requests. Since we also control the application, we could create a connection for read requests
and a separate connection for write requests.

Fortunately this can be accomplished by changing the connect string that is used in your application:

get a read / write connection
psycopg.connect(
 database="example",
 host="db1,db2",
 user="postgres",
 password=password,
 target_session_attrs="read-write"
)

get a read connection
psycopg.connect(
 database="example",
 host="db2,db1", # order should be randomized
 user="postgres",
 password=password,
 target_session_attrs="any"
)

The other option is to employ a proxy to forward requests, the most popular being HAProxy.

89

https://www.percona.com/blog/2019/10/23/seamless-application-failover-using-libpq-features-in-postgresql/
http://www.haproxy.org/



Load balancing is often referenced as a part of horizontal scaling. You can think of
horizontal scaling as adding more instances to serve requests. Vertical scaling refers
to making instances more powerful so that each individual one can serve more
requests.

10.5. Questions
1. What are some of the issues with a volume sharing database?

2. Why does our example have a startup delay? What could happen if we brought all of the nodes up at
the same time?

3. What is the difference between high availability and load balancing?

4. What does a hot standby node do?

5. Our example starts up two nodes, but what would we have to change in our docker-compose.yml file if
we wanted to start ten nodes? Is this congruent with the "Don’t Repeat Yourself" (DRY) principle?

90

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Chapter 11. Kubernetes

11.1. Introduction
Kubernetes is a container orchestration system originally designed by Google. It is currently the most
popular orchestration system and is notorious for being difficult to learn. Fortunately, we have already
covered most of the concepts and the command syntax is similar to Docker.

A Kubernetes cluster is made up of nodes. Each node is capable of running pods, which in turn are
running containers:

node1 node2

pod1 pod2 pod3 pod4 pod5

container1 container2 container3 container4 container5 container6

Figure 12. Kubernetes Cluster

Kubernetes is designed to solve the hard problems of multi-node deployment, replication, volume
sharing, container communication, updates, roll-backs, service discovery and monitoring. It does this
by defining objects and providing an API to interact with them. Some of the first objects we will be
working with are:

Deployment

Defines how to handle the creation / maintenance of pods

Service

Defines what pods offer to the cluster and how it should be accessed

91

11.2. Minikube
For our purposes we will be using a single-node, local version of Kubernetes called minikube.
minikube acts as a single-node cluster by running Linux in a virtual machine on the host. It provides a
several options for how the VM is run:

Operating System

Driver

Minikube Node

WindowsMacOSLinux

Hyper-VVirtualBoxDocker (on host, experimental)None (native)

Linux VM

Docker (on VM)Kubernetes

Figure 13. Minikube Architecture

Follow these directions to install minikube. There are a few virtualization options depending on the OS
that you are running.


If you have Docker Desktop running, minikube defaults to the Docker driver. This
driver is still experimental and may not work well. You can explicitly specify another
driver when you start minikube with the --driver= option.


Hyper-V and VirtualBox were still mutually exclusive in Windows at the time of this
writing. You will need to choose one or the other.

 Hyper-V will require you to run your commands as an Administrator.

When you start minikube, you should see output similar to the following:

92

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/

PS minikube-demo> minikube start --driver=hyperv
* minikube v1.9.0 on Microsoft Windows 10 Enterprise 10.0.18362 Build 18362
* Using the hyperv driver based on existing profile
* Retarting existing hyperv VM for "minikube" ...
* Preparing Kubernetes v1.18.0 on Docker 19.03.8 ...
* Enabling addons: default-storageclass, storage-provisioner
* Done! kubectl is now configured to use "minikube"


If you get errors due to low memory, close a few applications and try again. Typically
you can restart the applications after minikube is running.

Kubernetes will attempt to pull all container images from a container repository by default. To avoid
having to upload our images to a repository, we can set environment variables in our terminal so that
we interact with the Docker daemon inside our minikube virtual machine.[3] Fortunately, minikube has
the docker-env command to make this easier:

PS minikube-demo> minikube docker-env | Invoke-Expression
PS minikube-demo> docker ps
CONTAINER ID IMAGE COMMAND CREATED
1bf91c2ca7df 4689081edb10 "/storage-provisioner" 7 minutes ago
a9866f5f5838 k8s.gcr.io/pause:3.2 "/pause" 7 minutes ago
03a4f7f5e320 67da37a9a360 "/coredns -conf /etc…" 7 minutes ago
05061b993702 67da37a9a360 "/coredns -conf /etc…" 7 minutes ago
78977b068886 43940c34f24f "/usr/local/bin/kube…" 7 minutes ago
b5312ba91086 k8s.gcr.io/pause:3.2 "/pause" 7 minutes ago
968acc692934 k8s.gcr.io/pause:3.2 "/pause" 7 minutes ago
0a72059bbe5f k8s.gcr.io/pause:3.2 "/pause" 7 minutes ago
d9c5aa3d43d0 303ce5db0e90 "etcd --advertise-cl…" 7 minutes ago
21b09398206f 74060cea7f70 "kube-apiserver --ad…" 7 minutes ago
313982f14a1c d3e55153f52f "kube-controller-man…" 7 minutes ago
35813d25f0bf a31f78c7c8ce "kube-scheduler --au…" 7 minutes ago
e6cdb564a306 k8s.gcr.io/pause:3.2 "/pause" 7 minutes ago
b6bfe0e6f093 k8s.gcr.io/pause:3.2 "/pause" 7 minutes ago
da47e560edab k8s.gcr.io/pause:3.2 "/pause" 7 minutes ago
3c599f97ecec k8s.gcr.io/pause:3.2 "/pause" 7 minutes ago

As can be seen from the output of the docker ps command, our Kubernetes cluster is made up of many
containers running in a VM. If you ran docker ps without setting up the environment first, you would
only see the containers you had running on your local Docker daemon (which may actually be running
on a VM itself if you are using Docker Toolbox).

93

https://inception.davepedu.com/
https://inception.davepedu.com/


minikube commands will work in a new terminal, but if you want to build docker
images and have them available on your Kubernetes cluster you will need to use
minikube’s docker-env command for each new terminal you open.



If you are experiencing errors with minikube, the first thing you should try is running
minikube delete and minikube start --driver=<your driver>. This addresses the vast
majority of issues by wiping all traces of the old VM, creating a new one, and starting
fresh.

minikube includes a popular command line tool called kubectl. This is the command that we will be
using for interacting with our Kubernetes cluster. To show that everything is working, lets create and
build a basic Dockerfile that should print some output to standard out:

minikube-demo/Dockerfile

FROM alpine
ENTRYPOINT ["/bin/sh", "-c", "echo 'Hello from a Kubernetes log!'; sleep 30"]

PS minikube-demo> docker build -t k8s-example:v1 .
Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM alpine
latest: Pulling from library/alpine
aad63a933944: Pull complete
Digest: sha256:b276d875eeed9c7d3f1cfa7edb06b22ed22b14219a7d67c52c56612330348239
Status: Downloaded newer image for alpine:latest
 ---> a187dde48cd2
Step 2/2 : ENTRYPOINT ["/bin/sh", "-c", "echo 'Hello from a Kubernetes log!'; sleep 30"]
 ---> Running in 96c1739d805e
Removing intermediate container 96c1739d805e
 ---> 7b9898952ce0
Successfully built 7b9898952ce0
Successfully tagged k8s-example:v1


We built our image with a tag and a version. You need the tag so you can reference it
from Kubernetes. If you don’t specify a version Kubernetes will try to pull the latest
from a repository.

Now we’ll create a deployment, which by default will make one pod that runs your image. We also run
the get deployment and get pod commands so we can see the outcome. Lastly, we will inspect the logs
for the pod that was created.

94

PS minikube-demo> kubectl create deployment k8s-example --image=k8s-example:v1
deployment.apps/k8s-example created
PS minikube-demo> kubectl get deployment
NAME READY UP-TO-DATE AVAILABLE AGE
k8s-example 1/1 1 1 7s
PS minikube-demo> kubectl get pod
NAME READY STATUS RESTARTS AGE
k8s-example-5787cd97dc-ft2cr 1/1 Running 0 12s
PS minikube-demo> kubectl logs k8s-example-5787cd97dc-ft2cr
Hello from a Kubernetes log!

Our image is up and running, but remember that after 30 seconds it should exit. As an orchestration
system, Kubernetes defaults to restarting pods that have stopped. Lets wait a while (14 minutes to be
exact) and then execute the get pod command again:

PS minikube-demo> kubectl get pod
NAME READY STATUS RESTARTS AGE
k8s-example-5787cd97dc-ft2cr 0/1 CrashLoopBackOff 6 14m

Kubernetes has restarted our pod six times now. In fact, it restarted it so much that it is now waiting
before trying again (CrashLoopBackOff). You now have a minikube single-node Kubernetes cluster
running on your local machine. You can build custom Docker images and have them run on your
cluster.

To bring everything down, use the delete deployment command:

PS minikube-demo> kubectl delete deployment k8s-example
deployment.apps "k8s-example" deleted
PS minikube-demo> kubectl get pod
No resources found in default namespace.

11.3. Debugging
The official Kubernetes documentation has an excellent article on debugging services. What follows
are some tips they may help reinforce or fill-in-the-blanks for topics in the article.

Two kubectl commands are especially useful for finding out more information about an object:

kubectl get

gets brief information about an object or all of the objects of that type

kubectl describe

gets more information about an object

95

https://kubernetes.io/docs/tasks/debug-application-cluster/debug-service/

Let’s take a look:

PS minikube-demo> kubectl get pod
NAME READY STATUS RESTARTS AGE
k8s-example-5787cd97dc-fbrxl 1/1 Running 0 33s
PS minikube-demo> kubectl describe pod k8s-example-5787cd97dc-fbrxl
Name: k8s-example-5787cd97dc-fbrxl
Namespace: default
Priority: 0
Node: minikube/172.17.0.2
Start Time: Mon, 13 Apr 2020 18:22:39 -0400
Labels: app=k8s-example
 pod-template-hash=5787cd97dc
Annotations: <none>
Status: Running
IP: 172.18.0.3
IPs:
 IP: 172.18.0.3
Controlled By: ReplicaSet/k8s-example-5787cd97dc
Containers:
 k8s-example:
 Container ID:
docker://f22a1be8401f256c42c8c8ad82cf6757bc9e34ec7ae1fe0c4329fff57ff09bcb
 Image: k8s-example:v1
 Image ID:
docker://sha256:374b52c1385d25269a05e9542e65690fe9dc00146b869580db8ab51b5027096a
 Port: <none>
 Host Port: <none>
 State: Running
 Started: Mon, 13 Apr 2020 18:23:37 -0400
 Last State: Terminated
 Reason: Completed
 Exit Code: 0
 Started: Mon, 13 Apr 2020 18:23:06 -0400
 Finished: Mon, 13 Apr 2020 18:23:36 -0400
 Ready: True
 Restart Count: 1
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-5mgft (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:

96

 default-token-5mgft:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-5mgft
 Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> default-scheduler Successfully assigned
default/k8s-example-5787cd97dc-fbrxl to minikube
 Normal BackOff 62s kubelet, minikube Back-off pulling image "k8s-
example:v1"
 Warning Failed 62s kubelet, minikube Error: ImagePullBackOff
 Normal Pulling 50s (x2 over 62s) kubelet, minikube Pulling image "k8s-
example:v1"
 Warning Failed 50s (x2 over 62s) kubelet, minikube Failed to pull image "k8s-
example:v1": rpc error: code = Unknown desc = Error
 response from daemon: pull access denied for k8s-example, repository does not exist or
may require 'docker login': denied: requested acc
ess to the resource is denied
 Warning Failed 50s (x2 over 62s) kubelet, minikube Error: ErrImagePull
 Normal Pulled 5s (x2 over 36s) kubelet, minikube Container image "k8s-
example:v1" already present on machine
 Normal Created 5s (x2 over 36s) kubelet, minikube Created container k8s-example
 Normal Started 5s (x2 over 36s) kubelet, minikube Started container k8s-example

As you can see there, is lots of useful information here including a full history of events that have
occured.



Seeing ErrImagePull or ImagePullBackOff in the status section of kubectl get pod is a
common problem. Check to make sure you’ve set up your environment correctly to
use the Docker daemon in minikube and then try the docker pull <image> command
yourself. If Docker can’t pull it check to see that you are connected to the network and
if it’s a custom image check to see that you built it. docker images will show you all of
the images minikube can access.

Many of the same techniques used for debugging Docker images can be used for debugging Kubernetes
objects. For example you can execute interactive commands (including a shell) on running docker
images with kubectl exec -it:

97

PS minikube-demo> kubectl exec -it k8s-example-5787cd97dc-7j6cc -- /bin/sh
/ # ps ax
PID USER TIME COMMAND
 1 root 0:00 sleep 30
 11 root 0:00 /bin/sh
 16 root 0:00 ps ax
/ # ls
bin dev etc home lib media mnt opt proc root run sbin srv
sys tmp usr var
/ # exit

If, for some reason, an image does not start up, you can replace the ENTRYPOINT of the Dockerfile
from within the template definition of a Deployment. By replacing it with something you know will
work, you can then execute an interactive shell in the container to see what is going on. The following
is an example of executing the sleep command, assuring that the pod will run for at least an hour:

kind: Deployment
metadata:
 name: db-rw
 labels:
 app: db-rw
spec:
 replicas: 1
 selector:
 matchLabels:
 app: db-rw
 template:
 metadata:
 labels:
 app: db-rw
 spec:
 containers:
 - name: db-rw
 image: postgres
 env:
 - name: POSTGRES_PASSWORD
 value: "changeme"
 - name: POSTGRES_REPLICA_PASSWORD
 value: "changeme"
 command: ["bash", "-c", "sleep 3600"]

Sometimes your objects are applied, but no pods start up. This may mean that Kubernetes started your
Deployment or StatefulSet which created a ReplicaSet, but the ReplicaSet was unable to start your
pods. Try running kubectl get replicaset to find which ReplicaSet is running and then kubectl
describe replicaset <replicaset_name> where <replicaset_name> is the name of your ReplicaSet.

98

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

Finally, you may find yourself in a situation where you need to run kubectl from within a pod. This can
be helpful for sorting out role based access control issues, namely "how can this pod interact with the
Kubernetes API?" This guide is a great resource. It largely boils down to:

1. From within the pod (kubectl exec -it <pod-name> — bash) install curl: apt-get install curl.

2. Download kubectl:

a. VERSION=curl https://storage.googleapis.com/kubernetes-release/release/stable.txt

b. curl -LO https://storage.googleapis.com/kubernetes-release/release/$VERSION/bin/linux/
amd64/kubectl

3. Make it executable and install it:

a. chmod +x ./kubectl

b. mv ./kubectl /usr/local/bin/

11.4. Conclusion
Hopefully you can see the benefit of working with an orchestration framework. While it may be
daunting at first to learn all of the objects and to use new, unfamiliar commands, Kubernetes does
provide a lot of options for someone looking to deploy scalable applications. Kubernetes has emerged
as the de facto standard and knowing how to use it is a very marketable skill.

11.5. Questions
1. What is the role of a pod in Kubernetes?

2. What does a Deployment do?

3. What is minikube used for and what platforms can it run on?

4. If you were given an image to deploy on Kubernetes and it continually failed to start, what steps
would you take to figure out what was going wrong?

[3] See this great blog post for more details

99

https://itnext.io/running-kubectl-commands-from-within-a-pod-b303e8176088
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/$VERSION/bin/linux/amd64/kubectl
https://storage.googleapis.com/kubernetes-release/release/$VERSION/bin/linux/amd64/kubectl
https://www.forbes.com/sites/udinachmany/2018/11/01/kubernetes-evolution-of-an-it-revolution/#67e70c2454e1
https://medium.com/@maumribeiro/running-your-own-docker-images-in-minikube-for-windows-ea7383d931f6

Chapter 12. Database in Kubernetes

12.1. Introduction
In this example we implement a primary / standby replication setup for PostgreSQL. Two Services will
be provided: one for read/write requests and another exclusively for read requests. We will try to use
Kubernetes to handle the initialization and monitoring functions that had to be done by hand in
previously.

Rather than passing command line options to the kubectl command, we will be defining what we
create in a YAML file: example-final/db-k8s.yml. kubectl can load object definitions from YAML files
with the apply command.

Now let’s look at the Kubernetes objects we are defining:

12.2. PersistentVolumeClaims
A PersistentVolumeClaim lets the cluster know that you are expecting certain storage resources. In
this case, we are looking for a place to store our primary database files. This claim will be fulfilled by a
StorageClass that is built into minikube. As far as we are concerned, we just have to tell it what we
want and it will make it happen.[4].

example-final/db-k8s.yml (excerpted)

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: db-primary-pv-claim
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 512M

This claim will be used by our one db-rw pod, so we don’t have to worry about shared access. The
supported accessModes are:

• ReadWriteOnce - can be mounted read / write by only one pod

100

https://kubernetes.io/docs/concepts/storage/storage-classes/

• ReadOnlyMany – can be mounted read-only by many pods

• ReadWriteMany – can be mounted as read-write by many pods

12.3. Services
A Service exposes an application on a group of pods. In our case we will be providing two Services: a
db-rw Service which connects to our primary PostgreSQL instance and a db-r Service which connects
to our standby PostgreSQL instances. Unlike Docker Compose, even on our internal network we have
to explicitly state which ports we make available.

example-final/db-k8s.yml (excerpted)

apiVersion: v1
kind: Service
metadata:
 name: db-rw
 labels:
 app: db-rw
spec:
 selector:
 app: db-rw
 ports:
 - protocol: TCP
 port: 5432

apiVersion: v1
kind: Service
metadata:
 name: db-r
 labels:
 app: db-r
spec:
 selector:
 app: db-r
 ports:
 - protocol: TCP
 port: 5432

The selector field above defines how a Service knows which pods to utilize. In our case all pods with
the app label db-r are used by the db-r Service and a similar rule is applied to the db-rw Service. Both
services accept incoming connections on port 5432 and route those connections to 5432. In the case
where there are multiple pods in a Service a load balancing scheme is used by default.

From a service discovery perspective, Kubernetes Services make things easier. If you want to connect

101

to a read-only database instance all you have to do is use the hostname db-r. Similarly, if you want to
connect to a read-write database, use the hostname db-rw. The DNS resolution, load-balancing proxy,
and routing are set up automatically.

12.4. Deployments
A Deployment tells Kubernetes how to create and monitor pods. The bulk of our work will be done in
the db-r and db-rw Deployments. Fortunately we have already covered the logic of what needs to
happen previously, so let’s jump right in and take a look at the Deployment for our primary
PostgreSQL instance:

example-final/db-k8s.yml (excerpted)

apiVersion: apps/v1
kind: Deployment
metadata:
 name: db-rw
 labels:
 app: db-rw
spec:
 replicas: 1
 selector:
 matchLabels:
 app: db-rw
 template:
 metadata:
 labels:
 app: db-rw
 spec:
 containers:
 - name: db-rw
 image: postgres:12.2
 env:
 - name: POSTGRES_PASSWORD
 value: "changeme"
 - name: POSTGRES_REPLICA_PASSWORD
 value: "changeme"
 command:
 - bash
 - "-c"
 - |
 set -ex

 if [-s "/var/lib/postgresql/data/PG_VERSION"]; then
 echo "Database already exists, not creating a new one."
 else

102

 rm -rf /var/lib/postgresql/data/*
 chown postgres /var/lib/postgresql/data

 su -c "initdb --username=postgres --pwfile=<(echo
\"$POSTGRES_PASSWORD\")" postgres

 # Start a temporary server listening on localhost
 su -c "pg_ctl -D /var/lib/postgresql/data -w start" postgres

 # Create a user for replication operations and initialize our
 # example database
 psql -v ON_ERROR_STOP=1 --username postgres --dbname postgres <<EOF
 CREATE USER repuser REPLICATION LOGIN ENCRYPTED PASSWORD
'$POSTGRES_REPLICA_PASSWORD';
 CREATE DATABASE example;
 \c example
 CREATE TABLE users(
 email VARCHAR(255) PRIMARY KEY,
 hash VARCHAR(255) NOT NULL
);
 EOF
 # ^ this EOF has to be in line with the YAML scalar block

 # Stop the temporary server
 su -c "pg_ctl -D /var/lib/postgresql/data -m fast -w stop" postgres

 # Set up authentication parameters
 echo "host replication all all md5" >>
/var/lib/postgresql/data/pg_hba.conf
 echo "host all all all md5" >> /var/lib/postgresql/data/pg_hba.conf
 fi

 # Now run the server
 su -c postgres postgres
 volumeMounts:
 - name: db-primary-storage
 mountPath: /var/lib/postgresql/data
 volumes:
 - name: db-primary-storage
 persistentVolumeClaim:
 claimName: db-primary-pv-claim

Ths Deployment tells Kubernetes to maintain one replica of the pod defined in the template section.
The containers section is a list of one container that uses the postgres image from Docker Hub and
overrides the ENTRYPOINT of that Dockerfile (this is command in Kubernetespeak). Our script is taken
almost line-for-line from our previous example. Lastly, this deployment makes use of our
PersistentVolumeClaim defined previously and mounts it in /var/lib/postgresql/data.

103

Let’s take a look at the Deployment for our standby PostgreSQL instances:

example-final/db-k8s.yml (excerpted)

apiVersion: apps/v1
kind: Deployment
metadata:
 name: db-r
 labels:
 app: db-r
spec:
 replicas: 2
 selector:
 matchLabels:
 app: db-r
 template:
 metadata:
 labels:
 app: db-r
 spec:
 containers:
 - name: db-r
 image: postgres:12.2
 env:
 - name: POSTGRES_REPLICA_PASSWORD
 value: "changeme"
 command:
 - bash
 - "-c"
 - |
 set -ex

 # Set up our password in .pgpass so we can connect to replicate
 # without a prompt
 echo "db-rw:5432:replication:repuser:$POSTGRES_REPLICA_PASSWORD" >>
/var/lib/postgresql/.pgpass
 chown postgres /var/lib/postgresql/.pgpass
 chmod 600 /var/lib/postgresql/.pgpass

 # we may start before their are WALs, so we need to make this directory
 mkdir -p /var/lib/postgresql/data/pg_wal
 chown postgres /var/lib/postgresql/data/pg_wal

 # Clone the database from db-rw
 rm -rf /var/lib/postgresql/data/*
 chown postgres /var/lib/postgresql/data
 chmod -R 700 /var/lib/postgresql/data

104

 su -c "pg_basebackup -h db-rw -D /var/lib/postgresql/data -U repuser -w -v
-P -X stream" postgres

 # Add connection info
 cat << EOF >> /var/lib/postgresql/data/postgresql.conf
 primary_conninfo = 'host=db-rw port=5432 user=repuser
password=$POSTGRES_REPLICA_PASSWORD'
 EOF

 # Notify postgres that this is a standby server
 touch /var/lib/postgresql/data/standby.signal

 # Now run the server
 su -c postgres postgres

This Deployment stands up two replicas. Each replica clones the primary database (using the
hostname db-rw provided by our db-rw Service) and then acts as a hot standby. A
PersistentVolumeClaim is not used, meaning if push came to shove, we may not be able to easily
recover the database from one of these containers.

Notice that neither Deployment has to search for the primary or monitor the other instances.
Kubernetes handles this for us. In fact, the standbys don’t even have to wait for the primary to be up. If
they can’t clone the database, they will fail and Kubernetes will restart them until they work.

Much of the hard work of our earlier example is now handled for us by a proper orchestration
framework.

12.5. Running the Example
Let’s take a look at the example in action:

PS example-final> kubectl apply -f .\db-k8s.yml
persistentvolumeclaim/db-primary-pv-claim created
service/db-rw created
service/db-r created
deployment.apps/db-rw created
deployment.apps/db-r created

The kubectl apply -f command can be used to bring up all of the objects defined in a file. It should also
be noted that it can work with an entire directory of files, allowing for separation of logical segments,
unlike a docker-compose.yml file.

105

PS example-final> kubectl get pod
NAME READY STATUS RESTARTS AGE
db-r-54d9bc6496-cjhn8 1/1 Running 1 2m31s
db-r-54d9bc6496-pg8b2 1/1 Running 0 2m31s
db-rw-6fd7767ddd-g6kvj 1/1 Running 0 2m31s

kubectl get pod show you all of the pods that are currently running. All of the pods in our deployment
are now up. They are given hash codes for the second part of their name to keep them unique. You may
notice that db-r-54d9bc6496-cjhn8 had to be restarted once. It probably came up before db-rw-
6fd7767ddd-g6kvj was ready to have its database cloned.

Using the command kubectl logs we can get the logs for a pod. Let’s take a look at our primary
PostgreSQL instance:

PS example-final> kubectl logs db-rw-6fd7767ddd-g6kvj
+ '[' -s /var/lib/postgresql/PG_VERSION ']'
+ rm -rf '/var/lib/postgresql/data/*'
+ chown postgres /var/lib/postgresql/data
+ su -c 'initdb --username=postgres --pwfile=<(echo "changeme")' postgres
The files belonging to this database system will be owned by user "postgres".
This user must also own the server process.

The database cluster will be initialized with locale "en_US.utf8".
The default database encoding has accordingly been set to "UTF8".
The default text search configuration will be set to "english".

Data page checksums are disabled.

fixing permissions on existing directory /var/lib/postgresql/data ... ok
creating subdirectories ... ok
selecting dynamic shared memory implementation ... posix
selecting default max_connections ... 100
selecting default shared_buffers ... 128MB
selecting default time zone ... Etc/UTC
creating configuration files ... ok
running bootstrap script ... ok
performing post-bootstrap initialization ... ok
initdb: warning: enabling "trust" authentication for local connections
You can change this by editing pg_hba.conf or using the option -A, or
--auth-local and --auth-host, the next time you run initdb.
syncing data to disk ... ok

Success. You can now start the database server using:

 pg_ctl -D /var/lib/postgresql/data -l logfile start

106

+ su -c 'pg_ctl -D /var/lib/postgresql/data -w start' postgres
waiting for server to start....2020-04-06 01:34:45.086 UTC [27] LOG: starting PostgreSQL
12.2 (Debian 12.2-2.pgdg100+1) on x86_64
-pc-linux-gnu, compiled by gcc (Debian 8.3.0-6) 8.3.0, 64-bit
2020-04-06 01:34:45.086 UTC [27] LOG: listening on IPv4 address "0.0.0.0", port 5432
2020-04-06 01:34:45.086 UTC [27] LOG: listening on IPv6 address "::", port 5432
2020-04-06 01:34:45.091 UTC [27] LOG: listening on Unix socket
"/var/run/postgresql/.s.PGSQL.5432"
2020-04-06 01:34:45.104 UTC [28] LOG: database system was shut down at 2020-04-06
01:34:44 UTC
2020-04-06 01:34:45.109 UTC [27] LOG: database system is ready to accept connections
 done
server started
+ psql -v ON_ERROR_STOP=1 --username postgres --dbname postgres
CREATE ROLE
+ su -c 'pg_ctl -D /var/lib/postgresql/data -m fast -w stop' postgres
waiting for server to shut down....2020-04-06 01:34:45.238 UTC [27] LOG: received fast
shutdown request
2020-04-06 01:34:45.242 UTC [27] LOG: aborting any active transactions
2020-04-06 01:34:45.244 UTC [27] LOG: background worker "logical replication launcher"
(PID 34) exited with exit code 1
2020-04-06 01:34:45.244 UTC [29] LOG: shutting down
2020-04-06 01:34:45.275 UTC [27] LOG: database system is shut down
 done
server stopped
+ echo 'host replication all all md5'
+ echo 'host all all all md5'
+ su -c postgres postgres
2020-04-06 01:34:45.362 UTC [46] LOG: starting PostgreSQL 12.2 (Debian 12.2-2.pgdg100+1)
on x86_64-pc-linux-gnu, compiled by gcc
(Debian 8.3.0-6) 8.3.0, 64-bit
2020-04-06 01:34:45.363 UTC [46] LOG: listening on IPv4 address "0.0.0.0", port 5432
2020-04-06 01:34:45.363 UTC [46] LOG: listening on IPv6 address "::", port 5432
2020-04-06 01:34:45.368 UTC [46] LOG: listening on Unix socket
"/var/run/postgresql/.s.PGSQL.5432"
2020-04-06 01:34:45.383 UTC [47] LOG: database system was shut down at 2020-04-06
01:34:45 UTC
2020-04-06 01:34:45.388 UTC [46] LOG: database system is ready to accept connections

Just as before, the primary node initialized a database, set up a replication user, and started postgres.

Let’s take a look at one of the standby nodes:

107

PS example-final> kubectl logs db-r-54d9bc6496-cjhn8
+ echo db-rw:5432:replication:repuser:changeme
+ chown postgres /var/lib/postgresql/.pgpass
+ chmod 600 /var/lib/postgresql/.pgpass
+ mkdir -p /var/lib/postgresql/data/pg_wal
+ chown postgres /var/lib/postgresql/data/pg_wal
+ rm -rf /var/lib/postgresql/data/pg_wal
+ chown postgres /var/lib/postgresql/data
+ chmod -R 700 /var/lib/postgresql/data
+ su -c 'pg_basebackup -h db-rw -D /var/lib/postgresql/data -U repuser -w -v -P -X
stream' postgres
pg_basebackup: initiating base backup, waiting for checkpoint to complete
pg_basebackup: checkpoint completed
pg_basebackup: write-ahead log start point: 0/3000028 on timeline 1
pg_basebackup: starting background WAL receiver
pg_basebackup: created temporary replication slot "pg_basebackup_57"
 0/24554 kB (0%), 0/1 tablespace (...lib/postgresql/data/backup_label)
24564/24564 kB (100%), 0/1 tablespace (...ostgresql/data/global/pg_control)
24564/24564 kB (100%), 1/1 tablespace
pg_basebackup: write-ahead log end point: 0/3000100
pg_basebackup: waiting for background process to finish streaming ...
pg_basebackup: syncing data to disk ...
pg_basebackup: base backup completed
+ cat
+ touch /var/lib/postgresql/data/standby.signal
+ su -c postgres postgres
2020-04-06 01:34:47.283 UTC [18] LOG: starting PostgreSQL 12.2 (Debian 12.2-2.pgdg100+1)
on x86_64-pc-linux-gnu, compiled by gcc
(Debian 8.3.0-6) 8.3.0, 64-bit
2020-04-06 01:34:47.283 UTC [18] LOG: listening on IPv4 address "0.0.0.0", port 5432
2020-04-06 01:34:47.283 UTC [18] LOG: listening on IPv6 address "::", port 5432
2020-04-06 01:34:47.289 UTC [18] LOG: listening on Unix socket
"/var/run/postgresql/.s.PGSQL.5432"
2020-04-06 01:34:47.304 UTC [19] LOG: database system was interrupted; last known up at
2020-04-06 01:34:46 UTC
2020-04-06 01:34:47.442 UTC [19] LOG: entering standby mode
2020-04-06 01:34:47.446 UTC [19] LOG: redo starts at 0/3000028
2020-04-06 01:34:47.449 UTC [19] LOG: consistent recovery state reached at 0/3000100
2020-04-06 01:34:47.449 UTC [18] LOG: database system is ready to accept read only
connections
2020-04-06 01:34:47.455 UTC [23] LOG: started streaming WAL from primary at 0/4000000 on
timeline 1

This standby backed up the primary database and started streaming logs from the primary.

The kubectl exec command lets you execute a command on a running pod. Lets use this to run psql on

108

one of the standbys, connect to the primary, create a table, and then check to see if it shows up on the
standbys:

PS example-final> kubectl exec -it db-r-54d9bc6496-pg8b2 -- bash
root@db-r-54d9bc6496-pg8b2:/# psql -h db-rw -U postgres
Password for user postgres:
psql (12.2 (Debian 12.2-2.pgdg100+1))
Type "help" for help.

postgres=# \dt
Did not find any relations.
postgres=# CREATE TABLE test(test_column INTEGER);
CREATE TABLE
postgres=# \dt
 List of relations
 Schema | Name | Type | Owner
--------+------+-------+----------
 public | test | table | postgres
(1 row)

postgres=# \q
root@db-r-54d9bc6496-pg8b2:/# psql -h db-r -U postgres
Password for user postgres:
psql (12.2 (Debian 12.2-2.pgdg100+1))
Type "help" for help.

postgres=# \dt
 List of relations
 Schema | Name | Type | Owner
--------+------+-------+----------
 public | test | table | postgres
(1 row)

postgres=# \q

Sure enough, anything we create on the primary (which we access by resolving the name db-rw shows
up on the standby. Now lets try performing a write operation on a standby:

root@db-r-54d9bc6496-pg8b2:/# psql -h db-r -U postgres
Password for user postgres:
psql (12.2 (Debian 12.2-2.pgdg100+1))
Type "help" for help.

postgres=# CREATE TABLE test2(test_column INTEGER);
ERROR: cannot execute CREATE TABLE in a read-only transaction

109

It fails, as it should. Lets take a look at how Services glue all of this together with the kubectl get
service command:

PS example-final> kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
db-r ClusterIP 10.106.33.23 <none> 5432/TCP 41m
db-rw ClusterIP 10.99.113.228 <none> 5432/TCP 41m
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 35h

db-r and db-rw are Services, so if a pod tries to resolve on of those names, they will get the CLUSTER-IP
(10.106.33.23 and 10.99.113.228 respectively). That ClusterIP is a proxy that will forward their request
to a pod that can handle it. This allows for load-balancing and high availability.

On the subject of HA, the last thing we have to check is that pods will be automatically restarted. Let’s
do something bad to one of our pods with the kubectl exec command:

PS example-final> kubectl exec -it db-rw-6fd7767ddd-g6kvj -- bash
root@db-rw-6fd7767ddd-g6kvj:/# killall5 -9
command terminated with exit code 137
PS C:\Users\rxt1077\it490\example-final> kubectl get pods
NAME READY STATUS RESTARTS AGE
db-r-54d9bc6496-cjhn8 1/1 Running 1 48m
db-r-54d9bc6496-pg8b2 1/1 Running 0 48m
db-rw-6fd7767ddd-g6kvj 1/1 Running 1 48m

killall5 -9 will send a kill signal to all processes on the pod, causing it to shut down. Kubernetes
brought it back up again as evidenced by RESTARTS being equal to one. While the primary is restarting
you will lose write access, but the standbys will continue to provide read access. Once it is back up (a
matter of seconds), everything should be functioning as normal.

12.6. Conclusion
Using Kubernetes we were able to quickly build a HA PostgreSQL cluster. This is just the tip of the
iceberg for what Kubernetes supports and as you learn more about it you should be able to revisit and
improve this implementation.

12.7. Questions
1. A systems architect was using a stock Docker Hub image with a custom ENTRYPOINT point script she

had designed. This required a Dockerfile, BASH script, and a directory to store them. When she
migrated to Kubernetes she was able to do this all in one YAML file. Describe how this is possible.

110

2. Why are Services essential to replication?

3. Why do we define two Deployments for our example?

4. How can our database deployment be improved?

5. Compare and contrast Kubernetes PersistentVolumeClaims with Docker compose named volumes.

[4] The fascinating details of how this works are revealed in this blog post.

111

https://platform9.com/blog/tutorial-dynamic-provisioning-of-persistent-storage-in-kubernetes-with-minikube

Chapter 13. Messaging in Kubernetes

13.1. Introduction
In this section we will build a RabbitMQ cluster in Kubernetes to support our application.

13.2. RabbitMQ
RabbitMQ is built on Erlang/OTP, a platform designed in the telecom industry. Given the nature of that
industry, Erlang/OTP was designed to be highly scalable and have strong concurrency support. In other
words, it is the perfect platform for building non-hierarchical, distributed applications. To give you an
example that you may be familiar with, Whatsapp runs on Erlang/OTP and it handles about two
million connected users per server.

All nodes in a RabbitMQ cluster are equal peers, there is no primary / standby structure like we used in
the database example. The RAFT consensus algorithm is used to make decisions for the cluster and as
such, it is highly recommended that the number of nodes be odd. Given the amount of traffic and the
need for quick communication, clustering is designed to function at the LAN level, not the WAN level.

Messages in queues are not replicated by default, although that can be turned on. For us, this only
really matters for the incoming queue as our other queues are exclusive. Any node can route requests
through the node that happens to contain the incoming queue and given the short nature of our
connections this should function just fine. It is also worth nothing that when a node joins a cluster, its
state is reset. Once again, given the nature of our connections this shouldn’t have much of an impact
on our application.

It is recommended that all nodes run the same version of Erlang/OTP. This should be easy for us since
our nodes will be built from the same image. Nodes also need to have the same Erlang cookie (shared
secret) so they can communicate with each other securely. This can be passed via the
RABBITMQ_ERLANG_COOKIE environment variable.

13.3. Kubernetes
RabbitMQ has a peer discovery plugin for Kubernetes that is included with its base image. It just needs
to be enabled. RabbitMQ also provides a repository that demonstrates how to use it. This example will
implement something similar, but before we do, we need to go over some new Kubernetes objects.

112

https://raft.github.io/
https://www.rabbitmq.com/quorum-queues.html
https://www.rabbitmq.com/ha.html
https://github.com/rabbitmq/rabbitmq-peer-discovery-k8s/tree/master/examples

Our example will make use of StatefulSets, which are similar to Deployments in that they use a
template to build pods. StatefulSets also maintain a unique, predictable, enumerated name which in
our case will be: messaging-0, messaging-1, messaging-2, etc. Lastly, StatefulSets bring up their pods one-
at-a-time, solving some initialization / cluster-building problems we’ve encountered in the past.

The peer discovery plugin, rabbit_peer_discovery_k8s, uses the Kubernetes API to find other nodes.
Kubernetes uses Role Based Access Control (RBAC) by default to grant permissions to use the
Kubernetes API. Therefore we will need to configure a ServiceAccount, Role, and RoleBinding to
allow the plugin to make the requests it needs.

RabbitMQ requires that the hostnames of all cluster members be fully resolvable via DNS. By setting up
a Service we can let Kubernetes handle the hostname resolution for us. While this isn’t new to us, for
RabbitMQ it is important to understand exactly how Kubernetes assigns fully qualified domain names
(FQDN). By default, it uses the form <hostname>.<servicename>.<namespace>.svc.cluster.local. If you
don’t specify a namespace, you are working in the default namespace, therefore we could expect the
FQDN for the first node of our RabbitMQ cluster to be messaging-
0.messaging.default.svc.cluster.local.

To make things easier we will be using a ConfigMap to store our custom configs for RabbitMQ. This
allows us to put our config files directly inside our YAML definitions and then mount them as volumes.

13.4. Example
Now we’ll look at our actual Kubernetes objects. These can be found in ../example-final/messaging-
k8s.yml.

13.4.1. RBAC

Let’s start by establishing a ServiceAccount for our pods and binding it to a Role that allows us to GET
or LIST endpoints for a Service:

113

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/

example-final/messaging-k8s.yml (excerpted)

apiVersion: v1
kind: ServiceAccount
metadata:
 name: messaging

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: Role
metadata:
 name: rabbitmq-peer-discovery-rbac
rules:
 - apiGroups: [""]
 resources: ["endpoints"]
 verbs: ["get", "list"]

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
 name: rabbitmq-peer-discovery-rbac
subjects:
 - kind: ServiceAccount
 name: messaging
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: rabbitmq-peer-discovery-rbac

The ServiceAccount messaging will be used in our StatefulSet so that when a node is brought up, it
can query the Kubernetes API to discover the other nodes. You will see this process in the logs later.

13.4.2. ConfigMap

114

example-final/messaging-k8s.yml (excerpted)

apiVersion: v1
kind: ConfigMap
metadata:
 name: rabbitmq-config
data:
 enabled_plugins: |
 [rabbitmq_management,rabbitmq_peer_discovery_k8s].
 rabbitmq.conf: |
 cluster_formation.peer_discovery_backend = rabbit_peer_discovery_k8s
 cluster_formation.k8s.host = kubernetes.default.svc.cluster.local
 cluster_formation.k8s.address_type = hostname
 cluster_formation.node_cleanup.interval = 30
 cluster_formation.node_cleanup.only_log_warning = true
 cluster_partition_handling = autoheal
 queue_master_locator=min-masters
 loopback_users.guest = false

The keys and values in the data section of a ConfigMap are used to hold information that is later
placed in a file in a pod template. ConfigMaps are mounted as volumes in the template as we will see
in a moment.

13.4.3. Services

We will use a Service for two purposes:

1. To keep track of what nodes are in the RabbitMQ cluster. The rabbit_peer_discovery_k8s plugin will
use this when RabbitMQ is started on a pod.

2. To load balance requests. We can send AMQP traffic and HTTP traffic to any node for messaging
and administrative interface purposes respectively.

115

example-final/messaging-k8s.yml (excerpted)

apiVersion: v1
kind: Service
metadata:
 name: messaging
 labels:
 app: messaging
spec:
 selector:
 app: messaging
 ports:
 - name: amqp
 protocol: TCP
 port: 5672
 - name: http
 protocol: TCP
 port: 15672

This is a standard Kubernetes service that will be given a ClusterIP and will load balance requests for
port 5672 and 15672 (AMQP and RabbitMQ admin interface, respectively).

13.4.4. StatefulSet

example-final/messaging-k8s.yml (excerpted)

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: messaging
 labels:
 app: messaging
spec:
 serviceName: messaging
 replicas: 3
 selector:
 matchLabels:
 app: messaging
 template:
 metadata:
 labels:
 app: messaging
 spec:
 serviceAccountName: messaging
 containers:

116

 - name: rabbitmq
 image: rabbitmq:3.8.3-management
 env:
 - name: MY_POD_NAME
 valueFrom:
 fieldRef:
 apiVersion: v1
 fieldPath: metadata.name
 - name: RABBITMQ_USE_LONGNAME
 value: "true"
 - name: K8S_SERVICE_NAME
 value: messaging
 - name: K8S_HOSTNAME_SUFFIX
 value: .messaging.default.svc.cluster.local
 - name: RABBITMQ_NODENAME
 value: rabbit@$(MY_POD_NAME).messaging.default.svc.cluster.local
 - name: RABBITMQ_ERLANG_COOKIE
 value: "changeme"
 volumeMounts:
 - name: config-volume
 mountPath: /etc/rabbitmq
 volumes:
 - name: config-volume
 configMap:
 name: rabbitmq-config
 items:
 - key: rabbitmq.conf
 path: rabbitmq.conf
 - key: enabled_plugins
 path: enabled_plugins

This should look pretty similar to the Deployment we worked on earlier. It creates three replicas by
default. Some new things that it has introduced:

• Environment variables can be pulled from Kubernetes parameters, see MY_POD_NAME for an example.

• ConfigMaps can be mounted in a directory. The keys in the data section serve as file names and the
values service as the file contents. You may want to brush up on your YAML multiline strings.

• The environment variables K8S_SERVICE_NAME and K8S_HOSTNAME_SUFFIX are used by the discovery
plugin. If they are not defined it will fail.

• serviceAccountName is set to messaging to take advantage of our RBAC configuration.

13.4.5. Running the Example

Let’s apply our system to a Kubernetes cluster and perform some analysis:

117

https://yaml-multiline.info/

PS \example-final> kubectl apply -f .\messaging-k8s.yml
serviceaccount/messaging created
role.rbac.authorization.k8s.io/rabbitmq-peer-discovery-rbac created
rolebinding.rbac.authorization.k8s.io/rabbitmq-peer-discovery-rbac created
configmap/rabbitmq-config created
service/messaging created
statefulset.apps/messaging created
PS C:\Users\rxt1077\it490\example-final> kubectl get pod
NAME READY STATUS RESTARTS AGE
messaging-0 1/1 Running 0 4m2s
messaging-1 1/1 Running 0 4m1s
messaging-2 1/1 Running 0 4m

As you can see, it brings up three pods. Unlike a Deployment which uses hashes, the pod names are
enumerated. Also unlink a Deployment they are brought up one-at-a-time.

Let’s look at the logs and see how startup proceeded for messaging-0:

118

PS C:\Users\rxt1077\it490\example-final> kubectl logs messaging-0
2020-04-11 18:38:08.118 [info] <0.9.0> Feature flags: list of feature flags found:
2020-04-11 18:38:08.118 [info] <0.9.0> Feature flags: [] drop_unroutable_metric
<snip>
 cookie hash : TLnIqASP0CKUR3/LGkEZGg==①
<snip>
2020-04-11 18:38:08.301 [info] <0.278.0> Node database directory at
/var/lib/rabbitmq/mnesia/rabbit@messaging-0.messaging.default.svc.cluster.local is empty.
Assuming we need to join an existing cluster or initialise from scratch...
2020-04-11 18:38:08.301 [info] <0.278.0> Configured peer discovery backend:
rabbit_peer_discovery_k8s
2020-04-11 18:38:08.301 [info] <0.278.0> Will try to lock with peer discovery backend
rabbit_peer_discovery_k8s
2020-04-11 18:38:08.301 [info] <0.278.0> Peer discovery backend does not support locking,
falling back to randomized delay
2020-04-11 18:38:08.301 [info] <0.278.0> Peer discovery backend rabbit_peer_discovery_k8s
supports registration.
2020-04-11 18:38:08.302 [info] <0.278.0> Will wait for 1638 milliseconds before
proceeding with registration...②
2020-04-11 18:38:09.975 [info] <0.278.0> All discovered existing cluster peers:
rabbit@messaging-2.messaging.default.svc.cluster.local, rabbit@messaging-
1.messaging.default.svc.cluster.local, rabbit@messaging-
0.messaging.default.svc.cluster.local
2020-04-11 18:38:09.975 [info] <0.278.0> Peer nodes we can cluster with:
rabbit@messaging-2.messaging.default.svc.cluster.local, rabbit@messaging-
1.messaging.default.svc.cluster.local③
2020-04-11 18:38:09.981 [warning] <0.278.0> Could not auto-cluster with node
rabbit@messaging-2.messaging.default.svc.cluster.local: {error,mnesia_not_running}
2020-04-11 18:38:09.985 [warning] <0.278.0> Could not auto-cluster with node
rabbit@messaging-1.messaging.default.svc.cluster.local: {error,tables_not_present}
2020-04-11 18:38:09.985 [warning] <0.278.0> Could not successfully contact any node of:
rabbit@messaging-2.messaging.default.svc.c
luster.local,rabbit@messaging-1.messaging.default.svc.cluster.local (as in Erlang
distribution). Starting as a blank standalone node...④
<snip>
2020-04-11 18:38:11.041 [info] <0.9.0> Server startup complete; 5 plugins started.
 * rabbitmq_management
 * rabbitmq_web_dispatch
 * rabbitmq_management_agent
 * rabbitmq_peer_discovery_k8s
 * rabbitmq_peer_discovery_common
 completed with 5 plugins.
2020-04-11 18:38:11.650 [info] <0.535.0> rabbit on node 'rabbit@messaging-
2.messaging.default.svc.cluster.local' up ⑤
2020-04-11 18:38:11.859 [info] <0.535.0> rabbit on node 'rabbit@messaging-
1.messaging.default.svc.cluster.local' up

119

① This should match the cookie on the other nodes.

② This randomized wait could be optimized since we know we will start in order. See the official
example for a better implementation.

③ Other peers were detected, but RabbitMQ was not fully initialized on them.

④ Therefore messaging-0 became a standalone node.

⑤ Eventually the other nodes joined us.

Let’s look at the logs and see how startup proceeded for messaging-1:

120

PS example-final> kubectl logs messaging-1
2020-04-11 18:38:09.658 [info] <0.9.0> Feature flags: list of feature flags found:
2020-04-11 18:38:09.658 [info] <0.9.0> Feature flags: [] drop_unroutable_metric
2020-04-11 18:38:09.658 [info] <0.9.0> Feature flags: [] empty_basic_get_metric
<snip>
 cookie hash : TLnIqASP0CKUR3/LGkEZGg==①
<snip>
2020-04-11 18:38:09.790 [info] <0.278.0> Node database directory at
/var/lib/rabbitmq/mnesia/rabbit@messaging-1.messaging.default.svc.cluster.local is empty.
Assuming we need to join an existing cluster or initialise from scratch...
2020-04-11 18:38:09.790 [info] <0.278.0> Configured peer discovery backend:
rabbit_peer_discovery_k8s
2020-04-11 18:38:09.791 [info] <0.278.0> Will try to lock with peer discovery backend
rabbit_peer_discovery_k8s
2020-04-11 18:38:09.791 [info] <0.278.0> Peer discovery backend does not support locking,
falling back to randomized delay
2020-04-11 18:38:09.791 [info] <0.278.0> Peer discovery backend rabbit_peer_discovery_k8s
supports registration.
2020-04-11 18:38:09.791 [info] <0.278.0> Will wait for 855 milliseconds before proceeding
with registration...
2020-04-11 18:38:10.670 [info] <0.278.0> All discovered existing cluster peers:
rabbit@messaging-2.messaging.default.svc.cluster.local, rabbit@messaging-
1.messaging.default.svc.cluster.local, rabbit@messaging-
0.messaging.default.svc.cluster.local
2020-04-11 18:38:10.670 [info] <0.278.0> Peer nodes we can cluster with:
rabbit@messaging-2.messaging.default.svc.cluster.local, rabbit@messaging-
0.messaging.default.svc.cluster.local
2020-04-11 18:38:10.673 [warning] <0.278.0> Could not auto-cluster with node
rabbit@messaging-2.messaging.default.svc.cluster.local: {error,tables_not_present}
2020-04-11 18:38:10.696 [info] <0.278.0> Node 'rabbit@messaging-
0.messaging.default.svc.cluster.local' selected for auto-clustering②
<snip>
2020-04-11 18:38:12.118 [info] <0.9.0> Server startup complete; 5 plugins started.
 * rabbitmq_management
 * rabbitmq_web_dispatch
 * rabbitmq_management_agent
 * rabbitmq_peer_discovery_k8s
 * rabbitmq_peer_discovery_common
 completed with 5 plugins.

① Sure enough, our cookie is the same

② messaging-0 is up an available for peering, but messaging-1 is not. We peered with messaging-0

Finally, let’s look at the logs and see how startup proceeded for messaging-2:

121

PS example-final> kubectl logs messaging-2
2020-04-11 18:38:10.155 [info] <0.9.0> Feature flags: list of feature flags found:
2020-04-11 18:38:10.155 [info] <0.9.0> Feature flags: [] drop_unroutable_metric
<snip>
 cookie hash : TLnIqASP0CKUR3/LGkEZGg==①
<snip>
2020-04-11 18:38:10.279 [info] <0.287.0> Configured peer discovery backend:
rabbit_peer_discovery_k8s
2020-04-11 18:38:10.279 [info] <0.287.0> Will try to lock with peer discovery backend
rabbit_peer_discovery_k8s
2020-04-11 18:38:10.279 [info] <0.287.0> Peer discovery backend does not support locking,
falling back to randomized delay
2020-04-11 18:38:10.279 [info] <0.287.0> Peer discovery backend rabbit_peer_discovery_k8s
supports registration.
2020-04-11 18:38:10.279 [info] <0.287.0> Will wait for 598 milliseconds before proceeding
with registration...
2020-04-11 18:38:10.891 [info] <0.287.0> All discovered existing cluster peers:
rabbit@messaging-2.messaging.default.svc.cluster.local, rabbit@messaging-
1.messaging.default.svc.cluster.local, rabbit@messaging-
0.messaging.default.svc.cluster.local
2020-04-11 18:38:10.891 [info] <0.287.0> Peer nodes we can cluster with:
rabbit@messaging-1.messaging.default.svc.cluster.local, rabbit@messaging-
0.messaging.default.svc.cluster.local②
2020-04-11 18:38:10.946 [info] <0.287.0> Node 'rabbit@messaging-
1.messaging.default.svc.cluster.local' selected for auto-clustering
<snip>
2020-04-11 18:38:12.009 [info] <0.9.0> Server startup complete; 5 plugins started.
 * rabbitmq_management
 * rabbitmq_web_dispatch
 * rabbitmq_management_agent
 * rabbitmq_peer_discovery_k8s
 * rabbitmq_peer_discovery_common

① Same cookie as all the other nodes, good.

② messaging-2 could peer with either messaging-0 or messaging-1 as it was started last. It chose
messaging-1.

The last thing we can do is look at the output of rabbitmqctl cluster_status to see how our cluster is
running. Executing this command on any node will tell you about the health of the entire RabbitMQ
cluster:

PS example-final> kubectl exec -it messaging-0 -- rabbitmqctl cluster_status
Cluster status of node rabbit@messaging-0.messaging.default.svc.cluster.local ...
Basics

Cluster name: rabbit@messaging-0.messaging.default.svc.cluster.local

122

https://www.rabbitmq.com/rabbitmqctl.8.html

Disk Nodes

rabbit@messaging-0.messaging.default.svc.cluster.local
rabbit@messaging-1.messaging.default.svc.cluster.local
rabbit@messaging-2.messaging.default.svc.cluster.local

Running Nodes

rabbit@messaging-0.messaging.default.svc.cluster.local
rabbit@messaging-1.messaging.default.svc.cluster.local
rabbit@messaging-2.messaging.default.svc.cluster.local

Versions

rabbit@messaging-0.messaging.default.svc.cluster.local: RabbitMQ 3.8.3 on Erlang 22.3.1
rabbit@messaging-1.messaging.default.svc.cluster.local: RabbitMQ 3.8.3 on Erlang 22.3.1
rabbit@messaging-2.messaging.default.svc.cluster.local: RabbitMQ 3.8.3 on Erlang 22.3.1

Alarms

(none)

Network Partitions

(none)

Listeners

Node: rabbit@messaging-0.messaging.default.svc.cluster.local, interface: [::], port:
25672, protocol: clustering, purpose: inter-node and CLI tool communication
Node: rabbit@messaging-0.messaging.default.svc.cluster.local, interface: [::], port:
5672, protocol: amqp, purpose: AMQP 0-9-1 and AMQP 1.0
Node: rabbit@messaging-0.messaging.default.svc.cluster.local, interface: [::], port:
15672, protocol: http, purpose: HTTP API
Node: rabbit@messaging-1.messaging.default.svc.cluster.local, interface: [::], port:
25672, protocol: clustering, purpose: inter-node and CLI tool communication
Node: rabbit@messaging-1.messaging.default.svc.cluster.local, interface: [::], port:
5672, protocol: amqp, purpose: AMQP 0-9-1 and AMQP 1.0
Node: rabbit@messaging-1.messaging.default.svc.cluster.local, interface: [::], port:
15672, protocol: http, purpose: HTTP API
Node: rabbit@messaging-2.messaging.default.svc.cluster.local, interface: [::], port:
25672, protocol: clustering, purpose: inter-node and CLI tool communication
Node: rabbit@messaging-2.messaging.default.svc.cluster.local, interface: [::], port:
5672, protocol: amqp, purpose: AMQP 0-9-1 and AMQP 1.0
Node: rabbit@messaging-2.messaging.default.svc.cluster.local, interface: [::], port:
15672, protocol: http, purpose: HTTP API

123

Feature flags

Flag: drop_unroutable_metric, state: enabled
Flag: empty_basic_get_metric, state: enabled
Flag: implicit_default_bindings, state: enabled
Flag: quorum_queue, state: enabled
Flag: virtual_host_metadata, state: enabled

This shows us that there are three nodes, the nodes are all running the same version of RabbitMQ and
Erlang, and that they are listening for AMQP and admin interface connections.

13.5. Resources
• RabbitMQ Clustering Guide

• RabbitMQ Cluster Formation and Peer Discovery

• RabbitMQ Documentation on Docker Hub

• Deploy RabbitMQ on Kubernetes with the Kubernetes Peer Discovery Plugin

13.6. Questions
1. What sets RabbitMQ clustering apart from more traditional primary / standby replication?

2. What is the difference between a Deployment and a StatefulSet? Why did we choose a StatefulSet
for this application?

3. Why does our peer discovery plugin use the Kubernetes API and what alternatives are there?

4. What role does RBAC play in the Kubernetes cluster?

5. What does a ConfigMap do and how is it used?

124

https://www.rabbitmq.com/clustering.html
https://www.rabbitmq.com/cluster-formation.html
https://hub.docker.com/_/rabbitmq
https://github.com/rabbitmq/rabbitmq-peer-discovery-k8s/tree/master/examples

Chapter 14. Front End in Kubernetes

14.1. Introduction
Migrating Front End to Kubernetes should be a relatively simple. It is already designed with horizontal
scaling in mind. All communication with the other components is handled by Messaging and Front
End does not maintain any state. Multiple Front Ends can be run at the same time and as far as the
client is concerned, any instance can be used. Kubernetes Services can be used to manage our
Messaging and Front End instances, making connections easy:

Front End

Messaging

front-end1 front-end2

front-end3 messaging1 messaging2

messaging3


Notice how the front-end instances don’t need to communicate with each other unlike
the messaging instances which are part of a cluster. This makes scaling much less
complex.

14.2. Kubernetes
Front End requires a way of accessing a Service from the outside world. The traditional way of doing
this is through a load balancer, which has an external IP and forwards traffic from a standard port, 80
for HTTP or 443 for HTTPS, to the Service and ultimately one of the running pods. The concept of load
balancing isn’t new to us, we have been using it implicitly when we create a Service. The new concept
is a method of external access.

125

User

Load Balancer
(NodePort for minikube)

External IP

Service
Cluster IP (internal)

Pod 1
Individual IP (internal)

front-end Container

Pod 2
Individual IP (internal)

front-end Container

Pod 3
Individual IP (internal)

front-end Container

Port 80/443 (30000-32767 for minikube)

Kubernetes API

Port 5000 Port 5000 Port 5000

Figure 14. Load Balancer Architecture

Our Flask application will listen on port 5000 by default. In an actual production environment (not
minikube) the load balancer would be given an external IP listening on a standard port. Minikube will
support the definition of a LoadBalancer type Service object, but it will actually use a slightly simpler
object called a NodePort to access the service. For us, this means we can get to our service via a local IP
and a random port between 30000 and 32767. The minikube service command will automatically open
the URL for the service in your default web browser.

14.3. Example

14.3.1. Updating the Docker Image

The Docker image for use in Kubernetes can actually be simplified from what we were running before.
We can remove the wait-for-it.sh script and we no longer have to call it from the Dockerfile:

example-final/front-end/Dockerfile

FROM python:3.9.0a5-buster
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
ENV FLASK_APP=app.py
CMD ["flask", "run", "--host=0.0.0.0"]

Our Service name for Messaging is still messaging, so we don’t even need to change the hostname the
Messaging class connects to. If you look at the source code you will see that I just changed the comment

126

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

to reference Kubernetes instead of Docker Compose.

14.3.2. Building the Docker Image

In order for Kubernetes to be able to use our custom image, we need to build it and make it available
to the Docker daemon running inside minikube. With minikube started, but without the environment
set up correctly, docker ps will only show the containers you have running natively on the host:

PS example-final> docker ps
CONTAINER ID IMAGE COMMAND
9689f05c2fca gcr.io/k8s-minikube/kicbase:v0.0.8 "/usr/local/bin/entr…"



In this example the only container I have running is the container used by the
minikube docker driver. If you are running it under virtualbox or hyperv you may not
see any containers running. If you don’t have docker running on your host, you may
not even be able to execute the docker ps command.

Now if we execute the minikube docker-env command and follow the directions, docker ps should show
the entire Kubernetes environment running in containers as it is querying the Docker daemon running
inside minikube:

127

PS example-final> minikube docker-env ①
$Env:DOCKER_TLS_VERIFY = "1"
$Env:DOCKER_HOST = "tcp://127.0.0.1:32769"
$Env:DOCKER_CERT_PATH = "C:\Users\rxt1077\.minikube\certs"
$Env:MINIKUBE_ACTIVE_DOCKERD = "minikube"
To point your shell to minikube's docker-daemon, run:
& minikube -p minikube docker-env | Invoke-Expression ②
PS example-final> minikube docker-env | Invoke-Expression ③
PS example-final> docker ps ④
CONTAINER ID IMAGE COMMAND CREATED
47eff1ee88b2 67da37a9a360 "/coredns -conf /etc…" 15 hours ago
79d53aceb8f2 67da37a9a360 "/coredns -conf /etc…" 15 hours ago
c0eebfebded2 aa67fec7d7ef "/bin/kindnetd" 15 hours ago
b6a95759fdbe 43940c34f24f "/usr/local/bin/kube…" 15 hours ago
2173eeb16643 k8s.gcr.io/pause:3.2 "/pause" 15 hours ago
3b72a0aa725b 4689081edb10 "/storage-provisioner" 15 hours ago
4616fd610301 k8s.gcr.io/pause:3.2 "/pause" 15 hours ago
78e245e291fb k8s.gcr.io/pause:3.2 "/pause" 15 hours ago
764d41d70f58 k8s.gcr.io/pause:3.2 "/pause" 15 hours ago
29f46b453297 k8s.gcr.io/pause:3.2 "/pause" 15 hours ago
fa87bf3bdcfb a31f78c7c8ce "kube-scheduler --au…" 15 hours ago
5e51df5cc257 d3e55153f52f "kube-controller-man…" 15 hours ago
dc051639dbed 74060cea7f70 "kube-apiserver --ad…" 15 hours ago
01cb4068fc8b 303ce5db0e90 "etcd --advertise-cl…" 15 hours ago
efb620d9f59a k8s.gcr.io/pause:3.2 "/pause" 15 hours ago
f723dce3ac9d k8s.gcr.io/pause:3.2 "/pause" 15 hours ago
89d58b537cae k8s.gcr.io/pause:3.2 "/pause" 15 hours ago
d05cf6dbe82a k8s.gcr.io/pause:3.2 "/pause" 15 hours ago

① Running docker-env by itself prints out how the command should be executed

② Here it is telling us how to run it

③ Now we actually run it as recommended and change the environment

④ docker ps now lists everything running on the minikube docker daemon

Now we can build our front-end image and it will be available to minikube:

PS example-final> docker build -t front-end:v1 ./front-end
Sending build context to Docker daemon 9.728kB
Step 1/6 : FROM python
latest: Pulling from library/python
7e2b2a5af8f6: Pull complete
09b6f03ffac4: Pull complete
dc3f0c679f0f: Pull complete
fd4b47407fc3: Pull complete
b32f6bf7d96d: Pull complete

128

3940e1b57073: Pull complete
ce1fce2a6cf9: Pull complete
1f593157bb4c: Pull complete
bde1ccd8f1b8: Pull complete
Digest: sha256:3df040cc8e804b731a9e98c82e2bc5cf3c979d78288c28df4f54bbdc18dbb521
Status: Downloaded newer image for python:latest
 ---> b55669b4130e
Step 2/6 : COPY . /app
 ---> b88600cc635a
Step 3/6 : WORKDIR /app
 ---> Running in 20bc72069ed8
Removing intermediate container 20bc72069ed8
 ---> 61eb3608a02a
Step 4/6 : RUN pip install -r requirements.txt
 ---> Running in da9520ffee48
Collecting Flask
 Downloading Flask-1.1.2-py2.py3-none-any.whl (94 kB)
Collecting pika
 Downloading pika-1.1.0-py2.py3-none-any.whl (148 kB)
Collecting itsdangerous>=0.24
 Downloading itsdangerous-1.1.0-py2.py3-none-any.whl (16 kB)
Collecting Werkzeug>=0.15
 Downloading Werkzeug-1.0.1-py2.py3-none-any.whl (298 kB)
Collecting click>=5.1
 Downloading click-7.1.1-py2.py3-none-any.whl (82 kB)
Collecting Jinja2>=2.10.1
 Downloading Jinja2-2.11.2-py2.py3-none-any.whl (125 kB)
Collecting MarkupSafe>=0.23
 Downloading MarkupSafe-1.1.1-cp38-cp38-manylinux1_x86_64.whl (32 kB)
Installing collected packages: itsdangerous, Werkzeug, click, MarkupSafe, Jinja2, Flask,
pika
Successfully installed Flask-1.1.2 Jinja2-2.11.2 MarkupSafe-1.1.1 Werkzeug-1.0.1 click-
7.1.1 itsdangerous-1.1.0 pika-1.1.0
Removing intermediate container da9520ffee48
 ---> 8d2f4da8b8b4
Step 5/6 : ENV FLASK_APP=app.py
 ---> Running in 4cdf7ad5a96e
Removing intermediate container 4cdf7ad5a96e
 ---> 4b5853571124
Step 6/6 : CMD ["flask", "run", "--host=0.0.0.0"]
 ---> Running in ff512bc5e42b
Removing intermediate container ff512bc5e42b
 ---> 52ec5d015433
Successfully built 52ec5d015433
Successfully tagged front-end:v1

129


Make sure you give your image a tag with a version ("v1" in our example). Kubernetes
will automatically try to pull the "latest" version for untagged images and since we are
not using a Docker image repository that pull will fail.

14.3.3. Service

Let’s take a look at our Service definition:

example-final/front-end-k8s.yml (excerpted)

apiVersion: v1
kind: Service
metadata:
 name: front-end
 labels:
 app: front-end
spec:
 type: LoadBalancer
 selector:
 app: front-end
 ports:
 - name: http
 protocol: TCP
 port: 80
 targetPort: 5000

The only new things in this definition are type: LoadBalancer in the spec and targetPort in the ports
list. This allows us to access this service externally on port 80 and have it routed internally to port 5000
on one of the pods. It is worth noting that in a real-life scenario, this will create a load balancer with an
external IP via your IaaS provider. These cost money and it can add up as you expose more services to
the outside world. Fortunately, as explained in the previous Kubernetes section, we can still use
minikube to test externally connecting to our service with the minikube service command.

14.3.4. Deployment

For Front End we can use a simple deployment:

130

example-final/front-end-k8s.yml (excerpted)

apiVersion: apps/v1
kind: Deployment
metadata:
 name: front-end
 labels:
 app: front-end
spec:
 replicas: 3
 selector:
 matchLabels:
 app: front-end
 template:
 metadata:
 labels:
 app: front-end
 spec:
 containers:
 - name: front-end
 image: front-end:v1
 #image: gcr.io/example-20200503/front-end:v1
 env:
 - name: RABBITMQ_DEFAULT_USER
 value: "guest"
 - name: RABBITMQ_DEFAULT_PASS
 value: "guest"
 - name: FLASK_SECRET_KEY
 value: "changeme"

14.3.5. Running the Example

Now let’s apply both Messaging and Front End. This will let us check to see if the Front End serves
web pages and if the Front End can connect to Messaging and create queues. We won’t be able to login
/ register users entirely yet because we don’t have Back End running.

131

PS example-final> kubectl apply -f messaging-k8s.yml -f front-end-k8s.yml ①
serviceaccount/messaging created
role.rbac.authorization.k8s.io/rabbitmq-peer-discovery-rbac created
rolebinding.rbac.authorization.k8s.io/rabbitmq-peer-discovery-rbac created
configmap/rabbitmq-config created
service/messaging created
statefulset.apps/messaging created
service/front-end created
deployment.apps/front-end created
PS example-final> kubectl get pod ②
NAME READY STATUS RESTARTS AGE
front-end-7f7c4f5455-6qbcx 1/1 Running 0 4h46m
front-end-7f7c4f5455-htdlv 1/1 Running 0 4h46m
front-end-7f7c4f5455-q2nn6 1/1 Running 0 4h46m
messaging-0 1/1 Running 0 16m
messaging-1 1/1 Running 0 16m
messaging-2 1/1 Running 0 16m
PS example-final> minikube service front-end ③
|-----------|-----------|-------------|----------------------------|
| NAMESPACE | NAME | TARGET PORT | URL |
|-----------|-----------|-------------|----------------------------|
| default | front-end | http/5000 | http://192.168.135.5:31232 |
|-----------|-----------|-------------|----------------------------|
* Opening service default/front-end in default browser...

① The kubectl apply command can be used with multiple files or all YAML files in a directory. Here we
specify the two components we want to start.

② After a little while, you should see six pods running: three for Messaging and three for Front End.

③ This command will start the default browser and pass it the URL to the front-end Service. If you just
want the URL instead of having it open the browser you can use kubectl service --url front-end.



If you apply the objects, run the kubectl get pod command, and see ErrImagePull or
ImagePullBackOff it means that Kubernetes can’t pull your Docker images. Either
you’ve misnamed a stock image that in the name attribute of your container, or you are
trying to use a custom image that you did not make available to minikube. See
Building the Docker Image.


If your connections are timing out with the minikube service command and you are
using the minikube docker driver, try with hyperv or virtualbox. The docker driver
seems to have some issues with port forwarding.

We see our Front End website in our default browser. If we try to register a user we get a message
saying "No response from back end."

132


If you want to test things quickly, without opening a browser the curl command is a
great thing to know. In PowerShell curl is an alias to Invoke-WebRequest, but it will
still work for simple testing. Try curl $(minikube service --url front-end).

Now let’s run a shell in our RabbitMQ cluster and use the rabbitmqctl command to verify that a
requests queue has actually been created:

PS C:\Users\rxt1077\it490\example-final> kubectl exec -it messaging-0 -- bash ①
root@messaging-0:/# rabbitmqctl list_queues
Timeout: 60.0 seconds ...
Listing queues for vhost / ...
name messages
request 1 ②
root@messaging-0:/# exit
exit

① It doesn’t matter which node we run a shell on, they should all be able to see all queues. I chose
messaging-0 because it is easy to remember.

② There is a request queue, with one message in it.

14.4. Questions
1. Why is it easier to set up Front End in Kubernetes than it is to set up Messaging?

2. What does a LoadBalancer type Service do?

3. When creating custom images for use with minikube, why do you have to set up your Docker
environment variables before building images?

4. How do you make a Service accessible from outside the Kubernetes cluster?

5. If you wanted to use the RabbitMQ web-based admin interface for testing, what would you have to do
to access it?

133

https://curl.haxx.se/

Chapter 15. Back End in Kubernetes

15.1. Introduction
The last key to our Kubernetes migration is a functioning Back End. In this section we will build the
Kubernetes object (yes, singular) needed to support this role.

Back End is our conduit between Messaging and Database and we have implemented it as a Python
script. Replicas of Back End can function independently since messages can only be pulled off the
queue one-at-a-time, they are removed after they are pulled, and an exclusive response queue is
created for the response:

Front End

Messaging

Back End

Front End 1 Front End 2

Requests

FE1

FE2

. . .

Response 1 Response 2

Back End 1 Back End 2

FE1 FE2

FE1 FE2

Figure 15. Back End Architecture

In the above diagram two different Front Ends are communicating with Messaging. Two different
Back Ends are pulling requests (FE1, FE2, etc.) out of the requests queue and processing them. Notice
that each Front End has a separate response queue (that can be derived from the message in the
requests queue). This architecture allows multiple Backends to run at the same time without needing
to be in communication with each other.

134

We do not need to learn about any new Kubernetes objects to migrate Back End. It does not require an
external connection to any port or even an internal connection to a port, therefore a Service object
isn’t even required.

15.2. Example
The only changes you will see in Back Ends application code is separating database requests into read
and read / write, to correspond to our new load-balanced service. Here is the new connect sequence:

example-final/back-end/app.py (excerpted)

 logging.info("Connecting to the read-only database...")
 postgres_password = os.environ['POSTGRES_PASSWORD']
 conn_r = psycopg2.connect(
 host='db-r',
 database='example',
 user='postgres',
 password=postgres_password
)

 logging.info("Connecting to the read-write database...")
 postgres_password = os.environ['POSTGRES_PASSWORD']
 conn_rw = psycopg2.connect(
 host='db-rw',
 database='example',
 user='postgres',
 password=postgres_password
)

This makes curr_r, conn_r, curr_rw, conn_rw available for read and read / write requests respectively.
process_request then uses correct connection depending on the action:

135

example-final/back-end/app.py (excerpted)

def process_request(ch, method, properties, body):
 """
 Gets a request from the queue, acts on it, and returns a response to the
 reply-to queue
 """
 request = json.loads(body)
 if 'action' not in request:
 response = {
 'success': False,
 'message': "Request does not have action"
 }
 else:
 action = request['action']
 if action == 'GETHASH':
 data = request['data']
 email = data['email']
 logging.info(f"GETHASH request for {email} received")
 curr_r.execute('SELECT hash FROM users WHERE email=%s;', (email,))
 row = curr_r.fetchone()
 if row == None:
 response = {'success': False}
 else:
 response = {'success': True, 'hash': row[0]}
 elif action == 'REGISTER':
 data = request['data']
 email = data['email']
 hashed = data['hash']
 logging.info(f"REGISTER request for {email} received")
 curr_r.execute('SELECT * FROM users WHERE email=%s;', (email,))
 if curr_r.fetchone() != None:
 response = {'success': False, 'message': 'User already exists'}
 else:
 curr_rw.execute('INSERT INTO users VALUES (%s, %s);', (email, hashed))
 conn_rw.commit()
 response = {'success': True}
 else:
 response = {'success': False, 'message': "Unknown action"}
 logging.info(response)
 ch.basic_publish(
 exchange='',
 routing_key=properties.reply_to,
 body=json.dumps(response)
)

The Dockerfile does not require any changes, but minikube does requires that an image be built and

136

available. The only object we need to create is a Deployment:

example-final/back-end-k8s.yml

apiVersion: apps/v1
kind: Deployment
metadata:
 name: back-end
 labels:
 app: back-end
spec:
 replicas: 3
 selector:
 matchLabels:
 app: back-end
 template:
 metadata:
 labels:
 app: back-end
 spec:
 containers:
 - name: back-end
 image: back-end:v1
 #image: gcr.io/example-20200503/back-end:v1
 env:
 - name: RABBITMQ_DEFAULT_USER
 value: "guest"
 - name: RABBITMQ_DEFAULT_PASS
 value: "guest"
 - name: POSTGRES_PASSWORD
 value: "changeme"

Now let’s build and tag our back-end:v1 image to make it available to minikube:

137

PS example-final> minikube docker-env | Invoke-Expression ①
PS example-final> cd .\back-end\
PS example-final\back-end> docker build -t back-end:v1 . ②
Sending build context to Docker daemon 7.168kB
Step 1/5 : FROM python
 ---> b55669b4130e
Step 2/5 : COPY . /app
 ---> 6aacbd4f55d8
Step 3/5 : WORKDIR /app
 ---> Running in 5f993e9c691d
Removing intermediate container 5f993e9c691d
 ---> c8b736fd9f9c
Step 4/5 : RUN pip install -r requirements.txt
 ---> Running in f423d983860c
Collecting pika
 Downloading pika-1.1.0-py2.py3-none-any.whl (148 kB)
Collecting psycopg2
 Downloading psycopg2-2.8.5.tar.gz (380 kB)
Building wheels for collected packages: psycopg2
 Building wheel for psycopg2 (setup.py): started
 Building wheel for psycopg2 (setup.py): finished with status 'done'
 Created wheel for psycopg2: filename=psycopg2-2.8.5-cp38-cp38-linux_x86_64.whl
size=500514 sha256=6a53ea80799efeaeb8f4aeec9b7e
b4d7fe0451d9efb02258f9a57801fa5d1b0a
 Stored in directory:
/root/.cache/pip/wheels/35/64/21/9c9e2c1bb9cd6bca3c1b97b955615e37fd309f8e8b0b9fdf1a
Successfully built psycopg2
Installing collected packages: pika, psycopg2
Successfully installed pika-1.1.0 psycopg2-2.8.5
Removing intermediate container f423d983860c
 ---> af068e0b4647
Step 5/5 : CMD ["python", "app.py"]
 ---> Running in 969562a251ec
Removing intermediate container 969562a251ec
 ---> a1f03249f42c
Successfully built a1f03249f42c
Successfully tagged back-end:v1

① Don’t forget to have your environment set up to build for the minikube docker daemon. I started a
new terminal to run this, so I had to set up the environment again.

② Don’t forget to use a tag, back-end:v1 in this case.

Now we’ll apply our minikube objects for the Back End:

138

PS example-final> kubectl apply -f .\back-end-k8s.yml
deployment.apps/back-end created
PS example-final> kubectl get pod
NAME READY STATUS RESTARTS AGE
back-end-7685957868-fbzqk 1/1 Running 0 3s
back-end-7685957868-t4n9x 1/1 Running 0 3s
back-end-7685957868-ws2ss 1/1 Running 0 3s
PS example-final> kubectl logs back-end-7685957868-fbzqk
INFO:root:Waiting 1s...
INFO:root:Connecting to the database...
INFO:root:Waiting 2s...
INFO:root:Connecting to the database...
INFO:root:Waiting 4s...
INFO:root:Connecting to the database...
INFO:root:Waiting 8s...
INFO:root:Connecting to the database...
INFO:root:Waiting 16s...

As you can see, it is waiting for Database to start up. Since we have all of the components, why don’t
we try bringing the entire system up? kubectl apply -f . will apply all of the YAML files in the current
directory. Since we are using the apply command, only changes that are needed to reach the state of
the objects in the files will be made. Lastly, we need to make sure that the front-end:v1 image is built
and available:

PS example-final> docker build -t front-end:v1 ./front-end
Sending build context to Docker daemon 16.9kB
Step 1/6 : FROM python
latest: Pulling from library/python
90fe46dd8199: Pull complete
35a4f1977689: Pull complete
bbc37f14aded: Pull complete
74e27dc593d4: Pull complete
4352dcff7819: Pull complete
deb569b08de6: Pull complete
98fd06fa8c53: Pull complete
7b9cc4fdefe6: Pull complete
e8e1fd64f499: Pull complete
Digest: sha256:adcfb73e4ca83b126cc3275f3851c73aecca20e59a48782e9ddebb3a88e57f96
Status: Downloaded newer image for python:latest
 ---> a6be143418fc
Step 2/6 : COPY . /app
 ---> d0441d56a485
Step 3/6 : WORKDIR /app
 ---> Running in 31809274a574
Removing intermediate container 31809274a574

139

 ---> 4cd78efa655a
Step 4/6 : RUN pip install -r requirements.txt
 ---> Running in 7c1603cf2503
Collecting Flask
 Downloading Flask-1.1.2-py2.py3-none-any.whl (94 kB)
Collecting pika
 Downloading pika-1.1.0-py2.py3-none-any.whl (148 kB)
Collecting Werkzeug>=0.15
 Downloading Werkzeug-1.0.1-py2.py3-none-any.whl (298 kB)
Collecting Jinja2>=2.10.1
 Downloading Jinja2-2.11.2-py2.py3-none-any.whl (125 kB)
Collecting click>=5.1
 Downloading click-7.1.1-py2.py3-none-any.whl (82 kB)
Collecting itsdangerous>=0.24
 Downloading itsdangerous-1.1.0-py2.py3-none-any.whl (16 kB)
Collecting MarkupSafe>=0.23
Installing collected packages: Werkzeug, MarkupSafe, Jinja2, click, itsdangerous, Flask,
pika
Successfully installed Flask-1.1.2 Jinja2-2.11.2 MarkupSafe-1.1.1 Werkzeug-1.0.1 click-
7.1.1 itsdangerous-1.1.0 pika-1.1.0
Removing intermediate container 7c1603cf2503
 ---> a6a9f8d6b40c
Step 5/6 : ENV FLASK_APP=app.py
 ---> Running in 008548ce7dfb
Removing intermediate container 008548ce7dfb
 ---> 28fce011bbd3
Step 6/6 : CMD ["flask", "run", "--host=0.0.0.0"]
 ---> Running in 7adb0edc6b4e
Removing intermediate container 7adb0edc6b4e
 ---> 34f3b5c20f75
Successfully built 34f3b5c20f75
Successfully tagged front-end:v1

Now we can bring everything in the directory up with the kubectl apply -f . command:

140

PS C:\Users\rxt1077\it490\example-final> kubectl apply -f .
deployment.apps/back-end unchanged
persistentvolumeclaim/db-primary-pv-claim created
service/db-rw created
service/db-r created
deployment.apps/db-rw created
deployment.apps/db-r created
service/front-end created
deployment.apps/front-end created
serviceaccount/messaging created
role.rbac.authorization.k8s.io/rabbitmq-peer-discovery-rbac created
rolebinding.rbac.authorization.k8s.io/rabbitmq-peer-discovery-rbac created
configmap/rabbitmq-config created
service/messaging created
statefulset.apps/messaging created

Finally, running the minikube service front-end command should start the default browser with the
URL needed to access Front End. You can test registering and logging in as a user.

15.3. Questions
1. Why did we have to change the application code for Back End?

2. Why doesn’t Back End need a Service?

3. How do we make sure that the back-end:v1 image is available to minikube?

4. What particular issues, with regard to the entire system, might horizontally scaling Back End help
with?

5. How can you apply more than one YAML file with the kubectl command?

141

Chapter 16. Google Kubernetes Engine

16.1. Introduction
Several times over the course of this text you probably asked yourself, "Why are we doing it this way?"
Hopefully the chapters answered most of those questions. This chapter hopes to answer the question,
"Why did we migrate to Kubernetes?" The answer being, "To create a scalable system that can be run
on enterprise-grade hardware." The best way to see what that looks like is to actually do it.

In this chapter we will deploy our full system on Google Kubernetes Engine (GKE). If you want to
follow along with the examples on your own, you will need to sign up for a Google Cloud login. Please
note that while Google Cloud does have a free tier, you will still need to add a credit card to your
account and you can be charged money for the services you use. If you are worried about incurring an
expense, feel free to simply read through the examples.

Google Cloud provides many services that work with each other. We will be using GKE and Google
Container Registry (GCR) which in-turn will be using other supporting services:

Google Cloud

Compute StorageNetworking

Google Kubernetes Engine (GKE) Google Container Registry (GCR)

Compute Engine Cloud StorageLoad BalancerVirtual Private Cloud Egress

external pulls image storageVMs for Kubernetes nodes storage for VolumeClaimsLoadBalancer Services

container images

networking

16.2. Setting up gcloud
We will be doing as much of this is possible from the command line so we will need to install a CLI to
interact with Google Cloud. The gcloud command is installed as part of the Google Cloud SDK. Install it
using the Google Cloud SDK Interactive Installer and follow the prompts to run gcloud init once it is
installed (this is the default).

142

https://cloud.google.com/gpc
https://cloud.google.com/free
https://cloud.google.com/sdk/docs/downloads-interactive

The init procedure will open the default browser and prompt you to sign in with a Google account.
Once authenticated, you can refer back to the terminal it opened and Create a new project, with any
unique name you can think of. The project id must be globally unique, so you may want to use a
timestamp as part of your ID: example-2020428.

Now that we have gcloud installed and we have a project, we need to specify what zone/region we
would like to use for the project. Google Cloud has many geographic regions with multiple zones
available depending on where you are expecting your application to be used and what you’re
computer needs are, respectively. In this example we will set it to us-central1-c with the following
command:

PS example-final> gcloud config set compute/zone us-central1-c
Updated property [compute/zone].

Now let’s try to add a Kubernetes cluster named example and see what happens:

PS example-final> gcloud container clusters create example
WARNING: Currently VPC-native is not the default mode during cluster creation. In the
future, this will become the default mode
and can be disabled using `--no-enable-ip-alias` flag. Use `--[no-]enable-ip-alias` flag
to suppress this warning.
WARNING: Newly created clusters and node-pools will have node auto-upgrade enabled by
default. This can be disabled using the `-
-no-enable-autoupgrade` flag.
WARNING: Starting with version 1.18, clusters will have shielded GKE nodes by default.
WARNING: Your Pod address range (`--cluster-ipv4-cidr`) can accommodate at most 1008
node(s).
This will enable the autorepair feature for nodes. Please see
https://cloud.google.com/kubernetes-engine/docs/node-auto-repair f
or more information on node autorepairs.
ERROR: (gcloud.container.clusters.create) ResponseError: code=403, message=Kubernetes
Engine API is not enabled for this project
. Please ensure it is enabled in Google Cloud Console and try again: visit
https://console.cloud.google.com/apis/api/container.g
oogleapis.com/overview?project=example-20200428 to do so.

Follow the directions in the error, visit the URL specified (it will be different depending on your project
name), and enable the GKE API for this project.


Make sure you are signed in with the Google account that you linked to Google Cloud.
If you want to be certain, you can open an incognito / private browsing tab and paste
the URL in there. That will force you to have to log in.

Once we’ve enabled the GKE API, let’s try our create cluster command again:

143

https://cloud.google.com/compute/docs/regions-zones#available
https://cloud.google.com/compute/docs/regions-zones#available

PS example-final> gcloud container clusters create example
WARNING: Currently VPC-native is not the default mode during cluster creation. In the
future, this will become the default mode
and can be disabled using `--no-enable-ip-alias` flag. Use `--[no-]enable-ip-alias` flag
to suppress this warning.
WARNING: Newly created clusters and node-pools will have node auto-upgrade enabled by
default. This can be disabled using the `-
-no-enable-autoupgrade` flag.
WARNING: Starting with version 1.18, clusters will have shielded GKE nodes by default.
WARNING: Your Pod address range (`--cluster-ipv4-cidr`) can accommodate at most 1008
node(s).
This will enable the autorepair feature for nodes. Please see
https://cloud.google.com/kubernetes-engine/docs/node-auto-repair f
or more information on node autorepairs.
Creating cluster example in us-central1-c... Cluster is being health-checked (master is
healthy)...done.
Created [https://container.googleapis.com/v1/projects/example-20200428/zones/us-central1-
c/clusters/example].
To inspect the contents of your cluster, go to:
https://console.cloud.google.com/kubernetes/workload_/gcloud/us-central1-c/examp
le?project=example-20200428
kubeconfig entry generated for example.
NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE NODE_VERSION
NUM_NODES STATUS
example us-central1-c 1.14.10-gke.27 35.223.164.188 n1-standard-1 1.14.10-gke.27 3
RUNNING

Our last step will be setting up Docker to use our gcloud credentials:

144

PS example-final> gcloud auth configure-docker
Adding credentials for all GCR repositories.
WARNING: A long list of credential helpers may cause delays running 'docker build'. We
recommend passing the registry name to co
nfigure only the registry you are using.
After update, the following will be written to your Docker config file
 located at [.docker\config.json]:
 {
 "credHelpers": {
 "gcr.io": "gcloud",
 "marketplace.gcr.io": "gcloud",
 "eu.gcr.io": "gcloud",
 "us.gcr.io": "gcloud",
 "staging-k8s.gcr.io": "gcloud",
 "asia.gcr.io": "gcloud"
 }
}

Do you want to continue (Y/n)? Y

Docker configuration file updated.

Congratulations! You’ve now downloaded and installed gcloud and built your first cluster in Google
Cloud. From here on, we will be working with more familiar utilities: kubectl and Docker.

16.3. Pushing Images
Unlike minikube, which we set up to use images from its native Docker daemon (remember minikube
docker-env?), GKE expects to be able to pull custom images from an actual repository. Since we’re
already using Google Cloud, it makes sense to push our custom images to GCR. Here is how we do that:

PS example-final> docker build -t gcr.io/example-20200428/front-end:v1 ./front-end/ ①
Sending build context to Docker daemon 16.9kB
Step 1/6 : FROM python:3.9.0a5-buster
3.9.0a5-buster: Pulling from library/python
90fe46dd8199: Pull complete
35a4f1977689: Pull complete
bbc37f14aded: Pull complete
74e27dc593d4: Pull complete
4352dcff7819: Pull complete
deb569b08de6: Pull complete
c7360a3495cf: Pull complete
f58442eaf6a4: Pull complete
617f2eb777a8: Pull complete
Digest: sha256:f7251883daa3d6484055af80ebcd72f083d58de9276ee772d95d2dc50e0ea951

145

https://cloud.google.com/container-registry

Status: Downloaded newer image for python:3.9.0a5-buster
 ---> b5f66cb660dd
Step 2/6 : COPY . /app
 ---> f288da00c29c
Step 3/6 : WORKDIR /app
 ---> Running in 40540d7524d3
Removing intermediate container 40540d7524d3
 ---> 1da446e063c3
Step 4/6 : RUN pip install -r requirements.txt
 ---> Running in 0873978faef8
Collecting Flask
 Downloading Flask-1.1.2-py2.py3-none-any.whl (94 kB)
Collecting pika
 Downloading pika-1.1.0-py2.py3-none-any.whl (148 kB)
Collecting Werkzeug>=0.15
 Downloading Werkzeug-1.0.1-py2.py3-none-any.whl (298 kB)
Collecting Jinja2>=2.10.1
 Downloading Jinja2-2.11.2-py2.py3-none-any.whl (125 kB)
Collecting click>=5.1
 Downloading click-7.1.2-py2.py3-none-any.whl (82 kB)
Collecting itsdangerous>=0.24
 Downloading itsdangerous-1.1.0-py2.py3-none-any.whl (16 kB)
Collecting MarkupSafe>=0.23
 Downloading MarkupSafe-1.1.1.tar.gz (19 kB)
Building wheels for collected packages: MarkupSafe
 Building wheel for MarkupSafe (setup.py): started
 Building wheel for MarkupSafe (setup.py): finished with status 'done'
 Created wheel for MarkupSafe: filename=MarkupSafe-1.1.1-cp39-cp39-linux_x86_64.whl
size=32073 sha256=ff3d6994faed1b54ea40c09ef
64f972aec74cb3f3d77fbdc55335143c959bcea
 Stored in directory:
/root/.cache/pip/wheels/e0/19/6f/6ba857621f50dc08e084312746ed3ebc14211ba30037d5e44e
Successfully built MarkupSafe
Installing collected packages: Werkzeug, MarkupSafe, Jinja2, click, itsdangerous, Flask,
pika
Successfully installed Flask-1.1.2 Jinja2-2.11.2 MarkupSafe-1.1.1 Werkzeug-1.0.1 click-
7.1.2 itsdangerous-1.1.0 pika-1.1.0
Removing intermediate container 0873978faef8
 ---> d77de60ef20e
Step 5/6 : ENV FLASK_APP=app.py
 ---> Running in d8af1dd55084
Removing intermediate container d8af1dd55084
 ---> 69ae9b270fb9
Step 6/6 : CMD ["flask", "run", "--host=0.0.0.0"]
 ---> Running in c7c300db2f56
Removing intermediate container c7c300db2f56
 ---> a8f79c7b4cd1
Successfully built a8f79c7b4cd1

146

Successfully tagged gcr.io/example-20200428/front-end:v1
PS example-final> docker push gcr.io/example-20200428/front-end:v1 ②
The push refers to repository [gcr.io/example-20200428/front-end]
aae3053b9026: Pushed
07a7dd71e46e: Pushed
62cc2f2db459: Pushed
f3f43710db31: Pushed
e68e29bcc308: Pushed
baf481fca4b7: Layer already exists
3d3e92e98337: Layer already exists
8967306e673e: Layer already exists
9794a3b3ed45: Layer already exists
5f77a51ade6a: Layer already exists
e40d297cf5f8: Layer already exists
v1: digest: sha256:ab9c121705a4f4c47b7e32012d13da96cf0e8e2bc807c49a37b04c2099c7fb2e size:
2636
PS example-final> docker build -t gcr.io/example-20200428/back-end:v1 ./back-end/ ③
Sending build context to Docker daemon 7.68kB
Step 1/5 : FROM python:3.9.0a5-buster
 ---> b5f66cb660dd
Step 2/5 : COPY . /app
 ---> a8faf7d98529
Step 3/5 : WORKDIR /app
 ---> Running in 385122bd0d0e
Removing intermediate container 385122bd0d0e
 ---> 7e517e6b75b1
Step 4/5 : RUN pip install -r requirements.txt
 ---> Running in a28a17d13909
Collecting pika
 Downloading pika-1.1.0-py2.py3-none-any.whl (148 kB)
Collecting psycopg2
 Downloading psycopg2-2.8.5.tar.gz (380 kB)
Building wheels for collected packages: psycopg2
 Building wheel for psycopg2 (setup.py): started
 Building wheel for psycopg2 (setup.py): finished with status 'done'
 Created wheel for psycopg2: filename=psycopg2-2.8.5-cp39-cp39-linux_x86_64.whl
size=498130 sha256=6a715ba7fcf21deca5712a1e404c
51b1b0168ad64c7612890f30935845a6562f
 Stored in directory:
/root/.cache/pip/wheels/c2/17/82/f619fa1d1a361445c4ff28634f734936f2d54891c79840b345
Successfully built psycopg2
Installing collected packages: pika, psycopg2
Successfully installed pika-1.1.0 psycopg2-2.8.5
Removing intermediate container a28a17d13909
 ---> 53827a4ffaea
Step 5/5 : CMD ["python", "app.py"]
 ---> Running in 5aef1da46ef1
Removing intermediate container 5aef1da46ef1

147

 ---> 65c9dfe66eb8
Successfully built 65c9dfe66eb8
Successfully tagged gcr.io/example-20200428/back-end:v1
PS C:\Users\rxt1077\it490\example-final> docker push gcr.io/example-20200428/back-end:v1
④
The push refers to repository [gcr.io/example-20200428/back-end]
303c8c71682c: Pushed
50f2e9234064: Pushed
62cc2f2db459: Layer already exists
f3f43710db31: Layer already exists
e68e29bcc308: Layer already exists
baf481fca4b7: Layer already exists
3d3e92e98337: Layer already exists
8967306e673e: Layer already exists
9794a3b3ed45: Layer already exists
5f77a51ade6a: Layer already exists
e40d297cf5f8: Layer already exists
v1: digest: sha256:9446a3d91fa555a84457e51ba2ac3b8e2821f31a531ab21d0e85cd9e37e11dbb size:
2636

① Build/tag the front-end image for GCR. Notice how we use the project-id.

② Push the front-end image.

③ Build/tag the back-end image for GCR.

④ Push the back-end image.

We will also need to change the image mapping to point to the image on GCR in back-end-k8s.yml and
front-end-k8s.yml. You can see them there, commented out, if you check the source repository.

16.4. Creating Objects
At this point, we should have access to two Kubernetes clusters: our local minikube cluster and a
cluster we created in Google Cloud called example. Fortunately for us, gcloud has already configured
our kubeconfig file for access to the example cluster. kubectl refers to these different clusters as
contexts and we can see what is available with the following command:

PS example-final> kubectl config get-contexts
CURRENT NAME CLUSTER
* gke_example-20200428_us-central1-c_example gke_example-20200428_us-central1-
c_example①
 minikube minikube

① We are currently using the Google Cloud context, but if you need to switch contexts, you can use the
kubectl config use-context command.

We’ve already pushed our images to GCR and updated the Front End and Back End objects to reflect

148

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

that. Now all we need to do to create objects is use the kubectl commands we’re familiar with:

PS example-final> kubectl get pod
No resources found in default namespace. ①
PS C:\Users\rxt1077\it490\example-final> kubectl apply -f . ②
deployment.apps/back-end created
persistentvolumeclaim/db-primary-pv-claim created
service/db-rw created
service/db-r created
deployment.apps/db-rw created
deployment.apps/db-r created
service/front-end created
deployment.apps/front-end created
serviceaccount/messaging created
role.rbac.authorization.k8s.io/rabbitmq-peer-discovery-rbac created
rolebinding.rbac.authorization.k8s.io/rabbitmq-peer-discovery-rbac created
configmap/rabbitmq-config created
service/messaging created
statefulset.apps/messaging created
PS example-final> kubectl get pod ③
NAME READY STATUS RESTARTS AGE
back-end-84cd7447d-6j7b7 1/1 Running 0 5s
back-end-84cd7447d-lthqc 1/1 Running 0 5s
back-end-84cd7447d-vlrqz 1/1 Running 0 5s
db-r-5b9977874b-ghj54 1/1 Running 2 13m
db-r-5b9977874b-ngbs5 1/1 Running 2 13m
db-rw-7755dddd76-f9krt 1/1 Running 0 13m
front-end-856bc468cc-dddh4 1/1 Running 0 13m
front-end-856bc468cc-f9ltq 1/1 Running 0 13m
front-end-856bc468cc-rm6dg 1/1 Running 0 13m
messaging-0 1/1 Running 0 13m
messaging-1 1/1 Running 0 13m
messaging-2 1/1 Running 0 13m
PS example-final> kubectl get service ④
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
db-r ClusterIP 10.47.242.137 <none> 5432/TCP 14m
db-rw ClusterIP 10.47.252.2 <none> 5432/TCP 14m
front-end LoadBalancer 10.47.244.185 35.238.67.247 80:30337/TCP 14m ⑤
kubernetes ClusterIP 10.47.240.1 <none> 443/TCP 21m
messaging ClusterIP 10.47.253.17 <none> 5672/TCP,15672/TCP 14m

① Checking to see what is running initially shows that there are no pods on our cluster.

② Applying all of the YAML files in our current, example-final, directory.

③ Running kubectl get pod shows all our replicated components.

④ Checking to see what services are running

149

⑤ The only external, LoadBalancer, service is front-end. A quick visit to http://35.238.67.247 will give
you front-end access to the system.[5]

We now have a scalable system running on enterprise-grade hardware.

16.5. Cleaning Up
Don’t forget that Google Cloud is not a free platform. While we do have free credits to experiment with,
the compute and storage resources that we are using are very real. Once we are done, we have to
remember to delete our cluster and the resources that our project uses. That can be done with the
following commands:

PS example-final> gcloud container clusters delete example
The following clusters will be deleted.
 - [example] in [us-central1-c]

Do you want to continue (Y/n)?

Deleting cluster example...done.
Deleted [https://container.googleapis.com/v1/projects/example-20200428/zones/us-central1-
c/clusters/example].
PS example-final> gcloud projects delete example-20200428
Your project will be deleted.

Do you want to continue (Y/n)? Y

Deleted [https://cloudresourcemanager.googleapis.com/v1/projects/example-20200428].

You can undo this operation for a limited period by running the command below.
 $ gcloud projects undelete example-20200428

See https://cloud.google.com/resource-manager/docs/creating-managing-projects for
information on shutting down projects.

16.6. Resources
• Google Kubernetes Engine Quickstart

• Google Cloud SDK Interactive Installer

• Configuring cluster access for kubectl

• Pushing and pulling images

150

http://35.238.67.247
https://cloud.google.com/kubernetes-engine/docs/quickstart
https://cloud.google.com/sdk/docs/downloads-interactive
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl
https://cloud.google.com/container-registry/docs/pushing-and-pulling

16.7. Questions
1. Name at least two Google Cloud services that GKE uses.

2. What does GCR do and why does GKE use it?

3. What is the difference between the gcloud and kubectl commands?

4. Compare and contrast the gcloud and minikube commands.

5. In the output for kubectl get service, why is front-end the only service with an external IP?

[5] By the time you’re reading this, this site should be unavailable. If it’s still available, let me know because it’s costing me money!

151

	Systems Integration: A Project Based Approach
	Table of Contents
	Legal
	Preface
	Acknowledgements
	Project
	Project Proposal
	Milestones
	Deliverables

	Chapter 1. Git
	1.1. Version Control
	1.2. Installation
	1.3. Basic Git Actions
	1.4. Example
	1.5. Resources
	1.6. Questions

	Chapter 2. GitHub
	2.1. Purpose
	2.2. Remote Repositories
	2.3. Issues
	2.4. Pull requests
	2.5. Documentation
	2.6. Resources
	2.7. Questions

	Chapter 3. YAML
	3.1. Introduction
	3.2. Parts of a YAML Stream
	3.3. Editors
	3.4. Resources
	3.5. Questions

	Chapter 4. Docker
	4.1. Purpose
	4.2. Installation
	4.3. Concepts
	4.4. Commands
	4.5. Examples
	4.6. Resources
	4.7. Questions

	Chapter 5. Messaging
	5.1. Purpose
	5.2. Frameworks
	5.3. RabbitMQ and Docker
	5.4. Resources
	5.5. Questions

	Chapter 6. Database
	6.1. Introduction
	6.2. Popular RDMS
	6.3. Example
	6.4. Resources
	6.5. Questions

	Chapter 7. Front End
	7.1. Introduction
	7.2. Example
	7.3. Resources
	7.4. Questions

	Chapter 8. Back End
	8.1. Introduction
	8.2. Example
	8.3. Resources
	8.4. Questions

	Chapter 9. Midterm Example
	9.1. Introduction
	9.2. Messaging
	9.3. Database
	9.4. Back End
	9.5. Front End
	9.6. Questions

	Chapter 10. Replication
	10.1. Background
	10.2. Implementation
	10.3. High Availability
	10.4. Load Balancing
	10.5. Questions

	Chapter 11. Kubernetes
	11.1. Introduction
	11.2. Minikube
	11.3. Debugging
	11.4. Conclusion
	11.5. Questions

	Chapter 12. Database in Kubernetes
	12.1. Introduction
	12.2. PersistentVolumeClaims
	12.3. Services
	12.4. Deployments
	12.5. Running the Example
	12.6. Conclusion
	12.7. Questions

	Chapter 13. Messaging in Kubernetes
	13.1. Introduction
	13.2. RabbitMQ
	13.3. Kubernetes
	13.4. Example
	13.5. Resources
	13.6. Questions

	Chapter 14. Front End in Kubernetes
	14.1. Introduction
	14.2. Kubernetes
	14.3. Example
	14.4. Questions

	Chapter 15. Back End in Kubernetes
	15.1. Introduction
	15.2. Example
	15.3. Questions

	Chapter 16. Google Kubernetes Engine
	16.1. Introduction
	16.2. Setting up gcloud
	16.3. Pushing Images
	16.4. Creating Objects
	16.5. Cleaning Up
	16.6. Resources
	16.7. Questions

