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PREFACE

Welcome to College Physics, an OpenStax resource. This textbook was written to increase student access to high-quality
learning materials, maintaining highest standards of academic rigor at little to no cost.

About OpenStax

OpenStax is a nonprofit based at Rice University, and it’s our mission to improve student access to education. Our first openly
licensed college textbook was published in 2012, and our library has since scaled to over 20 books for college and AP courses
used by hundreds of thousands of students. Our adaptive learning technology, designed to improve learning outcomes through
personalized educational paths, is being piloted in college courses throughout the country. Through our partnerships with
philanthropic foundations and our alliance with other educational resource organizations, OpenStax is breaking down the most
common barriers to learning and empowering students and instructors to succeed.

About OpenStax Resources

Customization

College Physics is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which means that you can
distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its content contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most
relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections in
your syllabus, in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web view of
your book.

Instructors also have the option of creating a customized version of their OpenStax book. The custom version can be made
available to students in low-cost print or digital form through their campus bookstore. Visit your book page on openstax.org for
more information.

Errata

All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors sometimes
occur. Since our books are web based, we can make updates periodically when deemed pedagogically necessary. If you have a
correction to suggest, submit it through the link on your book page on openstax.org. Subject matter experts review all errata
suggestions. OpenStax is committed to remaining transparent about all updates, so you will also find a list of past errata changes
on your book page on openstax.org.

Format

You can access this textbook for free in web view or PDF through openstax.org, and in low-cost print and iBooks editions.

About College Physics

College Physics meets standard scope and sequence requirements for a two-semester introductory algebra-based physics
course. The text is grounded in real-world examples to help students grasp fundamental physics concepts. It requires knowledge
of algebra and some trigonometry, but not calculus. College Physics includes learning objectives, concept questions, links to labs
and simulations, and ample practice opportunities for traditional physics application problems.

Coverage and Scope

College Physics is organized such that topics are introduced conceptually with a steady progression to precise definitions and
analytical applications. The analytical aspect (problem solving) is tied back to the conceptual before moving on to another topic.
Each introductory chapter, for example, opens with an engaging photograph relevant to the subject of the chapter and interesting
applications that are easy for most students to visualize.

Chapter 1: Introduction: The Nature of Science and Physics
Chapter 2: Kinematics
Chapter 3: Two-Dimensional Kinematics
Chapter 4: Dynamics: Force and Newton's Laws of Motion
Chapter 5: Further Applications of Newton's Laws: Friction, Drag, and Elasticity
Chapter 6: Uniform Circular Motion and Gravitation
Chapter 7: Work, Energy, and Energy Resources
Chapter 8: Linear Momentum and Collisions
Chapter 9: Statics and Torque
Chapter 10: Rotational Motion and Angular Momentum
Chapter 11: Fluid Statics
Chapter 12: Fluid Dynamics and Its Biological and Medical Applications
Chapter 13: Temperature, Kinetic Theory, and the Gas Laws
Chapter 14: Heat and Heat Transfer Methods
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Chapter 15: Thermodynamics
Chapter 16: Oscillatory Motion and Waves
Chapter 17: Physics of Hearing
Chapter 18: Electric Charge and Electric Field
Chapter 19: Electric Potential and Electric Field
Chapter 20: Electric Current, Resistance, and Ohm's Law
Chapter 21: Circuits and DC Instruments
Chapter 22: Magnetism
Chapter 23: Electromagnetic Induction, AC Circuits, and Electrical Technologies
Chapter 24: Electromagnetic Waves
Chapter 25: Geometric Optics
Chapter 26: Vision and Optical Instruments
Chapter 27: Wave Optics
Chapter 28: Special Relativity
Chapter 29: Introduction to Quantum Physics
Chapter 30: Atomic Physics
Chapter 31: Radioactivity and Nuclear Physics
Chapter 32: Medical Applications of Nuclear Physics
Chapter 33: Particle Physics
Chapter 34: Frontiers of Physics
Appendix A: Atomic Masses
Appendix B: Selected Radioactive Isotopes
Appendix C: Useful Information
Appendix D: Glossary of Key Symbols and Notation

Concepts and Calculations

The ability to calculate does not guarantee conceptual understanding. In order to unify conceptual, analytical, and calculation
skills within the learning process, we have integrated Strategies and Discussions throughout the text.

Modern Perspective

The chapters on modern physics are more complete than many other texts on the market, with an entire chapter devoted to
medical applications of nuclear physics and another to particle physics. The final chapter of the text, “Frontiers of Physics,” is
devoted to the most exciting endeavors in physics. It ends with a module titled “Some Questions We Know to Ask.”

Key Features
Modularity

This textbook is organized as a collection of modules that can be rearranged and modified to suit the needs of a particular
professor or class. That being said, modules often contain references to content in other modules, as most topics in physics
cannot be discussed in isolation.

Learning Objectives

Every module begins with a set of learning objectives. These objectives are designed to guide the instructor in deciding what
content to include or assign, and to guide the student with respect to what he or she can expect to learn. After completing the
module and end-of-module exercises, students should be able to demonstrate mastery of the learning objectives.

Call-Outs

Key definitions, concepts, and equations are called out with a special design treatment. Call-outs are designed to catch readers’
attention, to make it clear that a specific term, concept, or equation is particularly important, and to provide easy reference for a
student reviewing content.

Key Terms

Key terms are in bold and are followed by a definition in context. Definitions of key terms are also listed in the Glossary, which
appears at the end of the module.

Worked Examples

Worked examples have four distinct parts to promote both analytical and conceptual skills. Worked examples are introduced in
words, always using some application that should be of interest. This is followed by a Strategy section that emphasizes the
concepts involved and how solving the problem relates to those concepts. This is followed by the mathematical Solution and
Discussion.

Many worked examples contain multiple-part problems to help the students learn how to approach normal situations, in which
problems tend to have multiple parts. Finally, worked examples employ the techniques of the problem-solving strategies so that
students can see how those strategies succeed in practice as well as in theory.

Problem-Solving Strategies

Problem-solving strategies are first presented in a special section and subsequently appear at crucial points in the text where
students can benefit most from them. Problem-solving strategies have a logical structure that is reinforced in the worked
examples and supported in certain places by line drawings that illustrate various steps.
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Misconception Alerts

Students come to physics with preconceptions from everyday experiences and from previous courses. Some of these
preconceptions are misconceptions, and many are very common among students and the general public. Some are inadvertently
picked up through misunderstandings of lectures and texts. The Misconception Alerts feature is designed to point these out and
correct them explicitly.

Take-Home Investigations

Take Home Investigations provide the opportunity for students to apply or explore what they have learned with a hands-on
activity.

Things Great and Small

In these special topic essays, macroscopic phenomena (such as air pressure) are explained with submicroscopic phenomena
(such as atoms bouncing off walls). These essays support the modern perspective by describing aspects of modern physics
before they are formally treated in later chapters. Connections are also made between apparently disparate phenomena.

Simulations

Where applicable, students are directed to the interactive PHeT physics simulations developed by the University of Colorado.
There they can further explore the physics concepts they have learned about in the module.

Summary

Module summaries are thorough and functional and present all important definitions and equations. Students are able to find the
definitions of all terms and symbols as well as their physical relationships. The structure of the summary makes plain the
fundamental principles of the module or collection and serves as a useful study guide.

Glossary

At the end of every module or chapter is a Glossary containing definitions of all of the key terms in the module or chapter.

End-of-Module Problems

At the end of every chapter is a set of Conceptual Questions and/or skills-based Problems & Exercises. Conceptual Questions
challenge students’ ability to explain what they have learned conceptually, independent of the mathematical details. Problems &
Exercises challenge students to apply both concepts and skills to solve mathematical physics problems.

In addition to traditional skills-based problems, there are three special types of end-of-module problems: Integrated Concept
Problems, Unreasonable Results Problems, and Construct Your Own Problems. All of these problems are indicated with a
subtitle preceding the problem.

Integrated Concept Problems

In Integrated Concept Problems, students are asked to apply what they have learned about two or more concepts to arrive at a
solution to a problem. These problems require a higher level of thinking because, before solving a problem, students have to
recognize the combination of strategies required to solve it.

Unreasonable Results

In Unreasonable Results Problems, students are challenged to not only apply concepts and skills to solve a problem, but also to
analyze the answer with respect to how likely or realistic it really is. These problems contain a premise that produces an
unreasonable answer and are designed to further emphasize that properly applied physics must describe nature accurately and
is not simply the process of solving equations.

Construct Your Own Problem

These problems require students to construct the details of a problem, justify their starting assumptions, show specific steps in
the problem’s solution, and finally discuss the meaning of the result. These types of problems relate well to both conceptual and
analytical aspects of physics, emphasizing that physics must describe nature. Often they involve an integration of topics from
more than one chapter. Unlike other problems, solutions are not provided since there is no single correct answer. Instructors
should feel free to direct students regarding the level and scope of their considerations. Whether the problem is solved and
described correctly will depend on initial assumptions.

Additional Resources

Student and Instructor Resources

We’ve compiled additional resources for both students and instructors, including Getting Started Guides, an instructor solution
manual, and PowerPoint slides. Instructor resources require a verified instructor account, which can be requested on your
openstax.org log-in. Take advantage of these resources to supplement your OpenStax book.

Partner Resources

OpenStax Partners are our allies in the mission to make high-quality learning materials affordable and accessible to students and
instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner resources
for your text, visit your book page on openstax.org.
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1 INTRODUCTION: THE NATURE OF
SCIENCE AND PHYSICS

Figure 1.1 Galaxies are as immense as atoms are small. Yet the same laws of physics describe both, and all the rest of nature—an indication of the
underlying unity in the universe. The laws of physics are surprisingly few in number, implying an underlying simplicity to nature’s apparent complexity.
(credit: NASA, JPL-Caltech, P. Barmby, Harvard-Smithsonian Center for Astrophysics)

Chapter Outline
1.1. Physics: An Introduction

• Explain the difference between a principle and a law.
• Explain the difference between a model and a theory.

1.2. Physical Quantities and Units
• Perform unit conversions both in the SI and English units.
• Explain the most common prefixes in the SI units and be able to write them in scientific notation.

1.3. Accuracy, Precision, and Significant Figures
• Determine the appropriate number of significant figures in both addition and subtraction, as well as multiplication and

division calculations.
• Calculate the percent uncertainty of a measurement.

1.4. Approximation
• Make reasonable approximations based on given data.

Introduction to Science and the Realm of Physics, Physical Quantities, and Units

What is your first reaction when you hear the word “physics”? Did you imagine working through difficult equations or memorizing
formulas that seem to have no real use in life outside the physics classroom? Many people come to the subject of physics with a
bit of fear. But as you begin your exploration of this broad-ranging subject, you may soon come to realize that physics plays a
much larger role in your life than you first thought, no matter your life goals or career choice.

For example, take a look at the image above. This image is of the Andromeda Galaxy, which contains billions of individual stars,
huge clouds of gas, and dust. Two smaller galaxies are also visible as bright blue spots in the background. At a staggering 2.5
million light years from the Earth, this galaxy is the nearest one to our own galaxy (which is called the Milky Way). The stars and
planets that make up Andromeda might seem to be the furthest thing from most people’s regular, everyday lives. But Andromeda
is a great starting point to think about the forces that hold together the universe. The forces that cause Andromeda to act as it
does are the same forces we contend with here on Earth, whether we are planning to send a rocket into space or simply raise
the walls for a new home. The same gravity that causes the stars of Andromeda to rotate and revolve also causes water to flow
over hydroelectric dams here on Earth. Tonight, take a moment to look up at the stars. The forces out there are the same as the
ones here on Earth. Through a study of physics, you may gain a greater understanding of the interconnectedness of everything
we can see and know in this universe.

Think now about all of the technological devices that you use on a regular basis. Computers, smart phones, GPS systems, MP3
players, and satellite radio might come to mind. Next, think about the most exciting modern technologies that you have heard
about in the news, such as trains that levitate above tracks, “invisibility cloaks” that bend light around them, and microscopic
robots that fight cancer cells in our bodies. All of these groundbreaking advancements, commonplace or unbelievable, rely on the
principles of physics. Aside from playing a significant role in technology, professionals such as engineers, pilots, physicians,
physical therapists, electricians, and computer programmers apply physics concepts in their daily work. For example, a pilot must
understand how wind forces affect a flight path and a physical therapist must understand how the muscles in the body
experience forces as they move and bend. As you will learn in this text, physics principles are propelling new, exciting
technologies, and these principles are applied in a wide range of careers.
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In this text, you will begin to explore the history of the formal study of physics, beginning with natural philosophy and the ancient
Greeks, and leading up through a review of Sir Isaac Newton and the laws of physics that bear his name. You will also be
introduced to the standards scientists use when they study physical quantities and the interrelated system of measurements
most of the scientific community uses to communicate in a single mathematical language. Finally, you will study the limits of our
ability to be accurate and precise, and the reasons scientists go to painstaking lengths to be as clear as possible regarding their
own limitations.

1.1 Physics: An Introduction

Figure 1.2 The flight formations of migratory birds such as Canada geese are governed by the laws of physics. (credit: David Merrett)

The physical universe is enormously complex in its detail. Every day, each of us observes a great variety of objects and
phenomena. Over the centuries, the curiosity of the human race has led us collectively to explore and catalog a tremendous
wealth of information. From the flight of birds to the colors of flowers, from lightning to gravity, from quarks to clusters of galaxies,
from the flow of time to the mystery of the creation of the universe, we have asked questions and assembled huge arrays of
facts. In the face of all these details, we have discovered that a surprisingly small and unified set of physical laws can explain
what we observe. As humans, we make generalizations and seek order. We have found that nature is remarkably cooperative—it
exhibits the underlying order and simplicity we so value.

It is the underlying order of nature that makes science in general, and physics in particular, so enjoyable to study. For example,
what do a bag of chips and a car battery have in common? Both contain energy that can be converted to other forms. The law of
conservation of energy (which says that energy can change form but is never lost) ties together such topics as food calories,
batteries, heat, light, and watch springs. Understanding this law makes it easier to learn about the various forms energy takes
and how they relate to one another. Apparently unrelated topics are connected through broadly applicable physical laws,
permitting an understanding beyond just the memorization of lists of facts.

The unifying aspect of physical laws and the basic simplicity of nature form the underlying themes of this text. In learning to apply
these laws, you will, of course, study the most important topics in physics. More importantly, you will gain analytical abilities that
will enable you to apply these laws far beyond the scope of what can be included in a single book. These analytical skills will help
you to excel academically, and they will also help you to think critically in any professional career you choose to pursue. This
module discusses the realm of physics (to define what physics is), some applications of physics (to illustrate its relevance to
other disciplines), and more precisely what constitutes a physical law (to illuminate the importance of experimentation to theory).

Science and the Realm of Physics

Science consists of the theories and laws that are the general truths of nature as well as the body of knowledge they encompass.
Scientists are continually trying to expand this body of knowledge and to perfect the expression of the laws that describe it.
Physics is concerned with describing the interactions of energy, matter, space, and time, and it is especially interested in what
fundamental mechanisms underlie every phenomenon. The concern for describing the basic phenomena in nature essentially
defines the realm of physics.

Physics aims to describe the function of everything around us, from the movement of tiny charged particles to the motion of
people, cars, and spaceships. In fact, almost everything around you can be described quite accurately by the laws of physics.
Consider a smart phone (Figure 1.3). Physics describes how electricity interacts with the various circuits inside the device. This
knowledge helps engineers select the appropriate materials and circuit layout when building the smart phone. Next, consider a
GPS system. Physics describes the relationship between the speed of an object, the distance over which it travels, and the time
it takes to travel that distance. When you use a GPS device in a vehicle, it utilizes these physics equations to determine the
travel time from one location to another.

6 Chapter 1 | Introduction: The Nature of Science and Physics

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Figure 1.3 The Apple “iPhone” is a common smart phone with a GPS function. Physics describes the way that electricity flows through the circuits of
this device. Engineers use their knowledge of physics to construct an iPhone with features that consumers will enjoy. One specific feature of an iPhone
is the GPS function. GPS uses physics equations to determine the driving time between two locations on a map. (credit: @gletham GIS, Social, Mobile
Tech Images)

Applications of Physics

You need not be a scientist to use physics. On the contrary, knowledge of physics is useful in everyday situations as well as in
nonscientific professions. It can help you understand how microwave ovens work, why metals should not be put into them, and
why they might affect pacemakers. (See Figure 1.4 and Figure 1.5.) Physics allows you to understand the hazards of radiation
and rationally evaluate these hazards more easily. Physics also explains the reason why a black car radiator helps remove heat
in a car engine, and it explains why a white roof helps keep the inside of a house cool. Similarly, the operation of a car’s ignition
system as well as the transmission of electrical signals through our body’s nervous system are much easier to understand when
you think about them in terms of basic physics.

Physics is the foundation of many important disciplines and contributes directly to others. Chemistry, for example—since it deals
with the interactions of atoms and molecules—is rooted in atomic and molecular physics. Most branches of engineering are
applied physics. In architecture, physics is at the heart of structural stability, and is involved in the acoustics, heating, lighting,
and cooling of buildings. Parts of geology rely heavily on physics, such as radioactive dating of rocks, earthquake analysis, and
heat transfer in the Earth. Some disciplines, such as biophysics and geophysics, are hybrids of physics and other disciplines.

Physics has many applications in the biological sciences. On the microscopic level, it helps describe the properties of cell walls
and cell membranes (Figure 1.6 and Figure 1.7). On the macroscopic level, it can explain the heat, work, and power associated
with the human body. Physics is involved in medical diagnostics, such as x-rays, magnetic resonance imaging (MRI), and
ultrasonic blood flow measurements. Medical therapy sometimes directly involves physics; for example, cancer radiotherapy
uses ionizing radiation. Physics can also explain sensory phenomena, such as how musical instruments make sound, how the
eye detects color, and how lasers can transmit information.

It is not necessary to formally study all applications of physics. What is most useful is knowledge of the basic laws of physics and
a skill in the analytical methods for applying them. The study of physics also can improve your problem-solving skills.
Furthermore, physics has retained the most basic aspects of science, so it is used by all of the sciences, and the study of
physics makes other sciences easier to understand.

Figure 1.4 The laws of physics help us understand how common appliances work. For example, the laws of physics can help explain how microwave
ovens heat up food, and they also help us understand why it is dangerous to place metal objects in a microwave oven. (credit: MoneyBlogNewz)
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Figure 1.5 These two applications of physics have more in common than meets the eye. Microwave ovens use electromagnetic waves to heat food.
Magnetic resonance imaging (MRI) also uses electromagnetic waves to yield an image of the brain, from which the exact location of tumors can be
determined. (credit: Rashmi Chawla, Daniel Smith, and Paul E. Marik)

Figure 1.6 Physics, chemistry, and biology help describe the properties of cell walls in plant cells, such as the onion cells seen here. (credit: Umberto
Salvagnin)

Figure 1.7 An artist’s rendition of the the structure of a cell membrane. Membranes form the boundaries of animal cells and are complex in structure
and function. Many of the most fundamental properties of life, such as the firing of nerve cells, are related to membranes. The disciplines of biology,
chemistry, and physics all help us understand the membranes of animal cells. (credit: Mariana Ruiz)

Models, Theories, and Laws; The Role of Experimentation

The laws of nature are concise descriptions of the universe around us; they are human statements of the underlying laws or rules
that all natural processes follow. Such laws are intrinsic to the universe; humans did not create them and so cannot change
them. We can only discover and understand them. Their discovery is a very human endeavor, with all the elements of mystery,
imagination, struggle, triumph, and disappointment inherent in any creative effort. (See Figure 1.8 and Figure 1.9.) The
cornerstone of discovering natural laws is observation; science must describe the universe as it is, not as we may imagine it to
be.
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Figure 1.8 Isaac Newton (1642–1727) was very reluctant to publish his revolutionary work and had to be convinced to do so. In his later years, he
stepped down from his academic post and became exchequer of the Royal Mint. He took this post seriously, inventing reeding (or creating ridges) on
the edge of coins to prevent unscrupulous people from trimming the silver off of them before using them as currency. (credit: Arthur Shuster and Arthur
E. Shipley: Britain’s Heritage of Science. London, 1917.)

Figure 1.9 Marie Curie (1867–1934) sacrificed monetary assets to help finance her early research and damaged her physical well-being with radiation
exposure. She is the only person to win Nobel prizes in both physics and chemistry. One of her daughters also won a Nobel Prize. (credit: Wikimedia
Commons)

We all are curious to some extent. We look around, make generalizations, and try to understand what we see—for example, we
look up and wonder whether one type of cloud signals an oncoming storm. As we become serious about exploring nature, we
become more organized and formal in collecting and analyzing data. We attempt greater precision, perform controlled
experiments (if we can), and write down ideas about how the data may be organized and unified. We then formulate models,
theories, and laws based on the data we have collected and analyzed to generalize and communicate the results of these
experiments.

A model is a representation of something that is often too difficult (or impossible) to display directly. While a model is justified
with experimental proof, it is only accurate under limited situations. An example is the planetary model of the atom in which
electrons are pictured as orbiting the nucleus, analogous to the way planets orbit the Sun. (See Figure 1.10.) We cannot observe
electron orbits directly, but the mental image helps explain the observations we can make, such as the emission of light from hot
gases (atomic spectra). Physicists use models for a variety of purposes. For example, models can help physicists analyze a
scenario and perform a calculation, or they can be used to represent a situation in the form of a computer simulation. A theory is
an explanation for patterns in nature that is supported by scientific evidence and verified multiple times by various groups of
researchers. Some theories include models to help visualize phenomena, whereas others do not. Newton’s theory of gravity, for
example, does not require a model or mental image, because we can observe the objects directly with our own senses. The
kinetic theory of gases, on the other hand, is a model in which a gas is viewed as being composed of atoms and molecules.
Atoms and molecules are too small to be observed directly with our senses—thus, we picture them mentally to understand what
our instruments tell us about the behavior of gases.

A law uses concise language to describe a generalized pattern in nature that is supported by scientific evidence and repeated
experiments. Often, a law can be expressed in the form of a single mathematical equation. Laws and theories are similar in that
they are both scientific statements that result from a tested hypothesis and are supported by scientific evidence. However, the
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designation law is reserved for a concise and very general statement that describes phenomena in nature, such as the law that
energy is conserved during any process, or Newton’s second law of motion, which relates force, mass, and acceleration by the
simple equation F = ma . A theory, in contrast, is a less concise statement of observed phenomena. For example, the Theory of

Evolution and the Theory of Relativity cannot be expressed concisely enough to be considered a law. The biggest difference
between a law and a theory is that a theory is much more complex and dynamic. A law describes a single action, whereas a
theory explains an entire group of related phenomena. And, whereas a law is a postulate that forms the foundation of the
scientific method, a theory is the end result of that process.

Less broadly applicable statements are usually called principles (such as Pascal’s principle, which is applicable only in fluids),
but the distinction between laws and principles often is not carefully made.

Figure 1.10 What is a model? This planetary model of the atom shows electrons orbiting the nucleus. It is a drawing that we use to form a mental
image of the atom that we cannot see directly with our eyes because it is too small.

Models, Theories, and Laws

Models, theories, and laws are used to help scientists analyze the data they have already collected. However, often after a
model, theory, or law has been developed, it points scientists toward new discoveries they would not otherwise have made.

The models, theories, and laws we devise sometimes imply the existence of objects or phenomena as yet unobserved. These
predictions are remarkable triumphs and tributes to the power of science. It is the underlying order in the universe that enables
scientists to make such spectacular predictions. However, if experiment does not verify our predictions, then the theory or law is
wrong, no matter how elegant or convenient it is. Laws can never be known with absolute certainty because it is impossible to
perform every imaginable experiment in order to confirm a law in every possible scenario. Physicists operate under the
assumption that all scientific laws and theories are valid until a counterexample is observed. If a good-quality, verifiable
experiment contradicts a well-established law, then the law must be modified or overthrown completely.

The study of science in general and physics in particular is an adventure much like the exploration of uncharted ocean.
Discoveries are made; models, theories, and laws are formulated; and the beauty of the physical universe is made more sublime
for the insights gained.

The Scientific Method

As scientists inquire and gather information about the world, they follow a process called the scientific method. This
process typically begins with an observation and question that the scientist will research. Next, the scientist typically
performs some research about the topic and then devises a hypothesis. Then, the scientist will test the hypothesis by
performing an experiment. Finally, the scientist analyzes the results of the experiment and draws a conclusion. Note that the
scientific method can be applied to many situations that are not limited to science, and this method can be modified to suit
the situation.

Consider an example. Let us say that you try to turn on your car, but it will not start. You undoubtedly wonder: Why will the
car not start? You can follow a scientific method to answer this question. First off, you may perform some research to
determine a variety of reasons why the car will not start. Next, you will state a hypothesis. For example, you may believe that
the car is not starting because it has no engine oil. To test this, you open the hood of the car and examine the oil level. You
observe that the oil is at an acceptable level, and you thus conclude that the oil level is not contributing to your car issue. To
troubleshoot the issue further, you may devise a new hypothesis to test and then repeat the process again.

The Evolution of Natural Philosophy into Modern Physics

Physics was not always a separate and distinct discipline. It remains connected to other sciences to this day. The word physics
comes from Greek, meaning nature. The study of nature came to be called “natural philosophy.” From ancient times through the
Renaissance, natural philosophy encompassed many fields, including astronomy, biology, chemistry, physics, mathematics, and
medicine. Over the last few centuries, the growth of knowledge has resulted in ever-increasing specialization and branching of
natural philosophy into separate fields, with physics retaining the most basic facets. (See Figure 1.11, Figure 1.12, and Figure
1.13.) Physics as it developed from the Renaissance to the end of the 19th century is called classical physics. It was
transformed into modern physics by revolutionary discoveries made starting at the beginning of the 20th century.
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Figure 1.11 Over the centuries, natural philosophy has evolved into more specialized disciplines, as illustrated by the contributions of some of the
greatest minds in history. The Greek philosopher Aristotle (384–322 B.C.) wrote on a broad range of topics including physics, animals, the soul,
politics, and poetry. (credit: Jastrow (2006)/Ludovisi Collection)

Figure 1.12 Galileo Galilei (1564–1642) laid the foundation of modern experimentation and made contributions in mathematics, physics, and
astronomy. (credit: Domenico Tintoretto)

Figure 1.13 Niels Bohr (1885–1962) made fundamental contributions to the development of quantum mechanics, one part of modern physics. (credit:
United States Library of Congress Prints and Photographs Division)

Classical physics is not an exact description of the universe, but it is an excellent approximation under the following conditions:
Matter must be moving at speeds less than about 1% of the speed of light, the objects dealt with must be large enough to be
seen with a microscope, and only weak gravitational fields, such as the field generated by the Earth, can be involved. Because
humans live under such circumstances, classical physics seems intuitively reasonable, while many aspects of modern physics
seem bizarre. This is why models are so useful in modern physics—they let us conceptualize phenomena we do not ordinarily
experience. We can relate to models in human terms and visualize what happens when objects move at high speeds or imagine
what objects too small to observe with our senses might be like. For example, we can understand an atom’s properties because
we can picture it in our minds, although we have never seen an atom with our eyes. New tools, of course, allow us to better
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picture phenomena we cannot see. In fact, new instrumentation has allowed us in recent years to actually “picture” the atom.

Limits on the Laws of Classical Physics

For the laws of classical physics to apply, the following criteria must be met: Matter must be moving at speeds less than
about 1% of the speed of light, the objects dealt with must be large enough to be seen with a microscope, and only weak
gravitational fields (such as the field generated by the Earth) can be involved.

Figure 1.14 Using a scanning tunneling microscope (STM), scientists can see the individual atoms that compose this sheet of gold. (credit:
Erwinrossen)

Some of the most spectacular advances in science have been made in modern physics. Many of the laws of classical physics
have been modified or rejected, and revolutionary changes in technology, society, and our view of the universe have resulted.
Like science fiction, modern physics is filled with fascinating objects beyond our normal experiences, but it has the advantage
over science fiction of being very real. Why, then, is the majority of this text devoted to topics of classical physics? There are two
main reasons: Classical physics gives an extremely accurate description of the universe under a wide range of everyday
circumstances, and knowledge of classical physics is necessary to understand modern physics.

Modern physics itself consists of the two revolutionary theories, relativity and quantum mechanics. These theories deal with the
very fast and the very small, respectively. Relativity must be used whenever an object is traveling at greater than about 1% of
the speed of light or experiences a strong gravitational field such as that near the Sun. Quantum mechanics must be used for
objects smaller than can be seen with a microscope. The combination of these two theories is relativistic quantum mechanics,
and it describes the behavior of small objects traveling at high speeds or experiencing a strong gravitational field. Relativistic
quantum mechanics is the best universally applicable theory we have. Because of its mathematical complexity, it is used only
when necessary, and the other theories are used whenever they will produce sufficiently accurate results. We will find, however,
that we can do a great deal of modern physics with the algebra and trigonometry used in this text.

Check Your Understanding

A friend tells you he has learned about a new law of nature. What can you know about the information even before your
friend describes the law? How would the information be different if your friend told you he had learned about a scientific
theory rather than a law?

Solution
Without knowing the details of the law, you can still infer that the information your friend has learned conforms to the
requirements of all laws of nature: it will be a concise description of the universe around us; a statement of the underlying
rules that all natural processes follow. If the information had been a theory, you would be able to infer that the information will
be a large-scale, broadly applicable generalization.

PhET Explorations: Equation Grapher

Learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the curves for the
individual terms (e.g. y = bx ) to see how they add to generate the polynomial curve.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42092/1.9/#Phet_module_1.1)
Figure 1.15
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1.2 Physical Quantities and Units

Figure 1.16 The distance from Earth to the Moon may seem immense, but it is just a tiny fraction of the distances from Earth to other celestial bodies.
(credit: NASA)

The range of objects and phenomena studied in physics is immense. From the incredibly short lifetime of a nucleus to the age of
the Earth, from the tiny sizes of sub-nuclear particles to the vast distance to the edges of the known universe, from the force
exerted by a jumping flea to the force between Earth and the Sun, there are enough factors of 10 to challenge the imagination of
even the most experienced scientist. Giving numerical values for physical quantities and equations for physical principles allows
us to understand nature much more deeply than does qualitative description alone. To comprehend these vast ranges, we must
also have accepted units in which to express them. And we shall find that (even in the potentially mundane discussion of meters,
kilograms, and seconds) a profound simplicity of nature appears—all physical quantities can be expressed as combinations of
only four fundamental physical quantities: length, mass, time, and electric current.

We define a physical quantity either by specifying how it is measured or by stating how it is calculated from other
measurements. For example, we define distance and time by specifying methods for measuring them, whereas we define
average speed by stating that it is calculated as distance traveled divided by time of travel.

Measurements of physical quantities are expressed in terms of units, which are standardized values. For example, the length of
a race, which is a physical quantity, can be expressed in units of meters (for sprinters) or kilometers (for distance runners).
Without standardized units, it would be extremely difficult for scientists to express and compare measured values in a meaningful
way. (See Figure 1.17.)

Figure 1.17 Distances given in unknown units are maddeningly useless.

There are two major systems of units used in the world: SI units (also known as the metric system) and English units (also
known as the customary or imperial system). English units were historically used in nations once ruled by the British Empire
and are still widely used in the United States. Virtually every other country in the world now uses SI units as the standard; the
metric system is also the standard system agreed upon by scientists and mathematicians. The acronym “SI” is derived from the
French Système International.

SI Units: Fundamental and Derived Units

Table 1.1 gives the fundamental SI units that are used throughout this textbook. This text uses non-SI units in a few applications
where they are in very common use, such as the measurement of blood pressure in millimeters of mercury (mm Hg). Whenever
non-SI units are discussed, they will be tied to SI units through conversions.

Table 1.1 Fundamental SI Units

Length Mass Time Electric Current

meter (m) kilogram (kg) second (s) ampere (A)
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It is an intriguing fact that some physical quantities are more fundamental than others and that the most fundamental physical
quantities can be defined only in terms of the procedure used to measure them. The units in which they are measured are thus
called fundamental units. In this textbook, the fundamental physical quantities are taken to be length, mass, time, and electric
current. (Note that electric current will not be introduced until much later in this text.) All other physical quantities, such as force
and electric charge, can be expressed as algebraic combinations of length, mass, time, and current (for example, speed is length
divided by time); these units are called derived units.

Units of Time, Length, and Mass: The Second, Meter, and Kilogram
The Second

The SI unit for time, the second(abbreviated s), has a long history. For many years it was defined as 1/86,400 of a mean solar
day. More recently, a new standard was adopted to gain greater accuracy and to define the second in terms of a non-varying, or
constant, physical phenomenon (because the solar day is getting longer due to very gradual slowing of the Earth’s rotation).
Cesium atoms can be made to vibrate in a very steady way, and these vibrations can be readily observed and counted. In 1967
the second was redefined as the time required for 9,192,631,770 of these vibrations. (See Figure 1.18.) Accuracy in the
fundamental units is essential, because all measurements are ultimately expressed in terms of fundamental units and can be no
more accurate than are the fundamental units themselves.

Figure 1.18 An atomic clock such as this one uses the vibrations of cesium atoms to keep time to a precision of better than a microsecond per year.
The fundamental unit of time, the second, is based on such clocks. This image is looking down from the top of an atomic fountain nearly 30 feet tall!
(credit: Steve Jurvetson/Flickr)

The Meter

The SI unit for length is the meter (abbreviated m); its definition has also changed over time to become more accurate and
precise. The meter was first defined in 1791 as 1/10,000,000 of the distance from the equator to the North Pole. This
measurement was improved in 1889 by redefining the meter to be the distance between two engraved lines on a platinum-iridium
bar now kept near Paris. By 1960, it had become possible to define the meter even more accurately in terms of the wavelength
of light, so it was again redefined as 1,650,763.73 wavelengths of orange light emitted by krypton atoms. In 1983, the meter was
given its present definition (partly for greater accuracy) as the distance light travels in a vacuum in 1/299,792,458 of a second.
(See Figure 1.19.) This change defines the speed of light to be exactly 299,792,458 meters per second. The length of the meter
will change if the speed of light is someday measured with greater accuracy.

The Kilogram

The SI unit for mass is the kilogram (abbreviated kg); it is defined to be the mass of a platinum-iridium cylinder kept with the old
meter standard at the International Bureau of Weights and Measures near Paris. Exact replicas of the standard kilogram are also
kept at the United States’ National Institute of Standards and Technology, or NIST, located in Gaithersburg, Maryland outside of
Washington D.C., and at other locations around the world. The determination of all other masses can be ultimately traced to a
comparison with the standard mass.

Figure 1.19 The meter is defined to be the distance light travels in 1/299,792,458 of a second in a vacuum. Distance traveled is speed multiplied by
time.

Electric current and its accompanying unit, the ampere, will be introduced in Introduction to Electric Current, Resistance, and
Ohm's Law when electricity and magnetism are covered. The initial modules in this textbook are concerned with mechanics,
fluids, heat, and waves. In these subjects all pertinent physical quantities can be expressed in terms of the fundamental units of
length, mass, and time.
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Metric Prefixes

SI units are part of the metric system. The metric system is convenient for scientific and engineering calculations because the
units are categorized by factors of 10. Table 1.2 gives metric prefixes and symbols used to denote various factors of 10.

Metric systems have the advantage that conversions of units involve only powers of 10. There are 100 centimeters in a meter,
1000 meters in a kilometer, and so on. In nonmetric systems, such as the system of U.S. customary units, the relationships are
not as simple—there are 12 inches in a foot, 5280 feet in a mile, and so on. Another advantage of the metric system is that the
same unit can be used over extremely large ranges of values simply by using an appropriate metric prefix. For example,
distances in meters are suitable in construction, while distances in kilometers are appropriate for air travel, and the tiny measure
of nanometers are convenient in optical design. With the metric system there is no need to invent new units for particular
applications.

The term order of magnitude refers to the scale of a value expressed in the metric system. Each power of 10 in the metric

system represents a different order of magnitude. For example, 101 , 102 , 103 , and so forth are all different orders of

magnitude. All quantities that can be expressed as a product of a specific power of 10 are said to be of the same order of

magnitude. For example, the number 800 can be written as 8×102 , and the number 450 can be written as 4.5×102. Thus,

the numbers 800 and 450 are of the same order of magnitude: 102. Order of magnitude can be thought of as a ballpark

estimate for the scale of a value. The diameter of an atom is on the order of 10−9  m, while the diameter of the Sun is on the

order of 109  m.

The Quest for Microscopic Standards for Basic Units

The fundamental units described in this chapter are those that produce the greatest accuracy and precision in
measurement. There is a sense among physicists that, because there is an underlying microscopic substructure to matter, it
would be most satisfying to base our standards of measurement on microscopic objects and fundamental physical
phenomena such as the speed of light. A microscopic standard has been accomplished for the standard of time, which is
based on the oscillations of the cesium atom.

The standard for length was once based on the wavelength of light (a small-scale length) emitted by a certain type of atom,
but it has been supplanted by the more precise measurement of the speed of light. If it becomes possible to measure the
mass of atoms or a particular arrangement of atoms such as a silicon sphere to greater precision than the kilogram
standard, it may become possible to base mass measurements on the small scale. There are also possibilities that electrical
phenomena on the small scale may someday allow us to base a unit of charge on the charge of electrons and protons, but
at present current and charge are related to large-scale currents and forces between wires.
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Table 1.2 Metric Prefixes for Powers of 10 and their Symbols

Prefix Symbol Value[1] Example (some are approximate)

exa E 1018 exameter Em 1018  m distance light travels in a century

peta P 1015 petasecond Ps 1015  s 30 million years

tera T 1012 terawatt TW 1012  W powerful laser output

giga G 109 gigahertz GHz 109  Hz a microwave frequency

mega M 106 megacurie MCi 106  Ci high radioactivity

kilo k 103 kilometer km 103  m about 6/10 mile

hecto h 102 hectoliter hL 102  L 26 gallons

deka da 101 dekagram dag 101  g teaspoon of butter

— — 100 (=1)

deci d 10−1 deciliter dL 10−1  L less than half a soda

centi c 10−2 centimeter cm 10−2  m fingertip thickness

milli m 10−3 millimeter mm 10−3  m flea at its shoulders

micro µ 10−6 micrometer µm 10−6  m detail in microscope

nano n 10−9 nanogram ng 10−9  g small speck of dust

pico p 10−12 picofarad pF 10−12  F small capacitor in radio

femto f 10−15 femtometer fm 10−15  m size of a proton

atto a 10−18 attosecond as 10−18  s time light crosses an atom

Known Ranges of Length, Mass, and Time

The vastness of the universe and the breadth over which physics applies are illustrated by the wide range of examples of known
lengths, masses, and times in Table 1.3. Examination of this table will give you some feeling for the range of possible topics and
numerical values. (See Figure 1.20 and Figure 1.21.)

Figure 1.20 Tiny phytoplankton swims among crystals of ice in the Antarctic Sea. They range from a few micrometers to as much as 2 millimeters in
length. (credit: Prof. Gordon T. Taylor, Stony Brook University; NOAA Corps Collections)

1. See Appendix A for a discussion of powers of 10.
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Figure 1.21 Galaxies collide 2.4 billion light years away from Earth. The tremendous range of observable phenomena in nature challenges the
imagination. (credit: NASA/CXC/UVic./A. Mahdavi et al. Optical/lensing: CFHT/UVic./H. Hoekstra et al.)

Unit Conversion and Dimensional Analysis

It is often necessary to convert from one type of unit to another. For example, if you are reading a European cookbook, some
quantities may be expressed in units of liters and you need to convert them to cups. Or, perhaps you are reading walking
directions from one location to another and you are interested in how many miles you will be walking. In this case, you will need
to convert units of feet to miles.

Let us consider a simple example of how to convert units. Let us say that we want to convert 80 meters (m) to kilometers (km).

The first thing to do is to list the units that you have and the units that you want to convert to. In this case, we have units in
meters and we want to convert to kilometers.

Next, we need to determine a conversion factor relating meters to kilometers. A conversion factor is a ratio expressing how
many of one unit are equal to another unit. For example, there are 12 inches in 1 foot, 100 centimeters in 1 meter, 60 seconds in
1 minute, and so on. In this case, we know that there are 1,000 meters in 1 kilometer.

Now we can set up our unit conversion. We will write the units that we have and then multiply them by the conversion factor so
that the units cancel out, as shown:

(1.1)80m× 1 km
1000m = 0.080 km.

Note that the unwanted m unit cancels, leaving only the desired km unit. You can use this method to convert between any types
of unit.

Click Appendix C for a more complete list of conversion factors.
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Table 1.3 Approximate Values of Length, Mass, and Time

Lengths in meters
Masses in kilograms (more
precise values in parentheses)

Times in seconds (more precise
values in parentheses)

10−18 Present experimental limit to
smallest observable detail 10−30

Mass of an electron
⎛
⎝9.11×10−31  kg⎞⎠ 10−23 Time for light to cross a

proton

10−15 Diameter of a proton 10−27
Mass of a hydrogen atom
⎛
⎝1.67×10−27  kg⎞⎠ 10−22 Mean life of an extremely

unstable nucleus

10−14 Diameter of a uranium nucleus 10−15 Mass of a bacterium 10−15 Time for one oscillation of
visible light

10−10 Diameter of a hydrogen atom 10−5 Mass of a mosquito 10−13 Time for one vibration of an
atom in a solid

10−8 Thickness of membranes in cells of
living organisms 10−2 Mass of a hummingbird 10−8 Time for one oscillation of an

FM radio wave

10−6 Wavelength of visible light 1 Mass of a liter of water (about
a quart) 10−3 Duration of a nerve impulse

10−3 Size of a grain of sand 102 Mass of a person 1 Time for one heartbeat

1 Height of a 4-year-old child 103 Mass of a car 105 One day
⎛
⎝8.64×104 s⎞⎠

102 Length of a football field 108 Mass of a large ship 107 One year (y)
⎛
⎝3.16×107 s⎞⎠

104 Greatest ocean depth 1012 Mass of a large iceberg 109 About half the life
expectancy of a human

107 Diameter of the Earth 1015 Mass of the nucleus of a comet 1011 Recorded history

1011 Distance from the Earth to the Sun 1023
Mass of the Moon
⎛
⎝7.35×1022  kg⎞⎠ 1017 Age of the Earth

1016 Distance traveled by light in 1 year
(a light year) 1025

Mass of the Earth
⎛
⎝5.97×1024  kg⎞⎠ 1018 Age of the universe

1021 Diameter of the Milky Way galaxy 1030
Mass of the Sun
⎛
⎝1.99×1030  kg⎞⎠

1022 Distance from the Earth to the
nearest large galaxy (Andromeda) 1042 Mass of the Milky Way galaxy

(current upper limit)

1026 Distance from the Earth to the
edges of the known universe 1053 Mass of the known universe

(current upper limit)

Example 1.1 Unit Conversions: A Short Drive Home

Suppose that you drive the 10.0 km from your university to home in 20.0 min. Calculate your average speed (a) in kilometers
per hour (km/h) and (b) in meters per second (m/s). (Note: Average speed is distance traveled divided by time of travel.)

Strategy

First we calculate the average speed using the given units. Then we can get the average speed into the desired units by
picking the correct conversion factor and multiplying by it. The correct conversion factor is the one that cancels the
unwanted unit and leaves the desired unit in its place.

Solution for (a)

(1) Calculate average speed. Average speed is distance traveled divided by time of travel. (Take this definition as a given for
now—average speed and other motion concepts will be covered in a later module.) In equation form,

(1.2)average speed = distance
time .

(2) Substitute the given values for distance and time.
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(1.3)average speed = 10.0 km
20.0 min = 0.500  km

 min.

(3) Convert km/min to km/h: multiply by the conversion factor that will cancel minutes and leave hours. That conversion
factor is 60 min/hr . Thus,

(1.4)average speed =0.500  km
 min×60 min

1 h = 30.0 km
 h .

Discussion for (a)

To check your answer, consider the following:

(1) Be sure that you have properly cancelled the units in the unit conversion. If you have written the unit conversion factor
upside down, the units will not cancel properly in the equation. If you accidentally get the ratio upside down, then the units
will not cancel; rather, they will give you the wrong units as follows:

(1.5) km
min× 1 hr

60 min = 1
60

 km ⋅ hr
 min2 ,

which are obviously not the desired units of km/h.

(2) Check that the units of the final answer are the desired units. The problem asked us to solve for average speed in units
of km/h and we have indeed obtained these units.

(3) Check the significant figures. Because each of the values given in the problem has three significant figures, the answer
should also have three significant figures. The answer 30.0 km/hr does indeed have three significant figures, so this is
appropriate. Note that the significant figures in the conversion factor are not relevant because an hour is defined to be 60
minutes, so the precision of the conversion factor is perfect.

(4) Next, check whether the answer is reasonable. Let us consider some information from the problem—if you travel 10 km
in a third of an hour (20 min), you would travel three times that far in an hour. The answer does seem reasonable.

Solution for (b)

There are several ways to convert the average speed into meters per second.

(1) Start with the answer to (a) and convert km/h to m/s. Two conversion factors are needed—one to convert hours to
seconds, and another to convert kilometers to meters.

(2) Multiplying by these yields

(1.6)Average speed = 30.0km
h × 1 h

3,600 s×1,000 m
1 km ,

(1.7)Average speed = 8.33m
s .

Discussion for (b)

If we had started with 0.500 km/min, we would have needed different conversion factors, but the answer would have been
the same: 8.33 m/s.

You may have noted that the answers in the worked example just covered were given to three digits. Why? When do you
need to be concerned about the number of digits in something you calculate? Why not write down all the digits your
calculator produces? The module Accuracy, Precision, and Significant Figures will help you answer these questions.

Nonstandard Units

While there are numerous types of units that we are all familiar with, there are others that are much more obscure. For
example, a firkin is a unit of volume that was once used to measure beer. One firkin equals about 34 liters. To learn more
about nonstandard units, use a dictionary or encyclopedia to research different “weights and measures.” Take note of any
unusual units, such as a barleycorn, that are not listed in the text. Think about how the unit is defined and state its
relationship to SI units.

Check Your Understanding

Some hummingbirds beat their wings more than 50 times per second. A scientist is measuring the time it takes for a
hummingbird to beat its wings once. Which fundamental unit should the scientist use to describe the measurement? Which
factor of 10 is the scientist likely to use to describe the motion precisely? Identify the metric prefix that corresponds to this
factor of 10.

Solution
The scientist will measure the time between each movement using the fundamental unit of seconds. Because the wings beat

so fast, the scientist will probably need to measure in milliseconds, or 10−3 seconds. (50 beats per second corresponds to
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20 milliseconds per beat.)

Check Your Understanding

One cubic centimeter is equal to one milliliter. What does this tell you about the different units in the SI metric system?

Solution
The fundamental unit of length (meter) is probably used to create the derived unit of volume (liter). The measure of a milliliter
is dependent on the measure of a centimeter.

1.3 Accuracy, Precision, and Significant Figures

Figure 1.22 A double-pan mechanical balance is used to compare different masses. Usually an object with unknown mass is placed in one pan and
objects of known mass are placed in the other pan. When the bar that connects the two pans is horizontal, then the masses in both pans are equal.
The “known masses” are typically metal cylinders of standard mass such as 1 gram, 10 grams, and 100 grams. (credit: Serge Melki)

Figure 1.23 Many mechanical balances, such as double-pan balances, have been replaced by digital scales, which can typically measure the mass of
an object more precisely. Whereas a mechanical balance may only read the mass of an object to the nearest tenth of a gram, many digital scales can
measure the mass of an object up to the nearest thousandth of a gram. (credit: Karel Jakubec)

Accuracy and Precision of a Measurement

Science is based on observation and experiment—that is, on measurements. Accuracy is how close a measurement is to the
correct value for that measurement. For example, let us say that you are measuring the length of standard computer paper. The
packaging in which you purchased the paper states that it is 11.0 inches long. You measure the length of the paper three times
and obtain the following measurements: 11.1 in., 11.2 in., and 10.9 in. These measurements are quite accurate because they are
very close to the correct value of 11.0 inches. In contrast, if you had obtained a measurement of 12 inches, your measurement
would not be very accurate.

The precision of a measurement system is refers to how close the agreement is between repeated measurements (which are
repeated under the same conditions). Consider the example of the paper measurements. The precision of the measurements
refers to the spread of the measured values. One way to analyze the precision of the measurements would be to determine the
range, or difference, between the lowest and the highest measured values. In that case, the lowest value was 10.9 in. and the
highest value was 11.2 in. Thus, the measured values deviated from each other by at most 0.3 in. These measurements were
relatively precise because they did not vary too much in value. However, if the measured values had been 10.9, 11.1, and 11.9,
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then the measurements would not be very precise because there would be significant variation from one measurement to
another.

The measurements in the paper example are both accurate and precise, but in some cases, measurements are accurate but not
precise, or they are precise but not accurate. Let us consider an example of a GPS system that is attempting to locate the
position of a restaurant in a city. Think of the restaurant location as existing at the center of a bull’s-eye target, and think of each
GPS attempt to locate the restaurant as a black dot. In Figure 1.24, you can see that the GPS measurements are spread out far
apart from each other, but they are all relatively close to the actual location of the restaurant at the center of the target. This
indicates a low precision, high accuracy measuring system. However, in Figure 1.25, the GPS measurements are concentrated
quite closely to one another, but they are far away from the target location. This indicates a high precision, low accuracy
measuring system.

Figure 1.24 A GPS system attempts to locate a restaurant at the center of the bull’s-eye. The black dots represent each attempt to pinpoint the location
of the restaurant. The dots are spread out quite far apart from one another, indicating low precision, but they are each rather close to the actual location
of the restaurant, indicating high accuracy. (credit: Dark Evil)

Figure 1.25 In this figure, the dots are concentrated rather closely to one another, indicating high precision, but they are rather far away from the actual
location of the restaurant, indicating low accuracy. (credit: Dark Evil)

Accuracy, Precision, and Uncertainty

The degree of accuracy and precision of a measuring system are related to the uncertainty in the measurements. Uncertainty is
a quantitative measure of how much your measured values deviate from a standard or expected value. If your measurements
are not very accurate or precise, then the uncertainty of your values will be very high. In more general terms, uncertainty can be
thought of as a disclaimer for your measured values. For example, if someone asked you to provide the mileage on your car, you
might say that it is 45,000 miles, plus or minus 500 miles. The plus or minus amount is the uncertainty in your value. That is, you
are indicating that the actual mileage of your car might be as low as 44,500 miles or as high as 45,500 miles, or anywhere in
between. All measurements contain some amount of uncertainty. In our example of measuring the length of the paper, we might
say that the length of the paper is 11 in., plus or minus 0.2 in. The uncertainty in a measurement, A , is often denoted as δA
(“delta A ”), so the measurement result would be recorded as A ± δA . In our paper example, the length of the paper could be

expressed as 11 in. ± 0.2.

The factors contributing to uncertainty in a measurement include:

1. Limitations of the measuring device,

2. The skill of the person making the measurement,

3. Irregularities in the object being measured,

4. Any other factors that affect the outcome (highly dependent on the situation).

In our example, such factors contributing to the uncertainty could be the following: the smallest division on the ruler is 0.1 in., the
person using the ruler has bad eyesight, or one side of the paper is slightly longer than the other. At any rate, the uncertainty in a
measurement must be based on a careful consideration of all the factors that might contribute and their possible effects.
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Making Connections: Real-World Connections – Fevers or Chills?

Uncertainty is a critical piece of information, both in physics and in many other real-world applications. Imagine you are
caring for a sick child. You suspect the child has a fever, so you check his or her temperature with a thermometer. What if
the uncertainty of the thermometer were 3.0ºC ? If the child’s temperature reading was 37.0ºC (which is normal body

temperature), the “true” temperature could be anywhere from a hypothermic 34.0ºC to a dangerously high 40.0ºC . A

thermometer with an uncertainty of 3.0ºC would be useless.

Percent Uncertainty

One method of expressing uncertainty is as a percent of the measured value. If a measurement A is expressed with

uncertainty, δA , the percent uncertainty (%unc) is defined to be

(1.8)% unc =δA
A ×100%.

Example 1.2 Calculating Percent Uncertainty: A Bag of Apples

A grocery store sells 5-lb bags of apples. You purchase four bags over the course of a month and weigh the apples each

time. You obtain the following measurements:

• Week 1 weight: 4.8 lb
• Week 2 weight: 5.3 lb
• Week 3 weight: 4.9 lb
• Week 4 weight: 5.4 lb

You determine that the weight of the 5-lb bag has an uncertainty of ±0.4 lb . What is the percent uncertainty of the bag’s

weight?

Strategy

First, observe that the expected value of the bag’s weight, A , is 5 lb. The uncertainty in this value, δA , is 0.4 lb. We can

use the following equation to determine the percent uncertainty of the weight:

(1.9)% unc =δA
A ×100%.

Solution

Plug the known values into the equation:

(1.10)% unc =0.4 lb
5 lb ×100% = 8%.

Discussion

We can conclude that the weight of the apple bag is 5 lb ± 8% . Consider how this percent uncertainty would change if the

bag of apples were half as heavy, but the uncertainty in the weight remained the same. Hint for future calculations: when
calculating percent uncertainty, always remember that you must multiply the fraction by 100%. If you do not do this, you will
have a decimal quantity, not a percent value.

Uncertainties in Calculations

There is an uncertainty in anything calculated from measured quantities. For example, the area of a floor calculated from
measurements of its length and width has an uncertainty because the length and width have uncertainties. How big is the
uncertainty in something you calculate by multiplication or division? If the measurements going into the calculation have small
uncertainties (a few percent or less), then the method of adding percents can be used for multiplication or division. This
method says that the percent uncertainty in a quantity calculated by multiplication or division is the sum of the percent
uncertainties in the items used to make the calculation. For example, if a floor has a length of 4.00 m and a width of 3.00 m ,

with uncertainties of 2% and 1% , respectively, then the area of the floor is 12.0 m2 and has an uncertainty of 3% .

(Expressed as an area this is 0.36 m2 , which we round to 0.4 m2 since the area of the floor is given to a tenth of a square

meter.)

Check Your Understanding

A high school track coach has just purchased a new stopwatch. The stopwatch manual states that the stopwatch has an
uncertainty of ±0.05 s . Runners on the track coach’s team regularly clock 100-m sprints of 11.49 s to 15.01 s . At the
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school’s last track meet, the first-place sprinter came in at 12.04 s and the second-place sprinter came in at 12.07 s . Will

the coach’s new stopwatch be helpful in timing the sprint team? Why or why not?

Solution
No, the uncertainty in the stopwatch is too great to effectively differentiate between the sprint times.

Precision of Measuring Tools and Significant Figures

An important factor in the accuracy and precision of measurements involves the precision of the measuring tool. In general, a
precise measuring tool is one that can measure values in very small increments. For example, a standard ruler can measure
length to the nearest millimeter, while a caliper can measure length to the nearest 0.01 millimeter. The caliper is a more precise
measuring tool because it can measure extremely small differences in length. The more precise the measuring tool, the more
precise and accurate the measurements can be.

When we express measured values, we can only list as many digits as we initially measured with our measuring tool. For
example, if you use a standard ruler to measure the length of a stick, you may measure it to be 36.7 cm . You could not express

this value as 36.71 cm because your measuring tool was not precise enough to measure a hundredth of a centimeter. It should

be noted that the last digit in a measured value has been estimated in some way by the person performing the measurement.
For example, the person measuring the length of a stick with a ruler notices that the stick length seems to be somewhere in
between 36.6 cm and 36.7 cm , and he or she must estimate the value of the last digit. Using the method of significant

figures, the rule is that the last digit written down in a measurement is the first digit with some uncertainty. In order to determine
the number of significant digits in a value, start with the first measured value at the left and count the number of digits through the
last digit written on the right. For example, the measured value 36.7 cm has three digits, or significant figures. Significant

figures indicate the precision of a measuring tool that was used to measure a value.

Zeros

Special consideration is given to zeros when counting significant figures. The zeros in 0.053 are not significant, because they are
only placekeepers that locate the decimal point. There are two significant figures in 0.053. The zeros in 10.053 are not
placekeepers but are significant—this number has five significant figures. The zeros in 1300 may or may not be significant
depending on the style of writing numbers. They could mean the number is known to the last digit, or they could be
placekeepers. So 1300 could have two, three, or four significant figures. (To avoid this ambiguity, write 1300 in scientific
notation.) Zeros are significant except when they serve only as placekeepers.

Check Your Understanding

Determine the number of significant figures in the following measurements:

a. 0.0009

b. 15,450.0

c. 6×103

d. 87.990

e. 30.42

Solution

(a) 1; the zeros in this number are placekeepers that indicate the decimal point

(b) 6; here, the zeros indicate that a measurement was made to the 0.1 decimal point, so the zeros are significant

(c) 1; the value 103 signifies the decimal place, not the number of measured values

(d) 5; the final zero indicates that a measurement was made to the 0.001 decimal point, so it is significant

(e) 4; any zeros located in between significant figures in a number are also significant

Significant Figures in Calculations

When combining measurements with different degrees of accuracy and precision, the number of significant digits in the final
answer can be no greater than the number of significant digits in the least precise measured value. There are two different rules,
one for multiplication and division and the other for addition and subtraction, as discussed below.

1. For multiplication and division: The result should have the same number of significant figures as the quantity having the
least significant figures entering into the calculation. For example, the area of a circle can be calculated from its radius using

A = πr2 . Let us see how many significant figures the area has if the radius has only two—say, r = 1.2 m . Then,

(1.11)A = πr2 = (3.1415927...)×(1.2 m)2 = 4.5238934 m2

is what you would get using a calculator that has an eight-digit output. But because the radius has only two significant figures, it
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limits the calculated quantity to two significant figures or

(1.12)A=4.5 m2,

even though π is good to at least eight digits.

2. For addition and subtraction: The answer can contain no more decimal places than the least precise measurement.
Suppose that you buy 7.56-kg of potatoes in a grocery store as measured with a scale with precision 0.01 kg. Then you drop off
6.052-kg of potatoes at your laboratory as measured by a scale with precision 0.001 kg. Finally, you go home and add 13.7 kg of
potatoes as measured by a bathroom scale with precision 0.1 kg. How many kilograms of potatoes do you now have, and how
many significant figures are appropriate in the answer? The mass is found by simple addition and subtraction:

(1.13)7.56 kg
- 6.052 kg
+13.7 kg

15.208 kg = 15.2 kg.

Next, we identify the least precise measurement: 13.7 kg. This measurement is expressed to the 0.1 decimal place, so our final
answer must also be expressed to the 0.1 decimal place. Thus, the answer is rounded to the tenths place, giving us 15.2 kg.

Significant Figures in this Text

In this text, most numbers are assumed to have three significant figures. Furthermore, consistent numbers of significant figures
are used in all worked examples. You will note that an answer given to three digits is based on input good to at least three digits,
for example. If the input has fewer significant figures, the answer will also have fewer significant figures. Care is also taken that
the number of significant figures is reasonable for the situation posed. In some topics, particularly in optics, more accurate
numbers are needed and more than three significant figures will be used. Finally, if a number is exact, such as the two in the
formula for the circumference of a circle, c = 2πr , it does not affect the number of significant figures in a calculation.

Check Your Understanding

Perform the following calculations and express your answer using the correct number of significant digits.

(a) A woman has two bags weighing 13.5 pounds and one bag with a weight of 10.2 pounds. What is the total weight of the
bags?

(b) The force F on an object is equal to its mass m multiplied by its acceleration a . If a wagon with mass 55 kg

accelerates at a rate of 0.0255 m/s2 , what is the force on the wagon? (The unit of force is called the newton, and it is

expressed with the symbol N.)

Solution

(a) 37.2 pounds; Because the number of bags is an exact value, it is not considered in the significant figures.

(b) 1.4 N; Because the value 55 kg has only two significant figures, the final value must also contain two significant figures.

PhET Explorations: Estimation

Explore size estimation in one, two, and three dimensions! Multiple levels of difficulty allow for progressive skill improvement.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42120/
1.11/#Phet_module_1.3)

Figure 1.26

1.4 Approximation

On many occasions, physicists, other scientists, and engineers need to make approximations or “guesstimates” for a particular
quantity. What is the distance to a certain destination? What is the approximate density of a given item? About how large a
current will there be in a circuit? Many approximate numbers are based on formulae in which the input quantities are known only
to a limited accuracy. As you develop problem-solving skills (that can be applied to a variety of fields through a study of physics),
you will also develop skills at approximating. You will develop these skills through thinking more quantitatively, and by being
willing to take risks. As with any endeavor, experience helps, as well as familiarity with units. These approximations allow us to
rule out certain scenarios or unrealistic numbers. Approximations also allow us to challenge others and guide us in our
approaches to our scientific world. Let us do two examples to illustrate this concept.

Example 1.3 Approximate the Height of a Building

Can you approximate the height of one of the buildings on your campus, or in your neighborhood? Let us make an
approximation based upon the height of a person. In this example, we will calculate the height of a 39-story building.
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Strategy

Think about the average height of an adult male. We can approximate the height of the building by scaling up from the
height of a person.

Solution

Based on information in the example, we know there are 39 stories in the building. If we use the fact that the height of one
story is approximately equal to about the length of two adult humans (each human is about 2-m tall), then we can estimate
the total height of the building to be

(1.14)2 m
1 person×2 person

1 story ×39 stories = 156 m.

Discussion

You can use known quantities to determine an approximate measurement of unknown quantities. If your hand measures 10
cm across, how many hand lengths equal the width of your desk? What other measurements can you approximate besides
length?

Example 1.4 Approximating Vast Numbers: a Trillion Dollars

Figure 1.27 A bank stack contains one-hundred $100 bills, and is worth $10,000. How many bank stacks make up a trillion dollars? (credit:
Andrew Magill)

The U.S. federal deficit in the 2008 fiscal year was a little greater than $10 trillion. Most of us do not have any concept of
how much even one trillion actually is. Suppose that you were given a trillion dollars in $100 bills. If you made 100-bill stacks
and used them to evenly cover a football field (between the end zones), make an approximation of how high the money pile
would become. (We will use feet/inches rather than meters here because football fields are measured in yards.) One of your
friends says 3 in., while another says 10 ft. What do you think?

Strategy

When you imagine the situation, you probably envision thousands of small stacks of 100 wrapped $100 bills, such as you
might see in movies or at a bank. Since this is an easy-to-approximate quantity, let us start there. We can find the volume of
a stack of 100 bills, find out how many stacks make up one trillion dollars, and then set this volume equal to the area of the
football field multiplied by the unknown height.

Solution

(1) Calculate the volume of a stack of 100 bills. The dimensions of a single bill are approximately 3 in. by 6 in. A stack of 100
of these is about 0.5 in. thick. So the total volume of a stack of 100 bills is:

(1.15)volume of stack = length×width×height,
volume of stack = 6 in.×3 in.×0.5 in.,
volume of stack = 9 in.3 .

(2) Calculate the number of stacks. Note that a trillion dollars is equal to $1×1012, and a stack of one-hundred $100

bills is equal to $10,000, or $1×104 . The number of stacks you will have is:

(1.16)$1×1012(a trillion dollars)/ $1×104 per stack = 1×108 stacks.
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accuracy:

approximation:

classical physics:

conversion factor:

derived units:

English units:

fundamental units:

kilogram:

law:

meter:

(3) Calculate the area of a football field in square inches. The area of a football field is 100 yd×50 yd, which gives

5,000 yd2. Because we are working in inches, we need to convert square yards to square inches:

(1.17)Area = 5,000 yd2× 3 ft
1 yd× 3 ft

1 yd×12 in.
1 ft ×12 in.

1 ft = 6,480,000 in.2 ,

Area ≈ 6×106 in.2 .

This conversion gives us 6×106 in.2 for the area of the field. (Note that we are using only one significant figure in these

calculations.)

(4) Calculate the total volume of the bills. The volume of all the $100 -bill stacks is

9 in.3 / stack×108 stacks = 9×108 in.3.
(5) Calculate the height. To determine the height of the bills, use the equation:

(1.18)volume of bills = area of field×height of money:

Height of money = volume of bills
area of field ,

Height of money = 9×108in.3

6×106in.2 = 1.33×102 in.,

Height of money ≈ 1×102 in. = 100 in.

The height of the money will be about 100 in. high. Converting this value to feet gives

(1.19)100 in.× 1 ft
12 in. = 8.33 ft ≈ 8 ft.

Discussion

The final approximate value is much higher than the early estimate of 3 in., but the other early estimate of 10 ft (120 in.) was
roughly correct. How did the approximation measure up to your first guess? What can this exercise tell you in terms of rough
“guesstimates” versus carefully calculated approximations?

Check Your Understanding

Using mental math and your understanding of fundamental units, approximate the area of a regulation basketball court.
Describe the process you used to arrive at your final approximation.

Solution
An average male is about two meters tall. It would take approximately 15 men laid out end to end to cover the length, and

about 7 to cover the width. That gives an approximate area of 420 m2 .

Glossary

the degree to which a measured value agrees with correct value for that measurement

an estimated value based on prior experience and reasoning

physics that was developed from the Renaissance to the end of the 19th century

a ratio expressing how many of one unit are equal to another unit

units that can be calculated using algebraic combinations of the fundamental units

system of measurement used in the United States; includes units of measurement such as feet, gallons, and
pounds

units that can only be expressed relative to the procedure used to measure them

the SI unit for mass, abbreviated (kg)

a description, using concise language or a mathematical formula, a generalized pattern in nature that is supported by
scientific evidence and repeated experiments

the SI unit for length, abbreviated (m)
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method of adding percents:

metric system:

model:

modern physics:

order of magnitude:

percent uncertainty:

physical quantity :

physics:

precision:

quantum mechanics:

relativity:

scientific method:

second:

SI units :

significant figures:

theory:

uncertainty:

units :

the percent uncertainty in a quantity calculated by multiplication or division is the sum of the
percent uncertainties in the items used to make the calculation

a system in which values can be calculated in factors of 10

representation of something that is often too difficult (or impossible) to display directly

the study of relativity, quantum mechanics, or both

refers to the size of a quantity as it relates to a power of 10

the ratio of the uncertainty of a measurement to the measured value, expressed as a percentage

a characteristic or property of an object that can be measured or calculated from other measurements

the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested
in what fundamental mechanisms underlie every phenomenon

the degree to which repeated measurements agree with each other

the study of objects smaller than can be seen with a microscope

the study of objects moving at speeds greater than about 1% of the speed of light, or of objects being affected by a
strong gravitational field

a method that typically begins with an observation and question that the scientist will research; next, the
scientist typically performs some research about the topic and then devises a hypothesis; then, the scientist will test the
hypothesis by performing an experiment; finally, the scientist analyzes the results of the experiment and draws a
conclusion

the SI unit for time, abbreviated (s)

the international system of units that scientists in most countries have agreed to use; includes units such as meters,
liters, and grams

express the precision of a measuring tool used to measure a value

an explanation for patterns in nature that is supported by scientific evidence and verified multiple times by various
groups of researchers

a quantitative measure of how much your measured values deviate from a standard or expected value

a standard used for expressing and comparing measurements

Section Summary

1.1 Physics: An Introduction
• Science seeks to discover and describe the underlying order and simplicity in nature.
• Physics is the most basic of the sciences, concerning itself with energy, matter, space and time, and their interactions.
• Scientific laws and theories express the general truths of nature and the body of knowledge they encompass. These laws

of nature are rules that all natural processes appear to follow.

1.2 Physical Quantities and Units
• Physical quantities are a characteristic or property of an object that can be measured or calculated from other

measurements.
• Units are standards for expressing and comparing the measurement of physical quantities. All units can be expressed as

combinations of four fundamental units.
• The four fundamental units we will use in this text are the meter (for length), the kilogram (for mass), the second (for time),

and the ampere (for electric current). These units are part of the metric system, which uses powers of 10 to relate quantities
over the vast ranges encountered in nature.

• The four fundamental units are abbreviated as follows: meter, m; kilogram, kg; second, s; and ampere, A. The metric
system also uses a standard set of prefixes to denote each order of magnitude greater than or lesser than the fundamental
unit itself.

• Unit conversions involve changing a value expressed in one type of unit to another type of unit. This is done by using
conversion factors, which are ratios relating equal quantities of different units.

1.3 Accuracy, Precision, and Significant Figures
• Accuracy of a measured value refers to how close a measurement is to the correct value. The uncertainty in a
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measurement is an estimate of the amount by which the measurement result may differ from this value.
• Precision of measured values refers to how close the agreement is between repeated measurements.
• The precision of a measuring tool is related to the size of its measurement increments. The smaller the measurement

increment, the more precise the tool.
• Significant figures express the precision of a measuring tool.
• When multiplying or dividing measured values, the final answer can contain only as many significant figures as the least

precise value.
• When adding or subtracting measured values, the final answer cannot contain more decimal places than the least precise

value.

1.4 Approximation

Scientists often approximate the values of quantities to perform calculations and analyze systems.

Conceptual Questions

1.1 Physics: An Introduction

1. Models are particularly useful in relativity and quantum mechanics, where conditions are outside those normally encountered
by humans. What is a model?

2. How does a model differ from a theory?

3. If two different theories describe experimental observations equally well, can one be said to be more valid than the other
(assuming both use accepted rules of logic)?

4. What determines the validity of a theory?

5. Certain criteria must be satisfied if a measurement or observation is to be believed. Will the criteria necessarily be as strict for
an expected result as for an unexpected result?

6. Can the validity of a model be limited, or must it be universally valid? How does this compare to the required validity of a
theory or a law?

7. Classical physics is a good approximation to modern physics under certain circumstances. What are they?

8. When is it necessary to use relativistic quantum mechanics?

9. Can classical physics be used to accurately describe a satellite moving at a speed of 7500 m/s? Explain why or why not.

1.2 Physical Quantities and Units

10. Identify some advantages of metric units.

1.3 Accuracy, Precision, and Significant Figures

11. What is the relationship between the accuracy and uncertainty of a measurement?

12. Prescriptions for vision correction are given in units called diopters (D). Determine the meaning of that unit. Obtain
information (perhaps by calling an optometrist or performing an internet search) on the minimum uncertainty with which
corrections in diopters are determined and the accuracy with which corrective lenses can be produced. Discuss the sources of
uncertainties in both the prescription and accuracy in the manufacture of lenses.
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Problems & Exercises

1.2 Physical Quantities and Units

1. The speed limit on some interstate highways is roughly 100
km/h. (a) What is this in meters per second? (b) How many
miles per hour is this?

2. A car is traveling at a speed of 33 m/s . (a) What is its

speed in kilometers per hour? (b) Is it exceeding the
90 km/h speed limit?

3. Show that 1.0 m/s = 3.6 km/h . Hint: Show the explicit

steps involved in converting 1.0 m/s = 3.6 km/h.
4. American football is played on a 100-yd-long field,
excluding the end zones. How long is the field in meters?
(Assume that 1 meter equals 3.281 feet.)

5. Soccer fields vary in size. A large soccer field is 115 m long
and 85 m wide. What are its dimensions in feet and inches?
(Assume that 1 meter equals 3.281 feet.)

6. What is the height in meters of a person who is 6 ft 1.0 in.
tall? (Assume that 1 meter equals 39.37 in.)

7. Mount Everest, at 29,028 feet, is the tallest mountain on
the Earth. What is its height in kilometers? (Assume that 1
kilometer equals 3,281 feet.)

8. The speed of sound is measured to be 342 m/s on a

certain day. What is this in km/h?

9. Tectonic plates are large segments of the Earth’s crust that
move slowly. Suppose that one such plate has an average
speed of 4.0 cm/year. (a) What distance does it move in 1 s at
this speed? (b) What is its speed in kilometers per million
years?

10. (a) Refer to Table 1.3 to determine the average distance
between the Earth and the Sun. Then calculate the average
speed of the Earth in its orbit in kilometers per second. (b)
What is this in meters per second?

1.3 Accuracy, Precision, and Significant
Figures

Express your answers to problems in this section to the
correct number of significant figures and proper units.

11. Suppose that your bathroom scale reads your mass as 65
kg with a 3% uncertainty. What is the uncertainty in your mass
(in kilograms)?

12. A good-quality measuring tape can be off by 0.50 cm over
a distance of 20 m. What is its percent uncertainty?

13. (a) A car speedometer has a 5.0% uncertainty. What is

the range of possible speeds when it reads 90 km/h ? (b)

Convert this range to miles per hour. (1 km = 0.6214 mi)

14. An infant’s pulse rate is measured to be 130 ± 5 beats/

min. What is the percent uncertainty in this measurement?

15. (a) Suppose that a person has an average heart rate of
72.0 beats/min. How many beats does he or she have in 2.0
y? (b) In 2.00 y? (c) In 2.000 y?

16. A can contains 375 mL of soda. How much is left after
308 mL is removed?

17. State how many significant figures are proper in the
results of the following calculations: (a)

(106.7)(98.2) / (46.210)(1.01) (b) (18.7)2 (c)

⎛
⎝1.60×10−19⎞⎠(3712) .

18. (a) How many significant figures are in the numbers 99
and 100? (b) If the uncertainty in each number is 1, what is
the percent uncertainty in each? (c) Which is a more
meaningful way to express the accuracy of these two
numbers, significant figures or percent uncertainties?

19. (a) If your speedometer has an uncertainty of 2.0 km/h
at a speed of 90 km/h , what is the percent uncertainty? (b)

If it has the same percent uncertainty when it reads 60 km/h
, what is the range of speeds you could be going?

20. (a) A person’s blood pressure is measured to be
120 ± 2 mm Hg . What is its percent uncertainty? (b)

Assuming the same percent uncertainty, what is the
uncertainty in a blood pressure measurement of 80 mm Hg
?

21. A person measures his or her heart rate by counting the
number of beats in 30 s . If 40 ± 1 beats are counted in

30.0 ± 0.5 s , what is the heart rate and its uncertainty in

beats per minute?

22. What is the area of a circle 3.102 cm in diameter?

23. If a marathon runner averages 9.5 mi/h, how long does it
take him or her to run a 26.22-mi marathon?

24. A marathon runner completes a 42.188-km course in

2 h , 30 min, and 12 s . There is an uncertainty of 25 m in

the distance traveled and an uncertainty of 1 s in the elapsed
time. (a) Calculate the percent uncertainty in the distance. (b)
Calculate the uncertainty in the elapsed time. (c) What is the
average speed in meters per second? (d) What is the
uncertainty in the average speed?

25. The sides of a small rectangular box are measured to be
1.80 ± 0.01 cm , 2.05 ± 0.02 cm, and 3.1 ± 0.1 cm
long. Calculate its volume and uncertainty in cubic
centimeters.

26. When non-metric units were used in the United Kingdom,
a unit of mass called the pound-mass (lbm) was employed,
where 1 lbm = 0.4539 kg . (a) If there is an uncertainty of

0.0001 kg in the pound-mass unit, what is its percent

uncertainty? (b) Based on that percent uncertainty, what
mass in pound-mass has an uncertainty of 1 kg when
converted to kilograms?

27. The length and width of a rectangular room are measured
to be 3.955 ± 0.005 m and 3.050 ± 0.005 m . Calculate

the area of the room and its uncertainty in square meters.

28. A car engine moves a piston with a circular cross section
of 7.500 ± 0.002 cm diameter a distance of

3.250 ± 0.001 cm to compress the gas in the cylinder. (a)

By what amount is the gas decreased in volume in cubic
centimeters? (b) Find the uncertainty in this volume.

1.4 Approximation

29. How many heartbeats are there in a lifetime?
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30. A generation is about one-third of a lifetime.
Approximately how many generations have passed since the
year 0 AD?

31. How many times longer than the mean life of an
extremely unstable atomic nucleus is the lifetime of a human?
(Hint: The lifetime of an unstable atomic nucleus is on the

order of 10−22  s .)

32. Calculate the approximate number of atoms in a
bacterium. Assume that the average mass of an atom in the
bacterium is ten times the mass of a hydrogen atom. (Hint:

The mass of a hydrogen atom is on the order of 10−27  kg

and the mass of a bacterium is on the order of 10−15  kg. )

Figure 1.28 This color-enhanced photo shows Salmonella typhimurium
(red) attacking human cells. These bacteria are commonly known for
causing foodborne illness. Can you estimate the number of atoms in
each bacterium? (credit: Rocky Mountain Laboratories, NIAID, NIH)

33. Approximately how many atoms thick is a cell membrane,
assuming all atoms there average about twice the size of a
hydrogen atom?

34. (a) What fraction of Earth’s diameter is the greatest ocean
depth? (b) The greatest mountain height?

35. (a) Calculate the number of cells in a hummingbird
assuming the mass of an average cell is ten times the mass
of a bacterium. (b) Making the same assumption, how many
cells are there in a human?

36. Assuming one nerve impulse must end before another
can begin, what is the maximum firing rate of a nerve in
impulses per second?
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2 KINEMATICS

Figure 2.1 The motion of an American kestrel through the air can be described by the bird’s displacement, speed, velocity, and acceleration. When it
flies in a straight line without any change in direction, its motion is said to be one dimensional. (credit: Vince Maidens, Wikimedia Commons)

Chapter Outline
2.1. Displacement

• Define position, displacement, distance, and distance traveled.
• Explain the relationship between position and displacement.
• Distinguish between displacement and distance traveled.
• Calculate displacement and distance given initial position, final position, and the path between the two.

2.2. Vectors, Scalars, and Coordinate Systems
• Define and distinguish between scalar and vector quantities.
• Assign a coordinate system for a scenario involving one-dimensional motion.

2.3. Time, Velocity, and Speed
• Explain the relationships between instantaneous velocity, average velocity, instantaneous speed, average speed,

displacement, and time.
• Calculate velocity and speed given initial position, initial time, final position, and final time.
• Derive a graph of velocity vs. time given a graph of position vs. time.
• Interpret a graph of velocity vs. time.

2.4. Acceleration
• Define and distinguish between instantaneous acceleration, average acceleration, and deceleration.
• Calculate acceleration given initial time, initial velocity, final time, and final velocity.

2.5. Motion Equations for Constant Acceleration in One Dimension
• Calculate displacement of an object that is not accelerating, given initial position and velocity.
• Calculate final velocity of an accelerating object, given initial velocity, acceleration, and time.
• Calculate displacement and final position of an accelerating object, given initial position, initial velocity, time, and

acceleration.
2.6. Problem-Solving Basics for One-Dimensional Kinematics

• Apply problem-solving steps and strategies to solve problems of one-dimensional kinematics.
• Apply strategies to determine whether or not the result of a problem is reasonable, and if not, determine the cause.

2.7. Falling Objects
• Describe the effects of gravity on objects in motion.
• Describe the motion of objects that are in free fall.
• Calculate the position and velocity of objects in free fall.

2.8. Graphical Analysis of One-Dimensional Motion
• Describe a straight-line graph in terms of its slope and y-intercept.
• Determine average velocity or instantaneous velocity from a graph of position vs. time.
• Determine average or instantaneous acceleration from a graph of velocity vs. time.
• Derive a graph of velocity vs. time from a graph of position vs. time.
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• Derive a graph of acceleration vs. time from a graph of velocity vs. time.

Introduction to One-Dimensional Kinematics

Objects are in motion everywhere we look. Everything from a tennis game to a space-probe flyby of the planet Neptune involves
motion. When you are resting, your heart moves blood through your veins. And even in inanimate objects, there is continuous
motion in the vibrations of atoms and molecules. Questions about motion are interesting in and of themselves: How long will it
take for a space probe to get to Mars? Where will a football land if it is thrown at a certain angle? But an understanding of motion
is also key to understanding other concepts in physics. An understanding of acceleration, for example, is crucial to the study of
force.

Our formal study of physics begins with kinematics which is defined as the study of motion without considering its causes. The
word “kinematics” comes from a Greek term meaning motion and is related to other English words such as “cinema” (movies)
and “kinesiology” (the study of human motion). In one-dimensional kinematics and Two-Dimensional Kinematics we will study
only the motion of a football, for example, without worrying about what forces cause or change its motion. Such considerations
come in other chapters. In this chapter, we examine the simplest type of motion—namely, motion along a straight line, or one-
dimensional motion. In Two-Dimensional Kinematics, we apply concepts developed here to study motion along curved paths
(two- and three-dimensional motion); for example, that of a car rounding a curve.

2.1 Displacement

Figure 2.2 These cyclists in Vietnam can be described by their position relative to buildings and a canal. Their motion can be described by their change
in position, or displacement, in the frame of reference. (credit: Suzan Black, Fotopedia)

Position

In order to describe the motion of an object, you must first be able to describe its position—where it is at any particular time.
More precisely, you need to specify its position relative to a convenient reference frame. Earth is often used as a reference
frame, and we often describe the position of an object as it relates to stationary objects in that reference frame. For example, a
rocket launch would be described in terms of the position of the rocket with respect to the Earth as a whole, while a professor’s
position could be described in terms of where she is in relation to the nearby white board. (See Figure 2.3.) In other cases, we
use reference frames that are not stationary but are in motion relative to the Earth. To describe the position of a person in an
airplane, for example, we use the airplane, not the Earth, as the reference frame. (See Figure 2.4.)

Displacement

If an object moves relative to a reference frame (for example, if a professor moves to the right relative to a white board or a
passenger moves toward the rear of an airplane), then the object’s position changes. This change in position is known as
displacement. The word “displacement” implies that an object has moved, or has been displaced.

Displacement

Displacement is the change in position of an object:

(2.1)Δx = xf − x0,

where Δx is displacement, xf is the final position, and x0 is the initial position.

In this text the upper case Greek letter Δ (delta) always means “change in” whatever quantity follows it; thus, Δx means

change in position. Always solve for displacement by subtracting initial position x0 from final position xf .

Note that the SI unit for displacement is the meter (m) (see Physical Quantities and Units), but sometimes kilometers, miles,
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feet, and other units of length are used. Keep in mind that when units other than the meter are used in a problem, you may need
to convert them into meters to complete the calculation.

Figure 2.3 A professor paces left and right while lecturing. Her position relative to Earth is given by x . The +2.0 m displacement of the professor

relative to Earth is represented by an arrow pointing to the right.

Figure 2.4 A passenger moves from his seat to the back of the plane. His location relative to the airplane is given by x . The −4.0-m displacement

of the passenger relative to the plane is represented by an arrow toward the rear of the plane. Notice that the arrow representing his displacement is
twice as long as the arrow representing the displacement of the professor (he moves twice as far) in Figure 2.3.

Note that displacement has a direction as well as a magnitude. The professor’s displacement is 2.0 m to the right, and the airline
passenger’s displacement is 4.0 m toward the rear. In one-dimensional motion, direction can be specified with a plus or minus
sign. When you begin a problem, you should select which direction is positive (usually that will be to the right or up, but you are
free to select positive as being any direction). The professor’s initial position is x0 = 1.5 m and her final position is

xf = 3.5 m . Thus her displacement is

(2.2)Δx = xf −x0 = 3.5 m − 1.5 m = + 2.0 m.

In this coordinate system, motion to the right is positive, whereas motion to the left is negative. Similarly, the airplane
passenger’s initial position is x0 = 6.0 m and his final position is xf = 2.0 m , so his displacement is

(2.3)Δx = xf −x0 = 2.0 m − 6.0 m = −4.0 m.

His displacement is negative because his motion is toward the rear of the plane, or in the negative x direction in our coordinate
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system.

Distance

Although displacement is described in terms of direction, distance is not. Distance is defined to be the magnitude or size of
displacement between two positions. Note that the distance between two positions is not the same as the distance traveled
between them. Distance traveled is the total length of the path traveled between two positions. Distance has no direction and,
thus, no sign. For example, the distance the professor walks is 2.0 m. The distance the airplane passenger walks is 4.0 m.

Misconception Alert: Distance Traveled vs. Magnitude of Displacement

It is important to note that the distance traveled, however, can be greater than the magnitude of the displacement (by
magnitude, we mean just the size of the displacement without regard to its direction; that is, just a number with a unit). For
example, the professor could pace back and forth many times, perhaps walking a distance of 150 m during a lecture, yet still
end up only 2.0 m to the right of her starting point. In this case her displacement would be +2.0 m, the magnitude of her
displacement would be 2.0 m, but the distance she traveled would be 150 m. In kinematics we nearly always deal with
displacement and magnitude of displacement, and almost never with distance traveled. One way to think about this is to
assume you marked the start of the motion and the end of the motion. The displacement is simply the difference in the
position of the two marks and is independent of the path taken in traveling between the two marks. The distance traveled,
however, is the total length of the path taken between the two marks.

Check Your Understanding

A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is her displacement? (b) What distance does
she ride? (c) What is the magnitude of her displacement?

Solution

Figure 2.5

(a) The rider’s displacement is Δx = xf − x0 = −1 km . (The displacement is negative because we take east to be

positive and west to be negative.)

(b) The distance traveled is 3 km + 2 km = 5 km .

(c) The magnitude of the displacement is 1 km .
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2.2 Vectors, Scalars, and Coordinate Systems

Figure 2.6 The motion of this Eclipse Concept jet can be described in terms of the distance it has traveled (a scalar quantity) or its displacement in a
specific direction (a vector quantity). In order to specify the direction of motion, its displacement must be described based on a coordinate system. In
this case, it may be convenient to choose motion toward the left as positive motion (it is the forward direction for the plane), although in many cases,
the x -coordinate runs from left to right, with motion to the right as positive and motion to the left as negative. (credit: Armchair Aviator, Flickr)

What is the difference between distance and displacement? Whereas displacement is defined by both direction and magnitude,
distance is defined only by magnitude. Displacement is an example of a vector quantity. Distance is an example of a scalar
quantity. A vector is any quantity with both magnitude and direction. Other examples of vectors include a velocity of 90 km/h east
and a force of 500 newtons straight down.

The direction of a vector in one-dimensional motion is given simply by a plus ( + ) or minus ( − ) sign. Vectors are

represented graphically by arrows. An arrow used to represent a vector has a length proportional to the vector’s magnitude (e.g.,
the larger the magnitude, the longer the length of the vector) and points in the same direction as the vector.

Some physical quantities, like distance, either have no direction or none is specified. A scalar is any quantity that has a
magnitude, but no direction. For example, a 20ºC temperature, the 250 kilocalories (250 Calories) of energy in a candy bar, a

90 km/h speed limit, a person’s 1.8 m height, and a distance of 2.0 m are all scalars—quantities with no specified direction. Note,
however, that a scalar can be negative, such as a −20ºC temperature. In this case, the minus sign indicates a point on a scale

rather than a direction. Scalars are never represented by arrows.

Coordinate Systems for One-Dimensional Motion

In order to describe the direction of a vector quantity, you must designate a coordinate system within the reference frame. For
one-dimensional motion, this is a simple coordinate system consisting of a one-dimensional coordinate line. In general, when
describing horizontal motion, motion to the right is usually considered positive, and motion to the left is considered negative. With
vertical motion, motion up is usually positive and motion down is negative. In some cases, however, as with the jet in Figure 2.6,
it can be more convenient to switch the positive and negative directions. For example, if you are analyzing the motion of falling
objects, it can be useful to define downwards as the positive direction. If people in a race are running to the left, it is useful to
define left as the positive direction. It does not matter as long as the system is clear and consistent. Once you assign a positive
direction and start solving a problem, you cannot change it.

Figure 2.7 It is usually convenient to consider motion upward or to the right as positive ( + ) and motion downward or to the left as negative ( − ) .
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Check Your Understanding

A person’s speed can stay the same as he or she rounds a corner and changes direction. Given this information, is speed a
scalar or a vector quantity? Explain.

Solution
Speed is a scalar quantity. It does not change at all with direction changes; therefore, it has magnitude only. If it were a
vector quantity, it would change as direction changes (even if its magnitude remained constant).

2.3 Time, Velocity, and Speed

Figure 2.8 The motion of these racing snails can be described by their speeds and their velocities. (credit: tobitasflickr, Flickr)

There is more to motion than distance and displacement. Questions such as, “How long does a foot race take?” and “What was
the runner’s speed?” cannot be answered without an understanding of other concepts. In this section we add definitions of time,
velocity, and speed to expand our description of motion.

Time

As discussed in Physical Quantities and Units, the most fundamental physical quantities are defined by how they are
measured. This is the case with time. Every measurement of time involves measuring a change in some physical quantity. It may
be a number on a digital clock, a heartbeat, or the position of the Sun in the sky. In physics, the definition of time is simple— time
is change, or the interval over which change occurs. It is impossible to know that time has passed unless something changes.

The amount of time or change is calibrated by comparison with a standard. The SI unit for time is the second, abbreviated s. We
might, for example, observe that a certain pendulum makes one full swing every 0.75 s. We could then use the pendulum to
measure time by counting its swings or, of course, by connecting the pendulum to a clock mechanism that registers time on a
dial. This allows us to not only measure the amount of time, but also to determine a sequence of events.

How does time relate to motion? We are usually interested in elapsed time for a particular motion, such as how long it takes an
airplane passenger to get from his seat to the back of the plane. To find elapsed time, we note the time at the beginning and end
of the motion and subtract the two. For example, a lecture may start at 11:00 A.M. and end at 11:50 A.M., so that the elapsed
time would be 50 min. Elapsed time Δt is the difference between the ending time and beginning time,

(2.4)Δt = tf − t0,

where Δt is the change in time or elapsed time, tf is the time at the end of the motion, and t0 is the time at the beginning of

the motion. (As usual, the delta symbol, Δ , means the change in the quantity that follows it.)

Life is simpler if the beginning time t0 is taken to be zero, as when we use a stopwatch. If we were using a stopwatch, it would

simply read zero at the start of the lecture and 50 min at the end. If t0 = 0 , then Δt = tf ≡ t .

In this text, for simplicity’s sake,

• motion starts at time equal to zero (t0 = 0)
• the symbol t is used for elapsed time unless otherwise specified (Δt = tf ≡ t)

Velocity

Your notion of velocity is probably the same as its scientific definition. You know that if you have a large displacement in a small
amount of time you have a large velocity, and that velocity has units of distance divided by time, such as miles per hour or
kilometers per hour.
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Average Velocity

Average velocity is displacement (change in position) divided by the time of travel,

(2.5)v- = Δx
Δt = xf − x0

tf − t0
,

where v- is the average (indicated by the bar over the v ) velocity, Δx is the change in position (or displacement), and xf
and x0 are the final and beginning positions at times tf and t0 , respectively. If the starting time t0 is taken to be zero,

then the average velocity is simply

(2.6)v- = Δx
t .

Notice that this definition indicates that velocity is a vector because displacement is a vector. It has both magnitude and direction.
The SI unit for velocity is meters per second or m/s, but many other units, such as km/h, mi/h (also written as mph), and cm/s,
are in common use. Suppose, for example, an airplane passenger took 5 seconds to move −4 m (the negative sign indicates that
displacement is toward the back of the plane). His average velocity would be

(2.7)v- = Δx
t = −4 m

5 s = − 0.8 m/s.

The minus sign indicates the average velocity is also toward the rear of the plane.

The average velocity of an object does not tell us anything about what happens to it between the starting point and ending point,
however. For example, we cannot tell from average velocity whether the airplane passenger stops momentarily or backs up
before he goes to the back of the plane. To get more details, we must consider smaller segments of the trip over smaller time
intervals.

Figure 2.9 A more detailed record of an airplane passenger heading toward the back of the plane, showing smaller segments of his trip.

The smaller the time intervals considered in a motion, the more detailed the information. When we carry this process to its logical
conclusion, we are left with an infinitesimally small interval. Over such an interval, the average velocity becomes the
instantaneous velocity or the velocity at a specific instant. A car’s speedometer, for example, shows the magnitude (but not the
direction) of the instantaneous velocity of the car. (Police give tickets based on instantaneous velocity, but when calculating how
long it will take to get from one place to another on a road trip, you need to use average velocity.) Instantaneous velocity v is

the average velocity at a specific instant in time (or over an infinitesimally small time interval).

Mathematically, finding instantaneous velocity, v , at a precise instant t can involve taking a limit, a calculus operation beyond

the scope of this text. However, under many circumstances, we can find precise values for instantaneous velocity without
calculus.

Speed

In everyday language, most people use the terms “speed” and “velocity” interchangeably. In physics, however, they do not have
the same meaning and they are distinct concepts. One major difference is that speed has no direction. Thus speed is a scalar.
Just as we need to distinguish between instantaneous velocity and average velocity, we also need to distinguish between
instantaneous speed and average speed.

Instantaneous speed is the magnitude of instantaneous velocity. For example, suppose the airplane passenger at one instant
had an instantaneous velocity of −3.0 m/s (the minus meaning toward the rear of the plane). At that same time his instantaneous
speed was 3.0 m/s. Or suppose that at one time during a shopping trip your instantaneous velocity is 40 km/h due north. Your
instantaneous speed at that instant would be 40 km/h—the same magnitude but without a direction. Average speed, however, is
very different from average velocity. Average speed is the distance traveled divided by elapsed time.

We have noted that distance traveled can be greater than the magnitude of displacement. So average speed can be greater than
average velocity, which is displacement divided by time. For example, if you drive to a store and return home in half an hour, and
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your car’s odometer shows the total distance traveled was 6 km, then your average speed was 12 km/h. Your average velocity,
however, was zero, because your displacement for the round trip is zero. (Displacement is change in position and, thus, is zero
for a round trip.) Thus average speed is not simply the magnitude of average velocity.

Figure 2.10 During a 30-minute round trip to the store, the total distance traveled is 6 km. The average speed is 12 km/h. The displacement for the
round trip is zero, since there was no net change in position. Thus the average velocity is zero.

Another way of visualizing the motion of an object is to use a graph. A plot of position or of velocity as a function of time can be
very useful. For example, for this trip to the store, the position, velocity, and speed-vs.-time graphs are displayed in Figure 2.11.
(Note that these graphs depict a very simplified model of the trip. We are assuming that speed is constant during the trip, which
is unrealistic given that we’ll probably stop at the store. But for simplicity’s sake, we will model it with no stops or changes in
speed. We are also assuming that the route between the store and the house is a perfectly straight line.)
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Figure 2.11 Position vs. time, velocity vs. time, and speed vs. time on a trip. Note that the velocity for the return trip is negative.

Making Connections: Take-Home Investigation—Getting a Sense of Speed

If you have spent much time driving, you probably have a good sense of speeds between about 10 and 70 miles per hour.
But what are these in meters per second? What do we mean when we say that something is moving at 10 m/s? To get a
better sense of what these values really mean, do some observations and calculations on your own:

• calculate typical car speeds in meters per second
• estimate jogging and walking speed by timing yourself; convert the measurements into both m/s and mi/h
• determine the speed of an ant, snail, or falling leaf
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Check Your Understanding

A commuter train travels from Baltimore to Washington, DC, and back in 1 hour and 45 minutes. The distance between the
two stations is approximately 40 miles. What is (a) the average velocity of the train, and (b) the average speed of the train in
m/s?

Solution

(a) The average velocity of the train is zero because xf = x0 ; the train ends up at the same place it starts.

(b) The average speed of the train is calculated below. Note that the train travels 40 miles one way and 40 miles back, for a
total distance of 80 miles.

(2.8)distance
time = 80 miles

105 minutes
(2.9)80 miles

105 minutes×5280 feet
1 mile × 1 meter

3.28 feet× 1 minute
60 seconds = 20 m/s

2.4 Acceleration

Figure 2.12 A plane decelerates, or slows down, as it comes in for landing in St. Maarten. Its acceleration is opposite in direction to its velocity. (credit:
Steve Conry, Flickr)

In everyday conversation, to accelerate means to speed up. The accelerator in a car can in fact cause it to speed up. The greater
the acceleration, the greater the change in velocity over a given time. The formal definition of acceleration is consistent with
these notions, but more inclusive.

Average Acceleration

Average Acceleration is the rate at which velocity changes,

(2.10)
a- = Δv

Δt = vf − v0
tf − t0

,

where a- is average acceleration, v is velocity, and t is time. (The bar over the a means average acceleration.)

Because acceleration is velocity in m/s divided by time in s, the SI units for acceleration are m/s2 , meters per second squared

or meters per second per second, which literally means by how many meters per second the velocity changes every second.

Recall that velocity is a vector—it has both magnitude and direction. This means that a change in velocity can be a change in
magnitude (or speed), but it can also be a change in direction. For example, if a car turns a corner at constant speed, it is
accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration
when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.

Acceleration as a Vector

Acceleration is a vector in the same direction as the change in velocity, Δv . Since velocity is a vector, it can change either

in magnitude or in direction. Acceleration is therefore a change in either speed or direction, or both.

Keep in mind that although acceleration is in the direction of the change in velocity, it is not always in the direction of motion.
When an object slows down, its acceleration is opposite to the direction of its motion. This is known as deceleration.
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Figure 2.13 A subway train in Sao Paulo, Brazil, decelerates as it comes into a station. It is accelerating in a direction opposite to its direction of
motion. (credit: Yusuke Kawasaki, Flickr)

Misconception Alert: Deceleration vs. Negative Acceleration

Deceleration always refers to acceleration in the direction opposite to the direction of the velocity. Deceleration always
reduces speed. Negative acceleration, however, is acceleration in the negative direction in the chosen coordinate system.
Negative acceleration may or may not be deceleration, and deceleration may or may not be considered negative
acceleration. For example, consider Figure 2.14.
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Figure 2.14 (a) This car is speeding up as it moves toward the right. It therefore has positive acceleration in our coordinate system. (b) This car is
slowing down as it moves toward the right. Therefore, it has negative acceleration in our coordinate system, because its acceleration is toward the
left. The car is also decelerating: the direction of its acceleration is opposite to its direction of motion. (c) This car is moving toward the left, but
slowing down over time. Therefore, its acceleration is positive in our coordinate system because it is toward the right. However, the car is
decelerating because its acceleration is opposite to its motion. (d) This car is speeding up as it moves toward the left. It has negative acceleration
because it is accelerating toward the left. However, because its acceleration is in the same direction as its motion, it is speeding up (not
decelerating).

Example 2.1 Calculating Acceleration: A Racehorse Leaves the Gate

A racehorse coming out of the gate accelerates from rest to a velocity of 15.0 m/s due west in 1.80 s. What is its average
acceleration?
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Figure 2.15 (credit: Jon Sullivan, PD Photo.org)

Strategy

First we draw a sketch and assign a coordinate system to the problem. This is a simple problem, but it always helps to
visualize it. Notice that we assign east as positive and west as negative. Thus, in this case, we have negative velocity.

Figure 2.16

We can solve this problem by identifying Δv and Δt from the given information and then calculating the average

acceleration directly from the equation a- = Δv
Δt = vf − v0

tf − t0
.

Solution

1. Identify the knowns. v0 = 0 , vf = −15.0 m/s (the negative sign indicates direction toward the west), Δt = 1.80 s .

2. Find the change in velocity. Since the horse is going from zero to − 15.0 m/s , its change in velocity equals its final

velocity: Δv = vf = −15.0 m/s .

3. Plug in the known values ( Δv and Δt ) and solve for the unknown a- .

(2.11)a- = Δv
Δt = −15.0 m/s

1.80 s = −8.33 m/s2.

Discussion

The negative sign for acceleration indicates that acceleration is toward the west. An acceleration of 8.33 m/s2 due west

means that the horse increases its velocity by 8.33 m/s due west each second, that is, 8.33 meters per second per second,

which we write as 8.33 m/s2 . This is truly an average acceleration, because the ride is not smooth. We shall see later that

an acceleration of this magnitude would require the rider to hang on with a force nearly equal to his weight.

Instantaneous Acceleration

Instantaneous acceleration a , or the acceleration at a specific instant in time, is obtained by the same process as discussed

for instantaneous velocity in Time, Velocity, and Speed—that is, by considering an infinitesimally small interval of time. How do
we find instantaneous acceleration using only algebra? The answer is that we choose an average acceleration that is
representative of the motion. Figure 2.17 shows graphs of instantaneous acceleration versus time for two very different motions.
In Figure 2.17(a), the acceleration varies slightly and the average over the entire interval is nearly the same as the
instantaneous acceleration at any time. In this case, we should treat this motion as if it had a constant acceleration equal to the
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average (in this case about 1.8 m/s2 ). In Figure 2.17(b), the acceleration varies drastically over time. In such situations it is

best to consider smaller time intervals and choose an average acceleration for each. For example, we could consider motion

over the time intervals from 0 to 1.0 s and from 1.0 to 3.0 s as separate motions with accelerations of +3.0 m/s2 and

–2.0 m/s2 , respectively.

Figure 2.17 Graphs of instantaneous acceleration versus time for two different one-dimensional motions. (a) Here acceleration varies only slightly and
is always in the same direction, since it is positive. The average over the interval is nearly the same as the acceleration at any given time. (b) Here the
acceleration varies greatly, perhaps representing a package on a post office conveyor belt that is accelerated forward and backward as it bumps along.
It is necessary to consider small time intervals (such as from 0 to 1.0 s) with constant or nearly constant acceleration in such a situation.

The next several examples consider the motion of the subway train shown in Figure 2.18. In (a) the shuttle moves to the right,
and in (b) it moves to the left. The examples are designed to further illustrate aspects of motion and to illustrate some of the
reasoning that goes into solving problems.

Figure 2.18 One-dimensional motion of a subway train considered in Example 2.2, Example 2.3, Example 2.4, Example 2.5, Example 2.6, and
Example 2.7. Here we have chosen the x -axis so that + means to the right and − means to the left for displacements, velocities, and accelerations.

(a) The subway train moves to the right from x0 to xf . Its displacement Δx is +2.0 km. (b) The train moves to the left from x′0 to x′f . Its

displacement Δx′ is −1.5 km . (Note that the prime symbol (′) is used simply to distinguish between displacement in the two different situations.

The distances of travel and the size of the cars are on different scales to fit everything into the diagram.)
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Example 2.2 Calculating Displacement: A Subway Train

What are the magnitude and sign of displacements for the motions of the subway train shown in parts (a) and (b) of Figure
2.18?

Strategy

A drawing with a coordinate system is already provided, so we don’t need to make a sketch, but we should analyze it to
make sure we understand what it is showing. Pay particular attention to the coordinate system. To find displacement, we use
the equation Δx = xf − x0 . This is straightforward since the initial and final positions are given.

Solution

1. Identify the knowns. In the figure we see that xf = 6.70 km and x0 = 4.70 km for part (a), and x′f = 3.75 km and

x′0 = 5.25 km for part (b).

2. Solve for displacement in part (a).

(2.12)Δx = xf − x0 = 6.70 km − 4.70 km= +2.00 km

3. Solve for displacement in part (b).

(2.13)Δx′ = x′f − x′0 = 3.75 km − 5.25 km = − 1.50 km

Discussion

The direction of the motion in (a) is to the right and therefore its displacement has a positive sign, whereas motion in (b) is to
the left and thus has a negative sign.

Example 2.3 Comparing Distance Traveled with Displacement: A Subway Train

What are the distances traveled for the motions shown in parts (a) and (b) of the subway train in Figure 2.18?

Strategy

To answer this question, think about the definitions of distance and distance traveled, and how they are related to
displacement. Distance between two positions is defined to be the magnitude of displacement, which was found in Example
2.2. Distance traveled is the total length of the path traveled between the two positions. (See Displacement.) In the case of
the subway train shown in Figure 2.18, the distance traveled is the same as the distance between the initial and final
positions of the train.

Solution

1. The displacement for part (a) was +2.00 km. Therefore, the distance between the initial and final positions was 2.00 km,
and the distance traveled was 2.00 km.

2. The displacement for part (b) was −1.5 km. Therefore, the distance between the initial and final positions was 1.50 km,

and the distance traveled was 1.50 km.

Discussion

Distance is a scalar. It has magnitude but no sign to indicate direction.

Example 2.4 Calculating Acceleration: A Subway Train Speeding Up

Suppose the train in Figure 2.18(a) accelerates from rest to 30.0 km/h in the first 20.0 s of its motion. What is its average
acceleration during that time interval?

Strategy

It is worth it at this point to make a simple sketch:

Figure 2.19
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This problem involves three steps. First we must determine the change in velocity, then we must determine the change in
time, and finally we use these values to calculate the acceleration.

Solution

1. Identify the knowns. v0 = 0 (the trains starts at rest), vf = 30.0 km/h , and Δt = 20.0 s .

2. Calculate Δv . Since the train starts from rest, its change in velocity is Δv= +30.0 km/h , where the plus sign means

velocity to the right.

3. Plug in known values and solve for the unknown, a- .

(2.14)a- = Δv
Δt = +30.0 km/h

20.0 s
4. Since the units are mixed (we have both hours and seconds for time), we need to convert everything into SI units of
meters and seconds. (See Physical Quantities and Units for more guidance.)

(2.15)
a- = ⎛⎝+30 km/h

20.0 s
⎞
⎠
⎛
⎝103 m

1 km
⎞
⎠⎛⎝ 1 h

3600 s
⎞
⎠ = 0.417 m/s2

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train starts from rest and ends up with
a velocity to the right (also positive). So acceleration is in the same direction as the change in velocity, as is always the case.

Example 2.5 Calculate Acceleration: A Subway Train Slowing Down

Now suppose that at the end of its trip, the train in Figure 2.18(a) slows to a stop from a speed of 30.0 km/h in 8.00 s. What
is its average acceleration while stopping?

Strategy

Figure 2.20

In this case, the train is decelerating and its acceleration is negative because it is toward the left. As in the previous
example, we must find the change in velocity and the change in time and then solve for acceleration.

Solution

1. Identify the knowns. v0 = 30.0 km/h , vf = 0 km/h (the train is stopped, so its velocity is 0), and Δt = 8.00 s .

2. Solve for the change in velocity, Δv .

(2.16)Δv = vf − v0 = 0 − 30.0 km/h = −30.0 km/h

3. Plug in the knowns, Δv and Δt , and solve for a- .

(2.17)a- = Δv
Δt = −30.0 km/h

8.00 s
4. Convert the units to meters and seconds.

(2.18)
a- = Δv

Δt = ⎛⎝−30.0 km/h
8.00 s

⎞
⎠
⎛
⎝103 m

1 km
⎞
⎠⎛⎝ 1 h

3600 s
⎞
⎠ = −1.04 m/s2.

Discussion

The minus sign indicates that acceleration is to the left. This sign is reasonable because the train initially has a positive
velocity in this problem, and a negative acceleration would oppose the motion. Again, acceleration is in the same direction
as the change in velocity, which is negative here. This acceleration can be called a deceleration because it has a direction
opposite to the velocity.

46 Chapter 2 | Kinematics

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



The graphs of position, velocity, and acceleration vs. time for the trains in Example 2.4 and Example 2.5 are displayed in Figure
2.21. (We have taken the velocity to remain constant from 20 to 40 s, after which the train decelerates.)

Figure 2.21 (a) Position of the train over time. Notice that the train’s position changes slowly at the beginning of the journey, then more and more
quickly as it picks up speed. Its position then changes more slowly as it slows down at the end of the journey. In the middle of the journey, while the
velocity remains constant, the position changes at a constant rate. (b) Velocity of the train over time. The train’s velocity increases as it accelerates at
the beginning of the journey. It remains the same in the middle of the journey (where there is no acceleration). It decreases as the train decelerates at
the end of the journey. (c) The acceleration of the train over time. The train has positive acceleration as it speeds up at the beginning of the journey. It
has no acceleration as it travels at constant velocity in the middle of the journey. Its acceleration is negative as it slows down at the end of the journey.

Example 2.6 Calculating Average Velocity: The Subway Train

What is the average velocity of the train in part b of Example 2.2, and shown again below, if it takes 5.00 min to make its
trip?
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Figure 2.22

Strategy

Average velocity is displacement divided by time. It will be negative here, since the train moves to the left and has a negative
displacement.

Solution

1. Identify the knowns. x′f = 3.75 km , x′0 = 5.25 km , Δt = 5.00 min .

2. Determine displacement, Δx′ . We found Δx′ to be − 1.5 km in Example 2.2.

3. Solve for average velocity.

(2.19)v- = Δx′
Δt = −1.50 km

5.00 min
4. Convert units.

(2.20)v- = Δx′
Δt = ⎛⎝−1.50 km

5.00 min
⎞
⎠
⎛
⎝60 min

1 h
⎞
⎠ = −18.0 km/h

Discussion

The negative velocity indicates motion to the left.

Example 2.7 Calculating Deceleration: The Subway Train

Finally, suppose the train in Figure 2.22 slows to a stop from a velocity of 20.0 km/h in 10.0 s. What is its average
acceleration?

Strategy

Once again, let’s draw a sketch:

Figure 2.23

As before, we must find the change in velocity and the change in time to calculate average acceleration.

Solution

1. Identify the knowns. v0 = −20 km/h , vf = 0 km/h , Δt = 10.0 s .

2. Calculate Δv . The change in velocity here is actually positive, since

(2.21)Δv = vf − v0 = 0 − (−20 km/h)=+20 km/h.

3. Solve for a- .

(2.22)a- = Δv
Δt = +20.0 km/h

10.0 s
4. Convert units.
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(2.23)
a- = ⎛⎝+20.0 km/h

10.0 s
⎞
⎠
⎛
⎝103 m

1 km
⎞
⎠⎛⎝ 1 h

3600 s
⎞
⎠= +0.556 m/s2

Discussion

The plus sign means that acceleration is to the right. This is reasonable because the train initially has a negative velocity (to
the left) in this problem and a positive acceleration opposes the motion (and so it is to the right). Again, acceleration is in the
same direction as the change in velocity, which is positive here. As in Example 2.5, this acceleration can be called a
deceleration since it is in the direction opposite to the velocity.

Sign and Direction

Perhaps the most important thing to note about these examples is the signs of the answers. In our chosen coordinate system,
plus means the quantity is to the right and minus means it is to the left. This is easy to imagine for displacement and velocity. But
it is a little less obvious for acceleration. Most people interpret negative acceleration as the slowing of an object. This was not the
case in Example 2.7, where a positive acceleration slowed a negative velocity. The crucial distinction was that the acceleration
was in the opposite direction from the velocity. In fact, a negative acceleration will increase a negative velocity. For example, the
train moving to the left in Figure 2.22 is sped up by an acceleration to the left. In that case, both v and a are negative. The

plus and minus signs give the directions of the accelerations. If acceleration has the same sign as the velocity, the object is
speeding up. If acceleration has the opposite sign as the velocity, the object is slowing down.

Check Your Understanding

An airplane lands on a runway traveling east. Describe its acceleration.

Solution
If we take east to be positive, then the airplane has negative acceleration, as it is accelerating toward the west. It is also
decelerating: its acceleration is opposite in direction to its velocity.

PhET Explorations: Moving Man Simulation

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his
motion. Set the position, velocity, or acceleration and let the simulation move the man for you.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42100/1.9/#Phet_module_2.4)
Figure 2.24

2.5 Motion Equations for Constant Acceleration in One Dimension

Figure 2.25 Kinematic equations can help us describe and predict the motion of moving objects such as these kayaks racing in Newbury, England.
(credit: Barry Skeates, Flickr)

We might know that the greater the acceleration of, say, a car moving away from a stop sign, the greater the displacement in a
given time. But we have not developed a specific equation that relates acceleration and displacement. In this section, we develop
some convenient equations for kinematic relationships, starting from the definitions of displacement, velocity, and acceleration
already covered.

Notation: t, x, v, a

First, let us make some simplifications in notation. Taking the initial time to be zero, as if time is measured with a stopwatch, is a
great simplification. Since elapsed time is Δt = tf − t0 , taking t0 = 0 means that Δt = tf , the final time on the stopwatch.

When initial time is taken to be zero, we use the subscript 0 to denote initial values of position and velocity. That is, x0 is the
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initial position and v0 is the initial velocity. We put no subscripts on the final values. That is, t is the final time, x is the final

position, and v is the final velocity. This gives a simpler expression for elapsed time—now, Δt = t . It also simplifies the

expression for displacement, which is now Δx = x − x0 . Also, it simplifies the expression for change in velocity, which is now

Δv = v − v0 . To summarize, using the simplified notation, with the initial time taken to be zero,

(2.24)Δt = t
Δx = x − x0
Δv = v − v0

⎫
⎭
⎬

where the subscript 0 denotes an initial value and the absence of a subscript denotes a final value in whatever motion is under
consideration.

We now make the important assumption that acceleration is constant. This assumption allows us to avoid using calculus to find
instantaneous acceleration. Since acceleration is constant, the average and instantaneous accelerations are equal. That is,

(2.25)a- = a = constant,

so we use the symbol a for acceleration at all times. Assuming acceleration to be constant does not seriously limit the situations

we can study nor degrade the accuracy of our treatment. For one thing, acceleration is constant in a great number of situations.
Furthermore, in many other situations we can accurately describe motion by assuming a constant acceleration equal to the
average acceleration for that motion. Finally, in motions where acceleration changes drastically, such as a car accelerating to top
speed and then braking to a stop, the motion can be considered in separate parts, each of which has its own constant
acceleration.

Solving for Displacement ( Δx ) and Final Position ( x ) from Average Velocity when Acceleration ( a ) is Constant

To get our first two new equations, we start with the definition of average velocity:

(2.26)v- = Δx
Δt .

Substituting the simplified notation for Δx and Δt yields

(2.27)v- = x − x0
t .

Solving for x yields

(2.28)x = x0 + v- t,

where the average velocity is

(2.29)v- = v0 + v
2 (constant a).

The equation v- = v0 + v
2 reflects the fact that, when acceleration is constant, v is just the simple average of the initial and

final velocities. For example, if you steadily increase your velocity (that is, with constant acceleration) from 30 to 60 km/h, then

your average velocity during this steady increase is 45 km/h. Using the equation v- = v0 + v
2 to check this, we see that

(2.30)v- = v0 + v
2 = 30 km/h + 60 km/h

2 = 45 km/h,

which seems logical.

Example 2.8 Calculating Displacement: How Far does the Jogger Run?

A jogger runs down a straight stretch of road with an average velocity of 4.00 m/s for 2.00 min. What is his final position,
taking his initial position to be zero?

Strategy

Draw a sketch.
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Figure 2.26

The final position x is given by the equation

(2.31)x = x0 + v- t.

To find x , we identify the values of x0 , v- , and t from the statement of the problem and substitute them into the equation.

Solution

1. Identify the knowns. v- = 4.00 m/s , Δt = 2.00 min , and x0 = 0 m .

2. Enter the known values into the equation.

(2.32)x = x0 + v- t = 0 + (4.00 m/s)(120 s) = 480 m

Discussion

Velocity and final displacement are both positive, which means they are in the same direction.

The equation x = x0 + v- t gives insight into the relationship between displacement, average velocity, and time. It shows, for

example, that displacement is a linear function of average velocity. (By linear function, we mean that displacement depends on

v- rather than on v- raised to some other power, such as v- 2 . When graphed, linear functions look like straight lines with a

constant slope.) On a car trip, for example, we will get twice as far in a given time if we average 90 km/h than if we average 45
km/h.

Figure 2.27 There is a linear relationship between displacement and average velocity. For a given time t , an object moving twice as fast as another

object will move twice as far as the other object.

Solving for Final Velocity

We can derive another useful equation by manipulating the definition of acceleration.

(2.33)a = Δv
Δt

Substituting the simplified notation for Δv and Δt gives us
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(2.34)a = v − v0
t (constant a).

Solving for v yields

(2.35)v = v0 + at (constant a).

Example 2.9 Calculating Final Velocity: An Airplane Slowing Down after Landing

An airplane lands with an initial velocity of 70.0 m/s and then decelerates at 1.50 m/s2 for 40.0 s. What is its final velocity?

Strategy

Draw a sketch. We draw the acceleration vector in the direction opposite the velocity vector because the plane is
decelerating.

Figure 2.28

Solution

1. Identify the knowns. v0 = 70.0 m/s , a = −1.50 m/s2 , t = 40.0 s .

2. Identify the unknown. In this case, it is final velocity, vf .

3. Determine which equation to use. We can calculate the final velocity using the equation v = v0 + at .

4. Plug in the known values and solve.

(2.36)v = v0 + at = 70.0 m/s + ⎛⎝−1.50 m/s2⎞⎠(40.0 s) = 10.0 m/s

Discussion

The final velocity is much less than the initial velocity, as desired when slowing down, but still positive. With jet engines,
reverse thrust could be maintained long enough to stop the plane and start moving it backward. That would be indicated by
a negative final velocity, which is not the case here.

Figure 2.29 The airplane lands with an initial velocity of 70.0 m/s and slows to a final velocity of 10.0 m/s before heading for the terminal. Note
that the acceleration is negative because its direction is opposite to its velocity, which is positive.

In addition to being useful in problem solving, the equation v = v0 + at gives us insight into the relationships among velocity,

acceleration, and time. From it we can see, for example, that

• final velocity depends on how large the acceleration is and how long it lasts
• if the acceleration is zero, then the final velocity equals the initial velocity (v = v0) , as expected (i.e., velocity is constant)

• if a is negative, then the final velocity is less than the initial velocity

(All of these observations fit our intuition, and it is always useful to examine basic equations in light of our intuition and
experiences to check that they do indeed describe nature accurately.)
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Making Connections: Real-World Connection

Figure 2.30 The Space Shuttle Endeavor blasts off from the Kennedy Space Center in February 2010. (credit: Matthew Simantov, Flickr)

An intercontinental ballistic missile (ICBM) has a larger average acceleration than the Space Shuttle and achieves a greater
velocity in the first minute or two of flight (actual ICBM burn times are classified—short-burn-time missiles are more difficult
for an enemy to destroy). But the Space Shuttle obtains a greater final velocity, so that it can orbit the earth rather than come
directly back down as an ICBM does. The Space Shuttle does this by accelerating for a longer time.

Solving for Final Position When Velocity is Not Constant ( a ≠ 0 )

We can combine the equations above to find a third equation that allows us to calculate the final position of an object
experiencing constant acceleration. We start with

(2.37)v = v0 + at.

Adding v0 to each side of this equation and dividing by 2 gives

(2.38)v0 + v
2 = v0 + 1

2at.

Since
v0 + v

2 = v- for constant acceleration, then

(2.39)v- = v0 + 1
2at.

Now we substitute this expression for v- into the equation for displacement, x = x0 + v- t , yielding

(2.40)x = x0 + v0t + 1
2at2 (constant a).

Example 2.10 Calculating Displacement of an Accelerating Object: Dragsters

Dragsters can achieve average accelerations of 26.0 m/s2 . Suppose such a dragster accelerates from rest at this rate for

5.56 s. How far does it travel in this time?
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Figure 2.31 U.S. Army Top Fuel pilot Tony “The Sarge” Schumacher begins a race with a controlled burnout. (credit: Lt. Col. William Thurmond.
Photo Courtesy of U.S. Army.)

Strategy

Draw a sketch.

Figure 2.32

We are asked to find displacement, which is x if we take x0 to be zero. (Think about it like the starting line of a race. It can

be anywhere, but we call it 0 and measure all other positions relative to it.) We can use the equation x = x0 + v0t + 1
2at2

once we identify v0 , a , and t from the statement of the problem.

Solution

1. Identify the knowns. Starting from rest means that v0 = 0 , a is given as 26.0 m/s2 and t is given as 5.56 s.

2. Plug the known values into the equation to solve for the unknown x :

(2.41)x = x0 + v0t + 1
2at2.

Since the initial position and velocity are both zero, this simplifies to

(2.42)x = 1
2at2.

Substituting the identified values of a and t gives

(2.43)x = 1
2
⎛
⎝26.0 m/s2⎞⎠(5.56 s)2 ,

yielding

(2.44)x = 402 m.
Discussion

If we convert 402 m to miles, we find that the distance covered is very close to one quarter of a mile, the standard distance
for drag racing. So the answer is reasonable. This is an impressive displacement in only 5.56 s, but top-notch dragsters can
do a quarter mile in even less time than this.

What else can we learn by examining the equation x = x0 + v0t + 1
2at2? We see that:

• displacement depends on the square of the elapsed time when acceleration is not zero. In Example 2.10, the dragster
covers only one fourth of the total distance in the first half of the elapsed time

54 Chapter 2 | Kinematics

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



• if acceleration is zero, then the initial velocity equals average velocity ( v0 = v- ) and x = x0 + v0t + 1
2at2 becomes

x = x0 + v0t

Solving for Final Velocity when Velocity Is Not Constant ( a ≠ 0 )

A fourth useful equation can be obtained from another algebraic manipulation of previous equations.

If we solve v = v0 + at for t , we get

(2.45)t = v − v0
a .

Substituting this and v- = v0 + v
2 into x = x0 + v- t , we get

(2.46)v2 = v0
2 + 2a(x − x0) (constanta).

Example 2.11 Calculating Final Velocity: Dragsters

Calculate the final velocity of the dragster in Example 2.10 without using information about time.

Strategy

Draw a sketch.

Figure 2.33

The equation v2 = v0
2 + 2a(x − x0) is ideally suited to this task because it relates velocities, acceleration, and

displacement, and no time information is required.

Solution

1. Identify the known values. We know that v0 = 0 , since the dragster starts from rest. Then we note that

x − x0 = 402 m (this was the answer in Example 2.10). Finally, the average acceleration was given to be

a = 26.0 m/s2 .

2. Plug the knowns into the equation v2 = v0
2 + 2a(x − x0) and solve for v.

(2.47)v2 = 0 + 2⎛⎝26.0 m/s2⎞⎠(402 m).

Thus

(2.48)v2 = 2.09×104 m2 /s2.
To get v , we take the square root:

(2.49)v = 2.09×104 m2 /s2 = 145 m/s.
Discussion

145 m/s is about 522 km/h or about 324 mi/h, but even this breakneck speed is short of the record for the quarter mile. Also,
note that a square root has two values; we took the positive value to indicate a velocity in the same direction as the
acceleration.

An examination of the equation v2 = v0
2 + 2a(x − x0) can produce further insights into the general relationships among

physical quantities:

• The final velocity depends on how large the acceleration is and the distance over which it acts
• For a fixed deceleration, a car that is going twice as fast doesn’t simply stop in twice the distance—it takes much further to
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stop. (This is why we have reduced speed zones near schools.)

Putting Equations Together

In the following examples, we further explore one-dimensional motion, but in situations requiring slightly more algebraic
manipulation. The examples also give insight into problem-solving techniques. The box below provides easy reference to the
equations needed.

Summary of Kinematic Equations (constant a )

(2.50)x = x0 + v- t
(2.51)v- = v0 + v

2
(2.52)v = v0 + at
(2.53)x = x0 + v0t + 1

2at2

(2.54)v2 = v0
2 + 2a(x − x0)

Example 2.12 Calculating Displacement: How Far Does a Car Go When Coming to a Halt?

On dry concrete, a car can decelerate at a rate of 7.00 m/s2 , whereas on wet concrete it can decelerate at only

5.00 m/s2 . Find the distances necessary to stop a car moving at 30.0 m/s (about 110 km/h) (a) on dry concrete and (b) on

wet concrete. (c) Repeat both calculations, finding the displacement from the point where the driver sees a traffic light turn
red, taking into account his reaction time of 0.500 s to get his foot on the brake.

Strategy

Draw a sketch.

Figure 2.34

In order to determine which equations are best to use, we need to list all of the known values and identify exactly what we
need to solve for. We shall do this explicitly in the next several examples, using tables to set them off.

Solution for (a)

1. Identify the knowns and what we want to solve for. We know that v0 = 30.0 m/s ; v = 0 ; a = −7.00 m/s2 ( a is

negative because it is in a direction opposite to velocity). We take x0 to be 0. We are looking for displacement Δx , or

x − x0 .

2. Identify the equation that will help up solve the problem. The best equation to use is

(2.55)v2 = v0
2 + 2a(x − x0).

This equation is best because it includes only one unknown, x . We know the values of all the other variables in this

equation. (There are other equations that would allow us to solve for x , but they require us to know the stopping time, t ,

which we do not know. We could use them but it would entail additional calculations.)

3. Rearrange the equation to solve for x .
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(2.56)
x − x0 =

v2 − v0
2

2a
4. Enter known values.

(2.57)
x − 0 = 02 − (30.0 m/s)2

2⎛⎝−7.00 m/s2⎞⎠

Thus,

(2.58)x = 64.3 m on dry concrete.

Solution for (b)

This part can be solved in exactly the same manner as Part A. The only difference is that the deceleration is – 5.00 m/s2 .

The result is

(2.59)xwet = 90.0 m on wet concrete.

Solution for (c)

Once the driver reacts, the stopping distance is the same as it is in Parts A and B for dry and wet concrete. So to answer
this question, we need to calculate how far the car travels during the reaction time, and then add that to the stopping time. It
is reasonable to assume that the velocity remains constant during the driver’s reaction time.

1. Identify the knowns and what we want to solve for. We know that v- = 30.0 m/s ; treaction = 0.500 s ; areaction = 0 .

We take x0 − reaction to be 0. We are looking for xreaction .

2. Identify the best equation to use.

x = x0 + v- t works well because the only unknown value is x , which is what we want to solve for.

3. Plug in the knowns to solve the equation.

(2.60)x = 0 + (30.0 m/s)(0.500 s) = 15.0 m.

This means the car travels 15.0 m while the driver reacts, making the total displacements in the two cases of dry and wet
concrete 15.0 m greater than if he reacted instantly.

4. Add the displacement during the reaction time to the displacement when braking.

(2.61)xbraking + xreaction = xtotal

a. 64.3 m + 15.0 m = 79.3 m when dry

b. 90.0 m + 15.0 m = 105 m when wet

Figure 2.35 The distance necessary to stop a car varies greatly, depending on road conditions and driver reaction time. Shown here are the
braking distances for dry and wet pavement, as calculated in this example, for a car initially traveling at 30.0 m/s. Also shown are the total
distances traveled from the point where the driver first sees a light turn red, assuming a 0.500 s reaction time.

Discussion

The displacements found in this example seem reasonable for stopping a fast-moving car. It should take longer to stop a car
on wet rather than dry pavement. It is interesting that reaction time adds significantly to the displacements. But more
important is the general approach to solving problems. We identify the knowns and the quantities to be determined and then
find an appropriate equation. There is often more than one way to solve a problem. The various parts of this example can in
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fact be solved by other methods, but the solutions presented above are the shortest.

Example 2.13 Calculating Time: A Car Merges into Traffic

Suppose a car merges into freeway traffic on a 200-m-long ramp. If its initial velocity is 10.0 m/s and it accelerates at

2.00 m/s2 , how long does it take to travel the 200 m up the ramp? (Such information might be useful to a traffic engineer.)

Strategy

Draw a sketch.

Figure 2.36

We are asked to solve for the time t . As before, we identify the known quantities in order to choose a convenient physical

relationship (that is, an equation with one unknown, t ).

Solution

1. Identify the knowns and what we want to solve for. We know that v0 = 10 m/s ; a = 2.00 m/s2 ; and x = 200 m .

2. We need to solve for t . Choose the best equation. x = x0 + v0t + 1
2at2 works best because the only unknown in the

equation is the variable t for which we need to solve.

3. We will need to rearrange the equation to solve for t . In this case, it will be easier to plug in the knowns first.

(2.62)200 m = 0 m + (10.0 m/s)t + 1
2
⎛
⎝2.00 m/s2⎞⎠ t2

4. Simplify the equation. The units of meters (m) cancel because they are in each term. We can get the units of seconds (s)
to cancel by taking t = t s , where t is the magnitude of time and s is the unit. Doing so leaves

(2.63)200 = 10t + t2.
5. Use the quadratic formula to solve for t .

(a) Rearrange the equation to get 0 on one side of the equation.

(2.64)t2 + 10t − 200 = 0
This is a quadratic equation of the form

(2.65)at2 + bt + c = 0,

where the constants are a = 1.00, b = 10.0, and c = −200 .

(b) Its solutions are given by the quadratic formula:

(2.66)
t = −b ± b2 − 4ac

2a .

This yields two solutions for t , which are

(2.67)t = 10.0 and−20.0.
In this case, then, the time is t = t in seconds, or

(2.68)t = 10.0 s and − 20.0 s.
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A negative value for time is unreasonable, since it would mean that the event happened 20 s before the motion began. We
can discard that solution. Thus,

(2.69)t = 10.0 s.
Discussion

Whenever an equation contains an unknown squared, there will be two solutions. In some problems both solutions are
meaningful, but in others, such as the above, only one solution is reasonable. The 10.0 s answer seems reasonable for a
typical freeway on-ramp.

With the basics of kinematics established, we can go on to many other interesting examples and applications. In the process of
developing kinematics, we have also glimpsed a general approach to problem solving that produces both correct answers and
insights into physical relationships. Problem-Solving Basics discusses problem-solving basics and outlines an approach that
will help you succeed in this invaluable task.

Making Connections: Take-Home Experiment—Breaking News

We have been using SI units of meters per second squared to describe some examples of acceleration or deceleration of
cars, runners, and trains. To achieve a better feel for these numbers, one can measure the braking deceleration of a car
doing a slow (and safe) stop. Recall that, for average acceleration, a- = Δv / Δt . While traveling in a car, slowly apply the

brakes as you come up to a stop sign. Have a passenger note the initial speed in miles per hour and the time taken (in
seconds) to stop. From this, calculate the deceleration in miles per hour per second. Convert this to meters per second
squared and compare with other decelerations mentioned in this chapter. Calculate the distance traveled in braking.

Check Your Understanding

A rocket accelerates at a rate of 20 m/s2 during launch. How long does it take the rocket to reach a velocity of 400 m/s?

Solution

To answer this, choose an equation that allows you to solve for time t , given only a , v0 , and v .

(2.70)v = v0 + at

Rearrange to solve for t .

(2.71)t = v − v
a = 400 m/s − 0 m/s

20 m/s2 = 20 s

2.6 Problem-Solving Basics for One-Dimensional Kinematics

Figure 2.37 Problem-solving skills are essential to your success in Physics. (credit: scui3asteveo, Flickr)

Problem-solving skills are obviously essential to success in a quantitative course in physics. More importantly, the ability to apply
broad physical principles, usually represented by equations, to specific situations is a very powerful form of knowledge. It is much
more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations,
whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both
for solving problems in this text and for applying physics in everyday and professional life.
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Problem-Solving Steps

While there is no simple step-by-step method that works for every problem, the following general procedures facilitate problem
solving and make it more meaningful. A certain amount of creativity and insight is required as well.

Step 1

Examine the situation to determine which physical principles are involved. It often helps to draw a simple sketch at the outset.
You will also need to decide which direction is positive and note that on your sketch. Once you have identified the physical
principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation is
essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical quantities.
Without a conceptual understanding of a problem, a numerical solution is meaningless.

Step 2

Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Many problems are stated very
succinctly and require some inspection to determine what is known. A sketch can also be very useful at this point. Formally
identifying the knowns is of particular importance in applying physics to real-world situations. Remember, “stopped” means
velocity is zero, and we often can take initial time and position as zero.

Step 3

Identify exactly what needs to be determined in the problem (identify the unknowns). In complex problems, especially, it is not
always obvious what needs to be found or in what sequence. Making a list can help.

Step 4

Find an equation or set of equations that can help you solve the problem. Your list of knowns and unknowns can help here. It is
easiest if you can find equations that contain only one unknown—that is, all of the other variables are known, so you can easily
solve for the unknown. If the equation contains more than one unknown, then an additional equation is needed to solve the
problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is
especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or
more) different equations to get the final answer.

Step 5

Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete with units.
This step produces the numerical answer; it also provides a check on units that can help you find errors. If the units of the
answer are incorrect, then an error has been made. However, be warned that correct units do not guarantee that the numerical
part of the answer is also correct.

Step 6

Check the answer to see if it is reasonable: Does it make sense? This final step is extremely important—the goal of physics is to
accurately describe nature. To see if the answer is reasonable, check both its magnitude and its sign, in addition to its units. Your
judgment will improve as you solve more and more physics problems, and it will become possible for you to make finer and finer
judgments regarding whether nature is adequately described by the answer to a problem. This step brings the problem back to
its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics than
just being able to mechanically solve a problem.

When solving problems, we often perform these steps in different order, and we also tend to do several steps simultaneously.
There is no rigid procedure that will work every time. Creativity and insight grow with experience, and the basics of problem
solving become almost automatic. One way to get practice is to work out the text’s examples for yourself as you read. Another is
to work as many end-of-section problems as possible, starting with the easiest to build confidence and progressing to the more
difficult. Once you become involved in physics, you will see it all around you, and you can begin to apply it to situations you
encounter outside the classroom, just as is done in many of the applications in this text.

Unreasonable Results

Physics must describe nature accurately. Some problems have results that are unreasonable because one premise is
unreasonable or because certain premises are inconsistent with one another. The physical principle applied correctly then

produces an unreasonable result. For example, if a person starting a foot race accelerates at 0.40 m/s2 for 100 s, his final

speed will be 40 m/s (about 150 km/h)—clearly unreasonable because the time of 100 s is an unreasonable premise. The
physics is correct in a sense, but there is more to describing nature than just manipulating equations correctly. Checking the
result of a problem to see if it is reasonable does more than help uncover errors in problem solving—it also builds intuition in
judging whether nature is being accurately described.

Use the following strategies to determine whether an answer is reasonable and, if it is not, to determine what is the cause.

Step 1

Solve the problem using strategies as outlined and in the format followed in the worked examples in the text. In the example
given in the preceding paragraph, you would identify the givens as the acceleration and time and use the equation below to find
the unknown final velocity. That is,

(2.72)v = v0 + at = 0 + ⎛⎝0.40 m/s2⎞⎠(100 s) = 40 m/s.
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Step 2

Check to see if the answer is reasonable. Is it too large or too small, or does it have the wrong sign, improper units, …? In this
case, you may need to convert meters per second into a more familiar unit, such as miles per hour.

(2.73)⎛
⎝40 m

s
⎞
⎠
⎛
⎝3.28 ft

m
⎞
⎠
⎛
⎝ 1 mi
5280 ft

⎞
⎠
⎛
⎝60 s
min
⎞
⎠
⎛
⎝60 min

1 h
⎞
⎠ = 89 mph

This velocity is about four times greater than a person can run—so it is too large.

Step 3

If the answer is unreasonable, look for what specifically could cause the identified difficulty. In the example of the runner, there
are only two assumptions that are suspect. The acceleration could be too great or the time too long. First look at the acceleration

and think about what the number means. If someone accelerates at 0.40 m/s2 , their velocity is increasing by 0.4 m/s each

second. Does this seem reasonable? If so, the time must be too long. It is not possible for someone to accelerate at a constant

rate of 0.40 m/s2 for 100 s (almost two minutes).

2.7 Falling Objects

Falling objects form an interesting class of motion problems. For example, we can estimate the depth of a vertical mine shaft by
dropping a rock into it and listening for the rock to hit the bottom. By applying the kinematics developed so far to falling objects,
we can examine some interesting situations and learn much about gravity in the process.

Gravity

The most remarkable and unexpected fact about falling objects is that, if air resistance and friction are negligible, then in a given
location all objects fall toward the center of Earth with the same constant acceleration, independent of their mass. This
experimentally determined fact is unexpected, because we are so accustomed to the effects of air resistance and friction that we
expect light objects to fall slower than heavy ones.

Figure 2.38 A hammer and a feather will fall with the same constant acceleration if air resistance is considered negligible. This is a general
characteristic of gravity not unique to Earth, as astronaut David R. Scott demonstrated on the Moon in 1971, where the acceleration due to gravity is

only 1.67 m/s2
.

In the real world, air resistance can cause a lighter object to fall slower than a heavier object of the same size. A tennis ball will
reach the ground after a hard baseball dropped at the same time. (It might be difficult to observe the difference if the height is not
large.) Air resistance opposes the motion of an object through the air, while friction between objects—such as between clothes
and a laundry chute or between a stone and a pool into which it is dropped—also opposes motion between them. For the ideal
situations of these first few chapters, an object falling without air resistance or friction is defined to be in free-fall.

The force of gravity causes objects to fall toward the center of Earth. The acceleration of free-falling objects is therefore called
the acceleration due to gravity. The acceleration due to gravity is constant, which means we can apply the kinematics
equations to any falling object where air resistance and friction are negligible. This opens a broad class of interesting situations
to us. The acceleration due to gravity is so important that its magnitude is given its own symbol, g . It is constant at any given

location on Earth and has the average value

(2.74)g = 9.80 m/s2.

Although g varies from 9.78 m/s2 to 9.83 m/s2 , depending on latitude, altitude, underlying geological formations, and local

topography, the average value of 9.80 m/s2 will be used in this text unless otherwise specified. The direction of the

acceleration due to gravity is downward (towards the center of Earth). In fact, its direction defines what we call vertical. Note that
whether the acceleration a in the kinematic equations has the value +g or −g depends on how we define our coordinate

system. If we define the upward direction as positive, then a = −g = −9.80 m/s2 , and if we define the downward direction as

positive, then a = g = 9.80 m/s2 .
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One-Dimensional Motion Involving Gravity

The best way to see the basic features of motion involving gravity is to start with the simplest situations and then progress toward
more complex ones. So we start by considering straight up and down motion with no air resistance or friction. These
assumptions mean that the velocity (if there is any) is vertical. If the object is dropped, we know the initial velocity is zero. Once
the object has left contact with whatever held or threw it, the object is in free-fall. Under these circumstances, the motion is one-
dimensional and has constant acceleration of magnitude g . We will also represent vertical displacement with the symbol y and

use x for horizontal displacement.

Kinematic Equations for Objects in Free-Fall where Acceleration = -g
(2.75)v = v0 - gt
(2.76)y = y0 + v0t - 1

2gt2

(2.77)v2 = v0
2 - 2g(y − y0)

Example 2.14 Calculating Position and Velocity of a Falling Object: A Rock Thrown Upward

A person standing on the edge of a high cliff throws a rock straight up with an initial velocity of 13.0 m/s. The rock misses the
edge of the cliff as it falls back to earth. Calculate the position and velocity of the rock 1.00 s, 2.00 s, and 3.00 s after it is
thrown, neglecting the effects of air resistance.

Strategy

Draw a sketch.

Figure 2.39

We are asked to determine the position y at various times. It is reasonable to take the initial position y0 to be zero. This

problem involves one-dimensional motion in the vertical direction. We use plus and minus signs to indicate direction, with up
being positive and down negative. Since up is positive, and the rock is thrown upward, the initial velocity must be positive
too. The acceleration due to gravity is downward, so a is negative. It is crucial that the initial velocity and the acceleration

due to gravity have opposite signs. Opposite signs indicate that the acceleration due to gravity opposes the initial motion
and will slow and eventually reverse it.

Since we are asked for values of position and velocity at three times, we will refer to these as y1 and v1 ; y2 and v2 ; and

y3 and v3 .

Solution for Position y1

1. Identify the knowns. We know that y0 = 0 ; v0 = 13.0 m/s ; a = −g = −9.80 m/s2 ; and t = 1.00 s .

2. Identify the best equation to use. We will use y = y0 + v0t + 1
2at2 because it includes only one unknown, y (or y1 ,

here), which is the value we want to find.

3. Plug in the known values and solve for y1 .

(2.78)y = 0 + (13.0 m/s)(1.00 s) + 1
2
⎛
⎝−9.80 m/s2⎞⎠(1.00 s)2 = 8.10 m

Discussion

The rock is 8.10 m above its starting point at t = 1.00 s, since y1 > y0 . It could be moving up or down; the only way to

tell is to calculate v1 and find out if it is positive or negative.

Solution for Velocity v1

1. Identify the knowns. We know that y0 = 0 ; v0 = 13.0 m/s ; a = −g = −9.80 m/s2 ; and t = 1.00 s . We also know
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from the solution above that y1 = 8.10 m .

2. Identify the best equation to use. The most straightforward is v = v0 − gt (from v = v0 + at , where

a = gravitational acceleration = −g ).

3. Plug in the knowns and solve.

(2.79)v1 = v0 − gt = 13.0 m/s − ⎛⎝9.80 m/s2⎞⎠(1.00 s) = 3.20 m/s

Discussion

The positive value for v1 means that the rock is still heading upward at t = 1.00 s . However, it has slowed from its original

13.0 m/s, as expected.

Solution for Remaining Times

The procedures for calculating the position and velocity at t = 2.00 s and 3.00 s are the same as those above. The

results are summarized in Table 2.1 and illustrated in Figure 2.40.

Table 2.1 Results

Time, t Position, y Velocity, v Acceleration, a

1.00 s 8.10 m 3.20 m/s −9.80 m/s2

2.00 s 6.40 m −6.60 m/s −9.80 m/s2

3.00 s −5.10 m −16.4 m/s −9.80 m/s2

Graphing the data helps us understand it more clearly.
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Figure 2.40 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that
velocity changes linearly with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows vertical
position only. It is easy to get the impression that the graph shows some horizontal motion—the shape of the graph looks like the path of a
projectile. But this is not the case; the horizontal axis is time, not space. The actual path of the rock in space is straight up, and straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since y1
and v1 are both positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving

downward. At 3.00 s, both y3 and v3 are negative, meaning the rock is below its starting point and continuing to move

downward. Notice that when the rock is at its highest point (at 1.5 s), its velocity is zero, but its acceleration is still

−9.80 m/s2 . Its acceleration is −9.80 m/s2 for the whole trip—while it is moving up and while it is moving down. Note

that the values for y are the positions (or displacements) of the rock, not the total distances traveled. Finally, note that free-

fall applies to upward motion as well as downward. Both have the same acceleration—the acceleration due to gravity, which
remains constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while
arcing up as well as down, as we will discuss in more detail later.

Making Connections: Take-Home Experiment—Reaction Time

A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index
finger, separated by about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler
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unexpectedly, and try to catch it between your two fingers. Note the new reading on the ruler. Assuming acceleration is that
due to gravity, calculate your reaction time. How far would you travel in a car (moving at 30 m/s) if the time it took your foot
to go from the gas pedal to the brake was twice this reaction time?

Example 2.15 Calculating Velocity of a Falling Object: A Rock Thrown Down

What happens if the person on the cliff throws the rock straight down, instead of straight up? To explore this question,
calculate the velocity of the rock when it is 5.10 m below the starting point, and has been thrown downward with an initial
speed of 13.0 m/s.

Strategy

Draw a sketch.

Figure 2.41

Since up is positive, the final position of the rock will be negative because it finishes below the starting point at y0 = 0 .

Similarly, the initial velocity is downward and therefore negative, as is the acceleration due to gravity. We expect the final
velocity to be negative since the rock will continue to move downward.

Solution

1. Identify the knowns. y0 = 0 ; y1 = − 5.10 m ; v0 = −13.0 m/s ; a = −g = −9.80 m/s2 .

2. Choose the kinematic equation that makes it easiest to solve the problem. The equation v2 = v0
2 + 2a(y − y0) works

well because the only unknown in it is v . (We will plug y1 in for y .)

3. Enter the known values

(2.80)v2 = (−13.0 m/s)2 + 2⎛⎝−9.80 m/s2⎞⎠(−5.10 m − 0 m) = 268.96 m2 /s2,

where we have retained extra significant figures because this is an intermediate result.

Taking the square root, and noting that a square root can be positive or negative, gives

(2.81)v = ±16.4 m/s.

The negative root is chosen to indicate that the rock is still heading down. Thus,

(2.82)v = −16.4 m/s.
Discussion

Note that this is exactly the same velocity the rock had at this position when it was thrown straight upward with the same
initial speed. (See Example 2.14 and Figure 2.42(a).) This is not a coincidental result. Because we only consider the
acceleration due to gravity in this problem, the speed of a falling object depends only on its initial speed and its vertical
position relative to the starting point. For example, if the velocity of the rock is calculated at a height of 8.10 m above the
starting point (using the method from Example 2.14) when the initial velocity is 13.0 m/s straight up, a result of ±3.20 m/s
is obtained. Here both signs are meaningful; the positive value occurs when the rock is at 8.10 m and heading up, and the
negative value occurs when the rock is at 8.10 m and heading back down. It has the same speed but the opposite direction.
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Figure 2.42 (a) A person throws a rock straight up, as explored in Example 2.14. The arrows are velocity vectors at 0, 1.00, 2.00, and 3.00 s. (b)
A person throws a rock straight down from a cliff with the same initial speed as before, as in Example 2.15. Note that at the same distance below
the point of release, the rock has the same velocity in both cases.

Another way to look at it is this: In Example 2.14, the rock is thrown up with an initial velocity of 13.0 m/s . It rises and then

falls back down. When its position is y = 0 on its way back down, its velocity is −13.0 m/s . That is, it has the same

speed on its way down as on its way up. We would then expect its velocity at a position of y = −5.10 m to be the same

whether we have thrown it upwards at +13.0 m/s or thrown it downwards at −13.0 m/s . The velocity of the rock on its

way down from y = 0 is the same whether we have thrown it up or down to start with, as long as the speed with which it

was initially thrown is the same.

Example 2.16 Find g from Data on a Falling Object

The acceleration due to gravity on Earth differs slightly from place to place, depending on topography (e.g., whether you are
on a hill or in a valley) and subsurface geology (whether there is dense rock like iron ore as opposed to light rock like salt
beneath you.) The precise acceleration due to gravity can be calculated from data taken in an introductory physics
laboratory course. An object, usually a metal ball for which air resistance is negligible, is dropped and the time it takes to fall
a known distance is measured. See, for example, Figure 2.43. Very precise results can be produced with this method if
sufficient care is taken in measuring the distance fallen and the elapsed time.
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Figure 2.43 Positions and velocities of a metal ball released from rest when air resistance is negligible. Velocity is seen to increase linearly with
time while displacement increases with time squared. Acceleration is a constant and is equal to gravitational acceleration.

Suppose the ball falls 1.0000 m in 0.45173 s. Assuming the ball is not affected by air resistance, what is the precise
acceleration due to gravity at this location?

Strategy

Draw a sketch.
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Figure 2.44

We need to solve for acceleration a . Note that in this case, displacement is downward and therefore negative, as is

acceleration.

Solution

1. Identify the knowns. y0 = 0 ; y = –1.0000 m ; t = 0.45173 ; v0 = 0 .

2. Choose the equation that allows you to solve for a using the known values.

(2.83)y = y0 + v0t + 1
2at2

3. Substitute 0 for v0 and rearrange the equation to solve for a . Substituting 0 for v0 yields

(2.84)y = y0 + 1
2at2.

Solving for a gives

(2.85)
a = 2(y − y0)

t2 .

4. Substitute known values yields

(2.86)a = 2( − 1.0000 m – 0)
(0.45173 s)2 = −9.8010 m/s2 ,

so, because a = −g with the directions we have chosen,

(2.87)g = 9.8010 m/s2.

Discussion

The negative value for a indicates that the gravitational acceleration is downward, as expected. We expect the value to be

somewhere around the average value of 9.80 m/s2 , so 9.8010 m/s2 makes sense. Since the data going into the

calculation are relatively precise, this value for g is more precise than the average value of 9.80 m/s2 ; it represents the

local value for the acceleration due to gravity.

Check Your Understanding

A chunk of ice breaks off a glacier and falls 30.0 meters before it hits the water. Assuming it falls freely (there is no air
resistance), how long does it take to hit the water?

Solution

We know that initial position y0 = 0 , final position y = −30.0 m , and a = −g = −9.80 m/s2 . We can then use the

equation y = y0 + v0t + 1
2at2 to solve for t . Inserting a = −g , we obtain

(2.88)y = 0 + 0 − 1
2gt2

t2 = 2y
−g

t = ± 2y
−g = ± 2( − 30.0 m)

−9.80 m/s2 = ± 6.12 s2 = 2.47 s ≈ 2.5 s

where we take the positive value as the physically relevant answer. Thus, it takes about 2.5 seconds for the piece of ice to
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hit the water.

PhET Explorations: Equation Grapher

Learn about graphing polynomials. The shape of the curve changes as the constants are adjusted. View the curves for the
individual terms (e.g. y = bx ) to see how they add to generate the polynomial curve.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42102/
1.10/#Phet_module_2.7)

Figure 2.45

2.8 Graphical Analysis of One-Dimensional Motion

A graph, like a picture, is worth a thousand words. Graphs not only contain numerical information; they also reveal relationships
between physical quantities. This section uses graphs of position, velocity, and acceleration versus time to illustrate one-
dimensional kinematics.

Slopes and General Relationships

First note that graphs in this text have perpendicular axes, one horizontal and the other vertical. When two physical quantities are
plotted against one another in such a graph, the horizontal axis is usually considered to be an independent variable and the
vertical axis a dependent variable. If we call the horizontal axis the x -axis and the vertical axis the y -axis, as in Figure 2.46, a

straight-line graph has the general form

(2.89)y = mx + b.

Here m is the slope, defined to be the rise divided by the run (as seen in the figure) of the straight line. The letter b is used for

the y-intercept, which is the point at which the line crosses the vertical axis.

Figure 2.46 A straight-line graph. The equation for a straight line is y = mx + b .

Graph of Position vs. Time (a = 0, so v is constant)

Time is usually an independent variable that other quantities, such as position, depend upon. A graph of position versus time
would, thus, have x on the vertical axis and t on the horizontal axis. Figure 2.47 is just such a straight-line graph. It shows a

graph of position versus time for a jet-powered car on a very flat dry lake bed in Nevada.
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Figure 2.47 Graph of position versus time for a jet-powered car on the Bonneville Salt Flats.

Using the relationship between dependent and independent variables, we see that the slope in the graph above is average
velocity v- and the intercept is position at time zero—that is, x0 . Substituting these symbols into y = mx + b gives

(2.90)x = v- t + x0

or

(2.91)x = x0 + v- t.

Thus a graph of position versus time gives a general relationship among displacement(change in position), velocity, and time, as
well as giving detailed numerical information about a specific situation.

The Slope of x vs. t

The slope of the graph of position x vs. time t is velocity v .

(2.92)slope = Δx
Δt = v

Notice that this equation is the same as that derived algebraically from other motion equations in Motion Equations for
Constant Acceleration in One Dimension.

From the figure we can see that the car has a position of 525 m at 0.50 s and 2000 m at 6.40 s. Its position at other times can be
read from the graph; furthermore, information about its velocity and acceleration can also be obtained from the graph.

Example 2.17 Determining Average Velocity from a Graph of Position versus Time: Jet Car

Find the average velocity of the car whose position is graphed in Figure 2.47.

Strategy

The slope of a graph of x vs. t is average velocity, since slope equals rise over run. In this case, rise = change in position

and run = change in time, so that

(2.93)slope = Δx
Δt = v- .

Since the slope is constant here, any two points on the graph can be used to find the slope. (Generally speaking, it is most
accurate to use two widely separated points on the straight line. This is because any error in reading data from the graph is
proportionally smaller if the interval is larger.)

Solution

1. Choose two points on the line. In this case, we choose the points labeled on the graph: (6.4 s, 2000 m) and (0.50 s, 525
m). (Note, however, that you could choose any two points.)

2. Substitute the x and t values of the chosen points into the equation. Remember in calculating change (Δ) we always

use final value minus initial value.

(2.94)v- = Δx
Δt = 2000 m − 525 m

6.4 s − 0.50 s ,
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yielding

(2.95)v- = 250 m/s.
Discussion

This is an impressively large land speed (900 km/h, or about 560 mi/h): much greater than the typical highway speed limit of
60 mi/h (27 m/s or 96 km/h), but considerably shy of the record of 343 m/s (1234 km/h or 766 mi/h) set in 1997.

Graphs of Motion when a is constant but a ≠ 0

The graphs in Figure 2.48 below represent the motion of the jet-powered car as it accelerates toward its top speed, but only
during the time when its acceleration is constant. Time starts at zero for this motion (as if measured with a stopwatch), and the
position and velocity are initially 200 m and 15 m/s, respectively.
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Figure 2.48 Graphs of motion of a jet-powered car during the time span when its acceleration is constant. (a) The slope of an x vs. t graph is

velocity. This is shown at two points, and the instantaneous velocities obtained are plotted in the next graph. Instantaneous velocity at any point is the
slope of the tangent at that point. (b) The slope of the v vs. t graph is constant for this part of the motion, indicating constant acceleration. (c)

Acceleration has the constant value of 5.0 m/s2
over the time interval plotted.
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Figure 2.49 A U.S. Air Force jet car speeds down a track. (credit: Matt Trostle, Flickr)

The graph of position versus time in Figure 2.48(a) is a curve rather than a straight line. The slope of the curve becomes steeper
as time progresses, showing that the velocity is increasing over time. The slope at any point on a position-versus-time graph is
the instantaneous velocity at that point. It is found by drawing a straight line tangent to the curve at the point of interest and
taking the slope of this straight line. Tangent lines are shown for two points in Figure 2.48(a). If this is done at every point on the
curve and the values are plotted against time, then the graph of velocity versus time shown in Figure 2.48(b) is obtained.
Furthermore, the slope of the graph of velocity versus time is acceleration, which is shown in Figure 2.48(c).

Example 2.18 Determining Instantaneous Velocity from the Slope at a Point: Jet Car

Calculate the velocity of the jet car at a time of 25 s by finding the slope of the x vs. t graph in the graph below.

Figure 2.50 The slope of an x vs. t graph is velocity. This is shown at two points. Instantaneous velocity at any point is the slope of the tangent

at that point.

Strategy

The slope of a curve at a point is equal to the slope of a straight line tangent to the curve at that point. This principle is
illustrated in Figure 2.50, where Q is the point at t = 25 s .

Solution

1. Find the tangent line to the curve at t = 25 s .

2. Determine the endpoints of the tangent. These correspond to a position of 1300 m at time 19 s and a position of 3120 m
at time 32 s.

3. Plug these endpoints into the equation to solve for the slope, v .

(2.96)
slope = vQ =

ΔxQ
ΔtQ

= (3120 m − 1300 m)
(32 s − 19 s)

Thus,

(2.97)vQ = 1820 m
13 s = 140 m/s.

Discussion
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This is the value given in this figure’s table for v at t = 25 s . The value of 140 m/s for vQ is plotted in Figure 2.50. The

entire graph of v vs. t can be obtained in this fashion.

Carrying this one step further, we note that the slope of a velocity versus time graph is acceleration. Slope is rise divided by run;
on a v vs. t graph, rise = change in velocity Δv and run = change in time Δt .

The Slope of v vs. t

The slope of a graph of velocity v vs. time t is acceleration a .

(2.98)slope = Δv
Δt = a

Since the velocity versus time graph in Figure 2.48(b) is a straight line, its slope is the same everywhere, implying that
acceleration is constant. Acceleration versus time is graphed in Figure 2.48(c).

Additional general information can be obtained from Figure 2.50 and the expression for a straight line, y = mx + b .

In this case, the vertical axis y is V , the intercept b is v0 , the slope m is a , and the horizontal axis x is t . Substituting

these symbols yields

(2.99)v = v0 + at.

A general relationship for velocity, acceleration, and time has again been obtained from a graph. Notice that this equation was
also derived algebraically from other motion equations in Motion Equations for Constant Acceleration in One Dimension.

It is not accidental that the same equations are obtained by graphical analysis as by algebraic techniques. In fact, an important
way to discover physical relationships is to measure various physical quantities and then make graphs of one quantity against
another to see if they are correlated in any way. Correlations imply physical relationships and might be shown by smooth graphs
such as those above. From such graphs, mathematical relationships can sometimes be postulated. Further experiments are then
performed to determine the validity of the hypothesized relationships.

Graphs of Motion Where Acceleration is Not Constant

Now consider the motion of the jet car as it goes from 165 m/s to its top velocity of 250 m/s, graphed in Figure 2.51. Time again
starts at zero, and the initial position and velocity are 2900 m and 165 m/s, respectively. (These were the final position and

velocity of the car in the motion graphed in Figure 2.48.) Acceleration gradually decreases from 5.0 m/s2 to zero when the car

hits 250 m/s. The slope of the x vs. t graph increases until t = 55 s , after which time the slope is constant. Similarly, velocity

increases until 55 s and then becomes constant, since acceleration decreases to zero at 55 s and remains zero afterward.
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Figure 2.51 Graphs of motion of a jet-powered car as it reaches its top velocity. This motion begins where the motion in Figure 2.48 ends. (a) The
slope of this graph is velocity; it is plotted in the next graph. (b) The velocity gradually approaches its top value. The slope of this graph is acceleration;
it is plotted in the final graph. (c) Acceleration gradually declines to zero when velocity becomes constant.

Example 2.19 Calculating Acceleration from a Graph of Velocity versus Time

Calculate the acceleration of the jet car at a time of 25 s by finding the slope of the v vs. t graph in Figure 2.51(b).

Strategy

The slope of the curve at t = 25 s is equal to the slope of the line tangent at that point, as illustrated in Figure 2.51(b).

Solution

Determine endpoints of the tangent line from the figure, and then plug them into the equation to solve for slope, a .

(2.100)slope = Δv
Δt = (260 m/s − 210 m/s)

(51 s − 1.0 s)
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acceleration:

acceleration due to gravity:

average acceleration:

average speed:

average velocity:

deceleration:

dependent variable:

displacement:

distance:

distance traveled:

(2.101)a = 50 m/s
50 s = 1.0 m/s2.

Discussion

Note that this value for a is consistent with the value plotted in Figure 2.51(c) at t = 25 s .

A graph of position versus time can be used to generate a graph of velocity versus time, and a graph of velocity versus time can
be used to generate a graph of acceleration versus time. We do this by finding the slope of the graphs at every point. If the graph
is linear (i.e., a line with a constant slope), it is easy to find the slope at any point and you have the slope for every point.
Graphical analysis of motion can be used to describe both specific and general characteristics of kinematics. Graphs can also be
used for other topics in physics. An important aspect of exploring physical relationships is to graph them and look for underlying
relationships.

Check Your Understanding

A graph of velocity vs. time of a ship coming into a harbor is shown below. (a) Describe the motion of the ship based on the
graph. (b)What would a graph of the ship’s acceleration look like?

Figure 2.52

Solution

(a) The ship moves at constant velocity and then begins to decelerate at a constant rate. At some point, its deceleration rate
decreases. It maintains this lower deceleration rate until it stops moving.

(b) A graph of acceleration vs. time would show zero acceleration in the first leg, large and constant negative acceleration in
the second leg, and constant negative acceleration.

Figure 2.53

Glossary

the rate of change in velocity; the change in velocity over time

acceleration of an object as a result of gravity

the change in velocity divided by the time over which it changes

distance traveled divided by time during which motion occurs

displacement divided by time over which displacement occurs

acceleration in the direction opposite to velocity; acceleration that results in a decrease in velocity

the variable that is being measured; usually plotted along the y -axis

the change in position of an object

the magnitude of displacement between two positions

the total length of the path traveled between two positions
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elapsed time:

free-fall:

independent variable:

instantaneous acceleration:

instantaneous speed:

instantaneous velocity:

kinematics:

model:

position:

scalar:

slope:

time:

vector:

y-intercept:

the difference between the ending time and beginning time

the state of movement that results from gravitational force only

the variable that the dependent variable is measured with respect to; usually plotted along the x -axis

acceleration at a specific point in time

magnitude of the instantaneous velocity

velocity at a specific instant, or the average velocity over an infinitesimal time interval

the study of motion without considering its causes

simplified description that contains only those elements necessary to describe the physics of a physical situation

the location of an object at a particular time

a quantity that is described by magnitude, but not direction

the difference in y -value (the rise) divided by the difference in x -value (the run) of two points on a straight line

change, or the interval over which change occurs

a quantity that is described by both magnitude and direction

the y- value when x = 0, or when the graph crosses the y -axis

Section Summary

2.1 Displacement
• Kinematics is the study of motion without considering its causes. In this chapter, it is limited to motion along a straight line,

called one-dimensional motion.
• Displacement is the change in position of an object.
• In symbols, displacement Δx is defined to be

Δx = xf − x0,
where x0 is the initial position and xf is the final position. In this text, the Greek letter Δ (delta) always means “change

in” whatever quantity follows it. The SI unit for displacement is the meter (m). Displacement has a direction as well as a
magnitude.

• When you start a problem, assign which direction will be positive.
• Distance is the magnitude of displacement between two positions.
• Distance traveled is the total length of the path traveled between two positions.

2.2 Vectors, Scalars, and Coordinate Systems
• A vector is any quantity that has magnitude and direction.
• A scalar is any quantity that has magnitude but no direction.
• Displacement and velocity are vectors, whereas distance and speed are scalars.
• In one-dimensional motion, direction is specified by a plus or minus sign to signify left or right, up or down, and the like.

2.3 Time, Velocity, and Speed
• Time is measured in terms of change, and its SI unit is the second (s). Elapsed time for an event is

Δt = tf − t0,
where tf is the final time and t0 is the initial time. The initial time is often taken to be zero, as if measured with a

stopwatch; the elapsed time is then just t .

• Average velocity v- is defined as displacement divided by the travel time. In symbols, average velocity is

v- = Δx
Δt = xf − x0

tf − t0
.

• The SI unit for velocity is m/s.
• Velocity is a vector and thus has a direction.
• Instantaneous velocity v is the velocity at a specific instant or the average velocity for an infinitesimal interval.

• Instantaneous speed is the magnitude of the instantaneous velocity.
• Instantaneous speed is a scalar quantity, as it has no direction specified.

Chapter 2 | Kinematics 77



• Average speed is the total distance traveled divided by the elapsed time. (Average speed is not the magnitude of the
average velocity.) Speed is a scalar quantity; it has no direction associated with it.

2.4 Acceleration
• Acceleration is the rate at which velocity changes. In symbols, average acceleration a- is

a- = Δv
Δt = vf − v0

tf − t0
.

• The SI unit for acceleration is m/s2 .

• Acceleration is a vector, and thus has a both a magnitude and direction.
• Acceleration can be caused by either a change in the magnitude or the direction of the velocity.
• Instantaneous acceleration a is the acceleration at a specific instant in time.

• Deceleration is an acceleration with a direction opposite to that of the velocity.

2.5 Motion Equations for Constant Acceleration in One Dimension
• To simplify calculations we take acceleration to be constant, so that a- = a at all times.

• We also take initial time to be zero.
• Initial position and velocity are given a subscript 0; final values have no subscript. Thus,

Δt = t
Δx = x − x0
Δv = v − v0

⎫
⎭
⎬

• The following kinematic equations for motion with constant a are useful:

x = x0 + v- t

v- = v0 + v
2

v = v0 + at

x = x0 + v0t + 1
2at2

v2 = v0
2 + 2a(x − x0)

• In vertical motion, y is substituted for x .

2.6 Problem-Solving Basics for One-Dimensional Kinematics
• The six basic problem solving steps for physics are:

Step 1. Examine the situation to determine which physical principles are involved.

Step 2. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).

Step 4. Find an equation or set of equations that can help you solve the problem.

Step 5. Substitute the knowns along with their units into the appropriate equation, and obtain numerical solutions complete
with units.

Step 6. Check the answer to see if it is reasonable: Does it make sense?

2.7 Falling Objects
• An object in free-fall experiences constant acceleration if air resistance is negligible.
• On Earth, all free-falling objects have an acceleration due to gravity g , which averages

g = 9.80 m/s2.
• Whether the acceleration a should be taken as +g or −g is determined by your choice of coordinate system. If you

choose the upward direction as positive, a = −g = −9.80 m/s2 is negative. In the opposite case,

a = +g = 9.80 m/s2 is positive. Since acceleration is constant, the kinematic equations above can be applied with the

appropriate +g or −g substituted for a .

• For objects in free-fall, up is normally taken as positive for displacement, velocity, and acceleration.
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2.8 Graphical Analysis of One-Dimensional Motion
• Graphs of motion can be used to analyze motion.
• Graphical solutions yield identical solutions to mathematical methods for deriving motion equations.
• The slope of a graph of displacement x vs. time t is velocity v .

• The slope of a graph of velocity v vs. time t graph is acceleration a .

• Average velocity, instantaneous velocity, and acceleration can all be obtained by analyzing graphs.

Conceptual Questions

2.1 Displacement

1. Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of displacement.
Specifically identify each quantity in your example.

2. Under what circumstances does distance traveled equal magnitude of displacement? What is the only case in which
magnitude of displacement and displacement are exactly the same?

3. Bacteria move back and forth by using their flagella (structures that look like little tails). Speeds of up to

50 μm/s ⎛⎝50×10−6 m/s⎞⎠ have been observed. The total distance traveled by a bacterium is large for its size, while its

displacement is small. Why is this?

2.2 Vectors, Scalars, and Coordinate Systems

4. A student writes, “A bird that is diving for prey has a speed of − 10 m / s .” What is wrong with the student’s statement? What

has the student actually described? Explain.

5. What is the speed of the bird in Exercise 2.4?

6. Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.

7. A weather forecast states that the temperature is predicted to be −5ºC the following day. Is this temperature a vector or a

scalar quantity? Explain.

2.3 Time, Velocity, and Speed

8. Give an example (but not one from the text) of a device used to measure time and identify what change in that device
indicates a change in time.

9. There is a distinction between average speed and the magnitude of average velocity. Give an example that illustrates the
difference between these two quantities.

10. Does a car’s odometer measure position or displacement? Does its speedometer measure speed or velocity?

11. If you divide the total distance traveled on a car trip (as determined by the odometer) by the time for the trip, are you
calculating the average speed or the magnitude of the average velocity? Under what circumstances are these two quantities the
same?

12. How are instantaneous velocity and instantaneous speed related to one another? How do they differ?

2.4 Acceleration

13. Is it possible for speed to be constant while acceleration is not zero? Give an example of such a situation.

14. Is it possible for velocity to be constant while acceleration is not zero? Explain.

15. Give an example in which velocity is zero yet acceleration is not.

16. If a subway train is moving to the left (has a negative velocity) and then comes to a stop, what is the direction of its
acceleration? Is the acceleration positive or negative?

17. Plus and minus signs are used in one-dimensional motion to indicate direction. What is the sign of an acceleration that
reduces the magnitude of a negative velocity? Of a positive velocity?

2.6 Problem-Solving Basics for One-Dimensional Kinematics

18. What information do you need in order to choose which equation or equations to use to solve a problem? Explain.

19. What is the last thing you should do when solving a problem? Explain.

2.7 Falling Objects

20. What is the acceleration of a rock thrown straight upward on the way up? At the top of its flight? On the way down?

21. An object that is thrown straight up falls back to Earth. This is one-dimensional motion. (a) When is its velocity zero? (b) Does
its velocity change direction? (c) Does the acceleration due to gravity have the same sign on the way up as on the way down?
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22. Suppose you throw a rock nearly straight up at a coconut in a palm tree, and the rock misses on the way up but hits the
coconut on the way down. Neglecting air resistance, how does the speed of the rock when it hits the coconut on the way down
compare with what it would have been if it had hit the coconut on the way up? Is it more likely to dislodge the coconut on the way
up or down? Explain.

23. If an object is thrown straight up and air resistance is negligible, then its speed when it returns to the starting point is the
same as when it was released. If air resistance were not negligible, how would its speed upon return compare with its initial
speed? How would the maximum height to which it rises be affected?

24. The severity of a fall depends on your speed when you strike the ground. All factors but the acceleration due to gravity being
the same, how many times higher could a safe fall on the Moon be than on Earth (gravitational acceleration on the Moon is about
1/6 that of the Earth)?

25. How many times higher could an astronaut jump on the Moon than on Earth if his takeoff speed is the same in both locations
(gravitational acceleration on the Moon is about 1/6 of g on Earth)?

2.8 Graphical Analysis of One-Dimensional Motion

26. (a) Explain how you can use the graph of position versus time in Figure 2.54 to describe the change in velocity over time.
Identify (b) the time ( ta , tb , tc , td , or te ) at which the instantaneous velocity is greatest, (c) the time at which it is zero, and

(d) the time at which it is negative.

Figure 2.54

27. (a) Sketch a graph of velocity versus time corresponding to the graph of position versus time given in Figure 2.55. (b) Identify
the time or times ( ta , tb , tc , etc.) at which the instantaneous velocity is greatest. (c) At which times is it zero? (d) At which

times is it negative?

Figure 2.55
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28. (a) Explain how you can determine the acceleration over time from a velocity versus time graph such as the one in Figure
2.56. (b) Based on the graph, how does acceleration change over time?

Figure 2.56

29. (a) Sketch a graph of acceleration versus time corresponding to the graph of velocity versus time given in Figure 2.57. (b)
Identify the time or times ( ta , tb , tc , etc.) at which the acceleration is greatest. (c) At which times is it zero? (d) At which times

is it negative?

Figure 2.57

30. Consider the velocity vs. time graph of a person in an elevator shown in Figure 2.58. Suppose the elevator is initially at rest.
It then accelerates for 3 seconds, maintains that velocity for 15 seconds, then decelerates for 5 seconds until it stops. The
acceleration for the entire trip is not constant so we cannot use the equations of motion from Motion Equations for Constant
Acceleration in One Dimension for the complete trip. (We could, however, use them in the three individual sections where
acceleration is a constant.) Sketch graphs of (a) position vs. time and (b) acceleration vs. time for this trip.

Figure 2.58
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31. A cylinder is given a push and then rolls up an inclined plane. If the origin is the starting point, sketch the position, velocity,
and acceleration of the cylinder vs. time as it goes up and then down the plane.
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Problems & Exercises

2.1 Displacement

Figure 2.59

1. Find the following for path A in Figure 2.59: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

2. Find the following for path B in Figure 2.59: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

3. Find the following for path C in Figure 2.59: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

4. Find the following for path D in Figure 2.59: (a) The
distance traveled. (b) The magnitude of the displacement
from start to finish. (c) The displacement from start to finish.

2.3 Time, Velocity, and Speed

5. (a) Calculate Earth’s average speed relative to the Sun. (b)
What is its average velocity over a period of one year?

6. A helicopter blade spins at exactly 100 revolutions per
minute. Its tip is 5.00 m from the center of rotation. (a)
Calculate the average speed of the blade tip in the
helicopter’s frame of reference. (b) What is its average
velocity over one revolution?

7. The North American and European continents are moving
apart at a rate of about 3 cm/y. At this rate how long will it
take them to drift 500 km farther apart than they are at
present?

8. Land west of the San Andreas fault in southern California is
moving at an average velocity of about 6 cm/y northwest
relative to land east of the fault. Los Angeles is west of the
fault and may thus someday be at the same latitude as San
Francisco, which is east of the fault. How far in the future will
this occur if the displacement to be made is 590 km
northwest, assuming the motion remains constant?

9. On May 26, 1934, a streamlined, stainless steel diesel train
called the Zephyr set the world’s nonstop long-distance speed
record for trains. Its run from Denver to Chicago took 13
hours, 4 minutes, 58 seconds, and was witnessed by more
than a million people along the route. The total distance
traveled was 1633.8 km. What was its average speed in km/h
and m/s?

10. Tidal friction is slowing the rotation of the Earth. As a
result, the orbit of the Moon is increasing in radius at a rate of
approximately 4 cm/year. Assuming this to be a constant rate,
how many years will pass before the radius of the Moon’s

orbit increases by 3.84×106 m (1%)?

11. A student drove to the university from her home and
noted that the odometer reading of her car increased by 12.0
km. The trip took 18.0 min. (a) What was her average speed?
(b) If the straight-line distance from her home to the university
is 10.3 km in a direction 25.0º south of east, what was her

average velocity? (c) If she returned home by the same path
7 h 30 min after she left, what were her average speed and
velocity for the entire trip?

12. The speed of propagation of the action potential (an
electrical signal) in a nerve cell depends (inversely) on the
diameter of the axon (nerve fiber). If the nerve cell connecting
the spinal cord to your feet is 1.1 m long, and the nerve
impulse speed is 18 m/s, how long does it take for the nerve
signal to travel this distance?

13. Conversations with astronauts on the lunar surface were
characterized by a kind of echo in which the earthbound
person’s voice was so loud in the astronaut’s space helmet
that it was picked up by the astronaut’s microphone and
transmitted back to Earth. It is reasonable to assume that the
echo time equals the time necessary for the radio wave to
travel from the Earth to the Moon and back (that is, neglecting
any time delays in the electronic equipment). Calculate the
distance from Earth to the Moon given that the echo time was
2.56 s and that radio waves travel at the speed of light

(3.00×108 m/s) .

14. A football quarterback runs 15.0 m straight down the
playing field in 2.50 s. He is then hit and pushed 3.00 m
straight backward in 1.75 s. He breaks the tackle and runs
straight forward another 21.0 m in 5.20 s. Calculate his
average velocity (a) for each of the three intervals and (b) for
the entire motion.

15. The planetary model of the atom pictures electrons
orbiting the atomic nucleus much as planets orbit the Sun. In
this model you can view hydrogen, the simplest atom, as

having a single electron in a circular orbit 1.06×10−10 m in

diameter. (a) If the average speed of the electron in this orbit

is known to be 2.20×106 m/s , calculate the number of

revolutions per second it makes about the nucleus. (b) What
is the electron’s average velocity?

2.4 Acceleration

16. A cheetah can accelerate from rest to a speed of 30.0 m/s
in 7.00 s. What is its acceleration?

17. Professional Application

Dr. John Paul Stapp was U.S. Air Force officer who studied
the effects of extreme deceleration on the human body. On
December 10, 1954, Stapp rode a rocket sled, accelerating
from rest to a top speed of 282 m/s (1015 km/h) in 5.00 s, and
was brought jarringly back to rest in only 1.40 s! Calculate his
(a) acceleration and (b) deceleration. Express each in

multiples of g (9.80 m/s2) by taking its ratio to the

acceleration of gravity.

18. A commuter backs her car out of her garage with an

acceleration of 1.40 m/s2 . (a) How long does it take her to

reach a speed of 2.00 m/s? (b) If she then brakes to a stop in
0.800 s, what is her deceleration?
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19. Assume that an intercontinental ballistic missile goes from
rest to a suborbital speed of 6.50 km/s in 60.0 s (the actual
speed and time are classified). What is its average

acceleration in m/s2 and in multiples of g (9.80 m/s2)?

2.5 Motion Equations for Constant
Acceleration in One Dimension

20. An Olympic-class sprinter starts a race with an

acceleration of 4.50 m/s2 . (a) What is her speed 2.40 s

later? (b) Sketch a graph of her position vs. time for this
period.

21. A well-thrown ball is caught in a well-padded mitt. If the

deceleration of the ball is 2.10×104 m/s2 , and 1.85 ms

(1 ms = 10−3 s) elapses from the time the ball first

touches the mitt until it stops, what was the initial velocity of
the ball?

22. A bullet in a gun is accelerated from the firing chamber to

the end of the barrel at an average rate of 6.20×105 m/s2

for 8.10×10−4 s . What is its muzzle velocity (that is, its

final velocity)?

23. (a) A light-rail commuter train accelerates at a rate of

1.35 m/s2 . How long does it take to reach its top speed of

80.0 km/h, starting from rest? (b) The same train ordinarily

decelerates at a rate of 1.65 m/s2 . How long does it take to

come to a stop from its top speed? (c) In emergencies the
train can decelerate more rapidly, coming to rest from 80.0

km/h in 8.30 s. What is its emergency deceleration in m/s2 ?

24. While entering a freeway, a car accelerates from rest at a

rate of 2.40 m/s2 for 12.0 s. (a) Draw a sketch of the

situation. (b) List the knowns in this problem. (c) How far does
the car travel in those 12.0 s? To solve this part, first identify
the unknown, and then discuss how you chose the
appropriate equation to solve for it. After choosing the
equation, show your steps in solving for the unknown, check
your units, and discuss whether the answer is reasonable. (d)
What is the car’s final velocity? Solve for this unknown in the
same manner as in part (c), showing all steps explicitly.

25. At the end of a race, a runner decelerates from a velocity

of 9.00 m/s at a rate of 2.00 m/s2 . (a) How far does she

travel in the next 5.00 s? (b) What is her final velocity? (c)
Evaluate the result. Does it make sense?

26. Professional Application:

Blood is accelerated from rest to 30.0 cm/s in a distance of
1.80 cm by the left ventricle of the heart. (a) Make a sketch of
the situation. (b) List the knowns in this problem. (c) How long
does the acceleration take? To solve this part, first identify the
unknown, and then discuss how you chose the appropriate
equation to solve for it. After choosing the equation, show
your steps in solving for the unknown, checking your units. (d)
Is the answer reasonable when compared with the time for a
heartbeat?

27. In a slap shot, a hockey player accelerates the puck from
a velocity of 8.00 m/s to 40.0 m/s in the same direction. If this

shot takes 3.33×10−2 s , calculate the distance over which

the puck accelerates.

28. A powerful motorcycle can accelerate from rest to 26.8 m/
s (100 km/h) in only 3.90 s. (a) What is its average
acceleration? (b) How far does it travel in that time?

29. Freight trains can produce only relatively small
accelerations and decelerations. (a) What is the final velocity

of a freight train that accelerates at a rate of 0.0500 m/s2

for 8.00 min, starting with an initial velocity of 4.00 m/s? (b) If

the train can slow down at a rate of 0.550 m/s2 , how long

will it take to come to a stop from this velocity? (c) How far will
it travel in each case?

30. A fireworks shell is accelerated from rest to a velocity of
65.0 m/s over a distance of 0.250 m. (a) How long did the
acceleration last? (b) Calculate the acceleration.

31. A swan on a lake gets airborne by flapping its wings and
running on top of the water. (a) If the swan must reach a
velocity of 6.00 m/s to take off and it accelerates from rest at

an average rate of 0.350 m/s2 , how far will it travel before

becoming airborne? (b) How long does this take?

32. Professional Application:

A woodpecker’s brain is specially protected from large
decelerations by tendon-like attachments inside the skull.
While pecking on a tree, the woodpecker’s head comes to a
stop from an initial velocity of 0.600 m/s in a distance of only

2.00 mm. (a) Find the acceleration in m/s2 and in multiples

of g ⎛⎝g = 9.80 m/s2⎞⎠ . (b) Calculate the stopping time. (c)

The tendons cradling the brain stretch, making its stopping
distance 4.50 mm (greater than the head and, hence, less
deceleration of the brain). What is the brain’s deceleration,
expressed in multiples of g ?

33. An unwary football player collides with a padded goalpost
while running at a velocity of 7.50 m/s and comes to a full
stop after compressing the padding and his body 0.350 m. (a)
What is his deceleration? (b) How long does the collision
last?

34. In World War II, there were several reported cases of
airmen who jumped from their flaming airplanes with no
parachute to escape certain death. Some fell about 20,000
feet (6000 m), and some of them survived, with few life-
threatening injuries. For these lucky pilots, the tree branches
and snow drifts on the ground allowed their deceleration to be
relatively small. If we assume that a pilot’s speed upon impact
was 123 mph (54 m/s), then what was his deceleration?
Assume that the trees and snow stopped him over a distance
of 3.0 m.

35. Consider a grey squirrel falling out of a tree to the ground.
(a) If we ignore air resistance in this case (only for the sake of
this problem), determine a squirrel’s velocity just before hitting
the ground, assuming it fell from a height of 3.0 m. (b) If the
squirrel stops in a distance of 2.0 cm through bending its
limbs, compare its deceleration with that of the airman in the
previous problem.

36. An express train passes through a station. It enters with
an initial velocity of 22.0 m/s and decelerates at a rate of

0.150 m/s2 as it goes through. The station is 210 m long.

(a) How long is the nose of the train in the station? (b) How
fast is it going when the nose leaves the station? (c) If the
train is 130 m long, when does the end of the train leave the
station? (d) What is the velocity of the end of the train as it
leaves?
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37. Dragsters can actually reach a top speed of 145 m/s in
only 4.45 s—considerably less time than given in Example
2.10 and Example 2.11. (a) Calculate the average
acceleration for such a dragster. (b) Find the final velocity of
this dragster starting from rest and accelerating at the rate
found in (a) for 402 m (a quarter mile) without using any
information on time. (c) Why is the final velocity greater than
that used to find the average acceleration? Hint: Consider
whether the assumption of constant acceleration is valid for a
dragster. If not, discuss whether the acceleration would be
greater at the beginning or end of the run and what effect that
would have on the final velocity.

38. A bicycle racer sprints at the end of a race to clinch a
victory. The racer has an initial velocity of 11.5 m/s and

accelerates at the rate of 0.500 m/s2 for 7.00 s. (a) What is

his final velocity? (b) The racer continues at this velocity to
the finish line. If he was 300 m from the finish line when he
started to accelerate, how much time did he save? (c) One
other racer was 5.00 m ahead when the winner started to
accelerate, but he was unable to accelerate, and traveled at
11.8 m/s until the finish line. How far ahead of him (in meters
and in seconds) did the winner finish?

39. In 1967, New Zealander Burt Munro set the world record
for an Indian motorcycle, on the Bonneville Salt Flats in Utah,
with a maximum speed of 183.58 mi/h. The one-way course
was 5.00 mi long. Acceleration rates are often described by
the time it takes to reach 60.0 mi/h from rest. If this time was
4.00 s, and Burt accelerated at this rate until he reached his
maximum speed, how long did it take Burt to complete the
course?

40. (a) A world record was set for the men’s 100-m dash in
the 2008 Olympic Games in Beijing by Usain Bolt of Jamaica.
Bolt “coasted” across the finish line with a time of 9.69 s. If we
assume that Bolt accelerated for 3.00 s to reach his maximum
speed, and maintained that speed for the rest of the race,
calculate his maximum speed and his acceleration. (b) During
the same Olympics, Bolt also set the world record in the
200-m dash with a time of 19.30 s. Using the same
assumptions as for the 100-m dash, what was his maximum
speed for this race?

2.7 Falling Objects

Assume air resistance is negligible unless otherwise stated.

41. Calculate the displacement and velocity at times of (a)
0.500, (b) 1.00, (c) 1.50, and (d) 2.00 s for a ball thrown
straight up with an initial velocity of 15.0 m/s. Take the point of
release to be y0 = 0 .

42. Calculate the displacement and velocity at times of (a)
0.500, (b) 1.00, (c) 1.50, (d) 2.00, and (e) 2.50 s for a rock
thrown straight down with an initial velocity of 14.0 m/s from
the Verrazano Narrows Bridge in New York City. The roadway
of this bridge is 70.0 m above the water.

43. A basketball referee tosses the ball straight up for the
starting tip-off. At what velocity must a basketball player leave
the ground to rise 1.25 m above the floor in an attempt to get
the ball?

44. A rescue helicopter is hovering over a person whose boat
has sunk. One of the rescuers throws a life preserver straight
down to the victim with an initial velocity of 1.40 m/s and
observes that it takes 1.8 s to reach the water. (a) List the
knowns in this problem. (b) How high above the water was
the preserver released? Note that the downdraft of the
helicopter reduces the effects of air resistance on the falling
life preserver, so that an acceleration equal to that of gravity
is reasonable.

45. A dolphin in an aquatic show jumps straight up out of the
water at a velocity of 13.0 m/s. (a) List the knowns in this
problem. (b) How high does his body rise above the water?
To solve this part, first note that the final velocity is now a
known and identify its value. Then identify the unknown, and
discuss how you chose the appropriate equation to solve for
it. After choosing the equation, show your steps in solving for
the unknown, checking units, and discuss whether the answer
is reasonable. (c) How long is the dolphin in the air? Neglect
any effects due to his size or orientation.

46. A swimmer bounces straight up from a diving board and
falls feet first into a pool. She starts with a velocity of 4.00 m/
s, and her takeoff point is 1.80 m above the pool. (a) How
long are her feet in the air? (b) What is her highest point
above the board? (c) What is her velocity when her feet hit
the water?

47. (a) Calculate the height of a cliff if it takes 2.35 s for a rock
to hit the ground when it is thrown straight up from the cliff
with an initial velocity of 8.00 m/s. (b) How long would it take
to reach the ground if it is thrown straight down with the same
speed?

48. A very strong, but inept, shot putter puts the shot straight
up vertically with an initial velocity of 11.0 m/s. How long does
he have to get out of the way if the shot was released at a
height of 2.20 m, and he is 1.80 m tall?

49. You throw a ball straight up with an initial velocity of 15.0
m/s. It passes a tree branch on the way up at a height of 7.00
m. How much additional time will pass before the ball passes
the tree branch on the way back down?

50. A kangaroo can jump over an object 2.50 m high. (a)
Calculate its vertical speed when it leaves the ground. (b)
How long is it in the air?

51. Standing at the base of one of the cliffs of Mt. Arapiles in
Victoria, Australia, a hiker hears a rock break loose from a
height of 105 m. He can’t see the rock right away but then
does, 1.50 s later. (a) How far above the hiker is the rock
when he can see it? (b) How much time does he have to
move before the rock hits his head?

52. An object is dropped from a height of 75.0 m above
ground level. (a) Determine the distance traveled during the
first second. (b) Determine the final velocity at which the
object hits the ground. (c) Determine the distance traveled
during the last second of motion before hitting the ground.

53. There is a 250-m-high cliff at Half Dome in Yosemite
National Park in California. Suppose a boulder breaks loose
from the top of this cliff. (a) How fast will it be going when it
strikes the ground? (b) Assuming a reaction time of 0.300 s,
how long will a tourist at the bottom have to get out of the way
after hearing the sound of the rock breaking loose (neglecting
the height of the tourist, which would become negligible
anyway if hit)? The speed of sound is 335 m/s on this day.
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54. A ball is thrown straight up. It passes a 2.00-m-high
window 7.50 m off the ground on its path up and takes 0.312
s to go past the window. What was the ball’s initial velocity?
Hint: First consider only the distance along the window, and
solve for the ball's velocity at the bottom of the window. Next,
consider only the distance from the ground to the bottom of
the window, and solve for the initial velocity using the velocity
at the bottom of the window as the final velocity.

55. Suppose you drop a rock into a dark well and, using
precision equipment, you measure the time for the sound of a
splash to return. (a) Neglecting the time required for sound to
travel up the well, calculate the distance to the water if the
sound returns in 2.0000 s. (b) Now calculate the distance
taking into account the time for sound to travel up the well.
The speed of sound is 332.00 m/s in this well.

56. A steel ball is dropped onto a hard floor from a height of
1.50 m and rebounds to a height of 1.45 m. (a) Calculate its
velocity just before it strikes the floor. (b) Calculate its velocity
just after it leaves the floor on its way back up. (c) Calculate
its acceleration during contact with the floor if that contact

lasts 0.0800 ms (8.00×10−5 s) . (d) How much did the ball

compress during its collision with the floor, assuming the floor
is absolutely rigid?

57. A coin is dropped from a hot-air balloon that is 300 m
above the ground and rising at 10.0 m/s upward. For the coin,
find (a) the maximum height reached, (b) its position and
velocity 4.00 s after being released, and (c) the time before it
hits the ground.

58. A soft tennis ball is dropped onto a hard floor from a
height of 1.50 m and rebounds to a height of 1.10 m. (a)
Calculate its velocity just before it strikes the floor. (b)
Calculate its velocity just after it leaves the floor on its way
back up. (c) Calculate its acceleration during contact with the

floor if that contact lasts 3.50 ms (3.50×10−3 s) . (d) How

much did the ball compress during its collision with the floor,
assuming the floor is absolutely rigid?

2.8 Graphical Analysis of One-Dimensional
Motion

Note: There is always uncertainty in numbers taken from
graphs. If your answers differ from expected values, examine
them to see if they are within data extraction uncertainties
estimated by you.

59. (a) By taking the slope of the curve in Figure 2.60, verify
that the velocity of the jet car is 115 m/s at t = 20 s . (b) By

taking the slope of the curve at any point in Figure 2.61,

verify that the jet car’s acceleration is 5.0 m/s2 .

Figure 2.60

Figure 2.61

60. Using approximate values, calculate the slope of the
curve in Figure 2.62 to verify that the velocity at t = 10.0 s
is 0.208 m/s. Assume all values are known to 3 significant
figures.

Figure 2.62

61. Using approximate values, calculate the slope of the
curve in Figure 2.62 to verify that the velocity at t = 30.0 s
is approximately 0.24 m/s.
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62. By taking the slope of the curve in Figure 2.63, verify that

the acceleration is 3.2 m/s2 at t = 10 s .

Figure 2.63

63. Construct the position graph for the subway shuttle train
as shown in Figure 2.18(a). Your graph should show the
position of the train, in kilometers, from t = 0 to 20 s. You will
need to use the information on acceleration and velocity given
in the examples for this figure.

64. (a) Take the slope of the curve in Figure 2.64 to find the
jogger’s velocity at t = 2.5 s . (b) Repeat at 7.5 s. These

values must be consistent with the graph in Figure 2.65.

Figure 2.64

Figure 2.65

Figure 2.66
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65. A graph of v(t) is shown for a world-class track sprinter

in a 100-m race. (See Figure 2.67). (a) What is his average
velocity for the first 4 s? (b) What is his instantaneous velocity
at t = 5 s ? (c) What is his average acceleration between 0

and 4 s? (d) What is his time for the race?

Figure 2.67

66. Figure 2.68 shows the position graph for a particle for 5 s.
Draw the corresponding velocity and acceleration graphs.

Figure 2.68
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3 TWO-DIMENSIONAL KINEMATICS

Figure 3.1 Everyday motion that we experience is, thankfully, rarely as tortuous as a rollercoaster ride like this—the Dragon Khan in Spain’s Universal
Port Aventura Amusement Park. However, most motion is in curved, rather than straight-line, paths. Motion along a curved path is two- or three-
dimensional motion, and can be described in a similar fashion to one-dimensional motion. (credit: Boris23/Wikimedia Commons)

Chapter Outline
3.1. Kinematics in Two Dimensions: An Introduction

• Observe that motion in two dimensions consists of horizontal and vertical components.
• Understand the independence of horizontal and vertical vectors in two-dimensional motion.

3.2. Vector Addition and Subtraction: Graphical Methods
• Understand the rules of vector addition, subtraction, and multiplication.
• Apply graphical methods of vector addition and subtraction to determine the displacement of moving objects.

3.3. Vector Addition and Subtraction: Analytical Methods
• Understand the rules of vector addition and subtraction using analytical methods.
• Apply analytical methods to determine vertical and horizontal component vectors.
• Apply analytical methods to determine the magnitude and direction of a resultant vector.

3.4. Projectile Motion
• Identify and explain the properties of a projectile, such as acceleration due to gravity, range, maximum height, and

trajectory.
• Determine the location and velocity of a projectile at different points in its trajectory.
• Apply the principle of independence of motion to solve projectile motion problems.

3.5. Addition of Velocities
• Apply principles of vector addition to determine relative velocity.
• Explain the significance of the observer in the measurement of velocity.
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Introduction to Two-Dimensional Kinematics

The arc of a basketball, the orbit of a satellite, a bicycle rounding a curve, a swimmer diving into a pool, blood gushing out of a
wound, and a puppy chasing its tail are but a few examples of motions along curved paths. In fact, most motions in nature follow
curved paths rather than straight lines. Motion along a curved path on a flat surface or a plane (such as that of a ball on a pool
table or a skater on an ice rink) is two-dimensional, and thus described by two-dimensional kinematics. Motion not confined to a
plane, such as a car following a winding mountain road, is described by three-dimensional kinematics. Both two- and three-
dimensional kinematics are simple extensions of the one-dimensional kinematics developed for straight-line motion in the
previous chapter. This simple extension will allow us to apply physics to many more situations, and it will also yield unexpected
insights about nature.

3.1 Kinematics in Two Dimensions: An Introduction

Figure 3.2 Walkers and drivers in a city like New York are rarely able to travel in straight lines to reach their destinations. Instead, they must follow
roads and sidewalks, making two-dimensional, zigzagged paths. (credit: Margaret W. Carruthers)

Two-Dimensional Motion: Walking in a City

Suppose you want to walk from one point to another in a city with uniform square blocks, as pictured in Figure 3.3.

Figure 3.3 A pedestrian walks a two-dimensional path between two points in a city. In this scene, all blocks are square and are the same size.

The straight-line path that a helicopter might fly is blocked to you as a pedestrian, and so you are forced to take a two-
dimensional path, such as the one shown. You walk 14 blocks in all, 9 east followed by 5 north. What is the straight-line
distance?

An old adage states that the shortest distance between two points is a straight line. The two legs of the trip and the straight-line

path form a right triangle, and so the Pythagorean theorem, a2  + b2  = c2 , can be used to find the straight-line distance.
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Figure 3.4 The Pythagorean theorem relates the length of the legs of a right triangle, labeled a and b , with the hypotenuse, labeled c . The

relationship is given by: a2 + b2 = c2
. This can be rewritten, solving for c : c = a2 + b2

.

The hypotenuse of the triangle is the straight-line path, and so in this case its length in units of city blocks is

(9 blocks)2+ (5 blocks)2= 10.3 blocks , considerably shorter than the 14 blocks you walked. (Note that we are using three

significant figures in the answer. Although it appears that “9” and “5” have only one significant digit, they are discrete numbers. In
this case “9 blocks” is the same as “9.0 or 9.00 blocks.” We have decided to use three significant figures in the answer in order to
show the result more precisely.)

Figure 3.5 The straight-line path followed by a helicopter between the two points is shorter than the 14 blocks walked by the pedestrian. All blocks are
square and the same size.

The fact that the straight-line distance (10.3 blocks) in Figure 3.5 is less than the total distance walked (14 blocks) is one
example of a general characteristic of vectors. (Recall that vectors are quantities that have both magnitude and direction.)

As for one-dimensional kinematics, we use arrows to represent vectors. The length of the arrow is proportional to the vector’s
magnitude. The arrow’s length is indicated by hash marks in Figure 3.3 and Figure 3.5. The arrow points in the same direction
as the vector. For two-dimensional motion, the path of an object can be represented with three vectors: one vector shows the
straight-line path between the initial and final points of the motion, one vector shows the horizontal component of the motion, and
one vector shows the vertical component of the motion. The horizontal and vertical components of the motion add together to
give the straight-line path. For example, observe the three vectors in Figure 3.5. The first represents a 9-block displacement
east. The second represents a 5-block displacement north. These vectors are added to give the third vector, with a 10.3-block
total displacement. The third vector is the straight-line path between the two points. Note that in this example, the vectors that we
are adding are perpendicular to each other and thus form a right triangle. This means that we can use the Pythagorean theorem
to calculate the magnitude of the total displacement. (Note that we cannot use the Pythagorean theorem to add vectors that are
not perpendicular. We will develop techniques for adding vectors having any direction, not just those perpendicular to one
another, in Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical
Methods.)

The Independence of Perpendicular Motions

The person taking the path shown in Figure 3.5 walks east and then north (two perpendicular directions). How far he or she
walks east is only affected by his or her motion eastward. Similarly, how far he or she walks north is only affected by his or her
motion northward.

Independence of Motion

The horizontal and vertical components of two-dimensional motion are independent of each other. Any motion in the
horizontal direction does not affect motion in the vertical direction, and vice versa.

This is true in a simple scenario like that of walking in one direction first, followed by another. It is also true of more complicated
motion involving movement in two directions at once. For example, let’s compare the motions of two baseballs. One baseball is
dropped from rest. At the same instant, another is thrown horizontally from the same height and follows a curved path. A
stroboscope has captured the positions of the balls at fixed time intervals as they fall.
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Figure 3.6 This shows the motions of two identical balls—one falls from rest, the other has an initial horizontal velocity. Each subsequent position is an
equal time interval. Arrows represent horizontal and vertical velocities at each position. The ball on the right has an initial horizontal velocity, while the
ball on the left has no horizontal velocity. Despite the difference in horizontal velocities, the vertical velocities and positions are identical for both balls.
This shows that the vertical and horizontal motions are independent.

It is remarkable that for each flash of the strobe, the vertical positions of the two balls are the same. This similarity implies that
the vertical motion is independent of whether or not the ball is moving horizontally. (Assuming no air resistance, the vertical
motion of a falling object is influenced by gravity only, and not by any horizontal forces.) Careful examination of the ball thrown
horizontally shows that it travels the same horizontal distance between flashes. This is due to the fact that there are no additional
forces on the ball in the horizontal direction after it is thrown. This result means that the horizontal velocity is constant, and
affected neither by vertical motion nor by gravity (which is vertical). Note that this case is true only for ideal conditions. In the real
world, air resistance will affect the speed of the balls in both directions.

The two-dimensional curved path of the horizontally thrown ball is composed of two independent one-dimensional motions
(horizontal and vertical). The key to analyzing such motion, called projectile motion, is to resolve (break) it into motions along
perpendicular directions. Resolving two-dimensional motion into perpendicular components is possible because the components
are independent. We shall see how to resolve vectors in Vector Addition and Subtraction: Graphical Methods and Vector
Addition and Subtraction: Analytical Methods. We will find such techniques to be useful in many areas of physics.

PhET Explorations: Ladybug Motion 2D

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration,
and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze
the behavior.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42104/1.8/#Phet_module_3.1)
Figure 3.7
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3.2 Vector Addition and Subtraction: Graphical Methods

Figure 3.8 Displacement can be determined graphically using a scale map, such as this one of the Hawaiian Islands. A journey from Hawai’i to
Moloka’i has a number of legs, or journey segments. These segments can be added graphically with a ruler to determine the total two-dimensional
displacement of the journey. (credit: US Geological Survey)

Vectors in Two Dimensions

A vector is a quantity that has magnitude and direction. Displacement, velocity, acceleration, and force, for example, are all
vectors. In one-dimensional, or straight-line, motion, the direction of a vector can be given simply by a plus or minus sign. In two
dimensions (2-d), however, we specify the direction of a vector relative to some reference frame (i.e., coordinate system), using
an arrow having length proportional to the vector’s magnitude and pointing in the direction of the vector.

Figure 3.9 shows such a graphical representation of a vector, using as an example the total displacement for the person walking
in a city considered in Kinematics in Two Dimensions: An Introduction. We shall use the notation that a boldface symbol,
such as D , stands for a vector. Its magnitude is represented by the symbol in italics, D , and its direction by θ .

Vectors in this Text

In this text, we will represent a vector with a boldface variable. For example, we will represent the quantity force with the
vector F , which has both magnitude and direction. The magnitude of the vector will be represented by a variable in italics,

such as F , and the direction of the variable will be given by an angle θ .

Figure 3.9 A person walks 9 blocks east and 5 blocks north. The displacement is 10.3 blocks at an angle 29.1º north of east.
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Figure 3.10 To describe the resultant vector for the person walking in a city considered in Figure 3.9 graphically, draw an arrow to represent the total

displacement vector D . Using a protractor, draw a line at an angle θ relative to the east-west axis. The length D of the arrow is proportional to the

vector’s magnitude and is measured along the line with a ruler. In this example, the magnitude D of the vector is 10.3 units, and the direction θ is

29.1º north of east.

Vector Addition: Head-to-Tail Method

The head-to-tail method is a graphical way to add vectors, described in Figure 3.11 below and in the steps following. The tail
of the vector is the starting point of the vector, and the head (or tip) of a vector is the final, pointed end of the arrow.

Figure 3.11 Head-to-Tail Method: The head-to-tail method of graphically adding vectors is illustrated for the two displacements of the person walking
in a city considered in Figure 3.9. (a) Draw a vector representing the displacement to the east. (b) Draw a vector representing the displacement to the
north. The tail of this vector should originate from the head of the first, east-pointing vector. (c) Draw a line from the tail of the east-pointing vector to the

head of the north-pointing vector to form the sum or resultant vector D . The length of the arrow D is proportional to the vector’s magnitude and is

measured to be 10.3 units . Its direction, described as the angle with respect to the east (or horizontal axis) θ is measured with a protractor to be

29.1º .

Step 1. Draw an arrow to represent the first vector (9 blocks to the east) using a ruler and protractor.
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Figure 3.12

Step 2. Now draw an arrow to represent the second vector (5 blocks to the north). Place the tail of the second vector at the head
of the first vector.

Figure 3.13

Step 3. If there are more than two vectors, continue this process for each vector to be added. Note that in our example, we have
only two vectors, so we have finished placing arrows tip to tail.

Step 4. Draw an arrow from the tail of the first vector to the head of the last vector. This is the resultant, or the sum, of the other
vectors.

Figure 3.14

Step 5. To get the magnitude of the resultant, measure its length with a ruler. (Note that in most calculations, we will use the
Pythagorean theorem to determine this length.)

Step 6. To get the direction of the resultant, measure the angle it makes with the reference frame using a protractor. (Note that
in most calculations, we will use trigonometric relationships to determine this angle.)

The graphical addition of vectors is limited in accuracy only by the precision with which the drawings can be made and the
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precision of the measuring tools. It is valid for any number of vectors.

Example 3.1 Adding Vectors Graphically Using the Head-to-Tail Method: A Woman Takes a
Walk

Use the graphical technique for adding vectors to find the total displacement of a person who walks the following three paths
(displacements) on a flat field. First, she walks 25.0 m in a direction 49.0º north of east. Then, she walks 23.0 m heading

15.0º north of east. Finally, she turns and walks 32.0 m in a direction 68.0° south of east.

Strategy

Represent each displacement vector graphically with an arrow, labeling the first A , the second B , and the third C ,

making the lengths proportional to the distance and the directions as specified relative to an east-west line. The head-to-tail
method outlined above will give a way to determine the magnitude and direction of the resultant displacement, denoted R .

Solution

(1) Draw the three displacement vectors.

Figure 3.15

(2) Place the vectors head to tail retaining both their initial magnitude and direction.

Figure 3.16

(3) Draw the resultant vector, R .

Figure 3.17

(4) Use a ruler to measure the magnitude of R , and a protractor to measure the direction of R . While the direction of the

vector can be specified in many ways, the easiest way is to measure the angle between the vector and the nearest
horizontal or vertical axis. Since the resultant vector is south of the eastward pointing axis, we flip the protractor upside down
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and measure the angle between the eastward axis and the vector.

Figure 3.18

In this case, the total displacement R is seen to have a magnitude of 50.0 m and to lie in a direction 7.0º south of east. By

using its magnitude and direction, this vector can be expressed as R = 50.0 m and θ = 7.0º south of east.

Discussion

The head-to-tail graphical method of vector addition works for any number of vectors. It is also important to note that the
resultant is independent of the order in which the vectors are added. Therefore, we could add the vectors in any order as
illustrated in Figure 3.19 and we will still get the same solution.

Figure 3.19

Here, we see that when the same vectors are added in a different order, the result is the same. This characteristic is true in
every case and is an important characteristic of vectors. Vector addition is commutative. Vectors can be added in any order.

(3.1)A + B = B + A.

(This is true for the addition of ordinary numbers as well—you get the same result whether you add 2 + 3 or 3 + 2 , for

example).

Vector Subtraction

Vector subtraction is a straightforward extension of vector addition. To define subtraction (say we want to subtract B from A ,

written A – B , we must first define what we mean by subtraction. The negative of a vector B is defined to be –B ; that is,

graphically the negative of any vector has the same magnitude but the opposite direction, as shown in Figure 3.20. In other
words, B has the same length as –B , but points in the opposite direction. Essentially, we just flip the vector so it points in the

opposite direction.
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Figure 3.20 The negative of a vector is just another vector of the same magnitude but pointing in the opposite direction. So B is the negative of –B ;

it has the same length but opposite direction.

The subtraction of vector B from vector A is then simply defined to be the addition of –B to A . Note that vector subtraction

is the addition of a negative vector. The order of subtraction does not affect the results.

(3.2)A – B = A + (–B).

This is analogous to the subtraction of scalars (where, for example, 5 – 2 = 5 + (–2) ). Again, the result is independent of the

order in which the subtraction is made. When vectors are subtracted graphically, the techniques outlined above are used, as the
following example illustrates.

Example 3.2 Subtracting Vectors Graphically: A Woman Sailing a Boat

A woman sailing a boat at night is following directions to a dock. The instructions read to first sail 27.5 m in a direction
66.0º north of east from her current location, and then travel 30.0 m in a direction 112º north of east (or 22.0º west of

north). If the woman makes a mistake and travels in the opposite direction for the second leg of the trip, where will she end
up? Compare this location with the location of the dock.

Figure 3.21

Strategy

We can represent the first leg of the trip with a vector A , and the second leg of the trip with a vector B . The dock is

located at a location A + B . If the woman mistakenly travels in the opposite direction for the second leg of the journey, she

will travel a distance B (30.0 m) in the direction 180º – 112º = 68º south of east. We represent this as –B , as shown

below. The vector –B has the same magnitude as B but is in the opposite direction. Thus, she will end up at a location

A + (–B) , or A – B .
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Figure 3.22

We will perform vector addition to compare the location of the dock, A + B , with the location at which the woman

mistakenly arrives, A + (–B) .

Solution

(1) To determine the location at which the woman arrives by accident, draw vectors A and –B .

(2) Place the vectors head to tail.

(3) Draw the resultant vector R .

(4) Use a ruler and protractor to measure the magnitude and direction of R .

Figure 3.23

In this case, R = 23.0 m and θ = 7.5º south of east.

(5) To determine the location of the dock, we repeat this method to add vectors A and B . We obtain the resultant vector

R ' :

Figure 3.24

In this case R = 52.9 m and θ = 90.1º north of east.

We can see that the woman will end up a significant distance from the dock if she travels in the opposite direction for the
second leg of the trip.
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Discussion

Because subtraction of a vector is the same as addition of a vector with the opposite direction, the graphical method of
subtracting vectors works the same as for addition.

Multiplication of Vectors and Scalars

If we decided to walk three times as far on the first leg of the trip considered in the preceding example, then we would walk
3 × 27.5 m , or 82.5 m, in a direction 66.0º north of east. This is an example of multiplying a vector by a positive scalar.

Notice that the magnitude changes, but the direction stays the same.

If the scalar is negative, then multiplying a vector by it changes the vector’s magnitude and gives the new vector the opposite
direction. For example, if you multiply by –2, the magnitude doubles but the direction changes. We can summarize these rules in
the following way: When vector A is multiplied by a scalar c ,

• the magnitude of the vector becomes the absolute value of c A ,

• if c is positive, the direction of the vector does not change,

• if c is negative, the direction is reversed.

In our case, c = 3 and A = 27.5 m . Vectors are multiplied by scalars in many situations. Note that division is the inverse of

multiplication. For example, dividing by 2 is the same as multiplying by the value (1/2). The rules for multiplication of vectors by
scalars are the same for division; simply treat the divisor as a scalar between 0 and 1.

Resolving a Vector into Components

In the examples above, we have been adding vectors to determine the resultant vector. In many cases, however, we will need to
do the opposite. We will need to take a single vector and find what other vectors added together produce it. In most cases, this
involves determining the perpendicular components of a single vector, for example the x- and y-components, or the north-south
and east-west components.

For example, we may know that the total displacement of a person walking in a city is 10.3 blocks in a direction 29.0º north of

east and want to find out how many blocks east and north had to be walked. This method is called finding the components (or
parts) of the displacement in the east and north directions, and it is the inverse of the process followed to find the total
displacement. It is one example of finding the components of a vector. There are many applications in physics where this is a
useful thing to do. We will see this soon in Projectile Motion, and much more when we cover forces in Dynamics: Newton’s
Laws of Motion. Most of these involve finding components along perpendicular axes (such as north and east), so that right
triangles are involved. The analytical techniques presented in Vector Addition and Subtraction: Analytical Methods are ideal
for finding vector components.

PhET Explorations: Maze Game

Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add more walls
to the arena to make the game more difficult. Try to make a goal as fast as you can.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42127/
1.11/#Phet_module_3.2)

Figure 3.25

3.3 Vector Addition and Subtraction: Analytical Methods

Analytical methods of vector addition and subtraction employ geometry and simple trigonometry rather than the ruler and
protractor of graphical methods. Part of the graphical technique is retained, because vectors are still represented by arrows for
easy visualization. However, analytical methods are more concise, accurate, and precise than graphical methods, which are
limited by the accuracy with which a drawing can be made. Analytical methods are limited only by the accuracy and precision
with which physical quantities are known.

Resolving a Vector into Perpendicular Components

Analytical techniques and right triangles go hand-in-hand in physics because (among other things) motions along perpendicular
directions are independent. We very often need to separate a vector into perpendicular components. For example, given a vector
like A in Figure 3.26, we may wish to find which two perpendicular vectors, Ax and Ay , add to produce it.
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Figure 3.26 The vector A , with its tail at the origin of an x, y-coordinate system, is shown together with its x- and y-components, Ax and Ay .

These vectors form a right triangle. The analytical relationships among these vectors are summarized below.

Ax and Ay are defined to be the components of A along the x- and y-axes. The three vectors A , Ax , and Ay form a right

triangle:

(3.3)Ax  + Ay = A.

Note that this relationship between vector components and the resultant vector holds only for vector quantities (which include
both magnitude and direction). The relationship does not apply for the magnitudes alone. For example, if Ax = 3 m east,

Ay = 4 m north, and A = 5 m north-east, then it is true that the vectors Ax  + Ay = A . However, it is not true that the sum

of the magnitudes of the vectors is also equal. That is,

(3.4)3 m + 4 m ≠  5 m

Thus,

(3.5)Ax + Ay ≠ A

If the vector A is known, then its magnitude A (its length) and its angle θ (its direction) are known. To find Ax and Ay , its x-

and y-components, we use the following relationships for a right triangle.

(3.6)Ax = A cos θ

and

(3.7)Ay = A sin θ.

Figure 3.27 The magnitudes of the vector components Ax and Ay can be related to the resultant vector A and the angle θ with trigonometric

identities. Here we see that Ax = A cos θ and Ay = A sin θ .

Suppose, for example, that A is the vector representing the total displacement of the person walking in a city considered in

Kinematics in Two Dimensions: An Introduction and Vector Addition and Subtraction: Graphical Methods.
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Figure 3.28 We can use the relationships Ax = A cos θ and Ay = A sin θ to determine the magnitude of the horizontal and vertical

component vectors in this example.

Then A = 10.3 blocks and θ = 29.1º , so that

(3.8)Ax = A cos θ = ⎛
⎝10.3 blocks⎞⎠⎛⎝cos 29.1º⎞⎠ = 9.0 blocks

(3.9)Ay = A sin θ = ⎛⎝10.3 blocks⎞⎠⎛⎝sin 29.1º⎞⎠ = 5.0 blocks.

Calculating a Resultant Vector

If the perpendicular components Ax and Ay of a vector A are known, then A can also be found analytically. To find the

magnitude A and direction θ of a vector from its perpendicular components Ax and Ay , we use the following relationships:

(3.10)A = Ax2 + Ay2

(3.11)θ = tan−1(Ay / Ax).

Figure 3.29 The magnitude and direction of the resultant vector can be determined once the horizontal and vertical components Ax and Ay have

been determined.

Note that the equation A = Ax
2 + Ay

2 is just the Pythagorean theorem relating the legs of a right triangle to the length of the

hypotenuse. For example, if Ax and Ay are 9 and 5 blocks, respectively, then A = 92 +52=10.3 blocks, again consistent

with the example of the person walking in a city. Finally, the direction is θ = tan–1(5/9)=29.1º , as before.

Determining Vectors and Vector Components with Analytical Methods

Equations Ax = A cos θ and Ay = A sin θ are used to find the perpendicular components of a vector—that is, to go

from A and θ to Ax and Ay . Equations A = Ax
2 + Ay

2 and θ = tan–1(Ay / Ax) are used to find a vector from its

perpendicular components—that is, to go from Ax and Ay to A and θ . Both processes are crucial to analytical methods

of vector addition and subtraction.
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Adding Vectors Using Analytical Methods

To see how to add vectors using perpendicular components, consider Figure 3.30, in which the vectors A and B are added to

produce the resultant R .

Figure 3.30 Vectors A and B are two legs of a walk, and R is the resultant or total displacement. You can use analytical methods to determine

the magnitude and direction of R .

If A and B represent two legs of a walk (two displacements), then R is the total displacement. The person taking the walk

ends up at the tip of R. There are many ways to arrive at the same point. In particular, the person could have walked first in the

x-direction and then in the y-direction. Those paths are the x- and y-components of the resultant, Rx and Ry . If we know Rx

and Ry , we can find R and θ using the equations A = Ax
2 + Ay

2 and θ = tan–1(Ay / Ax) . When you use the analytical

method of vector addition, you can determine the components or the magnitude and direction of a vector.

Step 1. Identify the x- and y-axes that will be used in the problem. Then, find the components of each vector to be added along
the chosen perpendicular axes. Use the equations Ax = A cos θ and Ay = A sin θ to find the components. In Figure 3.31,

these components are Ax , Ay , Bx , and By . The angles that vectors A and B make with the x-axis are θA and θB ,

respectively.

Figure 3.31 To add vectors A and B , first determine the horizontal and vertical components of each vector. These are the dotted vectors Ax ,

Ay , Bx and By shown in the image.

Step 2. Find the components of the resultant along each axis by adding the components of the individual vectors along that axis.
That is, as shown in Figure 3.32,

(3.12)Rx = Ax + Bx

and

(3.13)Ry = Ay + By.
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Figure 3.32 The magnitude of the vectors Ax and Bx add to give the magnitude Rx of the resultant vector in the horizontal direction. Similarly,

the magnitudes of the vectors Ay and By add to give the magnitude Ry of the resultant vector in the vertical direction.

Components along the same axis, say the x-axis, are vectors along the same line and, thus, can be added to one another like
ordinary numbers. The same is true for components along the y-axis. (For example, a 9-block eastward walk could be taken in
two legs, the first 3 blocks east and the second 6 blocks east, for a total of 9, because they are along the same direction.) So
resolving vectors into components along common axes makes it easier to add them. Now that the components of R are known,

its magnitude and direction can be found.

Step 3. To get the magnitude R of the resultant, use the Pythagorean theorem:

(3.14)R = Rx
2 + Ry

2.

Step 4. To get the direction of the resultant:

(3.15)θ = tan−1(Ry / Rx).

The following example illustrates this technique for adding vectors using perpendicular components.

Example 3.3 Adding Vectors Using Analytical Methods

Add the vector A to the vector B shown in Figure 3.33, using perpendicular components along the x- and y-axes. The x-

and y-axes are along the east–west and north–south directions, respectively. Vector A represents the first leg of a walk in

which a person walks 53.0 m in a direction 20.0º north of east. Vector B represents the second leg, a displacement of

34.0 m in a direction 63.0º north of east.

Figure 3.33 Vector A has magnitude 53.0 m and direction 20.0 º north of the x-axis. Vector B has magnitude 34.0 m and direction

63.0º north of the x-axis. You can use analytical methods to determine the magnitude and direction of R .

Strategy

The components of A and B along the x- and y-axes represent walking due east and due north to get to the same ending

point. Once found, they are combined to produce the resultant.
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Solution

Following the method outlined above, we first find the components of A and B along the x- and y-axes. Note that

A = 53.0 m , θA = 20.0º , B = 34.0 m , and θB = 63.0º . We find the x-components by using Ax = A cos θ , which

gives

(3.16)Ax = A cos θA = (53.0 m)(cos 20.0º)
= (53.0 m)(0.940) = 49.8 m

and

(3.17)Bx = B cos θB = (34.0 m)(cos 63.0º)
= (34.0 m)(0.454) = 15.4 m.

Similarly, the y-components are found using Ay = A sin θA :

(3.18)Ay = A sin θA = (53.0 m)(sin 20.0º)
= (53.0 m)(0.342) = 18.1 m

and

(3.19)By = B sin θB = (34.0 m)(sin 63.0 º )
= (34.0 m)(0.891) = 30.3 m.

The x- and y-components of the resultant are thus

(3.20)Rx = Ax + Bx = 49.8 m + 15.4 m = 65.2 m

and

(3.21)Ry = Ay + By = 18.1 m+30.3 m = 48.4 m.

Now we can find the magnitude of the resultant by using the Pythagorean theorem:

(3.22)R = Rx
2 + Ry

2 = (65.2)2 + (48.4)2 m

so that

(3.23)R = 81.2 m.
Finally, we find the direction of the resultant:

(3.24)θ = tan−1(Ry / Rx)=+tan−1(48.4 / 65.2).

Thus,

(3.25)θ = tan−1(0.742) = 36.6 º .

Figure 3.34 Using analytical methods, we see that the magnitude of R is 81.2 m and its direction is 36.6º north of east.

Discussion

This example illustrates the addition of vectors using perpendicular components. Vector subtraction using perpendicular
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components is very similar—it is just the addition of a negative vector.

Subtraction of vectors is accomplished by the addition of a negative vector. That is, A − B ≡ A + (–B) . Thus, the method

for the subtraction of vectors using perpendicular components is identical to that for addition. The components of –B are

the negatives of the components of B . The x- and y-components of the resultant A − B = R are thus

(3.26)Rx = Ax + ⎛
⎝ – Bx

⎞
⎠

and

(3.27)Ry = Ay + ⎛⎝ – By
⎞
⎠

and the rest of the method outlined above is identical to that for addition. (See Figure 3.35.)

Analyzing vectors using perpendicular components is very useful in many areas of physics, because perpendicular quantities are
often independent of one another. The next module, Projectile Motion, is one of many in which using perpendicular components
helps make the picture clear and simplifies the physics.

Figure 3.35 The subtraction of the two vectors shown in Figure 3.30. The components of –B are the negatives of the components of B . The

method of subtraction is the same as that for addition.

PhET Explorations: Vector Addition

Learn how to add vectors. Drag vectors onto a graph, change their length and angle, and sum them together. The
magnitude, angle, and components of each vector can be displayed in several formats.
(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42128/
1.15/#Phet_module_3.3)

3.4 Projectile Motion

Projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. The
object is called a projectile, and its path is called its trajectory. The motion of falling objects, as covered in Problem-Solving
Basics for One-Dimensional Kinematics, is a simple one-dimensional type of projectile motion in which there is no horizontal
movement. In this section, we consider two-dimensional projectile motion, such as that of a football or other object for which air
resistance is negligible.

The most important fact to remember here is that motions along perpendicular axes are independent and thus can be analyzed
separately. This fact was discussed in Kinematics in Two Dimensions: An Introduction, where vertical and horizontal motions
were seen to be independent. The key to analyzing two-dimensional projectile motion is to break it into two motions, one along
the horizontal axis and the other along the vertical. (This choice of axes is the most sensible, because acceleration due to gravity
is vertical—thus, there will be no acceleration along the horizontal axis when air resistance is negligible.) As is customary, we call
the horizontal axis the x-axis and the vertical axis the y-axis. Figure 3.36 illustrates the notation for displacement, where s is

defined to be the total displacement and x and y are its components along the horizontal and vertical axes, respectively. The

magnitudes of these vectors are s, x, and y. (Note that in the last section we used the notation A to represent a vector with

components Ax and Ay . If we continued this format, we would call displacement s with components sx and sy . However, to

simplify the notation, we will simply represent the component vectors as x and y .)

Of course, to describe motion we must deal with velocity and acceleration, as well as with displacement. We must find their
components along the x- and y-axes, too. We will assume all forces except gravity (such as air resistance and friction, for

example) are negligible. The components of acceleration are then very simple: ay = – g = – 9.80 m/s2 . (Note that this
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definition assumes that the upwards direction is defined as the positive direction. If you arrange the coordinate system instead
such that the downwards direction is positive, then acceleration due to gravity takes a positive value.) Because gravity is vertical,
ax = 0 . Both accelerations are constant, so the kinematic equations can be used.

Review of Kinematic Equations (constant a )

(3.28)x = x0 + v- t
(3.29)v- = v0 + v

2
(3.30)v = v0 + at
(3.31)x = x0 + v0t + 1

2at2

(3.32)v2 = v0
2 + 2a(x − x0).

Figure 3.36 The total displacement s of a soccer ball at a point along its path. The vector s has components x and y along the horizontal and

vertical axes. Its magnitude is s , and it makes an angle θ with the horizontal.

Given these assumptions, the following steps are then used to analyze projectile motion:

Step 1. Resolve or break the motion into horizontal and vertical components along the x- and y-axes. These axes are
perpendicular, so Ax = A cos θ and Ay = A sin θ are used. The magnitude of the components of displacement s along

these axes are x and y. The magnitudes of the components of the velocity v are vx = v cos θ and vy = v sin θ, where v
is the magnitude of the velocity and θ is its direction, as shown in Figure 3.37. Initial values are denoted with a subscript 0, as

usual.

Step 2. Treat the motion as two independent one-dimensional motions, one horizontal and the other vertical. The kinematic
equations for horizontal and vertical motion take the following forms:

(3.33)Horizontal Motion(ax = 0)
(3.34)x = x0 + vxt
(3.35)vx = v0x = vx = velocity is a constant.
(3.36)Vertical Motion(assuming positive is up ay = −g = −9.80m/s2)
(3.37)y = y0 + 1

2(v0y + vy)t

(3.38)vy = v0y − gt
(3.39)y = y0 + v0yt − 1

2gt2

(3.40)vy
2 = v0y

2 − 2g(y − y0).

Step 3. Solve for the unknowns in the two separate motions—one horizontal and one vertical. Note that the only common
variable between the motions is time t . The problem solving procedures here are the same as for one-dimensional kinematics

and are illustrated in the solved examples below.

Step 4. Recombine the two motions to find the total displacement s and velocity v . Because the x - and y -motions are

perpendicular, we determine these vectors by using the techniques outlined in the Vector Addition and Subtraction: Analytical
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Methods and employing A = Ax
2 + Ay

2 and θ = tan−1(Ay / Ax) in the following form, where θ is the direction of the

displacement s and θv is the direction of the velocity v :

Total displacement and velocity

(3.41)s = x2 + y2

(3.42)θ = tan−1(y / x)
(3.43)v = vx

2 + vy
2

(3.44)θv = tan−1(vy / vx).

Figure 3.37 (a) We analyze two-dimensional projectile motion by breaking it into two independent one-dimensional motions along the vertical and

horizontal axes. (b) The horizontal motion is simple, because ax = 0 and vx is thus constant. (c) The velocity in the vertical direction begins to

decrease as the object rises; at its highest point, the vertical velocity is zero. As the object falls towards the Earth again, the vertical velocity increases
again in magnitude but points in the opposite direction to the initial vertical velocity. (d) The x - and y -motions are recombined to give the total velocity
at any given point on the trajectory.
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Example 3.4 A Fireworks Projectile Explodes High and Away

During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0º above the

horizontal, as illustrated in Figure 3.38. The fuse is timed to ignite the shell just as it reaches its highest point above the
ground. (a) Calculate the height at which the shell explodes. (b) How much time passed between the launch of the shell and
the explosion? (c) What is the horizontal displacement of the shell when it explodes?

Strategy

Because air resistance is negligible for the unexploded shell, the analysis method outlined above can be used. The motion
can be broken into horizontal and vertical motions in which ax = 0 and ay = – g . We can then define x0 and y0 to be

zero and solve for the desired quantities.

Solution for (a)

By “height” we mean the altitude or vertical position y above the starting point. The highest point in any trajectory, called the

apex, is reached when vy = 0 . Since we know the initial and final velocities as well as the initial position, we use the

following equation to find y :

(3.45)vy
2 = v0y

2 − 2g(y − y0).

Figure 3.38 The trajectory of a fireworks shell. The fuse is set to explode the shell at the highest point in its trajectory, which is found to be at a
height of 233 m and 125 m away horizontally.

Because y0 and vy are both zero, the equation simplifies to

(3.46)0 = v0y
2 − 2gy.

Solving for y gives

(3.47)

y =
v0y

2

2g .

Now we must find v0y , the component of the initial velocity in the y-direction. It is given by v0y = v0 sin θ , where v0y is

the initial velocity of 70.0 m/s, and θ0 = 75.0º is the initial angle. Thus,

(3.48)v0y = v0 sin θ0 = (70.0 m/s)(sin 75º) = 67.6 m/s.

and y is

(3.49)
y = (67.6 m/s)2

2(9.80 m/s2)
,

so that

(3.50)y = 233m.
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Discussion for (a)

Note that because up is positive, the initial velocity is positive, as is the maximum height, but the acceleration due to gravity
is negative. Note also that the maximum height depends only on the vertical component of the initial velocity, so that any
projectile with a 67.6 m/s initial vertical component of velocity will reach a maximum height of 233 m (neglecting air
resistance). The numbers in this example are reasonable for large fireworks displays, the shells of which do reach such
heights before exploding. In practice, air resistance is not completely negligible, and so the initial velocity would have to be
somewhat larger than that given to reach the same height.

Solution for (b)

As in many physics problems, there is more than one way to solve for the time to the highest point. In this case, the easiest

method is to use y = y0 + 1
2(v0y + vy)t . Because y0 is zero, this equation reduces to simply

(3.51)y = 1
2(v0y + vy)t.

Note that the final vertical velocity, vy , at the highest point is zero. Thus,

(3.52)
t = 2y

(v0y + vy)
= 2(233 m)

(67.6 m/s)
= 6.90 s.

Discussion for (b)

This time is also reasonable for large fireworks. When you are able to see the launch of fireworks, you will notice several

seconds pass before the shell explodes. (Another way of finding the time is by using y = y0 + v0yt − 1
2gt2 , and solving

the quadratic equation for t .)

Solution for (c)

Because air resistance is negligible, ax = 0 and the horizontal velocity is constant, as discussed above. The horizontal

displacement is horizontal velocity multiplied by time as given by x = x0 + vxt , where x0 is equal to zero:

(3.53)x = vxt,

where vx is the x-component of the velocity, which is given by vx = v0 cos θ0 . Now,

(3.54)vx = v0 cos θ0 = (70.0 m/s)(cos 75.0º) = 18.1 m/s.

The time t for both motions is the same, and so x is

(3.55)x = (18.1 m/s)(6.90 s) = 125 m.

Discussion for (c)

The horizontal motion is a constant velocity in the absence of air resistance. The horizontal displacement found here could
be useful in keeping the fireworks fragments from falling on spectators. Once the shell explodes, air resistance has a major
effect, and many fragments will land directly below.

In solving part (a) of the preceding example, the expression we found for y is valid for any projectile motion where air resistance

is negligible. Call the maximum height y = h ; then,

(3.56)

h =
v0y

2

2g .

This equation defines the maximum height of a projectile and depends only on the vertical component of the initial velocity.

Defining a Coordinate System

It is important to set up a coordinate system when analyzing projectile motion. One part of defining the coordinate system is
to define an origin for the x and y positions. Often, it is convenient to choose the initial position of the object as the origin

such that x0 = 0 and y0 = 0 . It is also important to define the positive and negative directions in the x and y directions.

Typically, we define the positive vertical direction as upwards, and the positive horizontal direction is usually the direction of
the object’s motion. When this is the case, the vertical acceleration, g , takes a negative value (since it is directed
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downwards towards the Earth). However, it is occasionally useful to define the coordinates differently. For example, if you
are analyzing the motion of a ball thrown downwards from the top of a cliff, it may make sense to define the positive direction
downwards since the motion of the ball is solely in the downwards direction. If this is the case, g takes a positive value.

Example 3.5 Calculating Projectile Motion: Hot Rock Projectile

Kilauea in Hawaii is the world’s most continuously active volcano. Very active volcanoes characteristically eject red-hot rocks
and lava rather than smoke and ash. Suppose a large rock is ejected from the volcano with a speed of 25.0 m/s and at an
angle 35.0º above the horizontal, as shown in Figure 3.39. The rock strikes the side of the volcano at an altitude 20.0 m

lower than its starting point. (a) Calculate the time it takes the rock to follow this path. (b) What are the magnitude and
direction of the rock’s velocity at impact?

Figure 3.39 The trajectory of a rock ejected from the Kilauea volcano.

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions will allow us to solve for the
desired quantities. The time a projectile is in the air is governed by its vertical motion alone. We will solve for t first. While

the rock is rising and falling vertically, the horizontal motion continues at a constant velocity. This example asks for the final
velocity. Thus, the vertical and horizontal results will be recombined to obtain v and θv at the final time t determined in

the first part of the example.

Solution for (a)

While the rock is in the air, it rises and then falls to a final position 20.0 m lower than its starting altitude. We can find the time
for this by using

(3.57)y = y0 + v0yt − 1
2gt2.

If we take the initial position y0 to be zero, then the final position is y = −20.0 m. Now the initial vertical velocity is the

vertical component of the initial velocity, found from v0y = v0 sin θ0 = ( 25.0 m/s )( sin 35.0º ) = 14.3 m/s . Substituting

known values yields

(3.58)−20.0 m = (14.3 m/s)t − ⎛⎝4.90 m/s2⎞⎠t2.

Rearranging terms gives a quadratic equation in t :

(3.59)⎛
⎝4.90 m/s2⎞⎠t2 − (14.3 m/s)t − (20.0 m) = 0.

This expression is a quadratic equation of the form at2 + bt + c = 0 , where the constants are a = 4.90 , b = – 14.3 ,

and c = – 20.0. Its solutions are given by the quadratic formula:

(3.60)
t = −b ± b2 − 4ac

2a .

This equation yields two solutions: t = 3.96 and t = – 1.03 . (It is left as an exercise for the reader to verify these

solutions.) The time is t = 3.96 s or – 1.03 s . The negative value of time implies an event before the start of motion, and

so we discard it. Thus,

(3.61)t = 3.96 s.
Discussion for (a)

The time for projectile motion is completely determined by the vertical motion. So any projectile that has an initial vertical
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velocity of 14.3 m/s and lands 20.0 m below its starting altitude will spend 3.96 s in the air.

Solution for (b)

From the information now in hand, we can find the final horizontal and vertical velocities vx and vy and combine them to

find the total velocity v and the angle θ0 it makes with the horizontal. Of course, vx is constant so we can solve for it at

any horizontal location. In this case, we chose the starting point since we know both the initial velocity and initial angle.
Therefore:

(3.62)vx = v0 cos θ0 = (25.0 m/s)(cos 35º) = 20.5 m/s.

The final vertical velocity is given by the following equation:

(3.63)vy = v0y − gt,

where v0y was found in part (a) to be 14.3 m/s . Thus,

(3.64)vy = 14.3 m/s − (9.80 m/s2)(3.96 s)

so that

(3.65)vy = −24.5 m/s.

To find the magnitude of the final velocity v we combine its perpendicular components, using the following equation:

(3.66)v = vx
2 + vy

2 = (20.5 m/s)2 + ( − 24.5 m/s)2,

which gives

(3.67)v = 31.9 m/s.

The direction θv is found from the equation:

(3.68)θv = tan−1(vy / vx)

so that

(3.69)θv = tan−1( − 24.5 / 20.5) = tan−1( − 1.19).

Thus,

(3.70)θv = −50.1 º .

Discussion for (b)

The negative angle means that the velocity is 50.1º below the horizontal. This result is consistent with the fact that the final

vertical velocity is negative and hence downward—as you would expect because the final altitude is 20.0 m lower than the
initial altitude. (See Figure 3.39.)

One of the most important things illustrated by projectile motion is that vertical and horizontal motions are independent of each
other. Galileo was the first person to fully comprehend this characteristic. He used it to predict the range of a projectile. On level
ground, we define range to be the horizontal distance R traveled by a projectile. Galileo and many others were interested in the

range of projectiles primarily for military purposes—such as aiming cannons. However, investigating the range of projectiles can
shed light on other interesting phenomena, such as the orbits of satellites around the Earth. Let us consider projectile range
further.
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Figure 3.40 Trajectories of projectiles on level ground. (a) The greater the initial speed v0 , the greater the range for a given initial angle. (b) The

effect of initial angle θ0 on the range of a projectile with a given initial speed. Note that the range is the same for 15º and 75º , although the

maximum heights of those paths are different.

How does the initial velocity of a projectile affect its range? Obviously, the greater the initial speed v0 , the greater the range, as

shown in Figure 3.40(a). The initial angle θ0 also has a dramatic effect on the range, as illustrated in Figure 3.40(b). For a fixed

initial speed, such as might be produced by a cannon, the maximum range is obtained with θ0 = 45º . This is true only for

conditions neglecting air resistance. If air resistance is considered, the maximum angle is approximately 38º . Interestingly, for

every initial angle except 45º , there are two angles that give the same range—the sum of those angles is 90º . The range also

depends on the value of the acceleration of gravity g . The lunar astronaut Alan Shepherd was able to drive a golf ball a great

distance on the Moon because gravity is weaker there. The range R of a projectile on level ground for which air resistance is

negligible is given by

(3.71)
R =

v0
2 sin 2θ0

g ,

where v0 is the initial speed and θ0 is the initial angle relative to the horizontal. The proof of this equation is left as an end-of-

chapter problem (hints are given), but it does fit the major features of projectile range as described.

When we speak of the range of a projectile on level ground, we assume that R is very small compared with the circumference of

the Earth. If, however, the range is large, the Earth curves away below the projectile and acceleration of gravity changes
direction along the path. The range is larger than predicted by the range equation given above because the projectile has farther
to fall than it would on level ground. (See Figure 3.41.) If the initial speed is great enough, the projectile goes into orbit. This
possibility was recognized centuries before it could be accomplished. When an object is in orbit, the Earth curves away from
underneath the object at the same rate as it falls. The object thus falls continuously but never hits the surface. These and other
aspects of orbital motion, such as the rotation of the Earth, will be covered analytically and in greater depth later in this text.

Once again we see that thinking about one topic, such as the range of a projectile, can lead us to others, such as the Earth
orbits. In Addition of Velocities, we will examine the addition of velocities, which is another important aspect of two-dimensional
kinematics and will also yield insights beyond the immediate topic.
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Figure 3.41 Projectile to satellite. In each case shown here, a projectile is launched from a very high tower to avoid air resistance. With increasing
initial speed, the range increases and becomes longer than it would be on level ground because the Earth curves away underneath its path. With a
large enough initial speed, orbit is achieved.

PhET Explorations: Projectile Motion

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass.
Add air resistance. Make a game out of this simulation by trying to hit a target.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42042/
1.18/#Phet_module_3.4)

Figure 3.42

3.5 Addition of Velocities

Relative Velocity

If a person rows a boat across a rapidly flowing river and tries to head directly for the other shore, the boat instead moves
diagonally relative to the shore, as in Figure 3.43. The boat does not move in the direction in which it is pointed. The reason, of
course, is that the river carries the boat downstream. Similarly, if a small airplane flies overhead in a strong crosswind, you can
sometimes see that the plane is not moving in the direction in which it is pointed, as illustrated in Figure 3.44. The plane is
moving straight ahead relative to the air, but the movement of the air mass relative to the ground carries it sideways.

Figure 3.43 A boat trying to head straight across a river will actually move diagonally relative to the shore as shown. Its total velocity (solid arrow)
relative to the shore is the sum of its velocity relative to the river plus the velocity of the river relative to the shore.
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Figure 3.44 An airplane heading straight north is instead carried to the west and slowed down by wind. The plane does not move relative to the ground
in the direction it points; rather, it moves in the direction of its total velocity (solid arrow).

In each of these situations, an object has a velocity relative to a medium (such as a river) and that medium has a velocity
relative to an observer on solid ground. The velocity of the object relative to the observer is the sum of these velocity vectors, as
indicated in Figure 3.43 and Figure 3.44. These situations are only two of many in which it is useful to add velocities. In this
module, we first re-examine how to add velocities and then consider certain aspects of what relative velocity means.

How do we add velocities? Velocity is a vector (it has both magnitude and direction); the rules of vector addition discussed in
Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods apply to
the addition of velocities, just as they do for any other vectors. In one-dimensional motion, the addition of velocities is
simple—they add like ordinary numbers. For example, if a field hockey player is moving at 5 m/s straight toward the goal and

drives the ball in the same direction with a velocity of 30 m/s relative to her body, then the velocity of the ball is 35 m/s relative

to the stationary, profusely sweating goalkeeper standing in front of the goal.

In two-dimensional motion, either graphical or analytical techniques can be used to add velocities. We will concentrate on
analytical techniques. The following equations give the relationships between the magnitude and direction of velocity ( v and θ )

and its components ( vx and vy ) along the x- and y-axes of an appropriately chosen coordinate system:

(3.72)vx = v cos θ
(3.73)vy = v sin θ
(3.74)v = vx

2 + vy
2

(3.75)θ = tan−1(vy / vx).

Figure 3.45 The velocity, v , of an object traveling at an angle θ to the horizontal axis is the sum of component vectors vx and vy .

These equations are valid for any vectors and are adapted specifically for velocity. The first two equations are used to find the
components of a velocity when its magnitude and direction are known. The last two are used to find the magnitude and direction
of velocity when its components are known.
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Take-Home Experiment: Relative Velocity of a Boat

Fill a bathtub half-full of water. Take a toy boat or some other object that floats in water. Unplug the drain so water starts to
drain. Try pushing the boat from one side of the tub to the other and perpendicular to the flow of water. Which way do you
need to push the boat so that it ends up immediately opposite? Compare the directions of the flow of water, heading of the
boat, and actual velocity of the boat.

Example 3.6 Adding Velocities: A Boat on a River

Figure 3.46 A boat attempts to travel straight across a river at a speed 0.75 m/s. The current in the river, however, flows at a speed of 1.20 m/s to
the right.

Refer to Figure 3.46, which shows a boat trying to go straight across the river. Let us calculate the magnitude and direction
of the boat’s velocity relative to an observer on the shore, vtot . The velocity of the boat, vboat , is 0.75 m/s in the y
-direction relative to the river and the velocity of the river, vriver , is 1.20 m/s to the right.

Strategy

We start by choosing a coordinate system with its x -axis parallel to the velocity of the river, as shown in Figure 3.46.

Because the boat is directed straight toward the other shore, its velocity relative to the water is parallel to the y -axis and

perpendicular to the velocity of the river. Thus, we can add the two velocities by using the equations vtot = vx
2 + vy

2 and

θ = tan−1(vy / vx) directly.

Solution

The magnitude of the total velocity is

(3.76)vtot = vx
2 + vy

2,

where

(3.77)vx = vriver = 1.20 m/s

and

(3.78)vy = vboat = 0.750 m/s.

Thus,

(3.79)vtot = (1.20 m/s)2 + (0.750 m/s)2

yielding

(3.80)vtot = 1.42 m/s.

The direction of the total velocity θ is given by:
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(3.81)θ = tan−1(vy / vx) = tan−1(0.750 / 1.20).

This equation gives

(3.82)θ = 32.0º.
Discussion

Both the magnitude v and the direction θ of the total velocity are consistent with Figure 3.46. Note that because the

velocity of the river is large compared with the velocity of the boat, it is swept rapidly downstream. This result is evidenced
by the small angle (only 32.0º ) the total velocity has relative to the riverbank.

Example 3.7 Calculating Velocity: Wind Velocity Causes an Airplane to Drift

Calculate the wind velocity for the situation shown in Figure 3.47. The plane is known to be moving at 45.0 m/s due north
relative to the air mass, while its velocity relative to the ground (its total velocity) is 38.0 m/s in a direction 20.0º west of

north.

Figure 3.47 An airplane is known to be heading north at 45.0 m/s, though its velocity relative to the ground is 38.0 m/s at an angle west of north.
What is the speed and direction of the wind?

Strategy

In this problem, somewhat different from the previous example, we know the total velocity vtot and that it is the sum of two

other velocities, vw (the wind) and vp (the plane relative to the air mass). The quantity vp is known, and we are asked to

find vw . None of the velocities are perpendicular, but it is possible to find their components along a common set of

perpendicular axes. If we can find the components of vw , then we can combine them to solve for its magnitude and

direction. As shown in Figure 3.47, we choose a coordinate system with its x-axis due east and its y-axis due north (parallel
to vp ). (You may wish to look back at the discussion of the addition of vectors using perpendicular components in Vector

Addition and Subtraction: Analytical Methods.)

Solution

Because vtot is the vector sum of the vw and vp , its x- and y-components are the sums of the x- and y-components of

the wind and plane velocities. Note that the plane only has vertical component of velocity so vpx = 0 and vpy = vp . That

is,

(3.83)vtotx = vwx

and

Chapter 3 | Two-Dimensional Kinematics 117



(3.84)vtoty = vwy + vp.

We can use the first of these two equations to find vwx :

(3.85)vwx = vtotx = vtotcos 110º.

Because vtot = 38.0 m / s and cos 110º = – 0.342 we have

(3.86)vwx = (38.0 m/s)(–0.342) = –13 m/s.

The minus sign indicates motion west which is consistent with the diagram.

Now, to find vwy we note that

(3.87)vtoty = vwy + vp

Here vtoty = vtotsin 110º ; thus,

(3.88)vwy = (38.0 m/s)(0.940) − 45.0 m/s = −9.29 m/s.

This minus sign indicates motion south which is consistent with the diagram.

Now that the perpendicular components of the wind velocity vwx and vwy are known, we can find the magnitude and

direction of vw . First, the magnitude is

(3.89)vw = vwx
2 + vwy

2

= ( − 13.0 m/s)2 + ( − 9.29 m/s)2

so that

(3.90)vw = 16.0 m/s.

The direction is:

(3.91)θ = tan−1(vwy / vwx) = tan−1( − 9.29 / −13.0)

giving

(3.92)θ = 35.6º.
Discussion

The wind’s speed and direction are consistent with the significant effect the wind has on the total velocity of the plane, as
seen in Figure 3.47. Because the plane is fighting a strong combination of crosswind and head-wind, it ends up with a total
velocity significantly less than its velocity relative to the air mass as well as heading in a different direction.

Note that in both of the last two examples, we were able to make the mathematics easier by choosing a coordinate system with
one axis parallel to one of the velocities. We will repeatedly find that choosing an appropriate coordinate system makes problem
solving easier. For example, in projectile motion we always use a coordinate system with one axis parallel to gravity.

Relative Velocities and Classical Relativity

When adding velocities, we have been careful to specify that the velocity is relative to some reference frame. These velocities
are called relative velocities. For example, the velocity of an airplane relative to an air mass is different from its velocity relative
to the ground. Both are quite different from the velocity of an airplane relative to its passengers (which should be close to zero).
Relative velocities are one aspect of relativity, which is defined to be the study of how different observers moving relative to
each other measure the same phenomenon.

Nearly everyone has heard of relativity and immediately associates it with Albert Einstein (1879–1955), the greatest physicist of
the 20th century. Einstein revolutionized our view of nature with his modern theory of relativity, which we shall study in later
chapters. The relative velocities in this section are actually aspects of classical relativity, first discussed correctly by Galileo and
Isaac Newton. Classical relativity is limited to situations where speeds are less than about 1% of the speed of light—that is,
less than 3,000 km/s . Most things we encounter in daily life move slower than this speed.

Let us consider an example of what two different observers see in a situation analyzed long ago by Galileo. Suppose a sailor at
the top of a mast on a moving ship drops his binoculars. Where will it hit the deck? Will it hit at the base of the mast, or will it hit
behind the mast because the ship is moving forward? The answer is that if air resistance is negligible, the binoculars will hit at
the base of the mast at a point directly below its point of release. Now let us consider what two different observers see when the
binoculars drop. One observer is on the ship and the other on shore. The binoculars have no horizontal velocity relative to the
observer on the ship, and so he sees them fall straight down the mast. (See Figure 3.48.) To the observer on shore, the
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binoculars and the ship have the same horizontal velocity, so both move the same distance forward while the binoculars are
falling. This observer sees the curved path shown in Figure 3.48. Although the paths look different to the different observers,
each sees the same result—the binoculars hit at the base of the mast and not behind it. To get the correct description, it is crucial
to correctly specify the velocities relative to the observer.

Figure 3.48 Classical relativity. The same motion as viewed by two different observers. An observer on the moving ship sees the binoculars dropped
from the top of its mast fall straight down. An observer on shore sees the binoculars take the curved path, moving forward with the ship. Both observers
see the binoculars strike the deck at the base of the mast. The initial horizontal velocity is different relative to the two observers. (The ship is shown
moving rather fast to emphasize the effect.)

Example 3.8 Calculating Relative Velocity: An Airline Passenger Drops a Coin

An airline passenger drops a coin while the plane is moving at 260 m/s. What is the velocity of the coin when it strikes the
floor 1.50 m below its point of release: (a) Measured relative to the plane? (b) Measured relative to the Earth?

Figure 3.49 The motion of a coin dropped inside an airplane as viewed by two different observers. (a) An observer in the plane sees the coin fall
straight down. (b) An observer on the ground sees the coin move almost horizontally.

Strategy

Both problems can be solved with the techniques for falling objects and projectiles. In part (a), the initial velocity of the coin
is zero relative to the plane, so the motion is that of a falling object (one-dimensional). In part (b), the initial velocity is 260 m/
s horizontal relative to the Earth and gravity is vertical, so this motion is a projectile motion. In both parts, it is best to use a
coordinate system with vertical and horizontal axes.
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Solution for (a)

Using the given information, we note that the initial velocity and position are zero, and the final position is 1.50 m. The final
velocity can be found using the equation:

(3.93)vy
2 = v0y

2 − 2g(y − y0).

Substituting known values into the equation, we get

(3.94)vy
2 = 02 − 2(9.80 m/s2)( − 1.50 m − 0 m) = 29.4 m2 /s2

yielding

(3.95)vy = −5.42 m/s.

We know that the square root of 29.4 has two roots: 5.42 and -5.42. We choose the negative root because we know that the
velocity is directed downwards, and we have defined the positive direction to be upwards. There is no initial horizontal
velocity relative to the plane and no horizontal acceleration, and so the motion is straight down relative to the plane.

Solution for (b)

Because the initial vertical velocity is zero relative to the ground and vertical motion is independent of horizontal motion, the
final vertical velocity for the coin relative to the ground is vy = − 5.42 m/s , the same as found in part (a). In contrast to

part (a), there now is a horizontal component of the velocity. However, since there is no horizontal acceleration, the initial
and final horizontal velocities are the same and vx = 260 m/s . The x- and y-components of velocity can be combined to

find the magnitude of the final velocity:

(3.96)v = vx
2 + vy

2.

Thus,

(3.97)v = (260 m/s)2 + ( − 5.42 m/s)2

yielding

(3.98)v = 260.06 m/s.
The direction is given by:

(3.99)θ = tan−1(vy / vx) = tan−1( − 5.42 / 260)

so that

(3.100)θ = tan−1( − 0.0208) = −1.19º.

Discussion

In part (a), the final velocity relative to the plane is the same as it would be if the coin were dropped from rest on the Earth
and fell 1.50 m. This result fits our experience; objects in a plane fall the same way when the plane is flying horizontally as
when it is at rest on the ground. This result is also true in moving cars. In part (b), an observer on the ground sees a much
different motion for the coin. The plane is moving so fast horizontally to begin with that its final velocity is barely greater than
the initial velocity. Once again, we see that in two dimensions, vectors do not add like ordinary numbers—the final velocity v
in part (b) is not (260 – 5.42) m/s ; rather, it is 260.06 m/s . The velocity’s magnitude had to be calculated to five digits to

see any difference from that of the airplane. The motions as seen by different observers (one in the plane and one on the
ground) in this example are analogous to those discussed for the binoculars dropped from the mast of a moving ship, except
that the velocity of the plane is much larger, so that the two observers see very different paths. (See Figure 3.49.) In
addition, both observers see the coin fall 1.50 m vertically, but the one on the ground also sees it move forward 144 m (this
calculation is left for the reader). Thus, one observer sees a vertical path, the other a nearly horizontal path.

Making Connections: Relativity and Einstein

Because Einstein was able to clearly define how measurements are made (some involve light) and because the speed
of light is the same for all observers, the outcomes are spectacularly unexpected. Time varies with observer, energy is
stored as increased mass, and more surprises await.

PhET Explorations: Motion in 2D

Try the new "Motion in 2D" simulation for the latest updated version. Learn about position, velocity, and acceleration vectors.
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air resistance:

analytical method:

classical relativity:

commutative:

component (of a 2-d vector):

direction (of a vector):

head (of a vector):

head-to-tail method:

kinematics:

magnitude (of a vector):

motion:

projectile:

projectile motion:

range:

relative velocity:

relativity:

resultant:

resultant vector:

scalar:

tail:

trajectory:

vector:

vector addition:

velocity:

Move the ball with the mouse or let the simulation move the ball in four types of motion (2 types of linear, simple harmonic,
circle). Click to open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/motion-2d)

Glossary

a frictional force that slows the motion of objects as they travel through the air; when solving basic physics
problems, air resistance is assumed to be zero

the method of determining the magnitude and direction of a resultant vector using the Pythagorean
theorem and trigonometric identities

the study of relative velocities in situations where speeds are less than about 1% of the speed of
light—that is, less than 3000 km/s

refers to the interchangeability of order in a function; vector addition is commutative because the order in which
vectors are added together does not affect the final sum

a piece of a vector that points in either the vertical or the horizontal direction; every 2-d vector
can be expressed as a sum of two vertical and horizontal vector components

the orientation of a vector in space

the end point of a vector; the location of the tip of the vector’s arrowhead; also referred to as the “tip”

a method of adding vectors in which the tail of each vector is placed at the head of the previous vector

the study of motion without regard to mass or force

the length or size of a vector; magnitude is a scalar quantity

displacement of an object as a function of time

an object that travels through the air and experiences only acceleration due to gravity

the motion of an object that is subject only to the acceleration of gravity

the maximum horizontal distance that a projectile travels

the velocity of an object as observed from a particular reference frame

the study of how different observers moving relative to each other measure the same phenomenon

the sum of two or more vectors

the vector sum of two or more vectors

a quantity with magnitude but no direction

the start point of a vector; opposite to the head or tip of the arrow

the path of a projectile through the air

a quantity that has both magnitude and direction; an arrow used to represent quantities with both magnitude and
direction

the rules that apply to adding vectors together

speed in a given direction

Section Summary

3.1 Kinematics in Two Dimensions: An Introduction
• The shortest path between any two points is a straight line. In two dimensions, this path can be represented by a vector

with horizontal and vertical components.
• The horizontal and vertical components of a vector are independent of one another. Motion in the horizontal direction does

not affect motion in the vertical direction, and vice versa.

3.2 Vector Addition and Subtraction: Graphical Methods
• The graphical method of adding vectors A and B involves drawing vectors on a graph and adding them using the
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head-to-tail method. The resultant vector R is defined such that A + B = R . The magnitude and direction of R are

then determined with a ruler and protractor, respectively.
• The graphical method of subtracting vector B from A involves adding the opposite of vector B , which is defined as

−B . In this case, A – B = A + (–B) = R . Then, the head-to-tail method of addition is followed in the usual way to

obtain the resultant vector R .

• Addition of vectors is commutative such that A + B = B + A .

• The head-to-tail method of adding vectors involves drawing the first vector on a graph and then placing the tail of each
subsequent vector at the head of the previous vector. The resultant vector is then drawn from the tail of the first vector to
the head of the final vector.

• If a vector A is multiplied by a scalar quantity c , the magnitude of the product is given by cA . If c is positive, the

direction of the product points in the same direction as A ; if c is negative, the direction of the product points in the

opposite direction as A .

3.3 Vector Addition and Subtraction: Analytical Methods
• The analytical method of vector addition and subtraction involves using the Pythagorean theorem and trigonometric

identities to determine the magnitude and direction of a resultant vector.
• The steps to add vectors A and B using the analytical method are as follows:

Step 1: Determine the coordinate system for the vectors. Then, determine the horizontal and vertical components of each
vector using the equations

Ax = A cos θ
Bx = B cos θ

and

Ay = A sin θ
By = B sin θ.

Step 2: Add the horizontal and vertical components of each vector to determine the components Rx and Ry of the

resultant vector, R :

Rx = Ax + Bx
and

Ry = Ay + By.

Step 3: Use the Pythagorean theorem to determine the magnitude, R , of the resultant vector R :

R = Rx
2 + Ry

2.

Step 4: Use a trigonometric identity to determine the direction, θ , of R :

θ = tan−1(Ry / Rx).

3.4 Projectile Motion
• Projectile motion is the motion of an object through the air that is subject only to the acceleration of gravity.
• To solve projectile motion problems, perform the following steps:

1. Determine a coordinate system. Then, resolve the position and/or velocity of the object in the horizontal and vertical
components. The components of position s are given by the quantities x and y , and the components of the velocity

v are given by vx = v cos θ and vy = v sin θ , where v is the magnitude of the velocity and θ is its direction.

2. Analyze the motion of the projectile in the horizontal direction using the following equations:

Horizontal motion(ax = 0)

x = x0 + vxt

vx = v0x = vx = velocity is a constant.
3. Analyze the motion of the projectile in the vertical direction using the following equations:

Vertical motion(Assuming positive direction is up; ay = −g = −9.80 m/s2)

y = y0 + 1
2(v0y + vy)t
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vy = v0y − gt

y = y0 + v0yt − 1
2gt2

vy
2 = v0y

2 − 2g(y − y0).

4. Recombine the horizontal and vertical components of location and/or velocity using the following equations:

s = x2 + y2

θ = tan−1(y / x)

v = vx
2 + vy

2

θv = tan−1(vy / vx).
• The maximum height h of a projectile launched with initial vertical velocity v0y is given by

h =
v0y

2

2g .

• The maximum horizontal distance traveled by a projectile is called the range. The range R of a projectile on level ground

launched at an angle θ0 above the horizontal with initial speed v0 is given by

R =
v0

2 sin 2θ0
g .

3.5 Addition of Velocities
• Velocities in two dimensions are added using the same analytical vector techniques, which are rewritten as

vx = v cos θ
vy = v sin θ

v = vx
2 + vy

2

θ = tan−1(vy / vx).
• Relative velocity is the velocity of an object as observed from a particular reference frame, and it varies dramatically with

reference frame.
• Relativity is the study of how different observers measure the same phenomenon, particularly when the observers move

relative to one another. Classical relativity is limited to situations where speed is less than about 1% of the speed of light
(3000 km/s).

Conceptual Questions

3.2 Vector Addition and Subtraction: Graphical Methods

1. Which of the following is a vector: a person’s height, the altitude on Mt. Everest, the age of the Earth, the boiling point of water,
the cost of this book, the Earth’s population, the acceleration of gravity?

2. Give a specific example of a vector, stating its magnitude, units, and direction.

3. What do vectors and scalars have in common? How do they differ?

Chapter 3 | Two-Dimensional Kinematics 123



4. Two campers in a national park hike from their cabin to the same spot on a lake, each taking a different path, as illustrated
below. The total distance traveled along Path 1 is 7.5 km, and that along Path 2 is 8.2 km. What is the final displacement of each
camper?

Figure 3.50

5. If an airplane pilot is told to fly 123 km in a straight line to get from San Francisco to Sacramento, explain why he could end up
anywhere on the circle shown in Figure 3.51. What other information would he need to get to Sacramento?

Figure 3.51

6. Suppose you take two steps A and B (that is, two nonzero displacements). Under what circumstances can you end up at

your starting point? More generally, under what circumstances can two nonzero vectors add to give zero? Is the maximum
distance you can end up from the starting point A + B the sum of the lengths of the two steps?

7. Explain why it is not possible to add a scalar to a vector.

8. If you take two steps of different sizes, can you end up at your starting point? More generally, can two vectors with different
magnitudes ever add to zero? Can three or more?

3.3 Vector Addition and Subtraction: Analytical Methods

9. Suppose you add two vectors A and B . What relative direction between them produces the resultant with the greatest

magnitude? What is the maximum magnitude? What relative direction between them produces the resultant with the smallest
magnitude? What is the minimum magnitude?

10. Give an example of a nonzero vector that has a component of zero.

11. Explain why a vector cannot have a component greater than its own magnitude.

12. If the vectors A and B are perpendicular, what is the component of A along the direction of B ? What is the component

of B along the direction of A ?
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3.4 Projectile Motion

13. Answer the following questions for projectile motion on level ground assuming negligible air resistance (the initial angle being
neither 0º nor 90º ): (a) Is the velocity ever zero? (b) When is the velocity a minimum? A maximum? (c) Can the velocity ever

be the same as the initial velocity at a time other than at t = 0 ? (d) Can the speed ever be the same as the initial speed at a

time other than at t = 0 ?

14. Answer the following questions for projectile motion on level ground assuming negligible air resistance (the initial angle being
neither 0º nor 90º ): (a) Is the acceleration ever zero? (b) Is the acceleration ever in the same direction as a component of

velocity? (c) Is the acceleration ever opposite in direction to a component of velocity?

15. For a fixed initial speed, the range of a projectile is determined by the angle at which it is fired. For all but the maximum, there
are two angles that give the same range. Considering factors that might affect the ability of an archer to hit a target, such as
wind, explain why the smaller angle (closer to the horizontal) is preferable. When would it be necessary for the archer to use the
larger angle? Why does the punter in a football game use the higher trajectory?

16. During a lecture demonstration, a professor places two coins on the edge of a table. She then flicks one of the coins
horizontally off the table, simultaneously nudging the other over the edge. Describe the subsequent motion of the two coins, in
particular discussing whether they hit the floor at the same time.

3.5 Addition of Velocities

17. What frame or frames of reference do you instinctively use when driving a car? When flying in a commercial jet airplane?

18. A basketball player dribbling down the court usually keeps his eyes fixed on the players around him. He is moving fast. Why
doesn’t he need to keep his eyes on the ball?

19. If someone is riding in the back of a pickup truck and throws a softball straight backward, is it possible for the ball to fall
straight down as viewed by a person standing at the side of the road? Under what condition would this occur? How would the
motion of the ball appear to the person who threw it?

20. The hat of a jogger running at constant velocity falls off the back of his head. Draw a sketch showing the path of the hat in the
jogger’s frame of reference. Draw its path as viewed by a stationary observer.

21. A clod of dirt falls from the bed of a moving truck. It strikes the ground directly below the end of the truck. What is the
direction of its velocity relative to the truck just before it hits? Is this the same as the direction of its velocity relative to ground just
before it hits? Explain your answers.
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Problems & Exercises

3.2 Vector Addition and Subtraction: Graphical
Methods

Use graphical methods to solve these problems. You may
assume data taken from graphs is accurate to three
digits.

1. Find the following for path A in Figure 3.52: (a) the total
distance traveled, and (b) the magnitude and direction of the
displacement from start to finish.

Figure 3.52 The various lines represent paths taken by different people

walking in a city. All blocks are 120 m on a side.

2. Find the following for path B in Figure 3.52: (a) the total
distance traveled, and (b) the magnitude and direction of the
displacement from start to finish.

3. Find the north and east components of the displacement
for the hikers shown in Figure 3.50.

4. Suppose you walk 18.0 m straight west and then 25.0 m
straight north. How far are you from your starting point, and
what is the compass direction of a line connecting your
starting point to your final position? (If you represent the two
legs of the walk as vector displacements A and B , as in

Figure 3.53, then this problem asks you to find their sum
R = A + B .)

Figure 3.53 The two displacements A and B add to give a total

displacement R having magnitude R and direction θ .

5. Suppose you first walk 12.0 m in a direction 20º west of

north and then 20.0 m in a direction 40.0º south of west.

How far are you from your starting point, and what is the
compass direction of a line connecting your starting point to
your final position? (If you represent the two legs of the walk
as vector displacements A and B , as in Figure 3.54, then

this problem finds their sum R = A + B .)

Figure 3.54

6. Repeat the problem above, but reverse the order of the two
legs of the walk; show that you get the same final result. That
is, you first walk leg B , which is 20.0 m in a direction exactly

40º south of west, and then leg A , which is 12.0 m in a

direction exactly 20º west of north. (This problem shows that

A + B = B + A .)

7. (a) Repeat the problem two problems prior, but for the
second leg you walk 20.0 m in a direction 40.0º north of east

(which is equivalent to subtracting B from A —that is, to

finding R′ = A − B ). (b) Repeat the problem two problems

prior, but now you first walk 20.0 m in a direction 40.0º south

of west and then 12.0 m in a direction 20.0º east of south

(which is equivalent to subtracting A from B —that is, to

finding R′′ = B - A = - R′ ). Show that this is the case.

8. Show that the order of addition of three vectors does not
affect their sum. Show this property by choosing any three
vectors A , B , and C , all having different lengths and

directions. Find the sum A + B + C then find their sum

when added in a different order and show the result is the
same. (There are five other orders in which A , B , and C
can be added; choose only one.)

9. Show that the sum of the vectors discussed in Example
3.2 gives the result shown in Figure 3.24.
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10. Find the magnitudes of velocities vA and vB in Figure

3.55

Figure 3.55 The two velocities vA and vB add to give a total vtot .

11. Find the components of vtot along the x- and y-axes in

Figure 3.55.

12. Find the components of vtot along a set of perpendicular

axes rotated 30º counterclockwise relative to those in

Figure 3.55.

3.3 Vector Addition and Subtraction: Analytical
Methods

13. Find the following for path C in Figure 3.56: (a) the total
distance traveled and (b) the magnitude and direction of the
displacement from start to finish. In this part of the problem,
explicitly show how you follow the steps of the analytical
method of vector addition.

Figure 3.56 The various lines represent paths taken by different people

walking in a city. All blocks are 120 m on a side.

14. Find the following for path D in Figure 3.56: (a) the total
distance traveled and (b) the magnitude and direction of the
displacement from start to finish. In this part of the problem,
explicitly show how you follow the steps of the analytical
method of vector addition.

15. Find the north and east components of the displacement
from San Francisco to Sacramento shown in Figure 3.57.

Figure 3.57

16. Solve the following problem using analytical techniques:
Suppose you walk 18.0 m straight west and then 25.0 m
straight north. How far are you from your starting point, and
what is the compass direction of a line connecting your
starting point to your final position? (If you represent the two
legs of the walk as vector displacements A and B , as in

Figure 3.58, then this problem asks you to find their sum
R = A + B .)

Figure 3.58 The two displacements A and B add to give a total

displacement R having magnitude R and direction θ .

Note that you can also solve this graphically. Discuss why the
analytical technique for solving this problem is potentially
more accurate than the graphical technique.

17. Repeat Exercise 3.16 using analytical techniques, but
reverse the order of the two legs of the walk and show that
you get the same final result. (This problem shows that
adding them in reverse order gives the same result—that is,
B + A = A + B .) Discuss how taking another path to

reach the same point might help to overcome an obstacle
blocking you other path.
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18. You drive 7.50 km in a straight line in a direction 15º
east of north. (a) Find the distances you would have to drive
straight east and then straight north to arrive at the same
point. (This determination is equivalent to find the
components of the displacement along the east and north
directions.) (b) Show that you still arrive at the same point if
the east and north legs are reversed in order.

19. Do Exercise 3.16 again using analytical techniques and
change the second leg of the walk to 25.0 m straight south.

(This is equivalent to subtracting B from A —that is, finding

R′ = A – B ) (b) Repeat again, but now you first walk

25.0 m north and then 18.0 m east. (This is equivalent to

subtract A from B —that is, to find A = B + C . Is that

consistent with your result?)

20. A new landowner has a triangular piece of flat land she
wishes to fence. Starting at the west corner, she measures
the first side to be 80.0 m long and the next to be 105 m.
These sides are represented as displacement vectors A
from B in Figure 3.59. She then correctly calculates the

length and orientation of the third side C . What is her

result?

Figure 3.59

21. You fly 32.0 km in a straight line in still air in the

direction 35.0º south of west. (a) Find the distances you

would have to fly straight south and then straight west to
arrive at the same point. (This determination is equivalent to
finding the components of the displacement along the south
and west directions.) (b) Find the distances you would have to
fly first in a direction 45.0º south of west and then in a

direction 45.0º west of north. These are the components of

the displacement along a different set of axes—one rotated
45º .

22. A farmer wants to fence off his four-sided plot of flat land.
He measures the first three sides, shown as A, B, and C
in Figure 3.60, and then correctly calculates the length and
orientation of the fourth side D . What is his result?

Figure 3.60

23. In an attempt to escape his island, Gilligan builds a raft
and sets to sea. The wind shifts a great deal during the day,
and he is blown along the following straight lines: 2.50 km
45.0º north of west; then 4.70 km 60.0º south of east;

then 1.30 km 25.0º south of west; then 5.10 km straight

east; then 1.70 km 5.00º east of north; then 7.20 km
55.0º south of west; and finally 2.80 km 10.0º north of

east. What is his final position relative to the island?

24. Suppose a pilot flies 40.0 km in a direction 60º north of

east and then flies 30.0 km in a direction 15º north of east

as shown in Figure 3.61. Find her total distance R from the

starting point and the direction θ of the straight-line path to

the final position. Discuss qualitatively how this flight would be
altered by a wind from the north and how the effect of the
wind would depend on both wind speed and the speed of the
plane relative to the air mass.

Figure 3.61

3.4 Projectile Motion

25. A projectile is launched at ground level with an initial
speed of 50.0 m/s at an angle of 30.0º above the horizontal.

It strikes a target above the ground 3.00 seconds later. What
are the x and y distances from where the projectile was

launched to where it lands?
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26. A ball is kicked with an initial velocity of 16 m/s in the
horizontal direction and 12 m/s in the vertical direction. (a) At
what speed does the ball hit the ground? (b) For how long
does the ball remain in the air? (c)What maximum height is
attained by the ball?

27. A ball is thrown horizontally from the top of a 60.0-m
building and lands 100.0 m from the base of the building.
Ignore air resistance. (a) How long is the ball in the air? (b)
What must have been the initial horizontal component of the
velocity? (c) What is the vertical component of the velocity
just before the ball hits the ground? (d) What is the velocity
(including both the horizontal and vertical components) of the
ball just before it hits the ground?

28. (a) A daredevil is attempting to jump his motorcycle over a
line of buses parked end to end by driving up a 32º ramp at

a speed of 40.0 m/s (144 km/h) . How many buses can he

clear if the top of the takeoff ramp is at the same height as the
bus tops and the buses are 20.0 m long? (b) Discuss what
your answer implies about the margin of error in this act—that
is, consider how much greater the range is than the horizontal
distance he must travel to miss the end of the last bus.
(Neglect air resistance.)

29. An archer shoots an arrow at a 75.0 m distant target; the
bull’s-eye of the target is at same height as the release height
of the arrow. (a) At what angle must the arrow be released to
hit the bull’s-eye if its initial speed is 35.0 m/s? In this part of
the problem, explicitly show how you follow the steps involved
in solving projectile motion problems. (b) There is a large tree
halfway between the archer and the target with an
overhanging horizontal branch 3.50 m above the release
height of the arrow. Will the arrow go over or under the
branch?

30. A rugby player passes the ball 7.00 m across the field,
where it is caught at the same height as it left his hand. (a) At
what angle was the ball thrown if its initial speed was 12.0 m/
s, assuming that the smaller of the two possible angles was
used? (b) What other angle gives the same range, and why
would it not be used? (c) How long did this pass take?

31. Verify the ranges for the projectiles in Figure 3.40(a) for
θ = 45º and the given initial velocities.

32. Verify the ranges shown for the projectiles in Figure
3.40(b) for an initial velocity of 50 m/s at the given initial
angles.

33. The cannon on a battleship can fire a shell a maximum
distance of 32.0 km. (a) Calculate the initial velocity of the
shell. (b) What maximum height does it reach? (At its highest,
the shell is above 60% of the atmosphere—but air resistance
is not really negligible as assumed to make this problem
easier.) (c) The ocean is not flat, because the Earth is curved.

Assume that the radius of the Earth is 6.37×103 km . How

many meters lower will its surface be 32.0 km from the ship
along a horizontal line parallel to the surface at the ship?
Does your answer imply that error introduced by the
assumption of a flat Earth in projectile motion is significant
here?

34. An arrow is shot from a height of 1.5 m toward a cliff of
height H . It is shot with a velocity of 30 m/s at an angle of

60º above the horizontal. It lands on the top edge of the cliff

4.0 s later. (a) What is the height of the cliff? (b) What is the
maximum height reached by the arrow along its trajectory? (c)
What is the arrow’s impact speed just before hitting the cliff?

35. In the standing broad jump, one squats and then pushes
off with the legs to see how far one can jump. Suppose the
extension of the legs from the crouch position is 0.600 m and
the acceleration achieved from this position is 1.25 times the
acceleration due to gravity, g . How far can they jump? State

your assumptions. (Increased range can be achieved by
swinging the arms in the direction of the jump.)

36. The world long jump record is 8.95 m (Mike Powell, USA,
1991). Treated as a projectile, what is the maximum range
obtainable by a person if he has a take-off speed of 9.5 m/s?
State your assumptions.

37. Serving at a speed of 170 km/h, a tennis player hits the
ball at a height of 2.5 m and an angle θ below the horizontal.

The base line is 11.9 m from the net, which is 0.91 m high.
What is the angle θ such that the ball just crosses the net?

Will the ball land in the service box, whose service line is 6.40
m from the net?

38. A football quarterback is moving straight backward at a
speed of 2.00 m/s when he throws a pass to a player 18.0 m
straight downfield. (a) If the ball is thrown at an angle of 25º
relative to the ground and is caught at the same height as it is
released, what is its initial speed relative to the ground? (b)
How long does it take to get to the receiver? (c) What is its
maximum height above its point of release?

39. Gun sights are adjusted to aim high to compensate for the
effect of gravity, effectively making the gun accurate only for a
specific range. (a) If a gun is sighted to hit targets that are at
the same height as the gun and 100.0 m away, how low will
the bullet hit if aimed directly at a target 150.0 m away? The
muzzle velocity of the bullet is 275 m/s. (b) Discuss
qualitatively how a larger muzzle velocity would affect this
problem and what would be the effect of air resistance.

40. An eagle is flying horizontally at a speed of 3.00 m/s when
the fish in her talons wiggles loose and falls into the lake 5.00
m below. Calculate the velocity of the fish relative to the water
when it hits the water.

41. An owl is carrying a mouse to the chicks in its nest. Its
position at that time is 4.00 m west and 12.0 m above the
center of the 30.0 cm diameter nest. The owl is flying east at
3.50 m/s at an angle 30.0º below the horizontal when it

accidentally drops the mouse. Is the owl lucky enough to
have the mouse hit the nest? To answer this question,
calculate the horizontal position of the mouse when it has
fallen 12.0 m.

42. Suppose a soccer player kicks the ball from a distance 30
m toward the goal. Find the initial speed of the ball if it just
passes over the goal, 2.4 m above the ground, given the
initial direction to be 40º above the horizontal.

43. Can a goalkeeper at her/ his goal kick a soccer ball into
the opponent’s goal without the ball touching the ground? The
distance will be about 95 m. A goalkeeper can give the ball a
speed of 30 m/s.

44. The free throw line in basketball is 4.57 m (15 ft) from the
basket, which is 3.05 m (10 ft) above the floor. A player
standing on the free throw line throws the ball with an initial
speed of 8.15 m/s, releasing it at a height of 2.44 m (8 ft)
above the floor. At what angle above the horizontal must the
ball be thrown to exactly hit the basket? Note that most
players will use a large initial angle rather than a flat shot
because it allows for a larger margin of error. Explicitly show
how you follow the steps involved in solving projectile motion
problems.
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45. In 2007, Michael Carter (U.S.) set a world record in the
shot put with a throw of 24.77 m. What was the initial speed
of the shot if he released it at a height of 2.10 m and threw it
at an angle of 38.0º above the horizontal? (Although the

maximum distance for a projectile on level ground is achieved
at 45º when air resistance is neglected, the actual angle to

achieve maximum range is smaller; thus, 38º will give a

longer range than 45º in the shot put.)

46. A basketball player is running at 5.00 m/s directly

toward the basket when he jumps into the air to dunk the ball.
He maintains his horizontal velocity. (a) What vertical velocity
does he need to rise 0.750 m above the floor? (b) How far
from the basket (measured in the horizontal direction) must
he start his jump to reach his maximum height at the same
time as he reaches the basket?

47. A football player punts the ball at a 45.0º angle. Without

an effect from the wind, the ball would travel 60.0 m
horizontally. (a) What is the initial speed of the ball? (b) When
the ball is near its maximum height it experiences a brief gust
of wind that reduces its horizontal velocity by 1.50 m/s. What
distance does the ball travel horizontally?

48. Prove that the trajectory of a projectile is parabolic, having

the form y = ax + bx2 . To obtain this expression, solve the

equation x = v0x t for t and substitute it into the expression

for y = v0yt – (1 / 2)gt2 (These equations describe the x
and y positions of a projectile that starts at the origin.) You

should obtain an equation of the form y = ax + bx2 where

a and b are constants.

49. Derive R =
v0

2 sin 2θ0
g for the range of a projectile on

level ground by finding the time t at which y becomes zero

and substituting this value of t into the expression for

x − x0 , noting that R = x − x0

50. Unreasonable Results (a) Find the maximum range of a
super cannon that has a muzzle velocity of 4.0 km/s. (b) What
is unreasonable about the range you found? (c) Is the
premise unreasonable or is the available equation
inapplicable? Explain your answer. (d) If such a muzzle
velocity could be obtained, discuss the effects of air
resistance, thinning air with altitude, and the curvature of the
Earth on the range of the super cannon.

51. Construct Your Own Problem Consider a ball tossed
over a fence. Construct a problem in which you calculate the
ball’s needed initial velocity to just clear the fence. Among the
things to determine are; the height of the fence, the distance
to the fence from the point of release of the ball, and the
height at which the ball is released. You should also consider
whether it is possible to choose the initial speed for the ball
and just calculate the angle at which it is thrown. Also
examine the possibility of multiple solutions given the
distances and heights you have chosen.

3.5 Addition of Velocities

52. Bryan Allen pedaled a human-powered aircraft across the
English Channel from the cliffs of Dover to Cap Gris-Nez on
June 12, 1979. (a) He flew for 169 min at an average velocity
of 3.53 m/s in a direction 45º south of east. What was his

total displacement? (b) Allen encountered a headwind
averaging 2.00 m/s almost precisely in the opposite direction
of his motion relative to the Earth. What was his average
velocity relative to the air? (c) What was his total
displacement relative to the air mass?

53. A seagull flies at a velocity of 9.00 m/s straight into the
wind. (a) If it takes the bird 20.0 min to travel 6.00 km relative
to the Earth, what is the velocity of the wind? (b) If the bird
turns around and flies with the wind, how long will he take to
return 6.00 km? (c) Discuss how the wind affects the total
round-trip time compared to what it would be with no wind.

54. Near the end of a marathon race, the first two runners are
separated by a distance of 45.0 m. The front runner has a
velocity of 3.50 m/s, and the second a velocity of 4.20 m/s. (a)
What is the velocity of the second runner relative to the first?
(b) If the front runner is 250 m from the finish line, who will
win the race, assuming they run at constant velocity? (c)
What distance ahead will the winner be when she crosses the
finish line?

55. Verify that the coin dropped by the airline passenger in
the Example 3.8 travels 144 m horizontally while falling 1.50
m in the frame of reference of the Earth.

56. A football quarterback is moving straight backward at a
speed of 2.00 m/s when he throws a pass to a player 18.0 m
straight downfield. The ball is thrown at an angle of 25.0º
relative to the ground and is caught at the same height as it is
released. What is the initial velocity of the ball relative to the
quarterback ?

57. A ship sets sail from Rotterdam, The Netherlands,
heading due north at 7.00 m/s relative to the water. The local
ocean current is 1.50 m/s in a direction 40.0º north of east.

What is the velocity of the ship relative to the Earth?

58. (a) A jet airplane flying from Darwin, Australia, has an air
speed of 260 m/s in a direction 5.0º south of west. It is in the

jet stream, which is blowing at 35.0 m/s in a direction 15º
south of east. What is the velocity of the airplane relative to
the Earth? (b) Discuss whether your answers are consistent
with your expectations for the effect of the wind on the plane’s
path.

59. (a) In what direction would the ship in Exercise 3.57 have
to travel in order to have a velocity straight north relative to
the Earth, assuming its speed relative to the water remains
7.00 m/s ? (b) What would its speed be relative to the Earth?

60. (a) Another airplane is flying in a jet stream that is blowing
at 45.0 m/s in a direction 20º south of east (as in Exercise

3.58). Its direction of motion relative to the Earth is 45.0º
south of west, while its direction of travel relative to the air is
5.00º south of west. What is the airplane’s speed relative to

the air mass? (b) What is the airplane’s speed relative to the
Earth?
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61. A sandal is dropped from the top of a 15.0-m-high mast
on a ship moving at 1.75 m/s due south. Calculate the
velocity of the sandal when it hits the deck of the ship: (a)
relative to the ship and (b) relative to a stationary observer on
shore. (c) Discuss how the answers give a consistent result
for the position at which the sandal hits the deck.

62. The velocity of the wind relative to the water is crucial to
sailboats. Suppose a sailboat is in an ocean current that has
a velocity of 2.20 m/s in a direction 30.0º east of north

relative to the Earth. It encounters a wind that has a velocity
of 4.50 m/s in a direction of 50.0º south of west relative to

the Earth. What is the velocity of the wind relative to the
water?

63. The great astronomer Edwin Hubble discovered that all
distant galaxies are receding from our Milky Way Galaxy with
velocities proportional to their distances. It appears to an
observer on the Earth that we are at the center of an
expanding universe. Figure 3.62 illustrates this for five
galaxies lying along a straight line, with the Milky Way Galaxy
at the center. Using the data from the figure, calculate the
velocities: (a) relative to galaxy 2 and (b) relative to galaxy 5.
The results mean that observers on all galaxies will see
themselves at the center of the expanding universe, and they
would likely be aware of relative velocities, concluding that it
is not possible to locate the center of expansion with the
given information.

Figure 3.62 Five galaxies on a straight line, showing their distances and

velocities relative to the Milky Way (MW) Galaxy. The distances are in

millions of light years (Mly), where a light year is the distance light

travels in one year. The velocities are nearly proportional to the

distances. The sizes of the galaxies are greatly exaggerated; an

average galaxy is about 0.1 Mly across.

64. (a) Use the distance and velocity data in Figure 3.62 to
find the rate of expansion as a function of distance.

(b) If you extrapolate back in time, how long ago would all of
the galaxies have been at approximately the same position?
The two parts of this problem give you some idea of how the
Hubble constant for universal expansion and the time back to
the Big Bang are determined, respectively.

65. An athlete crosses a 25-m-wide river by swimming
perpendicular to the water current at a speed of 0.5 m/s
relative to the water. He reaches the opposite side at a
distance 40 m downstream from his starting point. How fast is
the water in the river flowing with respect to the ground? What
is the speed of the swimmer with respect to a friend at rest on
the ground?

66. A ship sailing in the Gulf Stream is heading 25.0º west

of north at a speed of 4.00 m/s relative to the water. Its
velocity relative to the Earth is 4.80 m/s 5.00º west of

north. What is the velocity of the Gulf Stream? (The velocity
obtained is typical for the Gulf Stream a few hundred
kilometers off the east coast of the United States.)

67. An ice hockey player is moving at 8.00 m/s when he hits
the puck toward the goal. The speed of the puck relative to
the player is 29.0 m/s. The line between the center of the goal
and the player makes a 90.0º angle relative to his path as

shown in Figure 3.63. What angle must the puck’s velocity
make relative to the player (in his frame of reference) to hit
the center of the goal?

Figure 3.63 An ice hockey player moving across the rink must shoot

backward to give the puck a velocity toward the goal.

68. Unreasonable Results Suppose you wish to shoot
supplies straight up to astronauts in an orbit 36,000 km above
the surface of the Earth. (a) At what velocity must the
supplies be launched? (b) What is unreasonable about this
velocity? (c) Is there a problem with the relative velocity
between the supplies and the astronauts when the supplies
reach their maximum height? (d) Is the premise unreasonable
or is the available equation inapplicable? Explain your
answer.

69. Unreasonable Results A commercial airplane has an air
speed of 280 m/s due east and flies with a strong tailwind. It

travels 3000 km in a direction 5º south of east in 1.50 h. (a)

What was the velocity of the plane relative to the ground? (b)
Calculate the magnitude and direction of the tailwind’s
velocity. (c) What is unreasonable about both of these
velocities? (d) Which premise is unreasonable?

70. Construct Your Own Problem Consider an airplane
headed for a runway in a cross wind. Construct a problem in
which you calculate the angle the airplane must fly relative to
the air mass in order to have a velocity parallel to the runway.
Among the things to consider are the direction of the runway,
the wind speed and direction (its velocity) and the speed of
the plane relative to the air mass. Also calculate the speed of
the airplane relative to the ground. Discuss any last minute
maneuvers the pilot might have to perform in order for the
plane to land with its wheels pointing straight down the
runway.
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4 DYNAMICS: FORCE AND NEWTON'S
LAWS OF MOTION

Figure 4.1 Newton’s laws of motion describe the motion of the dolphin’s path. (credit: Jin Jang)

Chapter Outline
4.1. Development of Force Concept

• Understand the definition of force.
4.2. Newton’s First Law of Motion: Inertia

• Define mass and inertia.
• Understand Newton's first law of motion.

4.3. Newton’s Second Law of Motion: Concept of a System
• Define net force, external force, and system.
• Understand Newton’s second law of motion.
• Apply Newton’s second law to determine the weight of an object.

4.4. Newton’s Third Law of Motion: Symmetry in Forces
• Understand Newton's third law of motion.
• Apply Newton's third law to define systems and solve problems of motion.

4.5. Normal, Tension, and Other Examples of Forces
• Define normal and tension forces.
• Apply Newton's laws of motion to solve problems involving a variety of forces.
• Use trigonometric identities to resolve weight into components.

4.6. Problem-Solving Strategies
• Understand and apply a problem-solving procedure to solve problems using Newton's laws of motion.

4.7. Further Applications of Newton’s Laws of Motion
• Apply problem-solving techniques to solve for quantities in more complex systems of forces.
• Integrate concepts from kinematics to solve problems using Newton's laws of motion.

4.8. Extended Topic: The Four Basic Forces—An Introduction
• Understand the four basic forces that underlie the processes in nature.
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Introduction to Dynamics: Newton’s Laws of Motion

Motion draws our attention. Motion itself can be beautiful, causing us to marvel at the forces needed to achieve spectacular
motion, such as that of a dolphin jumping out of the water, or a pole vaulter, or the flight of a bird, or the orbit of a satellite. The
study of motion is kinematics, but kinematics only describes the way objects move—their velocity and their acceleration.
Dynamics considers the forces that affect the motion of moving objects and systems. Newton’s laws of motion are the
foundation of dynamics. These laws provide an example of the breadth and simplicity of principles under which nature functions.
They are also universal laws in that they apply to similar situations on Earth as well as in space.

Isaac Newton’s (1642–1727) laws of motion were just one part of the monumental work that has made him legendary. The
development of Newton’s laws marks the transition from the Renaissance into the modern era. This transition was characterized
by a revolutionary change in the way people thought about the physical universe. For many centuries natural philosophers had
debated the nature of the universe based largely on certain rules of logic with great weight given to the thoughts of earlier
classical philosophers such as Aristotle (384–322 BC). Among the many great thinkers who contributed to this change were
Newton and Galileo.

Figure 4.2 Isaac Newton’s monumental work, Philosophiae Naturalis Principia Mathematica, was published in 1687. It proposed scientific laws that are
still used today to describe the motion of objects. (credit: Service commun de la documentation de l'Université de Strasbourg)

Galileo was instrumental in establishing observation as the absolute determinant of truth, rather than “logical” argument. Galileo’s
use of the telescope was his most notable achievement in demonstrating the importance of observation. He discovered moons
orbiting Jupiter and made other observations that were inconsistent with certain ancient ideas and religious dogma. For this
reason, and because of the manner in which he dealt with those in authority, Galileo was tried by the Inquisition and punished.
He spent the final years of his life under a form of house arrest. Because others before Galileo had also made discoveries by
observing the nature of the universe, and because repeated observations verified those of Galileo, his work could not be
suppressed or denied. After his death, his work was verified by others, and his ideas were eventually accepted by the church and
scientific communities.

Galileo also contributed to the formation of what is now called Newton’s first law of motion. Newton made use of the work of his
predecessors, which enabled him to develop laws of motion, discover the law of gravity, invent calculus, and make great
contributions to the theories of light and color. It is amazing that many of these developments were made with Newton working
alone, without the benefit of the usual interactions that take place among scientists today.

It was not until the advent of modern physics early in the 20th century that it was discovered that Newton’s laws of motion
produce a good approximation to motion only when the objects are moving at speeds much, much less than the speed of light

and when those objects are larger than the size of most molecules (about 10−9 m in diameter). These constraints define the

realm of classical mechanics, as discussed in Introduction to the Nature of Science and Physics. At the beginning of the 20th

century, Albert Einstein (1879–1955) developed the theory of relativity and, along with many other scientists, developed quantum
theory. This theory does not have the constraints present in classical physics. All of the situations we consider in this chapter,
and all those preceding the introduction of relativity in Special Relativity, are in the realm of classical physics.

Making Connections: Past and Present Philosophy

The importance of observation and the concept of cause and effect were not always so entrenched in human thinking. This
realization was a part of the evolution of modern physics from natural philosophy. The achievements of Galileo, Newton,
Einstein, and others were key milestones in the history of scientific thought. Most of the scientific theories that are described
in this book descended from the work of these scientists.
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4.1 Development of Force Concept

Dynamics is the study of the forces that cause objects and systems to move. To understand this, we need a working definition of
force. Our intuitive definition of force—that is, a push or a pull—is a good place to start. We know that a push or pull has both
magnitude and direction (therefore, it is a vector quantity) and can vary considerably in each regard. For example, a cannon
exerts a strong force on a cannonball that is launched into the air. In contrast, Earth exerts only a tiny downward pull on a flea.
Our everyday experiences also give us a good idea of how multiple forces add. If two people push in different directions on a
third person, as illustrated in Figure 4.3, we might expect the total force to be in the direction shown. Since force is a vector, it
adds just like other vectors, as illustrated in Figure 4.3(a) for two ice skaters. Forces, like other vectors, are represented by
arrows and can be added using the familiar head-to-tail method or by trigonometric methods. These ideas were developed in
Two-Dimensional Kinematics.

Figure 4.3 Part (a) shows an overhead view of two ice skaters pushing on a third. Forces are vectors and add like other vectors, so the total force on
the third skater is in the direction shown. In part (b), we see a free-body diagram representing the forces acting on the third skater.

Figure 4.3(b) is our first example of a free-body diagram, which is a technique used to illustrate all the external forces acting
on a body. The body is represented by a single isolated point (or free body), and only those forces acting on the body from the
outside (external forces) are shown. (These forces are the only ones shown, because only external forces acting on the body
affect its motion. We can ignore any internal forces within the body.) Free-body diagrams are very useful in analyzing forces
acting on a system and are employed extensively in the study and application of Newton’s laws of motion.

A more quantitative definition of force can be based on some standard force, just as distance is measured in units relative to a
standard distance. One possibility is to stretch a spring a certain fixed distance, as illustrated in Figure 4.4, and use the force it
exerts to pull itself back to its relaxed shape—called a restoring force—as a standard. The magnitude of all other forces can be
stated as multiples of this standard unit of force. Many other possibilities exist for standard forces. (One that we will encounter in
Magnetism is the magnetic force between two wires carrying electric current.) Some alternative definitions of force will be given
later in this chapter.

Figure 4.4 The force exerted by a stretched spring can be used as a standard unit of force. (a) This spring has a length x when undistorted. (b) When

stretched a distance Δx , the spring exerts a restoring force, Frestore , which is reproducible. (c) A spring scale is one device that uses a spring to

measure force. The force Frestore is exerted on whatever is attached to the hook. Here Frestore has a magnitude of 6 units in the force standard

being employed.

Take-Home Experiment: Force Standards

To investigate force standards and cause and effect, get two identical rubber bands. Hang one rubber band vertically on a
hook. Find a small household item that could be attached to the rubber band using a paper clip, and use this item as a
weight to investigate the stretch of the rubber band. Measure the amount of stretch produced in the rubber band with one,
two, and four of these (identical) items suspended from the rubber band. What is the relationship between the number of
items and the amount of stretch? How large a stretch would you expect for the same number of items suspended from two
rubber bands? What happens to the amount of stretch of the rubber band (with the weights attached) if the weights are also
pushed to the side with a pencil?
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4.2 Newton’s First Law of Motion: Inertia

Experience suggests that an object at rest will remain at rest if left alone, and that an object in motion tends to slow down and
stop unless some effort is made to keep it moving. What Newton’s first law of motion states, however, is the following:

Newton’s First Law of Motion

A body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless acted on by a net external
force.

Note the repeated use of the verb “remains.” We can think of this law as preserving the status quo of motion.

Rather than contradicting our experience, Newton’s first law of motion states that there must be a cause (which is a net
external force) for there to be any change in velocity (either a change in magnitude or direction). We will define net external force
in the next section. An object sliding across a table or floor slows down due to the net force of friction acting on the object. If
friction disappeared, would the object still slow down?

The idea of cause and effect is crucial in accurately describing what happens in various situations. For example, consider what
happens to an object sliding along a rough horizontal surface. The object quickly grinds to a halt. If we spray the surface with
talcum powder to make the surface smoother, the object slides farther. If we make the surface even smoother by rubbing
lubricating oil on it, the object slides farther yet. Extrapolating to a frictionless surface, we can imagine the object sliding in a
straight line indefinitely. Friction is thus the cause of the slowing (consistent with Newton’s first law). The object would not slow
down at all if friction were completely eliminated. Consider an air hockey table. When the air is turned off, the puck slides only a
short distance before friction slows it to a stop. However, when the air is turned on, it creates a nearly frictionless surface, and
the puck glides long distances without slowing down. Additionally, if we know enough about the friction, we can accurately predict
how quickly the object will slow down. Friction is an external force.

Newton’s first law is completely general and can be applied to anything from an object sliding on a table to a satellite in orbit to
blood pumped from the heart. Experiments have thoroughly verified that any change in velocity (speed or direction) must be
caused by an external force. The idea of generally applicable or universal laws is important not only here—it is a basic feature of
all laws of physics. Identifying these laws is like recognizing patterns in nature from which further patterns can be discovered.
The genius of Galileo, who first developed the idea for the first law, and Newton, who clarified it, was to ask the fundamental
question, “What is the cause?” Thinking in terms of cause and effect is a worldview fundamentally different from the typical
ancient Greek approach when questions such as “Why does a tiger have stripes?” would have been answered in Aristotelian
fashion, “That is the nature of the beast.” True perhaps, but not a useful insight.

Mass

The property of a body to remain at rest or to remain in motion with constant velocity is called inertia. Newton’s first law is often
called the law of inertia. As we know from experience, some objects have more inertia than others. It is obviously more difficult
to change the motion of a large boulder than that of a basketball, for example. The inertia of an object is measured by its mass.
Roughly speaking, mass is a measure of the amount of “stuff” (or matter) in something. The quantity or amount of matter in an
object is determined by the numbers of atoms and molecules of various types it contains. Unlike weight, mass does not vary with
location. The mass of an object is the same on Earth, in orbit, or on the surface of the Moon. In practice, it is very difficult to count
and identify all of the atoms and molecules in an object, so masses are not often determined in this manner. Operationally, the
masses of objects are determined by comparison with the standard kilogram.

Check Your Understanding

Which has more mass: a kilogram of cotton balls or a kilogram of gold?

Solution

They are equal. A kilogram of one substance is equal in mass to a kilogram of another substance. The quantities that might
differ between them are volume and density.

4.3 Newton’s Second Law of Motion: Concept of a System

Newton’s second law of motion is closely related to Newton’s first law of motion. It mathematically states the cause and effect
relationship between force and changes in motion. Newton’s second law of motion is more quantitative and is used extensively to
calculate what happens in situations involving a force. Before we can write down Newton’s second law as a simple equation
giving the exact relationship of force, mass, and acceleration, we need to sharpen some ideas that have already been
mentioned.

First, what do we mean by a change in motion? The answer is that a change in motion is equivalent to a change in velocity. A
change in velocity means, by definition, that there is an acceleration. Newton’s first law says that a net external force causes a
change in motion; thus, we see that a net external force causes acceleration.

Another question immediately arises. What do we mean by an external force? An intuitive notion of external is correct—an
external force acts from outside the system of interest. For example, in Figure 4.5(a) the system of interest is the wagon plus
the child in it. The two forces exerted by the other children are external forces. An internal force acts between elements of the

136 Chapter 4 | Dynamics: Force and Newton's Laws of Motion

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



system. Again looking at Figure 4.5(a), the force the child in the wagon exerts to hang onto the wagon is an internal force
between elements of the system of interest. Only external forces affect the motion of a system, according to Newton’s first law.
(The internal forces actually cancel, as we shall see in the next section.) You must define the boundaries of the system before
you can determine which forces are external. Sometimes the system is obvious, whereas other times identifying the boundaries
of a system is more subtle. The concept of a system is fundamental to many areas of physics, as is the correct application of
Newton’s laws. This concept will be revisited many times on our journey through physics.

Figure 4.5 Different forces exerted on the same mass produce different accelerations. (a) Two children push a wagon with a child in it. Arrows
representing all external forces are shown. The system of interest is the wagon and its rider. The weight w of the system and the support of the

ground N are also shown for completeness and are assumed to cancel. The vector f represents the friction acting on the wagon, and it acts to the

left, opposing the motion of the wagon. (b) All of the external forces acting on the system add together to produce a net force, Fnet . The free-body

diagram shows all of the forces acting on the system of interest. The dot represents the center of mass of the system. Each force vector extends from
this dot. Because there are two forces acting to the right, we draw the vectors collinearly. (c) A larger net external force produces a larger acceleration (

a′ > a ) when an adult pushes the child.

Now, it seems reasonable that acceleration should be directly proportional to and in the same direction as the net (total) external
force acting on a system. This assumption has been verified experimentally and is illustrated in Figure 4.5. In part (a), a smaller
force causes a smaller acceleration than the larger force illustrated in part (c). For completeness, the vertical forces are also
shown; they are assumed to cancel since there is no acceleration in the vertical direction. The vertical forces are the weight w
and the support of the ground N , and the horizontal force f represents the force of friction. These will be discussed in more

detail in later sections. For now, we will define friction as a force that opposes the motion past each other of objects that are
touching. Figure 4.5(b) shows how vectors representing the external forces add together to produce a net force, Fnet .

To obtain an equation for Newton’s second law, we first write the relationship of acceleration and net external force as the
proportionality

(4.1)a ∝ Fnet ,

where the symbol ∝ means “proportional to,” and Fnet is the net external force. (The net external force is the vector sum of

all external forces and can be determined graphically, using the head-to-tail method, or analytically, using components. The
techniques are the same as for the addition of other vectors, and are covered in Two-Dimensional Kinematics.) This
proportionality states what we have said in words—acceleration is directly proportional to the net external force. Once the system
of interest is chosen, it is important to identify the external forces and ignore the internal ones. It is a tremendous simplification
not to have to consider the numerous internal forces acting between objects within the system, such as muscular forces within
the child’s body, let alone the myriad of forces between atoms in the objects, but by doing so, we can easily solve some very
complex problems with only minimal error due to our simplification

Now, it also seems reasonable that acceleration should be inversely proportional to the mass of the system. In other words, the
larger the mass (the inertia), the smaller the acceleration produced by a given force. And indeed, as illustrated in Figure 4.6, the
same net external force applied to a car produces a much smaller acceleration than when applied to a basketball. The
proportionality is written as
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(4.2)a ∝ 1
m

where m is the mass of the system. Experiments have shown that acceleration is exactly inversely proportional to mass, just as

it is exactly linearly proportional to the net external force.

Figure 4.6 The same force exerted on systems of different masses produces different accelerations. (a) A basketball player pushes on a basketball to
make a pass. (The effect of gravity on the ball is ignored.) (b) The same player exerts an identical force on a stalled SUV and produces a far smaller
acceleration (even if friction is negligible). (c) The free-body diagrams are identical, permitting direct comparison of the two situations. A series of
patterns for the free-body diagram will emerge as you do more problems.

It has been found that the acceleration of an object depends only on the net external force and the mass of the object.
Combining the two proportionalities just given yields Newton's second law of motion.

Newton’s Second Law of Motion

The acceleration of a system is directly proportional to and in the same direction as the net external force acting on the
system, and inversely proportional to its mass.

In equation form, Newton’s second law of motion is

(4.3)
a = Fnet

m .

This is often written in the more familiar form

(4.4)Fnet = ma.

When only the magnitude of force and acceleration are considered, this equation is simply

(4.5)Fnet = ma.

Although these last two equations are really the same, the first gives more insight into what Newton’s second law means. The
law is a cause and effect relationship among three quantities that is not simply based on their definitions. The validity of the
second law is completely based on experimental verification.

Units of Force

Fnet = ma is used to define the units of force in terms of the three basic units for mass, length, and time. The SI unit of force is

called the newton (abbreviated N) and is the force needed to accelerate a 1-kg system at the rate of 1m/s2 . That is, since

Fnet = ma ,

(4.6)1 N = 1 kg ⋅ m/s2.

While almost the entire world uses the newton for the unit of force, in the United States the most familiar unit of force is the
pound (lb), where 1 N = 0.225 lb.

Weight and the Gravitational Force

When an object is dropped, it accelerates toward the center of Earth. Newton’s second law states that a net force on an object is
responsible for its acceleration. If air resistance is negligible, the net force on a falling object is the gravitational force, commonly
called its weight w . Weight can be denoted as a vector w because it has a direction; down is, by definition, the direction of

gravity, and hence weight is a downward force. The magnitude of weight is denoted as w . Galileo was instrumental in showing

that, in the absence of air resistance, all objects fall with the same acceleration g . Using Galileo’s result and Newton’s second

law, we can derive an equation for weight.

Consider an object with mass m falling downward toward Earth. It experiences only the downward force of gravity, which has
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magnitude w . Newton’s second law states that the magnitude of the net external force on an object is Fnet = ma .

Since the object experiences only the downward force of gravity, Fnet = w . We know that the acceleration of an object due to

gravity is g , or a = g . Substituting these into Newton’s second law gives

Weight

This is the equation for weight—the gravitational force on a mass m :

(4.7)w = mg.

Since g = 9.80 m/s2 on Earth, the weight of a 1.0 kg object on Earth is 9.8 N, as we see:

(4.8)w = mg = (1.0 kg)(9.80 m/s2 ) = 9.8 N.

Recall that g can take a positive or negative value, depending on the positive direction in the coordinate system. Be sure to

take this into consideration when solving problems with weight.

When the net external force on an object is its weight, we say that it is in free-fall. That is, the only force acting on the object is
the force of gravity. In the real world, when objects fall downward toward Earth, they are never truly in free-fall because there is
always some upward force from the air acting on the object.

The acceleration due to gravity g varies slightly over the surface of Earth, so that the weight of an object depends on location

and is not an intrinsic property of the object. Weight varies dramatically if one leaves Earth’s surface. On the Moon, for example,

the acceleration due to gravity is only 1.67 m/s2 . A 1.0-kg mass thus has a weight of 9.8 N on Earth and only about 1.7 N on

the Moon.

The broadest definition of weight in this sense is that the weight of an object is the gravitational force on it from the nearest large
body, such as Earth, the Moon, the Sun, and so on. This is the most common and useful definition of weight in physics. It differs
dramatically, however, from the definition of weight used by NASA and the popular media in relation to space travel and
exploration. When they speak of “weightlessness” and “microgravity,” they are really referring to the phenomenon we call “free-
fall” in physics. We shall use the above definition of weight, and we will make careful distinctions between free-fall and actual
weightlessness.

It is important to be aware that weight and mass are very different physical quantities, although they are closely related. Mass is
the quantity of matter (how much “stuff”) and does not vary in classical physics, whereas weight is the gravitational force and
does vary depending on gravity. It is tempting to equate the two, since most of our examples take place on Earth, where the
weight of an object only varies a little with the location of the object. Furthermore, the terms mass and weight are used
interchangeably in everyday language; for example, our medical records often show our “weight” in kilograms, but never in the
correct units of newtons.

Common Misconceptions: Mass vs. Weight

Mass and weight are often used interchangeably in everyday language. However, in science, these terms are distinctly
different from one another. Mass is a measure of how much matter is in an object. The typical measure of mass is the
kilogram (or the “slug” in English units). Weight, on the other hand, is a measure of the force of gravity acting on an object.
Weight is equal to the mass of an object ( m ) multiplied by the acceleration due to gravity ( g ). Like any other force, weight

is measured in terms of newtons (or pounds in English units).

Assuming the mass of an object is kept intact, it will remain the same, regardless of its location. However, because weight
depends on the acceleration due to gravity, the weight of an object can change when the object enters into a region with

stronger or weaker gravity. For example, the acceleration due to gravity on the Moon is 1.67 m/s2 (which is much less than

the acceleration due to gravity on Earth, 9.80 m/s2 ). If you measured your weight on Earth and then measured your weight

on the Moon, you would find that you “weigh” much less, even though you do not look any skinnier. This is because the force
of gravity is weaker on the Moon. In fact, when people say that they are “losing weight,” they really mean that they are losing
“mass” (which in turn causes them to weigh less).

Take-Home Experiment: Mass and Weight

What do bathroom scales measure? When you stand on a bathroom scale, what happens to the scale? It depresses slightly.
The scale contains springs that compress in proportion to your weight—similar to rubber bands expanding when pulled. The
springs provide a measure of your weight (for an object which is not accelerating). This is a force in newtons (or pounds). In
most countries, the measurement is divided by 9.80 to give a reading in mass units of kilograms. The scale measures weight
but is calibrated to provide information about mass. While standing on a bathroom scale, push down on a table next to you.
What happens to the reading? Why? Would your scale measure the same “mass” on Earth as on the Moon?
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Example 4.1 What Acceleration Can a Person Produce when Pushing a Lawn Mower?

Suppose that the net external force (push minus friction) exerted on a lawn mower is 51 N (about 11 lb) parallel to the
ground. The mass of the mower is 24 kg. What is its acceleration?

Figure 4.7 The net force on a lawn mower is 51 N to the right. At what rate does the lawn mower accelerate to the right?

Strategy

Since Fnet and m are given, the acceleration can be calculated directly from Newton’s second law as stated in

Fnet = ma .

Solution

The magnitude of the acceleration a is a = Fnet
m . Entering known values gives

(4.9)a = 51 N
24 kg

Substituting the units kg ⋅ m/s2 for N yields

(4.10)
a = 51 kg ⋅ m/s2

24 kg = 2.1 m/s2.

Discussion

The direction of the acceleration is the same direction as that of the net force, which is parallel to the ground. There is no
information given in this example about the individual external forces acting on the system, but we can say something about
their relative magnitudes. For example, the force exerted by the person pushing the mower must be greater than the friction
opposing the motion (since we know the mower moves forward), and the vertical forces must cancel if there is to be no
acceleration in the vertical direction (the mower is moving only horizontally). The acceleration found is small enough to be
reasonable for a person pushing a mower. Such an effort would not last too long because the person’s top speed would
soon be reached.

Example 4.2 What Rocket Thrust Accelerates This Sled?

Prior to space flights carrying astronauts, rocket sleds were used to test aircraft, missile equipment, and physiological effects
on human subjects at high speeds. They consisted of a platform that was mounted on one or two rails and propelled by
several rockets. Calculate the magnitude of force exerted by each rocket, called its thrust T , for the four-rocket propulsion

system shown in Figure 4.8. The sled’s initial acceleration is 49 m/s2, the mass of the system is 2100 kg, and the force of

friction opposing the motion is known to be 650 N.
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Figure 4.8 A sled experiences a rocket thrust that accelerates it to the right. Each rocket creates an identical thrust T . As in other situations

where there is only horizontal acceleration, the vertical forces cancel. The ground exerts an upward force N on the system that is equal in

magnitude and opposite in direction to its weight, w . The system here is the sled, its rockets, and rider, so none of the forces between these

objects are considered. The arrow representing friction ( f ) is drawn larger than scale.

Strategy

Although there are forces acting vertically and horizontally, we assume the vertical forces cancel since there is no vertical
acceleration. This leaves us with only horizontal forces and a simpler one-dimensional problem. Directions are indicated with
plus or minus signs, with right taken as the positive direction. See the free-body diagram in the figure.

Solution

Since acceleration, mass, and the force of friction are given, we start with Newton’s second law and look for ways to find the
thrust of the engines. Since we have defined the direction of the force and acceleration as acting “to the right,” we need to
consider only the magnitudes of these quantities in the calculations. Hence we begin with

(4.11)Fnet = ma,

where Fnet is the net force along the horizontal direction. We can see from Figure 4.8 that the engine thrusts add, while

friction opposes the thrust. In equation form, the net external force is

(4.12)Fnet = 4T − f .

Substituting this into Newton’s second law gives

(4.13)Fnet = ma = 4T − f .

Using a little algebra, we solve for the total thrust 4T:

(4.14)4T = ma + f .

Substituting known values yields

(4.15)4T = ma + f = (2100 kg)(49 m/s2 ) + 650 N.

So the total thrust is

(4.16)4T = 1.0×105 N,

and the individual thrusts are

(4.17)
T = 1.0×105 N

4 = 2.6×104 N.

Discussion

The numbers are quite large, so the result might surprise you. Experiments such as this were performed in the early 1960s
to test the limits of human endurance and the setup designed to protect human subjects in jet fighter emergency ejections.
Speeds of 1000 km/h were obtained, with accelerations of 45 g 's. (Recall that g , the acceleration due to gravity, is
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9.80 m/s2 . When we say that an acceleration is 45 g 's, it is 45×9.80 m/s2 , which is approximately 440 m/s2 .) While

living subjects are not used any more, land speeds of 10,000 km/h have been obtained with rocket sleds. In this example, as
in the preceding one, the system of interest is obvious. We will see in later examples that choosing the system of interest is
crucial—and the choice is not always obvious.

Newton’s second law of motion is more than a definition; it is a relationship among acceleration, force, and mass. It can help
us make predictions. Each of those physical quantities can be defined independently, so the second law tells us something
basic and universal about nature. The next section introduces the third and final law of motion.

4.4 Newton’s Third Law of Motion: Symmetry in Forces

There is a passage in the musical Man of la Mancha that relates to Newton’s third law of motion. Sancho, in describing a fight
with his wife to Don Quixote, says, “Of course I hit her back, Your Grace, but she’s a lot harder than me and you know what they
say, ‘Whether the stone hits the pitcher or the pitcher hits the stone, it’s going to be bad for the pitcher.’” This is exactly what
happens whenever one body exerts a force on another—the first also experiences a force (equal in magnitude and opposite in
direction). Numerous common experiences, such as stubbing a toe or throwing a ball, confirm this. It is precisely stated in
Newton’s third law of motion.

Newton’s Third Law of Motion

Whenever one body exerts a force on a second body, the first body experiences a force that is equal in magnitude and
opposite in direction to the force that it exerts.

This law represents a certain symmetry in nature: Forces always occur in pairs, and one body cannot exert a force on another
without experiencing a force itself. We sometimes refer to this law loosely as “action-reaction,” where the force exerted is the
action and the force experienced as a consequence is the reaction. Newton’s third law has practical uses in analyzing the origin
of forces and understanding which forces are external to a system.

We can readily see Newton’s third law at work by taking a look at how people move about. Consider a swimmer pushing off from
the side of a pool, as illustrated in Figure 4.9. She pushes against the pool wall with her feet and accelerates in the direction
opposite to that of her push. The wall has exerted an equal and opposite force back on the swimmer. You might think that two
equal and opposite forces would cancel, but they do not because they act on different systems. In this case, there are two
systems that we could investigate: the swimmer or the wall. If we select the swimmer to be the system of interest, as in the
figure, then Fwall on feet is an external force on this system and affects its motion. The swimmer moves in the direction of

Fwall on feet . In contrast, the force Ffeet on wall acts on the wall and not on our system of interest. Thus Ffeet on wall does not

directly affect the motion of the system and does not cancel Fwall on feet . Note that the swimmer pushes in the direction

opposite to that in which she wishes to move. The reaction to her push is thus in the desired direction.

Figure 4.9 When the swimmer exerts a force Ffeet on wall on the wall, she accelerates in the direction opposite to that of her push. This means the

net external force on her is in the direction opposite to Ffeet on wall . This opposition occurs because, in accordance with Newton’s third law of

motion, the wall exerts a force Fwall on feet on her, equal in magnitude but in the direction opposite to the one she exerts on it. The line around the

swimmer indicates the system of interest. Note that Ffeet on wall does not act on this system (the swimmer) and, thus, does not cancel

Fwall on feet . Thus the free-body diagram shows only Fwall on feet , w , the gravitational force, and BF , the buoyant force of the water

supporting the swimmer’s weight. The vertical forces w and BF cancel since there is no vertical motion.
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Other examples of Newton’s third law are easy to find. As a professor paces in front of a whiteboard, she exerts a force
backward on the floor. The floor exerts a reaction force forward on the professor that causes her to accelerate forward. Similarly,
a car accelerates because the ground pushes forward on the drive wheels in reaction to the drive wheels pushing backward on
the ground. You can see evidence of the wheels pushing backward when tires spin on a gravel road and throw rocks backward.
In another example, rockets move forward by expelling gas backward at high velocity. This means the rocket exerts a large
backward force on the gas in the rocket combustion chamber, and the gas therefore exerts a large reaction force forward on the
rocket. This reaction force is called thrust. It is a common misconception that rockets propel themselves by pushing on the
ground or on the air behind them. They actually work better in a vacuum, where they can more readily expel the exhaust gases.
Helicopters similarly create lift by pushing air down, thereby experiencing an upward reaction force. Birds and airplanes also fly
by exerting force on air in a direction opposite to that of whatever force they need. For example, the wings of a bird force air
downward and backward in order to get lift and move forward. An octopus propels itself in the water by ejecting water through a
funnel from its body, similar to a jet ski. In a situation similar to Sancho’s, professional cage fighters experience reaction forces
when they punch, sometimes breaking their hand by hitting an opponent’s body.

Example 4.3 Getting Up To Speed: Choosing the Correct System

A physics professor pushes a cart of demonstration equipment to a lecture hall, as seen in Figure 4.10. Her mass is 65.0
kg, the cart’s is 12.0 kg, and the equipment’s is 7.0 kg. Calculate the acceleration produced when the professor exerts a
backward force of 150 N on the floor. All forces opposing the motion, such as friction on the cart’s wheels and air resistance,
total 24.0 N.

Figure 4.10 A professor pushes a cart of demonstration equipment. The lengths of the arrows are proportional to the magnitudes of the forces

(except for f , since it is too small to draw to scale). Different questions are asked in each example; thus, the system of interest must be defined

differently for each. System 1 is appropriate for this example, since it asks for the acceleration of the entire group of objects. Only Ffloor and f
are external forces acting on System 1 along the line of motion. All other forces either cancel or act on the outside world. System 2 is chosen for

Example 4.4 so that Fprof will be an external force and enter into Newton’s second law. Note that the free-body diagrams, which allow us to

apply Newton’s second law, vary with the system chosen.

Strategy

Since they accelerate as a unit, we define the system to be the professor, cart, and equipment. This is System 1 in Figure
4.10. The professor pushes backward with a force Ffoot of 150 N. According to Newton’s third law, the floor exerts a

forward reaction force Ffloor of 150 N on System 1. Because all motion is horizontal, we can assume there is no net force

in the vertical direction. The problem is therefore one-dimensional along the horizontal direction. As noted, f opposes the

motion and is thus in the opposite direction of Ffloor . Note that we do not include the forces Fprof or Fcart because

these are internal forces, and we do not include Ffoot because it acts on the floor, not on the system. There are no other

significant forces acting on System 1. If the net external force can be found from all this information, we can use Newton’s
second law to find the acceleration as requested. See the free-body diagram in the figure.

Solution
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Newton’s second law is given by

(4.18)
a = Fnet

m .

The net external force on System 1 is deduced from Figure 4.10 and the discussion above to be

(4.19)Fnet = Ffloor − f = 150 N − 24.0 N = 126 N.

The mass of System 1 is

(4.20)m = (65.0 + 12.0 + 7.0) kg = 84 kg.

These values of Fnet and m produce an acceleration of

(4.21)
a = Fnet

m ,

a = 126 N
84 kg = 1.5 m/s2 .

Discussion

None of the forces between components of System 1, such as between the professor’s hands and the cart, contribute to the
net external force because they are internal to System 1. Another way to look at this is to note that forces between
components of a system cancel because they are equal in magnitude and opposite in direction. For example, the force
exerted by the professor on the cart results in an equal and opposite force back on her. In this case both forces act on the
same system and, therefore, cancel. Thus internal forces (between components of a system) cancel. Choosing System 1
was crucial to solving this problem.

Example 4.4 Force on the Cart—Choosing a New System

Calculate the force the professor exerts on the cart in Figure 4.10 using data from the previous example if needed.

Strategy

If we now define the system of interest to be the cart plus equipment (System 2 in Figure 4.10), then the net external force
on System 2 is the force the professor exerts on the cart minus friction. The force she exerts on the cart, Fprof , is an

external force acting on System 2. Fprof was internal to System 1, but it is external to System 2 and will enter Newton’s

second law for System 2.

Solution

Newton’s second law can be used to find Fprof . Starting with

(4.22)
a = Fnet

m
and noting that the magnitude of the net external force on System 2 is

(4.23)Fnet = Fprof − f ,

we solve for Fprof , the desired quantity:

(4.24)Fprof = Fnet + f .

The value of f is given, so we must calculate net Fnet . That can be done since both the acceleration and mass of System

2 are known. Using Newton’s second law we see that

(4.25)Fnet = ma,

where the mass of System 2 is 19.0 kg ( m = 12.0 kg + 7.0 kg) and its acceleration was found to be a = 1.5 m/s2 in the

previous example. Thus,

(4.26)Fnet = ma,

(4.27)Fnet = (19.0 kg)(1.5 m/s2 ) = 29 N.

Now we can find the desired force:
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(4.28)Fprof = Fnet + f ,

(4.29)Fprof = 29 N+24.0 N = 53 N.

Discussion

It is interesting that this force is significantly less than the 150-N force the professor exerted backward on the floor. Not all of
that 150-N force is transmitted to the cart; some of it accelerates the professor.

The choice of a system is an important analytical step both in solving problems and in thoroughly understanding the physics
of the situation (which is not necessarily the same thing).

PhET Explorations: Gravity Force Lab

Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it
changes the gravity force.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42074/
1.10/#Phet_module_4.4)

Figure 4.11

4.5 Normal, Tension, and Other Examples of Forces

Forces are given many names, such as push, pull, thrust, lift, weight, friction, and tension. Traditionally, forces have been
grouped into several categories and given names relating to their source, how they are transmitted, or their effects. The most
important of these categories are discussed in this section, together with some interesting applications. Further examples of
forces are discussed later in this text.

Normal Force

Weight (also called force of gravity) is a pervasive force that acts at all times and must be counteracted to keep an object from
falling. You definitely notice that you must support the weight of a heavy object by pushing up on it when you hold it stationary, as
illustrated in Figure 4.12(a). But how do inanimate objects like a table support the weight of a mass placed on them, such as
shown in Figure 4.12(b)? When the bag of dog food is placed on the table, the table actually sags slightly under the load. This
would be noticeable if the load were placed on a card table, but even rigid objects deform when a force is applied to them.
Unless the object is deformed beyond its limit, it will exert a restoring force much like a deformed spring (or trampoline or diving
board). The greater the deformation, the greater the restoring force. So when the load is placed on the table, the table sags until
the restoring force becomes as large as the weight of the load. At this point the net external force on the load is zero. That is the
situation when the load is stationary on the table. The table sags quickly, and the sag is slight so we do not notice it. But it is
similar to the sagging of a trampoline when you climb onto it.
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Figure 4.12 (a) The person holding the bag of dog food must supply an upward force Fhand equal in magnitude and opposite in direction to the

weight of the food w . (b) The card table sags when the dog food is placed on it, much like a stiff trampoline. Elastic restoring forces in the table grow

as it sags until they supply a force N equal in magnitude and opposite in direction to the weight of the load.

We must conclude that whatever supports a load, be it animate or not, must supply an upward force equal to the weight of the
load, as we assumed in a few of the previous examples. If the force supporting a load is perpendicular to the surface of contact
between the load and its support, this force is defined to be a normal force and here is given the symbol N . (This is not the unit

for force N.) The word normal means perpendicular to a surface. The normal force can be less than the object’s weight if the
object is on an incline, as you will see in the next example.

Common Misconception: Normal Force (N) vs. Newton (N)

In this section we have introduced the quantity normal force, which is represented by the variable N . This should not be

confused with the symbol for the newton, which is also represented by the letter N. These symbols are particularly important
to distinguish because the units of a normal force ( N ) happen to be newtons (N). For example, the normal force N that the

floor exerts on a chair might be N = 100 N . One important difference is that normal force is a vector, while the newton is

simply a unit. Be careful not to confuse these letters in your calculations! You will encounter more similarities among
variables and units as you proceed in physics. Another example of this is the quantity work ( W ) and the unit watts (W).

Example 4.5 Weight on an Incline, a Two-Dimensional Problem

Consider the skier on a slope shown in Figure 4.13. Her mass including equipment is 60.0 kg. (a) What is her acceleration if
friction is negligible? (b) What is her acceleration if friction is known to be 45.0 N?
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Figure 4.13 Since motion and friction are parallel to the slope, it is most convenient to project all forces onto a coordinate system where one axis

is parallel to the slope and the other is perpendicular (axes shown to left of skier). N is perpendicular to the slope and f is parallel to the slope,

but w has components along both axes, namely w⊥ and w ∥ . N is equal in magnitude to w⊥ , so that there is no motion

perpendicular to the slope, but f is less than w ∥ , so that there is a downslope acceleration (along the parallel axis).

Strategy

This is a two-dimensional problem, since the forces on the skier (the system of interest) are not parallel. The approach we
have used in two-dimensional kinematics also works very well here. Choose a convenient coordinate system and project the
vectors onto its axes, creating two connected one-dimensional problems to solve. The most convenient coordinate system
for motion on an incline is one that has one coordinate parallel to the slope and one perpendicular to the slope. (Remember
that motions along mutually perpendicular axes are independent.) We use the symbols ⊥ and ∥ to represent

perpendicular and parallel, respectively. This choice of axes simplifies this type of problem, because there is no motion
perpendicular to the slope and because friction is always parallel to the surface between two objects. The only external
forces acting on the system are the skier’s weight, friction, and the support of the slope, respectively labeled w , f , and N
in Figure 4.13. N is always perpendicular to the slope, and f is parallel to it. But w is not in the direction of either axis,

and so the first step we take is to project it into components along the chosen axes, defining w ∥ to be the component of

weight parallel to the slope and w⊥ the component of weight perpendicular to the slope. Once this is done, we can

consider the two separate problems of forces parallel to the slope and forces perpendicular to the slope.

Solution

The magnitude of the component of the weight parallel to the slope is w ∥ = w sin (25º) = mg sin (25º) , and the

magnitude of the component of the weight perpendicular to the slope is w⊥ = w cos (25º) = mg cos (25º) .

(a) Neglecting friction. Since the acceleration is parallel to the slope, we need only consider forces parallel to the slope.
(Forces perpendicular to the slope add to zero, since there is no acceleration in that direction.) The forces parallel to the
slope are the amount of the skier’s weight parallel to the slope w ∥ and friction f . Using Newton’s second law, with

subscripts to denote quantities parallel to the slope,

(4.30)
a ∥ =

Fnet ∥
m

where Fnet ∥ = w ∥ = mg sin (25º) , assuming no friction for this part, so that

(4.31)
a ∥ =

Fnet ∥
m = mg sin (25º)

m = g sin (25º)
(4.32)(9.80 m/s2)(0.4226) = 4.14 m/s2

is the acceleration.

(b) Including friction. We now have a given value for friction, and we know its direction is parallel to the slope and it opposes
motion between surfaces in contact. So the net external force is now

(4.33)Fnet ∥ = w ∥ − f ,

and substituting this into Newton’s second law, a ∥ =
Fnet ∥

m , gives
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(4.34)
a ∥ =

Fnet ∣ ∣
m =

w ∥ − f
m = mg sin (25º) − f

m .

We substitute known values to obtain

(4.35)
a ∥ = (60.0 kg)(9.80 m/s2)(0.4226) − 45.0 N

60.0 kg ,

which yields

(4.36)a ∥ = 3.39 m/s2,

which is the acceleration parallel to the incline when there is 45.0 N of opposing friction.

Discussion

Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction than when there is
none. In fact, it is a general result that if friction on an incline is negligible, then the acceleration down the incline is
a = g sinθ , regardless of mass. This is related to the previously discussed fact that all objects fall with the same

acceleration in the absence of air resistance. Similarly, all objects, regardless of mass, slide down a frictionless incline with
the same acceleration (if the angle is the same).

Resolving Weight into Components

Figure 4.14 An object rests on an incline that makes an angle θ with the horizontal.

When an object rests on an incline that makes an angle θ with the horizontal, the force of gravity acting on the object is

divided into two components: a force acting perpendicular to the plane, w⊥ , and a force acting parallel to the plane, w ∥

. The perpendicular force of weight, w⊥ , is typically equal in magnitude and opposite in direction to the normal force, N .

The force acting parallel to the plane, w ∥ , causes the object to accelerate down the incline. The force of friction, f ,

opposes the motion of the object, so it acts upward along the plane.

It is important to be careful when resolving the weight of the object into components. If the angle of the incline is at an angle
θ to the horizontal, then the magnitudes of the weight components are

(4.37)w ∥ = w sin (θ) = mg sin (θ)

and

(4.38)w⊥ = w cos (θ) = mg cos (θ).

Instead of memorizing these equations, it is helpful to be able to determine them from reason. To do this, draw the right
triangle formed by the three weight vectors. Notice that the angle θ of the incline is the same as the angle formed between

w and w⊥ . Knowing this property, you can use trigonometry to determine the magnitude of the weight components:

(4.39)cos (θ) = w⊥
w

w⊥ = w cos (θ) = mg cos (θ)

(4.40)sin (θ) =
w ∥
w

w ∥ = w sin (θ) = mg sin (θ)
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Take-Home Experiment: Force Parallel

To investigate how a force parallel to an inclined plane changes, find a rubber band, some objects to hang from the end of
the rubber band, and a board you can position at different angles. How much does the rubber band stretch when you hang
the object from the end of the board? Now place the board at an angle so that the object slides off when placed on the
board. How much does the rubber band extend if it is lined up parallel to the board and used to hold the object stationary on
the board? Try two more angles. What does this show?

Tension

A tension is a force along the length of a medium, especially a force carried by a flexible medium, such as a rope or cable. The
word “tension” comes from a Latin word meaning “to stretch.” Not coincidentally, the flexible cords that carry muscle forces to
other parts of the body are called tendons. Any flexible connector, such as a string, rope, chain, wire, or cable, can exert pulls
only parallel to its length; thus, a force carried by a flexible connector is a tension with direction parallel to the connector. It is
important to understand that tension is a pull in a connector. In contrast, consider the phrase: “You can’t push a rope.” The
tension force pulls outward along the two ends of a rope.

Consider a person holding a mass on a rope as shown in Figure 4.15.

Figure 4.15 When a perfectly flexible connector (one requiring no force to bend it) such as this rope transmits a force T , that force must be parallel to

the length of the rope, as shown. The pull such a flexible connector exerts is a tension. Note that the rope pulls with equal force but in opposite
directions on the hand and the supported mass (neglecting the weight of the rope). This is an example of Newton’s third law. The rope is the medium
that carries the equal and opposite forces between the two objects. The tension anywhere in the rope between the hand and the mass is equal. Once
you have determined the tension in one location, you have determined the tension at all locations along the rope.

Tension in the rope must equal the weight of the supported mass, as we can prove using Newton’s second law. If the 5.00-kg
mass in the figure is stationary, then its acceleration is zero, and thus Fnet = 0 . The only external forces acting on the mass are

its weight w and the tension T supplied by the rope. Thus,

(4.41)Fnet = T − w = 0,

where T and w are the magnitudes of the tension and weight and their signs indicate direction, with up being positive here.

Thus, just as you would expect, the tension equals the weight of the supported mass:

(4.42)T = w = mg.

For a 5.00-kg mass, then (neglecting the mass of the rope) we see that

(4.43)T = mg = (5.00 kg)(9.80 m/s2 ) = 49.0 N.

If we cut the rope and insert a spring, the spring would extend a length corresponding to a force of 49.0 N, providing a direct
observation and measure of the tension force in the rope.

Flexible connectors are often used to transmit forces around corners, such as in a hospital traction system, a finger joint, or a
bicycle brake cable. If there is no friction, the tension is transmitted undiminished. Only its direction changes, and it is always
parallel to the flexible connector. This is illustrated in Figure 4.16 (a) and (b).
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Figure 4.16 (a) Tendons in the finger carry force T from the muscles to other parts of the finger, usually changing the force’s direction, but not its

magnitude (the tendons are relatively friction free). (b) The brake cable on a bicycle carries the tension T from the handlebars to the brake

mechanism. Again, the direction but not the magnitude of T is changed.

Example 4.6 What Is the Tension in a Tightrope?

Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in Figure 4.17.

Figure 4.17 The weight of a tightrope walker causes a wire to sag by 5.0 degrees. The system of interest here is the point in the wire at which the
tightrope walker is standing.

Strategy

As you can see in the figure, the wire is not perfectly horizontal (it cannot be!), but is bent under the person’s weight. Thus,
the tension on either side of the person has an upward component that can support his weight. As usual, forces are vectors
represented pictorially by arrows having the same directions as the forces and lengths proportional to their magnitudes. The
system is the tightrope walker, and the only external forces acting on him are his weight w and the two tensions TL (left

tension) and TR (right tension), as illustrated. It is reasonable to neglect the weight of the wire itself. The net external force

is zero since the system is stationary. A little trigonometry can now be used to find the tensions. One conclusion is possible
at the outset—we can see from part (b) of the figure that the magnitudes of the tensions TL and TR must be equal. This is

because there is no horizontal acceleration in the rope, and the only forces acting to the left and right are TL and TR .

Thus, the magnitude of those forces must be equal so that they cancel each other out.

Whenever we have two-dimensional vector problems in which no two vectors are parallel, the easiest method of solution is
to pick a convenient coordinate system and project the vectors onto its axes. In this case the best coordinate system has
one axis horizontal and the other vertical. We call the horizontal the x -axis and the vertical the y -axis.
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Solution

First, we need to resolve the tension vectors into their horizontal and vertical components. It helps to draw a new free-body
diagram showing all of the horizontal and vertical components of each force acting on the system.

Figure 4.18 When the vectors are projected onto vertical and horizontal axes, their components along those axes must add to zero, since the

tightrope walker is stationary. The small angle results in T being much greater than w .

Consider the horizontal components of the forces (denoted with a subscript x ):

(4.44)Fnetx = TLx − TRx.

The net external horizontal force Fnetx = 0 , since the person is stationary. Thus,

(4.45)Fnetx = 0 = TLx − TRx
TLx = TRx .

Now, observe Figure 4.18. You can use trigonometry to determine the magnitude of TL and TR . Notice that:

(4.46)
cos (5.0º) = TLx

TL
TLx = TL cos (5.0º)

cos (5.0º) = TRx
TR

TRx = TR cos (5.0º).

Equating TLx and TRx :

(4.47)TL cos (5.0º) = TR cos (5.0º).

Thus,

(4.48)TL = TR = T ,

as predicted. Now, considering the vertical components (denoted by a subscript y ), we can solve for T . Again, since the

person is stationary, Newton’s second law implies that net Fy = 0 . Thus, as illustrated in the free-body diagram in Figure

4.18,

(4.49)Fnety = TLy + TRy − w = 0.

Observing Figure 4.18, we can use trigonometry to determine the relationship between TLy , TRy , and T . As we

determined from the analysis in the horizontal direction, TL = TR = T :

(4.50)
sin (5.0º) =

TLy
TL

TLy = TL sin (5.0º) = T sin (5.0º)

sin (5.0º) =
TRy
TR

TRy = TR sin (5.0º) = T sin (5.0º).
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Now, we can substitute the values for TLy and TRy , into the net force equation in the vertical direction:

(4.51)Fnety = TLy + TRy − w = 0
Fnety = T sin (5.0º) + T sin (5.0º) − w = 0
2 T sin (5.0º) − w = 0
2 T sin (5.0º) = w

and

(4.52)T = w
2 sin (5.0º) = mg

2 sin (5.0º),

so that

(4.53)
T = (70.0 kg)(9.80 m/s2)

2(0.0872) ,

and the tension is

(4.54)T = 3900 N.
Discussion

Note that the vertical tension in the wire acts as a normal force that supports the weight of the tightrope walker. The tension
is almost six times the 686-N weight of the tightrope walker. Since the wire is nearly horizontal, the vertical component of its
tension is only a small fraction of the tension in the wire. The large horizontal components are in opposite directions and
cancel, and so most of the tension in the wire is not used to support the weight of the tightrope walker.

If we wish to create a very large tension, all we have to do is exert a force perpendicular to a flexible connector, as illustrated in
Figure 4.19. As we saw in the last example, the weight of the tightrope walker acted as a force perpendicular to the rope. We
saw that the tension in the roped related to the weight of the tightrope walker in the following way:

(4.55)T = w
2 sin (θ).

We can extend this expression to describe the tension T created when a perpendicular force ( F⊥ ) is exerted at the middle of

a flexible connector:

(4.56)
T = F⊥

2 sin (θ).

Note that θ is the angle between the horizontal and the bent connector. In this case, T becomes very large as θ approaches

zero. Even the relatively small weight of any flexible connector will cause it to sag, since an infinite tension would result if it were
horizontal (i.e., θ = 0 and sin θ = 0 ). (See Figure 4.19.)

Figure 4.19 We can create a very large tension in the chain by pushing on it perpendicular to its length, as shown. Suppose we wish to pull a car out of
the mud when no tow truck is available. Each time the car moves forward, the chain is tightened to keep it as nearly straight as possible. The tension in

the chain is given by T = F⊥
2 sin (θ) ; since θ is small, T is very large. This situation is analogous to the tightrope walker shown in Figure 4.17,

except that the tensions shown here are those transmitted to the car and the tree rather than those acting at the point where F⊥ is applied.
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Figure 4.20 Unless an infinite tension is exerted, any flexible connector—such as the chain at the bottom of the picture—will sag under its own weight,
giving a characteristic curve when the weight is evenly distributed along the length. Suspension bridges—such as the Golden Gate Bridge shown in
this image—are essentially very heavy flexible connectors. The weight of the bridge is evenly distributed along the length of flexible connectors, usually
cables, which take on the characteristic shape. (credit: Leaflet, Wikimedia Commons)

Extended Topic: Real Forces and Inertial Frames

There is another distinction among forces in addition to the types already mentioned. Some forces are real, whereas others are
not. Real forces are those that have some physical origin, such as the gravitational pull. Contrastingly, fictitious forces are those
that arise simply because an observer is in an accelerating frame of reference, such as one that rotates (like a merry-go-round)
or undergoes linear acceleration (like a car slowing down). For example, if a satellite is heading due north above Earth’s northern
hemisphere, then to an observer on Earth it will appear to experience a force to the west that has no physical origin. Of course,
what is happening here is that Earth is rotating toward the east and moves east under the satellite. In Earth’s frame this looks like
a westward force on the satellite, or it can be interpreted as a violation of Newton’s first law (the law of inertia). An inertial frame
of reference is one in which all forces are real and, equivalently, one in which Newton’s laws have the simple forms given in this
chapter.

Earth’s rotation is slow enough that Earth is nearly an inertial frame. You ordinarily must perform precise experiments to observe
fictitious forces and the slight departures from Newton’s laws, such as the effect just described. On the large scale, such as for
the rotation of weather systems and ocean currents, the effects can be easily observed.

The crucial factor in determining whether a frame of reference is inertial is whether it accelerates or rotates relative to a known
inertial frame. Unless stated otherwise, all phenomena discussed in this text are considered in inertial frames.

All the forces discussed in this section are real forces, but there are a number of other real forces, such as lift and thrust, that are
not discussed in this section. They are more specialized, and it is not necessary to discuss every type of force. It is natural,
however, to ask where the basic simplicity we seek to find in physics is in the long list of forces. Are some more basic than
others? Are some different manifestations of the same underlying force? The answer to both questions is yes, as will be seen in
the next (extended) section and in the treatment of modern physics later in the text.

PhET Explorations: Forces in 1 Dimension

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force
and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a free-body
diagram of all the forces (including gravitational and normal forces). Click to open media in new browser.
(https://phet.colorado.edu/en/simulation/legacy/forces-1d)

4.6 Problem-Solving Strategies

Success in problem solving is obviously necessary to understand and apply physical principles, not to mention the more
immediate need of passing exams. The basics of problem solving, presented earlier in this text, are followed here, but specific
strategies useful in applying Newton’s laws of motion are emphasized. These techniques also reinforce concepts that are useful
in many other areas of physics. Many problem-solving strategies are stated outright in the worked examples, and so the following
techniques should reinforce skills you have already begun to develop.

Problem-Solving Strategy for Newton’s Laws of Motion

Step 1. As usual, it is first necessary to identify the physical principles involved. Once it is determined that Newton’s laws of
motion are involved (if the problem involves forces), it is particularly important to draw a careful sketch of the situation. Such a
sketch is shown in Figure 4.21(a). Then, as in Figure 4.21(b), use arrows to represent all forces, label them carefully, and make
their lengths and directions correspond to the forces they represent (whenever sufficient information exists).
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Figure 4.21 (a) A sketch of Tarzan hanging from a vine. (b) Arrows are used to represent all forces. T is the tension in the vine above Tarzan, FT is

the force he exerts on the vine, and w is his weight. All other forces, such as the nudge of a breeze, are assumed negligible. (c) Suppose we are

given the ape man’s mass and asked to find the tension in the vine. We then define the system of interest as shown and draw a free-body diagram.

FT is no longer shown, because it is not a force acting on the system of interest; rather, FT acts on the outside world. (d) Showing only the arrows,

the head-to-tail method of addition is used. It is apparent that T = - w , if Tarzan is stationary.

Step 2. Identify what needs to be determined and what is known or can be inferred from the problem as stated. That is, make a
list of knowns and unknowns. Then carefully determine the system of interest. This decision is a crucial step, since Newton’s
second law involves only external forces. Once the system of interest has been identified, it becomes possible to determine
which forces are external and which are internal, a necessary step to employ Newton’s second law. (See Figure 4.21(c).)
Newton’s third law may be used to identify whether forces are exerted between components of a system (internal) or between
the system and something outside (external). As illustrated earlier in this chapter, the system of interest depends on what
question we need to answer. This choice becomes easier with practice, eventually developing into an almost unconscious
process. Skill in clearly defining systems will be beneficial in later chapters as well.

A diagram showing the system of interest and all of the external forces is called a free-body diagram. Only forces are shown on
free-body diagrams, not acceleration or velocity. We have drawn several of these in worked examples. Figure 4.21(c) shows a
free-body diagram for the system of interest. Note that no internal forces are shown in a free-body diagram.

Step 3. Once a free-body diagram is drawn, Newton’s second law can be applied to solve the problem. This is done in Figure
4.21(d) for a particular situation. In general, once external forces are clearly identified in free-body diagrams, it should be a
straightforward task to put them into equation form and solve for the unknown, as done in all previous examples. If the problem is
one-dimensional—that is, if all forces are parallel—then they add like scalars. If the problem is two-dimensional, then it must be
broken down into a pair of one-dimensional problems. This is done by projecting the force vectors onto a set of axes chosen for
convenience. As seen in previous examples, the choice of axes can simplify the problem. For example, when an incline is
involved, a set of axes with one axis parallel to the incline and one perpendicular to it is most convenient. It is almost always
convenient to make one axis parallel to the direction of motion, if this is known.

Applying Newton’s Second Law

Before you write net force equations, it is critical to determine whether the system is accelerating in a particular direction. If
the acceleration is zero in a particular direction, then the net force is zero in that direction. Similarly, if the acceleration is
nonzero in a particular direction, then the net force is described by the equation: Fnet = ma .

For example, if the system is accelerating in the horizontal direction, but it is not accelerating in the vertical direction, then
you will have the following conclusions:

(4.57)Fnet x = ma,
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(4.58)Fnet y = 0.

You will need this information in order to determine unknown forces acting in a system.

Step 4. As always, check the solution to see whether it is reasonable. In some cases, this is obvious. For example, it is
reasonable to find that friction causes an object to slide down an incline more slowly than when no friction exists. In practice,
intuition develops gradually through problem solving, and with experience it becomes progressively easier to judge whether an
answer is reasonable. Another way to check your solution is to check the units. If you are solving for force and end up with units
of m/s, then you have made a mistake.

4.7 Further Applications of Newton’s Laws of Motion

There are many interesting applications of Newton’s laws of motion, a few more of which are presented in this section. These
serve also to illustrate some further subtleties of physics and to help build problem-solving skills.

Example 4.7 Drag Force on a Barge

Suppose two tugboats push on a barge at different angles, as shown in Figure 4.22. The first tugboat exerts a force of

2.7×105 N in the x-direction, and the second tugboat exerts a force of 3.6×105 N in the y-direction.

Figure 4.22 (a) A view from above of two tugboats pushing on a barge. (b) The free-body diagram for the ship contains only forces acting in the
plane of the water. It omits the two vertical forces—the weight of the barge and the buoyant force of the water supporting it cancel and are not

shown. Since the applied forces are perpendicular, the x- and y-axes are in the same direction as Fx and Fy . The problem quickly becomes a

one-dimensional problem along the direction of Fapp , since friction is in the direction opposite to Fapp .

If the mass of the barge is 5.0×106 kg and its acceleration is observed to be 7.5×10−2 m/s2 in the direction shown,

what is the drag force of the water on the barge resisting the motion? (Note: drag force is a frictional force exerted by fluids,
such as air or water. The drag force opposes the motion of the object.)

Strategy

The directions and magnitudes of acceleration and the applied forces are given in Figure 4.22(a). We will define the total
force of the tugboats on the barge as Fapp so that:

(4.59)Fapp =Fx + Fy

Since the barge is flat bottomed, the drag of the water FD will be in the direction opposite to Fapp , as shown in the free-

body diagram in Figure 4.22(b). The system of interest here is the barge, since the forces on it are given as well as its
acceleration. Our strategy is to find the magnitude and direction of the net applied force Fapp , and then apply Newton’s

second law to solve for the drag force FD .

Solution

Since Fx and Fy are perpendicular, the magnitude and direction of Fapp are easily found. First, the resultant magnitude

is given by the Pythagorean theorem:
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(4.60)Fapp = Fx
2 + Fy

2

Fapp = (2.7×105 N)2 + (3.6×105 N)2 = 4.5×105 N.

The angle is given by

(4.61)
θ = tan−1⎛⎝

Fy
Fx

⎞
⎠

θ = tan−1⎛⎝3.6×105 N
2.7×105 N

⎞
⎠ = 53º,

which we know, because of Newton’s first law, is the same direction as the acceleration. FD is in the opposite direction of

Fapp , since it acts to slow down the acceleration. Therefore, the net external force is in the same direction as Fapp , but its

magnitude is slightly less than Fapp . The problem is now one-dimensional. From Figure 4.22(b), we can see that

(4.62)Fnet = Fapp − FD.

But Newton’s second law states that

(4.63)Fnet = ma.

Thus,

(4.64)Fapp − FD = ma.

This can be solved for the magnitude of the drag force of the water FD in terms of known quantities:

(4.65)FD = Fapp − ma.

Substituting known values gives

(4.66)FD = (4.5×105 N) − (5.0×106 kg)(7.5×10–2 m/s2 ) = 7.5×104 N.

The direction of FD has already been determined to be in the direction opposite to Fapp , or at an angle of 53º south of

west.

Discussion

The numbers used in this example are reasonable for a moderately large barge. It is certainly difficult to obtain larger
accelerations with tugboats, and small speeds are desirable to avoid running the barge into the docks. Drag is relatively
small for a well-designed hull at low speeds, consistent with the answer to this example, where FD is less than 1/600th of

the weight of the ship.

In the earlier example of a tightrope walker we noted that the tensions in wires supporting a mass were equal only because the
angles on either side were equal. Consider the following example, where the angles are not equal; slightly more trigonometry is
involved.

Example 4.8 Different Tensions at Different Angles

Consider the traffic light (mass 15.0 kg) suspended from two wires as shown in Figure 4.23. Find the tension in each wire,
neglecting the masses of the wires.
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Figure 4.23 A traffic light is suspended from two wires. (b) Some of the forces involved. (c) Only forces acting on the system are shown here. The
free-body diagram for the traffic light is also shown. (d) The forces projected onto vertical (y) and horizontal (x) axes. The horizontal components
of the tensions must cancel, and the sum of the vertical components of the tensions must equal the weight of the traffic light. (e) The free-body
diagram shows the vertical and horizontal forces acting on the traffic light.

Strategy

The system of interest is the traffic light, and its free-body diagram is shown in Figure 4.23(c). The three forces involved are
not parallel, and so they must be projected onto a coordinate system. The most convenient coordinate system has one axis
vertical and one horizontal, and the vector projections on it are shown in part (d) of the figure. There are two unknowns in
this problem ( T1 and T2 ), so two equations are needed to find them. These two equations come from applying Newton’s

second law along the vertical and horizontal axes, noting that the net external force is zero along each axis because
acceleration is zero.

Solution

First consider the horizontal or x-axis:

(4.67)Fnetx = T2x − T1x = 0.

Thus, as you might expect,
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(4.68)T1x = T2x.

This gives us the following relationship between T1 and T2 :

(4.69)T1 cos (30º) = T2 cos (45º).

Thus,

(4.70)T2 = (1.225)T1.

Note that T1 and T2 are not equal in this case, because the angles on either side are not equal. It is reasonable that T2
ends up being greater than T1 , because it is exerted more vertically than T1 .

Now consider the force components along the vertical or y-axis:

(4.71)Fnet y = T1y + T2y − w = 0.

This implies

(4.72)T1y + T2y = w.

Substituting the expressions for the vertical components gives

(4.73)T1 sin (30º) + T2 sin (45º) = w.

There are two unknowns in this equation, but substituting the expression for T2 in terms of T1 reduces this to one

equation with one unknown:

(4.74)T1(0.500) + (1.225T1)(0.707) = w = mg,

which yields

(4.75)(1.366)T1 = (15.0 kg)(9.80 m/s2).

Solving this last equation gives the magnitude of T1 to be

(4.76)T1 = 108 N.

Finally, the magnitude of T2 is determined using the relationship between them, T2 = 1.225 T1 , found above. Thus we

obtain

(4.77)T2 = 132 N.

Discussion

Both tensions would be larger if both wires were more horizontal, and they will be equal if and only if the angles on either
side are the same (as they were in the earlier example of a tightrope walker).

The bathroom scale is an excellent example of a normal force acting on a body. It provides a quantitative reading of how much it
must push upward to support the weight of an object. But can you predict what you would see on the dial of a bathroom scale if
you stood on it during an elevator ride? Will you see a value greater than your weight when the elevator starts up? What about
when the elevator moves upward at a constant speed: will the scale still read more than your weight at rest? Consider the
following example.

Example 4.9 What Does the Bathroom Scale Read in an Elevator?

Figure 4.24 shows a 75.0-kg man (weight of about 165 lb) standing on a bathroom scale in an elevator. Calculate the scale

reading: (a) if the elevator accelerates upward at a rate of 1.20 m/s2 , and (b) if the elevator moves upward at a constant

speed of 1 m/s.
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Figure 4.24 (a) The various forces acting when a person stands on a bathroom scale in an elevator. The arrows are approximately correct for

when the elevator is accelerating upward—broken arrows represent forces too large to be drawn to scale. T is the tension in the supporting

cable, w is the weight of the person, ws is the weight of the scale, we is the weight of the elevator, Fs is the force of the scale on the

person, Fp is the force of the person on the scale, Ft is the force of the scale on the floor of the elevator, and N is the force of the floor

upward on the scale. (b) The free-body diagram shows only the external forces acting on the designated system of interest—the person.

Strategy

If the scale is accurate, its reading will equal Fp , the magnitude of the force the person exerts downward on it. Figure

4.24(a) shows the numerous forces acting on the elevator, scale, and person. It makes this one-dimensional problem look
much more formidable than if the person is chosen to be the system of interest and a free-body diagram is drawn as in
Figure 4.24(b). Analysis of the free-body diagram using Newton’s laws can produce answers to both parts (a) and (b) of this
example, as well as some other questions that might arise. The only forces acting on the person are his weight w and the

upward force of the scale Fs . According to Newton’s third law Fp and Fs are equal in magnitude and opposite in

direction, so that we need to find Fs in order to find what the scale reads. We can do this, as usual, by applying Newton’s

second law,

(4.78)Fnet = ma.

From the free-body diagram we see that Fnet = Fs − w , so that

(4.79)Fs − w = ma.

Solving for Fs gives an equation with only one unknown:

(4.80)Fs = ma + w,

or, because w = mg , simply

(4.81)Fs = ma + mg.

No assumptions were made about the acceleration, and so this solution should be valid for a variety of accelerations in
addition to the ones in this exercise.

Solution for (a)
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In this part of the problem, a = 1.20 m/s2 , so that

(4.82)Fs = (75.0 kg)(1.20 m/s2 ) + (75.0 kg)(9.80 m/s2),

yielding

(4.83)Fs = 825 N.

Discussion for (a)

This is about 185 lb. What would the scale have read if he were stationary? Since his acceleration would be zero, the force
of the scale would be equal to his weight:

(4.84)Fnet = ma = 0 = Fs − w
Fs = w = mg

Fs = (75.0 kg)(9.80 m/s2)
Fs = 735 N.

So, the scale reading in the elevator is greater than his 735-N (165 lb) weight. This means that the scale is pushing up on
the person with a force greater than his weight, as it must in order to accelerate him upward. Clearly, the greater the
acceleration of the elevator, the greater the scale reading, consistent with what you feel in rapidly accelerating versus slowly
accelerating elevators.

Solution for (b)

Now, what happens when the elevator reaches a constant upward velocity? Will the scale still read more than his weight?

For any constant velocity—up, down, or stationary—acceleration is zero because a = Δv
Δt , and Δv = 0 .

Thus,

(4.85)Fs = ma + mg = 0 + mg.

Now

(4.86)Fs = (75.0 kg)(9.80 m/s2),

which gives

(4.87)Fs = 735 N.

Discussion for (b)

The scale reading is 735 N, which equals the person’s weight. This will be the case whenever the elevator has a constant
velocity—moving up, moving down, or stationary.

The solution to the previous example also applies to an elevator accelerating downward, as mentioned. When an elevator
accelerates downward, a is negative, and the scale reading is less than the weight of the person, until a constant downward

velocity is reached, at which time the scale reading again becomes equal to the person’s weight. If the elevator is in free-fall and
accelerating downward at g , then the scale reading will be zero and the person will appear to be weightless.

Integrating Concepts: Newton’s Laws of Motion and Kinematics

Physics is most interesting and most powerful when applied to general situations that involve more than a narrow set of physical
principles. Newton’s laws of motion can also be integrated with other concepts that have been discussed previously in this text to
solve problems of motion. For example, forces produce accelerations, a topic of kinematics, and hence the relevance of earlier
chapters. When approaching problems that involve various types of forces, acceleration, velocity, and/or position, use the
following steps to approach the problem:

Problem-Solving Strategy

Step 1. Identify which physical principles are involved. Listing the givens and the quantities to be calculated will allow you to
identify the principles involved.
Step 2. Solve the problem using strategies outlined in the text. If these are available for the specific topic, you should refer to
them. You should also refer to the sections of the text that deal with a particular topic. The following worked example illustrates
how these strategies are applied to an integrated concept problem.

Example 4.10 What Force Must a Soccer Player Exert to Reach Top Speed?

A soccer player starts from rest and accelerates forward, reaching a velocity of 8.00 m/s in 2.50 s. (a) What was his average
acceleration? (b) What average force did he exert backward on the ground to achieve this acceleration? The player’s mass
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is 70.0 kg, and air resistance is negligible.

Strategy

1. To solve an integrated concept problem, we must first identify the physical principles involved and identify the chapters
in which they are found. Part (a) of this example considers acceleration along a straight line. This is a topic of
kinematics. Part (b) deals with force, a topic of dynamics found in this chapter.

2. The following solutions to each part of the example illustrate how the specific problem-solving strategies are applied.
These involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so forth.

Solution for (a)

We are given the initial and final velocities (zero and 8.00 m/s forward); thus, the change in velocity is Δv = 8.00 m/s . We

are given the elapsed time, and so Δt = 2.50 s . The unknown is acceleration, which can be found from its definition:

(4.88)a = Δv
Δt .

Substituting the known values yields

(4.89)a = 8.00 m/s
2.50 s

= 3.20 m/s2.
Discussion for (a)

This is an attainable acceleration for an athlete in good condition.

Solution for (b)

Here we are asked to find the average force the player exerts backward to achieve this forward acceleration. Neglecting air
resistance, this would be equal in magnitude to the net external force on the player, since this force causes his acceleration.
Since we now know the player’s acceleration and are given his mass, we can use Newton’s second law to find the force
exerted. That is,

(4.90)Fnet = ma.

Substituting the known values of m and a gives

(4.91)Fnet = (70.0 kg)(3.20 m/s2)
= 224 N.

Discussion for (b)

This is about 50 pounds, a reasonable average force.

This worked example illustrates how to apply problem-solving strategies to situations that include topics from different
chapters. The first step is to identify the physical principles involved in the problem. The second step is to solve for the
unknown using familiar problem-solving strategies. These strategies are found throughout the text, and many worked
examples show how to use them for single topics. You will find these techniques for integrated concept problems useful in
applications of physics outside of a physics course, such as in your profession, in other science disciplines, and in everyday
life. The following problems will build your skills in the broad application of physical principles.

4.8 Extended Topic: The Four Basic Forces—An Introduction

One of the most remarkable simplifications in physics is that only four distinct forces account for all known phenomena. In fact,
nearly all of the forces we experience directly are due to only one basic force, called the electromagnetic force. (The gravitational
force is the only force we experience directly that is not electromagnetic.) This is a tremendous simplification of the myriad of
apparently different forces we can list, only a few of which were discussed in the previous section. As we will see, the basic
forces are all thought to act through the exchange of microscopic carrier particles, and the characteristics of the basic forces are
determined by the types of particles exchanged. Action at a distance, such as the gravitational force of Earth on the Moon, is
explained by the existence of a force field rather than by “physical contact.”

The four basic forces are the gravitational force, the electromagnetic force, the weak nuclear force, and the strong nuclear force.
Their properties are summarized in Table 4.1. Since the weak and strong nuclear forces act over an extremely short range, the
size of a nucleus or less, we do not experience them directly, although they are crucial to the very structure of matter. These
forces determine which nuclei are stable and which decay, and they are the basis of the release of energy in certain nuclear
reactions. Nuclear forces determine not only the stability of nuclei, but also the relative abundance of elements in nature. The
properties of the nucleus of an atom determine the number of electrons it has and, thus, indirectly determine the chemistry of the
atom. More will be said of all of these topics in later chapters.
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Concept Connections: The Four Basic Forces

The four basic forces will be encountered in more detail as you progress through the text. The gravitational force is defined
in Uniform Circular Motion and Gravitation, electric force in Electric Charge and Electric Field, magnetic force in
Magnetism, and nuclear forces in Radioactivity and Nuclear Physics. On a macroscopic scale, electromagnetism and
gravity are the basis for all forces. The nuclear forces are vital to the substructure of matter, but they are not directly
experienced on the macroscopic scale.

Table 4.1 Properties of the Four Basic Forces[1]

Force Approximate Relative Strengths Range Attraction/Repulsion Carrier Particle

Gravitational 10−38 ∞ attractive only Graviton

Electromagnetic 10 – 2 ∞ attractive and repulsive Photon

Weak nuclear 10 – 13 < 10–18 m attractive and repulsive W+ , W – , Z0

Strong nuclear 1 < 10–15 m attractive and repulsive gluons

The gravitational force is surprisingly weak—it is only because gravity is always attractive that we notice it at all. Our weight is
the gravitational force due to the entire Earth acting on us. On the very large scale, as in astronomical systems, the gravitational
force is the dominant force determining the motions of moons, planets, stars, and galaxies. The gravitational force also affects
the nature of space and time. As we shall see later in the study of general relativity, space is curved in the vicinity of very
massive bodies, such as the Sun, and time actually slows down near massive bodies.

Electromagnetic forces can be either attractive or repulsive. They are long-range forces, which act over extremely large
distances, and they nearly cancel for macroscopic objects. (Remember that it is the net external force that is important.) If they
did not cancel, electromagnetic forces would completely overwhelm the gravitational force. The electromagnetic force is a
combination of electrical forces (such as those that cause static electricity) and magnetic forces (such as those that affect a
compass needle). These two forces were thought to be quite distinct until early in the 19th century, when scientists began to
discover that they are different manifestations of the same force. This discovery is a classical case of the unification of forces.
Similarly, friction, tension, and all of the other classes of forces we experience directly (except gravity, of course) are due to
electromagnetic interactions of atoms and molecules. It is still convenient to consider these forces separately in specific
applications, however, because of the ways they manifest themselves.

Concept Connections: Unifying Forces

Attempts to unify the four basic forces are discussed in relation to elementary particles later in this text. By “unify” we mean
finding connections between the forces that show that they are different manifestations of a single force. Even if such
unification is achieved, the forces will retain their separate characteristics on the macroscopic scale and may be identical
only under extreme conditions such as those existing in the early universe.

Physicists are now exploring whether the four basic forces are in some way related. Attempts to unify all forces into one come
under the rubric of Grand Unified Theories (GUTs), with which there has been some success in recent years. It is now known
that under conditions of extremely high density and temperature, such as existed in the early universe, the electromagnetic and
weak nuclear forces are indistinguishable. They can now be considered to be different manifestations of one force, called the
electroweak force. So the list of four has been reduced in a sense to only three. Further progress in unifying all forces is proving
difficult—especially the inclusion of the gravitational force, which has the special characteristics of affecting the space and time in
which the other forces exist.

While the unification of forces will not affect how we discuss forces in this text, it is fascinating that such underlying simplicity
exists in the face of the overt complexity of the universe. There is no reason that nature must be simple—it simply is.

Action at a Distance: Concept of a Field

All forces act at a distance. This is obvious for the gravitational force. Earth and the Moon, for example, interact without coming
into contact. It is also true for all other forces. Friction, for example, is an electromagnetic force between atoms that may not
actually touch. What is it that carries forces between objects? One way to answer this question is to imagine that a force field
surrounds whatever object creates the force. A second object (often called a test object) placed in this field will experience a
force that is a function of location and other variables. The field itself is the “thing” that carries the force from one object to
another. The field is defined so as to be a characteristic of the object creating it; the field does not depend on the test object
placed in it. Earth’s gravitational field, for example, is a function of the mass of Earth and the distance from its center,

1. The graviton is a proposed particle, though it has not yet been observed by scientists. See the discussion of gravitational

waves later in this section. The particles W+ , W− , and Z0 are called vector bosons; these were predicted by theory and first

observed in 1983. There are eight types of gluons proposed by scientists, and their existence is indicated by meson exchange in
the nuclei of atoms.
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independent of the presence of other masses. The concept of a field is useful because equations can be written for force fields
surrounding objects (for gravity, this yields w = mg at Earth’s surface), and motions can be calculated from these equations.

(See Figure 4.25.)

Figure 4.25 The electric force field between a positively charged particle and a negatively charged particle. When a positive test charge is placed in the
field, the charge will experience a force in the direction of the force field lines.

Concept Connections: Force Fields

The concept of a force field is also used in connection with electric charge and is presented in Electric Charge and Electric
Field. It is also a useful idea for all the basic forces, as will be seen in Particle Physics. Fields help us to visualize forces
and how they are transmitted, as well as to describe them with precision and to link forces with subatomic carrier particles.

The field concept has been applied very successfully; we can calculate motions and describe nature to high precision using field
equations. As useful as the field concept is, however, it leaves unanswered the question of what carries the force. It has been
proposed in recent decades, starting in 1935 with Hideki Yukawa’s (1907–1981) work on the strong nuclear force, that all forces
are transmitted by the exchange of elementary particles. We can visualize particle exchange as analogous to macroscopic
phenomena such as two people passing a basketball back and forth, thereby exerting a repulsive force without touching one
another. (See Figure 4.26.)
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Figure 4.26 The exchange of masses resulting in repulsive forces. (a) The person throwing the basketball exerts a force Fp1 on it toward the other

person and feels a reaction force FB away from the second person. (b) The person catching the basketball exerts a force Fp2 on it to stop the ball

and feels a reaction force F′B away from the first person. (c) The analogous exchange of a meson between a proton and a neutron carries the

strong nuclear forces Fexch and F′exch between them. An attractive force can also be exerted by the exchange of a mass—if person 2 pulled the

basketball away from the first person as he tried to retain it, then the force between them would be attractive.

This idea of particle exchange deepens rather than contradicts field concepts. It is more satisfying philosophically to think of
something physical actually moving between objects acting at a distance. Table 4.1 lists the exchange or carrier particles, both
observed and proposed, that carry the four forces. But the real fruit of the particle-exchange proposal is that searches for
Yukawa’s proposed particle found it and a number of others that were completely unexpected, stimulating yet more research. All
of this research eventually led to the proposal of quarks as the underlying substructure of matter, which is a basic tenet of GUTs.
If successful, these theories will explain not only forces, but also the structure of matter itself. Yet physics is an experimental
science, so the test of these theories must lie in the domain of the real world. As of this writing, scientists at the CERN laboratory
in Switzerland are starting to test these theories using the world’s largest particle accelerator: the Large Hadron Collider. This
accelerator (27 km in circumference) allows two high-energy proton beams, traveling in opposite directions, to collide. An energy
of 14 trillion electron volts will be available. It is anticipated that some new particles, possibly force carrier particles, will be found.
(See Figure 4.27.) One of the force carriers of high interest that researchers hope to detect is the Higgs boson. The observation
of its properties might tell us why different particles have different masses.

Figure 4.27 The world’s largest particle accelerator spans the border between Switzerland and France. Two beams, traveling in opposite directions
close to the speed of light, collide in a tube similar to the central tube shown here. External magnets determine the beam’s path. Special detectors will
analyze particles created in these collisions. Questions as broad as what is the origin of mass and what was matter like the first few seconds of our
universe will be explored. This accelerator began preliminary operation in 2008. (credit: Frank Hommes)
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acceleration:

carrier particle:

dynamics:

external force:

force:

force field:

free-body diagram:

free-fall:

Tiny particles also have wave-like behavior, something we will explore more in a later chapter. To better understand force-carrier
particles from another perspective, let us consider gravity. The search for gravitational waves has been going on for a number of
years. Almost 100 years ago, Einstein predicted the existence of these waves as part of his general theory of relativity.
Gravitational waves are created during the collision of massive stars, in black holes, or in supernova explosions—like shock
waves. These gravitational waves will travel through space from such sites much like a pebble dropped into a pond sends out
ripples—except these waves move at the speed of light. A detector apparatus has been built in the U.S., consisting of two large
installations nearly 3000 km apart—one in Washington state and one in Louisiana! The facility is called the Laser Interferometer
Gravitational-Wave Observatory (LIGO). Each installation is designed to use optical lasers to examine any slight shift in the
relative positions of two masses due to the effect of gravity waves. The two sites allow simultaneous measurements of these
small effects to be separated from other natural phenomena, such as earthquakes. Initial operation of the detectors began in
2002, and work is proceeding on increasing their sensitivity. Similar installations have been built in Italy (VIRGO), Germany
(GEO600), and Japan (TAMA300) to provide a worldwide network of gravitational wave detectors.

International collaboration in this area is moving into space with the joint EU/US project LISA (Laser Interferometer Space
Antenna). Earthquakes and other Earthly noises will be no problem for these monitoring spacecraft. LISA will complement LIGO
by looking at much more massive black holes through the observation of gravitational-wave sources emitting much larger
wavelengths. Three satellites will be placed in space above Earth in an equilateral triangle (with 5,000,000-km sides) (Figure
4.28). The system will measure the relative positions of each satellite to detect passing gravitational waves. Accuracy to within
10% of the size of an atom will be needed to detect any waves. The launch of this project might be as early as 2018.

“I’m sure LIGO will tell us something about the universe that we didn’t know before. The history of science tells us that any time
you go where you haven’t been before, you usually find something that really shakes the scientific paradigms of the day. Whether
gravitational wave astrophysics will do that, only time will tell.” —David Reitze, LIGO Input Optics Manager, University of Florida

Figure 4.28 Space-based future experiments for the measurement of gravitational waves. Shown here is a drawing of LISA’s orbit. Each satellite of
LISA will consist of a laser source and a mass. The lasers will transmit a signal to measure the distance between each satellite’s test mass. The
relative motion of these masses will provide information about passing gravitational waves. (credit: NASA)

The ideas presented in this section are but a glimpse into topics of modern physics that will be covered in much greater depth in
later chapters.

Glossary

the rate at which an object’s velocity changes over a period of time

a fundamental particle of nature that is surrounded by a characteristic force field; photons are carrier particles
of the electromagnetic force

the study of how forces affect the motion of objects and systems

a force acting on an object or system that originates outside of the object or system

a push or pull on an object with a specific magnitude and direction; can be represented by vectors; can be expressed
as a multiple of a standard force

a region in which a test particle will experience a force

a sketch showing all of the external forces acting on an object or system; the system is represented by a
dot, and the forces are represented by vectors extending outward from the dot

a situation in which the only force acting on an object is the force due to gravity
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friction:

inertia:

inertial frame of reference:

law of inertia:

mass:

net external force:

Newton’s first law of motion:

Newton’s second law of motion:

Newton’s third law of motion:

normal force:

system:

tension:

thrust:

weight:

a force past each other of objects that are touching; examples include rough surfaces and air resistance

the tendency of an object to remain at rest or remain in motion

a coordinate system that is not accelerating; all forces acting in an inertial frame of reference are
real forces, as opposed to fictitious forces that are observed due to an accelerating frame of reference

see Newton’s first law of motion

the quantity of matter in a substance; measured in kilograms

the vector sum of all external forces acting on an object or system; causes a mass to accelerate

a body at rest remains at rest, or, if in motion, remains in motion at a constant velocity unless
acted on by a net external force; also known as the law of inertia

the net external force Fnet on an object with mass m is proportional to and in the same

direction as the acceleration of the object, a , and inversely proportional to the mass; defined mathematically as

a = Fnet
m

whenever one body exerts a force on a second body, the first body experiences a force that is
equal in magnitude and opposite in direction to the force that the first body exerts

the force that a surface applies to an object to support the weight of the object; acts perpendicular to the
surface on which the object rests

defined by the boundaries of an object or collection of objects being observed; all forces originating from outside of
the system are considered external forces

the pulling force that acts along a medium, especially a stretched flexible connector, such as a rope or cable; when a
rope supports the weight of an object, the force on the object due to the rope is called a tension force

a reaction force that pushes a body forward in response to a backward force; rockets, airplanes, and cars are pushed
forward by a thrust reaction force

the force w due to gravity acting on an object of mass m ; defined mathematically as: w = mg , where g is the

magnitude and direction of the acceleration due to gravity

Section Summary

4.1 Development of Force Concept
• Dynamics is the study of how forces affect the motion of objects.
• Force is a push or pull that can be defined in terms of various standards, and it is a vector having both magnitude and

direction.
• External forces are any outside forces that act on a body. A free-body diagram is a drawing of all external forces acting

on a body.

4.2 Newton’s First Law of Motion: Inertia
• Newton’s first law of motion states that a body at rest remains at rest, or, if in motion, remains in motion at a constant

velocity unless acted on by a net external force. This is also known as the law of inertia.
• Inertia is the tendency of an object to remain at rest or remain in motion. Inertia is related to an object’s mass.
• Mass is the quantity of matter in a substance.

4.3 Newton’s Second Law of Motion: Concept of a System
• Acceleration, a , is defined as a change in velocity, meaning a change in its magnitude or direction, or both.

• An external force is one acting on a system from outside the system, as opposed to internal forces, which act between
components within the system.

• Newton’s second law of motion states that the acceleration of a system is directly proportional to and in the same direction
as the net external force acting on the system, and inversely proportional to its mass.

• In equation form, Newton’s second law of motion is a = Fnet
m .

• This is often written in the more familiar form: Fnet = ma .

• The weight w of an object is defined as the force of gravity acting on an object of mass m . The object experiences an

acceleration due to gravity g :
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w = mg.
• If the only force acting on an object is due to gravity, the object is in free fall.
• Friction is a force that opposes the motion past each other of objects that are touching.

4.4 Newton’s Third Law of Motion: Symmetry in Forces
• Newton’s third law of motion represents a basic symmetry in nature. It states: Whenever one body exerts a force on a

second body, the first body experiences a force that is equal in magnitude and opposite in direction to the force that the first
body exerts.

• A thrust is a reaction force that pushes a body forward in response to a backward force. Rockets, airplanes, and cars are
pushed forward by a thrust reaction force.

4.5 Normal, Tension, and Other Examples of Forces
• When objects rest on a surface, the surface applies a force to the object that supports the weight of the object. This

supporting force acts perpendicular to and away from the surface. It is called a normal force, N .

• When objects rest on a non-accelerating horizontal surface, the magnitude of the normal force is equal to the weight of the
object:

N = mg.
• When objects rest on an inclined plane that makes an angle θ with the horizontal surface, the weight of the object can be

resolved into components that act perpendicular ( w⊥ ) and parallel ( w ∥ ) to the surface of the plane. These

components can be calculated using:

w ∥ = w sin (θ) = mg sin (θ)

w⊥ = w cos (θ) = mg cos (θ).
• The pulling force that acts along a stretched flexible connector, such as a rope or cable, is called tension, T . When a rope

supports the weight of an object that is at rest, the tension in the rope is equal to the weight of the object:

T = mg.
• In any inertial frame of reference (one that is not accelerated or rotated), Newton’s laws have the simple forms given in this

chapter and all forces are real forces having a physical origin.

4.6 Problem-Solving Strategies
• To solve problems involving Newton’s laws of motion, follow the procedure described:

1. Draw a sketch of the problem.
2. Identify known and unknown quantities, and identify the system of interest. Draw a free-body diagram, which is a

sketch showing all of the forces acting on an object. The object is represented by a dot, and the forces are
represented by vectors extending in different directions from the dot. If vectors act in directions that are not horizontal
or vertical, resolve the vectors into horizontal and vertical components and draw them on the free-body diagram.

3. Write Newton’s second law in the horizontal and vertical directions and add the forces acting on the object. If the
object does not accelerate in a particular direction (for example, the x -direction) then Fnet x = 0 . If the object does

accelerate in that direction, Fnet x = ma .

4. Check your answer. Is the answer reasonable? Are the units correct?

4.7 Further Applications of Newton’s Laws of Motion
• Newton’s laws of motion can be applied in numerous situations to solve problems of motion.
• Some problems will contain multiple force vectors acting in different directions on an object. Be sure to draw diagrams,

resolve all force vectors into horizontal and vertical components, and draw a free-body diagram. Always analyze the
direction in which an object accelerates so that you can determine whether Fnet = ma or Fnet = 0 .

• The normal force on an object is not always equal in magnitude to the weight of the object. If an object is accelerating, the
normal force will be less than or greater than the weight of the object. Also, if the object is on an inclined plane, the normal
force will always be less than the full weight of the object.

• Some problems will contain various physical quantities, such as forces, acceleration, velocity, or position. You can apply
concepts from kinematics and dynamics in order to solve these problems of motion.

4.8 Extended Topic: The Four Basic Forces—An Introduction
• The various types of forces that are categorized for use in many applications are all manifestations of the four basic forces

in nature.
• The properties of these forces are summarized in Table 4.1.
• Everything we experience directly without sensitive instruments is due to either electromagnetic forces or gravitational

forces. The nuclear forces are responsible for the submicroscopic structure of matter, but they are not directly sensed
because of their short ranges. Attempts are being made to show all four forces are different manifestations of a single
unified force.
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• A force field surrounds an object creating a force and is the carrier of that force.

Conceptual Questions

4.1 Development of Force Concept

1. Propose a force standard different from the example of a stretched spring discussed in the text. Your standard must be
capable of producing the same force repeatedly.

2. What properties do forces have that allow us to classify them as vectors?

4.2 Newton’s First Law of Motion: Inertia

3. How are inertia and mass related?

4. What is the relationship between weight and mass? Which is an intrinsic, unchanging property of a body?

4.3 Newton’s Second Law of Motion: Concept of a System

5. Which statement is correct? (a) Net force causes motion. (b) Net force causes change in motion. Explain your answer and
give an example.

6. Why can we neglect forces such as those holding a body together when we apply Newton’s second law of motion?

7. Explain how the choice of the “system of interest” affects which forces must be considered when applying Newton’s second
law of motion.

8. Describe a situation in which the net external force on a system is not zero, yet its speed remains constant.

9. A system can have a nonzero velocity while the net external force on it is zero. Describe such a situation.

10. A rock is thrown straight up. What is the net external force acting on the rock when it is at the top of its trajectory?

11. (a) Give an example of different net external forces acting on the same system to produce different accelerations. (b) Give an
example of the same net external force acting on systems of different masses, producing different accelerations. (c) What law
accurately describes both effects? State it in words and as an equation.

12. If the acceleration of a system is zero, are no external forces acting on it? What about internal forces? Explain your answers.

13. If a constant, nonzero force is applied to an object, what can you say about the velocity and acceleration of the object?

14. The gravitational force on the basketball in Figure 4.6 is ignored. When gravity is taken into account, what is the direction of
the net external force on the basketball—above horizontal, below horizontal, or still horizontal?

4.4 Newton’s Third Law of Motion: Symmetry in Forces

15. When you take off in a jet aircraft, there is a sensation of being pushed back into the seat. Explain why you move backward
in the seat—is there really a force backward on you? (The same reasoning explains whiplash injuries, in which the head is
apparently thrown backward.)

16. A device used since the 1940s to measure the kick or recoil of the body due to heart beats is the “ballistocardiograph.” What
physics principle(s) are involved here to measure the force of cardiac contraction? How might we construct such a device?

17. Describe a situation in which one system exerts a force on another and, as a consequence, experiences a force that is equal
in magnitude and opposite in direction. Which of Newton’s laws of motion apply?

18. Why does an ordinary rifle recoil (kick backward) when fired? The barrel of a recoilless rifle is open at both ends. Describe
how Newton’s third law applies when one is fired. Can you safely stand close behind one when it is fired?

19. An American football lineman reasons that it is senseless to try to out-push the opposing player, since no matter how hard he
pushes he will experience an equal and opposite force from the other player. Use Newton’s laws and draw a free-body diagram
of an appropriate system to explain how he can still out-push the opposition if he is strong enough.

20. Newton’s third law of motion tells us that forces always occur in pairs of equal and opposite magnitude. Explain how the
choice of the “system of interest” affects whether one such pair of forces cancels.
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4.5 Normal, Tension, and Other Examples of Forces

21. If a leg is suspended by a traction setup as shown in Figure 4.29, what is the tension in the rope?

Figure 4.29 A leg is suspended by a traction system in which wires are used to transmit forces. Frictionless pulleys change the direction of the force T

without changing its magnitude.

22. In a traction setup for a broken bone, with pulleys and rope available, how might we be able to increase the force along the
tibia using the same weight? (See Figure 4.29.) (Note that the tibia is the shin bone shown in this image.)

4.7 Further Applications of Newton’s Laws of Motion

23. To simulate the apparent weightlessness of space orbit, astronauts are trained in the hold of a cargo aircraft that is
accelerating downward at g . Why will they appear to be weightless, as measured by standing on a bathroom scale, in this

accelerated frame of reference? Is there any difference between their apparent weightlessness in orbit and in the aircraft?

24. A cartoon shows the toupee coming off the head of an elevator passenger when the elevator rapidly stops during an upward
ride. Can this really happen without the person being tied to the floor of the elevator? Explain your answer.

4.8 Extended Topic: The Four Basic Forces—An Introduction

25. Explain, in terms of the properties of the four basic forces, why people notice the gravitational force acting on their bodies if it
is such a comparatively weak force.

26. What is the dominant force between astronomical objects? Why are the other three basic forces less significant over these
very large distances?

27. Give a detailed example of how the exchange of a particle can result in an attractive force. (For example, consider one child
pulling a toy out of the hands of another.)
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Problems & Exercises

4.3 Newton’s Second Law of Motion: Concept
of a System

You may assume data taken from illustrations is accurate
to three digits.

1. A 63.0-kg sprinter starts a race with an acceleration of

4.20 m/s2 . What is the net external force on him?

2. If the sprinter from the previous problem accelerates at that
rate for 20 m, and then maintains that velocity for the
remainder of the 100-m dash, what will be his time for the
race?

3. A cleaner pushes a 4.50-kg laundry cart in such a way that
the net external force on it is 60.0 N. Calculate the magnitude
of its acceleration.

4. Since astronauts in orbit are apparently weightless, a
clever method of measuring their masses is needed to
monitor their mass gains or losses to adjust diets. One way to
do this is to exert a known force on an astronaut and measure
the acceleration produced. Suppose a net external force of
50.0 N is exerted and the astronaut’s acceleration is

measured to be 0.893 m/s2 . (a) Calculate her mass. (b) By

exerting a force on the astronaut, the vehicle in which they
orbit experiences an equal and opposite force. Discuss how
this would affect the measurement of the astronaut’s
acceleration. Propose a method in which recoil of the vehicle
is avoided.

5. In Figure 4.7, the net external force on the 24-kg mower is
stated to be 51 N. If the force of friction opposing the motion
is 24 N, what force F (in newtons) is the person exerting on

the mower? Suppose the mower is moving at 1.5 m/s when
the force F is removed. How far will the mower go before

stopping?

6. The same rocket sled drawn in Figure 4.30 is decelerated

at a rate of 196 m/s2 . What force is necessary to produce

this deceleration? Assume that the rockets are off. The mass
of the system is 2100 kg.

Figure 4.30

7. (a) If the rocket sled shown in Figure 4.31 starts with only
one rocket burning, what is the magnitude of its acceleration?
Assume that the mass of the system is 2100 kg, the thrust T

is 2.4×104 N, and the force of friction opposing the motion

is known to be 650 N. (b) Why is the acceleration not one-
fourth of what it is with all rockets burning?

Figure 4.31

8. What is the deceleration of the rocket sled if it comes to
rest in 1.1 s from a speed of 1000 km/h? (Such deceleration
caused one test subject to black out and have temporary
blindness.)

9. Suppose two children push horizontally, but in exactly
opposite directions, on a third child in a wagon. The first child
exerts a force of 75.0 N, the second a force of 90.0 N, friction
is 12.0 N, and the mass of the third child plus wagon is 23.0
kg. (a) What is the system of interest if the acceleration of the
child in the wagon is to be calculated? (b) Draw a free-body
diagram, including all forces acting on the system. (c)
Calculate the acceleration. (d) What would the acceleration
be if friction were 15.0 N?

10. A powerful motorcycle can produce an acceleration of

3.50 m/s2 while traveling at 90.0 km/h. At that speed the

forces resisting motion, including friction and air resistance,
total 400 N. (Air resistance is analogous to air friction. It
always opposes the motion of an object.) What is the
magnitude of the force the motorcycle exerts backward on the
ground to produce its acceleration if the mass of the
motorcycle with rider is 245 kg?

11. The rocket sled shown in Figure 4.32 accelerates at a

rate of 49.0 m/s2 . Its passenger has a mass of 75.0 kg. (a)

Calculate the horizontal component of the force the seat
exerts against his body. Compare this with his weight by
using a ratio. (b) Calculate the direction and magnitude of the
total force the seat exerts against his body.

Figure 4.32

12. Repeat the previous problem for the situation in which the

rocket sled decelerates at a rate of 201 m/s2 . In this

problem, the forces are exerted by the seat and restraining
belts.

13. The weight of an astronaut plus his space suit on the
Moon is only 250 N. How much do they weigh on Earth?
What is the mass on the Moon? On Earth?

14. Suppose the mass of a fully loaded module in which
astronauts take off from the Moon is 10,000 kg. The thrust of
its engines is 30,000 N. (a) Calculate its the magnitude of
acceleration in a vertical takeoff from the Moon. (b) Could it lift
off from Earth? If not, why not? If it could, calculate the
magnitude of its acceleration.

4.4 Newton’s Third Law of Motion: Symmetry in
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Forces

15. What net external force is exerted on a 1100-kg artillery
shell fired from a battleship if the shell is accelerated at

2.40×104 m/s2 ? What is the magnitude of the force

exerted on the ship by the artillery shell?

16. A brave but inadequate rugby player is being pushed
backward by an opposing player who is exerting a force of
800 N on him. The mass of the losing player plus equipment

is 90.0 kg, and he is accelerating at 1.20 m/s2 backward.

(a) What is the force of friction between the losing player’s
feet and the grass? (b) What force does the winning player
exert on the ground to move forward if his mass plus
equipment is 110 kg? (c) Draw a sketch of the situation
showing the system of interest used to solve each part. For
this situation, draw a free-body diagram and write the net
force equation.

4.5 Normal, Tension, and Other Examples of
Forces

17. Two teams of nine members each engage in a tug of war.
Each of the first team’s members has an average mass of 68
kg and exerts an average force of 1350 N horizontally. Each
of the second team’s members has an average mass of 73 kg
and exerts an average force of 1365 N horizontally. (a) What
is magnitude of the acceleration of the two teams? (b) What is
the tension in the section of rope between the teams?

18. What force does a trampoline have to apply to a 45.0-kg

gymnast to accelerate her straight up at 7.50 m/s2 ? Note

that the answer is independent of the velocity of the
gymnast—she can be moving either up or down, or be
stationary.

19. (a) Calculate the tension in a vertical strand of spider web

if a spider of mass 8.00×10−5 kg hangs motionless on it.

(b) Calculate the tension in a horizontal strand of spider web if
the same spider sits motionless in the middle of it much like
the tightrope walker in Figure 4.17. The strand sags at an
angle of 12º below the horizontal. Compare this with the

tension in the vertical strand (find their ratio).

20. Suppose a 60.0-kg gymnast climbs a rope. (a) What is the
tension in the rope if he climbs at a constant speed? (b) What
is the tension in the rope if he accelerates upward at a rate of

1.50 m/s2 ?

21. Show that, as stated in the text, a force F⊥ exerted on

a flexible medium at its center and perpendicular to its length
(such as on the tightrope wire in Figure 4.17) gives rise to a

tension of magnitude T = F⊥
2 sin (θ) .

22. Consider the baby being weighed in Figure 4.33. (a)
What is the mass of the child and basket if a scale reading of
55 N is observed? (b) What is the tension T1 in the cord

attaching the baby to the scale? (c) What is the tension T2 in

the cord attaching the scale to the ceiling, if the scale has a
mass of 0.500 kg? (d) Draw a sketch of the situation
indicating the system of interest used to solve each part. The
masses of the cords are negligible.

Figure 4.33 A baby is weighed using a spring scale.

4.6 Problem-Solving Strategies

23. A 5.00×105-kg rocket is accelerating straight up. Its

engines produce 1.250×107 N of thrust, and air resistance

is 4.50×106 N . What is the rocket’s acceleration? Explicitly

show how you follow the steps in the Problem-Solving
Strategy for Newton’s laws of motion.

24. The wheels of a midsize car exert a force of 2100 N
backward on the road to accelerate the car in the forward
direction. If the force of friction including air resistance is 250

N and the acceleration of the car is 1.80 m/s2 , what is the

mass of the car plus its occupants? Explicitly show how you
follow the steps in the Problem-Solving Strategy for Newton’s
laws of motion. For this situation, draw a free-body diagram
and write the net force equation.

25. Calculate the force a 70.0-kg high jumper must exert on
the ground to produce an upward acceleration 4.00 times the
acceleration due to gravity. Explicitly show how you follow the
steps in the Problem-Solving Strategy for Newton’s laws of
motion.

26. When landing after a spectacular somersault, a 40.0-kg
gymnast decelerates by pushing straight down on the mat.
Calculate the force she must exert if her deceleration is 7.00
times the acceleration due to gravity. Explicitly show how you
follow the steps in the Problem-Solving Strategy for Newton’s
laws of motion.
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27. A freight train consists of two 8.00×104 -kg engines

and 45 cars with average masses of 5.50×104 kg . (a)

What force must each engine exert backward on the track to

accelerate the train at a rate of 5.00×10–2 m/s2 if the force

of friction is 7.50×105 N , assuming the engines exert

identical forces? This is not a large frictional force for such a
massive system. Rolling friction for trains is small, and
consequently trains are very energy-efficient transportation
systems. (b) What is the force in the coupling between the
37th and 38th cars (this is the force each exerts on the other),
assuming all cars have the same mass and that friction is
evenly distributed among all of the cars and engines?

28. Commercial airplanes are sometimes pushed out of the
passenger loading area by a tractor. (a) An 1800-kg tractor

exerts a force of 1.75×104 N backward on the pavement,

and the system experiences forces resisting motion that total

2400 N. If the acceleration is 0.150 m/s2 , what is the mass

of the airplane? (b) Calculate the force exerted by the tractor
on the airplane, assuming 2200 N of the friction is
experienced by the airplane. (c) Draw two sketches showing
the systems of interest used to solve each part, including the
free-body diagrams for each.

29. A 1100-kg car pulls a boat on a trailer. (a) What total force
resists the motion of the car, boat, and trailer, if the car exerts
a 1900-N force on the road and produces an acceleration of

0.550 m/s2 ? The mass of the boat plus trailer is 700 kg. (b)

What is the force in the hitch between the car and the trailer if
80% of the resisting forces are experienced by the boat and
trailer?

30. (a) Find the magnitudes of the forces F1 and F2 that

add to give the total force Ftot shown in Figure 4.34. This

may be done either graphically or by using trigonometry. (b)
Show graphically that the same total force is obtained
independent of the order of addition of F1 and F2 . (c) Find

the direction and magnitude of some other pair of vectors that
add to give Ftot . Draw these to scale on the same drawing

used in part (b) or a similar picture.

Figure 4.34

31. Two children pull a third child on a snow saucer sled
exerting forces F1 and F2 as shown from above in Figure

4.35. Find the acceleration of the 49.00-kg sled and child
system. Note that the direction of the frictional force is
unspecified; it will be in the opposite direction of the sum of
F1 and F2 .

Figure 4.35 An overhead view of the horizontal forces acting on a child’s
snow saucer sled.

32. Suppose your car was mired deeply in the mud and you
wanted to use the method illustrated in Figure 4.36 to pull it
out. (a) What force would you have to exert perpendicular to
the center of the rope to produce a force of 12,000 N on the
car if the angle is 2.00°? In this part, explicitly show how you
follow the steps in the Problem-Solving Strategy for Newton’s
laws of motion. (b) Real ropes stretch under such forces.
What force would be exerted on the car if the angle increases
to 7.00° and you still apply the force found in part (a) to its
center?

Figure 4.36

33. What force is exerted on the tooth in Figure 4.37 if the
tension in the wire is 25.0 N? Note that the force applied to
the tooth is smaller than the tension in the wire, but this is
necessitated by practical considerations of how force can be
applied in the mouth. Explicitly show how you follow steps in
the Problem-Solving Strategy for Newton’s laws of motion.

Figure 4.37 Braces are used to apply forces to teeth to realign them.
Shown in this figure are the tensions applied by the wire to the

protruding tooth. The total force applied to the tooth by the wire, Fapp ,

points straight toward the back of the mouth.
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34. Figure 4.38 shows Superhero and Trusty Sidekick
hanging motionless from a rope. Superhero’s mass is 90.0
kg, while Trusty Sidekick’s is 55.0 kg, and the mass of the
rope is negligible. (a) Draw a free-body diagram of the
situation showing all forces acting on Superhero, Trusty
Sidekick, and the rope. (b) Find the tension in the rope above
Superhero. (c) Find the tension in the rope between
Superhero and Trusty Sidekick. Indicate on your free-body
diagram the system of interest used to solve each part.

Figure 4.38 Superhero and Trusty Sidekick hang motionless on a rope
as they try to figure out what to do next. Will the tension be the same
everywhere in the rope?

35. A nurse pushes a cart by exerting a force on the handle at
a downward angle 35.0º below the horizontal. The loaded

cart has a mass of 28.0 kg, and the force of friction is 60.0 N.
(a) Draw a free-body diagram for the system of interest. (b)
What force must the nurse exert to move at a constant
velocity?

36. Construct Your Own Problem Consider the tension in
an elevator cable during the time the elevator starts from rest
and accelerates its load upward to some cruising velocity.
Taking the elevator and its load to be the system of interest,
draw a free-body diagram. Then calculate the tension in the
cable. Among the things to consider are the mass of the
elevator and its load, the final velocity, and the time taken to
reach that velocity.

37. Construct Your Own Problem Consider two people
pushing a toboggan with four children on it up a snow-
covered slope. Construct a problem in which you calculate
the acceleration of the toboggan and its load. Include a free-
body diagram of the appropriate system of interest as the
basis for your analysis. Show vector forces and their
components and explain the choice of coordinates. Among
the things to be considered are the forces exerted by those
pushing, the angle of the slope, and the masses of the
toboggan and children.

38. Unreasonable Results (a) Repeat Exercise 4.29, but

assume an acceleration of 1.20 m/s2 is produced. (b) What

is unreasonable about the result? (c) Which premise is
unreasonable, and why is it unreasonable?

39. Unreasonable Results (a) What is the initial acceleration

of a rocket that has a mass of 1.50×106 kg at takeoff, the

engines of which produce a thrust of 2.00×106 N ? Do not

neglect gravity. (b) What is unreasonable about the result?
(This result has been unintentionally achieved by several real
rockets.) (c) Which premise is unreasonable, or which
premises are inconsistent? (You may find it useful to compare
this problem to the rocket problem earlier in this section.)

4.7 Further Applications of Newton’s Laws of
Motion

40. A flea jumps by exerting a force of 1.20×10−5 N
straight down on the ground. A breeze blowing on the flea

parallel to the ground exerts a force of 0.500×10−6 N on

the flea. Find the direction and magnitude of the acceleration

of the flea if its mass is 6.00×10−7 kg . Do not neglect the

gravitational force.

41. Two muscles in the back of the leg pull upward on the
Achilles tendon, as shown in Figure 4.39. (These muscles
are called the medial and lateral heads of the gastrocnemius
muscle.) Find the magnitude and direction of the total force
on the Achilles tendon. What type of movement could be
caused by this force?

Figure 4.39 Achilles tendon
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42. A 76.0-kg person is being pulled away from a burning
building as shown in Figure 4.40. Calculate the tension in the
two ropes if the person is momentarily motionless. Include a
free-body diagram in your solution.

Figure 4.40 The force T2 needed to hold steady the person being

rescued from the fire is less than her weight and less than the force

T1 in the other rope, since the more vertical rope supports a greater

part of her weight (a vertical force).

43. Integrated Concepts A 35.0-kg dolphin decelerates from
12.0 to 7.50 m/s in 2.30 s to join another dolphin in play. What
average force was exerted to slow him if he was moving
horizontally? (The gravitational force is balanced by the
buoyant force of the water.)

44. Integrated Concepts When starting a foot race, a
70.0-kg sprinter exerts an average force of 650 N backward
on the ground for 0.800 s. (a) What is his final speed? (b)
How far does he travel?

45. Integrated Concepts A large rocket has a mass of

2.00×106 kg at takeoff, and its engines produce a thrust of

3.50×107 N . (a) Find its initial acceleration if it takes off

vertically. (b) How long does it take to reach a velocity of 120
km/h straight up, assuming constant mass and thrust? (c) In
reality, the mass of a rocket decreases significantly as its fuel
is consumed. Describe qualitatively how this affects the
acceleration and time for this motion.

46. Integrated Concepts A basketball player jumps straight
up for a ball. To do this, he lowers his body 0.300 m and then
accelerates through this distance by forcefully straightening
his legs. This player leaves the floor with a vertical velocity
sufficient to carry him 0.900 m above the floor. (a) Calculate
his velocity when he leaves the floor. (b) Calculate his
acceleration while he is straightening his legs. He goes from
zero to the velocity found in part (a) in a distance of 0.300 m.
(c) Calculate the force he exerts on the floor to do this, given
that his mass is 110 kg.

47. Integrated Concepts A 2.50-kg fireworks shell is fired
straight up from a mortar and reaches a height of 110 m. (a)
Neglecting air resistance (a poor assumption, but we will
make it for this example), calculate the shell’s velocity when it
leaves the mortar. (b) The mortar itself is a tube 0.450 m long.
Calculate the average acceleration of the shell in the tube as
it goes from zero to the velocity found in (a). (c) What is the
average force on the shell in the mortar? Express your
answer in newtons and as a ratio to the weight of the shell.

48. Integrated Concepts Repeat Exercise 4.47 for a shell
fired at an angle 10.0º from the vertical.

49. Integrated Concepts An elevator filled with passengers
has a mass of 1700 kg. (a) The elevator accelerates upward

from rest at a rate of 1.20 m/s2 for 1.50 s. Calculate the

tension in the cable supporting the elevator. (b) The elevator
continues upward at constant velocity for 8.50 s. What is the
tension in the cable during this time? (c) The elevator

decelerates at a rate of 0.600 m/s2 for 3.00 s. What is the

tension in the cable during deceleration? (d) How high has
the elevator moved above its original starting point, and what
is its final velocity?

50. Unreasonable Results (a) What is the final velocity of a
car originally traveling at 50.0 km/h that decelerates at a rate

of 0.400 m/s2 for 50.0 s? (b) What is unreasonable about

the result? (c) Which premise is unreasonable, or which
premises are inconsistent?

51. Unreasonable Results A 75.0-kg man stands on a
bathroom scale in an elevator that accelerates from rest to
30.0 m/s in 2.00 s. (a) Calculate the scale reading in newtons
and compare it with his weight. (The scale exerts an upward
force on him equal to its reading.) (b) What is unreasonable
about the result? (c) Which premise is unreasonable, or which
premises are inconsistent?

4.8 Extended Topic: The Four Basic
Forces—An Introduction

52. (a) What is the strength of the weak nuclear force relative
to the strong nuclear force? (b) What is the strength of the
weak nuclear force relative to the electromagnetic force?
Since the weak nuclear force acts at only very short
distances, such as inside nuclei, where the strong and
electromagnetic forces also act, it might seem surprising that
we have any knowledge of it at all. We have such knowledge
because the weak nuclear force is responsible for beta decay,
a type of nuclear decay not explained by other forces.

53. (a) What is the ratio of the strength of the gravitational
force to that of the strong nuclear force? (b) What is the ratio
of the strength of the gravitational force to that of the weak
nuclear force? (c) What is the ratio of the strength of the
gravitational force to that of the electromagnetic force? What
do your answers imply about the influence of the gravitational
force on atomic nuclei?

54. What is the ratio of the strength of the strong nuclear
force to that of the electromagnetic force? Based on this ratio,
you might expect that the strong force dominates the nucleus,
which is true for small nuclei. Large nuclei, however, have
sizes greater than the range of the strong nuclear force. At
these sizes, the electromagnetic force begins to affect nuclear
stability. These facts will be used to explain nuclear fusion
and fission later in this text.
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5 FURTHER APPLICATIONS OF NEWTON'S
LAWS: FRICTION, DRAG, AND ELASTICITY

Figure 5.1 Total hip replacement surgery has become a common procedure. The head (or ball) of the patient’s femur fits into a cup that has a hard
plastic-like inner lining. (credit: National Institutes of Health, via Wikimedia Commons)

Chapter Outline
5.1. Friction

• Discuss the general characteristics of friction.
• Describe the various types of friction.
• Calculate the magnitude of static and kinetic friction.

5.2. Drag Forces
• Express mathematically the drag force.
• Discuss the applications of drag force.
• Define terminal velocity.
• Determine the terminal velocity given mass.

5.3. Elasticity: Stress and Strain
• State Hooke’s law.
• Explain Hooke’s law using graphical representation between deformation and applied force.
• Discuss the three types of deformations such as changes in length, sideways shear and changes in volume.
• Describe with examples the young’s modulus, shear modulus and bulk modulus.
• Determine the change in length given mass, length and radius.
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Introduction: Further Applications of Newton’s Laws

Describe the forces on the hip joint. What means are taken to ensure that this will be a good movable joint? From the photograph
(for an adult) in Figure 5.1, estimate the dimensions of the artificial device.

It is difficult to categorize forces into various types (aside from the four basic forces discussed in previous chapter). We know that
a net force affects the motion, position, and shape of an object. It is useful at this point to look at some particularly interesting and
common forces that will provide further applications of Newton’s laws of motion. We have in mind the forces of friction, air or
liquid drag, and deformation.

5.1 Friction

Friction is a force that is around us all the time that opposes relative motion between surfaces in contact but also allows us to
move (which you have discovered if you have ever tried to walk on ice). While a common force, the behavior of friction is actually
very complicated and is still not completely understood. We have to rely heavily on observations for whatever understandings we
can gain. However, we can still deal with its more elementary general characteristics and understand the circumstances in which
it behaves.

Friction

Friction is a force that opposes relative motion between surfaces in contact.

One of the simpler characteristics of friction is that it is parallel to the contact surface between surfaces and always in a direction
that opposes motion or attempted motion of the systems relative to each other. If two surfaces are in contact and moving relative
to one another, then the friction between them is called kinetic friction. For example, friction slows a hockey puck sliding on ice.
But when objects are stationary, static friction can act between them; the static friction is usually greater than the kinetic friction
between the surfaces.

Kinetic Friction

If two surfaces are in contact and moving relative to one another, then the friction between them is called kinetic friction.

Imagine, for example, trying to slide a heavy crate across a concrete floor—you may push harder and harder on the crate and
not move it at all. This means that the static friction responds to what you do—it increases to be equal to and in the opposite
direction of your push. But if you finally push hard enough, the crate seems to slip suddenly and starts to move. Once in motion it
is easier to keep it in motion than it was to get it started, indicating that the kinetic friction force is less than the static friction
force. If you add mass to the crate, say by placing a box on top of it, you need to push even harder to get it started and also to
keep it moving. Furthermore, if you oiled the concrete you would find it to be easier to get the crate started and keep it going (as
you might expect).

Figure 5.2 is a crude pictorial representation of how friction occurs at the interface between two objects. Close-up inspection of
these surfaces shows them to be rough. So when you push to get an object moving (in this case, a crate), you must raise the
object until it can skip along with just the tips of the surface hitting, break off the points, or do both. A considerable force can be
resisted by friction with no apparent motion. The harder the surfaces are pushed together (such as if another box is placed on
the crate), the more force is needed to move them. Part of the friction is due to adhesive forces between the surface molecules
of the two objects, which explain the dependence of friction on the nature of the substances. Adhesion varies with substances in
contact and is a complicated aspect of surface physics. Once an object is moving, there are fewer points of contact (fewer
molecules adhering), so less force is required to keep the object moving. At small but nonzero speeds, friction is nearly
independent of speed.

Figure 5.2 Frictional forces, such as f , always oppose motion or attempted motion between surfaces in contact. Friction arises in part because of the

roughness of the surfaces in contact, as seen in the expanded view. In order for the object to move, it must rise to where the peaks can skip along the
bottom surface. Thus a force is required just to set the object in motion. Some of the peaks will be broken off, also requiring a force to maintain motion.
Much of the friction is actually due to attractive forces between molecules making up the two objects, so that even perfectly smooth surfaces are not
friction-free. Such adhesive forces also depend on the substances the surfaces are made of, explaining, for example, why rubber-soled shoes slip less
than those with leather soles.
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The magnitude of the frictional force has two forms: one for static situations (static friction), the other for when there is motion
(kinetic friction).

When there is no motion between the objects, the magnitude of static friction fs is

(5.1)fs ≤ μsN,

where μs is the coefficient of static friction and N is the magnitude of the normal force (the force perpendicular to the surface).

Magnitude of Static Friction

Magnitude of static friction fs is

(5.2)fs ≤ μsN,

where μs is the coefficient of static friction and N is the magnitude of the normal force.

The symbol ≤ means less than or equal to, implying that static friction can have a minimum and a maximum value of μs N .

Static friction is a responsive force that increases to be equal and opposite to whatever force is exerted, up to its maximum limit.
Once the applied force exceeds fs(max) , the object will move. Thus

(5.3)fs(max) = μsN.

Once an object is moving, the magnitude of kinetic friction fk is given by

(5.4)fk = μkN,

where μk is the coefficient of kinetic friction. A system in which fk = μkN is described as a system in which friction behaves

simply.

Magnitude of Kinetic Friction

The magnitude of kinetic friction fk is given by

(5.5)fk = μkN,

where μk is the coefficient of kinetic friction.

As seen in Table 5.1, the coefficients of kinetic friction are less than their static counterparts. That values of μ in Table 5.1 are

stated to only one or, at most, two digits is an indication of the approximate description of friction given by the above two
equations.

Table 5.1 Coefficients of Static and Kinetic Friction

System Static friction μs Kinetic friction μk

Rubber on dry concrete 1.0 0.7

Rubber on wet concrete 0.7 0.5

Wood on wood 0.5 0.3

Waxed wood on wet snow 0.14 0.1

Metal on wood 0.5 0.3

Steel on steel (dry) 0.6 0.3

Steel on steel (oiled) 0.05 0.03

Teflon on steel 0.04 0.04

Bone lubricated by synovial fluid 0.016 0.015

Shoes on wood 0.9 0.7

Shoes on ice 0.1 0.05

Ice on ice 0.1 0.03

Steel on ice 0.04 0.02
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The equations given earlier include the dependence of friction on materials and the normal force. The direction of friction is
always opposite that of motion, parallel to the surface between objects, and perpendicular to the normal force. For example, if
the crate you try to push (with a force parallel to the floor) has a mass of 100 kg, then the normal force would be equal to its

weight, W = mg = (100 kg)(9.80 m/s2) = 980 N , perpendicular to the floor. If the coefficient of static friction is 0.45, you

would have to exert a force parallel to the floor greater than fs(max) = μsN = (0.45)(980 N) = 440 N to move the crate.

Once there is motion, friction is less and the coefficient of kinetic friction might be 0.30, so that a force of only 290 N (
fk = μkN = (0.30)(980 N) = 290 N ) would keep it moving at a constant speed. If the floor is lubricated, both coefficients

are considerably less than they would be without lubrication. Coefficient of friction is a unit less quantity with a magnitude usually
between 0 and 1.0. The coefficient of the friction depends on the two surfaces that are in contact.

Take-Home Experiment

Find a small plastic object (such as a food container) and slide it on a kitchen table by giving it a gentle tap. Now spray water
on the table, simulating a light shower of rain. What happens now when you give the object the same-sized tap? Now add a
few drops of (vegetable or olive) oil on the surface of the water and give the same tap. What happens now? This latter
situation is particularly important for drivers to note, especially after a light rain shower. Why?

Many people have experienced the slipperiness of walking on ice. However, many parts of the body, especially the joints, have
much smaller coefficients of friction—often three or four times less than ice. A joint is formed by the ends of two bones, which are
connected by thick tissues. The knee joint is formed by the lower leg bone (the tibia) and the thighbone (the femur). The hip is a
ball (at the end of the femur) and socket (part of the pelvis) joint. The ends of the bones in the joint are covered by cartilage,
which provides a smooth, almost glassy surface. The joints also produce a fluid (synovial fluid) that reduces friction and wear. A
damaged or arthritic joint can be replaced by an artificial joint (Figure 5.3). These replacements can be made of metals
(stainless steel or titanium) or plastic (polyethylene), also with very small coefficients of friction.

Figure 5.3 Artificial knee replacement is a procedure that has been performed for more than 20 years. In this figure, we see the post-op X-rays of the
right knee joint replacement. (credit: Mike Baird, Flickr)

Other natural lubricants include saliva produced in our mouths to aid in the swallowing process, and the slippery mucus found
between organs in the body, allowing them to move freely past each other during heartbeats, during breathing, and when a
person moves. Artificial lubricants are also common in hospitals and doctor’s clinics. For example, when ultrasonic imaging is
carried out, the gel that couples the transducer to the skin also serves to to lubricate the surface between the transducer and the
skin—thereby reducing the coefficient of friction between the two surfaces. This allows the transducer to move freely over the
skin.
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Example 5.1 Skiing Exercise

A skier with a mass of 62 kg is sliding down a snowy slope. Find the coefficient of kinetic friction for the skier if friction is
known to be 45.0 N.

Strategy

The magnitude of kinetic friction was given in to be 45.0 N. Kinetic friction is related to the normal force N as fk = μkN ;

thus, the coefficient of kinetic friction can be found if we can find the normal force of the skier on a slope. The normal force is
always perpendicular to the surface, and since there is no motion perpendicular to the surface, the normal force should
equal the component of the skier’s weight perpendicular to the slope. (See the skier and free-body diagram in Figure 5.4.)

Figure 5.4 The motion of the skier and friction are parallel to the slope and so it is most convenient to project all forces onto a coordinate system

where one axis is parallel to the slope and the other is perpendicular (axes shown to left of skier). N (the normal force) is perpendicular to the

slope, and f (the friction) is parallel to the slope, but w (the skier’s weight) has components along both axes, namely w⊥ and W // . N is

equal in magnitude to w⊥ , so there is no motion perpendicular to the slope. However, f is less than W // in magnitude, so there is

acceleration down the slope (along the x-axis).

That is,

(5.6)N = w⊥ = w cos 25º = mg cos 25º.

Substituting this into our expression for kinetic friction, we get

(5.7)fk = μkmg cos 25º,

which can now be solved for the coefficient of kinetic friction μk .

Solution

Solving for μk gives

(5.8)
μk = fk

N = fk

w cos 25º
= fk

mg cos 25º.

Substituting known values on the right-hand side of the equation,

(5.9)μk = 45.0 N
(62 kg)(9.80 m/s2)(0.906)

= 0.082.

Discussion

This result is a little smaller than the coefficient listed in Table 5.1 for waxed wood on snow, but it is still reasonable since
values of the coefficients of friction can vary greatly. In situations like this, where an object of mass m slides down a slope

that makes an angle θ with the horizontal, friction is given by fk = μkmg cos θ . All objects will slide down a slope with

constant acceleration under these circumstances. Proof of this is left for this chapter’s Problems and Exercises.

Take-Home Experiment

An object will slide down an inclined plane at a constant velocity if the net force on the object is zero. We can use this fact to
measure the coefficient of kinetic friction between two objects. As shown in Example 5.1, the kinetic friction on a slope
fk = μkmg cos θ . The component of the weight down the slope is equal to mg sin θ (see the free-body diagram in

Figure 5.4). These forces act in opposite directions, so when they have equal magnitude, the acceleration is zero. Writing
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these out:

(5.10)fk = Fgx
(5.11)μk mg cos θ = mg sin θ.

Solving for μk , we find that

(5.12)
μk = mg sin θ

mg cos θ = tan θ.

Put a coin on a book and tilt it until the coin slides at a constant velocity down the book. You might need to tap the book
lightly to get the coin to move. Measure the angle of tilt relative to the horizontal and find μk . Note that the coin will not start

to slide at all until an angle greater than θ is attained, since the coefficient of static friction is larger than the coefficient of

kinetic friction. Discuss how this may affect the value for μk and its uncertainty.

We have discussed that when an object rests on a horizontal surface, there is a normal force supporting it equal in magnitude to
its weight. Furthermore, simple friction is always proportional to the normal force.

Making Connections: Submicroscopic Explanations of Friction

The simpler aspects of friction dealt with so far are its macroscopic (large-scale) characteristics. Great strides have been
made in the atomic-scale explanation of friction during the past several decades. Researchers are finding that the atomic
nature of friction seems to have several fundamental characteristics. These characteristics not only explain some of the
simpler aspects of friction—they also hold the potential for the development of nearly friction-free environments that could
save hundreds of billions of dollars in energy which is currently being converted (unnecessarily) to heat.

Figure 5.5 illustrates one macroscopic characteristic of friction that is explained by microscopic (small-scale) research. We have
noted that friction is proportional to the normal force, but not to the area in contact, a somewhat counterintuitive notion. When two
rough surfaces are in contact, the actual contact area is a tiny fraction of the total area since only high spots touch. When a
greater normal force is exerted, the actual contact area increases, and it is found that the friction is proportional to this area.

Figure 5.5 Two rough surfaces in contact have a much smaller area of actual contact than their total area. When there is a greater normal force as a
result of a greater applied force, the area of actual contact increases as does friction.

But the atomic-scale view promises to explain far more than the simpler features of friction. The mechanism for how heat is
generated is now being determined. In other words, why do surfaces get warmer when rubbed? Essentially, atoms are linked
with one another to form lattices. When surfaces rub, the surface atoms adhere and cause atomic lattices to vibrate—essentially
creating sound waves that penetrate the material. The sound waves diminish with distance and their energy is converted into
heat. Chemical reactions that are related to frictional wear can also occur between atoms and molecules on the surfaces. Figure
5.6 shows how the tip of a probe drawn across another material is deformed by atomic-scale friction. The force needed to drag
the tip can be measured and is found to be related to shear stress, which will be discussed later in this chapter. The variation in

shear stress is remarkable (more than a factor of 1012 ) and difficult to predict theoretically, but shear stress is yielding a

fundamental understanding of a large-scale phenomenon known since ancient times—friction.
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Figure 5.6 The tip of a probe is deformed sideways by frictional force as the probe is dragged across a surface. Measurements of how the force varies
for different materials are yielding fundamental insights into the atomic nature of friction.

PhET Explorations: Forces and Motion

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force
and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. Draw a free-body
diagram of all the forces (including gravitational and normal forces). Click to open media in new browser.
(https://phet.colorado.edu/en/simulation/legacy/forces-and-motion)

5.2 Drag Forces

Another interesting force in everyday life is the force of drag on an object when it is moving in a fluid (either a gas or a liquid).
You feel the drag force when you move your hand through water. You might also feel it if you move your hand during a strong
wind. The faster you move your hand, the harder it is to move. You feel a smaller drag force when you tilt your hand so only the
side goes through the air—you have decreased the area of your hand that faces the direction of motion. Like friction, the drag
force always opposes the motion of an object. Unlike simple friction, the drag force is proportional to some function of the
velocity of the object in that fluid. This functionality is complicated and depends upon the shape of the object, its size, its velocity,
and the fluid it is in. For most large objects such as bicyclists, cars, and baseballs not moving too slowly, the magnitude of the
drag force FD is found to be proportional to the square of the speed of the object. We can write this relationship mathematically

as FD ∝ v2 . When taking into account other factors, this relationship becomes

(5.13)FD = 1
2CρAv2,

where C is the drag coefficient, A is the area of the object facing the fluid, and ρ is the density of the fluid. (Recall that density

is mass per unit volume.) This equation can also be written in a more generalized fashion as FD = bv2 , where b is a constant

equivalent to 0.5CρA . We have set the exponent for these equations as 2 because, when an object is moving at high velocity

through air, the magnitude of the drag force is proportional to the square of the speed. As we shall see in a few pages on fluid
dynamics, for small particles moving at low speeds in a fluid, the exponent is equal to 1.

Drag Force

Drag force FD is found to be proportional to the square of the speed of the object. Mathematically

(5.14)FD ∝ v2

(5.15)FD = 1
2CρAv2,

where C is the drag coefficient, A is the area of the object facing the fluid, and ρ is the density of the fluid.

Athletes as well as car designers seek to reduce the drag force to lower their race times. (See Figure 5.7). “Aerodynamic”
shaping of an automobile can reduce the drag force and so increase a car’s gas mileage.
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Figure 5.7 From racing cars to bobsled racers, aerodynamic shaping is crucial to achieving top speeds. Bobsleds are designed for speed. They are
shaped like a bullet with tapered fins. (credit: U.S. Army, via Wikimedia Commons)

The value of the drag coefficient, C , is determined empirically, usually with the use of a wind tunnel. (See Figure 5.8).

Figure 5.8 NASA researchers test a model plane in a wind tunnel. (credit: NASA/Ames)

The drag coefficient can depend upon velocity, but we will assume that it is a constant here. Table 5.2 lists some typical drag
coefficients for a variety of objects. Notice that the drag coefficient is a dimensionless quantity. At highway speeds, over 50% of
the power of a car is used to overcome air drag. The most fuel-efficient cruising speed is about 70–80 km/h (about 45–50 mi/h).
For this reason, during the 1970s oil crisis in the United States, maximum speeds on highways were set at about 90 km/h (55 mi/
h).

Table 5.2 Drag Coefficient
Values Typical values of
drag coefficient C .

Object C

Airfoil 0.05

Toyota Camry 0.28

Ford Focus 0.32

Honda Civic 0.36

Ferrari Testarossa 0.37

Dodge Ram pickup 0.43

Sphere 0.45

Hummer H2 SUV 0.64

Skydiver (feet first) 0.70

Bicycle 0.90

Skydiver (horizontal) 1.0

Circular flat plate 1.12
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Substantial research is under way in the sporting world to minimize drag. The dimples on golf balls are being redesigned as are
the clothes that athletes wear. Bicycle racers and some swimmers and runners wear full bodysuits. Australian Cathy Freeman
wore a full body suit in the 2000 Sydney Olympics, and won the gold medal for the 400 m race. Many swimmers in the 2008
Beijing Olympics wore (Speedo) body suits; it might have made a difference in breaking many world records (See Figure 5.9).
Most elite swimmers (and cyclists) shave their body hair. Such innovations can have the effect of slicing away milliseconds in a
race, sometimes making the difference between a gold and a silver medal. One consequence is that careful and precise
guidelines must be continuously developed to maintain the integrity of the sport.

Figure 5.9 Body suits, such as this LZR Racer Suit, have been credited with many world records after their release in 2008. Smoother “skin” and more
compression forces on a swimmer’s body provide at least 10% less drag. (credit: NASA/Kathy Barnstorff)

Some interesting situations connected to Newton’s second law occur when considering the effects of drag forces upon a moving
object. For instance, consider a skydiver falling through air under the influence of gravity. The two forces acting on him are the
force of gravity and the drag force (ignoring the buoyant force). The downward force of gravity remains constant regardless of the
velocity at which the person is moving. However, as the person’s velocity increases, the magnitude of the drag force increases
until the magnitude of the drag force is equal to the gravitational force, thus producing a net force of zero. A zero net force means
that there is no acceleration, as given by Newton’s second law. At this point, the person’s velocity remains constant and we say
that the person has reached his terminal velocity ( vt ). Since FD is proportional to the speed, a heavier skydiver must go faster

for FD to equal his weight. Let’s see how this works out more quantitatively.

At the terminal velocity,

(5.16)Fnet = mg − FD = ma = 0.

Thus,

(5.17)mg = FD.

Using the equation for drag force, we have

(5.18)mg = 1
2ρCAv 2.

Solving for the velocity, we obtain

(5.19)
v = 2mg

ρCA .

Assume the density of air is ρ = 1.21 kg/m3 . A 75-kg skydiver descending head first will have an area approximately

A = 0.18 m2 and a drag coefficient of approximately C = 0.70 . We find that

(5.20)
v = 2(75 kg)(9.80 m/s2)

(1.21 kg/m3)(0.70)(0.18 m2)
= 98 m/s
= 350 km/h.

This means a skydiver with a mass of 75 kg achieves a maximum terminal velocity of about 350 km/h while traveling in a
headfirst position, minimizing the area and his drag. In a spread-eagle position, that terminal velocity may decrease to about 200
km/h as the area increases. This terminal velocity becomes much smaller after the parachute opens.
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Take-Home Experiment

This interesting activity examines the effect of weight upon terminal velocity. Gather together some nested coffee filters.
Leaving them in their original shape, measure the time it takes for one, two, three, four, and five nested filters to fall to the
floor from the same height (roughly 2 m). (Note that, due to the way the filters are nested, drag is constant and only mass
varies.) They obtain terminal velocity quite quickly, so find this velocity as a function of mass. Plot the terminal velocity v
versus mass. Also plot v2 versus mass. Which of these relationships is more linear? What can you conclude from these

graphs?

Example 5.2 A Terminal Velocity

Find the terminal velocity of an 85-kg skydiver falling in a spread-eagle position.

Strategy

At terminal velocity, Fnet = 0 . Thus the drag force on the skydiver must equal the force of gravity (the person’s weight).

Using the equation of drag force, we find mg = 1
2ρCAv 2 .

Thus the terminal velocity vt can be written as

(5.21)
vt = 2mg

ρCA .

Solution

All quantities are known except the person’s projected area. This is an adult (85 kg) falling spread eagle. We can estimate
the frontal area as

(5.22)A = (2 m)(0.35 m) = 0.70 m2.

Using our equation for vt , we find that

(5.23)
vt = 2(85 kg)(9.80 m/s2)

(1.21 kg/m3)(1.0)(0.70 m2)
= 44 m/s.

Discussion

This result is consistent with the value for vt mentioned earlier. The 75-kg skydiver going feet first had a v = 98 m / s . He

weighed less but had a smaller frontal area and so a smaller drag due to the air.

The size of the object that is falling through air presents another interesting application of air drag. If you fall from a 5-m high
branch of a tree, you will likely get hurt—possibly fracturing a bone. However, a small squirrel does this all the time, without
getting hurt. You don’t reach a terminal velocity in such a short distance, but the squirrel does.

The following interesting quote on animal size and terminal velocity is from a 1928 essay by a British biologist, J.B.S. Haldane,
titled “On Being the Right Size.”

To the mouse and any smaller animal, [gravity] presents practically no dangers. You can drop a mouse down a thousand-yard
mine shaft; and, on arriving at the bottom, it gets a slight shock and walks away, provided that the ground is fairly soft. A rat is
killed, a man is broken, and a horse splashes. For the resistance presented to movement by the air is proportional to the surface
of the moving object. Divide an animal’s length, breadth, and height each by ten; its weight is reduced to a thousandth, but its
surface only to a hundredth. So the resistance to falling in the case of the small animal is relatively ten times greater than the
driving force.

The above quadratic dependence of air drag upon velocity does not hold if the object is very small, is going very slow, or is in a
denser medium than air. Then we find that the drag force is proportional just to the velocity. This relationship is given by Stokes’
law, which states that

(5.24)Fs = 6πrηv,

where r is the radius of the object, η is the viscosity of the fluid, and v is the object’s velocity.

Stokes’ Law
(5.25)Fs = 6πrηv,
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where r is the radius of the object, η is the viscosity of the fluid, and v is the object’s velocity.

Good examples of this law are provided by microorganisms, pollen, and dust particles. Because each of these objects is so
small, we find that many of these objects travel unaided only at a constant (terminal) velocity. Terminal velocities for bacteria
(size about 1 μm ) can be about 2 μm/s . To move at a greater speed, many bacteria swim using flagella (organelles shaped

like little tails) that are powered by little motors embedded in the cell. Sediment in a lake can move at a greater terminal velocity
(about 5 μm/s ), so it can take days to reach the bottom of the lake after being deposited on the surface.

If we compare animals living on land with those in water, you can see how drag has influenced evolution. Fishes, dolphins, and
even massive whales are streamlined in shape to reduce drag forces. Birds are streamlined and migratory species that fly large
distances often have particular features such as long necks. Flocks of birds fly in the shape of a spear head as the flock forms a
streamlined pattern (see Figure 5.10). In humans, one important example of streamlining is the shape of sperm, which need to
be efficient in their use of energy.

Figure 5.10 Geese fly in a V formation during their long migratory travels. This shape reduces drag and energy consumption for individual birds, and
also allows them a better way to communicate. (credit: Julo, Wikimedia Commons)

Galileo’s Experiment

Galileo is said to have dropped two objects of different masses from the Tower of Pisa. He measured how long it took each
to reach the ground. Since stopwatches weren’t readily available, how do you think he measured their fall time? If the
objects were the same size, but with different masses, what do you think he should have observed? Would this result be
different if done on the Moon?

PhET Explorations: Masses & Springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can
even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each
spring. Click to open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/mass-spring-lab)

5.3 Elasticity: Stress and Strain

We now move from consideration of forces that affect the motion of an object (such as friction and drag) to those that affect an
object’s shape. If a bulldozer pushes a car into a wall, the car will not move but it will noticeably change shape. A change in
shape due to the application of a force is a deformation. Even very small forces are known to cause some deformation. For
small deformations, two important characteristics are observed. First, the object returns to its original shape when the force is
removed—that is, the deformation is elastic for small deformations. Second, the size of the deformation is proportional to the
force—that is, for small deformations, Hooke’s law is obeyed. In equation form, Hooke’s law is given by

(5.26)F = kΔL,

where ΔL is the amount of deformation (the change in length, for example) produced by the force F , and k is a

proportionality constant that depends on the shape and composition of the object and the direction of the force. Note that this
force is a function of the deformation ΔL —it is not constant as a kinetic friction force is. Rearranging this to

(5.27)ΔL = F
k

makes it clear that the deformation is proportional to the applied force. Figure 5.11 shows the Hooke’s law relationship between
the extension ΔL of a spring or of a human bone. For metals or springs, the straight line region in which Hooke’s law pertains is

much larger. Bones are brittle and the elastic region is small and the fracture abrupt. Eventually a large enough stress to the
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material will cause it to break or fracture. Tensile strength is the breaking stress that will cause permanent deformation or
fracture of a material.

Hooke’s Law
(5.28)F = kΔL,

where ΔL is the amount of deformation (the change in length, for example) produced by the force F , and k is a

proportionality constant that depends on the shape and composition of the object and the direction of the force.

(5.29)ΔL = F
k

Figure 5.11 A graph of deformation ΔL versus applied force F . The straight segment is the linear region where Hooke’s law is obeyed. The slope

of the straight region is 1
k . For larger forces, the graph is curved but the deformation is still elastic— ΔL will return to zero if the force is removed.

Still greater forces permanently deform the object until it finally fractures. The shape of the curve near fracture depends on several factors, including

how the force F is applied. Note that in this graph the slope increases just before fracture, indicating that a small increase in F is producing a large

increase in L near the fracture.

The proportionality constant k depends upon a number of factors for the material. For example, a guitar string made of nylon

stretches when it is tightened, and the elongation ΔL is proportional to the force applied (at least for small deformations).

Thicker nylon strings and ones made of steel stretch less for the same applied force, implying they have a larger k (see Figure

5.12). Finally, all three strings return to their normal lengths when the force is removed, provided the deformation is small. Most

materials will behave in this manner if the deformation is less than about 0.1% or about 1 part in 103 .

Figure 5.12 The same force, in this case a weight ( w ), applied to three different guitar strings of identical length produces the three different

deformations shown as shaded segments. The string on the left is thin nylon, the one in the middle is thicker nylon, and the one on the right is steel.

Stretch Yourself a Little

How would you go about measuring the proportionality constant k of a rubber band? If a rubber band stretched 3 cm when

a 100-g mass was attached to it, then how much would it stretch if two similar rubber bands were attached to the same
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mass—even if put together in parallel or alternatively if tied together in series?

We now consider three specific types of deformations: changes in length (tension and compression), sideways shear (stress),
and changes in volume. All deformations are assumed to be small unless otherwise stated.

Changes in Length—Tension and Compression: Elastic Modulus

A change in length ΔL is produced when a force is applied to a wire or rod parallel to its length L0 , either stretching it (a

tension) or compressing it. (See Figure 5.13.)

Figure 5.13 (a) Tension. The rod is stretched a length ΔL when a force is applied parallel to its length. (b) Compression. The same rod is

compressed by forces with the same magnitude in the opposite direction. For very small deformations and uniform materials, ΔL is approximately

the same for the same magnitude of tension or compression. For larger deformations, the cross-sectional area changes as the rod is compressed or
stretched.

Experiments have shown that the change in length ( ΔL ) depends on only a few variables. As already noted, ΔL is

proportional to the force F and depends on the substance from which the object is made. Additionally, the change in length is

proportional to the original length L0 and inversely proportional to the cross-sectional area of the wire or rod. For example, a

long guitar string will stretch more than a short one, and a thick string will stretch less than a thin one. We can combine all these
factors into one equation for ΔL :

(5.30)ΔL = 1
Y

F
AL0,

where ΔL is the change in length, F the applied force, Y is a factor, called the elastic modulus or Young’s modulus, that

depends on the substance, A is the cross-sectional area, and L0 is the original length. Table 5.3 lists values of Y for several

materials—those with a large Y are said to have a large tensile stiffness because they deform less for a given tension or

compression.
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Table 5.3 Elastic Moduli[1]

Material
Young’s modulus (tension–compression)Y

(109 N/m2)
Shear modulus S

(109 N/m2)
Bulk modulus B

(109 N/m2)

Aluminum 70 25 75

Bone – tension 16 80 8

Bone –
compression

9

Brass 90 35 75

Brick 15

Concrete 20

Glass 70 20 30

Granite 45 20 45

Hair (human) 10

Hardwood 15 10

Iron, cast 100 40 90

Lead 16 5 50

Marble 60 20 70

Nylon 5

Polystyrene 3

Silk 6

Spider thread 3

Steel 210 80 130

Tendon 1

Acetone 0.7

Ethanol 0.9

Glycerin 4.5

Mercury 25

Water 2.2

Young’s moduli are not listed for liquids and gases in Table 5.3 because they cannot be stretched or compressed in only one
direction. Note that there is an assumption that the object does not accelerate, so that there are actually two applied forces of
magnitude F acting in opposite directions. For example, the strings in Figure 5.13 are being pulled down by a force of

magnitude w and held up by the ceiling, which also exerts a force of magnitude w .

Example 5.3 The Stretch of a Long Cable

Suspension cables are used to carry gondolas at ski resorts. (See Figure 5.14) Consider a suspension cable that includes
an unsupported span of 3020 m. Calculate the amount of stretch in the steel cable. Assume that the cable has a diameter of

5.6 cm and the maximum tension it can withstand is 3.0×106 N .

1. Approximate and average values. Young’s moduli Y for tension and compression sometimes differ but are averaged here.

Bone has significantly different Young’s moduli for tension and compression.
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Figure 5.14 Gondolas travel along suspension cables at the Gala Yuzawa ski resort in Japan. (credit: Rudy Herman, Flickr)

Strategy

The force is equal to the maximum tension, or F = 3.0×106 N . The cross-sectional area is πr2 = 2.46×10−3 m2 . The

equation ΔL = 1
Y

F
AL0 can be used to find the change in length.

Solution

All quantities are known. Thus,

(5.31)
ΔL = ⎛⎝ 1

210×109 N/m2
⎞
⎠
⎛
⎝ 3.0×106 N

2.46×10–3 m2
⎞
⎠(3020 m)

= 18 m.
Discussion

This is quite a stretch, but only about 0.6% of the unsupported length. Effects of temperature upon length might be important
in these environments.

Bones, on the whole, do not fracture due to tension or compression. Rather they generally fracture due to sideways impact or
bending, resulting in the bone shearing or snapping. The behavior of bones under tension and compression is important because
it determines the load the bones can carry. Bones are classified as weight-bearing structures such as columns in buildings and
trees. Weight-bearing structures have special features; columns in building have steel-reinforcing rods while trees and bones are
fibrous. The bones in different parts of the body serve different structural functions and are prone to different stresses. Thus the
bone in the top of the femur is arranged in thin sheets separated by marrow while in other places the bones can be cylindrical
and filled with marrow or just solid. Overweight people have a tendency toward bone damage due to sustained compressions in
bone joints and tendons.

Another biological example of Hooke’s law occurs in tendons. Functionally, the tendon (the tissue connecting muscle to bone)
must stretch easily at first when a force is applied, but offer a much greater restoring force for a greater strain. Figure 5.15 shows
a stress-strain relationship for a human tendon. Some tendons have a high collagen content so there is relatively little strain, or
length change; others, like support tendons (as in the leg) can change length up to 10%. Note that this stress-strain curve is
nonlinear, since the slope of the line changes in different regions. In the first part of the stretch called the toe region, the fibers in
the tendon begin to align in the direction of the stress—this is called uncrimping. In the linear region, the fibrils will be stretched,
and in the failure region individual fibers begin to break. A simple model of this relationship can be illustrated by springs in
parallel: different springs are activated at different lengths of stretch. Examples of this are given in the problems at end of this
chapter. Ligaments (tissue connecting bone to bone) behave in a similar way.

Figure 5.15 Typical stress-strain curve for mammalian tendon. Three regions are shown: (1) toe region (2) linear region, and (3) failure region.

Unlike bones and tendons, which need to be strong as well as elastic, the arteries and lungs need to be very stretchable. The
elastic properties of the arteries are essential for blood flow. The pressure in the arteries increases and arterial walls stretch
when the blood is pumped out of the heart. When the aortic valve shuts, the pressure in the arteries drops and the arterial walls
relax to maintain the blood flow. When you feel your pulse, you are feeling exactly this—the elastic behavior of the arteries as the
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blood gushes through with each pump of the heart. If the arteries were rigid, you would not feel a pulse. The heart is also an
organ with special elastic properties. The lungs expand with muscular effort when we breathe in but relax freely and elastically
when we breathe out. Our skins are particularly elastic, especially for the young. A young person can go from 100 kg to 60 kg
with no visible sag in their skins. The elasticity of all organs reduces with age. Gradual physiological aging through reduction in
elasticity starts in the early 20s.

Example 5.4 Calculating Deformation: How Much Does Your Leg Shorten When You Stand on
It?

Calculate the change in length of the upper leg bone (the femur) when a 70.0 kg man supports 62.0 kg of his mass on it,
assuming the bone to be equivalent to a uniform rod that is 40.0 cm long and 2.00 cm in radius.

Strategy

The force is equal to the weight supported, or

(5.32)F = mg = ⎛
⎝62.0 kg⎞⎠⎛⎝9.80 m/s2⎞⎠ = 607.6 N,

and the cross-sectional area is πr2 = 1.257×10−3 m2 . The equation ΔL = 1
Y

F
AL0 can be used to find the change in

length.

Solution

All quantities except ΔL are known. Note that the compression value for Young’s modulus for bone must be used here.

Thus,

(5.33)
ΔL = ⎛⎝ 1

9×109 N/m2
⎞
⎠
⎛
⎝ 607.6 N

1.257×10−3 m2
⎞
⎠(0.400 m)

= 2×10−5 m.
Discussion

This small change in length seems reasonable, consistent with our experience that bones are rigid. In fact, even the rather
large forces encountered during strenuous physical activity do not compress or bend bones by large amounts. Although
bone is rigid compared with fat or muscle, several of the substances listed in Table 5.3 have larger values of Young’s
modulus Y . In other words, they are more rigid.

The equation for change in length is traditionally rearranged and written in the following form:

(5.34)F
A = Y ΔL

L0
.

The ratio of force to area, F
A , is defined as stress (measured in N/m2 ), and the ratio of the change in length to length, ΔL

L0
, is

defined as strain (a unitless quantity). In other words,

(5.35)stress = Y×strain.
In this form, the equation is analogous to Hooke’s law, with stress analogous to force and strain analogous to deformation. If we
again rearrange this equation to the form

(5.36)F = YAΔL
L0

,

we see that it is the same as Hooke’s law with a proportionality constant

(5.37)k = YA
L0

.

This general idea—that force and the deformation it causes are proportional for small deformations—applies to changes in
length, sideways bending, and changes in volume.

Stress

The ratio of force to area, F
A , is defined as stress measured in N/m2.
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Strain

The ratio of the change in length to length, ΔL
L0

, is defined as strain (a unitless quantity). In other words,

(5.38)stress = Y×strain.

Sideways Stress: Shear Modulus

Figure 5.16 illustrates what is meant by a sideways stress or a shearing force. Here the deformation is called Δx and it is

perpendicular to L0 , rather than parallel as with tension and compression. Shear deformation behaves similarly to tension and

compression and can be described with similar equations. The expression for shear deformation is

(5.39)Δx = 1
S

F
AL0,

where S is the shear modulus (see Table 5.3) and F is the force applied perpendicular to L0 and parallel to the cross-

sectional area A . Again, to keep the object from accelerating, there are actually two equal and opposite forces F applied

across opposite faces, as illustrated in Figure 5.16. The equation is logical—for example, it is easier to bend a long thin pencil
(small A ) than a short thick one, and both are more easily bent than similar steel rods (large S ).

Shear Deformation
(5.40)Δx = 1

S
F
AL0,

where S is the shear modulus and F is the force applied perpendicular to L0 and parallel to the cross-sectional area A .

Figure 5.16 Shearing forces are applied perpendicular to the length L0 and parallel to the area A , producing a deformation Δx . Vertical forces

are not shown, but it should be kept in mind that in addition to the two shearing forces, F , there must be supporting forces to keep the object from

rotating. The distorting effects of these supporting forces are ignored in this treatment. The weight of the object also is not shown, since it is usually
negligible compared with forces large enough to cause significant deformations.

Examination of the shear moduli in Table 5.3 reveals some telling patterns. For example, shear moduli are less than Young’s
moduli for most materials. Bone is a remarkable exception. Its shear modulus is not only greater than its Young’s modulus, but it
is as large as that of steel. This is why bones are so rigid.

The spinal column (consisting of 26 vertebral segments separated by discs) provides the main support for the head and upper
part of the body. The spinal column has normal curvature for stability, but this curvature can be increased, leading to increased
shearing forces on the lower vertebrae. Discs are better at withstanding compressional forces than shear forces. Because the
spine is not vertical, the weight of the upper body exerts some of both. Pregnant women and people that are overweight (with
large abdomens) need to move their shoulders back to maintain balance, thereby increasing the curvature in their spine and so
increasing the shear component of the stress. An increased angle due to more curvature increases the shear forces along the
plane. These higher shear forces increase the risk of back injury through ruptured discs. The lumbosacral disc (the wedge
shaped disc below the last vertebrae) is particularly at risk because of its location.

The shear moduli for concrete and brick are very small; they are too highly variable to be listed. Concrete used in buildings can
withstand compression, as in pillars and arches, but is very poor against shear, as might be encountered in heavily loaded floors
or during earthquakes. Modern structures were made possible by the use of steel and steel-reinforced concrete. Almost by
definition, liquids and gases have shear moduli near zero, because they flow in response to shearing forces.
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Example 5.5 Calculating Force Required to Deform: That Nail Does Not Bend Much Under a
Load

Find the mass of the picture hanging from a steel nail as shown in Figure 5.17, given that the nail bends only 1.80 µm .

(Assume the shear modulus is known to two significant figures.)

Figure 5.17 Side view of a nail with a picture hung from it. The nail flexes very slightly (shown much larger than actual) because of the shearing
effect of the supported weight. Also shown is the upward force of the wall on the nail, illustrating that there are equal and opposite forces applied
across opposite cross sections of the nail. See Example 5.5 for a calculation of the mass of the picture.

Strategy

The force F on the nail (neglecting the nail’s own weight) is the weight of the picture w . If we can find w , then the mass

of the picture is just w
g . The equation Δx = 1

S
F
AL0 can be solved for F .

Solution

Solving the equation Δx = 1
S

F
AL0 for F , we see that all other quantities can be found:

(5.41)F = SA
L0

Δx.

S is found in Table 5.3 and is S = 80×109 N/m2 . The radius r is 0.750 mm (as seen in the figure), so the cross-

sectional area is

(5.42)A = πr2 = 1.77×10−6 m2.

The value for L0 is also shown in the figure. Thus,

(5.43)
F = (80×109 N/m2)(1.77×10−6 m2)

(5.00×10−3 m)
(1.80×10−6 m) = 51 N.

This 51 N force is the weight w of the picture, so the picture’s mass is

(5.44)m = w
g = F

g = 5.2 kg.

Discussion

This is a fairly massive picture, and it is impressive that the nail flexes only 1.80 µm —an amount undetectable to the

unaided eye.

Changes in Volume: Bulk Modulus

An object will be compressed in all directions if inward forces are applied evenly on all its surfaces as in Figure 5.18. It is
relatively easy to compress gases and extremely difficult to compress liquids and solids. For example, air in a wine bottle is
compressed when it is corked. But if you try corking a brim-full bottle, you cannot compress the wine—some must be removed if
the cork is to be inserted. The reason for these different compressibilities is that atoms and molecules are separated by large
empty spaces in gases but packed close together in liquids and solids. To compress a gas, you must force its atoms and
molecules closer together. To compress liquids and solids, you must actually compress their atoms and molecules, and very
strong electromagnetic forces in them oppose this compression.
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Figure 5.18 An inward force on all surfaces compresses this cube. Its change in volume is proportional to the force per unit area and its original
volume, and is related to the compressibility of the substance.

We can describe the compression or volume deformation of an object with an equation. First, we note that a force “applied

evenly” is defined to have the same stress, or ratio of force to area F
A on all surfaces. The deformation produced is a change in

volume ΔV , which is found to behave very similarly to the shear, tension, and compression previously discussed. (This is not

surprising, since a compression of the entire object is equivalent to compressing each of its three dimensions.) The relationship
of the change in volume to other physical quantities is given by

(5.45)ΔV = 1
B

F
AV0,

where B is the bulk modulus (see Table 5.3), V0 is the original volume, and F
A is the force per unit area applied uniformly

inward on all surfaces. Note that no bulk moduli are given for gases.

What are some examples of bulk compression of solids and liquids? One practical example is the manufacture of industrial-
grade diamonds by compressing carbon with an extremely large force per unit area. The carbon atoms rearrange their crystalline
structure into the more tightly packed pattern of diamonds. In nature, a similar process occurs deep underground, where
extremely large forces result from the weight of overlying material. Another natural source of large compressive forces is the
pressure created by the weight of water, especially in deep parts of the oceans. Water exerts an inward force on all surfaces of a
submerged object, and even on the water itself. At great depths, water is measurably compressed, as the following example
illustrates.

Example 5.6 Calculating Change in Volume with Deformation: How Much Is Water Compressed
at Great Ocean Depths?

Calculate the fractional decrease in volume ( ΔV
V0

) for seawater at 5.00 km depth, where the force per unit area is

5.00×107 N / m2 .

Strategy

Equation ΔV = 1
B

F
AV0 is the correct physical relationship. All quantities in the equation except ΔV

V0
are known.

Solution

Solving for the unknown ΔV
V0

gives

(5.46)ΔV
V0

= 1
B

F
A.

Substituting known values with the value for the bulk modulus B from Table 5.3,

(5.47)ΔV
V0

= 5.00×107 N/m2

2.2×109 N/m2

= 0.023 = 2.3%.
Discussion

Although measurable, this is not a significant decrease in volume considering that the force per unit area is about 500
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deformation:

drag force:

friction:

Hooke’s law:

kinetic friction:

magnitude of kinetic friction:

magnitude of static friction:

shear deformation:

static friction:

Stokes’ law:

strain:

stress:

tensile strength:

atmospheres (1 million pounds per square foot). Liquids and solids are extraordinarily difficult to compress.

Conversely, very large forces are created by liquids and solids when they try to expand but are constrained from doing so—which
is equivalent to compressing them to less than their normal volume. This often occurs when a contained material warms up,
since most materials expand when their temperature increases. If the materials are tightly constrained, they deform or break their
container. Another very common example occurs when water freezes. Water, unlike most materials, expands when it freezes,
and it can easily fracture a boulder, rupture a biological cell, or crack an engine block that gets in its way.

Other types of deformations, such as torsion or twisting, behave analogously to the tension, shear, and bulk deformations
considered here.

PhET Explorations: Masses & Springs

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42081/
1.19/#Phet_module_5.3)

Glossary

change in shape due to the application of force

FD , found to be proportional to the square of the speed of the object; mathematically

FD ∝ v2

FD = 1
2CρAv2,

where C is the drag coefficient, A is the area of the object facing the fluid, and ρ is the density of the fluid

a force that opposes relative motion or attempts at motion between systems in contact

proportional relationship between the force F on a material and the deformation ΔL it causes, F = kΔL

a force that opposes the motion of two systems that are in contact and moving relative to one another

fk = μkN , where μk is the coefficient of kinetic friction

fs ≤ μs N , where μs is the coefficient of static friction and N is the magnitude of the normal

force

deformation perpendicular to the original length of an object

a force that opposes the motion of two systems that are in contact and are not moving relative to one another

Fs = 6πrηv , where r is the radius of the object, η is the viscosity of the fluid, and v is the object’s velocity

ratio of change in length to original length

ratio of force to area

the breaking stress that will cause permanent deformation or fraction of a material

Section Summary

5.1 Friction
• Friction is a contact force between systems that opposes the motion or attempted motion between them. Simple friction is

proportional to the normal force N pushing the systems together. (A normal force is always perpendicular to the contact

surface between systems.) Friction depends on both of the materials involved. The magnitude of static friction fs between

systems stationary relative to one another is given by

fs ≤ μsN,
where μs is the coefficient of static friction, which depends on both of the materials.

• The kinetic friction force fk between systems moving relative to one another is given by
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fk = μkN,
where μk is the coefficient of kinetic friction, which also depends on both materials.

5.2 Drag Forces
• Drag forces acting on an object moving in a fluid oppose the motion. For larger objects (such as a baseball) moving at a

velocity v in air, the drag force is given by

FD = 1
2CρAv2,

where C is the drag coefficient (typical values are given in Table 5.2), A is the area of the object facing the fluid, and ρ
is the fluid density.

• For small objects (such as a bacterium) moving in a denser medium (such as water), the drag force is given by Stokes’ law,

Fs = 6πηrv,
where r is the radius of the object, η is the fluid viscosity, and v is the object’s velocity.

5.3 Elasticity: Stress and Strain
• Hooke’s law is given by

F = kΔL,
where ΔL is the amount of deformation (the change in length), F is the applied force, and k is a proportionality constant

that depends on the shape and composition of the object and the direction of the force. The relationship between the
deformation and the applied force can also be written as

ΔL = 1
Y

F
AL0,

where Y is Young’s modulus, which depends on the substance, A is the cross-sectional area, and L0 is the original

length.

• The ratio of force to area, F
A , is defined as stress, measured in N/m2.

• The ratio of the change in length to length, ΔL
L0

, is defined as strain (a unitless quantity). In other words,

stress = Y×strain.
• The expression for shear deformation is

Δx = 1
S

F
AL0,

where S is the shear modulus and F is the force applied perpendicular to L0 and parallel to the cross-sectional area A .

• The relationship of the change in volume to other physical quantities is given by

ΔV = 1
B

F
AV0,

where B is the bulk modulus, V0 is the original volume, and F
A is the force per unit area applied uniformly inward on all

surfaces.

Conceptual Questions

5.1 Friction

1. Define normal force. What is its relationship to friction when friction behaves simply?

2. The glue on a piece of tape can exert forces. Can these forces be a type of simple friction? Explain, considering especially that
tape can stick to vertical walls and even to ceilings.

3. When you learn to drive, you discover that you need to let up slightly on the brake pedal as you come to a stop or the car will
stop with a jerk. Explain this in terms of the relationship between static and kinetic friction.

4. When you push a piece of chalk across a chalkboard, it sometimes screeches because it rapidly alternates between slipping
and sticking to the board. Describe this process in more detail, in particular explaining how it is related to the fact that kinetic
friction is less than static friction. (The same slip-grab process occurs when tires screech on pavement.)

5.2 Drag Forces

5. Athletes such as swimmers and bicyclists wear body suits in competition. Formulate a list of pros and cons of such suits.
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6. Two expressions were used for the drag force experienced by a moving object in a liquid. One depended upon the speed,
while the other was proportional to the square of the speed. In which types of motion would each of these expressions be more
applicable than the other one?

7. As cars travel, oil and gasoline leaks onto the road surface. If a light rain falls, what does this do to the control of the car?
Does a heavy rain make any difference?

8. Why can a squirrel jump from a tree branch to the ground and run away undamaged, while a human could break a bone in
such a fall?

5.3 Elasticity: Stress and Strain

9. The elastic properties of the arteries are essential for blood flow. Explain the importance of this in terms of the characteristics
of the flow of blood (pulsating or continuous).

10. What are you feeling when you feel your pulse? Measure your pulse rate for 10 s and for 1 min. Is there a factor of 6
difference?

11. Examine different types of shoes, including sports shoes and thongs. In terms of physics, why are the bottom surfaces
designed as they are? What differences will dry and wet conditions make for these surfaces?

12. Would you expect your height to be different depending upon the time of day? Why or why not?

13. Why can a squirrel jump from a tree branch to the ground and run away undamaged, while a human could break a bone in
such a fall?

14. Explain why pregnant women often suffer from back strain late in their pregnancy.

15. An old carpenter’s trick to keep nails from bending when they are pounded into hard materials is to grip the center of the nail
firmly with pliers. Why does this help?

16. When a glass bottle full of vinegar warms up, both the vinegar and the glass expand, but vinegar expands significantly more
with temperature than glass. The bottle will break if it was filled to its tightly capped lid. Explain why, and also explain how a
pocket of air above the vinegar would prevent the break. (This is the function of the air above liquids in glass containers.)
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Problems & Exercises

5.1 Friction

1. A physics major is cooking breakfast when he notices that
the frictional force between his steel spatula and his Teflon
frying pan is only 0.200 N. Knowing the coefficient of kinetic
friction between the two materials, he quickly calculates the
normal force. What is it?

2. (a) When rebuilding her car’s engine, a physics major must
exert 300 N of force to insert a dry steel piston into a steel
cylinder. What is the magnitude of the normal force between
the piston and cylinder? (b) What is the magnitude of the
force would she have to exert if the steel parts were oiled?

3. (a) What is the maximum frictional force in the knee joint of
a person who supports 66.0 kg of her mass on that knee? (b)
During strenuous exercise it is possible to exert forces to the
joints that are easily ten times greater than the weight being
supported. What is the maximum force of friction under such
conditions? The frictional forces in joints are relatively small in
all circumstances except when the joints deteriorate, such as
from injury or arthritis. Increased frictional forces can cause
further damage and pain.

4. Suppose you have a 120-kg wooden crate resting on a
wood floor. (a) What maximum force can you exert
horizontally on the crate without moving it? (b) If you continue
to exert this force once the crate starts to slip, what will the
magnitude of its acceleration then be?

5. (a) If half of the weight of a small 1.00×103 kg utility

truck is supported by its two drive wheels, what is the
magnitude of the maximum acceleration it can achieve on dry
concrete? (b) Will a metal cabinet lying on the wooden bed of
the truck slip if it accelerates at this rate? (c) Solve both
problems assuming the truck has four-wheel drive.

6. A team of eight dogs pulls a sled with waxed wood runners
on wet snow (mush!). The dogs have average masses of 19.0
kg, and the loaded sled with its rider has a mass of 210 kg.
(a) Calculate the magnitude of the acceleration starting from
rest if each dog exerts an average force of 185 N backward
on the snow. (b) What is the magnitude of the acceleration
once the sled starts to move? (c) For both situations,
calculate the magnitude of the force in the coupling between
the dogs and the sled.

7. Consider the 65.0-kg ice skater being pushed by two
others shown in Figure 5.19. (a) Find the direction and
magnitude of Ftot , the total force exerted on her by the

others, given that the magnitudes F1 and F2 are 26.4 N

and 18.6 N, respectively. (b) What is her initial acceleration if
she is initially stationary and wearing steel-bladed skates that
point in the direction of Ftot ? (c) What is her acceleration

assuming she is already moving in the direction of Ftot ?

(Remember that friction always acts in the direction opposite
that of motion or attempted motion between surfaces in
contact.)

Figure 5.19

8. Show that the acceleration of any object down a frictionless
incline that makes an angle θ with the horizontal is

a = g sin θ . (Note that this acceleration is independent of

mass.)

9. Show that the acceleration of any object down an incline
where friction behaves simply (that is, where fk = μkN ) is

a = g( sin θ − μkcos θ). Note that the acceleration is

independent of mass and reduces to the expression found in
the previous problem when friction becomes negligibly small
(μk = 0).

10. Calculate the deceleration of a snow boarder going up a
5.0º , slope assuming the coefficient of friction for waxed

wood on wet snow. The result of Exercise 5.9 may be useful,
but be careful to consider the fact that the snow boarder is
going uphill. Explicitly show how you follow the steps in
Problem-Solving Strategies.

11. (a) Calculate the acceleration of a skier heading down a
10.0º slope, assuming the coefficient of friction for waxed

wood on wet snow. (b) Find the angle of the slope down
which this skier could coast at a constant velocity. You can
neglect air resistance in both parts, and you will find the result
of Exercise 5.9 to be useful. Explicitly show how you follow
the steps in the Problem-Solving Strategies.

12. If an object is to rest on an incline without slipping, then
friction must equal the component of the weight of the object
parallel to the incline. This requires greater and greater
friction for steeper slopes. Show that the maximum angle of
an incline above the horizontal for which an object will not

slide down is θ = tan–1 μs . You may use the result of the

previous problem. Assume that a = 0 and that static friction

has reached its maximum value.
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13. Calculate the maximum deceleration of a car that is
heading down a 6º slope (one that makes an angle of 6º
with the horizontal) under the following road conditions. You
may assume that the weight of the car is evenly distributed on
all four tires and that the coefficient of static friction is
involved—that is, the tires are not allowed to slip during the
deceleration. (Ignore rolling.) Calculate for a car: (a) On dry
concrete. (b) On wet concrete. (c) On ice, assuming that
μs = 0.100 , the same as for shoes on ice.

14. Calculate the maximum acceleration of a car that is
heading up a 4º slope (one that makes an angle of 4º with

the horizontal) under the following road conditions. Assume
that only half the weight of the car is supported by the two
drive wheels and that the coefficient of static friction is
involved—that is, the tires are not allowed to slip during the
acceleration. (Ignore rolling.) (a) On dry concrete. (b) On wet
concrete. (c) On ice, assuming that μs = 0.100 , the same

as for shoes on ice.

15. Repeat Exercise 5.14 for a car with four-wheel drive.

16. A freight train consists of two 8.00×105-kg engines and

45 cars with average masses of 5.50×105 kg . (a) What

force must each engine exert backward on the track to

accelerate the train at a rate of 5.00×10−2 m / s2 if the

force of friction is 7.50×105 N , assuming the engines exert

identical forces? This is not a large frictional force for such a
massive system. Rolling friction for trains is small, and
consequently trains are very energy-efficient transportation
systems. (b) What is the magnitude of the force in the
coupling between the 37th and 38th cars (this is the force
each exerts on the other), assuming all cars have the same
mass and that friction is evenly distributed among all of the
cars and engines?

17. Consider the 52.0-kg mountain climber in Figure 5.20. (a)
Find the tension in the rope and the force that the mountain
climber must exert with her feet on the vertical rock face to
remain stationary. Assume that the force is exerted parallel to
her legs. Also, assume negligible force exerted by her arms.
(b) What is the minimum coefficient of friction between her
shoes and the cliff?

Figure 5.20 Part of the climber’s weight is supported by her rope and

part by friction between her feet and the rock face.

18. A contestant in a winter sporting event pushes a 45.0-kg
block of ice across a frozen lake as shown in Figure 5.21(a).
(a) Calculate the minimum force F he must exert to get the

block moving. (b) What is the magnitude of its acceleration
once it starts to move, if that force is maintained?
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19. Repeat Exercise 5.18 with the contestant pulling the
block of ice with a rope over his shoulder at the same angle
above the horizontal as shown in Figure 5.21(b).

Figure 5.21 Which method of sliding a block of ice requires less

force—(a) pushing or (b) pulling at the same angle above the horizontal?

5.2 Drag Forces

20. The terminal velocity of a person falling in air depends
upon the weight and the area of the person facing the fluid.
Find the terminal velocity (in meters per second and
kilometers per hour) of an 80.0-kg skydiver falling in a

headfirst position with a surface area of 0.140 m2 .

21. A 60-kg and a 90-kg skydiver jump from an airplane at an
altitude of 6000 m, both falling in a headfirst position. Make
some assumption on their frontal areas and calculate their
terminal velocities. How long will it take for each skydiver to
reach the ground (assuming the time to reach terminal
velocity is small)? Assume all values are accurate to three
significant digits.

22. A 560-g squirrel with a surface area of 930 cm2 falls

from a 5.0-m tree to the ground. Estimate its terminal velocity.
(Use a drag coefficient for a horizontal skydiver.) What will be
the velocity of a 56-kg person hitting the ground, assuming no
drag contribution in such a short distance?

23. To maintain a constant speed, the force provided by a
car’s engine must equal the drag force plus the force of
friction of the road (the rolling resistance). (a) What are the
magnitudes of drag forces at 70 km/h and 100 km/h for a

Toyota Camry? (Drag area is 0.70 m2 ) (b) What is the

magnitude of drag force at 70 km/h and 100 km/h for a

Hummer H2? (Drag area is 2.44 m2 ) Assume all values are

accurate to three significant digits.

24. By what factor does the drag force on a car increase as it
goes from 65 to 110 km/h?

25. Calculate the speed a spherical rain drop would achieve
falling from 5.00 km (a) in the absence of air drag (b) with air
drag. Take the size across of the drop to be 4 mm, the density

to be 1.00×103 kg/m3 , and the surface area to be πr2 .

26. Using Stokes’ law, verify that the units for viscosity are
kilograms per meter per second.

27. Find the terminal velocity of a spherical bacterium
(diameter 2.00 μm ) falling in water. You will first need to

note that the drag force is equal to the weight at terminal
velocity. Take the density of the bacterium to be

1.10×103 kg/m3 .

28. Stokes’ law describes sedimentation of particles in liquids
and can be used to measure viscosity. Particles in liquids
achieve terminal velocity quickly. One can measure the time it
takes for a particle to fall a certain distance and then use
Stokes’ law to calculate the viscosity of the liquid. Suppose a

steel ball bearing (density 7.8×103 kg/m3 , diameter

3.0 mm ) is dropped in a container of motor oil. It takes 12 s

to fall a distance of 0.60 m. Calculate the viscosity of the oil.

5.3 Elasticity: Stress and Strain

29. During a circus act, one performer swings upside down
hanging from a trapeze holding another, also upside-down,
performer by the legs. If the upward force on the lower
performer is three times her weight, how much do the bones
(the femurs) in her upper legs stretch? You may assume each
is equivalent to a uniform rod 35.0 cm long and 1.80 cm in
radius. Her mass is 60.0 kg.

30. During a wrestling match, a 150 kg wrestler briefly stands
on one hand during a maneuver designed to perplex his
already moribund adversary. By how much does the upper
arm bone shorten in length? The bone can be represented by
a uniform rod 38.0 cm in length and 2.10 cm in radius.

31. (a) The “lead” in pencils is a graphite composition with a

Young’s modulus of about 1×109 N / m2 . Calculate the

change in length of the lead in an automatic pencil if you tap it
straight into the pencil with a force of 4.0 N. The lead is 0.50
mm in diameter and 60 mm long. (b) Is the answer
reasonable? That is, does it seem to be consistent with what
you have observed when using pencils?

32. TV broadcast antennas are the tallest artificial structures
on Earth. In 1987, a 72.0-kg physicist placed himself and 400
kg of equipment at the top of one 610-m high antenna to
perform gravity experiments. By how much was the antenna
compressed, if we consider it to be equivalent to a steel
cylinder 0.150 m in radius?

33. (a) By how much does a 65.0-kg mountain climber stretch
her 0.800-cm diameter nylon rope when she hangs 35.0 m
below a rock outcropping? (b) Does the answer seem to be
consistent with what you have observed for nylon ropes?
Would it make sense if the rope were actually a bungee
cord?

34. A 20.0-m tall hollow aluminum flagpole is equivalent in
stiffness to a solid cylinder 4.00 cm in diameter. A strong wind
bends the pole much as a horizontal force of 900 N exerted at
the top would. How far to the side does the top of the pole
flex?
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35. As an oil well is drilled, each new section of drill pipe
supports its own weight and that of the pipe and drill bit
beneath it. Calculate the stretch in a new 6.00 m length of
steel pipe that supports 3.00 km of pipe having a mass of
20.0 kg/m and a 100-kg drill bit. The pipe is equivalent in
stiffness to a solid cylinder 5.00 cm in diameter.

36. Calculate the force a piano tuner applies to stretch a steel
piano wire 8.00 mm, if the wire is originally 0.850 mm in
diameter and 1.35 m long.

37. A vertebra is subjected to a shearing force of 500 N. Find
the shear deformation, taking the vertebra to be a cylinder
3.00 cm high and 4.00 cm in diameter.

38. A disk between vertebrae in the spine is subjected to a
shearing force of 600 N. Find its shear deformation, taking it

to have the shear modulus of 1×109 N / m2 . The disk is

equivalent to a solid cylinder 0.700 cm high and 4.00 cm in
diameter.

39. When using a pencil eraser, you exert a vertical force of
6.00 N at a distance of 2.00 cm from the hardwood-eraser
joint. The pencil is 6.00 mm in diameter and is held at an
angle of 20.0º to the horizontal. (a) By how much does the

wood flex perpendicular to its length? (b) How much is it
compressed lengthwise?

40. To consider the effect of wires hung on poles, we take
data from Example 4.8, in which tensions in wires supporting
a traffic light were calculated. The left wire made an angle
30.0º below the horizontal with the top of its pole and carried

a tension of 108 N. The 12.0 m tall hollow aluminum pole is
equivalent in stiffness to a 4.50 cm diameter solid cylinder. (a)
How far is it bent to the side? (b) By how much is it
compressed?

41. A farmer making grape juice fills a glass bottle to the brim
and caps it tightly. The juice expands more than the glass
when it warms up, in such a way that the volume increases by

0.2% (that is, ΔV / V0 = 2×10−3 ) relative to the space

available. Calculate the magnitude of the normal force
exerted by the juice per square centimeter if its bulk modulus

is 1.8×109 N/m2 , assuming the bottle does not break. In

view of your answer, do you think the bottle will survive?

42. (a) When water freezes, its volume increases by 9.05%

(that is, ΔV / V0 = 9.05×10−2 ). What force per unit area

is water capable of exerting on a container when it freezes?
(It is acceptable to use the bulk modulus of water in this
problem.) (b) Is it surprising that such forces can fracture
engine blocks, boulders, and the like?

43. This problem returns to the tightrope walker studied in

Example 4.6, who created a tension of 3.94×103 N in a

wire making an angle 5.0º below the horizontal with each

supporting pole. Calculate how much this tension stretches
the steel wire if it was originally 15 m long and 0.50 cm in
diameter.

44. The pole in Figure 5.22 is at a 90.0º bend in a power

line and is therefore subjected to more shear force than poles
in straight parts of the line. The tension in each line is

4.00×104 N , at the angles shown. The pole is 15.0 m tall,

has an 18.0 cm diameter, and can be considered to have half
the stiffness of hardwood. (a) Calculate the compression of
the pole. (b) Find how much it bends and in what direction. (c)
Find the tension in a guy wire used to keep the pole straight if
it is attached to the top of the pole at an angle of 30.0º with

the vertical. (Clearly, the guy wire must be in the opposite
direction of the bend.)

Figure 5.22 This telephone pole is at a 90º bend in a power line. A

guy wire is attached to the top of the pole at an angle of 30º with the

vertical.
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6 UNIFORM CIRCULAR MOTION AND
GRAVITATION

Figure 6.1 This Australian Grand Prix Formula 1 race car moves in a circular path as it makes the turn. Its wheels also spin rapidly—the latter
completing many revolutions, the former only part of one (a circular arc). The same physical principles are involved in each. (credit: Richard Munckton)

Chapter Outline
6.1. Rotation Angle and Angular Velocity

• Define arc length, rotation angle, radius of curvature and angular velocity.
• Calculate the angular velocity of a car wheel spin.

6.2. Centripetal Acceleration
• Establish the expression for centripetal acceleration.
• Explain the centrifuge.

6.3. Centripetal Force
• Calculate coefficient of friction on a car tire.
• Calculate ideal speed and angle of a car on a turn.

6.4. Fictitious Forces and Non-inertial Frames: The Coriolis Force
• Discuss the inertial frame of reference.
• Discuss the non-inertial frame of reference.
• Describe the effects of the Coriolis force.

6.5. Newton’s Universal Law of Gravitation
• Explain Earth’s gravitational force.
• Describe the gravitational effect of the Moon on Earth.
• Discuss weightlessness in space.
• Examine the Cavendish experiment

6.6. Satellites and Kepler’s Laws: An Argument for Simplicity
• State Kepler’s laws of planetary motion.
• Derive the third Kepler’s law for circular orbits.
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• Discuss the Ptolemaic model of the universe.

Introduction to Uniform Circular Motion and Gravitation

Many motions, such as the arc of a bird’s flight or Earth’s path around the Sun, are curved. Recall that Newton’s first law tells us
that motion is along a straight line at constant speed unless there is a net external force. We will therefore study not only motion
along curves, but also the forces that cause it, including gravitational forces. In some ways, this chapter is a continuation of
Dynamics: Newton's Laws of Motion as we study more applications of Newton’s laws of motion.

This chapter deals with the simplest form of curved motion, uniform circular motion, motion in a circular path at constant
speed. Studying this topic illustrates most concepts associated with rotational motion and leads to the study of many new topics
we group under the name rotation. Pure rotational motion occurs when points in an object move in circular paths centered on
one point. Pure translational motion is motion with no rotation. Some motion combines both types, such as a rotating hockey
puck moving along ice.

6.1 Rotation Angle and Angular Velocity

In Kinematics, we studied motion along a straight line and introduced such concepts as displacement, velocity, and acceleration.
Two-Dimensional Kinematics dealt with motion in two dimensions. Projectile motion is a special case of two-dimensional
kinematics in which the object is projected into the air, while being subject to the gravitational force, and lands a distance away.
In this chapter, we consider situations where the object does not land but moves in a curve. We begin the study of uniform
circular motion by defining two angular quantities needed to describe rotational motion.

Rotation Angle

When objects rotate about some axis—for example, when the CD (compact disc) in Figure 6.2 rotates about its center—each
point in the object follows a circular arc. Consider a line from the center of the CD to its edge. Each pit used to record sound
along this line moves through the same angle in the same amount of time. The rotation angle is the amount of rotation and is
analogous to linear distance. We define the rotation angle Δθ to be the ratio of the arc length to the radius of curvature:

(6.1)Δθ = Δs
r .

Figure 6.2 All points on a CD travel in circular arcs. The pits along a line from the center to the edge all move through the same angle Δθ in a time

Δt .
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Figure 6.3 The radius of a circle is rotated through an angle Δθ . The arc length Δs is described on the circumference.

The arc length Δs is the distance traveled along a circular path as shown in Figure 6.3 Note that r is the radius of curvature

of the circular path.

We know that for one complete revolution, the arc length is the circumference of a circle of radius r . The circumference of a

circle is 2πr . Thus for one complete revolution the rotation angle is

(6.2)Δθ = 2πr
r = 2π.

This result is the basis for defining the units used to measure rotation angles, Δθ to be radians (rad), defined so that

(6.3)2π rad = 1 revolution.
A comparison of some useful angles expressed in both degrees and radians is shown in Table 6.1.

Table 6.1 Comparison of Angular Units

Degree Measures Radian Measure

30º π
6

60º π
3

90º π
2

120º 2π
3

135º 3π
4

180º π
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Figure 6.4 Points 1 and 2 rotate through the same angle ( Δθ ), but point 2 moves through a greater arc length (Δs) because it is at a greater

distance from the center of rotation (r) .

If Δθ = 2π rad, then the CD has made one complete revolution, and every point on the CD is back at its original position.

Because there are 360º in a circle or one revolution, the relationship between radians and degrees is thus

(6.4)2π rad = 360º
so that

(6.5)1 rad = 360º
2π ≈ 57.3º.

Angular Velocity

How fast is an object rotating? We define angular velocity ω as the rate of change of an angle. In symbols, this is

(6.6)ω = Δθ
Δt ,

where an angular rotation Δθ takes place in a time Δt . The greater the rotation angle in a given amount of time, the greater

the angular velocity. The units for angular velocity are radians per second (rad/s).

Angular velocity ω is analogous to linear velocity v . To get the precise relationship between angular and linear velocity, we

again consider a pit on the rotating CD. This pit moves an arc length Δs in a time Δt , and so it has a linear velocity

(6.7)v = Δs
Δt .

From Δθ = Δs
r we see that Δs = rΔθ . Substituting this into the expression for v gives

(6.8)v = rΔθ
Δt = rω.

We write this relationship in two different ways and gain two different insights:

(6.9)v = rω or ω = v
r .

The first relationship in v = rω or ω = v
r states that the linear velocity v is proportional to the distance from the center of

rotation, thus, it is largest for a point on the rim (largest r ), as you might expect. We can also call this linear speed v of a point

on the rim the tangential speed. The second relationship in v = rω or ω = v
r can be illustrated by considering the tire of a

moving car. Note that the speed of a point on the rim of the tire is the same as the speed v of the car. See Figure 6.5. So the

faster the car moves, the faster the tire spins—large v means a large ω , because v = rω . Similarly, a larger-radius tire

rotating at the same angular velocity ( ω ) will produce a greater linear speed ( v ) for the car.
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Figure 6.5 A car moving at a velocity v to the right has a tire rotating with an angular velocity ω .The speed of the tread of the tire relative to the axle

is v , the same as if the car were jacked up. Thus the car moves forward at linear velocity v = rω , where r is the tire radius. A larger angular

velocity for the tire means a greater velocity for the car.

Example 6.1 How Fast Does a Car Tire Spin?

Calculate the angular velocity of a 0.300 m radius car tire when the car travels at 15.0 m/s (about 54 km/h ). See Figure

6.5.

Strategy

Because the linear speed of the tire rim is the same as the speed of the car, we have v = 15.0 m/s. The radius of the tire

is given to be r = 0.300 m. Knowing v and r , we can use the second relationship in v = rω, ω = v
r to calculate the

angular velocity.

Solution

To calculate the angular velocity, we will use the following relationship:

(6.10)ω = v
r .

Substituting the knowns,

(6.11)ω = 15.0 m/s
0.300 m = 50.0 rad/s.

Discussion

When we cancel units in the above calculation, we get 50.0/s. But the angular velocity must have units of rad/s. Because
radians are actually unitless (radians are defined as a ratio of distance), we can simply insert them into the answer for the
angular velocity. Also note that if an earth mover with much larger tires, say 1.20 m in radius, were moving at the same
speed of 15.0 m/s, its tires would rotate more slowly. They would have an angular velocity

(6.12)ω = (15.0 m/s) / (1.20 m) = 12.5 rad/s.

Both ω and v have directions (hence they are angular and linear velocities, respectively). Angular velocity has only two

directions with respect to the axis of rotation—it is either clockwise or counterclockwise. Linear velocity is tangent to the path, as
illustrated in Figure 6.6.

Take-Home Experiment

Tie an object to the end of a string and swing it around in a horizontal circle above your head (swing at your wrist). Maintain
uniform speed as the object swings and measure the angular velocity of the motion. What is the approximate speed of the
object? Identify a point close to your hand and take appropriate measurements to calculate the linear speed at this point.
Identify other circular motions and measure their angular velocities.
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Figure 6.6 As an object moves in a circle, here a fly on the edge of an old-fashioned vinyl record, its instantaneous velocity is always tangent to the
circle. The direction of the angular velocity is clockwise in this case.

PhET Explorations: Ladybug Revolution

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant
angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and
acceleration using vectors or graphs.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42083/
1.15/#Phet_module_6.1)

Figure 6.7

6.2 Centripetal Acceleration

We know from kinematics that acceleration is a change in velocity, either in its magnitude or in its direction, or both. In uniform
circular motion, the direction of the velocity changes constantly, so there is always an associated acceleration, even though the
magnitude of the velocity might be constant. You experience this acceleration yourself when you turn a corner in your car. (If you
hold the wheel steady during a turn and move at constant speed, you are in uniform circular motion.) What you notice is a
sideways acceleration because you and the car are changing direction. The sharper the curve and the greater your speed, the
more noticeable this acceleration will become. In this section we examine the direction and magnitude of that acceleration.

Figure 6.8 shows an object moving in a circular path at constant speed. The direction of the instantaneous velocity is shown at
two points along the path. Acceleration is in the direction of the change in velocity, which points directly toward the center of
rotation (the center of the circular path). This pointing is shown with the vector diagram in the figure. We call the acceleration of
an object moving in uniform circular motion (resulting from a net external force) the centripetal acceleration( ac ); centripetal

means “toward the center” or “center seeking.”
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Figure 6.8 The directions of the velocity of an object at two different points are shown, and the change in velocity Δv is seen to point directly toward

the center of curvature. (See small inset.) Because ac = Δv / Δt , the acceleration is also toward the center; ac is called centripetal acceleration.

(Because Δθ is very small, the arc length Δs is equal to the chord length Δr for small time differences.)

The direction of centripetal acceleration is toward the center of curvature, but what is its magnitude? Note that the triangle
formed by the velocity vectors and the one formed by the radii r and Δs are similar. Both the triangles ABC and PQR are

isosceles triangles (two equal sides). The two equal sides of the velocity vector triangle are the speeds v1 = v2 = v . Using the

properties of two similar triangles, we obtain

(6.13)Δv
v = Δs

r .

Acceleration is Δv / Δt , and so we first solve this expression for Δv :

(6.14)Δv = v
rΔs.

Then we divide this by Δt , yielding

(6.15)Δv
Δt = v

r×Δs
Δt .

Finally, noting that Δv / Δt = ac and that Δs / Δt = v , the linear or tangential speed, we see that the magnitude of the

centripetal acceleration is

(6.16)
ac = v2

r ,

which is the acceleration of an object in a circle of radius r at a speed v . So, centripetal acceleration is greater at high speeds

and in sharp curves (smaller radius), as you have noticed when driving a car. But it is a bit surprising that ac is proportional to

speed squared, implying, for example, that it is four times as hard to take a curve at 100 km/h than at 50 km/h. A sharp corner
has a small radius, so that ac is greater for tighter turns, as you have probably noticed.

It is also useful to express ac in terms of angular velocity. Substituting v = rω into the above expression, we find

ac = (rω)2 / r = rω2 . We can express the magnitude of centripetal acceleration using either of two equations:

(6.17)
ac = v2

r ; ac = rω2.

Recall that the direction of ac is toward the center. You may use whichever expression is more convenient, as illustrated in

examples below.

A centrifuge (see Figure 6.9b) is a rotating device used to separate specimens of different densities. High centripetal
acceleration significantly decreases the time it takes for separation to occur, and makes separation possible with small samples.
Centrifuges are used in a variety of applications in science and medicine, including the separation of single cell suspensions
such as bacteria, viruses, and blood cells from a liquid medium and the separation of macromolecules, such as DNA and protein,
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from a solution. Centrifuges are often rated in terms of their centripetal acceleration relative to acceleration due to gravity (g) ;

maximum centripetal acceleration of several hundred thousand g is possible in a vacuum. Human centrifuges, extremely large

centrifuges, have been used to test the tolerance of astronauts to the effects of accelerations larger than that of Earth’s gravity.

Example 6.2 How Does the Centripetal Acceleration of a Car Around a Curve Compare with That
Due to Gravity?

What is the magnitude of the centripetal acceleration of a car following a curve of radius 500 m at a speed of 25.0 m/s
(about 90 km/h)? Compare the acceleration with that due to gravity for this fairly gentle curve taken at highway speed. See
Figure 6.9(a).

Strategy

Because v and r are given, the first expression in ac = v2
r ; ac = rω2 is the most convenient to use.

Solution

Entering the given values of v = 25.0 m/s and r = 500 m into the first expression for ac gives

(6.18)
ac = v2

r = (25.0 m/s)2

500 m = 1.25 m/s2.

Discussion

To compare this with the acceleration due to gravity (g = 9.80 m/s2) , we take the ratio of

ac / g = ⎛⎝1.25 m/s2⎞⎠ /
⎛
⎝9.80 m/s2⎞⎠ = 0.128 . Thus, ac = 0.128 g and is noticeable especially if you were not wearing a

seat belt.
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Figure 6.9 (a) The car following a circular path at constant speed is accelerated perpendicular to its velocity, as shown. The magnitude of this
centripetal acceleration is found in Example 6.2. (b) A particle of mass in a centrifuge is rotating at constant angular velocity . It must be accelerated
perpendicular to its velocity or it would continue in a straight line. The magnitude of the necessary acceleration is found in Example 6.3.

Example 6.3 How Big Is the Centripetal Acceleration in an Ultracentrifuge?

Calculate the centripetal acceleration of a point 7.50 cm from the axis of an ultracentrifuge spinning at

7.5 × 104 rev/min. Determine the ratio of this acceleration to that due to gravity. See Figure 6.9(b).

Strategy

The term rev/min stands for revolutions per minute. By converting this to radians per second, we obtain the angular velocity

ω . Because r is given, we can use the second expression in the equation ac = v2
r ; ac = rω2 to calculate the

centripetal acceleration.

Solution

To convert 7.50×104 rev / min to radians per second, we use the facts that one revolution is 2πrad and one minute is

60.0 s. Thus,

(6.19)ω = 7.50×104 rev
min×2π rad

1 rev × 1 min
60.0 s = 7854 rad/s.

Now the centripetal acceleration is given by the second expression in ac = v2
r ; ac = rω2 as

(6.20)ac = rω2.

Converting 7.50 cm to meters and substituting known values gives

(6.21)ac = (0.0750 m)(7854 rad/s)2 = 4.63×106 m/s2.
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Note that the unitless radians are discarded in order to get the correct units for centripetal acceleration. Taking the ratio of
ac to g yields

(6.22)ac
g = 4.63×106

9.80 = 4.72×105.

Discussion

This last result means that the centripetal acceleration is 472,000 times as strong as g . It is no wonder that such high ω
centrifuges are called ultracentrifuges. The extremely large accelerations involved greatly decrease the time needed to
cause the sedimentation of blood cells or other materials.

Of course, a net external force is needed to cause any acceleration, just as Newton proposed in his second law of motion. So a
net external force is needed to cause a centripetal acceleration. In Centripetal Force, we will consider the forces involved in
circular motion.

PhET Explorations: Ladybug Motion 2D

Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration,
and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze
the behavior.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42084/
1.15/#Phet_module_7.2)

Figure 6.10

6.3 Centripetal Force

Any force or combination of forces can cause a centripetal or radial acceleration. Just a few examples are the tension in the rope
on a tether ball, the force of Earth’s gravity on the Moon, friction between roller skates and a rink floor, a banked roadway’s force
on a car, and forces on the tube of a spinning centrifuge.

Any net force causing uniform circular motion is called a centripetal force. The direction of a centripetal force is toward the
center of curvature, the same as the direction of centripetal acceleration. According to Newton’s second law of motion, net force
is mass times acceleration: net F = ma . For uniform circular motion, the acceleration is the centripetal acceleration— a = ac .

Thus, the magnitude of centripetal force Fc is

(6.23)Fc = mac.

By using the expressions for centripetal acceleration ac from ac = v2
r ; ac = rω2 , we get two expressions for the centripetal

force Fc in terms of mass, velocity, angular velocity, and radius of curvature:

(6.24)
Fc = mv2

r ; Fc = mrω2.

You may use whichever expression for centripetal force is more convenient. Centripetal force Fc is always perpendicular to the

path and pointing to the center of curvature, because ac is perpendicular to the velocity and pointing to the center of curvature.

Note that if you solve the first expression for r , you get

(6.25)
r = mv2

Fc
.

This implies that for a given mass and velocity, a large centripetal force causes a small radius of curvature—that is, a tight curve.
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Figure 6.11 The frictional force supplies the centripetal force and is numerically equal to it. Centripetal force is perpendicular to velocity and causes

uniform circular motion. The larger the Fc , the smaller the radius of curvature r and the sharper the curve. The second curve has the same v , but

a larger Fc produces a smaller r′ .

Example 6.4 What Coefficient of Friction Do Car Tires Need on a Flat Curve?

(a) Calculate the centripetal force exerted on a 900 kg car that negotiates a 500 m radius curve at 25.0 m/s.

(b) Assuming an unbanked curve, find the minimum static coefficient of friction, between the tires and the road, static friction
being the reason that keeps the car from slipping (see Figure 6.12).

Strategy and Solution for (a)

We know that Fc = mv2
r . Thus,

(6.26)
Fc = mv2

r = (900 kg)(25.0 m/s)2

(500 m) = 1125 N.

Strategy for (b)

Figure 6.12 shows the forces acting on the car on an unbanked (level ground) curve. Friction is to the left, keeping the car
from slipping, and because it is the only horizontal force acting on the car, the friction is the centripetal force in this case. We
know that the maximum static friction (at which the tires roll but do not slip) is μs N , where μs is the static coefficient of

friction and N is the normal force. The normal force equals the car’s weight on level ground, so that N = mg . Thus the

centripetal force in this situation is

(6.27)Fc = f = μsN = μsmg.

Now we have a relationship between centripetal force and the coefficient of friction. Using the first expression for Fc from

the equation

(6.28)

Fc = mv2
r

Fc = mrω2

⎫
⎭
⎬,

(6.29)
mv2

r = μsmg.

We solve this for μs , noting that mass cancels, and obtain
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(6.30)
μs = v2

rg .

Solution for (b)

Substituting the knowns,

(6.31)
μs = (25.0 m/s)2

(500 m)(9.80 m/s2)
= 0.13.

(Because coefficients of friction are approximate, the answer is given to only two digits.)

Discussion

We could also solve part (a) using the first expression in Fc = mv2
r

Fc = mrω2

⎫
⎭
⎬, because m, v, and r are given. The coefficient

of friction found in part (b) is much smaller than is typically found between tires and roads. The car will still negotiate the
curve if the coefficient is greater than 0.13, because static friction is a responsive force, being able to assume a value less
than but no more than μs N . A higher coefficient would also allow the car to negotiate the curve at a higher speed, but if the

coefficient of friction is less, the safe speed would be less than 25 m/s. Note that mass cancels, implying that in this
example, it does not matter how heavily loaded the car is to negotiate the turn. Mass cancels because friction is assumed
proportional to the normal force, which in turn is proportional to mass. If the surface of the road were banked, the normal
force would be less as will be discussed below.

Figure 6.12 This car on level ground is moving away and turning to the left. The centripetal force causing the car to turn in a circular path is due to
friction between the tires and the road. A minimum coefficient of friction is needed, or the car will move in a larger-radius curve and leave the roadway.

Let us now consider banked curves, where the slope of the road helps you negotiate the curve. See Figure 6.13. The greater
the angle θ , the faster you can take the curve. Race tracks for bikes as well as cars, for example, often have steeply banked

curves. In an “ideally banked curve,” the angle θ is such that you can negotiate the curve at a certain speed without the aid of

friction between the tires and the road. We will derive an expression for θ for an ideally banked curve and consider an example

related to it.

For ideal banking, the net external force equals the horizontal centripetal force in the absence of friction. The components of the
normal force N in the horizontal and vertical directions must equal the centripetal force and the weight of the car, respectively. In
cases in which forces are not parallel, it is most convenient to consider components along perpendicular axes—in this case, the
vertical and horizontal directions.

Figure 6.13 shows a free body diagram for a car on a frictionless banked curve. If the angle θ is ideal for the speed and radius,

then the net external force will equal the necessary centripetal force. The only two external forces acting on the car are its weight
w and the normal force of the road N . (A frictionless surface can only exert a force perpendicular to the surface—that is, a

normal force.) These two forces must add to give a net external force that is horizontal toward the center of curvature and has

magnitude mv2 /r . Because this is the crucial force and it is horizontal, we use a coordinate system with vertical and horizontal
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axes. Only the normal force has a horizontal component, and so this must equal the centripetal force—that is,

(6.32)
N sin θ = mv2

r .

Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the vertical
components of the two external forces must be equal in magnitude and opposite in direction. From the figure, we see that the
vertical component of the normal force is N cos θ , and the only other vertical force is the car’s weight. These must be equal in

magnitude; thus,

(6.33)N cos θ = mg.

Now we can combine the last two equations to eliminate N and get an expression for θ , as desired. Solving the second

equation for N = mg / (cos θ) , and substituting this into the first yields

(6.34)
mg sin θ

cos θ = mv2
r

(6.35)
mg tan(θ) = mv2

r

tan θ = v2
rg.

Taking the inverse tangent gives

(6.36)
θ = tan−1⎛⎝v

2
rg
⎞
⎠ (ideally banked curve, no friction).

This expression can be understood by considering how θ depends on v and r . A large θ will be obtained for a large v and a

small r . That is, roads must be steeply banked for high speeds and sharp curves. Friction helps, because it allows you to take

the curve at greater or lower speed than if the curve is frictionless. Note that θ does not depend on the mass of the vehicle.

Figure 6.13 The car on this banked curve is moving away and turning to the left.

Example 6.5 What Is the Ideal Speed to Take a Steeply Banked Tight Curve?

Curves on some test tracks and race courses, such as the Daytona International Speedway in Florida, are very steeply
banked. This banking, with the aid of tire friction and very stable car configurations, allows the curves to be taken at very
high speed. To illustrate, calculate the speed at which a 100 m radius curve banked at 65.0° should be driven if the road is
frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known; thus, we
need only rearrange it so that speed appears on the left-hand side and then substitute known quantities.

Solution

Starting with

(6.37)
tan θ = v2

rg

we get
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(6.38)v = (rg tan θ)1 / 2.

Noting that tan 65.0º = 2.14, we obtain

(6.39)
v = ⎡

⎣(100 m)(9.80 m/s2)(2.14)⎤⎦
1 / 2

= 45.8 m/s.
Discussion

This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables a vehicle to
take the curve at significantly higher speeds.

Calculations similar to those in the preceding examples can be performed for a host of interesting situations in which
centripetal force is involved—a number of these are presented in this chapter’s Problems and Exercises.

Take-Home Experiment

Ask a friend or relative to swing a golf club or a tennis racquet. Take appropriate measurements to estimate the centripetal
acceleration of the end of the club or racquet. You may choose to do this in slow motion.

PhET Explorations: Gravity and Orbits

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the
sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42086/
1.16/#Phet_module_7.3)

Figure 6.14

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force

What do taking off in a jet airplane, turning a corner in a car, riding a merry-go-round, and the circular motion of a tropical cyclone
have in common? Each exhibits fictitious forces—unreal forces that arise from motion and may seem real, because the
observer’s frame of reference is accelerating or rotating.

When taking off in a jet, most people would agree it feels as if you are being pushed back into the seat as the airplane
accelerates down the runway. Yet a physicist would say that you tend to remain stationary while the seat pushes forward on you,
and there is no real force backward on you. An even more common experience occurs when you make a tight curve in your
car—say, to the right. You feel as if you are thrown (that is, forced) toward the left relative to the car. Again, a physicist would say
that you are going in a straight line but the car moves to the right, and there is no real force on you to the left. Recall Newton’s
first law.

Figure 6.15 (a) The car driver feels herself forced to the left relative to the car when she makes a right turn. This is a fictitious force arising from the
use of the car as a frame of reference. (b) In the Earth’s frame of reference, the driver moves in a straight line, obeying Newton’s first law, and the car
moves to the right. There is no real force to the left on the driver relative to Earth. There is a real force to the right on the car to make it turn.

We can reconcile these points of view by examining the frames of reference used. Let us concentrate on people in a car.
Passengers instinctively use the car as a frame of reference, while a physicist uses Earth. The physicist chooses Earth because

214 Chapter 6 | Uniform Circular Motion and Gravitation

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14

http://cnx.org/content/m42086/1.16/#Phet_module_7.3
http://cnx.org/content/m42086/1.16/#Phet_module_7.3


it is very nearly an inertial frame of reference—one in which all forces are real (that is, in which all forces have an identifiable
physical origin). In such a frame of reference, Newton’s laws of motion take the form given in Dynamics: Newton's Laws of
Motion The car is a non-inertial frame of reference because it is accelerated to the side. The force to the left sensed by car
passengers is a fictitious force having no physical origin. There is nothing real pushing them left—the car, as well as the driver,
is actually accelerating to the right.

Let us now take a mental ride on a merry-go-round—specifically, a rapidly rotating playground merry-go-round. You take the
merry-go-round to be your frame of reference because you rotate together. In that non-inertial frame, you feel a fictitious force,
named centrifugal force (not to be confused with centripetal force), trying to throw you off. You must hang on tightly to
counteract the centrifugal force. In Earth’s frame of reference, there is no force trying to throw you off. Rather you must hang on
to make yourself go in a circle because otherwise you would go in a straight line, right off the merry-go-round.

Figure 6.16 (a) A rider on a merry-go-round feels as if he is being thrown off. This fictitious force is called the centrifugal force—it explains the rider’s
motion in the rotating frame of reference. (b) In an inertial frame of reference and according to Newton’s laws, it is his inertia that carries him off and not

a real force (the unshaded rider has Fnet = 0 and heads in a straight line). A real force, Fcentripetal , is needed to cause a circular path.

This inertial effect, carrying you away from the center of rotation if there is no centripetal force to cause circular motion, is put to
good use in centrifuges (see Figure 6.17). A centrifuge spins a sample very rapidly, as mentioned earlier in this chapter. Viewed
from the rotating frame of reference, the fictitious centrifugal force throws particles outward, hastening their sedimentation. The
greater the angular velocity, the greater the centrifugal force. But what really happens is that the inertia of the particles carries
them along a line tangent to the circle while the test tube is forced in a circular path by a centripetal force.

Figure 6.17 Centrifuges use inertia to perform their task. Particles in the fluid sediment come out because their inertia carries them away from the
center of rotation. The large angular velocity of the centrifuge quickens the sedimentation. Ultimately, the particles will come into contact with the test
tube walls, which will then supply the centripetal force needed to make them move in a circle of constant radius.

Let us now consider what happens if something moves in a frame of reference that rotates. For example, what if you slide a ball
directly away from the center of the merry-go-round, as shown in Figure 6.18? The ball follows a straight path relative to Earth
(assuming negligible friction) and a path curved to the right on the merry-go-round’s surface. A person standing next to the
merry-go-round sees the ball moving straight and the merry-go-round rotating underneath it. In the merry-go-round’s frame of
reference, we explain the apparent curve to the right by using a fictitious force, called the Coriolis force, that causes the ball to
curve to the right. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow
curved paths and allows us to apply Newton’s Laws in non-inertial frames of reference.
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Figure 6.18 Looking down on the counterclockwise rotation of a merry-go-round, we see that a ball slid straight toward the edge follows a path curved
to the right. The person slides the ball toward point B, starting at point A. Both points rotate to the shaded positions (A’ and B’) shown in the time that
the ball follows the curved path in the rotating frame and a straight path in Earth’s frame.

Up until now, we have considered Earth to be an inertial frame of reference with little or no worry about effects due to its rotation.
Yet such effects do exist—in the rotation of weather systems, for example. Most consequences of Earth’s rotation can be
qualitatively understood by analogy with the merry-go-round. Viewed from above the North Pole, Earth rotates counterclockwise,
as does the merry-go-round in Figure 6.18. As on the merry-go-round, any motion in Earth’s northern hemisphere experiences a
Coriolis force to the right. Just the opposite occurs in the southern hemisphere; there, the force is to the left. Because Earth’s
angular velocity is small, the Coriolis force is usually negligible, but for large-scale motions, such as wind patterns, it has
substantial effects.

The Coriolis force causes hurricanes in the northern hemisphere to rotate in the counterclockwise direction, while the tropical
cyclones (what hurricanes are called below the equator) in the southern hemisphere rotate in the clockwise direction. The terms
hurricane, typhoon, and tropical storm are regionally-specific names for tropical cyclones, storm systems characterized by low
pressure centers, strong winds, and heavy rains. Figure 6.19 helps show how these rotations take place. Air flows toward any
region of low pressure, and tropical cyclones contain particularly low pressures. Thus winds flow toward the center of a tropical
cyclone or a low-pressure weather system at the surface. In the northern hemisphere, these inward winds are deflected to the
right, as shown in the figure, producing a counterclockwise circulation at the surface for low-pressure zones of any type. Low
pressure at the surface is associated with rising air, which also produces cooling and cloud formation, making low-pressure
patterns quite visible from space. Conversely, wind circulation around high-pressure zones is clockwise in the northern
hemisphere but is less visible because high pressure is associated with sinking air, producing clear skies.

The rotation of tropical cyclones and the path of a ball on a merry-go-round can just as well be explained by inertia and the
rotation of the system underneath. When non-inertial frames are used, fictitious forces, such as the Coriolis force, must be
invented to explain the curved path. There is no identifiable physical source for these fictitious forces. In an inertial frame, inertia
explains the path, and no force is found to be without an identifiable source. Either view allows us to describe nature, but a view
in an inertial frame is the simplest and truest, in the sense that all forces have real origins and explanations.
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Figure 6.19 (a) The counterclockwise rotation of this northern hemisphere hurricane is a major consequence of the Coriolis force. (credit: NASA) (b)
Without the Coriolis force, air would flow straight into a low-pressure zone, such as that found in tropical cyclones. (c) The Coriolis force deflects the
winds to the right, producing a counterclockwise rotation. (d) Wind flowing away from a high-pressure zone is also deflected to the right, producing a
clockwise rotation. (e) The opposite direction of rotation is produced by the Coriolis force in the southern hemisphere, leading to tropical cyclones.
(credit: NASA)

6.5 Newton’s Universal Law of Gravitation

What do aching feet, a falling apple, and the orbit of the Moon have in common? Each is caused by the gravitational force. Our
feet are strained by supporting our weight—the force of Earth’s gravity on us. An apple falls from a tree because of the same
force acting a few meters above Earth’s surface. And the Moon orbits Earth because gravity is able to supply the necessary
centripetal force at a distance of hundreds of millions of meters. In fact, the same force causes planets to orbit the Sun, stars to
orbit the center of the galaxy, and galaxies to cluster together. Gravity is another example of underlying simplicity in nature. It is
the weakest of the four basic forces found in nature, and in some ways the least understood. It is a force that acts at a distance,
without physical contact, and is expressed by a formula that is valid everywhere in the universe, for masses and distances that
vary from the tiny to the immense.

Sir Isaac Newton was the first scientist to precisely define the gravitational force, and to show that it could explain both falling
bodies and astronomical motions. See Figure 6.20. But Newton was not the first to suspect that the same force caused both our
weight and the motion of planets. His forerunner Galileo Galilei had contended that falling bodies and planetary motions had the
same cause. Some of Newton’s contemporaries, such as Robert Hooke, Christopher Wren, and Edmund Halley, had also made
some progress toward understanding gravitation. But Newton was the first to propose an exact mathematical form and to use
that form to show that the motion of heavenly bodies should be conic sections—circles, ellipses, parabolas, and hyperbolas. This
theoretical prediction was a major triumph—it had been known for some time that moons, planets, and comets follow such paths,
but no one had been able to propose a mechanism that caused them to follow these paths and not others.
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Figure 6.20 According to early accounts, Newton was inspired to make the connection between falling bodies and astronomical motions when he saw
an apple fall from a tree and realized that if the gravitational force could extend above the ground to a tree, it might also reach the Sun. The inspiration
of Newton’s apple is a part of worldwide folklore and may even be based in fact. Great importance is attached to it because Newton’s universal law of
gravitation and his laws of motion answered very old questions about nature and gave tremendous support to the notion of underlying simplicity and
unity in nature. Scientists still expect underlying simplicity to emerge from their ongoing inquiries into nature.

The gravitational force is relatively simple. It is always attractive, and it depends only on the masses involved and the distance
between them. Stated in modern language, Newton’s universal law of gravitation states that every particle in the universe
attracts every other particle with a force along a line joining them. The force is directly proportional to the product of their masses
and inversely proportional to the square of the distance between them.

Figure 6.21 Gravitational attraction is along a line joining the centers of mass of these two bodies. The magnitude of the force is the same on each,
consistent with Newton’s third law.

Misconception Alert

The magnitude of the force on each object (one has larger mass than the other) is the same, consistent with Newton’s third
law.

The bodies we are dealing with tend to be large. To simplify the situation we assume that the body acts as if its entire mass is
concentrated at one specific point called the center of mass (CM), which will be further explored in Linear Momentum and
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Collisions. For two bodies having masses m and M with a distance r between their centers of mass, the equation for

Newton’s universal law of gravitation is

(6.40)F = GmM
r2 ,

where F is the magnitude of the gravitational force and G is a proportionality factor called the gravitational constant. G is a

universal gravitational constant—that is, it is thought to be the same everywhere in the universe. It has been measured
experimentally to be

(6.41)
G = 6.674×10−11N ⋅ m2

kg2

in SI units. Note that the units of G are such that a force in newtons is obtained from F = GmM
r2 , when considering masses in

kilograms and distance in meters. For example, two 1.000 kg masses separated by 1.000 m will experience a gravitational

attraction of 6.674×10−11 N . This is an extraordinarily small force. The small magnitude of the gravitational force is consistent

with everyday experience. We are unaware that even large objects like mountains exert gravitational forces on us. In fact, our

body weight is the force of attraction of the entire Earth on us with a mass of 6×1024 kg .

Recall that the acceleration due to gravity g is about 9.80 m/s2 on Earth. We can now determine why this is so. The weight of

an object mg is the gravitational force between it and Earth. Substituting mg for F in Newton’s universal law of gravitation gives

(6.42)mg = GmM
r2 ,

where m is the mass of the object, M is the mass of Earth, and r is the distance to the center of Earth (the distance between

the centers of mass of the object and Earth). See Figure 6.22. The mass m of the object cancels, leaving an equation for g :

(6.43)g = GM
r2.

Substituting known values for Earth’s mass and radius (to three significant figures),

(6.44)
g =
⎛
⎝
⎜6.67×10−11N ⋅ m2

kg2

⎞
⎠
⎟× 5.98×1024 kg

(6.38×106 m)2,

and we obtain a value for the acceleration of a falling body:

(6.45)g = 9.80 m/s2.

Figure 6.22 The distance between the centers of mass of Earth and an object on its surface is very nearly the same as the radius of Earth, because
Earth is so much larger than the object.

This is the expected value and is independent of the body’s mass. Newton’s law of gravitation takes Galileo’s observation that all
masses fall with the same acceleration a step further, explaining the observation in terms of a force that causes objects to fall—in
fact, in terms of a universally existing force of attraction between masses.

Take-Home Experiment

Take a marble, a ball, and a spoon and drop them from the same height. Do they hit the floor at the same time? If you drop a
piece of paper as well, does it behave like the other objects? Explain your observations.
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Making Connections

Attempts are still being made to understand the gravitational force. As we shall see in Particle Physics, modern physics is
exploring the connections of gravity to other forces, space, and time. General relativity alters our view of gravitation, leading
us to think of gravitation as bending space and time.

In the following example, we make a comparison similar to one made by Newton himself. He noted that if the gravitational force
caused the Moon to orbit Earth, then the acceleration due to gravity should equal the centripetal acceleration of the Moon in its
orbit. Newton found that the two accelerations agreed “pretty nearly.”

Example 6.6 Earth’s Gravitational Force Is the Centripetal Force Making the Moon Move in a
Curved Path

(a) Find the acceleration due to Earth’s gravity at the distance of the Moon.

(b) Calculate the centripetal acceleration needed to keep the Moon in its orbit (assuming a circular orbit about a fixed Earth),
and compare it with the value of the acceleration due to Earth’s gravity that you have just found.

Strategy for (a)

This calculation is the same as the one finding the acceleration due to gravity at Earth’s surface, except that r is the

distance from the center of Earth to the center of the Moon. The radius of the Moon’s nearly circular orbit is 3.84×108 m .

Solution for (a)

Substituting known values into the expression for g found above, remembering that M is the mass of Earth not the Moon,

yields

(6.46)
g = GM

r2 =
⎛
⎝
⎜6.67×10−11N ⋅ m2

kg2

⎞
⎠
⎟× 5.98×1024 kg

(3.84×108 m)2

= 2.70×10−3 m/s.2

Strategy for (b)

Centripetal acceleration can be calculated using either form of

(6.47)

ac = v2
r

ac = rω2

⎫
⎭
⎬.

We choose to use the second form:

(6.48)ac = rω2,

where ω is the angular velocity of the Moon about Earth.

Solution for (b)

Given that the period (the time it takes to make one complete rotation) of the Moon’s orbit is 27.3 days, (d) and using

(6.49)1 d×24hr
d ×60min

hr ×60 s
min = 86,400 s

we see that

(6.50)ω = Δθ
Δt = 2π rad

(27.3 d)(86,400 s/d) = 2.66×10−6rad
s .

The centripetal acceleration is

(6.51)ac = rω2 = (3.84×108 m)(2.66×10−6 rad/s)2

= 2.72×10−3 m/s.2

The direction of the acceleration is toward the center of the Earth.

Discussion

The centripetal acceleration of the Moon found in (b) differs by less than 1% from the acceleration due to Earth’s gravity
found in (a). This agreement is approximate because the Moon’s orbit is slightly elliptical, and Earth is not stationary (rather
the Earth-Moon system rotates about its center of mass, which is located some 1700 km below Earth’s surface). The clear
implication is that Earth’s gravitational force causes the Moon to orbit Earth.
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Why does Earth not remain stationary as the Moon orbits it? This is because, as expected from Newton’s third law, if Earth exerts
a force on the Moon, then the Moon should exert an equal and opposite force on Earth (see Figure 6.23). We do not sense the
Moon’s effect on Earth’s motion, because the Moon’s gravity moves our bodies right along with Earth but there are other signs on
Earth that clearly show the effect of the Moon’s gravitational force as discussed in Satellites and Kepler's Laws: An Argument
for Simplicity.

Figure 6.23 (a) Earth and the Moon rotate approximately once a month around their common center of mass. (b) Their center of mass orbits the Sun in
an elliptical orbit, but Earth’s path around the Sun has “wiggles” in it. Similar wiggles in the paths of stars have been observed and are considered
direct evidence of planets orbiting those stars. This is important because the planets’ reflected light is often too dim to be observed.

Tides

Ocean tides are one very observable result of the Moon’s gravity acting on Earth. Figure 6.24 is a simplified drawing of the
Moon’s position relative to the tides. Because water easily flows on Earth’s surface, a high tide is created on the side of Earth
nearest to the Moon, where the Moon’s gravitational pull is strongest. Why is there also a high tide on the opposite side of Earth?
The answer is that Earth is pulled toward the Moon more than the water on the far side, because Earth is closer to the Moon. So
the water on the side of Earth closest to the Moon is pulled away from Earth, and Earth is pulled away from water on the far side.
As Earth rotates, the tidal bulge (an effect of the tidal forces between an orbiting natural satellite and the primary planet that it
orbits) keeps its orientation with the Moon. Thus there are two tides per day (the actual tidal period is about 12 hours and 25.2
minutes), because the Moon moves in its orbit each day as well).

Figure 6.24 The Moon causes ocean tides by attracting the water on the near side more than Earth, and by attracting Earth more than the water on the
far side. The distances and sizes are not to scale. For this simplified representation of the Earth-Moon system, there are two high and two low tides per
day at any location, because Earth rotates under the tidal bulge.

The Sun also affects tides, although it has about half the effect of the Moon. However, the largest tides, called spring tides, occur
when Earth, the Moon, and the Sun are aligned. The smallest tides, called neap tides, occur when the Sun is at a 90º angle to

the Earth-Moon alignment.
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Figure 6.25 (a, b) Spring tides: The highest tides occur when Earth, the Moon, and the Sun are aligned. (c) Neap tide: The lowest tides occur when the

Sun lies at 90º to the Earth-Moon alignment. Note that this figure is not drawn to scale.

Tides are not unique to Earth but occur in many astronomical systems. The most extreme tides occur where the gravitational
force is the strongest and varies most rapidly, such as near black holes (see Figure 6.26). A few likely candidates for black holes
have been observed in our galaxy. These have masses greater than the Sun but have diameters only a few kilometers across.
The tidal forces near them are so great that they can actually tear matter from a companion star.

Figure 6.26 A black hole is an object with such strong gravity that not even light can escape it. This black hole was created by the supernova of one
star in a two-star system. The tidal forces created by the black hole are so great that it tears matter from the companion star. This matter is
compressed and heated as it is sucked into the black hole, creating light and X-rays observable from Earth.

”Weightlessness” and Microgravity

In contrast to the tremendous gravitational force near black holes is the apparent gravitational field experienced by astronauts
orbiting Earth. What is the effect of “weightlessness” upon an astronaut who is in orbit for months? Or what about the effect of
weightlessness upon plant growth? Weightlessness doesn’t mean that an astronaut is not being acted upon by the gravitational
force. There is no “zero gravity” in an astronaut’s orbit. The term just means that the astronaut is in free-fall, accelerating with the
acceleration due to gravity. If an elevator cable breaks, the passengers inside will be in free fall and will experience
weightlessness. You can experience short periods of weightlessness in some rides in amusement parks.

222 Chapter 6 | Uniform Circular Motion and Gravitation

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Figure 6.27 Astronauts experiencing weightlessness on board the International Space Station. (credit: NASA)

Microgravity refers to an environment in which the apparent net acceleration of a body is small compared with that produced by
Earth at its surface. Many interesting biology and physics topics have been studied over the past three decades in the presence
of microgravity. Of immediate concern is the effect on astronauts of extended times in outer space, such as at the International
Space Station. Researchers have observed that muscles will atrophy (waste away) in this environment. There is also a
corresponding loss of bone mass. Study continues on cardiovascular adaptation to space flight. On Earth, blood pressure is
usually higher in the feet than in the head, because the higher column of blood exerts a downward force on it, due to gravity.
When standing, 70% of your blood is below the level of the heart, while in a horizontal position, just the opposite occurs. What
difference does the absence of this pressure differential have upon the heart?

Some findings in human physiology in space can be clinically important to the management of diseases back on Earth. On a
somewhat negative note, spaceflight is known to affect the human immune system, possibly making the crew members more
vulnerable to infectious diseases. Experiments flown in space also have shown that some bacteria grow faster in microgravity
than they do on Earth. However, on a positive note, studies indicate that microbial antibiotic production can increase by a factor
of two in space-grown cultures. One hopes to be able to understand these mechanisms so that similar successes can be
achieved on the ground. In another area of physics space research, inorganic crystals and protein crystals have been grown in
outer space that have much higher quality than any grown on Earth, so crystallography studies on their structure can yield much
better results.

Plants have evolved with the stimulus of gravity and with gravity sensors. Roots grow downward and shoots grow upward. Plants
might be able to provide a life support system for long duration space missions by regenerating the atmosphere, purifying water,
and producing food. Some studies have indicated that plant growth and development are not affected by gravity, but there is still
uncertainty about structural changes in plants grown in a microgravity environment.

The Cavendish Experiment: Then and Now

As previously noted, the universal gravitational constant G is determined experimentally. This definition was first done

accurately by Henry Cavendish (1731–1810), an English scientist, in 1798, more than 100 years after Newton published his
universal law of gravitation. The measurement of G is very basic and important because it determines the strength of one of the

four forces in nature. Cavendish’s experiment was very difficult because he measured the tiny gravitational attraction between
two ordinary-sized masses (tens of kilograms at most), using apparatus like that in Figure 6.28. Remarkably, his value for G
differs by less than 1% from the best modern value.

One important consequence of knowing G was that an accurate value for Earth’s mass could finally be obtained. This was done

by measuring the acceleration due to gravity as accurately as possible and then calculating the mass of Earth M from the

relationship Newton’s universal law of gravitation gives

(6.52)mg = GmM
r2 ,

where m is the mass of the object, M is the mass of Earth, and r is the distance to the center of Earth (the distance between

the centers of mass of the object and Earth). See Figure 6.21. The mass m of the object cancels, leaving an equation for g :

(6.53)g = GM
r2.

Rearranging to solve for M yields

(6.54)
M = gr2

G .
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So M can be calculated because all quantities on the right, including the radius of Earth r , are known from direct

measurements. We shall see in Satellites and Kepler's Laws: An Argument for Simplicity that knowing G also allows for the

determination of astronomical masses. Interestingly, of all the fundamental constants in physics, G is by far the least well

determined.

The Cavendish experiment is also used to explore other aspects of gravity. One of the most interesting questions is whether the
gravitational force depends on substance as well as mass—for example, whether one kilogram of lead exerts the same
gravitational pull as one kilogram of water. A Hungarian scientist named Roland von Eötvös pioneered this inquiry early in the
20th century. He found, with an accuracy of five parts per billion, that the gravitational force does not depend on the substance.
Such experiments continue today, and have improved upon Eötvös’ measurements. Cavendish-type experiments such as those
of Eric Adelberger and others at the University of Washington, have also put severe limits on the possibility of a fifth force and
have verified a major prediction of general relativity—that gravitational energy contributes to rest mass. Ongoing measurements
there use a torsion balance and a parallel plate (not spheres, as Cavendish used) to examine how Newton’s law of gravitation
works over sub-millimeter distances. On this small-scale, do gravitational effects depart from the inverse square law? So far, no
deviation has been observed.

Figure 6.28 Cavendish used an apparatus like this to measure the gravitational attraction between the two suspended spheres ( m ) and the two on

the stand ( M ) by observing the amount of torsion (twisting) created in the fiber. Distance between the masses can be varied to check the

dependence of the force on distance. Modern experiments of this type continue to explore gravity.

6.6 Satellites and Kepler’s Laws: An Argument for Simplicity

Examples of gravitational orbits abound. Hundreds of artificial satellites orbit Earth together with thousands of pieces of debris.
The Moon’s orbit about Earth has intrigued humans from time immemorial. The orbits of planets, asteroids, meteors, and comets
about the Sun are no less interesting. If we look further, we see almost unimaginable numbers of stars, galaxies, and other
celestial objects orbiting one another and interacting through gravity.

All these motions are governed by gravitational force, and it is possible to describe them to various degrees of precision. Precise
descriptions of complex systems must be made with large computers. However, we can describe an important class of orbits
without the use of computers, and we shall find it instructive to study them. These orbits have the following characteristics:

1. A small mass m orbits a much larger mass M . This allows us to view the motion as if M were stationary—in fact, as if

from an inertial frame of reference placed on M —without significant error. Mass m is the satellite of M , if the orbit is

gravitationally bound.

2. The system is isolated from other masses. This allows us to neglect any small effects due to outside masses.

The conditions are satisfied, to good approximation, by Earth’s satellites (including the Moon), by objects orbiting the Sun, and by
the satellites of other planets. Historically, planets were studied first, and there is a classical set of three laws, called Kepler’s
laws of planetary motion, that describe the orbits of all bodies satisfying the two previous conditions (not just planets in our solar
system). These descriptive laws are named for the German astronomer Johannes Kepler (1571–1630), who devised them after
careful study (over some 20 years) of a large amount of meticulously recorded observations of planetary motion done by Tycho
Brahe (1546–1601). Such careful collection and detailed recording of methods and data are hallmarks of good science. Data
constitute the evidence from which new interpretations and meanings can be constructed.

Kepler’s Laws of Planetary Motion

Kepler’s First Law

The orbit of each planet about the Sun is an ellipse with the Sun at one focus.
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Figure 6.29 (a) An ellipse is a closed curve such that the sum of the distances from a point on the curve to the two foci ( f1 and f2 ) is a constant.

You can draw an ellipse as shown by putting a pin at each focus, and then placing a string around a pencil and the pins and tracing a line on paper. A
circle is a special case of an ellipse in which the two foci coincide (thus any point on the circle is the same distance from the center). (b) For any closed

gravitational orbit, m follows an elliptical path with M at one focus. Kepler’s first law states this fact for planets orbiting the Sun.

Kepler’s Second Law

Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times (see
Figure 6.30).

Kepler’s Third Law

The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average
distances from the Sun. In equation form, this is

(6.55)T1
 2

T2
 2 =

r1
 3

r2
 3,

where T is the period (time for one orbit) and r is the average radius. This equation is valid only for comparing two small

masses orbiting the same large one. Most importantly, this is a descriptive equation only, giving no information as to the cause of
the equality.
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Figure 6.30 The shaded regions have equal areas. It takes equal times for m to go from A to B, from C to D, and from E to F. The mass m moves

fastest when it is closest to M . Kepler’s second law was originally devised for planets orbiting the Sun, but it has broader validity.

Note again that while, for historical reasons, Kepler’s laws are stated for planets orbiting the Sun, they are actually valid for all
bodies satisfying the two previously stated conditions.

Example 6.7 Find the Time for One Orbit of an Earth Satellite

Given that the Moon orbits Earth each 27.3 d and that it is an average distance of 3.84×108 m from the center of Earth,

calculate the period of an artificial satellite orbiting at an average altitude of 1500 km above Earth’s surface.

Strategy

The period, or time for one orbit, is related to the radius of the orbit by Kepler’s third law, given in mathematical form in

T1
 2

T2
 2 =

r1
 3

r2
 3 . Let us use the subscript 1 for the Moon and the subscript 2 for the satellite. We are asked to find T2 . The

given information tells us that the orbital radius of the Moon is r1 = 3.84×108 m , and that the period of the Moon is

T1 = 27.3 d . The height of the artificial satellite above Earth’s surface is given, and so we must add the radius of Earth

(6380 km) to get r2 = (1500 + 6380) km = 7880 km . Now all quantities are known, and so T2 can be found.

Solution

Kepler’s third law is

(6.56)T1
 2

T2
 2 =

r1
 3

r2
 3.

To solve for T2 , we cross-multiply and take the square root, yielding

(6.57)
T2

 2 = T1
 2 ⎛⎝

r2
r1
⎞
⎠

3

(6.58)
T2 = T1

⎛
⎝
r2
r1
⎞
⎠

3 / 2
.

Substituting known values yields

(6.59)

T2 = 27.3 d×24.0 h
d ×⎛⎝ 7880 km

3.84×105 km
⎞
⎠

3 / 2

= 1.93 h.
Discussion This is a reasonable period for a satellite in a fairly low orbit. It is interesting that any satellite at this altitude will
orbit in the same amount of time. This fact is related to the condition that the satellite’s mass is small compared with that of
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Earth.

People immediately search for deeper meaning when broadly applicable laws, like Kepler’s, are discovered. It was Newton who
took the next giant step when he proposed the law of universal gravitation. While Kepler was able to discover what was
happening, Newton discovered that gravitational force was the cause.

Derivation of Kepler’s Third Law for Circular Orbits

We shall derive Kepler’s third law, starting with Newton’s laws of motion and his universal law of gravitation. The point is to
demonstrate that the force of gravity is the cause for Kepler’s laws (although we will only derive the third one).

Let us consider a circular orbit of a small mass m around a large mass M , satisfying the two conditions stated at the beginning

of this section. Gravity supplies the centripetal force to mass m . Starting with Newton’s second law applied to circular motion,

(6.60)
Fnet = mac = mv2

r .

The net external force on mass m is gravity, and so we substitute the force of gravity for Fnet :

(6.61)
GmM

r2 = mv2
r .

The mass m cancels, yielding

(6.62)GM
r = v2.

The fact that m cancels out is another aspect of the oft-noted fact that at a given location all masses fall with the same

acceleration. Here we see that at a given orbital radius r , all masses orbit at the same speed. (This was implied by the result of

the preceding worked example.) Now, to get at Kepler’s third law, we must get the period T into the equation. By definition,

period T is the time for one complete orbit. Now the average speed v is the circumference divided by the period—that is,

(6.63)v = 2πr
T .

Substituting this into the previous equation gives

(6.64)
GM

r = 4π2 r2

T 2 .

Solving for T 2 yields

(6.65)
T 2 = 4π2

GMr3.

Using subscripts 1 and 2 to denote two different satellites, and taking the ratio of the last equation for satellite 1 to satellite 2
yields

(6.66)T1
 2

T2
 2 =

r1
 3

r2
 3.

This is Kepler’s third law. Note that Kepler’s third law is valid only for comparing satellites of the same parent body, because only
then does the mass of the parent body M cancel.

Now consider what we get if we solve T 2 = 4π2

GMr3 for the ratio r3 / T 2 . We obtain a relationship that can be used to

determine the mass M of a parent body from the orbits of its satellites:

(6.67)r3

T 2 = G
4π2M.

If r and T are known for a satellite, then the mass M of the parent can be calculated. This principle has been used

extensively to find the masses of heavenly bodies that have satellites. Furthermore, the ratio r3 / T 2 should be a constant for all

satellites of the same parent body (because r3 / T 2 = GM / 4π2 ). (See Table 6.2).

It is clear from Table 6.2 that the ratio of r3 / T 2 is constant, at least to the third digit, for all listed satellites of the Sun, and for

those of Jupiter. Small variations in that ratio have two causes—uncertainties in the r and T data, and perturbations of the
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orbits due to other bodies. Interestingly, those perturbations can be—and have been—used to predict the location of new planets
and moons. This is another verification of Newton’s universal law of gravitation.

Making Connections

Newton’s universal law of gravitation is modified by Einstein’s general theory of relativity, as we shall see in Particle
Physics. Newton’s gravity is not seriously in error—it was and still is an extremely good approximation for most situations.
Einstein’s modification is most noticeable in extremely large gravitational fields, such as near black holes. However, general
relativity also explains such phenomena as small but long-known deviations of the orbit of the planet Mercury from classical
predictions.

The Case for Simplicity

The development of the universal law of gravitation by Newton played a pivotal role in the history of ideas. While it is beyond the
scope of this text to cover that history in any detail, we note some important points. The definition of planet set in 2006 by the
International Astronomical Union (IAU) states that in the solar system, a planet is a celestial body that:

1. is in orbit around the Sun,

2. has sufficient mass to assume hydrostatic equilibrium and

3. has cleared the neighborhood around its orbit.

A non-satellite body fulfilling only the first two of the above criteria is classified as “dwarf planet.”

In 2006, Pluto was demoted to a ‘dwarf planet’ after scientists revised their definition of what constitutes a “true” planet.

Table 6.2 Orbital Data and Kepler’s Third Law

Parent Satellite Average orbital radius r(km) Period T(y) r3 / T2 (km3 / y2)

Earth Moon 3.84×105 0.07481 1.01×1019

Sun Mercury 5.79×107 0.2409 3.34×1024

Venus 1.082×108 0.6150 3.35×1024

Earth 1.496×108 1.000 3.35×1024

Mars 2.279×108 1.881 3.35×1024

Jupiter 7.783×108 11.86 3.35×1024

Saturn 1.427×109 29.46 3.35×1024

Neptune 4.497×109 164.8 3.35×1024

Pluto 5.90×109 248.3 3.33×1024

Jupiter Io 4.22×105 0.00485 (1.77 d) 3.19×1021

Europa 6.71×105 0.00972 (3.55 d) 3.20×1021

Ganymede 1.07×106 0.0196 (7.16 d) 3.19×1021

Callisto 1.88×106 0.0457 (16.19 d) 3.20×1021

The universal law of gravitation is a good example of a physical principle that is very broadly applicable. That single equation for
the gravitational force describes all situations in which gravity acts. It gives a cause for a vast number of effects, such as the
orbits of the planets and moons in the solar system. It epitomizes the underlying unity and simplicity of physics.

Before the discoveries of Kepler, Copernicus, Galileo, Newton, and others, the solar system was thought to revolve around Earth
as shown in Figure 6.31(a). This is called the Ptolemaic view, for the Greek philosopher who lived in the second century AD.
This model is characterized by a list of facts for the motions of planets with no cause and effect explanation. There tended to be
a different rule for each heavenly body and a general lack of simplicity.

Figure 6.31(b) represents the modern or Copernican model. In this model, a small set of rules and a single underlying force
explain not only all motions in the solar system, but all other situations involving gravity. The breadth and simplicity of the laws of
physics are compelling. As our knowledge of nature has grown, the basic simplicity of its laws has become ever more evident.
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angular velocity:

arc length:

banked curve:

center of mass:

centrifugal force:

centripetal acceleration:

centripetal force:

Coriolis force:

fictitious force:

gravitational constant, G:

ideal angle:

ideal banking:

ideal speed:

microgravity:

Newton’s universal law of gravitation:

non-inertial frame of reference:

pit:

radians:

Figure 6.31 (a) The Ptolemaic model of the universe has Earth at the center with the Moon, the planets, the Sun, and the stars revolving about it in
complex superpositions of circular paths. This geocentric model, which can be made progressively more accurate by adding more circles, is purely
descriptive, containing no hints as to what are the causes of these motions. (b) The Copernican model has the Sun at the center of the solar system. It
is fully explained by a small number of laws of physics, including Newton’s universal law of gravitation.

Glossary

ω , the rate of change of the angle with which an object moves on a circular path

Δs , the distance traveled by an object along a circular path

the curve in a road that is sloping in a manner that helps a vehicle negotiate the curve

the point where the entire mass of an object can be thought to be concentrated

a fictitious force that tends to throw an object off when the object is rotating in a non-inertial frame of
reference

the acceleration of an object moving in a circle, directed toward the center

any net force causing uniform circular motion

the fictitious force causing the apparent deflection of moving objects when viewed in a rotating frame of
reference

a force having no physical origin

a proportionality factor used in the equation for Newton’s universal law of gravitation; it is a
universal constant—that is, it is thought to be the same everywhere in the universe

the angle at which a car can turn safely on a steep curve, which is in proportion to the ideal speed

the sloping of a curve in a road, where the angle of the slope allows the vehicle to negotiate the curve at a
certain speed without the aid of friction between the tires and the road; the net external force on the vehicle equals the
horizontal centripetal force in the absence of friction

the maximum safe speed at which a vehicle can turn on a curve without the aid of friction between the tire and
the road

an environment in which the apparent net acceleration of a body is small compared with that produced by Earth
at its surface

every particle in the universe attracts every other particle with a force along a line
joining them; the force is directly proportional to the product of their masses and inversely proportional to the square of
the distance between them

an accelerated frame of reference

a tiny indentation on the spiral track moulded into the top of the polycarbonate layer of CD

a unit of angle measurement
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radius of curvature:

rotation angle:

ultracentrifuge:

uniform circular motion:

radius of a circular path

the ratio of the arc length to the radius of curvature on a circular path:

Δθ = Δs
r

a centrifuge optimized for spinning a rotor at very high speeds

the motion of an object in a circular path at constant speed

Section Summary

6.1 Rotation Angle and Angular Velocity
• Uniform circular motion is motion in a circle at constant speed. The rotation angle Δθ is defined as the ratio of the arc

length to the radius of curvature:

Δθ = Δs
r ,

where arc length Δs is distance traveled along a circular path and r is the radius of curvature of the circular path. The

quantity Δθ is measured in units of radians (rad), for which

2π rad = 360º= 1 revolution.
• The conversion between radians and degrees is 1 rad = 57.3º .

• Angular velocity ω is the rate of change of an angle,

ω = Δθ
Δt ,

where a rotation Δθ takes place in a time Δt . The units of angular velocity are radians per second (rad/s). Linear velocity

v and angular velocity ω are related by

v = rω or ω = v
r .

6.2 Centripetal Acceleration
• Centripetal acceleration ac is the acceleration experienced while in uniform circular motion. It always points toward the

center of rotation. It is perpendicular to the linear velocity v and has the magnitude

ac = v2
r ; ac = rω2.

• The unit of centripetal acceleration is m / s2 .

6.3 Centripetal Force
• Centripetal force Fc is any force causing uniform circular motion. It is a “center-seeking” force that always points toward

the center of rotation. It is perpendicular to linear velocity v and has magnitude

Fc = mac,
which can also be expressed as

Fc = mv2
r

or
Fc = mrω2

,

⎫

⎭
⎬
⎪
⎪

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
• Rotating and accelerated frames of reference are non-inertial.
• Fictitious forces, such as the Coriolis force, are needed to explain motion in such frames.

6.5 Newton’s Universal Law of Gravitation
• Newton’s universal law of gravitation: Every particle in the universe attracts every other particle with a force along a line

joining them. The force is directly proportional to the product of their masses and inversely proportional to the square of the
distance between them. In equation form, this is

F = GmM
r2 ,

where F is the magnitude of the gravitational force. G is the gravitational constant, given by
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G = 6.674×10–11 N ⋅ m2/kg2 .

• Newton’s law of gravitation applies universally.

6.6 Satellites and Kepler’s Laws: An Argument for Simplicity
• Kepler’s laws are stated for a small mass m orbiting a larger mass M in near-isolation. Kepler’s laws of planetary motion

are then as follows:
Kepler’s first law

The orbit of each planet about the Sun is an ellipse with the Sun at one focus.

Kepler’s second law

Each planet moves so that an imaginary line drawn from the Sun to the planet sweeps out equal areas in equal times.

Kepler’s third law

The ratio of the squares of the periods of any two planets about the Sun is equal to the ratio of the cubes of their average
distances from the Sun:

T1
 2

T2
 2 =

r1
 3

r2
 3,

where T is the period (time for one orbit) and r is the average radius of the orbit.

• The period and radius of a satellite’s orbit about a larger body M are related by

T 2 = 4π2

GMr3

or

r3

T 2 = G
4π2M.

Conceptual Questions

6.1 Rotation Angle and Angular Velocity

1. There is an analogy between rotational and linear physical quantities. What rotational quantities are analogous to distance and
velocity?

6.2 Centripetal Acceleration

2. Can centripetal acceleration change the speed of circular motion? Explain.

6.3 Centripetal Force

3. If you wish to reduce the stress (which is related to centripetal force) on high-speed tires, would you use large- or small-
diameter tires? Explain.

4. Define centripetal force. Can any type of force (for example, tension, gravitational force, friction, and so on) be a centripetal
force? Can any combination of forces be a centripetal force?

5. If centripetal force is directed toward the center, why do you feel that you are ‘thrown’ away from the center as a car goes
around a curve? Explain.
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6. Race car drivers routinely cut corners as shown in Figure 6.32. Explain how this allows the curve to be taken at the greatest
speed.

Figure 6.32 Two paths around a race track curve are shown. Race car drivers will take the inside path (called cutting the corner) whenever possible

because it allows them to take the curve at the highest speed.

7. A number of amusement parks have rides that make vertical loops like the one shown in Figure 6.33. For safety, the cars are
attached to the rails in such a way that they cannot fall off. If the car goes over the top at just the right speed, gravity alone will
supply the centripetal force. What other force acts and what is its direction if:

(a) The car goes over the top at faster than this speed?

(b)The car goes over the top at slower than this speed?

Figure 6.33 Amusement rides with a vertical loop are an example of a form of curved motion.

8. What is the direction of the force exerted by the car on the passenger as the car goes over the top of the amusement ride
pictured in Figure 6.33 under the following circumstances:

(a) The car goes over the top at such a speed that the gravitational force is the only force acting?

(b) The car goes over the top faster than this speed?

(c) The car goes over the top slower than this speed?

9. As a skater forms a circle, what force is responsible for making her turn? Use a free body diagram in your answer.
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10. Suppose a child is riding on a merry-go-round at a distance about halfway between its center and edge. She has a lunch box
resting on wax paper, so that there is very little friction between it and the merry-go-round. Which path shown in Figure 6.34 will
the lunch box take when she lets go? The lunch box leaves a trail in the dust on the merry-go-round. Is that trail straight, curved
to the left, or curved to the right? Explain your answer.

Figure 6.34 A child riding on a merry-go-round releases her lunch box at point P. This is a view from above the clockwise rotation. Assuming it slides

with negligible friction, will it follow path A, B, or C, as viewed from Earth’s frame of reference? What will be the shape of the path it leaves in the dust

on the merry-go-round?

11. Do you feel yourself thrown to either side when you negotiate a curve that is ideally banked for your car’s speed? What is the
direction of the force exerted on you by the car seat?

12. Suppose a mass is moving in a circular path on a frictionless table as shown in figure. In the Earth’s frame of reference, there
is no centrifugal force pulling the mass away from the centre of rotation, yet there is a very real force stretching the string
attaching the mass to the nail. Using concepts related to centripetal force and Newton’s third law, explain what force stretches
the string, identifying its physical origin.

Figure 6.35 A mass attached to a nail on a frictionless table moves in a circular path. The force stretching the string is real and not fictional. What is

the physical origin of the force on the string?

6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force

13. When a toilet is flushed or a sink is drained, the water (and other material) begins to rotate about the drain on the way down.
Assuming no initial rotation and a flow initially directly straight toward the drain, explain what causes the rotation and which
direction it has in the northern hemisphere. (Note that this is a small effect and in most toilets the rotation is caused by directional
water jets.) Would the direction of rotation reverse if water were forced up the drain?

14. Is there a real force that throws water from clothes during the spin cycle of a washing machine? Explain how the water is
removed.
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15. In one amusement park ride, riders enter a large vertical barrel and stand against the wall on its horizontal floor. The barrel is
spun up and the floor drops away. Riders feel as if they are pinned to the wall by a force something like the gravitational force.
This is a fictitious force sensed and used by the riders to explain events in the rotating frame of reference of the barrel. Explain in
an inertial frame of reference (Earth is nearly one) what pins the riders to the wall, and identify all of the real forces acting on
them.

16. Action at a distance, such as is the case for gravity, was once thought to be illogical and therefore untrue. What is the
ultimate determinant of the truth in physics, and why was this action ultimately accepted?

17. Two friends are having a conversation. Anna says a satellite in orbit is in freefall because the satellite keeps falling toward

Earth. Tom says a satellite in orbit is not in freefall because the acceleration due to gravity is not 9.80 m/s2 . Who do you agree

with and why?

18. A non-rotating frame of reference placed at the center of the Sun is very nearly an inertial one. Why is it not exactly an inertial
frame?

6.5 Newton’s Universal Law of Gravitation

19. Action at a distance, such as is the case for gravity, was once thought to be illogical and therefore untrue. What is the
ultimate determinant of the truth in physics, and why was this action ultimately accepted?

20. Two friends are having a conversation. Anna says a satellite in orbit is in freefall because the satellite keeps falling toward

Earth. Tom says a satellite in orbit is not in freefall because the acceleration due to gravity is not 9.80 m/s2 . Who do you agree

with and why?

21. Draw a free body diagram for a satellite in an elliptical orbit showing why its speed increases as it approaches its parent body
and decreases as it moves away.

22. Newton’s laws of motion and gravity were among the first to convincingly demonstrate the underlying simplicity and unity in
nature. Many other examples have since been discovered, and we now expect to find such underlying order in complex
situations. Is there proof that such order will always be found in new explorations?

6.6 Satellites and Kepler’s Laws: An Argument for Simplicity

23. In what frame(s) of reference are Kepler’s laws valid? Are Kepler’s laws purely descriptive, or do they contain causal
information?
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Problems & Exercises

6.1 Rotation Angle and Angular Velocity

1. Semi-trailer trucks have an odometer on one hub of a
trailer wheel. The hub is weighted so that it does not rotate,
but it contains gears to count the number of wheel
revolutions—it then calculates the distance traveled. If the
wheel has a 1.15 m diameter and goes through 200,000
rotations, how many kilometers should the odometer read?

2. Microwave ovens rotate at a rate of about 6 rev/min. What
is this in revolutions per second? What is the angular velocity
in radians per second?

3. An automobile with 0.260 m radius tires travels 80,000 km
before wearing them out. How many revolutions do the tires
make, neglecting any backing up and any change in radius
due to wear?

4. (a) What is the period of rotation of Earth in seconds? (b)
What is the angular velocity of Earth? (c) Given that Earth has

a radius of 6.4×106 m at its equator, what is the linear

velocity at Earth’s surface?

5. A baseball pitcher brings his arm forward during a pitch,
rotating the forearm about the elbow. If the velocity of the ball
in the pitcher’s hand is 35.0 m/s and the ball is 0.300 m from
the elbow joint, what is the angular velocity of the forearm?

6. In lacrosse, a ball is thrown from a net on the end of a stick
by rotating the stick and forearm about the elbow. If the
angular velocity of the ball about the elbow joint is 30.0 rad/s
and the ball is 1.30 m from the elbow joint, what is the velocity
of the ball?

7. A truck with 0.420-m-radius tires travels at 32.0 m/s. What
is the angular velocity of the rotating tires in radians per
second? What is this in rev/min?

8. Integrated Concepts When kicking a football, the kicker
rotates his leg about the hip joint.

(a) If the velocity of the tip of the kicker’s shoe is 35.0 m/s and
the hip joint is 1.05 m from the tip of the shoe, what is the
shoe tip’s angular velocity?

(b) The shoe is in contact with the initially stationary 0.500 kg
football for 20.0 ms. What average force is exerted on the
football to give it a velocity of 20.0 m/s?

(c) Find the maximum range of the football, neglecting air
resistance.

9. Construct Your Own Problem

Consider an amusement park ride in which participants are
rotated about a vertical axis in a cylinder with vertical walls.
Once the angular velocity reaches its full value, the floor
drops away and friction between the walls and the riders
prevents them from sliding down. Construct a problem in
which you calculate the necessary angular velocity that
assures the riders will not slide down the wall. Include a free
body diagram of a single rider. Among the variables to
consider are the radius of the cylinder and the coefficients of
friction between the riders’ clothing and the wall.

6.2 Centripetal Acceleration

10. A fairground ride spins its occupants inside a flying
saucer-shaped container. If the horizontal circular path the
riders follow has an 8.00 m radius, at how many revolutions
per minute will the riders be subjected to a centripetal
acceleration whose magnitude is 1.50 times that due to
gravity?

11. A runner taking part in the 200 m dash must run around
the end of a track that has a circular arc with a radius of
curvature of 30 m. If he completes the 200 m dash in 23.2 s
and runs at constant speed throughout the race, what is the
magnitude of his centripetal acceleration as he runs the
curved portion of the track?

12. Taking the age of Earth to be about 4×109 years and

assuming its orbital radius of 1.5 ×1011 m has not changed

and is circular, calculate the approximate total distance Earth
has traveled since its birth (in a frame of reference stationary
with respect to the Sun).

13. The propeller of a World War II fighter plane is 2.30 m in
diameter.

(a) What is its angular velocity in radians per second if it spins
at 1200 rev/min?

(b) What is the linear speed of its tip at this angular velocity if
the plane is stationary on the tarmac?

(c) What is the centripetal acceleration of the propeller tip
under these conditions? Calculate it in meters per second
squared and convert to multiples of g .

14. An ordinary workshop grindstone has a radius of 7.50 cm
and rotates at 6500 rev/min.

(a) Calculate the magnitude of the centripetal acceleration at
its edge in meters per second squared and convert it to
multiples of g .

(b) What is the linear speed of a point on its edge?

15. Helicopter blades withstand tremendous stresses. In
addition to supporting the weight of a helicopter, they are
spun at rapid rates and experience large centripetal
accelerations, especially at the tip.

(a) Calculate the magnitude of the centripetal acceleration at
the tip of a 4.00 m long helicopter blade that rotates at 300
rev/min.

(b) Compare the linear speed of the tip with the speed of
sound (taken to be 340 m/s).

16. Olympic ice skaters are able to spin at about 5 rev/s.

(a) What is their angular velocity in radians per second?

(b) What is the centripetal acceleration of the skater’s nose if
it is 0.120 m from the axis of rotation?

(c) An exceptional skater named Dick Button was able to spin
much faster in the 1950s than anyone since—at about 9 rev/
s. What was the centripetal acceleration of the tip of his nose,
assuming it is at 0.120 m radius?

(d) Comment on the magnitudes of the accelerations found. It
is reputed that Button ruptured small blood vessels during his
spins.

17. What percentage of the acceleration at Earth’s surface is
the acceleration due to gravity at the position of a satellite
located 300 km above Earth?
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18. Verify that the linear speed of an ultracentrifuge is about
0.50 km/s, and Earth in its orbit is about 30 km/s by
calculating:

(a) The linear speed of a point on an ultracentrifuge 0.100 m
from its center, rotating at 50,000 rev/min.

(b) The linear speed of Earth in its orbit about the Sun (use
data from the text on the radius of Earth’s orbit and
approximate it as being circular).

19. A rotating space station is said to create “artificial
gravity”—a loosely-defined term used for an acceleration that
would be crudely similar to gravity. The outer wall of the
rotating space station would become a floor for the
astronauts, and centripetal acceleration supplied by the floor
would allow astronauts to exercise and maintain muscle and
bone strength more naturally than in non-rotating space
environments. If the space station is 200 m in diameter, what
angular velocity would produce an “artificial gravity” of

9.80 m/s2 at the rim?

20. At takeoff, a commercial jet has a 60.0 m/s speed. Its tires
have a diameter of 0.850 m.

(a) At how many rev/min are the tires rotating?

(b) What is the centripetal acceleration at the edge of the tire?

(c) With what force must a determined 1.00×10−15 kg
bacterium cling to the rim?

(d) Take the ratio of this force to the bacterium’s weight.

21. Integrated Concepts

Riders in an amusement park ride shaped like a Viking ship
hung from a large pivot are rotated back and forth like a rigid
pendulum. Sometime near the middle of the ride, the ship is
momentarily motionless at the top of its circular arc. The ship
then swings down under the influence of gravity.

(a) Assuming negligible friction, find the speed of the riders at
the bottom of its arc, given the system's center of mass
travels in an arc having a radius of 14.0 m and the riders are
near the center of mass.

(b) What is the centripetal acceleration at the bottom of the
arc?

(c) Draw a free body diagram of the forces acting on a rider at
the bottom of the arc.

(d) Find the force exerted by the ride on a 60.0 kg rider and
compare it to her weight.

(e) Discuss whether the answer seems reasonable.

22. Unreasonable Results

A mother pushes her child on a swing so that his speed is
9.00 m/s at the lowest point of his path. The swing is
suspended 2.00 m above the child’s center of mass.

(a) What is the magnitude of the centripetal acceleration of
the child at the low point?

(b) What is the magnitude of the force the child exerts on the
seat if his mass is 18.0 kg?

(c) What is unreasonable about these results?

(d) Which premises are unreasonable or inconsistent?

6.3 Centripetal Force

23. (a) A 22.0 kg child is riding a playground merry-go-round
that is rotating at 40.0 rev/min. What centripetal force must
she exert to stay on if she is 1.25 m from its center?

(b) What centripetal force does she need to stay on an
amusement park merry-go-round that rotates at 3.00 rev/min
if she is 8.00 m from its center?

(c) Compare each force with her weight.

24. Calculate the centripetal force on the end of a 100 m
(radius) wind turbine blade that is rotating at 0.5 rev/s.
Assume the mass is 4 kg.

25. What is the ideal banking angle for a gentle turn of 1.20
km radius on a highway with a 105 km/h speed limit (about 65
mi/h), assuming everyone travels at the limit?

26. What is the ideal speed to take a 100 m radius curve
banked at a 20.0° angle?

27. (a) What is the radius of a bobsled turn banked at 75.0°
and taken at 30.0 m/s, assuming it is ideally banked?

(b) Calculate the centripetal acceleration.

(c) Does this acceleration seem large to you?
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28. Part of riding a bicycle involves leaning at the correct
angle when making a turn, as seen in Figure 6.36. To be
stable, the force exerted by the ground must be on a line
going through the center of gravity. The force on the bicycle
wheel can be resolved into two perpendicular
components—friction parallel to the road (this must supply the
centripetal force), and the vertical normal force (which must
equal the system’s weight).

(a) Show that θ (as defined in the figure) is related to the

speed v and radius of curvature r of the turn in the same

way as for an ideally banked roadway—that is,

θ = tan–1 v2 / rg

(b) Calculate θ for a 12.0 m/s turn of radius 30.0 m (as in a

race).

Figure 6.36 A bicyclist negotiating a turn on level ground must lean at

the correct angle—the ability to do this becomes instinctive. The force of

the ground on the wheel needs to be on a line through the center of

gravity. The net external force on the system is the centripetal force. The

vertical component of the force on the wheel cancels the weight of the

system while its horizontal component must supply the centripetal force.

This process produces a relationship among the angle θ , the speed v
, and the radius of curvature r of the turn similar to that for the ideal

banking of roadways.

29. A large centrifuge, like the one shown in Figure 6.37(a),
is used to expose aspiring astronauts to accelerations similar
to those experienced in rocket launches and atmospheric
reentries.

(a) At what angular velocity is the centripetal acceleration
10 g if the rider is 15.0 m from the center of rotation?

(b) The rider’s cage hangs on a pivot at the end of the arm,
allowing it to swing outward during rotation as shown in
Figure 6.37(b). At what angle θ below the horizontal will the

cage hang when the centripetal acceleration is 10 g ? (Hint:

The arm supplies centripetal force and supports the weight of
the cage. Draw a free body diagram of the forces to see what
the angle θ should be.)

Figure 6.37 (a) NASA centrifuge used to subject trainees to

accelerations similar to those experienced in rocket launches and

reentries. (credit: NASA) (b) Rider in cage showing how the cage pivots

outward during rotation. This allows the total force exerted on the rider

by the cage to be along its axis at all times.

30. Integrated Concepts

If a car takes a banked curve at less than the ideal speed,
friction is needed to keep it from sliding toward the inside of
the curve (a real problem on icy mountain roads). (a)
Calculate the ideal speed to take a 100 m radius curve
banked at 15.0º. (b) What is the minimum coefficient of
friction needed for a frightened driver to take the same curve
at 20.0 km/h?
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31. Modern roller coasters have vertical loops like the one
shown in Figure 6.38. The radius of curvature is smaller at
the top than on the sides so that the downward centripetal
acceleration at the top will be greater than the acceleration
due to gravity, keeping the passengers pressed firmly into
their seats. What is the speed of the roller coaster at the top
of the loop if the radius of curvature there is 15.0 m and the
downward acceleration of the car is 1.50 g?

Figure 6.38 Teardrop-shaped loops are used in the latest roller coasters

so that the radius of curvature gradually decreases to a minimum at the

top. This means that the centripetal acceleration builds from zero to a

maximum at the top and gradually decreases again. A circular loop

would cause a jolting change in acceleration at entry, a disadvantage

discovered long ago in railroad curve design. With a small radius of

curvature at the top, the centripetal acceleration can more easily be kept

greater than g so that the passengers do not lose contact with their

seats nor do they need seat belts to keep them in place.

32. Unreasonable Results

(a) Calculate the minimum coefficient of friction needed for a
car to negotiate an unbanked 50.0 m radius curve at 30.0 m/
s.

(b) What is unreasonable about the result?

(c) Which premises are unreasonable or inconsistent?

6.5 Newton’s Universal Law of Gravitation

33. (a) Calculate Earth’s mass given the acceleration due to

gravity at the North Pole is 9.830 m/s2 and the radius of the

Earth is 6371 km from center to pole.

(b) Compare this with the accepted value of

5.979×1024 kg .

34. (a) Calculate the magnitude of the acceleration due to
gravity on the surface of Earth due to the Moon.

(b) Calculate the magnitude of the acceleration due to gravity
at Earth due to the Sun.

(c) Take the ratio of the Moon’s acceleration to the Sun’s and
comment on why the tides are predominantly due to the Moon
in spite of this number.

35. (a) What is the acceleration due to gravity on the surface
of the Moon?

(b) On the surface of Mars? The mass of Mars is

6.418×1023 kg and its radius is 3.38×106 m .

36. (a) Calculate the acceleration due to gravity on the
surface of the Sun.

(b) By what factor would your weight increase if you could
stand on the Sun? (Never mind that you cannot.)

37. The Moon and Earth rotate about their common center of
mass, which is located about 4700 km from the center of
Earth. (This is 1690 km below the surface.)

(a) Calculate the magnitude of the acceleration due to the
Moon’s gravity at that point.

(b) Calculate the magnitude of the centripetal acceleration of
the center of Earth as it rotates about that point once each
lunar month (about 27.3 d) and compare it with the
acceleration found in part (a). Comment on whether or not
they are equal and why they should or should not be.

38. Solve part (b) of Example 6.6 using ac = v2 / r .

39. Astrology, that unlikely and vague pseudoscience, makes
much of the position of the planets at the moment of one’s
birth. The only known force a planet exerts on Earth is
gravitational.

(a) Calculate the magnitude of the gravitational force exerted
on a 4.20 kg baby by a 100 kg father 0.200 m away at birth
(he is assisting, so he is close to the child).

(b) Calculate the magnitude of the force on the baby due to
Jupiter if it is at its closest distance to Earth, some

6.29×1011 m away. How does the force of Jupiter on the

baby compare to the force of the father on the baby? Other
objects in the room and the hospital building also exert similar
gravitational forces. (Of course, there could be an unknown
force acting, but scientists first need to be convinced that
there is even an effect, much less that an unknown force
causes it.)

40. The existence of the dwarf planet Pluto was proposed
based on irregularities in Neptune’s orbit. Pluto was
subsequently discovered near its predicted position. But it
now appears that the discovery was fortuitous, because Pluto
is small and the irregularities in Neptune’s orbit were not well
known. To illustrate that Pluto has a minor effect on the orbit
of Neptune compared with the closest planet to Neptune:

(a) Calculate the acceleration due to gravity at Neptune due

to Pluto when they are 4.50×1012 m apart, as they are at

present. The mass of Pluto is 1.4×1022 kg .

(b) Calculate the acceleration due to gravity at Neptune due

to Uranus, presently about 2.50×1012 m apart, and

compare it with that due to Pluto. The mass of Uranus is

8.62×1025 kg .
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41. (a) The Sun orbits the Milky Way galaxy once each

2.60 x 108 y , with a roughly circular orbit averaging

3.00 x 104 light years in radius. (A light year is the distance

traveled by light in 1 y.) Calculate the centripetal acceleration
of the Sun in its galactic orbit. Does your result support the
contention that a nearly inertial frame of reference can be
located at the Sun?

(b) Calculate the average speed of the Sun in its galactic
orbit. Does the answer surprise you?

42. Unreasonable Result

A mountain 10.0 km from a person exerts a gravitational force
on him equal to 2.00% of his weight.

(a) Calculate the mass of the mountain.

(b) Compare the mountain’s mass with that of Earth.

(c) What is unreasonable about these results?

(d) Which premises are unreasonable or inconsistent? (Note
that accurate gravitational measurements can easily detect
the effect of nearby mountains and variations in local
geology.)

6.6 Satellites and Kepler’s Laws: An Argument
for Simplicity

43. A geosynchronous Earth satellite is one that has an
orbital period of precisely 1 day. Such orbits are useful for
communication and weather observation because the satellite
remains above the same point on Earth (provided it orbits in
the equatorial plane in the same direction as Earth’s rotation).
Calculate the radius of such an orbit based on the data for the
moon in Table 6.2.

44. Calculate the mass of the Sun based on data for Earth’s
orbit and compare the value obtained with the Sun’s actual
mass.

45. Find the mass of Jupiter based on data for the orbit of one
of its moons, and compare your result with its actual mass.

46. Find the ratio of the mass of Jupiter to that of Earth based
on data in Table 6.2.

47. Astronomical observations of our Milky Way galaxy

indicate that it has a mass of about 8.0×1011 solar masses.

A star orbiting on the galaxy’s periphery is about 6.0×104

light years from its center. (a) What should the orbital period

of that star be? (b) If its period is 6.0×107 years instead,

what is the mass of the galaxy? Such calculations are used to
imply the existence of “dark matter” in the universe and have
indicated, for example, the existence of very massive black
holes at the centers of some galaxies.

48. Integrated Concepts

Space debris left from old satellites and their launchers is
becoming a hazard to other satellites. (a) Calculate the speed
of a satellite in an orbit 900 km above Earth’s surface. (b)
Suppose a loose rivet is in an orbit of the same radius that
intersects the satellite’s orbit at an angle of 90º relative to

Earth. What is the velocity of the rivet relative to the satellite
just before striking it? (c) Given the rivet is 3.00 mm in size,
how long will its collision with the satellite last? (d) If its mass
is 0.500 g, what is the average force it exerts on the satellite?
(e) How much energy in joules is generated by the collision?
(The satellite’s velocity does not change appreciably, because
its mass is much greater than the rivet’s.)

49. Unreasonable Results

(a) Based on Kepler’s laws and information on the orbital
characteristics of the Moon, calculate the orbital radius for an
Earth satellite having a period of 1.00 h. (b) What is
unreasonable about this result? (c) What is unreasonable or
inconsistent about the premise of a 1.00 h orbit?

50. Construct Your Own Problem

On February 14, 2000, the NEAR spacecraft was successfully
inserted into orbit around Eros, becoming the first artificial
satellite of an asteroid. Construct a problem in which you
determine the orbital speed for a satellite near Eros. You will
need to find the mass of the asteroid and consider such
things as a safe distance for the orbit. Although Eros is not
spherical, calculate the acceleration due to gravity on its
surface at a point an average distance from its center of
mass. Your instructor may also wish to have you calculate the
escape velocity from this point on Eros.
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7 WORK, ENERGY, AND ENERGY
RESOURCES

Figure 7.1 How many forms of energy can you identify in this photograph of a wind farm in Iowa? (credit: Jürgen from Sandesneben, Germany,
Wikimedia Commons)

Chapter Outline
7.1. Work: The Scientific Definition

• Explain how an object must be displaced for a force on it to do work.
• Explain how relative directions of force and displacement determine whether the work done is positive, negative, or

zero.
7.2. Kinetic Energy and the Work-Energy Theorem

• Explain work as a transfer of energy and net work as the work done by the net force.
• Explain and apply the work-energy theorem.

7.3. Gravitational Potential Energy
• Explain gravitational potential energy in terms of work done against gravity.
• Show that the gravitational potential energy of an object of mass m at height h on Earth is given by PEg = mgh .

• Show how knowledge of the potential energy as a function of position can be used to simplify calculations and
explain physical phenomena.

7.4. Conservative Forces and Potential Energy
• Define conservative force, potential energy, and mechanical energy.
• Explain the potential energy of a spring in terms of its compression when Hooke’s law applies.
• Use the work-energy theorem to show how having only conservative forces implies conservation of mechanical

energy.
7.5. Nonconservative Forces

• Define nonconservative forces and explain how they affect mechanical energy.
• Show how the principle of conservation of energy can be applied by treating the conservative forces in terms of their

potential energies and any nonconservative forces in terms of the work they do.
7.6. Conservation of Energy

• Explain the law of the conservation of energy.
• Describe some of the many forms of energy.
• Define efficiency of an energy conversion process as the fraction left as useful energy or work, rather than being

transformed, for example, into thermal energy.
7.7. Power

• Calculate power by calculating changes in energy over time.
• Examine power consumption and calculations of the cost of energy consumed.

7.8. Work, Energy, and Power in Humans
• Explain the human body’s consumption of energy when at rest vs. when engaged in activities that do useful work.
• Calculate the conversion of chemical energy in food into useful work.

7.9. World Energy Use
• Describe the distinction between renewable and nonrenewable energy sources.
• Explain why the inevitable conversion of energy to less useful forms makes it necessary to conserve energy

resources.
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Introduction to Work, Energy, and Energy Resources

Energy plays an essential role both in everyday events and in scientific phenomena. You can no doubt name many forms of
energy, from that provided by our foods, to the energy we use to run our cars, to the sunlight that warms us on the beach. You
can also cite examples of what people call energy that may not be scientific, such as someone having an energetic personality.
Not only does energy have many interesting forms, it is involved in almost all phenomena, and is one of the most important
concepts of physics. What makes it even more important is that the total amount of energy in the universe is constant. Energy
can change forms, but it cannot appear from nothing or disappear without a trace. Energy is thus one of a handful of physical
quantities that we say is conserved.

Conservation of energy (as physicists like to call the principle that energy can neither be created nor destroyed) is based on
experiment. Even as scientists discovered new forms of energy, conservation of energy has always been found to apply. Perhaps
the most dramatic example of this was supplied by Einstein when he suggested that mass is equivalent to energy (his famous

equation E = mc 2 ).

From a societal viewpoint, energy is one of the major building blocks of modern civilization. Energy resources are key limiting
factors to economic growth. The world use of energy resources, especially oil, continues to grow, with ominous consequences
economically, socially, politically, and environmentally. We will briefly examine the world’s energy use patterns at the end of this
chapter.

There is no simple, yet accurate, scientific definition for energy. Energy is characterized by its many forms and the fact that it is
conserved. We can loosely define energy as the ability to do work, admitting that in some circumstances not all energy is
available to do work. Because of the association of energy with work, we begin the chapter with a discussion of work. Work is
intimately related to energy and how energy moves from one system to another or changes form.

7.1 Work: The Scientific Definition

What It Means to Do Work

The scientific definition of work differs in some ways from its everyday meaning. Certain things we think of as hard work, such as
writing an exam or carrying a heavy load on level ground, are not work as defined by a scientist. The scientific definition of work
reveals its relationship to energy—whenever work is done, energy is transferred.

For work, in the scientific sense, to be done, a force must be exerted and there must be displacement in the direction of the
force.

Formally, the work done on a system by a constant force is defined to be the product of the component of the force in the
direction of motion times the distance through which the force acts. For one-way motion in one dimension, this is expressed in
equation form as

(7.1)W = ∣ F ∣ (cos θ) ∣ d ∣ ,

where W is work, d is the displacement of the system, and θ is the angle between the force vector F and the displacement

vector d , as in Figure 7.2. We can also write this as

(7.2)W = Fd cos θ.
To find the work done on a system that undergoes motion that is not one-way or that is in two or three dimensions, we divide the
motion into one-way one-dimensional segments and add up the work done over each segment.

What is Work?

The work done on a system by a constant force is the product of the component of the force in the direction of motion times
the distance through which the force acts. For one-way motion in one dimension, this is expressed in equation form as

(7.3)W = Fd cos θ,

where W is work, F is the magnitude of the force on the system, d is the magnitude of the displacement of the system,

and θ is the angle between the force vector F and the displacement vector d .
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Figure 7.2 Examples of work. (a) The work done by the force F on this lawn mower is Fd cos θ . Note that F cos θ is the component of the

force in the direction of motion. (b) A person holding a briefcase does no work on it, because there is no displacement. No energy is transferred to or
from the briefcase. (c) The person moving the briefcase horizontally at a constant speed does no work on it, and transfers no energy to it. (d) Work is

done on the briefcase by carrying it up stairs at constant speed, because there is necessarily a component of force F in the direction of the motion.

Energy is transferred to the briefcase and could in turn be used to do work. (e) When the briefcase is lowered, energy is transferred out of the briefcase

and into an electric generator. Here the work done on the briefcase by the generator is negative, removing energy from the briefcase, because F and

d are in opposite directions.

To examine what the definition of work means, let us consider the other situations shown in Figure 7.2. The person holding the
briefcase in Figure 7.2(b) does no work, for example. Here d = 0 , so W = 0 . Why is it you get tired just holding a load? The

answer is that your muscles are doing work against one another, but they are doing no work on the system of interest (the
“briefcase-Earth system”—see Gravitational Potential Energy for more details). There must be displacement for work to be
done, and there must be a component of the force in the direction of the motion. For example, the person carrying the briefcase
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on level ground in Figure 7.2(c) does no work on it, because the force is perpendicular to the motion. That is, cos 90º = 0 , and

so W = 0 .

In contrast, when a force exerted on the system has a component in the direction of motion, such as in Figure 7.2(d), work is
done—energy is transferred to the briefcase. Finally, in Figure 7.2(e), energy is transferred from the briefcase to a generator.
There are two good ways to interpret this energy transfer. One interpretation is that the briefcase’s weight does work on the
generator, giving it energy. The other interpretation is that the generator does negative work on the briefcase, thus removing
energy from it. The drawing shows the latter, with the force from the generator upward on the briefcase, and the displacement
downward. This makes θ = 180º , and cos 180º = –1 ; therefore, W is negative.

Calculating Work

Work and energy have the same units. From the definition of work, we see that those units are force times distance. Thus, in SI
units, work and energy are measured in newton-meters. A newton-meter is given the special name joule (J), and

1 J = 1 N ⋅ m = 1 kg ⋅ m2/s2 . One joule is not a large amount of energy; it would lift a small 100-gram apple a distance of

about 1 meter.

Example 7.1 Calculating the Work You Do to Push a Lawn Mower Across a Large Lawn

How much work is done on the lawn mower by the person in Figure 7.2(a) if he exerts a constant force of 75.0 N at an

angle 35º below the horizontal and pushes the mower 25.0 m on level ground? Convert the amount of work from joules to

kilocalories and compare it with this person’s average daily intake of 10,000 kJ (about 2400 kcal ) of food energy. One

calorie (1 cal) of heat is the amount required to warm 1 g of water by 1ºC , and is equivalent to 4.186 J , while one food

calorie (1 kcal) is equivalent to 4186 J .

Strategy

We can solve this problem by substituting the given values into the definition of work done on a system, stated in the
equation W = Fd cos θ . The force, angle, and displacement are given, so that only the work W is unknown.

Solution

The equation for the work is

(7.4)W = Fd cos θ.
Substituting the known values gives

(7.5)W = (75.0 N)(25.0 m) cos (35.0º)
= 1536 J = 1.54×103 J.

Converting the work in joules to kilocalories yields W = (1536 J)(1 kcal / 4186 J) = 0.367 kcal . The ratio of the work

done to the daily consumption is

(7.6)W
2400 kcal = 1.53×10−4.

Discussion

This ratio is a tiny fraction of what the person consumes, but it is typical. Very little of the energy released in the consumption
of food is used to do work. Even when we “work” all day long, less than 10% of our food energy intake is used to do work
and more than 90% is converted to thermal energy or stored as chemical energy in fat.

7.2 Kinetic Energy and the Work-Energy Theorem

Work Transfers Energy

What happens to the work done on a system? Energy is transferred into the system, but in what form? Does it remain in the
system or move on? The answers depend on the situation. For example, if the lawn mower in Figure 7.2(a) is pushed just hard
enough to keep it going at a constant speed, then energy put into the mower by the person is removed continuously by friction,
and eventually leaves the system in the form of heat transfer. In contrast, work done on the briefcase by the person carrying it up
stairs in Figure 7.2(d) is stored in the briefcase-Earth system and can be recovered at any time, as shown in Figure 7.2(e). In
fact, the building of the pyramids in ancient Egypt is an example of storing energy in a system by doing work on the system.
Some of the energy imparted to the stone blocks in lifting them during construction of the pyramids remains in the stone-Earth
system and has the potential to do work.

In this section we begin the study of various types of work and forms of energy. We will find that some types of work leave the
energy of a system constant, for example, whereas others change the system in some way, such as making it move. We will also
develop definitions of important forms of energy, such as the energy of motion.
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Net Work and the Work-Energy Theorem

We know from the study of Newton’s laws in Dynamics: Force and Newton's Laws of Motion that net force causes
acceleration. We will see in this section that work done by the net force gives a system energy of motion, and in the process we
will also find an expression for the energy of motion.

Let us start by considering the total, or net, work done on a system. Net work is defined to be the sum of work done by all
external forces—that is, net work is the work done by the net external force Fnet . In equation form, this is

Wnet = Fnetd cos θ where θ is the angle between the force vector and the displacement vector.

Figure 7.3(a) shows a graph of force versus displacement for the component of the force in the direction of the
displacement—that is, an F cos θ vs. d graph. In this case, F cos θ is constant. You can see that the area under the graph is

Fd cos θ , or the work done. Figure 7.3(b) shows a more general process where the force varies. The area under the curve is

divided into strips, each having an average force (F cos θ)i(ave) . The work done is (F cos θ)i(ave)di for each strip, and the

total work done is the sum of the Wi . Thus the total work done is the total area under the curve, a useful property to which we

shall refer later.

Figure 7.3 (a) A graph of F cos θ vs. d , when F cos θ is constant. The area under the curve represents the work done by the force. (b) A

graph of F cos θ vs. d in which the force varies. The work done for each interval is the area of each strip; thus, the total area under the curve

equals the total work done.

Net work will be simpler to examine if we consider a one-dimensional situation where a force is used to accelerate an object in a
direction parallel to its initial velocity. Such a situation occurs for the package on the roller belt conveyor system shown in Figure
7.4.

Figure 7.4 A package on a roller belt is pushed horizontally through a distance d .

The force of gravity and the normal force acting on the package are perpendicular to the displacement and do no work.
Moreover, they are also equal in magnitude and opposite in direction so they cancel in calculating the net force. The net force
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arises solely from the horizontal applied force Fapp and the horizontal friction force f . Thus, as expected, the net force is

parallel to the displacement, so that θ = 0º and cos θ = 1 , and the net work is given by

(7.7)Wnet = Fnetd.

The effect of the net force Fnet is to accelerate the package from v0 to v . The kinetic energy of the package increases,

indicating that the net work done on the system is positive. (See Example 7.2.) By using Newton’s second law, and doing some
algebra, we can reach an interesting conclusion. Substituting Fnet = ma from Newton’s second law gives

(7.8)Wnet = mad.

To get a relationship between net work and the speed given to a system by the net force acting on it, we take d = x − x0 and

use the equation studied in Motion Equations for Constant Acceleration in One Dimension for the change in speed over a

distance d if the acceleration has the constant value a ; namely, v2 = v0
2 + 2ad (note that a appears in the expression for

the net work). Solving for acceleration gives a = v2 − v0
2

2d . When a is substituted into the preceding expression for Wnet , we

obtain

(7.9)
Wnet = m

⎛
⎝
⎜v

2 − v0
2

2d
⎞
⎠
⎟d.

The d cancels, and we rearrange this to obtain

(7.10)W = 1
2mv2 − 1

2mv0
 2 .

This expression is called the work-energy theorem, and it actually applies in general (even for forces that vary in direction and
magnitude), although we have derived it for the special case of a constant force parallel to the displacement. The theorem

implies that the net work on a system equals the change in the quantity 1
2mv2 . This quantity is our first example of a form of

energy.

The Work-Energy Theorem

The net work on a system equals the change in the quantity 1
2mv2 .

(7.11)W net = 1
2mv2 − 1

2mv0
 2

The quantity 1
2mv2 in the work-energy theorem is defined to be the translational kinetic energy (KE) of a mass m moving at a

speed v . (Translational kinetic energy is distinct from rotational kinetic energy, which is considered later.) In equation form, the

translational kinetic energy,

(7.12)KE = 1
2mv2,

is the energy associated with translational motion. Kinetic energy is a form of energy associated with the motion of a particle,
single body, or system of objects moving together.

We are aware that it takes energy to get an object, like a car or the package in Figure 7.4, up to speed, but it may be a bit
surprising that kinetic energy is proportional to speed squared. This proportionality means, for example, that a car traveling at
100 km/h has four times the kinetic energy it has at 50 km/h, helping to explain why high-speed collisions are so devastating. We
will now consider a series of examples to illustrate various aspects of work and energy.

Example 7.2 Calculating the Kinetic Energy of a Package

Suppose a 30.0-kg package on the roller belt conveyor system in Figure 7.4 is moving at 0.500 m/s. What is its kinetic
energy?

Strategy

Because the mass m and speed v are given, the kinetic energy can be calculated from its definition as given in the

equation KE = 1
2mv2 .
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Solution

The kinetic energy is given by

(7.13)KE = 1
2mv2.

Entering known values gives

(7.14)KE = 0.5(30.0 kg)(0.500 m/s)2,

which yields

(7.15)KE = 3.75 kg ⋅ m2/s2 = 3.75 J.

Discussion

Note that the unit of kinetic energy is the joule, the same as the unit of work, as mentioned when work was first defined. It is
also interesting that, although this is a fairly massive package, its kinetic energy is not large at this relatively low speed. This
fact is consistent with the observation that people can move packages like this without exhausting themselves.

Example 7.3 Determining the Work to Accelerate a Package

Suppose that you push on the 30.0-kg package in Figure 7.4 with a constant force of 120 N through a distance of 0.800 m,
and that the opposing friction force averages 5.00 N.

(a) Calculate the net work done on the package. (b) Solve the same problem as in part (a), this time by finding the work
done by each force that contributes to the net force.

Strategy and Concept for (a)

This is a motion in one dimension problem, because the downward force (from the weight of the package) and the normal
force have equal magnitude and opposite direction, so that they cancel in calculating the net force, while the applied force,
friction, and the displacement are all horizontal. (See Figure 7.4.) As expected, the net work is the net force times distance.

Solution for (a)

The net force is the push force minus friction, or Fnet = 120 N – 5.00 N = 115 N . Thus the net work is

(7.16)Wnet = Fnetd = (115 N)(0.800 m)
= 92.0 N ⋅ m = 92.0 J.

Discussion for (a)

This value is the net work done on the package. The person actually does more work than this, because friction opposes the
motion. Friction does negative work and removes some of the energy the person expends and converts it to thermal energy.
The net work equals the sum of the work done by each individual force.

Strategy and Concept for (b)

The forces acting on the package are gravity, the normal force, the force of friction, and the applied force. The normal force
and force of gravity are each perpendicular to the displacement, and therefore do no work.

Solution for (b)

The applied force does work.

(7.17)Wapp = Fappd cos(0º) = Fappd
= (120 N)(0.800 m)
= 96.0 J

The friction force and displacement are in opposite directions, so that θ = 180º , and the work done by friction is

(7.18)Wfr = Ffrd cos(180º) = −Ffrd
= −(5.00 N)(0.800 m)
= −4.00 J.

So the amounts of work done by gravity, by the normal force, by the applied force, and by friction are, respectively,
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(7.19)Wgr = 0,
WN = 0,
Wapp = 96.0 J,
Wfr = − 4.00 J.

The total work done as the sum of the work done by each force is then seen to be

(7.20)Wtotal = Wgr + WN + Wapp + Wfr = 92.0 J.

Discussion for (b)

The calculated total work Wtotal as the sum of the work by each force agrees, as expected, with the work Wnet done by

the net force. The work done by a collection of forces acting on an object can be calculated by either approach.

Example 7.4 Determining Speed from Work and Energy

Find the speed of the package in Figure 7.4 at the end of the push, using work and energy concepts.

Strategy

Here the work-energy theorem can be used, because we have just calculated the net work, Wnet , and the initial kinetic

energy, 1
2mv0

2 . These calculations allow us to find the final kinetic energy, 1
2mv2 , and thus the final speed v .

Solution

The work-energy theorem in equation form is

(7.21)Wnet = 1
2mv2 − 1

2mv0
2.

Solving for 1
2mv2 gives

(7.22)1
2mv2 = Wnet + 1

2mv0
2.

Thus,

(7.23)1
2mv2 = 92.0 J+3.75 J = 95.75 J.

Solving for the final speed as requested and entering known values gives

(7.24)
v = 2(95.75 J)

m = 191.5 kg ⋅ m2/s2

30.0 kg
= 2.53 m/s.

Discussion

Using work and energy, we not only arrive at an answer, we see that the final kinetic energy is the sum of the initial kinetic
energy and the net work done on the package. This means that the work indeed adds to the energy of the package.

Example 7.5 Work and Energy Can Reveal Distance, Too

How far does the package in Figure 7.4 coast after the push, assuming friction remains constant? Use work and energy
considerations.

Strategy

We know that once the person stops pushing, friction will bring the package to rest. In terms of energy, friction does negative
work until it has removed all of the package’s kinetic energy. The work done by friction is the force of friction times the
distance traveled times the cosine of the angle between the friction force and displacement; hence, this gives us a way of
finding the distance traveled after the person stops pushing.

Solution

The normal force and force of gravity cancel in calculating the net force. The horizontal friction force is then the net force,
and it acts opposite to the displacement, so θ = 180º . To reduce the kinetic energy of the package to zero, the work Wfr
by friction must be minus the kinetic energy that the package started with plus what the package accumulated due to the
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pushing. Thus Wfr = −95.75 J . Furthermore, Wfr = f d′ cos θ = – f d′ , where d′ is the distance it takes to stop. Thus,

(7.25)
d′ = −Wfr

f = −−95.75 J
5.00 N ,

and so

(7.26)d′ = 19.2 m.
Discussion

This is a reasonable distance for a package to coast on a relatively friction-free conveyor system. Note that the work done
by friction is negative (the force is in the opposite direction of motion), so it removes the kinetic energy.

Some of the examples in this section can be solved without considering energy, but at the expense of missing out on gaining
insights about what work and energy are doing in this situation. On the whole, solutions involving energy are generally shorter
and easier than those using kinematics and dynamics alone.

7.3 Gravitational Potential Energy

Work Done Against Gravity

Climbing stairs and lifting objects is work in both the scientific and everyday sense—it is work done against the gravitational
force. When there is work, there is a transformation of energy. The work done against the gravitational force goes into an
important form of stored energy that we will explore in this section.

Let us calculate the work done in lifting an object of mass m through a height h , such as in Figure 7.5. If the object is lifted

straight up at constant speed, then the force needed to lift it is equal to its weight mg . The work done on the mass is then

W = Fd = mgh . We define this to be the gravitational potential energy (PEg) put into (or gained by) the object-Earth

system. This energy is associated with the state of separation between two objects that attract each other by the gravitational
force. For convenience, we refer to this as the PEg gained by the object, recognizing that this is energy stored in the

gravitational field of Earth. Why do we use the word “system”? Potential energy is a property of a system rather than of a single
object—due to its physical position. An object’s gravitational potential is due to its position relative to the surroundings within the
Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it
increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position,
we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth’s surface, but
this point is arbitrary; what is important is the difference in gravitational potential energy, because this difference is what relates to
the work done. The difference in gravitational potential energy of an object (in the Earth-object system) between two rungs of a
ladder will be the same for the first two rungs as for the last two rungs.

Converting Between Potential Energy and Kinetic Energy

Gravitational potential energy may be converted to other forms of energy, such as kinetic energy. If we release the mass,
gravitational force will do an amount of work equal to mgh on it, thereby increasing its kinetic energy by that same amount (by

the work-energy theorem). We will find it more useful to consider just the conversion of PEg to KE without explicitly

considering the intermediate step of work. (See Example 7.7.) This shortcut makes it is easier to solve problems using energy (if
possible) rather than explicitly using forces.

Chapter 7 | Work, Energy, and Energy Resources 249



Figure 7.5 (a) The work done to lift the weight is stored in the mass-Earth system as gravitational potential energy. (b) As the weight moves downward,
this gravitational potential energy is transferred to the cuckoo clock.

More precisely, we define the change in gravitational potential energy ΔPEg to be

(7.27)ΔPEg = mgh,

where, for simplicity, we denote the change in height by h rather than the usual Δh . Note that h is positive when the final

height is greater than the initial height, and vice versa. For example, if a 0.500-kg mass hung from a cuckoo clock is raised 1.00
m, then its change in gravitational potential energy is

(7.28)mgh = ⎛
⎝0.500 kg⎞⎠⎛⎝9.80 m/s2⎞⎠(1.00 m)

= 4.90 kg ⋅ m2/s2 = 4.90 J.

Note that the units of gravitational potential energy turn out to be joules, the same as for work and other forms of energy. As the
clock runs, the mass is lowered. We can think of the mass as gradually giving up its 4.90 J of gravitational potential energy,
without directly considering the force of gravity that does the work.

Using Potential Energy to Simplify Calculations

The equation ΔPEg = mgh applies for any path that has a change in height of h , not just when the mass is lifted straight up.

(See Figure 7.6.) It is much easier to calculate mgh (a simple multiplication) than it is to calculate the work done along a

complicated path. The idea of gravitational potential energy has the double advantage that it is very broadly applicable and it
makes calculations easier. From now on, we will consider that any change in vertical position h of a mass m is accompanied

by a change in gravitational potential energy mgh , and we will avoid the equivalent but more difficult task of calculating work

done by or against the gravitational force.
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Figure 7.6 The change in gravitational potential energy (ΔPEg) between points A and B is independent of the path. ΔPEg = mgh for any path

between the two points. Gravity is one of a small class of forces where the work done by or against the force depends only on the starting and ending
points, not on the path between them.

Example 7.6 The Force to Stop Falling

A 60.0-kg person jumps onto the floor from a height of 3.00 m. If he lands stiffly (with his knee joints compressing by 0.500
cm), calculate the force on the knee joints.

Strategy

This person’s energy is brought to zero in this situation by the work done on him by the floor as he stops. The initial PEg is

transformed into KE as he falls. The work done by the floor reduces this kinetic energy to zero.

Solution

The work done on the person by the floor as he stops is given by

(7.29)W = Fd cos θ = −Fd,

with a minus sign because the displacement while stopping and the force from floor are in opposite directions
(cos θ = cos 180º = − 1) . The floor removes energy from the system, so it does negative work.

The kinetic energy the person has upon reaching the floor is the amount of potential energy lost by falling through height h :

(7.30)KE = −ΔPEg = −mgh,

The distance d that the person’s knees bend is much smaller than the height h of the fall, so the additional change in

gravitational potential energy during the knee bend is ignored.

The work W done by the floor on the person stops the person and brings the person’s kinetic energy to zero:

(7.31)W = −KE = mgh.

Combining this equation with the expression for W gives

(7.32)−Fd = mgh.

Recalling that h is negative because the person fell down, the force on the knee joints is given by

(7.33)

F = −mgh
d = −

⎛
⎝60.0 kg⎞⎠⎛⎝9.80 m/s2⎞⎠(−3.00 m)

5.00×10−3 m
= 3.53×105 N.
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Discussion

Such a large force (500 times more than the person’s weight) over the short impact time is enough to break bones. A much
better way to cushion the shock is by bending the legs or rolling on the ground, increasing the time over which the force
acts. A bending motion of 0.5 m this way yields a force 100 times smaller than in the example. A kangaroo's hopping shows
this method in action. The kangaroo is the only large animal to use hopping for locomotion, but the shock in hopping is
cushioned by the bending of its hind legs in each jump.(See Figure 7.7.)

Figure 7.7 The work done by the ground upon the kangaroo reduces its kinetic energy to zero as it lands. However, by applying the force of the ground
on the hind legs over a longer distance, the impact on the bones is reduced. (credit: Chris Samuel, Flickr)

Example 7.7 Finding the Speed of a Roller Coaster from its Height

(a) What is the final speed of the roller coaster shown in Figure 7.8 if it starts from rest at the top of the 20.0 m hill and work
done by frictional forces is negligible? (b) What is its final speed (again assuming negligible friction) if its initial speed is 5.00
m/s?

Figure 7.8 The speed of a roller coaster increases as gravity pulls it downhill and is greatest at its lowest point. Viewed in terms of energy, the

roller-coaster-Earth system’s gravitational potential energy is converted to kinetic energy. If work done by friction is negligible, all ΔPEg is

converted to KE .

Strategy

The roller coaster loses potential energy as it goes downhill. We neglect friction, so that the remaining force exerted by the
track is the normal force, which is perpendicular to the direction of motion and does no work. The net work on the roller
coaster is then done by gravity alone. The loss of gravitational potential energy from moving downward through a distance
h equals the gain in kinetic energy. This can be written in equation form as −ΔPEg = ΔKE . Using the equations for
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PEg and KE , we can solve for the final speed v , which is the desired quantity.

Solution for (a)

Here the initial kinetic energy is zero, so that ΔKE = 1
2mv2 . The equation for change in potential energy states that

ΔPEg = mgh . Since h is negative in this case, we will rewrite this as ΔPEg = −mg ∣ h ∣ to show the minus sign

clearly. Thus,

(7.34)−ΔPEg = ΔKE

becomes

(7.35)mg ∣ h ∣ = 1
2mv2.

Solving for v , we find that mass cancels and that

(7.36)v = 2g ∣ h ∣ .

Substituting known values,

(7.37)v = 2⎛⎝9.80 m/s2⎞⎠(20.0 m)
= 19.8 m/s.

Solution for (b)

Again − ΔPEg = ΔKE . In this case there is initial kinetic energy, so ΔKE = 1
2mv2 − 1

2mv0
2 . Thus,

(7.38)mg ∣ h ∣ = 1
2mv2 − 1

2mv0
2.

Rearranging gives

(7.39)1
2mv2 = mg ∣ h ∣ + 1

2mv0
2.

This means that the final kinetic energy is the sum of the initial kinetic energy and the gravitational potential energy. Mass
again cancels, and

(7.40)v = 2g ∣ h ∣ + v0
2.

This equation is very similar to the kinematics equation v = v0
2 + 2ad , but it is more general—the kinematics equation is

valid only for constant acceleration, whereas our equation above is valid for any path regardless of whether the object
moves with a constant acceleration. Now, substituting known values gives

(7.41)v = 2(9.80 m/s2)(20.0 m) + (5.00 m/s)2

= 20.4 m/s.
Discussion and Implications

First, note that mass cancels. This is quite consistent with observations made in Falling Objects that all objects fall at the
same rate if friction is negligible. Second, only the speed of the roller coaster is considered; there is no information about its
direction at any point. This reveals another general truth. When friction is negligible, the speed of a falling body depends
only on its initial speed and height, and not on its mass or the path taken. For example, the roller coaster will have the same
final speed whether it falls 20.0 m straight down or takes a more complicated path like the one in the figure. Third, and
perhaps unexpectedly, the final speed in part (b) is greater than in part (a), but by far less than 5.00 m/s. Finally, note that
speed can be found at any height along the way by simply using the appropriate value of h at the point of interest.

We have seen that work done by or against the gravitational force depends only on the starting and ending points, and not on the
path between, allowing us to define the simplifying concept of gravitational potential energy. We can do the same thing for a few
other forces, and we will see that this leads to a formal definition of the law of conservation of energy.

Making Connections: Take-Home Investigation—Converting Potential to Kinetic Energy

One can study the conversion of gravitational potential energy into kinetic energy in this experiment. On a smooth, level
surface, use a ruler of the kind that has a groove running along its length and a book to make an incline (see Figure 7.9).
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Place a marble at the 10-cm position on the ruler and let it roll down the ruler. When it hits the level surface, measure the
time it takes to roll one meter. Now place the marble at the 20-cm and the 30-cm positions and again measure the times it
takes to roll 1 m on the level surface. Find the velocity of the marble on the level surface for all three positions. Plot velocity
squared versus the distance traveled by the marble. What is the shape of each plot? If the shape is a straight line, the plot
shows that the marble’s kinetic energy at the bottom is proportional to its potential energy at the release point.

Figure 7.9 A marble rolls down a ruler, and its speed on the level surface is measured.

7.4 Conservative Forces and Potential Energy

Potential Energy and Conservative Forces

Work is done by a force, and some forces, such as weight, have special characteristics. A conservative force is one, like the
gravitational force, for which work done by or against it depends only on the starting and ending points of a motion and not on the
path taken. We can define a potential energy (PE) for any conservative force, just as we did for the gravitational force. For

example, when you wind up a toy, an egg timer, or an old-fashioned watch, you do work against its spring and store energy in it.
(We treat these springs as ideal, in that we assume there is no friction and no production of thermal energy.) This stored energy
is recoverable as work, and it is useful to think of it as potential energy contained in the spring. Indeed, the reason that the spring
has this characteristic is that its force is conservative. That is, a conservative force results in stored or potential energy.
Gravitational potential energy is one example, as is the energy stored in a spring. We will also see how conservative forces are
related to the conservation of energy.

Potential Energy and Conservative Forces

Potential energy is the energy a system has due to position, shape, or configuration. It is stored energy that is completely
recoverable.

A conservative force is one for which work done by or against it depends only on the starting and ending points of a motion
and not on the path taken.

We can define a potential energy (PE) for any conservative force. The work done against a conservative force to reach a

final configuration depends on the configuration, not the path followed, and is the potential energy added.

Potential Energy of a Spring

First, let us obtain an expression for the potential energy stored in a spring ( PEs ). We calculate the work done to stretch or

compress a spring that obeys Hooke’s law. (Hooke’s law was examined in Elasticity: Stress and Strain, and states that the
magnitude of force F on the spring and the resulting deformation ΔL are proportional, F = kΔL .) (See Figure 7.10.) For our

spring, we will replace ΔL (the amount of deformation produced by a force F ) by the distance x that the spring is stretched or

compressed along its length. So the force needed to stretch the spring has magnitude F = kx , where k is the spring’s force

constant. The force increases linearly from 0 at the start to kx in the fully stretched position. The average force is kx / 2 . Thus

the work done in stretching or compressing the spring is Ws = Fd = ⎛⎝kx
2
⎞
⎠x = 1

2kx2 . Alternatively, we noted in Kinetic Energy

and the Work-Energy Theorem that the area under a graph of F vs. x is the work done by the force. In Figure 7.10(c) we

see that this area is also 1
2kx2 . We therefore define the potential energy of a spring, PEs , to be

(7.42)PEs = 1
2kx2,

where k is the spring’s force constant and x is the displacement from its undeformed position. The potential energy represents

the work done on the spring and the energy stored in it as a result of stretching or compressing it a distance x . The potential

energy of the spring PEs does not depend on the path taken; it depends only on the stretch or squeeze x in the final
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configuration.

Figure 7.10 (a) An undeformed spring has no PEs stored in it. (b) The force needed to stretch (or compress) the spring a distance x has a

magnitude F = kx , and the work done to stretch (or compress) it is 1
2kx2

. Because the force is conservative, this work is stored as potential

energy (PEs) in the spring, and it can be fully recovered. (c) A graph of F vs. x has a slope of k , and the area under the graph is 1
2kx2

. Thus

the work done or potential energy stored is 1
2kx2

.

The equation PEs = 1
2kx2 has general validity beyond the special case for which it was derived. Potential energy can be stored

in any elastic medium by deforming it. Indeed, the general definition of potential energy is energy due to position, shape, or

configuration. For shape or position deformations, stored energy is PEs = 1
2kx2 , where k is the force constant of the particular

system and x is its deformation. Another example is seen in Figure 7.11 for a guitar string.

Figure 7.11 Work is done to deform the guitar string, giving it potential energy. When released, the potential energy is converted to kinetic energy and
back to potential as the string oscillates back and forth. A very small fraction is dissipated as sound energy, slowly removing energy from the string.

Conservation of Mechanical Energy

Let us now consider what form the work-energy theorem takes when only conservative forces are involved. This will lead us to
the conservation of energy principle. The work-energy theorem states that the net work done by all forces acting on a system
equals its change in kinetic energy. In equation form, this is

(7.43)Wnet = 1
2mv2 − 1

2mv0
2 = ΔKE.

If only conservative forces act, then

(7.44)Wnet = Wc,
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where Wc is the total work done by all conservative forces. Thus,

(7.45)Wc = ΔKE.

Now, if the conservative force, such as the gravitational force or a spring force, does work, the system loses potential energy.
That is, Wc = −ΔPE . Therefore,

(7.46)−ΔPE = ΔKE
or

(7.47)ΔKE + ΔPE = 0.
This equation means that the total kinetic and potential energy is constant for any process involving only conservative forces.
That is,

(7.48)KE + PE = constant    
or

KEi + PEi = KEf + PEf

⎫
⎭
⎬(conservative forces only),

where i and f denote initial and final values. This equation is a form of the work-energy theorem for conservative forces; it is
known as the conservation of mechanical energy principle. Remember that this applies to the extent that all the forces are
conservative, so that friction is negligible. The total kinetic plus potential energy of a system is defined to be its mechanical
energy, (KE + PE) . In a system that experiences only conservative forces, there is a potential energy associated with each

force, and the energy only changes form between KE and the various types of PE , with the total energy remaining constant.

Example 7.8 Using Conservation of Mechanical Energy to Calculate the Speed of a Toy Car

A 0.100-kg toy car is propelled by a compressed spring, as shown in Figure 7.12. The car follows a track that rises 0.180 m
above the starting point. The spring is compressed 4.00 cm and has a force constant of 250.0 N/m. Assuming work done by
friction to be negligible, find (a) how fast the car is going before it starts up the slope and (b) how fast it is going at the top of
the slope.

Figure 7.12 A toy car is pushed by a compressed spring and coasts up a slope. Assuming negligible friction, the potential energy in the spring is
first completely converted to kinetic energy, and then to a combination of kinetic and gravitational potential energy as the car rises. The details of
the path are unimportant because all forces are conservative—the car would have the same final speed if it took the alternate path shown.

Strategy

The spring force and the gravitational force are conservative forces, so conservation of mechanical energy can be used.
Thus,

(7.49)KEi +PEi = KEf + PEf

or

(7.50)1
2mv i

2 + mghi + 1
2kxi

2 = 1
2mvf

2 + mghf + 1
2kxf

2,

where h is the height (vertical position) and x is the compression of the spring. This general statement looks complex but

becomes much simpler when we start considering specific situations. First, we must identify the initial and final conditions in
a problem; then, we enter them into the last equation to solve for an unknown.

Solution for (a)

This part of the problem is limited to conditions just before the car is released and just after it leaves the spring. Take the
initial height to be zero, so that both hi and hf are zero. Furthermore, the initial speed vi is zero and the final

compression of the spring xf is zero, and so several terms in the conservation of mechanical energy equation are zero and

it simplifies to

(7.51)1
2kxi

2 = 1
2mvf

2.
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In other words, the initial potential energy in the spring is converted completely to kinetic energy in the absence of friction.
Solving for the final speed and entering known values yields

(7.52)vf = k
mxi

= 250.0 N/m
0.100 kg (0.0400 m)

= 2.00 m/s.
Solution for (b)

One method of finding the speed at the top of the slope is to consider conditions just before the car is released and just after
it reaches the top of the slope, completely ignoring everything in between. Doing the same type of analysis to find which
terms are zero, the conservation of mechanical energy becomes

(7.53)1
2kx i

 2 = 1
 2mvf

 2 + mghf.

This form of the equation means that the spring’s initial potential energy is converted partly to gravitational potential energy
and partly to kinetic energy. The final speed at the top of the slope will be less than at the bottom. Solving for vf and

substituting known values gives

(7.54)

vf = kxi
2

m − 2ghf

= ⎛
⎝250.0 N/m

0.100 kg
⎞
⎠(0.0400 m)2 − 2(9.80 m/s2)(0.180 m)

= 0.687 m/s.
Discussion

Another way to solve this problem is to realize that the car’s kinetic energy before it goes up the slope is converted partly to
potential energy—that is, to take the final conditions in part (a) to be the initial conditions in part (b).

Note that, for conservative forces, we do not directly calculate the work they do; rather, we consider their effects through their
corresponding potential energies, just as we did in Example 7.8. Note also that we do not consider details of the path
taken—only the starting and ending points are important (as long as the path is not impossible). This assumption is usually a
tremendous simplification, because the path may be complicated and forces may vary along the way.

PhET Explorations: Energy Skate Park

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic
energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42149/1.8/#Phet_module_8.4)
Figure 7.13

7.5 Nonconservative Forces

Nonconservative Forces and Friction

Forces are either conservative or nonconservative. Conservative forces were discussed in Conservative Forces and Potential
Energy. A nonconservative force is one for which work depends on the path taken. Friction is a good example of a
nonconservative force. As illustrated in Figure 7.14, work done against friction depends on the length of the path between the
starting and ending points. Because of this dependence on path, there is no potential energy associated with nonconservative
forces. An important characteristic is that the work done by a nonconservative force adds or removes mechanical energy from a
system. Friction, for example, creates thermal energy that dissipates, removing energy from the system. Furthermore, even if
the thermal energy is retained or captured, it cannot be fully converted back to work, so it is lost or not recoverable in that sense
as well.
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Figure 7.14 The amount of the happy face erased depends on the path taken by the eraser between points A and B, as does the work done against
friction. Less work is done and less of the face is erased for the path in (a) than for the path in (b). The force here is friction, and most of the work goes
into thermal energy that subsequently leaves the system (the happy face plus the eraser). The energy expended cannot be fully recovered.

How Nonconservative Forces Affect Mechanical Energy

Mechanical energy may not be conserved when nonconservative forces act. For example, when a car is brought to a stop by
friction on level ground, it loses kinetic energy, which is dissipated as thermal energy, reducing its mechanical energy. Figure
7.15 compares the effects of conservative and nonconservative forces. We often choose to understand simpler systems such as
that described in Figure 7.15(a) first before studying more complicated systems as in Figure 7.15(b).

Figure 7.15 Comparison of the effects of conservative and nonconservative forces on the mechanical energy of a system. (a) A system with only
conservative forces. When a rock is dropped onto a spring, its mechanical energy remains constant (neglecting air resistance) because the force in the
spring is conservative. The spring can propel the rock back to its original height, where it once again has only potential energy due to gravity. (b) A
system with nonconservative forces. When the same rock is dropped onto the ground, it is stopped by nonconservative forces that dissipate its
mechanical energy as thermal energy, sound, and surface distortion. The rock has lost mechanical energy.

How the Work-Energy Theorem Applies

Now let us consider what form the work-energy theorem takes when both conservative and nonconservative forces act. We will
see that the work done by nonconservative forces equals the change in the mechanical energy of a system. As noted in Kinetic
Energy and the Work-Energy Theorem, the work-energy theorem states that the net work on a system equals the change in its
kinetic energy, or Wnet = ΔKE . The net work is the sum of the work by nonconservative forces plus the work by conservative

forces. That is,

(7.55)Wnet = Wnc + Wc,

so that

(7.56)Wnc + Wc = ΔKE,

where Wnc is the total work done by all nonconservative forces and Wc is the total work done by all conservative forces.
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Figure 7.16 A person pushes a crate up a ramp, doing work on the crate. Friction and gravitational force (not shown) also do work on the crate; both
forces oppose the person’s push. As the crate is pushed up the ramp, it gains mechanical energy, implying that the work done by the person is greater
than the work done by friction.

Consider Figure 7.16, in which a person pushes a crate up a ramp and is opposed by friction. As in the previous section, we
note that work done by a conservative force comes from a loss of gravitational potential energy, so that Wc = −ΔPE .

Substituting this equation into the previous one and solving for Wnc gives

(7.57)Wnc = ΔKE + ΔPE.

This equation means that the total mechanical energy (KE + PE) changes by exactly the amount of work done by

nonconservative forces. In Figure 7.16, this is the work done by the person minus the work done by friction. So even if energy is
not conserved for the system of interest (such as the crate), we know that an equal amount of work was done to cause the
change in total mechanical energy.

We rearrange Wnc = ΔKE + ΔPE to obtain

(7.58)KEi +PEi + Wnc = KEf + PEf .

This means that the amount of work done by nonconservative forces adds to the mechanical energy of a system. If Wnc is

positive, then mechanical energy is increased, such as when the person pushes the crate up the ramp in Figure 7.16. If Wnc is

negative, then mechanical energy is decreased, such as when the rock hits the ground in Figure 7.15(b). If Wnc is zero, then

mechanical energy is conserved, and nonconservative forces are balanced. For example, when you push a lawn mower at
constant speed on level ground, your work done is removed by the work of friction, and the mower has a constant energy.

Applying Energy Conservation with Nonconservative Forces

When no change in potential energy occurs, applying KEi +PEi + Wnc = KEf + PEf amounts to applying the work-energy

theorem by setting the change in kinetic energy to be equal to the net work done on the system, which in the most general case
includes both conservative and nonconservative forces. But when seeking instead to find a change in total mechanical energy in
situations that involve changes in both potential and kinetic energy, the previous equation KEi + PEi + Wnc = KEf + PEf
says that you can start by finding the change in mechanical energy that would have resulted from just the conservative forces,
including the potential energy changes, and add to it the work done, with the proper sign, by any nonconservative forces
involved.

Example 7.9 Calculating Distance Traveled: How Far a Baseball Player Slides

Consider the situation shown in Figure 7.17, where a baseball player slides to a stop on level ground. Using energy
considerations, calculate the distance the 65.0-kg baseball player slides, given that his initial speed is 6.00 m/s and the force
of friction against him is a constant 450 N.
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Figure 7.17 The baseball player slides to a stop in a distance d . In the process, friction removes the player’s kinetic energy by doing an amount

of work fd equal to the initial kinetic energy.

Strategy

Friction stops the player by converting his kinetic energy into other forms, including thermal energy. In terms of the work-
energy theorem, the work done by friction, which is negative, is added to the initial kinetic energy to reduce it to zero. The
work done by friction is negative, because f is in the opposite direction of the motion (that is, θ = 180º , and so

cos θ = −1 ). Thus Wnc = − fd . The equation simplifies to

(7.59)1
2mv i

2 − fd = 0

or

(7.60)fd = 1
2mv i

2.

This equation can now be solved for the distance d .

Solution

Solving the previous equation for d and substituting known values yields

(7.61)
d =

mv i
2

2 f

= (65.0 kg)(6.00 m/s)2

(2)(450 N)
= 2.60 m.

Discussion

The most important point of this example is that the amount of nonconservative work equals the change in mechanical
energy. For example, you must work harder to stop a truck, with its large mechanical energy, than to stop a mosquito.

Example 7.10 Calculating Distance Traveled: Sliding Up an Incline

Suppose that the player from Example 7.9 is running up a hill having a 5.00º incline upward with a surface similar to that in

the baseball stadium. The player slides with the same initial speed, and the frictional force is still 450 N. Determine how far
he slides.
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Figure 7.18 The same baseball player slides to a stop on a 5.00º slope.

Strategy

In this case, the work done by the nonconservative friction force on the player reduces the mechanical energy he has from
his kinetic energy at zero height, to the final mechanical energy he has by moving through distance d to reach height h
along the hill, with h = d sin 5.00º . This is expressed by the equation

(7.62)KE + PEi + Wnc = KEf + PEf .

Solution

The work done by friction is again Wnc = − fd ; initially the potential energy is PEi = mg ⋅ 0 = 0 and the kinetic energy

is KEi = 1
2mv i

2 ; the final energy contributions are KEf = 0 for the kinetic energy and PEf = mgh = mgd sin θ for

the potential energy.

Substituting these values gives

(7.63)1
2mv i

2 + 0 + ⎛⎝− fd⎞⎠ = 0 + mgd sin θ.

Solve this for d to obtain

(7.64)

d =
⎛
⎝12
⎞
⎠mv i

2

f + mg sin θ

= (0.5)(65.0 kg)(6.00 m/s)2

450 N+(65.0 kg)(9.80 m/s2) sin (5.00º)
= 2.31 m.

Discussion

As might have been expected, the player slides a shorter distance by sliding uphill. Note that the problem could also have
been solved in terms of the forces directly and the work energy theorem, instead of using the potential energy. This method
would have required combining the normal force and force of gravity vectors, which no longer cancel each other because
they point in different directions, and friction, to find the net force. You could then use the net force and the net work to find
the distance d that reduces the kinetic energy to zero. By applying conservation of energy and using the potential energy

instead, we need only consider the gravitational potential energy mgh , without combining and resolving force vectors. This

simplifies the solution considerably.

Making Connections: Take-Home Investigation—Determining Friction from the Stopping Distance

This experiment involves the conversion of gravitational potential energy into thermal energy. Use the ruler, book, and
marble from Take-Home Investigation—Converting Potential to Kinetic Energy. In addition, you will need a foam cup
with a small hole in the side, as shown in Figure 7.19. From the 10-cm position on the ruler, let the marble roll into the cup
positioned at the bottom of the ruler. Measure the distance d the cup moves before stopping. What forces caused it to

stop? What happened to the kinetic energy of the marble at the bottom of the ruler? Next, place the marble at the 20-cm and
the 30-cm positions and again measure the distance the cup moves after the marble enters it. Plot the distance the cup
moves versus the initial marble position on the ruler. Is this relationship linear?

With some simple assumptions, you can use these data to find the coefficient of kinetic friction μk of the cup on the table.

The force of friction f on the cup is μk N , where the normal force N is just the weight of the cup plus the marble. The

normal force and force of gravity do no work because they are perpendicular to the displacement of the cup, which moves
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horizontally. The work done by friction is fd . You will need the mass of the marble as well to calculate its initial kinetic

energy.

It is interesting to do the above experiment also with a steel marble (or ball bearing). Releasing it from the same positions on
the ruler as you did with the glass marble, is the velocity of this steel marble the same as the velocity of the marble at the
bottom of the ruler? Is the distance the cup moves proportional to the mass of the steel and glass marbles?

Figure 7.19 Rolling a marble down a ruler into a foam cup.

PhET Explorations: The Ramp

Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how
the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work. Click to
open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/the-ramp)

7.6 Conservation of Energy

Law of Conservation of Energy

Energy, as we have noted, is conserved, making it one of the most important physical quantities in nature. The law of
conservation of energy can be stated as follows:

Total energy is constant in any process. It may change in form or be transferred from one system to another, but the total
remains the same.

We have explored some forms of energy and some ways it can be transferred from one system to another. This exploration led
to the definition of two major types of energy—mechanical energy (KE + PE) and energy transferred via work done by

nonconservative forces (Wnc) . But energy takes many other forms, manifesting itself in many different ways, and we need to be

able to deal with all of these before we can write an equation for the above general statement of the conservation of energy.

Other Forms of Energy than Mechanical Energy

At this point, we deal with all other forms of energy by lumping them into a single group called other energy ( OE ). Then we can

state the conservation of energy in equation form as

(7.65)KEi + PEi + Wnc + OEi = KEf + PEf + OEf.

All types of energy and work can be included in this very general statement of conservation of energy. Kinetic energy is KE ,

work done by a conservative force is represented by PE , work done by nonconservative forces is Wnc , and all other energies

are included as OE . This equation applies to all previous examples; in those situations OE was constant, and so it subtracted

out and was not directly considered.

Making Connections: Usefulness of the Energy Conservation Principle

The fact that energy is conserved and has many forms makes it very important. You will find that energy is discussed in
many contexts, because it is involved in all processes. It will also become apparent that many situations are best understood
in terms of energy and that problems are often most easily conceptualized and solved by considering energy.

When does OE play a role? One example occurs when a person eats. Food is oxidized with the release of carbon dioxide,

water, and energy. Some of this chemical energy is converted to kinetic energy when the person moves, to potential energy
when the person changes altitude, and to thermal energy (another form of OE ).

Some of the Many Forms of Energy

What are some other forms of energy? You can probably name a number of forms of energy not yet discussed. Many of these
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will be covered in later chapters, but let us detail a few here. Electrical energy is a common form that is converted to many other
forms and does work in a wide range of practical situations. Fuels, such as gasoline and food, carry chemical energy that can
be transferred to a system through oxidation. Chemical fuel can also produce electrical energy, such as in batteries. Batteries
can in turn produce light, which is a very pure form of energy. Most energy sources on Earth are in fact stored energy from the
energy we receive from the Sun. We sometimes refer to this as radiant energy, or electromagnetic radiation, which includes
visible light, infrared, and ultraviolet radiation. Nuclear energy comes from processes that convert measurable amounts of mass
into energy. Nuclear energy is transformed into the energy of sunlight, into electrical energy in power plants, and into the energy
of the heat transfer and blast in weapons. Atoms and molecules inside all objects are in random motion. This internal mechanical
energy from the random motions is called thermal energy, because it is related to the temperature of the object. These and all
other forms of energy can be converted into one another and can do work.

Table 7.1 gives the amount of energy stored, used, or released from various objects and in various phenomena. The range of
energies and the variety of types and situations is impressive.

Problem-Solving Strategies for Energy

You will find the following problem-solving strategies useful whenever you deal with energy. The strategies help in organizing
and reinforcing energy concepts. In fact, they are used in the examples presented in this chapter. The familiar general
problem-solving strategies presented earlier—involving identifying physical principles, knowns, and unknowns, checking
units, and so on—continue to be relevant here.

Step 1. Determine the system of interest and identify what information is given and what quantity is to be calculated. A
sketch will help.

Step 2. Examine all the forces involved and determine whether you know or are given the potential energy from the work
done by the forces. Then use step 3 or step 4.

Step 3. If you know the potential energies for the forces that enter into the problem, then forces are all conservative, and you
can apply conservation of mechanical energy simply in terms of potential and kinetic energy. The equation expressing
conservation of energy is

(7.66)KEi + PEi = KEf + PEf.

Step 4. If you know the potential energy for only some of the forces, possibly because some of them are nonconservative
and do not have a potential energy, or if there are other energies that are not easily treated in terms of force and work, then
the conservation of energy law in its most general form must be used.

(7.67)KEi + PEi + Wnc + OEi = KEf + PEf + OEf.

In most problems, one or more of the terms is zero, simplifying its solution. Do not calculate Wc , the work done by

conservative forces; it is already incorporated in the PE terms.

Step 5. You have already identified the types of work and energy involved (in step 2). Before solving for the unknown,
eliminate terms wherever possible to simplify the algebra. For example, choose h = 0 at either the initial or final point, so

that PEg is zero there. Then solve for the unknown in the customary manner.

Step 6. Check the answer to see if it is reasonable. Once you have solved a problem, reexamine the forms of work and
energy to see if you have set up the conservation of energy equation correctly. For example, work done against friction
should be negative, potential energy at the bottom of a hill should be less than that at the top, and so on. Also check to see
that the numerical value obtained is reasonable. For example, the final speed of a skateboarder who coasts down a 3-m-
high ramp could reasonably be 20 km/h, but not 80 km/h.

Transformation of Energy

The transformation of energy from one form into others is happening all the time. The chemical energy in food is converted into
thermal energy through metabolism; light energy is converted into chemical energy through photosynthesis. In a larger example,
the chemical energy contained in coal is converted into thermal energy as it burns to turn water into steam in a boiler. This
thermal energy in the steam in turn is converted to mechanical energy as it spins a turbine, which is connected to a generator to
produce electrical energy. (In all of these examples, not all of the initial energy is converted into the forms mentioned. This
important point is discussed later in this section.)

Another example of energy conversion occurs in a solar cell. Sunlight impinging on a solar cell (see Figure 7.20) produces
electricity, which in turn can be used to run an electric motor. Energy is converted from the primary source of solar energy into
electrical energy and then into mechanical energy.
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Figure 7.20 Solar energy is converted into electrical energy by solar cells, which is used to run a motor in this solar-power aircraft. (credit: NASA)
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Table 7.1 Energy of Various Objects and Phenomena

Object/phenomenon Energy in joules

Big Bang 1068

Energy released in a supernova 1044

Fusion of all the hydrogen in Earth’s oceans 1034

Annual world energy use 4×1020

Large fusion bomb (9 megaton) 3.8×1016

1 kg hydrogen (fusion to helium) 6.4×1014

1 kg uranium (nuclear fission) 8.0×1013

Hiroshima-size fission bomb (10 kiloton) 4.2×1013

90,000-metric ton aircraft carrier at 30 knots 1.1×1010

1 barrel crude oil 5.9×109

1 ton TNT 4.2×109

1 gallon of gasoline 1.2×108

Daily home electricity use (developed countries) 7×107

Daily adult food intake (recommended) 1.2×107

1000-kg car at 90 km/h 3.1×105

1 g fat (9.3 kcal) 3.9×104

ATP hydrolysis reaction 3.2×104

1 g carbohydrate (4.1 kcal) 1.7×104

1 g protein (4.1 kcal) 1.7×104

Tennis ball at 100 km/h 22

Mosquito
⎛
⎝10–2 g at 0.5 m/s⎞⎠ 1.3×10−6

Single electron in a TV tube beam 4.0×10−15

Energy to break one DNA strand 10−19

Efficiency

Even though energy is conserved in an energy conversion process, the output of useful energy or work will be less than the
energy input. The efficiency Eff of an energy conversion process is defined as

(7.68)
Efficiency(Eff ) = useful energy or work output

total energy input = Wout
Ein

.

Table 7.2 lists some efficiencies of mechanical devices and human activities. In a coal-fired power plant, for example, about 40%
of the chemical energy in the coal becomes useful electrical energy. The other 60% transforms into other (perhaps less useful)
energy forms, such as thermal energy, which is then released to the environment through combustion gases and cooling towers.
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Table 7.2 Efficiency of the Human Body and
Mechanical Devices

Activity/device Efficiency (%)[1]

Cycling and climbing 20

Swimming, surface 2

Swimming, submerged 4

Shoveling 3

Weightlifting 9

Steam engine 17

Gasoline engine 30

Diesel engine 35

Nuclear power plant 35

Coal power plant 42

Electric motor 98

Compact fluorescent light 20

Gas heater (residential) 90

Solar cell 10

PhET Explorations: Masses and Springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can
even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energies for each
spring.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42151/
1.11/#Phet_module_8.6)

Figure 7.21

7.7 Power

What is Power?

Power—the word conjures up many images: a professional football player muscling aside his opponent, a dragster roaring away
from the starting line, a volcano blowing its lava into the atmosphere, or a rocket blasting off, as in Figure 7.22.

Figure 7.22 This powerful rocket on the Space Shuttle Endeavor did work and consumed energy at a very high rate. (credit: NASA)

These images of power have in common the rapid performance of work, consistent with the scientific definition of power ( P ) as

the rate at which work is done.

1. Representative values
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Power

Power is the rate at which work is done.

(7.69)P = W
t

The SI unit for power is the watt ( W ), where 1 watt equals 1 joule/second (1 W = 1 J/s).

Because work is energy transfer, power is also the rate at which energy is expended. A 60-W light bulb, for example, expends 60
J of energy per second. Great power means a large amount of work or energy developed in a short time. For example, when a
powerful car accelerates rapidly, it does a large amount of work and consumes a large amount of fuel in a short time.

Calculating Power from Energy
Example 7.11 Calculating the Power to Climb Stairs

What is the power output for a 60.0-kg woman who runs up a 3.00 m high flight of stairs in 3.50 s, starting from rest but
having a final speed of 2.00 m/s? (See Figure 7.23.)

Figure 7.23 When this woman runs upstairs starting from rest, she converts the chemical energy originally from food into kinetic energy and
gravitational potential energy. Her power output depends on how fast she does this.

Strategy and Concept

The work going into mechanical energy is W= KE + PE . At the bottom of the stairs, we take both KE and PEg as

initially zero; thus, W = KEf + PEg = 1
2mvf

2 + mgh , where h is the vertical height of the stairs. Because all terms are

given, we can calculate W and then divide it by time to get power.

Solution

Substituting the expression for W into the definition of power given in the previous equation, P = W / t yields

(7.70)

P = W
t =

1
2mvf

2 + mgh
t .

Entering known values yields

(7.71)

P =
0.5⎛⎝60.0 kg⎞⎠(2.00 m/s)2 + ⎛

⎝60.0 kg⎞⎠⎛⎝9.80 m/s2⎞⎠(3.00 m)
3.50 s

= 120 J + 1764 J
3.50 s

= 538 W.
Discussion

The woman does 1764 J of work to move up the stairs compared with only 120 J to increase her kinetic energy; thus, most
of her power output is required for climbing rather than accelerating.
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It is impressive that this woman’s useful power output is slightly less than 1 horsepower (1 hp = 746 W) ! People can

generate more than a horsepower with their leg muscles for short periods of time by rapidly converting available blood sugar and
oxygen into work output. (A horse can put out 1 hp for hours on end.) Once oxygen is depleted, power output decreases and the
person begins to breathe rapidly to obtain oxygen to metabolize more food—this is known as the aerobic stage of exercise. If the
woman climbed the stairs slowly, then her power output would be much less, although the amount of work done would be the
same.

Making Connections: Take-Home Investigation—Measure Your Power Rating

Determine your own power rating by measuring the time it takes you to climb a flight of stairs. We will ignore the gain in
kinetic energy, as the above example showed that it was a small portion of the energy gain. Don’t expect that your output will
be more than about 0.5 hp.

Examples of Power

Examples of power are limited only by the imagination, because there are as many types as there are forms of work and energy.
(See Table 7.3 for some examples.) Sunlight reaching Earth’s surface carries a maximum power of about 1.3 kilowatts per

square meter (kW/m2). A tiny fraction of this is retained by Earth over the long term. Our consumption rate of fossil fuels is far

greater than the rate at which they are stored, so it is inevitable that they will be depleted. Power implies that energy is
transferred, perhaps changing form. It is never possible to change one form completely into another without losing some of it as
thermal energy. For example, a 60-W incandescent bulb converts only 5 W of electrical power to light, with 55 W dissipating into
thermal energy. Furthermore, the typical electric power plant converts only 35 to 40% of its fuel into electricity. The remainder
becomes a huge amount of thermal energy that must be dispersed as heat transfer, as rapidly as it is created. A coal-fired power

plant may produce 1000 megawatts; 1 megawatt (MW) is 106 W of electric power. But the power plant consumes chemical

energy at a rate of about 2500 MW, creating heat transfer to the surroundings at a rate of 1500 MW. (See Figure 7.24.)

Figure 7.24 Tremendous amounts of electric power are generated by coal-fired power plants such as this one in China, but an even larger amount of
power goes into heat transfer to the surroundings. The large cooling towers here are needed to transfer heat as rapidly as it is produced. The transfer
of heat is not unique to coal plants but is an unavoidable consequence of generating electric power from any fuel—nuclear, coal, oil, natural gas, or the
like. (credit: Kleinolive, Wikimedia Commons)
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Table 7.3 Power Output or Consumption

Object or Phenomenon Power in Watts

Supernova (at peak) 5×1037

Milky Way galaxy 1037

Crab Nebula pulsar 1028

The Sun 4×1026

Volcanic eruption (maximum) 4×1015

Lightning bolt 2×1012

Nuclear power plant (total electric and heat transfer) 3×109

Aircraft carrier (total useful and heat transfer) 108

Dragster (total useful and heat transfer) 2×106

Car (total useful and heat transfer) 8×104

Football player (total useful and heat transfer) 5×103

Clothes dryer 4×103

Person at rest (all heat transfer) 100

Typical incandescent light bulb (total useful and heat transfer) 60

Heart, person at rest (total useful and heat transfer) 8

Electric clock 3

Pocket calculator 10−3

Power and Energy Consumption

We usually have to pay for the energy we use. It is interesting and easy to estimate the cost of energy for an electrical appliance
if its power consumption rate and time used are known. The higher the power consumption rate and the longer the appliance is
used, the greater the cost of that appliance. The power consumption rate is P = W / t = E / t , where E is the energy supplied

by the electricity company. So the energy consumed over a time t is

(7.72)E = Pt.

Electricity bills state the energy used in units of kilowatt-hours (kW ⋅ h), which is the product of power in kilowatts and time in

hours. This unit is convenient because electrical power consumption at the kilowatt level for hours at a time is typical.

Example 7.12 Calculating Energy Costs

What is the cost of running a 0.200-kW computer 6.00 h per day for 30.0 d if the cost of electricity is $0.120 per kW ⋅ h ?

Strategy

Cost is based on energy consumed; thus, we must find E from E = Pt and then calculate the cost. Because electrical

energy is expressed in kW ⋅ h , at the start of a problem such as this it is convenient to convert the units into kW and

hours.

Solution

The energy consumed in kW ⋅ h is

(7.73)E = Pt = (0.200 kW)(6.00 h/d)(30.0 d)
= 36.0 kW ⋅ h,

and the cost is simply given by
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(7.74)cost = (36.0 kW ⋅ h)($0.120 per kW ⋅ h) = $4.32 per month.

Discussion

The cost of using the computer in this example is neither exorbitant nor negligible. It is clear that the cost is a combination of
power and time. When both are high, such as for an air conditioner in the summer, the cost is high.

The motivation to save energy has become more compelling with its ever-increasing price. Armed with the knowledge that
energy consumed is the product of power and time, you can estimate costs for yourself and make the necessary value
judgments about where to save energy. Either power or time must be reduced. It is most cost-effective to limit the use of high-
power devices that normally operate for long periods of time, such as water heaters and air conditioners. This would not include
relatively high power devices like toasters, because they are on only a few minutes per day. It would also not include electric
clocks, in spite of their 24-hour-per-day usage, because they are very low power devices. It is sometimes possible to use devices
that have greater efficiencies—that is, devices that consume less power to accomplish the same task. One example is the
compact fluorescent light bulb, which produces over four times more light per watt of power consumed than its incandescent
cousin.

Modern civilization depends on energy, but current levels of energy consumption and production are not sustainable. The
likelihood of a link between global warming and fossil fuel use (with its concomitant production of carbon dioxide), has made
reduction in energy use as well as a shift to non-fossil fuels of the utmost importance. Even though energy in an isolated system
is a conserved quantity, the final result of most energy transformations is waste heat transfer to the environment, which is no
longer useful for doing work. As we will discuss in more detail in Thermodynamics, the potential for energy to produce useful
work has been “degraded” in the energy transformation.

7.8 Work, Energy, and Power in Humans

Energy Conversion in Humans

Our own bodies, like all living organisms, are energy conversion machines. Conservation of energy implies that the chemical
energy stored in food is converted into work, thermal energy, and/or stored as chemical energy in fatty tissue. (See Figure 7.25.)
The fraction going into each form depends both on how much we eat and on our level of physical activity. If we eat more than is
needed to do work and stay warm, the remainder goes into body fat.

Figure 7.25 Energy consumed by humans is converted to work, thermal energy, and stored fat. By far the largest fraction goes to thermal energy,
although the fraction varies depending on the type of physical activity.

Power Consumed at Rest

The rate at which the body uses food energy to sustain life and to do different activities is called the metabolic rate. The total
energy conversion rate of a person at rest is called the basal metabolic rate (BMR) and is divided among various systems in the
body, as shown in Table 7.4. The largest fraction goes to the liver and spleen, with the brain coming next. Of course, during
vigorous exercise, the energy consumption of the skeletal muscles and heart increase markedly. About 75% of the calories
burned in a day go into these basic functions. The BMR is a function of age, gender, total body weight, and amount of muscle
mass (which burns more calories than body fat). Athletes have a greater BMR due to this last factor.
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Table 7.4 Basal Metabolic Rates (BMR)

Organ Power consumed at rest (W) Oxygen consumption (mL/min) Percent of BMR

Liver & spleen 23 67 27

Brain 16 47 19

Skeletal muscle 15 45 18

Kidney 9 26 10

Heart 6 17 7

Other 16 48 19

Totals 85 W 250 mL/min 100%

Energy consumption is directly proportional to oxygen consumption because the digestive process is basically one of oxidizing
food. We can measure the energy people use during various activities by measuring their oxygen use. (See Figure 7.26.)
Approximately 20 kJ of energy are produced for each liter of oxygen consumed, independent of the type of food. Table 7.5
shows energy and oxygen consumption rates (power expended) for a variety of activities.

Power of Doing Useful Work

Work done by a person is sometimes called useful work, which is work done on the outside world, such as lifting weights. Useful
work requires a force exerted through a distance on the outside world, and so it excludes internal work, such as that done by the
heart when pumping blood. Useful work does include that done in climbing stairs or accelerating to a full run, because these are
accomplished by exerting forces on the outside world. Forces exerted by the body are nonconservative, so that they can change
the mechanical energy ( KE + PE ) of the system worked upon, and this is often the goal. A baseball player throwing a ball, for

example, increases both the ball’s kinetic and potential energy.

If a person needs more energy than they consume, such as when doing vigorous work, the body must draw upon the chemical
energy stored in fat. So exercise can be helpful in losing fat. However, the amount of exercise needed to produce a loss in fat, or
to burn off extra calories consumed that day, can be large, as Example 7.13 illustrates.

Example 7.13 Calculating Weight Loss from Exercising

If a person who normally requires an average of 12,000 kJ (3000 kcal) of food energy per day consumes 13,000 kJ per day,
he will steadily gain weight. How much bicycling per day is required to work off this extra 1000 kJ?

Solution

Table 7.5 states that 400 W are used when cycling at a moderate speed. The time required to work off 1000 kJ at this rate is
then

(7.75)Time = energy
⎛
⎝
energy
time

⎞
⎠

= 1000 kJ
400 W = 2500 s = 42 min.

Discussion

If this person uses more energy than he or she consumes, the person’s body will obtain the needed energy by metabolizing
body fat. If the person uses 13,000 kJ but consumes only 12,000 kJ, then the amount of fat loss will be

(7.76)
Fat loss = (1000 kJ)⎛⎝

1.0 g fat
39 kJ

⎞
⎠ = 26 g,

assuming the energy content of fat to be 39 kJ/g.

Figure 7.26 A pulse oxymeter is an apparatus that measures the amount of oxygen in blood. Oxymeters can be used to determine a person’s
metabolic rate, which is the rate at which food energy is converted to another form. Such measurements can indicate the level of athletic conditioning
as well as certain medical problems. (credit: UusiAjaja, Wikimedia Commons)
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Table 7.5 Energy and Oxygen Consumption Rates[2] (Power)

Activity Energy consumption in watts Oxygen consumption in liters O2/min

Sleeping 83 0.24

Sitting at rest 120 0.34

Standing relaxed 125 0.36

Sitting in class 210 0.60

Walking (5 km/h) 280 0.80

Cycling (13–18 km/h) 400 1.14

Shivering 425 1.21

Playing tennis 440 1.26

Swimming breaststroke 475 1.36

Ice skating (14.5 km/h) 545 1.56

Climbing stairs (116/min) 685 1.96

Cycling (21 km/h) 700 2.00

Running cross-country 740 2.12

Playing basketball 800 2.28

Cycling, professional racer 1855 5.30

Sprinting 2415 6.90

All bodily functions, from thinking to lifting weights, require energy. (See Figure 7.27.) The many small muscle actions
accompanying all quiet activity, from sleeping to head scratching, ultimately become thermal energy, as do less visible muscle
actions by the heart, lungs, and digestive tract. Shivering, in fact, is an involuntary response to low body temperature that pits
muscles against one another to produce thermal energy in the body (and do no work). The kidneys and liver consume a
surprising amount of energy, but the biggest surprise of all is that a full 25% of all energy consumed by the body is used to
maintain electrical potentials in all living cells. (Nerve cells use this electrical potential in nerve impulses.) This bioelectrical
energy ultimately becomes mostly thermal energy, but some is utilized to power chemical processes such as in the kidneys and
liver, and in fat production.

Figure 7.27 This fMRI scan shows an increased level of energy consumption in the vision center of the brain. Here, the patient was being asked to
recognize faces. (credit: NIH via Wikimedia Commons)

7.9 World Energy Use

Energy is an important ingredient in all phases of society. We live in a very interdependent world, and access to adequate and
reliable energy resources is crucial for economic growth and for maintaining the quality of our lives. But current levels of energy
consumption and production are not sustainable. About 40% of the world’s energy comes from oil, and much of that goes to
transportation uses. Oil prices are dependent as much upon new (or foreseen) discoveries as they are upon political events and
situations around the world. The U.S., with 4.5% of the world’s population, consumes 24% of the world’s oil production per year;

2. for an average 76-kg male
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66% of that oil is imported!

Renewable and Nonrenewable Energy Sources

The principal energy resources used in the world are shown in Figure 7.28. The fuel mix has changed over the years but now is
dominated by oil, although natural gas and solar contributions are increasing. Renewable forms of energy are those sources
that cannot be used up, such as water, wind, solar, and biomass. About 85% of our energy comes from nonrenewable fossil
fuels—oil, natural gas, coal. The likelihood of a link between global warming and fossil fuel use, with its production of carbon
dioxide through combustion, has made, in the eyes of many scientists, a shift to non-fossil fuels of utmost importance—but it will
not be easy.

Figure 7.28 World energy consumption by source, in billions of kilowatt-hours: 2006. (credit: KVDP)

The World’s Growing Energy Needs

World energy consumption continues to rise, especially in the developing countries. (See Figure 7.29.) Global demand for
energy has tripled in the past 50 years and might triple again in the next 30 years. While much of this growth will come from the
rapidly booming economies of China and India, many of the developed countries, especially those in Europe, are hoping to meet
their energy needs by expanding the use of renewable sources. Although presently only a small percentage, renewable energy is
growing very fast, especially wind energy. For example, Germany plans to meet 20% of its electricity and 10% of its overall
energy needs with renewable resources by the year 2020. (See Figure 7.30.) Energy is a key constraint in the rapid economic
growth of China and India. In 2003, China surpassed Japan as the world’s second largest consumer of oil. However, over 1/3 of
this is imported. Unlike most Western countries, coal dominates the commercial energy resources of China, accounting for 2/3 of
its energy consumption. In 2009 China surpassed the United States as the largest generator of CO2 . In India, the main energy

resources are biomass (wood and dung) and coal. Half of India’s oil is imported. About 70% of India’s electricity is generated by
highly polluting coal. Yet there are sizeable strides being made in renewable energy. India has a rapidly growing wind energy
base, and it has the largest solar cooking program in the world.

Figure 7.29 Past and projected world energy use (source: Based on data from U.S. Energy Information Administration, 2011)
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Figure 7.30 Solar cell arrays at a power plant in Steindorf, Germany (credit: Michael Betke, Flickr)

Table 7.6 displays the 2006 commercial energy mix by country for some of the prime energy users in the world. While non-
renewable sources dominate, some countries get a sizeable percentage of their electricity from renewable resources. For
example, about 67% of New Zealand’s electricity demand is met by hydroelectric. Only 10% of the U.S. electricity is generated
by renewable resources, primarily hydroelectric. It is difficult to determine total contributions of renewable energy in some
countries with a large rural population, so these percentages in this table are left blank.

Table 7.6 Energy Consumption—Selected Countries (2006)

Country
Consumption,

in EJ (1018 J)
Oil

Natural
Gas

Coal Nuclear Hydro
Other
Renewables

Electricity
Use per
capita
(kWh/yr)

Energy
Use
per
capita
(GJ/yr)

Australia 5.4 34% 17% 44% 0% 3% 1% 10000 260

Brazil 9.6 48% 7% 5% 1% 35% 2% 2000 50

China 63 22% 3% 69% 1% 6% 1500 35

Egypt 2.4 50% 41% 1% 0% 6% 990 32

Germany 16 37% 24% 24% 11% 1% 3% 6400 173

India 15 34% 7% 52% 1% 5% 470 13

Indonesia 4.9 51% 26% 16% 0% 2% 3% 420 22

Japan 24 48% 14% 21% 12% 4% 1% 7100 176

New
Zealand

0.44 32% 26% 6% 0% 11% 19% 8500 102

Russia 31 19% 53% 16% 5% 6% 5700 202

U.S. 105 40% 23% 22% 8% 3% 1% 12500 340

World 432 39% 23% 24% 6% 6% 2% 2600 71

Energy and Economic Well-being

The last two columns in this table examine the energy and electricity use per capita. Economic well-being is dependent upon
energy use, and in most countries higher standards of living, as measured by GDP (gross domestic product) per capita, are
matched by higher levels of energy consumption per capita. This is borne out in Figure 7.31. Increased efficiency of energy use
will change this dependency. A global problem is balancing energy resource development against the harmful effects upon the
environment in its extraction and use.
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basal metabolic rate:

chemical energy:

conservation of mechanical energy:

conservative force:

efficiency:

electrical energy:

energy:

fossil fuels:

friction:

Figure 7.31 Power consumption per capita versus GDP per capita for various countries. Note the increase in energy usage with increasing GDP.
(2007, credit: Frank van Mierlo, Wikimedia Commons)

Conserving Energy

As we finish this chapter on energy and work, it is relevant to draw some distinctions between two sometimes misunderstood
terms in the area of energy use. As has been mentioned elsewhere, the “law of the conservation of energy” is a very useful
principle in analyzing physical processes. It is a statement that cannot be proven from basic principles, but is a very good
bookkeeping device, and no exceptions have ever been found. It states that the total amount of energy in an isolated system will
always remain constant. Related to this principle, but remarkably different from it, is the important philosophy of energy
conservation. This concept has to do with seeking to decrease the amount of energy used by an individual or group through (1)
reduced activities (e.g., turning down thermostats, driving fewer kilometers) and/or (2) increasing conversion efficiencies in the
performance of a particular task—such as developing and using more efficient room heaters, cars that have greater miles-per-
gallon ratings, energy-efficient compact fluorescent lights, etc.

Since energy in an isolated system is not destroyed or created or generated, one might wonder why we need to be concerned
about our energy resources, since energy is a conserved quantity. The problem is that the final result of most energy
transformations is waste heat transfer to the environment and conversion to energy forms no longer useful for doing work. To
state it in another way, the potential for energy to produce useful work has been “degraded” in the energy transformation. (This
will be discussed in more detail in Thermodynamics.)

Glossary

the total energy conversion rate of a person at rest

the energy in a substance stored in the bonds between atoms and molecules that can be released in a
chemical reaction

the rule that the sum of the kinetic energies and potential energies remains constant if
only conservative forces act on and within a system

a force that does the same work for any given initial and final configuration, regardless of the path
followed

a measure of the effectiveness of the input of energy to do work; useful energy or work divided by the total input of
energy

the energy carried by a flow of charge

the ability to do work

oil, natural gas, and coal

the force between surfaces that opposes one sliding on the other; friction changes mechanical energy into thermal
energy
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gravitational potential energy:

horsepower:

joule:

kilowatt-hour:

kinetic energy:

law of conservation of energy:

mechanical energy:

metabolic rate:

net work:

nonconservative force:

nuclear energy:

potential energy:

potential energy of a spring:

power:

radiant energy:

renewable forms of energy:

thermal energy:

useful work:

watt:

work:

work-energy theorem:

the energy an object has due to its position in a gravitational field

an older non-SI unit of power, with 1 hp = 746 W

SI unit of work and energy, equal to one newton-meter

(kW ⋅ h) unit used primarily for electrical energy provided by electric utility companies

the energy an object has by reason of its motion, equal to 1
2mv2 for the translational (i.e., non-rotational)

motion of an object of mass m moving at speed v

the general law that total energy is constant in any process; energy may change in form or
be transferred from one system to another, but the total remains the same

the sum of kinetic energy and potential energy

the rate at which the body uses food energy to sustain life and to do different activities

work done by the net force, or vector sum of all the forces, acting on an object

a force whose work depends on the path followed between the given initial and final configurations

energy released by changes within atomic nuclei, such as the fusion of two light nuclei or the fission of a
heavy nucleus

energy due to position, shape, or configuration

the stored energy of a spring as a function of its displacement; when Hooke’s law applies, it is

given by the expression 1
2kx2 where x is the distance the spring is compressed or extended and k is the spring

constant

the rate at which work is done

the energy carried by electromagnetic waves

those sources that cannot be used up, such as water, wind, solar, and biomass

the energy within an object due to the random motion of its atoms and molecules that accounts for the
object's temperature

work done on an external system

(W) SI unit of power, with 1 W = 1 J/s

the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the
direction of the displacement and the magnitude of the displacement

the result, based on Newton’s laws, that the net work done on an object is equal to its change in
kinetic energy

Section Summary

7.1 Work: The Scientific Definition
• Work is the transfer of energy by a force acting on an object as it is displaced.
• The work W that a force F does on an object is the product of the magnitude F of the force, times the magnitude d of

the displacement, times the cosine of the angle θ between them. In symbols,

W = Fd cos θ.
• The SI unit for work and energy is the joule (J), where 1 J = 1 N ⋅ m = 1 kg ⋅ m2/s2 .

• The work done by a force is zero if the displacement is either zero or perpendicular to the force.
• The work done is positive if the force and displacement have the same direction, and negative if they have opposite

direction.
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7.2 Kinetic Energy and the Work-Energy Theorem
• The net work Wnet is the work done by the net force acting on an object.

• Work done on an object transfers energy to the object.

• The translational kinetic energy of an object of mass m moving at speed v is KE = 1
2mv2 .

• The work-energy theorem states that the net work Wnet on a system changes its kinetic energy,

Wnet = 1
2mv2 − 1

2mv0
2 .

7.3 Gravitational Potential Energy
• Work done against gravity in lifting an object becomes potential energy of the object-Earth system.
• The change in gravitational potential energy, ΔPEg , is ΔPEg = mgh , with h being the increase in height and g the

acceleration due to gravity.
• The gravitational potential energy of an object near Earth’s surface is due to its position in the mass-Earth system. Only

differences in gravitational potential energy, ΔPEg , have physical significance.

• As an object descends without friction, its gravitational potential energy changes into kinetic energy corresponding to
increasing speed, so that ΔKE= −ΔPEg .

7.4 Conservative Forces and Potential Energy
• A conservative force is one for which work depends only on the starting and ending points of a motion, not on the path

taken.
• We can define potential energy (PE) for any conservative force, just as we defined PEg for the gravitational force.

• The potential energy of a spring is PEs = 1
2kx2 , where k is the spring’s force constant and x is the displacement from

its undeformed position.
• Mechanical energy is defined to be KE + PE for a conservative force.

• When only conservative forces act on and within a system, the total mechanical energy is constant. In equation form,

KE + PE = constant    
or

KEi + PEi = KEf + PEf

⎫
⎭
⎬

where i and f denote initial and final values. This is known as the conservation of mechanical energy.

7.5 Nonconservative Forces
• A nonconservative force is one for which work depends on the path.
• Friction is an example of a nonconservative force that changes mechanical energy into thermal energy.
• Work Wnc done by a nonconservative force changes the mechanical energy of a system. In equation form,

Wnc = ΔKE + ΔPE or, equivalently, KEi + PEi + Wnc = KEf + PEf .

• When both conservative and nonconservative forces act, energy conservation can be applied and used to calculate motion
in terms of the known potential energies of the conservative forces and the work done by nonconservative forces, instead
of finding the net work from the net force, or having to directly apply Newton’s laws.

7.6 Conservation of Energy
• The law of conservation of energy states that the total energy is constant in any process. Energy may change in form or be

transferred from one system to another, but the total remains the same.
• When all forms of energy are considered, conservation of energy is written in equation form as

KEi + PEi + Wnc + OEi = KEf + PEf + OEf , where OE is all other forms of energy besides mechanical energy.

• Commonly encountered forms of energy include electric energy, chemical energy, radiant energy, nuclear energy, and
thermal energy.

• Energy is often utilized to do work, but it is not possible to convert all the energy of a system to work.

• The efficiency Eff of a machine or human is defined to be Eff = Wout
Ein

, where Wout is useful work output and Ein is

the energy consumed.

7.7 Power
• Power is the rate at which work is done, or in equation form, for the average power P for work W done over a time t ,
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P = W / t .

• The SI unit for power is the watt (W), where 1 W = 1 J/s .

• The power of many devices such as electric motors is also often expressed in horsepower (hp), where 1 hp = 746 W .

7.8 Work, Energy, and Power in Humans
• The human body converts energy stored in food into work, thermal energy, and/or chemical energy that is stored in fatty

tissue.
• The rate at which the body uses food energy to sustain life and to do different activities is called the metabolic rate, and the

corresponding rate when at rest is called the basal metabolic rate (BMR)
• The energy included in the basal metabolic rate is divided among various systems in the body, with the largest fraction

going to the liver and spleen, and the brain coming next.
• About 75% of food calories are used to sustain basic body functions included in the basal metabolic rate.
• The energy consumption of people during various activities can be determined by measuring their oxygen use, because the

digestive process is basically one of oxidizing food.

7.9 World Energy Use
• The relative use of different fuels to provide energy has changed over the years, but fuel use is currently dominated by oil,

although natural gas and solar contributions are increasing.
• Although non-renewable sources dominate, some countries meet a sizeable percentage of their electricity needs from

renewable resources.
• The United States obtains only about 10% of its energy from renewable sources, mostly hydroelectric power.
• Economic well-being is dependent upon energy use, and in most countries higher standards of living, as measured by GDP

(Gross Domestic Product) per capita, are matched by higher levels of energy consumption per capita.
• Even though, in accordance with the law of conservation of energy, energy can never be created or destroyed, energy that

can be used to do work is always partly converted to less useful forms, such as waste heat to the environment, in all of our
uses of energy for practical purposes.

Conceptual Questions

7.1 Work: The Scientific Definition

1. Give an example of something we think of as work in everyday circumstances that is not work in the scientific sense. Is energy
transferred or changed in form in your example? If so, explain how this is accomplished without doing work.

2. Give an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does
no work.

3. Describe a situation in which a force is exerted for a long time but does no work. Explain.

7.2 Kinetic Energy and the Work-Energy Theorem

4. The person in Figure 7.32 does work on the lawn mower. Under what conditions would the mower gain energy? Under what
conditions would it lose energy?

Figure 7.32

5. Work done on a system puts energy into it. Work done by a system removes energy from it. Give an example for each
statement.

6. When solving for speed in Example 7.4, we kept only the positive root. Why?
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7.3 Gravitational Potential Energy

7. In Example 7.7, we calculated the final speed of a roller coaster that descended 20 m in height and had an initial speed of 5
m/s downhill. Suppose the roller coaster had had an initial speed of 5 m/s uphill instead, and it coasted uphill, stopped, and then
rolled back down to a final point 20 m below the start. We would find in that case that its final speed is the same as its initial
speed. Explain in terms of conservation of energy.

8. Does the work you do on a book when you lift it onto a shelf depend on the path taken? On the time taken? On the height of
the shelf? On the mass of the book?

7.4 Conservative Forces and Potential Energy

9. What is a conservative force?

10. The force exerted by a diving board is conservative, provided the internal friction is negligible. Assuming friction is negligible,
describe changes in the potential energy of a diving board as a swimmer dives from it, starting just before the swimmer steps on
the board until just after his feet leave it.

11. Define mechanical energy. What is the relationship of mechanical energy to nonconservative forces? What happens to
mechanical energy if only conservative forces act?

12. What is the relationship of potential energy to conservative force?

7.6 Conservation of Energy

13. Consider the following scenario. A car for which friction is not negligible accelerates from rest down a hill, running out of
gasoline after a short distance. The driver lets the car coast farther down the hill, then up and over a small crest. He then coasts
down that hill into a gas station, where he brakes to a stop and fills the tank with gasoline. Identify the forms of energy the car
has, and how they are changed and transferred in this series of events. (See Figure 7.33.)

Figure 7.33 A car experiencing non-negligible friction coasts down a hill, over a small crest, then downhill again, and comes to a stop at a gas station.

14. Describe the energy transfers and transformations for a javelin, starting from the point at which an athlete picks up the javelin
and ending when the javelin is stuck into the ground after being thrown.

15. Do devices with efficiencies of less than one violate the law of conservation of energy? Explain.

16. List four different forms or types of energy. Give one example of a conversion from each of these forms to another form.

17. List the energy conversions that occur when riding a bicycle.

7.7 Power

18. Most electrical appliances are rated in watts. Does this rating depend on how long the appliance is on? (When off, it is a zero-
watt device.) Explain in terms of the definition of power.

19. Explain, in terms of the definition of power, why energy consumption is sometimes listed in kilowatt-hours rather than joules.
What is the relationship between these two energy units?

20. A spark of static electricity, such as that you might receive from a doorknob on a cold dry day, may carry a few hundred watts
of power. Explain why you are not injured by such a spark.

7.8 Work, Energy, and Power in Humans

21. Explain why it is easier to climb a mountain on a zigzag path rather than one straight up the side. Is your increase in
gravitational potential energy the same in both cases? Is your energy consumption the same in both?

22. Do you do work on the outside world when you rub your hands together to warm them? What is the efficiency of this activity?

23. Shivering is an involuntary response to lowered body temperature. What is the efficiency of the body when shivering, and is
this a desirable value?
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24. Discuss the relative effectiveness of dieting and exercise in losing weight, noting that most athletic activities consume food
energy at a rate of 400 to 500 W, while a single cup of yogurt can contain 1360 kJ (325 kcal). Specifically, is it likely that exercise
alone will be sufficient to lose weight? You may wish to consider that regular exercise may increase the metabolic rate, whereas
protracted dieting may reduce it.

7.9 World Energy Use

25. What is the difference between energy conservation and the law of conservation of energy? Give some examples of each.

26. If the efficiency of a coal-fired electrical generating plant is 35%, then what do we mean when we say that energy is a
conserved quantity?
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Problems & Exercises

7.1 Work: The Scientific Definition

1. How much work does a supermarket checkout attendant
do on a can of soup he pushes 0.600 m horizontally with a
force of 5.00 N? Express your answer in joules and
kilocalories.

2. A 75.0-kg person climbs stairs, gaining 2.50 meters in
height. Find the work done to accomplish this task.

3. (a) Calculate the work done on a 1500-kg elevator car by
its cable to lift it 40.0 m at constant speed, assuming friction
averages 100 N. (b) What is the work done on the lift by the
gravitational force in this process? (c) What is the total work
done on the lift?

4. Suppose a car travels 108 km at a speed of 30.0 m/s, and
uses 2.0 gal of gasoline. Only 30% of the gasoline goes into
useful work by the force that keeps the car moving at
constant speed despite friction. (See Table 7.1 for the energy
content of gasoline.) (a) What is the magnitude of the force
exerted to keep the car moving at constant speed? (b) If the
required force is directly proportional to speed, how many
gallons will be used to drive 108 km at a speed of 28.0 m/s?

5. Calculate the work done by an 85.0-kg man who pushes a
crate 4.00 m up along a ramp that makes an angle of 20.0º
with the horizontal. (See Figure 7.34.) He exerts a force of
500 N on the crate parallel to the ramp and moves at a
constant speed. Be certain to include the work he does on the
crate and on his body to get up the ramp.

Figure 7.34 A man pushes a crate up a ramp.

6. How much work is done by the boy pulling his sister 30.0 m
in a wagon as shown in Figure 7.35? Assume no friction acts
on the wagon.

Figure 7.35 The boy does work on the system of the wagon and the

child when he pulls them as shown.

7. A shopper pushes a grocery cart 20.0 m at constant speed
on level ground, against a 35.0 N frictional force. He pushes
in a direction 25.0º below the horizontal. (a) What is the

work done on the cart by friction? (b) What is the work done
on the cart by the gravitational force? (c) What is the work
done on the cart by the shopper? (d) Find the force the
shopper exerts, using energy considerations. (e) What is the
total work done on the cart?

8. Suppose the ski patrol lowers a rescue sled and victim,
having a total mass of 90.0 kg, down a 60.0º slope at

constant speed, as shown in Figure 7.36. The coefficient of
friction between the sled and the snow is 0.100. (a) How
much work is done by friction as the sled moves 30.0 m along
the hill? (b) How much work is done by the rope on the sled in
this distance? (c) What is the work done by the gravitational
force on the sled? (d) What is the total work done?

Figure 7.36 A rescue sled and victim are lowered down a steep slope.

7.2 Kinetic Energy and the Work-Energy
Theorem

9. Compare the kinetic energy of a 20,000-kg truck moving at
110 km/h with that of an 80.0-kg astronaut in orbit moving at
27,500 km/h.

10. (a) How fast must a 3000-kg elephant move to have the
same kinetic energy as a 65.0-kg sprinter running at 10.0 m/
s? (b) Discuss how the larger energies needed for the
movement of larger animals would relate to metabolic rates.

11. Confirm the value given for the kinetic energy of an
aircraft carrier in Table 7.1. You will need to look up the
definition of a nautical mile (1 knot = 1 nautical mile/h).

12. (a) Calculate the force needed to bring a 950-kg car to
rest from a speed of 90.0 km/h in a distance of 120 m (a fairly
typical distance for a non-panic stop). (b) Suppose instead
the car hits a concrete abutment at full speed and is brought
to a stop in 2.00 m. Calculate the force exerted on the car and
compare it with the force found in part (a).

13. A car’s bumper is designed to withstand a 4.0-km/h
(1.1-m/s) collision with an immovable object without damage
to the body of the car. The bumper cushions the shock by
absorbing the force over a distance. Calculate the magnitude
of the average force on a bumper that collapses 0.200 m
while bringing a 900-kg car to rest from an initial speed of 1.1
m/s.
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14. Boxing gloves are padded to lessen the force of a blow.
(a) Calculate the force exerted by a boxing glove on an
opponent’s face, if the glove and face compress 7.50 cm
during a blow in which the 7.00-kg arm and glove are brought
to rest from an initial speed of 10.0 m/s. (b) Calculate the
force exerted by an identical blow in the days when no gloves
were used and the knuckles and face would compress only
2.00 cm. (c) Discuss the magnitude of the force with glove on.
Does it seem high enough to cause damage even though it is
lower than the force with no glove?

15. Using energy considerations, calculate the average force
a 60.0-kg sprinter exerts backward on the track to accelerate
from 2.00 to 8.00 m/s in a distance of 25.0 m, if he
encounters a headwind that exerts an average force of 30.0 N
against him.

7.3 Gravitational Potential Energy

16. A hydroelectric power facility (see Figure 7.37) converts
the gravitational potential energy of water behind a dam to
electric energy. (a) What is the gravitational potential energy

relative to the generators of a lake of volume 50.0 km3 (

mass = 5.00×1013 kg) , given that the lake has an

average height of 40.0 m above the generators? (b) Compare
this with the energy stored in a 9-megaton fusion bomb.

Figure 7.37 Hydroelectric facility (credit: Denis Belevich, Wikimedia

Commons)

17. (a) How much gravitational potential energy (relative to
the ground on which it is built) is stored in the Great Pyramid

of Cheops, given that its mass is about 7 × 109  kg and its

center of mass is 36.5 m above the surrounding ground? (b)
How does this energy compare with the daily food intake of a
person?

18. Suppose a 350-g kookaburra (a large kingfisher bird)
picks up a 75-g snake and raises it 2.5 m from the ground to
a branch. (a) How much work did the bird do on the snake?
(b) How much work did it do to raise its own center of mass to
the branch?

19. In Example 7.7, we found that the speed of a roller
coaster that had descended 20.0 m was only slightly greater
when it had an initial speed of 5.00 m/s than when it started
from rest. This implies that ΔPE >> KEi . Confirm this

statement by taking the ratio of ΔPE to KEi . (Note that

mass cancels.)

20. A 100-g toy car is propelled by a compressed spring that
starts it moving. The car follows the curved track in Figure
7.38. Show that the final speed of the toy car is 0.687 m/s if
its initial speed is 2.00 m/s and it coasts up the frictionless
slope, gaining 0.180 m in altitude.

Figure 7.38 A toy car moves up a sloped track. (credit: Leszek

Leszczynski, Flickr)

21. In a downhill ski race, surprisingly, little advantage is
gained by getting a running start. (This is because the initial
kinetic energy is small compared with the gain in gravitational
potential energy on even small hills.) To demonstrate this, find
the final speed and the time taken for a skier who skies 70.0
m along a 30º slope neglecting friction: (a) Starting from

rest. (b) Starting with an initial speed of 2.50 m/s. (c) Does the
answer surprise you? Discuss why it is still advantageous to
get a running start in very competitive events.

7.4 Conservative Forces and Potential Energy

22. A 5.00×105-kg subway train is brought to a stop from a

speed of 0.500 m/s in 0.400 m by a large spring bumper at
the end of its track. What is the force constant k of the

spring?

23. A pogo stick has a spring with a force constant of

2.50×104 N/m , which can be compressed 12.0 cm. To

what maximum height can a child jump on the stick using only
the energy in the spring, if the child and stick have a total
mass of 40.0 kg? Explicitly show how you follow the steps in
the Problem-Solving Strategies for Energy.

7.5 Nonconservative Forces

24. A 60.0-kg skier with an initial speed of 12.0 m/s coasts up
a 2.50-m-high rise as shown in Figure 7.39. Find her final
speed at the top, given that the coefficient of friction between
her skis and the snow is 0.0800. (Hint: Find the distance
traveled up the incline assuming a straight-line path as shown
in the figure.)

Figure 7.39 The skier’s initial kinetic energy is partially used in coasting

to the top of a rise.
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25. (a) How high a hill can a car coast up (engine
disengaged) if work done by friction is negligible and its initial
speed is 110 km/h? (b) If, in actuality, a 750-kg car with an
initial speed of 110 km/h is observed to coast up a hill to a
height 22.0 m above its starting point, how much thermal
energy was generated by friction? (c) What is the average
force of friction if the hill has a slope 2.5º above the

horizontal?

7.6 Conservation of Energy

26. Using values from Table 7.1, how many DNA molecules
could be broken by the energy carried by a single electron in
the beam of an old-fashioned TV tube? (These electrons
were not dangerous in themselves, but they did create
dangerous x rays. Later model tube TVs had shielding that
absorbed x rays before they escaped and exposed viewers.)

27. Using energy considerations and assuming negligible air
resistance, show that a rock thrown from a bridge 20.0 m
above water with an initial speed of 15.0 m/s strikes the water
with a speed of 24.8 m/s independent of the direction thrown.

28. If the energy in fusion bombs were used to supply the
energy needs of the world, how many of the 9-megaton
variety would be needed for a year’s supply of energy (using
data from Table 7.1)? This is not as far-fetched as it may
sound—there are thousands of nuclear bombs, and their
energy can be trapped in underground explosions and
converted to electricity, as natural geothermal energy is.

29. (a) Use of hydrogen fusion to supply energy is a dream
that may be realized in the next century. Fusion would be a
relatively clean and almost limitless supply of energy, as can
be seen from Table 7.1. To illustrate this, calculate how many
years the present energy needs of the world could be
supplied by one millionth of the oceans’ hydrogen fusion
energy. (b) How does this time compare with historically
significant events, such as the duration of stable economic
systems?

7.7 Power

30. The Crab Nebula (see Figure 7.40) pulsar is the remnant
of a supernova that occurred in A.D. 1054. Using data from
Table 7.3, calculate the approximate factor by which the
power output of this astronomical object has declined since its
explosion.

Figure 7.40 Crab Nebula (credit: ESO, via Wikimedia Commons)

31. Suppose a star 1000 times brighter than our Sun (that is,
emitting 1000 times the power) suddenly goes supernova.
Using data from Table 7.3: (a) By what factor does its power
output increase? (b) How many times brighter than our entire
Milky Way galaxy is the supernova? (c) Based on your
answers, discuss whether it should be possible to observe
supernovas in distant galaxies. Note that there are on the

order of 1011 observable galaxies, the average brightness

of which is somewhat less than our own galaxy.

32. A person in good physical condition can put out 100 W of
useful power for several hours at a stretch, perhaps by
pedaling a mechanism that drives an electric generator.
Neglecting any problems of generator efficiency and practical
considerations such as resting time: (a) How many people
would it take to run a 4.00-kW electric clothes dryer? (b) How
many people would it take to replace a large electric power
plant that generates 800 MW?

33. What is the cost of operating a 3.00-W electric clock for a
year if the cost of electricity is $0.0900 per kW ⋅ h ?

34. A large household air conditioner may consume 15.0 kW
of power. What is the cost of operating this air conditioner
3.00 h per day for 30.0 d if the cost of electricity is $0.110 per
kW ⋅ h ?

35. (a) What is the average power consumption in watts of an
appliance that uses 5.00 kW ⋅ h of energy per day? (b)

How many joules of energy does this appliance consume in a
year?

36. (a) What is the average useful power output of a person

who does 6.00×106 J of useful work in 8.00 h? (b) Working

at this rate, how long will it take this person to lift 2000 kg of
bricks 1.50 m to a platform? (Work done to lift his body can be
omitted because it is not considered useful output here.)
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37. A 500-kg dragster accelerates from rest to a final speed of
110 m/s in 400 m (about a quarter of a mile) and encounters
an average frictional force of 1200 N. What is its average
power output in watts and horsepower if this takes 7.30 s?

38. (a) How long will it take an 850-kg car with a useful power
output of 40.0 hp (1 hp = 746 W) to reach a speed of 15.0 m/
s, neglecting friction? (b) How long will this acceleration take
if the car also climbs a 3.00-m-high hill in the process?

39. (a) Find the useful power output of an elevator motor that
lifts a 2500-kg load a height of 35.0 m in 12.0 s, if it also
increases the speed from rest to 4.00 m/s. Note that the total
mass of the counterbalanced system is 10,000 kg—so that
only 2500 kg is raised in height, but the full 10,000 kg is
accelerated. (b) What does it cost, if electricity is $0.0900 per
kW ⋅ h ?

40. (a) What is the available energy content, in joules, of a
battery that operates a 2.00-W electric clock for 18 months?

(b) How long can a battery that can supply 8.00×104 J run

a pocket calculator that consumes energy at the rate of

1.00×10−3 W ?

41. (a) How long would it take a 1.50×105 -kg airplane with

engines that produce 100 MW of power to reach a speed of
250 m/s and an altitude of 12.0 km if air resistance were
negligible? (b) If it actually takes 900 s, what is the power? (c)
Given this power, what is the average force of air resistance if
the airplane takes 1200 s? (Hint: You must find the distance
the plane travels in 1200 s assuming constant acceleration.)

42. Calculate the power output needed for a 950-kg car to
climb a 2.00º slope at a constant 30.0 m/s while

encountering wind resistance and friction totaling 600 N.
Explicitly show how you follow the steps in the Problem-
Solving Strategies for Energy.

43. (a) Calculate the power per square meter reaching Earth’s
upper atmosphere from the Sun. (Take the power output of

the Sun to be 4.00×1026 W.) (b) Part of this is absorbed

and reflected by the atmosphere, so that a maximum of

1.30 kW/m2 reaches Earth’s surface. Calculate the area in

km2 of solar energy collectors needed to replace an electric

power plant that generates 750 MW if the collectors convert
an average of 2.00% of the maximum power into electricity.
(This small conversion efficiency is due to the devices
themselves, and the fact that the sun is directly overhead only
briefly.) With the same assumptions, what area would be
needed to meet the United States’ energy needs

(1.05×1020 J)? Australia’s energy needs (5.4×1018 J)?

China’s energy needs (6.3×1019 J)? (These energy

consumption values are from 2006.)

7.8 Work, Energy, and Power in Humans

44. (a) How long can you rapidly climb stairs (116/min) on the
93.0 kcal of energy in a 10.0-g pat of butter? (b) How many
flights is this if each flight has 16 stairs?

45. (a) What is the power output in watts and horsepower of a
70.0-kg sprinter who accelerates from rest to 10.0 m/s in 3.00
s? (b) Considering the amount of power generated, do you
think a well-trained athlete could do this repetitively for long
periods of time?

46. Calculate the power output in watts and horsepower of a
shot-putter who takes 1.20 s to accelerate the 7.27-kg shot
from rest to 14.0 m/s, while raising it 0.800 m. (Do not include
the power produced to accelerate his body.)

Figure 7.41 Shot putter at the Dornoch Highland Gathering in 2007.

(credit: John Haslam, Flickr)

47. (a) What is the efficiency of an out-of-condition professor

who does 2.10×105  J of useful work while metabolizing

500 kcal of food energy? (b) How many food calories would a
well-conditioned athlete metabolize in doing the same work
with an efficiency of 20%?

48. Energy that is not utilized for work or heat transfer is
converted to the chemical energy of body fat containing about
39 kJ/g. How many grams of fat will you gain if you eat
10,000 kJ (about 2500 kcal) one day and do nothing but sit
relaxed for 16.0 h and sleep for the other 8.00 h? Use data
from Table 7.5 for the energy consumption rates of these
activities.

49. Using data from Table 7.5, calculate the daily energy
needs of a person who sleeps for 7.00 h, walks for 2.00 h,
attends classes for 4.00 h, cycles for 2.00 h, sits relaxed for
3.00 h, and studies for 6.00 h. (Studying consumes energy at
the same rate as sitting in class.)

50. What is the efficiency of a subject on a treadmill who puts
out work at the rate of 100 W while consuming oxygen at the
rate of 2.00 L/min? (Hint: See Table 7.5.)

51. Shoveling snow can be extremely taxing because the
arms have such a low efficiency in this activity. Suppose a
person shoveling a footpath metabolizes food at the rate of
800 W. (a) What is her useful power output? (b) How long will
it take her to lift 3000 kg of snow 1.20 m? (This could be the
amount of heavy snow on 20 m of footpath.) (c) How much
waste heat transfer in kilojoules will she generate in the
process?

52. Very large forces are produced in joints when a person
jumps from some height to the ground. (a) Calculate the
magnitude of the force produced if an 80.0-kg person jumps
from a 0.600–m-high ledge and lands stiffly, compressing joint
material 1.50 cm as a result. (Be certain to include the weight
of the person.) (b) In practice the knees bend almost
involuntarily to help extend the distance over which you stop.
Calculate the magnitude of the force produced if the stopping
distance is 0.300 m. (c) Compare both forces with the weight
of the person.
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53. Jogging on hard surfaces with insufficiently padded shoes
produces large forces in the feet and legs. (a) Calculate the
magnitude of the force needed to stop the downward motion
of a jogger’s leg, if his leg has a mass of 13.0 kg, a speed of
6.00 m/s, and stops in a distance of 1.50 cm. (Be certain to
include the weight of the 75.0-kg jogger’s body.) (b) Compare
this force with the weight of the jogger.

54. (a) Calculate the energy in kJ used by a 55.0-kg woman
who does 50 deep knee bends in which her center of mass is
lowered and raised 0.400 m. (She does work in both
directions.) You may assume her efficiency is 20%. (b) What
is the average power consumption rate in watts if she does
this in 3.00 min?

55. Kanellos Kanellopoulos flew 119 km from Crete to
Santorini, Greece, on April 23, 1988, in the Daedalus 88, an
aircraft powered by a bicycle-type drive mechanism (see
Figure 7.42). His useful power output for the 234-min trip was
about 350 W. Using the efficiency for cycling from Table 7.2,
calculate the food energy in kilojoules he metabolized during
the flight.

Figure 7.42 The Daedalus 88 in flight. (credit: NASA photo by Beasley)

56. The swimmer shown in Figure 7.43 exerts an average
horizontal backward force of 80.0 N with his arm during each
1.80 m long stroke. (a) What is his work output in each
stroke? (b) Calculate the power output of his arms if he does
120 strokes per minute.

Figure 7.43

57. Mountain climbers carry bottled oxygen when at very high
altitudes. (a) Assuming that a mountain climber uses oxygen
at twice the rate for climbing 116 stairs per minute (because
of low air temperature and winds), calculate how many liters
of oxygen a climber would need for 10.0 h of climbing. (These
are liters at sea level.) Note that only 40% of the inhaled
oxygen is utilized; the rest is exhaled. (b) How much useful
work does the climber do if he and his equipment have a
mass of 90.0 kg and he gains 1000 m of altitude? (c) What is
his efficiency for the 10.0-h climb?

58. The awe-inspiring Great Pyramid of Cheops was built
more than 4500 years ago. Its square base, originally 230 m
on a side, covered 13.1 acres, and it was 146 m high, with a

mass of about 7×109 kg . (The pyramid’s dimensions are

slightly different today due to quarrying and some sagging.)
Historians estimate that 20,000 workers spent 20 years to
construct it, working 12-hour days, 330 days per year. (a)
Calculate the gravitational potential energy stored in the
pyramid, given its center of mass is at one-fourth its height.
(b) Only a fraction of the workers lifted blocks; most were
involved in support services such as building ramps (see
Figure 7.44), bringing food and water, and hauling blocks to
the site. Calculate the efficiency of the workers who did the
lifting, assuming there were 1000 of them and they consumed
food energy at the rate of 300 kcal/h. What does your answer
imply about how much of their work went into block-lifting,
versus how much work went into friction and lifting and
lowering their own bodies? (c) Calculate the mass of food that
had to be supplied each day, assuming that the average
worker required 3600 kcal per day and that their diet was 5%
protein, 60% carbohydrate, and 35% fat. (These proportions
neglect the mass of bulk and nondigestible materials
consumed.)

Figure 7.44 Ancient pyramids were probably constructed using ramps

as simple machines. (credit: Franck Monnier, Wikimedia Commons)

59. (a) How long can you play tennis on the 800 kJ (about
200 kcal) of energy in a candy bar? (b) Does this seem like a
long time? Discuss why exercise is necessary but may not be
sufficient to cause a person to lose weight.
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7.9 World Energy Use

60. Integrated Concepts

(a) Calculate the force the woman in Figure 7.45 exerts to do
a push-up at constant speed, taking all data to be known to
three digits. (b) How much work does she do if her center of
mass rises 0.240 m? (c) What is her useful power output if
she does 25 push-ups in 1 min? (Should work done lowering
her body be included? See the discussion of useful work in
Work, Energy, and Power in Humans.

Figure 7.45 Forces involved in doing push-ups. The woman’s weight

acts as a force exerted downward on her center of gravity (CG).

61. Integrated Concepts

A 75.0-kg cross-country skier is climbing a 3.0º slope at a

constant speed of 2.00 m/s and encounters air resistance of
25.0 N. Find his power output for work done against the
gravitational force and air resistance. (b) What average force
does he exert backward on the snow to accomplish this? (c) If
he continues to exert this force and to experience the same
air resistance when he reaches a level area, how long will it
take him to reach a velocity of 10.0 m/s?

62. Integrated Concepts

The 70.0-kg swimmer in Figure 7.43 starts a race with an
initial velocity of 1.25 m/s and exerts an average force of 80.0
N backward with his arms during each 1.80 m long stroke. (a)
What is his initial acceleration if water resistance is 45.0 N?
(b) What is the subsequent average resistance force from the
water during the 5.00 s it takes him to reach his top velocity of
2.50 m/s? (c) Discuss whether water resistance seems to
increase linearly with velocity.

63. Integrated Concepts

A toy gun uses a spring with a force constant of 300 N/m to
propel a 10.0-g steel ball. If the spring is compressed 7.00 cm
and friction is negligible: (a) How much force is needed to
compress the spring? (b) To what maximum height can the
ball be shot? (c) At what angles above the horizontal may a
child aim to hit a target 3.00 m away at the same height as
the gun? (d) What is the gun’s maximum range on level
ground?

64. Integrated Concepts

(a) What force must be supplied by an elevator cable to

produce an acceleration of 0.800 m/s2 against a 200-N

frictional force, if the mass of the loaded elevator is 1500 kg?
(b) How much work is done by the cable in lifting the elevator
20.0 m? (c) What is the final speed of the elevator if it starts
from rest? (d) How much work went into thermal energy?

65. Unreasonable Results

A car advertisement claims that its 900-kg car accelerated
from rest to 30.0 m/s and drove 100 km, gaining 3.00 km in
altitude, on 1.0 gal of gasoline. The average force of friction
including air resistance was 700 N. Assume all values are
known to three significant figures. (a) Calculate the car’s
efficiency. (b) What is unreasonable about the result? (c)
Which premise is unreasonable, or which premises are
inconsistent?

66. Unreasonable Results

Body fat is metabolized, supplying 9.30 kcal/g, when dietary
intake is less than needed to fuel metabolism. The
manufacturers of an exercise bicycle claim that you can lose
0.500 kg of fat per day by vigorously exercising for 2.00 h per
day on their machine. (a) How many kcal are supplied by the
metabolization of 0.500 kg of fat? (b) Calculate the kcal/min
that you would have to utilize to metabolize fat at the rate of
0.500 kg in 2.00 h. (c) What is unreasonable about the
results? (d) Which premise is unreasonable, or which
premises are inconsistent?

67. Construct Your Own Problem

Consider a person climbing and descending stairs. Construct
a problem in which you calculate the long-term rate at which
stairs can be climbed considering the mass of the person, his
ability to generate power with his legs, and the height of a
single stair step. Also consider why the same person can
descend stairs at a faster rate for a nearly unlimited time in
spite of the fact that very similar forces are exerted going
down as going up. (This points to a fundamentally different
process for descending versus climbing stairs.)

68. Construct Your Own Problem

Consider humans generating electricity by pedaling a device
similar to a stationary bicycle. Construct a problem in which
you determine the number of people it would take to replace a
large electrical generation facility. Among the things to
consider are the power output that is reasonable using the
legs, rest time, and the need for electricity 24 hours per day.
Discuss the practical implications of your results.

69. Integrated Concepts

A 105-kg basketball player crouches down 0.400 m while
waiting to jump. After exerting a force on the floor through this
0.400 m, his feet leave the floor and his center of gravity rises
0.950 m above its normal standing erect position. (a) Using
energy considerations, calculate his velocity when he leaves
the floor. (b) What average force did he exert on the floor?
(Do not neglect the force to support his weight as well as that
to accelerate him.) (c) What was his power output during the
acceleration phase?
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8 LINEAR MOMENTUM AND COLLISIONS

Figure 8.1 Each rugby player has great momentum, which will affect the outcome of their collisions with each other and the ground. (credit: ozzzie,
Flickr)

Chapter Outline
8.1. Linear Momentum and Force

• Define linear momentum.
• Explain the relationship between momentum and force.
• State Newton’s second law of motion in terms of momentum.
• Calculate momentum given mass and velocity.

8.2. Impulse
• Define impulse.
• Describe effects of impulses in everyday life.
• Determine the average effective force using graphical representation.
• Calculate average force and impulse given mass, velocity, and time.

8.3. Conservation of Momentum
• Describe the principle of conservation of momentum.
• Derive an expression for the conservation of momentum.
• Explain conservation of momentum with examples.
• Explain the principle of conservation of momentum as it relates to atomic and subatomic particles.

8.4. Elastic Collisions in One Dimension
• Describe an elastic collision of two objects in one dimension.
• Define internal kinetic energy.
• Derive an expression for conservation of internal kinetic energy in a one dimensional collision.
• Determine the final velocities in an elastic collision given masses and initial velocities.

8.5. Inelastic Collisions in One Dimension
• Define inelastic collision.
• Explain perfectly inelastic collision.
• Apply an understanding of collisions to sports.
• Determine recoil velocity and loss in kinetic energy given mass and initial velocity.
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8.6. Collisions of Point Masses in Two Dimensions
• Discuss two dimensional collisions as an extension of one dimensional analysis.
• Define point masses.
• Derive an expression for conservation of momentum along x-axis and y-axis.
• Describe elastic collisions of two objects with equal mass.
• Determine the magnitude and direction of the final velocity given initial velocity, and scattering angle.

8.7. Introduction to Rocket Propulsion
• State Newton’s third law of motion.
• Explain the principle involved in propulsion of rockets and jet engines.
• Derive an expression for the acceleration of the rocket and discuss the factors that affect the acceleration.
• Describe the function of a space shuttle.

Introduction to Linear Momentum and Collisions

We use the term momentum in various ways in everyday language, and most of these ways are consistent with its precise
scientific definition. We speak of sports teams or politicians gaining and maintaining the momentum to win. We also recognize
that momentum has something to do with collisions. For example, looking at the rugby players in the photograph colliding and
falling to the ground, we expect their momenta to have great effects in the resulting collisions. Generally, momentum implies a
tendency to continue on course—to move in the same direction—and is associated with great mass and speed.

Momentum, like energy, is important because it is conserved. Only a few physical quantities are conserved in nature, and
studying them yields fundamental insight into how nature works, as we shall see in our study of momentum.

8.1 Linear Momentum and Force

Linear Momentum

The scientific definition of linear momentum is consistent with most people’s intuitive understanding of momentum: a large, fast-
moving object has greater momentum than a smaller, slower object. Linear momentum is defined as the product of a system’s
mass multiplied by its velocity. In symbols, linear momentum is expressed as

(8.1)p = mv.

Momentum is directly proportional to the object’s mass and also its velocity. Thus the greater an object’s mass or the greater its
velocity, the greater its momentum. Momentum p is a vector having the same direction as the velocity v . The SI unit for

momentum is kg · m/s .

Linear Momentum

Linear momentum is defined as the product of a system’s mass multiplied by its velocity:

(8.2)p = mv.

Example 8.1 Calculating Momentum: A Football Player and a Football

(a) Calculate the momentum of a 110-kg football player running at 8.00 m/s. (b) Compare the player’s momentum with the
momentum of a hard-thrown 0.410-kg football that has a speed of 25.0 m/s.

Strategy

No information is given regarding direction, and so we can calculate only the magnitude of the momentum, p . (As usual, a

symbol that is in italics is a magnitude, whereas one that is italicized, boldfaced, and has an arrow is a vector.) In both parts
of this example, the magnitude of momentum can be calculated directly from the definition of momentum given in the
equation, which becomes

(8.3)p = mv

when only magnitudes are considered.

Solution for (a)

To determine the momentum of the player, substitute the known values for the player’s mass and speed into the equation.

(8.4)pplayer = ⎛
⎝110 kg⎞⎠(8.00 m/s) = 880 kg · m/s

Solution for (b)

To determine the momentum of the ball, substitute the known values for the ball’s mass and speed into the equation.

(8.5)pball = ⎛
⎝0.410 kg⎞⎠(25.0 m/s) = 10.3 kg · m/s
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The ratio of the player’s momentum to that of the ball is

(8.6)pplayer
pball

= 880
10.3 = 85.9.

Discussion

Although the ball has greater velocity, the player has a much greater mass. Thus the momentum of the player is much
greater than the momentum of the football, as you might guess. As a result, the player’s motion is only slightly affected if he
catches the ball. We shall quantify what happens in such collisions in terms of momentum in later sections.

Momentum and Newton’s Second Law

The importance of momentum, unlike the importance of energy, was recognized early in the development of classical physics.
Momentum was deemed so important that it was called the “quantity of motion.” Newton actually stated his second law of
motion in terms of momentum: The net external force equals the change in momentum of a system divided by the time over
which it changes. Using symbols, this law is

(8.7)Fnet = Δp
Δt ,

where Fnet is the net external force, Δp is the change in momentum, and Δt is the change in time.

Newton’s Second Law of Motion in Terms of Momentum

The net external force equals the change in momentum of a system divided by the time over which it changes.

(8.8)Fnet = Δp
Δt

Making Connections: Force and Momentum

Force and momentum are intimately related. Force acting over time can change momentum, and Newton’s second law of
motion, can be stated in its most broadly applicable form in terms of momentum. Momentum continues to be a key concept
in the study of atomic and subatomic particles in quantum mechanics.

This statement of Newton’s second law of motion includes the more familiar Fnet =ma as a special case. We can derive this

form as follows. First, note that the change in momentum Δp is given by

(8.9)Δp = Δ⎛⎝mv⎞⎠.

If the mass of the system is constant, then

(8.10)Δ(mv) = mΔv.

So that for constant mass, Newton’s second law of motion becomes

(8.11)Fnet = Δp
Δt = mΔv

Δt .

Because Δv
Δt = a , we get the familiar equation

(8.12)Fnet =ma

when the mass of the system is constant.

Newton’s second law of motion stated in terms of momentum is more generally applicable because it can be applied to systems
where the mass is changing, such as rockets, as well as to systems of constant mass. We will consider systems with varying
mass in some detail; however, the relationship between momentum and force remains useful when mass is constant, such as in
the following example.

Example 8.2 Calculating Force: Venus Williams’ Racquet

During the 2007 French Open, Venus Williams hit the fastest recorded serve in a premier women’s match, reaching a speed
of 58 m/s (209 km/h). What is the average force exerted on the 0.057-kg tennis ball by Venus Williams’ racquet, assuming
that the ball’s speed just after impact is 58 m/s, that the initial horizontal component of the velocity before impact is
negligible, and that the ball remained in contact with the racquet for 5.0 ms (milliseconds)?
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Strategy

This problem involves only one dimension because the ball starts from having no horizontal velocity component before
impact. Newton’s second law stated in terms of momentum is then written as

(8.13)Fnet = Δp
Δt .

As noted above, when mass is constant, the change in momentum is given by

(8.14)Δp = mΔv = m(vf − vi).

In this example, the velocity just after impact and the change in time are given; thus, once Δp is calculated, Fnet = Δp
Δt

can be used to find the force.

Solution

To determine the change in momentum, substitute the values for the initial and final velocities into the equation above.

(8.15)Δp = m(vf – vi)
= ⎛

⎝0.057 kg⎞⎠(58 m/s – 0 m/s)
= 3.306 kg · m/s ≈ 3.3 kg · m/s

Now the magnitude of the net external force can determined by using Fnet = Δp
Δt :

(8.16)
Fnet = Δp

Δt = 3.306 kg ⋅ m/s
5.0×10−3 s

= 661 N ≈ 660 N,

where we have retained only two significant figures in the final step.

Discussion

This quantity was the average force exerted by Venus Williams’ racquet on the tennis ball during its brief impact (note that
the ball also experienced the 0.56-N force of gravity, but that force was not due to the racquet). This problem could also be
solved by first finding the acceleration and then using Fnet = ma , but one additional step would be required compared with

the strategy used in this example.

8.2 Impulse

The effect of a force on an object depends on how long it acts, as well as how great the force is. In Example 8.1, a very large
force acting for a short time had a great effect on the momentum of the tennis ball. A small force could cause the same change
in momentum, but it would have to act for a much longer time. For example, if the ball were thrown upward, the gravitational
force (which is much smaller than the tennis racquet’s force) would eventually reverse the momentum of the ball. Quantitatively,
the effect we are talking about is the change in momentum Δp .

By rearranging the equation Fnet = Δp
Δt to be

(8.17)Δp = FnetΔt,

we can see how the change in momentum equals the average net external force multiplied by the time this force acts. The
quantity Fnet Δt is given the name impulse. Impulse is the same as the change in momentum.

Impulse: Change in Momentum

Change in momentum equals the average net external force multiplied by the time this force acts.

(8.18)Δp = FnetΔt

The quantity Fnet Δt is given the name impulse.

There are many ways in which an understanding of impulse can save lives, or at least limbs. The dashboard padding in a
car, and certainly the airbags, allow the net force on the occupants in the car to act over a much longer time when there is a
sudden stop. The momentum change is the same for an occupant, whether an air bag is deployed or not, but the force (to
bring the occupant to a stop) will be much less if it acts over a larger time. Cars today have many plastic components. One
advantage of plastics is their lighter weight, which results in better gas mileage. Another advantage is that a car will crumple
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in a collision, especially in the event of a head-on collision. A longer collision time means the force on the car will be less.
Deaths during car races decreased dramatically when the rigid frames of racing cars were replaced with parts that could
crumple or collapse in the event of an accident.

Bones in a body will fracture if the force on them is too large. If you jump onto the floor from a table, the force on your legs
can be immense if you land stiff-legged on a hard surface. Rolling on the ground after jumping from the table, or landing with
a parachute, extends the time over which the force (on you from the ground) acts.

Example 8.3 Calculating Magnitudes of Impulses: Two Billiard Balls Striking a Rigid Wall

Two identical billiard balls strike a rigid wall with the same speed, and are reflected without any change of speed. The first
ball strikes perpendicular to the wall. The second ball strikes the wall at an angle of 30º from the perpendicular, and

bounces off at an angle of 30º from perpendicular to the wall.

(a) Determine the direction of the force on the wall due to each ball.

(b) Calculate the ratio of the magnitudes of impulses on the two balls by the wall.

Strategy for (a)

In order to determine the force on the wall, consider the force on the ball due to the wall using Newton’s second law and
then apply Newton’s third law to determine the direction. Assume the x -axis to be normal to the wall and to be positive in

the initial direction of motion. Choose the y -axis to be along the wall in the plane of the second ball’s motion. The

momentum direction and the velocity direction are the same.

Solution for (a)

The first ball bounces directly into the wall and exerts a force on it in the +x direction. Therefore the wall exerts a force on

the ball in the −x direction. The second ball continues with the same momentum component in the y direction, but

reverses its x -component of momentum, as seen by sketching a diagram of the angles involved and keeping in mind the

proportionality between velocity and momentum.

These changes mean the change in momentum for both balls is in the −x direction, so the force of the wall on each ball is

along the −x direction.

Strategy for (b)

Calculate the change in momentum for each ball, which is equal to the impulse imparted to the ball.

Solution for (b)

Let u be the speed of each ball before and after collision with the wall, and m the mass of each ball. Choose the x -axis

and y -axis as previously described, and consider the change in momentum of the first ball which strikes perpendicular to

the wall.

(8.19)pxi = mu; pyi = 0
(8.20)pxf = −mu; pyf = 0

Impulse is the change in momentum vector. Therefore the x -component of impulse is equal to −2mu and the y
-component of impulse is equal to zero.

Now consider the change in momentum of the second ball.

(8.21)pxi = mu cos 30º; pyi = –mu sin 30º
(8.22)pxf = – mu cos 30º; pyf = −mu sin 30º

It should be noted here that while px changes sign after the collision, py does not. Therefore the x -component of

impulse is equal to −2mu cos 30º and the y -component of impulse is equal to zero.

The ratio of the magnitudes of the impulse imparted to the balls is

(8.23)2mu
2mu cos 30º = 2

3
= 1.155.

Discussion

The direction of impulse and force is the same as in the case of (a); it is normal to the wall and along the negative x
-direction. Making use of Newton’s third law, the force on the wall due to each ball is normal to the wall along the positive x
-direction.

Chapter 8 | Linear Momentum and Collisions 291



Our definition of impulse includes an assumption that the force is constant over the time interval Δt . Forces are usually not

constant. Forces vary considerably even during the brief time intervals considered. It is, however, possible to find an average
effective force Feff that produces the same result as the corresponding time-varying force. Figure 8.2 shows a graph of what

an actual force looks like as a function of time for a ball bouncing off the floor. The area under the curve has units of momentum
and is equal to the impulse or change in momentum between times t1 and t2 . That area is equal to the area inside the

rectangle bounded by Feff , t1 , and t2 . Thus the impulses and their effects are the same for both the actual and effective

forces.

Figure 8.2 A graph of force versus time with time along the x -axis and force along the y -axis for an actual force and an equivalent effective force.

The areas under the two curves are equal.

Making Connections: Take-Home Investigation—Hand Movement and Impulse

Try catching a ball while “giving” with the ball, pulling your hands toward your body. Then, try catching a ball while keeping
your hands still. Hit water in a tub with your full palm. After the water has settled, hit the water again by diving your hand with
your fingers first into the water. (Your full palm represents a swimmer doing a belly flop and your diving hand represents a
swimmer doing a dive.) Explain what happens in each case and why. Which orientations would you advise people to avoid
and why?

Making Connections: Constant Force and Constant Acceleration

The assumption of a constant force in the definition of impulse is analogous to the assumption of a constant acceleration in
kinematics. In both cases, nature is adequately described without the use of calculus.

8.3 Conservation of Momentum

Momentum is an important quantity because it is conserved. Yet it was not conserved in the examples in Impulse and Linear
Momentum and Force, where large changes in momentum were produced by forces acting on the system of interest. Under
what circumstances is momentum conserved?

The answer to this question entails considering a sufficiently large system. It is always possible to find a larger system in which
total momentum is constant, even if momentum changes for components of the system. If a football player runs into the goalpost
in the end zone, there will be a force on him that causes him to bounce backward. However, the Earth also recoils —conserving
momentum—because of the force applied to it through the goalpost. Because Earth is many orders of magnitude more massive
than the player, its recoil is immeasurably small and can be neglected in any practical sense, but it is real nevertheless.

Consider what happens if the masses of two colliding objects are more similar than the masses of a football player and
Earth—for example, one car bumping into another, as shown in Figure 8.3. Both cars are coasting in the same direction when
the lead car (labeled m2) is bumped by the trailing car (labeled m1). The only unbalanced force on each car is the force of the

collision. (Assume that the effects due to friction are negligible.) Car 1 slows down as a result of the collision, losing some
momentum, while car 2 speeds up and gains some momentum. We shall now show that the total momentum of the two-car
system remains constant.
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Figure 8.3 A car of mass m1 moving with a velocity of v1 bumps into another car of mass m2 and velocity v2 that it is following. As a result, the

first car slows down to a velocity of v′1 and the second speeds up to a velocity of v′2 . The momentum of each car is changed, but the total

momentum ptot of the two cars is the same before and after the collision (if you assume friction is negligible).

Using the definition of impulse, the change in momentum of car 1 is given by

(8.24)Δp1 = F1Δt,

where F1 is the force on car 1 due to car 2, and Δt is the time the force acts (the duration of the collision). Intuitively, it seems

obvious that the collision time is the same for both cars, but it is only true for objects traveling at ordinary speeds. This
assumption must be modified for objects travelling near the speed of light, without affecting the result that momentum is
conserved.

Similarly, the change in momentum of car 2 is

(8.25)Δp2 = F2Δt,

where F2 is the force on car 2 due to car 1, and we assume the duration of the collision Δt is the same for both cars. We know

from Newton’s third law that F2 = – F1 , and so

(8.26)Δp2 = −F1Δt = −Δp1.

Thus, the changes in momentum are equal and opposite, and

(8.27)Δp1 + Δp2 = 0.

Because the changes in momentum add to zero, the total momentum of the two-car system is constant. That is,

(8.28)p1 + p2 = constant,
(8.29)p1 + p2 = p′1 + p′2,

where p′1 and p′2 are the momenta of cars 1 and 2 after the collision. (We often use primes to denote the final state.)

This result—that momentum is conserved—has validity far beyond the preceding one-dimensional case. It can be similarly
shown that total momentum is conserved for any isolated system, with any number of objects in it. In equation form, the
conservation of momentum principle for an isolated system is written

(8.30)ptot = constant,

or

(8.31)ptot = p′tot,

where ptot is the total momentum (the sum of the momenta of the individual objects in the system) and p′tot is the total
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momentum some time later. (The total momentum can be shown to be the momentum of the center of mass of the system.) An

isolated system is defined to be one for which the net external force is zero ⎛
⎝Fnet = 0⎞⎠.

Conservation of Momentum Principle
(8.32)ptot = constant

ptot = p′tot (isolated system)

Isolated System

An isolated system is defined to be one for which the net external force is zero ⎛
⎝Fnet = 0⎞⎠.

Perhaps an easier way to see that momentum is conserved for an isolated system is to consider Newton’s second law in terms of

momentum, Fnet = Δptot
Δt . For an isolated system, ⎛⎝Fnet = 0⎞⎠ ; thus, Δptot = 0 , and ptot is constant.

We have noted that the three length dimensions in nature— x , y , and z —are independent, and it is interesting to note that

momentum can be conserved in different ways along each dimension. For example, during projectile motion and where air
resistance is negligible, momentum is conserved in the horizontal direction because horizontal forces are zero and momentum is
unchanged. But along the vertical direction, the net vertical force is not zero and the momentum of the projectile is not
conserved. (See Figure 8.4.) However, if the momentum of the projectile-Earth system is considered in the vertical direction, we
find that the total momentum is conserved.

Figure 8.4 The horizontal component of a projectile’s momentum is conserved if air resistance is negligible, even in this case where a space probe

separates. The forces causing the separation are internal to the system, so that the net external horizontal force Fx – net is still zero. The vertical

component of the momentum is not conserved, because the net vertical force Fy – net is not zero. In the vertical direction, the space probe-Earth

system needs to be considered and we find that the total momentum is conserved. The center of mass of the space probe takes the same path it would
if the separation did not occur.

The conservation of momentum principle can be applied to systems as different as a comet striking Earth and a gas containing
huge numbers of atoms and molecules. Conservation of momentum is violated only when the net external force is not zero. But
another larger system can always be considered in which momentum is conserved by simply including the source of the external
force. For example, in the collision of two cars considered above, the two-car system conserves momentum while each one-car
system does not.

Making Connections: Take-Home Investigation—Drop of Tennis Ball and a Basketball

Hold a tennis ball side by side and in contact with a basketball. Drop the balls together. (Be careful!) What happens? Explain
your observations. Now hold the tennis ball above and in contact with the basketball. What happened? Explain your
observations. What do you think will happen if the basketball ball is held above and in contact with the tennis ball?

Making Connections: Take-Home Investigation—Two Tennis Balls in a Ballistic Trajectory

Tie two tennis balls together with a string about a foot long. Hold one ball and let the other hang down and throw it in a
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ballistic trajectory. Explain your observations. Now mark the center of the string with bright ink or attach a brightly colored
sticker to it and throw again. What happened? Explain your observations.

Some aquatic animals such as jellyfish move around based on the principles of conservation of momentum. A jellyfish fills its
umbrella section with water and then pushes the water out resulting in motion in the opposite direction to that of the jet of
water. Squids propel themselves in a similar manner but, in contrast with jellyfish, are able to control the direction in which
they move by aiming their nozzle forward or backward. Typical squids can move at speeds of 8 to 12 km/h.

The ballistocardiograph (BCG) was a diagnostic tool used in the second half of the 20th century to study the strength of the
heart. About once a second, your heart beats, forcing blood into the aorta. A force in the opposite direction is exerted on the
rest of your body (recall Newton’s third law). A ballistocardiograph is a device that can measure this reaction force. This
measurement is done by using a sensor (resting on the person) or by using a moving table suspended from the ceiling. This
technique can gather information on the strength of the heart beat and the volume of blood passing from the heart. However,
the electrocardiogram (ECG or EKG) and the echocardiogram (cardiac ECHO or ECHO; a technique that uses ultrasound to
see an image of the heart) are more widely used in the practice of cardiology.

Making Connections: Conservation of Momentum and Collision

Conservation of momentum is quite useful in describing collisions. Momentum is crucial to our understanding of atomic and
subatomic particles because much of what we know about these particles comes from collision experiments.

Subatomic Collisions and Momentum

The conservation of momentum principle not only applies to the macroscopic objects, it is also essential to our explorations of
atomic and subatomic particles. Giant machines hurl subatomic particles at one another, and researchers evaluate the results by
assuming conservation of momentum (among other things).

On the small scale, we find that particles and their properties are invisible to the naked eye but can be measured with our
instruments, and models of these subatomic particles can be constructed to describe the results. Momentum is found to be a
property of all subatomic particles including massless particles such as photons that compose light. Momentum being a property
of particles hints that momentum may have an identity beyond the description of an object’s mass multiplied by the object’s
velocity. Indeed, momentum relates to wave properties and plays a fundamental role in what measurements are taken and how
we take these measurements. Furthermore, we find that the conservation of momentum principle is valid when considering
systems of particles. We use this principle to analyze the masses and other properties of previously undetected particles, such
as the nucleus of an atom and the existence of quarks that make up particles of nuclei. Figure 8.5 below illustrates how a
particle scattering backward from another implies that its target is massive and dense. Experiments seeking evidence that
quarks make up protons (one type of particle that makes up nuclei) scattered high-energy electrons off of protons (nuclei of
hydrogen atoms). Electrons occasionally scattered straight backward in a manner that implied a very small and very dense
particle makes up the proton—this observation is considered nearly direct evidence of quarks. The analysis was based partly on
the same conservation of momentum principle that works so well on the large scale.

Figure 8.5 A subatomic particle scatters straight backward from a target particle. In experiments seeking evidence for quarks, electrons were observed
to occasionally scatter straight backward from a proton.

8.4 Elastic Collisions in One Dimension

Let us consider various types of two-object collisions. These collisions are the easiest to analyze, and they illustrate many of the
physical principles involved in collisions. The conservation of momentum principle is very useful here, and it can be used
whenever the net external force on a system is zero.
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We start with the elastic collision of two objects moving along the same line—a one-dimensional problem. An elastic collision is
one that also conserves internal kinetic energy. Internal kinetic energy is the sum of the kinetic energies of the objects in the
system. Figure 8.6 illustrates an elastic collision in which internal kinetic energy and momentum are conserved.

Truly elastic collisions can only be achieved with subatomic particles, such as electrons striking nuclei. Macroscopic collisions
can be very nearly, but not quite, elastic—some kinetic energy is always converted into other forms of energy such as heat
transfer due to friction and sound. One macroscopic collision that is nearly elastic is that of two steel blocks on ice. Another
nearly elastic collision is that between two carts with spring bumpers on an air track. Icy surfaces and air tracks are nearly
frictionless, more readily allowing nearly elastic collisions on them.

Elastic Collision

An elastic collision is one that conserves internal kinetic energy.

Internal Kinetic Energy

Internal kinetic energy is the sum of the kinetic energies of the objects in the system.

Figure 8.6 An elastic one-dimensional two-object collision. Momentum and internal kinetic energy are conserved.

Now, to solve problems involving one-dimensional elastic collisions between two objects we can use the equations for
conservation of momentum and conservation of internal kinetic energy. First, the equation for conservation of momentum for two
objects in a one-dimensional collision is

(8.33)p1 + p2 = p′1+ p′2
⎛
⎝Fnet = 0⎞⎠

or

(8.34)m1 v1 + m2v2 = m1v′1 + m2v′2
⎛
⎝Fnet = 0⎞⎠,

where the primes (') indicate values after the collision. By definition, an elastic collision conserves internal kinetic energy, and so
the sum of kinetic energies before the collision equals the sum after the collision. Thus,

(8.35)1
2m1 v1

2 + 1
2m2 v2

2 = 1
2m1 v′1

2 + 1
2m2 v′2

2 (two-object elastic collision)

expresses the equation for conservation of internal kinetic energy in a one-dimensional collision.

Example 8.4 Calculating Velocities Following an Elastic Collision

Calculate the velocities of two objects following an elastic collision, given that
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(8.36)m1 = 0.500 kg, m2 = 3.50 kg, v1 = 4.00 m/s, and v2 = 0.

Strategy and Concept

First, visualize what the initial conditions mean—a small object strikes a larger object that is initially at rest. This situation is
slightly simpler than the situation shown in Figure 8.6 where both objects are initially moving. We are asked to find two
unknowns (the final velocities v′1 and v′2 ). To find two unknowns, we must use two independent equations. Because this

collision is elastic, we can use the above two equations. Both can be simplified by the fact that object 2 is initially at rest, and
thus v2 = 0 . Once we simplify these equations, we combine them algebraically to solve for the unknowns.

Solution

For this problem, note that v2 = 0 and use conservation of momentum. Thus,

(8.37)p1 = p′1 + p′2

or

(8.38)m1 v1 = m1v′1 + m2v′2.

Using conservation of internal kinetic energy and that v2 = 0 ,

(8.39)1
2m1 v1

2 = 1
2m1 v′1

2 + 1
2m2 v′2

2.

Solving the first equation (momentum equation) for v′2 , we obtain

(8.40)v′2 = m1
m2
⎛
⎝v1 − v′1

⎞
⎠.

Substituting this expression into the second equation (internal kinetic energy equation) eliminates the variable v′2 , leaving

only v′1 as an unknown (the algebra is left as an exercise for the reader). There are two solutions to any quadratic

equation; in this example, they are

(8.41)v′1 = 4.00 m/s

and

(8.42)v′1 = −3.00 m/s.

As noted when quadratic equations were encountered in earlier chapters, both solutions may or may not be meaningful. In
this case, the first solution is the same as the initial condition. The first solution thus represents the situation before the
collision and is discarded. The second solution (v′1 = −3.00 m/s) is negative, meaning that the first object bounces

backward. When this negative value of v′1 is used to find the velocity of the second object after the collision, we get

(8.43)
v′2 = m1

m2
⎛
⎝v1 − v′1

⎞
⎠ = 0.500 kg

3.50 kg
⎡
⎣4.00 − (−3.00)⎤⎦ m/s

or

(8.44)v′2 = 1.00 m/s.

Discussion

The result of this example is intuitively reasonable. A small object strikes a larger one at rest and bounces backward. The
larger one is knocked forward, but with a low speed. (This is like a compact car bouncing backward off a full-size SUV that is
initially at rest.) As a check, try calculating the internal kinetic energy before and after the collision. You will see that the
internal kinetic energy is unchanged at 4.00 J. Also check the total momentum before and after the collision; you will find it,
too, is unchanged.

The equations for conservation of momentum and internal kinetic energy as written above can be used to describe any one-
dimensional elastic collision of two objects. These equations can be extended to more objects if needed.

Making Connections: Take-Home Investigation—Ice Cubes and Elastic Collision

Find a few ice cubes which are about the same size and a smooth kitchen tabletop or a table with a glass top. Place the ice
cubes on the surface several centimeters away from each other. Flick one ice cube toward a stationary ice cube and
observe the path and velocities of the ice cubes after the collision. Try to avoid edge-on collisions and collisions with rotating
ice cubes. Have you created approximately elastic collisions? Explain the speeds and directions of the ice cubes using
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momentum.

PhET Explorations: Collision Lab

Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial
conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42163/1.8/#Phet_module_9.4)
Figure 8.7

8.5 Inelastic Collisions in One Dimension

We have seen that in an elastic collision, internal kinetic energy is conserved. An inelastic collision is one in which the internal
kinetic energy changes (it is not conserved). This lack of conservation means that the forces between colliding objects may
remove or add internal kinetic energy. Work done by internal forces may change the forms of energy within a system. For
inelastic collisions, such as when colliding objects stick together, this internal work may transform some internal kinetic energy
into heat transfer. Or it may convert stored energy into internal kinetic energy, such as when exploding bolts separate a satellite
from its launch vehicle.

Inelastic Collision

An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).

Figure 8.8 shows an example of an inelastic collision. Two objects that have equal masses head toward one another at equal

speeds and then stick together. Their total internal kinetic energy is initially 1
2mv2 + 1

2mv2 = mv2 . The two objects come to

rest after sticking together, conserving momentum. But the internal kinetic energy is zero after the collision. A collision in which
the objects stick together is sometimes called a perfectly inelastic collision because it reduces internal kinetic energy more
than does any other type of inelastic collision. In fact, such a collision reduces internal kinetic energy to the minimum it can have
while still conserving momentum.

Perfectly Inelastic Collision

A collision in which the objects stick together is sometimes called “perfectly inelastic.”

Figure 8.8 An inelastic one-dimensional two-object collision. Momentum is conserved, but internal kinetic energy is not conserved. (a) Two objects of
equal mass initially head directly toward one another at the same speed. (b) The objects stick together (a perfectly inelastic collision), and so their final
velocity is zero. The internal kinetic energy of the system changes in any inelastic collision and is reduced to zero in this example.

Example 8.5 Calculating Velocity and Change in Kinetic Energy: Inelastic Collision of a Puck
and a Goalie

(a) Find the recoil velocity of a 70.0-kg ice hockey goalie, originally at rest, who catches a 0.150-kg hockey puck slapped at
him at a velocity of 35.0 m/s. (b) How much kinetic energy is lost during the collision? Assume friction between the ice and
the puck-goalie system is negligible. (See Figure 8.9 )
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Figure 8.9 An ice hockey goalie catches a hockey puck and recoils backward. The initial kinetic energy of the puck is almost entirely converted to
thermal energy and sound in this inelastic collision.

Strategy

Momentum is conserved because the net external force on the puck-goalie system is zero. We can thus use conservation of
momentum to find the final velocity of the puck and goalie system. Note that the initial velocity of the goalie is zero and that
the final velocity of the puck and goalie are the same. Once the final velocity is found, the kinetic energies can be calculated
before and after the collision and compared as requested.

Solution for (a)

Momentum is conserved because the net external force on the puck-goalie system is zero.

Conservation of momentum is

(8.45)p1 + p2 = p′1 + p′2

or

(8.46)m1 v1 + m2v2 = m1v′1 + m2v′2.

Because the goalie is initially at rest, we know v2 = 0 . Because the goalie catches the puck, the final velocities are equal,

or v′1 = v′2 = v′ . Thus, the conservation of momentum equation simplifies to

(8.47)m1 v1 = (m1 + m2)v′.

Solving for v′ yields

(8.48)v′ = m1
m1 + m2

v1.

Entering known values in this equation, we get

(8.49)
v′ = ⎛⎝

0.150 kg
0.150 kg + 70.0 kg

⎞
⎠(35.0 m/s) = 7.48×10−2 m/s.

Discussion for (a)

This recoil velocity is small and in the same direction as the puck’s original velocity, as we might expect.

Solution for (b)

Before the collision, the internal kinetic energy KEint of the system is that of the hockey puck, because the goalie is initially

at rest. Therefore, KEint is initially

(8.50)KEint = 1
2mv2 = 1

2
⎛
⎝0.150 kg⎞⎠(35.0 m/s)2

= 91.9 J.
After the collision, the internal kinetic energy is

(8.51)
KE′int = 1

2(m + M)v2 = 1
2
⎛
⎝70.15 kg⎞⎠⎛⎝7.48×10−2 m/s⎞⎠

2

= 0.196 J.
The change in internal kinetic energy is thus
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(8.52)KE′int − KEint = 0.196 J − 91.9 J
= − 91.7 J

where the minus sign indicates that the energy was lost.

Discussion for (b)

Nearly all of the initial internal kinetic energy is lost in this perfectly inelastic collision. KEint is mostly converted to thermal

energy and sound.

During some collisions, the objects do not stick together and less of the internal kinetic energy is removed—such as
happens in most automobile accidents. Alternatively, stored energy may be converted into internal kinetic energy during a
collision. Figure 8.10 shows a one-dimensional example in which two carts on an air track collide, releasing potential energy
from a compressed spring. Example 8.6 deals with data from such a collision.

Figure 8.10 An air track is nearly frictionless, so that momentum is conserved. Motion is one-dimensional. In this collision, examined in Example
8.6, the potential energy of a compressed spring is released during the collision and is converted to internal kinetic energy.

Collisions are particularly important in sports and the sporting and leisure industry utilizes elastic and inelastic collisions. Let
us look briefly at tennis. Recall that in a collision, it is momentum and not force that is important. So, a heavier tennis racquet
will have the advantage over a lighter one. This conclusion also holds true for other sports—a lightweight bat (such as a
softball bat) cannot hit a hardball very far.

The location of the impact of the tennis ball on the racquet is also important, as is the part of the stroke during which the
impact occurs. A smooth motion results in the maximizing of the velocity of the ball after impact and reduces sports injuries
such as tennis elbow. A tennis player tries to hit the ball on the “sweet spot” on the racquet, where the vibration and impact
are minimized and the ball is able to be given more velocity. Sports science and technologies also use physics concepts
such as momentum and rotational motion and vibrations.

Take-Home Experiment—Bouncing of Tennis Ball
1. Find a racquet (a tennis, badminton, or other racquet will do). Place the racquet on the floor and stand on the handle.

Drop a tennis ball on the strings from a measured height. Measure how high the ball bounces. Now ask a friend to hold
the racquet firmly by the handle and drop a tennis ball from the same measured height above the racquet. Measure
how high the ball bounces and observe what happens to your friend’s hand during the collision. Explain your
observations and measurements.

2. The coefficient of restitution (c) is a measure of the elasticity of a collision between a ball and an object, and is

defined as the ratio of the speeds after and before the collision. A perfectly elastic collision has a c of 1. For a ball

bouncing off the floor (or a racquet on the floor), c can be shown to be c = (h / H)1 / 2 where h is the height to

which the ball bounces and H is the height from which the ball is dropped. Determine c for the cases in Part 1 and
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for the case of a tennis ball bouncing off a concrete or wooden floor ( c = 0.85 for new tennis balls used on a tennis

court).

Example 8.6 Calculating Final Velocity and Energy Release: Two Carts Collide

In the collision pictured in Figure 8.10, two carts collide inelastically. Cart 1 (denoted m1 carries a spring which is initially

compressed. During the collision, the spring releases its potential energy and converts it to internal kinetic energy. The mass
of cart 1 and the spring is 0.350 kg, and the cart and the spring together have an initial velocity of 2.00 m/s . Cart 2

(denoted m2 in Figure 8.10) has a mass of 0.500 kg and an initial velocity of −0.500 m/s . After the collision, cart 1 is

observed to recoil with a velocity of −4.00 m/s . (a) What is the final velocity of cart 2? (b) How much energy was released

by the spring (assuming all of it was converted into internal kinetic energy)?

Strategy

We can use conservation of momentum to find the final velocity of cart 2, because Fnet = 0 (the track is frictionless and

the force of the spring is internal). Once this velocity is determined, we can compare the internal kinetic energy before and
after the collision to see how much energy was released by the spring.

Solution for (a)

As before, the equation for conservation of momentum in a two-object system is

(8.53)m1 v1 + m2v2 = m1v′1 + m2v′2 .

The only unknown in this equation is v′2 . Solving for v′2 and substituting known values into the previous equation yields

(8.54)
v′2 = m1 v1 + m2v2 − m1 v′1

m2

=
⎛
⎝0.350 kg⎞⎠(2.00 m/s) + ⎛

⎝0.500 kg⎞⎠(−0.500 m/s)
0.500 kg −

⎛
⎝0.350 kg⎞⎠(−4.00 m/s)

0.500 kg
= 3.70 m/s.

Solution for (b)

The internal kinetic energy before the collision is

(8.55)KEint = 1
2m1 v1

2 + 1
2m2 v2

2

= 1
2
⎛
⎝0.350 kg⎞⎠(2.00 m/s)2 + 1

2
⎛
⎝0.500 kg⎞⎠( – 0.500 m/s)2

= 0.763 J.
After the collision, the internal kinetic energy is

(8.56)KE′int = 1
2m1 v′1

2 + 1
2m2 v′2

2

= 1
2
⎛
⎝0.350 kg⎞⎠(-4.00 m/s)2 + 1

2
⎛
⎝0.500 kg⎞⎠(3.70 m/s)2

= 6.22 J.
The change in internal kinetic energy is thus

(8.57)KE′int − KEint = 6.22 J − 0.763 J
= 5.46 J.

Discussion

The final velocity of cart 2 is large and positive, meaning that it is moving to the right after the collision. The internal kinetic
energy in this collision increases by 5.46 J. That energy was released by the spring.

8.6 Collisions of Point Masses in Two Dimensions

In the previous two sections, we considered only one-dimensional collisions; during such collisions, the incoming and outgoing
velocities are all along the same line. But what about collisions, such as those between billiard balls, in which objects scatter to
the side? These are two-dimensional collisions, and we shall see that their study is an extension of the one-dimensional analysis
already presented. The approach taken (similar to the approach in discussing two-dimensional kinematics and dynamics) is to
choose a convenient coordinate system and resolve the motion into components along perpendicular axes. Resolving the motion
yields a pair of one-dimensional problems to be solved simultaneously.
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One complication arising in two-dimensional collisions is that the objects might rotate before or after their collision. For example,
if two ice skaters hook arms as they pass by one another, they will spin in circles. We will not consider such rotation until later,
and so for now we arrange things so that no rotation is possible. To avoid rotation, we consider only the scattering of point
masses—that is, structureless particles that cannot rotate or spin.

We start by assuming that Fnet = 0 , so that momentum p is conserved. The simplest collision is one in which one of the

particles is initially at rest. (See Figure 8.11.) The best choice for a coordinate system is one with an axis parallel to the velocity
of the incoming particle, as shown in Figure 8.11. Because momentum is conserved, the components of momentum along the
x - and y -axes (px and py) will also be conserved, but with the chosen coordinate system, py is initially zero and px is the

momentum of the incoming particle. Both facts simplify the analysis. (Even with the simplifying assumptions of point masses, one
particle initially at rest, and a convenient coordinate system, we still gain new insights into nature from the analysis of two-
dimensional collisions.)

Figure 8.11 A two-dimensional collision with the coordinate system chosen so that m2 is initially at rest and v1 is parallel to the x -axis. This

coordinate system is sometimes called the laboratory coordinate system, because many scattering experiments have a target that is stationary in the
laboratory, while particles are scattered from it to determine the particles that make-up the target and how they are bound together. The particles may
not be observed directly, but their initial and final velocities are.

Along the x -axis, the equation for conservation of momentum is

(8.58)p1x + p2x = p′1x + p′2x.

Where the subscripts denote the particles and axes and the primes denote the situation after the collision. In terms of masses
and velocities, this equation is

(8.59)m1 v1x + m2v2x = m1v′1x + m2v′2x.

But because particle 2 is initially at rest, this equation becomes

(8.60)m1 v1x = m1v′1x + m2v′2x.

The components of the velocities along the x -axis have the form v cos θ . Because particle 1 initially moves along the x -axis,

we find v1x = v1 .

Conservation of momentum along the x -axis gives the following equation:

(8.61)m1 v1 = m1v′1 cos θ1 + m2v′2 cos θ2,

where θ1 and θ2 are as shown in Figure 8.11.

Conservation of Momentum along the x -axis

(8.62)m1 v1 = m1v′1 cos θ1 + m2v′2 cos θ2

Along the y -axis, the equation for conservation of momentum is

(8.63)p1y + p2y = p′1y + p′2y

or
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(8.64)m1 v1y + m2v2y = m1v′1y + m2v′2y.

But v1y is zero, because particle 1 initially moves along the x -axis. Because particle 2 is initially at rest, v2y is also zero. The

equation for conservation of momentum along the y -axis becomes

(8.65)0 = m1v′1y + m2v′2y.

The components of the velocities along the y -axis have the form v sin θ .

Thus, conservation of momentum along the y -axis gives the following equation:

(8.66)0 = m1v′1 sin θ1 + m2v′2 sin θ2.

Conservation of Momentum along the y -axis

(8.67)0 = m1v′1 sin θ1 + m2v′2 sin θ2

The equations of conservation of momentum along the x -axis and y -axis are very useful in analyzing two-dimensional

collisions of particles, where one is originally stationary (a common laboratory situation). But two equations can only be used to
find two unknowns, and so other data may be necessary when collision experiments are used to explore nature at the subatomic
level.

Example 8.7 Determining the Final Velocity of an Unseen Object from the Scattering of Another
Object

Suppose the following experiment is performed. A 0.250-kg object (m1) is slid on a frictionless surface into a dark room,

where it strikes an initially stationary object with mass of 0.400 kg (m2) . The 0.250-kg object emerges from the room at an

angle of 45.0º with its incoming direction.

The speed of the 0.250-kg object is originally 2.00 m/s and is 1.50 m/s after the collision. Calculate the magnitude and
direction of the velocity (v′2 and θ2) of the 0.400-kg object after the collision.

Strategy

Momentum is conserved because the surface is frictionless. The coordinate system shown in Figure 8.12 is one in which
m2 is originally at rest and the initial velocity is parallel to the x -axis, so that conservation of momentum along the x - and

y -axes is applicable.

Everything is known in these equations except v′2 and θ2 , which are precisely the quantities we wish to find. We can find

two unknowns because we have two independent equations: the equations describing the conservation of momentum in the
x - and y -directions.

Solution

Solving m1 v1 = m1v′1 cos θ1 + m2v′2 cos θ2 for v2′ cos θ2 and 0 = m1v′1 sin θ1 + m2v′2 sin θ2 for

v′2 sin θ2 and taking the ratio yields an equation (in which θ2 is the only unknown quantity. Applying the identity

⎛
⎝tan θ = sin θ

cos θ
⎞
⎠ , we obtain:

(8.68)
tan θ2 =

v′1 sin θ1
v′1 cos θ1 − v1

.

Entering known values into the previous equation gives

(8.69)tan θ2 = (1.50 m/s)(0.7071)
(1.50 m/s)(0.7071) − 2.00 m/s = −1.129.

Thus,

(8.70)θ2 = tan−1(−1.129) = 311.5º ≈ 312º.

Angles are defined as positive in the counter clockwise direction, so this angle indicates that m2 is scattered to the right in

Figure 8.12, as expected (this angle is in the fourth quadrant). Either equation for the x - or y -axis can now be used to
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solve for v′2 , but the latter equation is easiest because it has fewer terms.

(8.71)
v′2 = −m1

m2
v′1

sin θ1
sin θ2

Entering known values into this equation gives

(8.72)
v′2 = −⎛⎝

0.250 kg
0.400 kg

⎞
⎠(1.50 m/s)⎛⎝ 0.7071

−0.7485
⎞
⎠.

Thus,

(8.73)v′2 = 0.886 m/s.

Discussion

It is instructive to calculate the internal kinetic energy of this two-object system before and after the collision. (This
calculation is left as an end-of-chapter problem.) If you do this calculation, you will find that the internal kinetic energy is less
after the collision, and so the collision is inelastic. This type of result makes a physicist want to explore the system further.

A purple ball of mass m1 and velocity v one moves in the right direction
into a dark room. It collides with an object of mass m two of value zero
point four zero milligrams which was initially at rest and then leaves the

dark room from the top right hand side making an angle of forty-five
degrees with the horizontal and at velocity v one prime. The net external

force on the system is zero. The momentum before and after collision
remains the same. The velocity v two prime of the mass m two and the

angle theta two it would make with the horizontal after collision not
given.

Figure 8.12 A collision taking place in a dark room is explored in Example 8.7. The incoming object m1 is scattered by an initially stationary object.

Only the stationary object’s mass m2 is known. By measuring the angle and speed at which m1 emerges from the room, it is possible to calculate

the magnitude and direction of the initially stationary object’s velocity after the collision.

Elastic Collisions of Two Objects with Equal Mass

Some interesting situations arise when the two colliding objects have equal mass and the collision is elastic. This situation is
nearly the case with colliding billiard balls, and precisely the case with some subatomic particle collisions. We can thus get a
mental image of a collision of subatomic particles by thinking about billiards (or pool). (Refer to Figure 8.11 for masses and
angles.) First, an elastic collision conserves internal kinetic energy. Again, let us assume object 2 (m2) is initially at rest. Then,

the internal kinetic energy before and after the collision of two objects that have equal masses is

(8.74)1
2mv1

2 = 1
2mv′1

2 + 1
2mv′2

2.

Because the masses are equal, m1 = m2 = m . Algebraic manipulation (left to the reader) of conservation of momentum in the

x - and y -directions can show that

(8.75)1
2mv1

2 = 1
2mv′1

2 + 1
2mv′2

2 + mv′1v′2 cos⎛⎝θ1 − θ2
⎞
⎠.

(Remember that θ2 is negative here.) The two preceding equations can both be true only if

(8.76)mv′1 v′2 cos⎛⎝θ1 − θ2
⎞
⎠ = 0.

There are three ways that this term can be zero. They are

• v′1 = 0 : head-on collision; incoming ball stops

• v′2 = 0 : no collision; incoming ball continues unaffected

• cos(θ1 − θ2) = 0 : angle of separation (θ1 − θ2) is 90º after the collision

All three of these ways are familiar occurrences in billiards and pool, although most of us try to avoid the second. If you play
enough pool, you will notice that the angle between the balls is very close to 90º after the collision, although it will vary from this

value if a great deal of spin is placed on the ball. (Large spin carries in extra energy and a quantity called angular momentum,
which must also be conserved.) The assumption that the scattering of billiard balls is elastic is reasonable based on the
correctness of the three results it produces. This assumption also implies that, to a good approximation, momentum is conserved
for the two-ball system in billiards and pool. The problems below explore these and other characteristics of two-dimensional
collisions.
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Connections to Nuclear and Particle Physics

Two-dimensional collision experiments have revealed much of what we know about subatomic particles, as we shall see in
Medical Applications of Nuclear Physics and Particle Physics. Ernest Rutherford, for example, discovered the nature of
the atomic nucleus from such experiments.

8.7 Introduction to Rocket Propulsion

Rockets range in size from fireworks so small that ordinary people use them to immense Saturn Vs that once propelled massive
payloads toward the Moon. The propulsion of all rockets, jet engines, deflating balloons, and even squids and octopuses is
explained by the same physical principle—Newton’s third law of motion. Matter is forcefully ejected from a system, producing an
equal and opposite reaction on what remains. Another common example is the recoil of a gun. The gun exerts a force on a bullet
to accelerate it and consequently experiences an equal and opposite force, causing the gun’s recoil or kick.

Making Connections: Take-Home Experiment—Propulsion of a Balloon

Hold a balloon and fill it with air. Then, let the balloon go. In which direction does the air come out of the balloon and in which
direction does the balloon get propelled? If you fill the balloon with water and then let the balloon go, does the balloon’s
direction change? Explain your answer.

Figure 8.13 shows a rocket accelerating straight up. In part (a), the rocket has a mass m and a velocity v relative to Earth, and

hence a momentum mv . In part (b), a time Δt has elapsed in which the rocket has ejected a mass Δm of hot gas at a

velocity ve relative to the rocket. The remainder of the mass (m − Δm) now has a greater velocity (v + Δv) . The momentum

of the entire system (rocket plus expelled gas) has actually decreased because the force of gravity has acted for a time Δt ,

producing a negative impulse Δp = −mgΔt . (Remember that impulse is the net external force on a system multiplied by the

time it acts, and it equals the change in momentum of the system.) So, the center of mass of the system is in free fall but, by
rapidly expelling mass, part of the system can accelerate upward. It is a commonly held misconception that the rocket exhaust
pushes on the ground. If we consider thrust; that is, the force exerted on the rocket by the exhaust gases, then a rocket’s thrust is
greater in outer space than in the atmosphere or on the launch pad. In fact, gases are easier to expel into a vacuum.

By calculating the change in momentum for the entire system over Δt , and equating this change to the impulse, the following

expression can be shown to be a good approximation for the acceleration of the rocket.

(8.77)a = ve
m

Δm
Δt − g

“The rocket” is that part of the system remaining after the gas is ejected, and g is the acceleration due to gravity.

Acceleration of a Rocket

Acceleration of a rocket is

(8.78)a = ve
m

Δm
Δt − g,

where a is the acceleration of the rocket, ve is the exhaust velocity, m is the mass of the rocket, Δm is the mass of the

ejected gas, and Δt is the time in which the gas is ejected.
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Figure 8.13 (a) This rocket has a mass m and an upward velocity v . The net external force on the system is −mg , if air resistance is neglected.

(b) A time Δt later the system has two main parts, the ejected gas and the remainder of the rocket. The reaction force on the rocket is what

overcomes the gravitational force and accelerates it upward.

A rocket’s acceleration depends on three major factors, consistent with the equation for acceleration of a rocket . First, the
greater the exhaust velocity of the gases relative to the rocket, ve , the greater the acceleration is. The practical limit for ve is

about 2.5×103 m/s for conventional (non-nuclear) hot-gas propulsion systems. The second factor is the rate at which mass is

ejected from the rocket. This is the factor Δm / Δt in the equation. The quantity (Δm / Δt)ve , with units of newtons, is called

"thrust.” The faster the rocket burns its fuel, the greater its thrust, and the greater its acceleration. The third factor is the mass m
of the rocket. The smaller the mass is (all other factors being the same), the greater the acceleration. The rocket mass m
decreases dramatically during flight because most of the rocket is fuel to begin with, so that acceleration increases continuously,
reaching a maximum just before the fuel is exhausted.

Factors Affecting a Rocket’s Acceleration
• The greater the exhaust velocity ve of the gases relative to the rocket, the greater the acceleration.

• The faster the rocket burns its fuel, the greater its acceleration.
• The smaller the rocket’s mass (all other factors being the same), the greater the acceleration.

Example 8.8 Calculating Acceleration: Initial Acceleration of a Moon Launch

A Saturn V’s mass at liftoff was 2.80×106 kg , its fuel-burn rate was 1.40×104 kg/s , and the exhaust velocity was

2.40×103 m/s . Calculate its initial acceleration.

Strategy

This problem is a straightforward application of the expression for acceleration because a is the unknown and all of the

terms on the right side of the equation are given.

Solution

Substituting the given values into the equation for acceleration yields

306 Chapter 8 | Linear Momentum and Collisions

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



(8.79)a = ve
m

Δm
Δt − g

= 2.40×103 m/s
2.80×106 kg

⎛
⎝1.40×104 kg/s⎞⎠− 9.80 m/s2

= 2.20 m/s2 .
Discussion

This value is fairly small, even for an initial acceleration. The acceleration does increase steadily as the rocket burns fuel,

because m decreases while ve and Δm
Δt remain constant. Knowing this acceleration and the mass of the rocket, you can

show that the thrust of the engines was 3.36×107 N .

To achieve the high speeds needed to hop continents, obtain orbit, or escape Earth’s gravity altogether, the mass of the rocket
other than fuel must be as small as possible. It can be shown that, in the absence of air resistance and neglecting gravity, the
final velocity of a one-stage rocket initially at rest is

(8.80)v = ve ln m0
mr

,

where ln⎛⎝m0 / mr
⎞
⎠ is the natural logarithm of the ratio of the initial mass of the rocket (m0) to what is left (mr) after all of the

fuel is exhausted. (Note that v is actually the change in velocity, so the equation can be used for any segment of the flight. If we

start from rest, the change in velocity equals the final velocity.) For example, let us calculate the mass ratio needed to escape

Earth’s gravity starting from rest, given that the escape velocity from Earth is about 11.2×103 m/s , and assuming an exhaust

velocity ve = 2.5×103 m/s .

(8.81)
ln m0

mr
= v

ve
= 11.2×103 m/s

2.5×103 m/s
= 4.48

Solving for m0 / mr gives

(8.82)m0
mr

= e4.48 = 88.

Thus, the mass of the rocket is

(8.83)mr = m0
88 .

This result means that only 1 / 88 of the mass is left when the fuel is burnt, and 87 / 88 of the initial mass was fuel. Expressed

as percentages, 98.9% of the rocket is fuel, while payload, engines, fuel tanks, and other components make up only 1.10%.
Taking air resistance and gravitational force into account, the mass mr remaining can only be about m0 / 180 . It is difficult to

build a rocket in which the fuel has a mass 180 times everything else. The solution is multistage rockets. Each stage only needs
to achieve part of the final velocity and is discarded after it burns its fuel. The result is that each successive stage can have
smaller engines and more payload relative to its fuel. Once out of the atmosphere, the ratio of payload to fuel becomes more
favorable, too.

The space shuttle was an attempt at an economical vehicle with some reusable parts, such as the solid fuel boosters and the
craft itself. (See Figure 8.14) The shuttle’s need to be operated by humans, however, made it at least as costly for launching
satellites as expendable, unpiloted rockets. Ideally, the shuttle would only have been used when human activities were required
for the success of a mission, such as the repair of the Hubble space telescope. Rockets with satellites can also be launched from
airplanes. Using airplanes has the double advantage that the initial velocity is significantly above zero and a rocket can avoid
most of the atmosphere’s resistance.
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change in momentum:

conservation of momentum principle:

elastic collision:

impulse:

inelastic collision:

internal kinetic energy:

isolated system:

linear momentum:

perfectly inelastic collision:

point masses:

quark:

second law of motion:

Figure 8.14 The space shuttle had a number of reusable parts. Solid fuel boosters on either side were recovered and refueled after each flight, and the
entire orbiter returned to Earth for use in subsequent flights. The large liquid fuel tank was expended. The space shuttle was a complex assemblage of
technologies, employing both solid and liquid fuel and pioneering ceramic tiles as reentry heat shields. As a result, it permitted multiple launches as
opposed to single-use rockets. (credit: NASA)

PhET Explorations: Lunar Lander

Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of
this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel
consumption rate, and lunar gravity. The real lunar lander is very hard to control.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42166/
1.12/#Phet_module_9.7)

Figure 8.15

Glossary

the difference between the final and initial momentum; the mass times the change in velocity

when the net external force is zero, the total momentum of the system is conserved
or constant

a collision that also conserves internal kinetic energy

the average net external force times the time it acts; equal to the change in momentum

a collision in which internal kinetic energy is not conserved

the sum of the kinetic energies of the objects in a system

a system in which the net external force is zero

the product of mass and velocity

a collision in which the colliding objects stick together

structureless particles with no rotation or spin

fundamental constituent of matter and an elementary particle

physical law that states that the net external force equals the change in momentum of a system
divided by the time over which it changes
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Section Summary

8.1 Linear Momentum and Force
• Linear momentum (momentum for brevity) is defined as the product of a system’s mass multiplied by its velocity.
• In symbols, linear momentum p is defined to be

p = mv,
where m is the mass of the system and v is its velocity.

• The SI unit for momentum is kg · m/s .

• Newton’s second law of motion in terms of momentum states that the net external force equals the change in momentum of
a system divided by the time over which it changes.

• In symbols, Newton’s second law of motion is defined to be

Fnet = Δp
Δt ,

Fnet is the net external force, Δp is the change in momentum, and Δt is the change time.

8.2 Impulse
• Impulse, or change in momentum, equals the average net external force multiplied by the time this force acts:

Δp = FnetΔt.
• Forces are usually not constant over a period of time.

8.3 Conservation of Momentum
• The conservation of momentum principle is written

ptot = constant
or

ptot = p′tot (isolated system),
ptot is the initial total momentum and p′tot is the total momentum some time later.

• An isolated system is defined to be one for which the net external force is zero ⎛
⎝Fnet = 0⎞⎠.

• During projectile motion and where air resistance is negligible, momentum is conserved in the horizontal direction because
horizontal forces are zero.

• Conservation of momentum applies only when the net external force is zero.
• The conservation of momentum principle is valid when considering systems of particles.

8.4 Elastic Collisions in One Dimension
• An elastic collision is one that conserves internal kinetic energy.
• Conservation of kinetic energy and momentum together allow the final velocities to be calculated in terms of initial velocities

and masses in one dimensional two-body collisions.

8.5 Inelastic Collisions in One Dimension
• An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).
• A collision in which the objects stick together is sometimes called perfectly inelastic because it reduces internal kinetic

energy more than does any other type of inelastic collision.
• Sports science and technologies also use physics concepts such as momentum and rotational motion and vibrations.

8.6 Collisions of Point Masses in Two Dimensions
• The approach to two-dimensional collisions is to choose a convenient coordinate system and break the motion into

components along perpendicular axes. Choose a coordinate system with the x -axis parallel to the velocity of the incoming

particle.
• Two-dimensional collisions of point masses where mass 2 is initially at rest conserve momentum along the initial direction

of mass 1 (the x -axis), stated by m1 v1 = m1v′1 cos θ1 + m2v′2 cos θ2 and along the direction perpendicular to the

initial direction (the y -axis) stated by 0 = m1v′1y +m2v′2y .

• The internal kinetic before and after the collision of two objects that have equal masses is

1
2mv1

2 = 1
2mv′1

2 + 1
2mv′2

2 + mv′1v′2 cos⎛⎝θ1 − θ2
⎞
⎠.

• Point masses are structureless particles that cannot spin.
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8.7 Introduction to Rocket Propulsion
• Newton’s third law of motion states that to every action, there is an equal and opposite reaction.

• Acceleration of a rocket is a = ve
m

Δm
Δt − g .

• A rocket’s acceleration depends on three main factors. They are

1. The greater the exhaust velocity of the gases, the greater the acceleration.
2. The faster the rocket burns its fuel, the greater its acceleration.
3. The smaller the rocket's mass, the greater the acceleration.

Conceptual Questions

8.1 Linear Momentum and Force

1. An object that has a small mass and an object that has a large mass have the same momentum. Which object has the largest
kinetic energy?

2. An object that has a small mass and an object that has a large mass have the same kinetic energy. Which mass has the
largest momentum?

3. Professional Application

Football coaches advise players to block, hit, and tackle with their feet on the ground rather than by leaping through the air.
Using the concepts of momentum, work, and energy, explain how a football player can be more effective with his feet on the
ground.

4. How can a small force impart the same momentum to an object as a large force?

8.2 Impulse

5. Professional Application

Explain in terms of impulse how padding reduces forces in a collision. State this in terms of a real example, such as the
advantages of a carpeted vs. tile floor for a day care center.

6. While jumping on a trampoline, sometimes you land on your back and other times on your feet. In which case can you reach a
greater height and why?

7. Professional Application

Tennis racquets have “sweet spots.” If the ball hits a sweet spot then the player's arm is not jarred as much as it would be
otherwise. Explain why this is the case.

8.3 Conservation of Momentum

8. Professional Application

If you dive into water, you reach greater depths than if you do a belly flop. Explain this difference in depth using the concept of
conservation of energy. Explain this difference in depth using what you have learned in this chapter.

9. Under what circumstances is momentum conserved?

10. Can momentum be conserved for a system if there are external forces acting on the system? If so, under what conditions? If
not, why not?

11. Momentum for a system can be conserved in one direction while not being conserved in another. What is the angle between
the directions? Give an example.

12. Professional Application

Explain in terms of momentum and Newton’s laws how a car’s air resistance is due in part to the fact that it pushes air in its
direction of motion.

13. Can objects in a system have momentum while the momentum of the system is zero? Explain your answer.

14. Must the total energy of a system be conserved whenever its momentum is conserved? Explain why or why not.

8.4 Elastic Collisions in One Dimension

15. What is an elastic collision?

8.5 Inelastic Collisions in One Dimension

16. What is an inelastic collision? What is a perfectly inelastic collision?

17. Mixed-pair ice skaters performing in a show are standing motionless at arms length just before starting a routine. They reach
out, clasp hands, and pull themselves together by only using their arms. Assuming there is no friction between the blades of their
skates and the ice, what is their velocity after their bodies meet?
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18. A small pickup truck that has a camper shell slowly coasts toward a red light with negligible friction. Two dogs in the back of
the truck are moving and making various inelastic collisions with each other and the walls. What is the effect of the dogs on the
motion of the center of mass of the system (truck plus entire load)? What is their effect on the motion of the truck?

8.6 Collisions of Point Masses in Two Dimensions

19. Figure 8.16 shows a cube at rest and a small object heading toward it. (a) Describe the directions (angle θ1 ) at which the

small object can emerge after colliding elastically with the cube. How does θ1 depend on b , the so-called impact parameter?

Ignore any effects that might be due to rotation after the collision, and assume that the cube is much more massive than the
small object. (b) Answer the same questions if the small object instead collides with a massive sphere.

Figure 8.16 A small object approaches a collision with a much more massive cube, after which its velocity has the direction θ1 . The angles at which

the small object can be scattered are determined by the shape of the object it strikes and the impact parameter b .

8.7 Introduction to Rocket Propulsion

20. Professional Application

Suppose a fireworks shell explodes, breaking into three large pieces for which air resistance is negligible. How is the motion of
the center of mass affected by the explosion? How would it be affected if the pieces experienced significantly more air resistance
than the intact shell?

21. Professional Application

During a visit to the International Space Station, an astronaut was positioned motionless in the center of the station, out of reach
of any solid object on which he could exert a force. Suggest a method by which he could move himself away from this position,
and explain the physics involved.

22. Professional Application

It is possible for the velocity of a rocket to be greater than the exhaust velocity of the gases it ejects. When that is the case, the
gas velocity and gas momentum are in the same direction as that of the rocket. How is the rocket still able to obtain thrust by
ejecting the gases?
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Problems & Exercises

8.1 Linear Momentum and Force

1. (a) Calculate the momentum of a 2000-kg elephant
charging a hunter at a speed of 7.50 m/s . (b) Compare the

elephant’s momentum with the momentum of a 0.0400-kg
tranquilizer dart fired at a speed of 600 m/s . (c) What is the

momentum of the 90.0-kg hunter running at 7.40 m/s after

missing the elephant?

2. (a) What is the mass of a large ship that has a momentum

of 1.60×109 kg · m/s , when the ship is moving at a speed

of 48.0 km/h? (b) Compare the ship’s momentum to the

momentum of a 1100-kg artillery shell fired at a speed of
1200 m/s .

3. (a) At what speed would a 2.00×104-kg airplane have to

fly to have a momentum of 1.60×109 kg · m/s (the same as

the ship’s momentum in the problem above)? (b) What is the
plane’s momentum when it is taking off at a speed of
60.0 m/s ? (c) If the ship is an aircraft carrier that launches

these airplanes with a catapult, discuss the implications of
your answer to (b) as it relates to recoil effects of the catapult
on the ship.

4. (a) What is the momentum of a garbage truck that is

1.20×104 kg and is moving at 10.0 m/s ? (b) At what

speed would an 8.00-kg trash can have the same momentum
as the truck?

5. A runaway train car that has a mass of 15,000 kg travels at
a speed of 5.4 m/s down a track. Compute the time required

for a force of 1500 N to bring the car to rest.

6. The mass of Earth is 5.972×1024 kg and its orbital

radius is an average of 1.496×1011 m . Calculate its linear

momentum.

8.2 Impulse

7. A bullet is accelerated down the barrel of a gun by hot
gases produced in the combustion of gun powder. What is the
average force exerted on a 0.0300-kg bullet to accelerate it to
a speed of 600 m/s in a time of 2.00 ms (milliseconds)?

8. Professional Application

A car moving at 10 m/s crashes into a tree and stops in 0.26
s. Calculate the force the seat belt exerts on a passenger in
the car to bring him to a halt. The mass of the passenger is
70 kg.

9. A person slaps her leg with her hand, bringing her hand to
rest in 2.50 milliseconds from an initial speed of 4.00 m/s. (a)
What is the average force exerted on the leg, taking the
effective mass of the hand and forearm to be 1.50 kg? (b)
Would the force be any different if the woman clapped her
hands together at the same speed and brought them to rest in
the same time? Explain why or why not.

10. Professional Application

A professional boxer hits his opponent with a 1000-N
horizontal blow that lasts for 0.150 s. (a) Calculate the
impulse imparted by this blow. (b) What is the opponent’s final
velocity, if his mass is 105 kg and he is motionless in midair
when struck near his center of mass? (c) Calculate the recoil
velocity of the opponent’s 10.0-kg head if hit in this manner,
assuming the head does not initially transfer significant
momentum to the boxer’s body. (d) Discuss the implications
of your answers for parts (b) and (c).

11. Professional Application

Suppose a child drives a bumper car head on into the side
rail, which exerts a force of 4000 N on the car for 0.200 s. (a)
What impulse is imparted by this force? (b) Find the final
velocity of the bumper car if its initial velocity was 2.80 m/s
and the car plus driver have a mass of 200 kg. You may
neglect friction between the car and floor.

12. Professional Application

One hazard of space travel is debris left by previous
missions. There are several thousand objects orbiting Earth
that are large enough to be detected by radar, but there are
far greater numbers of very small objects, such as flakes of
paint. Calculate the force exerted by a 0.100-mg chip of paint
that strikes a spacecraft window at a relative speed of

4.00×103 m/s , given the collision lasts 6.00×10 – 8 s .

13. Professional Application

A 75.0-kg person is riding in a car moving at 20.0 m/s when
the car runs into a bridge abutment. (a) Calculate the average
force on the person if he is stopped by a padded dashboard
that compresses an average of 1.00 cm. (b) Calculate the
average force on the person if he is stopped by an air bag
that compresses an average of 15.0 cm.

14. Professional Application

Military rifles have a mechanism for reducing the recoil forces
of the gun on the person firing it. An internal part recoils over
a relatively large distance and is stopped by damping
mechanisms in the gun. The larger distance reduces the
average force needed to stop the internal part. (a) Calculate
the recoil velocity of a 1.00-kg plunger that directly interacts
with a 0.0200-kg bullet fired at 600 m/s from the gun. (b) If
this part is stopped over a distance of 20.0 cm, what average
force is exerted upon it by the gun? (c) Compare this to the
force exerted on the gun if the bullet is accelerated to its
velocity in 10.0 ms (milliseconds).

15. A cruise ship with a mass of 1.00×107 kg strikes a pier

at a speed of 0.750 m/s. It comes to rest 6.00 m later,
damaging the ship, the pier, and the tugboat captain’s
finances. Calculate the average force exerted on the pier
using the concept of impulse. (Hint: First calculate the time it
took to bring the ship to rest.)

16. Calculate the final speed of a 110-kg rugby player who is
initially running at 8.00 m/s but collides head-on with a
padded goalpost and experiences a backward force of

1.76×104 N for 5.50×10–2 s .

17. Water from a fire hose is directed horizontally against a
wall at a rate of 50.0 kg/s and a speed of 42.0 m/s. Calculate
the magnitude of the force exerted on the wall, assuming the
water’s horizontal momentum is reduced to zero.
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18. A 0.450-kg hammer is moving horizontally at 7.00 m/s
when it strikes a nail and comes to rest after driving the nail
1.00 cm into a board. (a) Calculate the duration of the impact.
(b) What was the average force exerted on the nail?

19. Starting with the definitions of momentum and kinetic
energy, derive an equation for the kinetic energy of a particle
expressed as a function of its momentum.

20. A ball with an initial velocity of 10 m/s moves at an angle
60º above the +x -direction. The ball hits a vertical wall and

bounces off so that it is moving 60º above the −x -direction

with the same speed. What is the impulse delivered by the
wall?

21. When serving a tennis ball, a player hits the ball when its
velocity is zero (at the highest point of a vertical toss). The
racquet exerts a force of 540 N on the ball for 5.00 ms, giving
it a final velocity of 45.0 m/s. Using these data, find the mass
of the ball.

22. A punter drops a ball from rest vertically 1 meter down
onto his foot. The ball leaves the foot with a speed of 18 m/s
at an angle 55º above the horizontal. What is the impulse

delivered by the foot (magnitude and direction)?

8.3 Conservation of Momentum

23. Professional Application

Train cars are coupled together by being bumped into one
another. Suppose two loaded train cars are moving toward
one another, the first having a mass of 150,000 kg and a
velocity of 0.300 m/s, and the second having a mass of
110,000 kg and a velocity of −0.120 m/s . (The minus

indicates direction of motion.) What is their final velocity?

24. Suppose a clay model of a koala bear has a mass of
0.200 kg and slides on ice at a speed of 0.750 m/s. It runs
into another clay model, which is initially motionless and has
a mass of 0.350 kg. Both being soft clay, they naturally stick
together. What is their final velocity?

25. Professional Application

Consider the following question: A car moving at 10 m/s
crashes into a tree and stops in 0.26 s. Calculate the force
the seatbelt exerts on a passenger in the car to bring him to a
halt. The mass of the passenger is 70 kg. Would the answer
to this question be different if the car with the 70-kg
passenger had collided with a car that has a mass equal to
and is traveling in the opposite direction and at the same
speed? Explain your answer.

26. What is the velocity of a 900-kg car initially moving at 30.0
m/s, just after it hits a 150-kg deer initially running at 12.0 m/s
in the same direction? Assume the deer remains on the car.

27. A 1.80-kg falcon catches a 0.650-kg dove from behind in
midair. What is their velocity after impact if the falcon’s
velocity is initially 28.0 m/s and the dove’s velocity is 7.00 m/s
in the same direction?

8.4 Elastic Collisions in One Dimension

28. Two identical objects (such as billiard balls) have a one-
dimensional collision in which one is initially motionless. After
the collision, the moving object is stationary and the other
moves with the same speed as the other originally had. Show
that both momentum and kinetic energy are conserved.

29. Professional Application

Two piloted satellites approach one another at a relative
speed of 0.250 m/s, intending to dock. The first has a mass of

4.00×103 kg , and the second a mass of 7.50×103 kg . If

the two satellites collide elastically rather than dock, what is
their final relative velocity?

30. A 70.0-kg ice hockey goalie, originally at rest, catches a
0.150-kg hockey puck slapped at him at a velocity of 35.0 m/
s. Suppose the goalie and the ice puck have an elastic
collision and the puck is reflected back in the direction from
which it came. What would their final velocities be in this
case?

8.5 Inelastic Collisions in One Dimension

31. A 0.240-kg billiard ball that is moving at 3.00 m/s strikes
the bumper of a pool table and bounces straight back at 2.40
m/s (80% of its original speed). The collision lasts 0.0150 s.
(a) Calculate the average force exerted on the ball by the
bumper. (b) How much kinetic energy in joules is lost during
the collision? (c) What percent of the original energy is left?

32. During an ice show, a 60.0-kg skater leaps into the air and
is caught by an initially stationary 75.0-kg skater. (a) What is
their final velocity assuming negligible friction and that the
60.0-kg skater’s original horizontal velocity is 4.00 m/s? (b)
How much kinetic energy is lost?

33. Professional Application

Using mass and speed data from Example 8.1 and assuming
that the football player catches the ball with his feet off the
ground with both of them moving horizontally, calculate: (a)
the final velocity if the ball and player are going in the same
direction and (b) the loss of kinetic energy in this case. (c)
Repeat parts (a) and (b) for the situation in which the ball and
the player are going in opposite directions. Might the loss of
kinetic energy be related to how much it hurts to catch the
pass?

34. A battleship that is 6.00×107 kg and is originally at rest

fires a 1100-kg artillery shell horizontally with a velocity of 575
m/s. (a) If the shell is fired straight aft (toward the rear of the
ship), there will be negligible friction opposing the ship’s
recoil. Calculate its recoil velocity. (b) Calculate the increase
in internal kinetic energy (that is, for the ship and the shell).
This energy is less than the energy released by the gun
powder—significant heat transfer occurs.

35. Professional Application

Two piloted satellites approaching one another, at a relative
speed of 0.250 m/s, intending to dock. The first has a mass of

4.00×103 kg , and the second a mass of 7.50×103 kg .

(a) Calculate the final velocity (after docking) by using the
frame of reference in which the first satellite was originally at
rest. (b) What is the loss of kinetic energy in this inelastic
collision? (c) Repeat both parts by using the frame of
reference in which the second satellite was originally at rest.
Explain why the change in velocity is different in the two
frames, whereas the change in kinetic energy is the same in
both.

36. Professional Application

A 30,000-kg freight car is coasting at 0.850 m/s with
negligible friction under a hopper that dumps 110,000 kg of
scrap metal into it. (a) What is the final velocity of the loaded
freight car? (b) How much kinetic energy is lost?
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37. Professional Application

Space probes may be separated from their launchers by
exploding bolts. (They bolt away from one another.) Suppose
a 4800-kg satellite uses this method to separate from the
1500-kg remains of its launcher, and that 5000 J of kinetic
energy is supplied to the two parts. What are their
subsequent velocities using the frame of reference in which
they were at rest before separation?

38. A 0.0250-kg bullet is accelerated from rest to a speed of
550 m/s in a 3.00-kg rifle. The pain of the rifle’s kick is much
worse if you hold the gun loosely a few centimeters from your
shoulder rather than holding it tightly against your shoulder.
(a) Calculate the recoil velocity of the rifle if it is held loosely
away from the shoulder. (b) How much kinetic energy does
the rifle gain? (c) What is the recoil velocity if the rifle is held
tightly against the shoulder, making the effective mass 28.0
kg? (d) How much kinetic energy is transferred to the rifle-
shoulder combination? The pain is related to the amount of
kinetic energy, which is significantly less in this latter situation.
(e) Calculate the momentum of a 110-kg football player
running at 8.00 m/s. Compare the player’s momentum with
the momentum of a hard-thrown 0.410-kg football that has a
speed of 25.0 m/s. Discuss its relationship to this problem.

39. Professional Application

One of the waste products of a nuclear reactor is

plutonium-239
⎛
⎝239 Pu⎞⎠ . This nucleus is radioactive and

decays by splitting into a helium-4 nucleus and a uranium-235

nucleus
⎛
⎝4 He + 235 U⎞⎠ , the latter of which is also

radioactive and will itself decay some time later. The energy

emitted in the plutonium decay is 8.40×10 – 13 J and is

entirely converted to kinetic energy of the helium and uranium

nuclei. The mass of the helium nucleus is 6.68×10 – 27 kg ,

while that of the uranium is 3.92×10 – 25 kg (note that the

ratio of the masses is 4 to 235). (a) Calculate the velocities of
the two nuclei, assuming the plutonium nucleus is originally at
rest. (b) How much kinetic energy does each nucleus carry
away? Note that the data given here are accurate to three
digits only.

40. Professional Application

The Moon’s craters are remnants of meteorite collisions.
Suppose a fairly large asteroid that has a mass of

5.00×1012 kg (about a kilometer across) strikes the Moon

at a speed of 15.0 km/s. (a) At what speed does the Moon
recoil after the perfectly inelastic collision (the mass of the

Moon is 7.36×1022 kg ) ? (b) How much kinetic energy is

lost in the collision? Such an event may have been observed
by medieval English monks who reported observing a red
glow and subsequent haze about the Moon. (c) In October
2009, NASA crashed a rocket into the Moon, and analyzed
the plume produced by the impact. (Significant amounts of
water were detected.) Answer part (a) and (b) for this real-life
experiment. The mass of the rocket was 2000 kg and its
speed upon impact was 9000 km/h. How does the plume
produced alter these results?

41. Professional Application

Two football players collide head-on in midair while trying to
catch a thrown football. The first player is 95.0 kg and has an
initial velocity of 6.00 m/s, while the second player is 115 kg
and has an initial velocity of –3.50 m/s. What is their velocity
just after impact if they cling together?

42. What is the speed of a garbage truck that is

1.20×104 kg and is initially moving at 25.0 m/s just after it

hits and adheres to a trash can that is 80.0 kg and is initially
at rest?

43. During a circus act, an elderly performer thrills the crowd
by catching a cannon ball shot at him. The cannon ball has a
mass of 10.0 kg and the horizontal component of its velocity
is 8.00 m/s when the 65.0-kg performer catches it. If the
performer is on nearly frictionless roller skates, what is his
recoil velocity?

44. (a) During an ice skating performance, an initially
motionless 80.0-kg clown throws a fake barbell away. The
clown’s ice skates allow her to recoil frictionlessly. If the clown
recoils with a velocity of 0.500 m/s and the barbell is thrown
with a velocity of 10.0 m/s, what is the mass of the barbell?
(b) How much kinetic energy is gained by this maneuver? (c)
Where does the kinetic energy come from?

8.6 Collisions of Point Masses in Two
Dimensions

45. Two identical pucks collide on an air hockey table. One
puck was originally at rest. (a) If the incoming puck has a
speed of 6.00 m/s and scatters to an angle of 30.0º ,what is

the velocity (magnitude and direction) of the second puck?
(You may use the result that θ1 − θ2 = 90º for elastic

collisions of objects that have identical masses.) (b) Confirm
that the collision is elastic.

46. Confirm that the results of the example Example 8.7 do
conserve momentum in both the x - and y -directions.

47. A 3000-kg cannon is mounted so that it can recoil only in
the horizontal direction. (a) Calculate its recoil velocity when it
fires a 15.0-kg shell at 480 m/s at an angle of 20.0º above

the horizontal. (b) What is the kinetic energy of the cannon?
This energy is dissipated as heat transfer in shock absorbers
that stop its recoil. (c) What happens to the vertical
component of momentum that is imparted to the cannon
when it is fired?

48. Professional Application

A 5.50-kg bowling ball moving at 9.00 m/s collides with a
0.850-kg bowling pin, which is scattered at an angle of 85.0º
to the initial direction of the bowling ball and with a speed of
15.0 m/s. (a) Calculate the final velocity (magnitude and
direction) of the bowling ball. (b) Is the collision elastic? (c)
Linear kinetic energy is greater after the collision. Discuss
how spin on the ball might be converted to linear kinetic
energy in the collision.
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49. Professional Application

Ernest Rutherford (the first New Zealander to be awarded the
Nobel Prize in Chemistry) demonstrated that nuclei were very

small and dense by scattering helium-4 nuclei
⎛
⎝4 He⎞⎠ from

gold-197 nuclei
⎛
⎝197 Au⎞⎠ . The energy of the incoming helium

nucleus was 8.00×10−13 J , and the masses of the helium

and gold nuclei were 6.68×10−27 kg and

3.29×10−25 kg , respectively (note that their mass ratio is 4

to 197). (a) If a helium nucleus scatters to an angle of 120º
during an elastic collision with a gold nucleus, calculate the
helium nucleus’s final speed and the final velocity (magnitude
and direction) of the gold nucleus. (b) What is the final kinetic
energy of the helium nucleus?

50. Professional Application

Two cars collide at an icy intersection and stick together
afterward. The first car has a mass of 1200 kg and is
approaching at 8.00 m/s due south. The second car has a

mass of 850 kg and is approaching at 17.0 m/s due west.

(a) Calculate the final velocity (magnitude and direction) of
the cars. (b) How much kinetic energy is lost in the collision?
(This energy goes into deformation of the cars.) Note that
because both cars have an initial velocity, you cannot use the
equations for conservation of momentum along the x -axis

and y -axis; instead, you must look for other simplifying

aspects.

51. Starting with equations
m1 v1 = m1v′1 cos θ1 + m2v′2 cos θ2 and

0 = m1v′1 sin θ1 + m2v′2 sin θ2 for conservation of

momentum in the x - and y -directions and assuming that

one object is originally stationary, prove that for an elastic
collision of two objects of equal masses,
1
2mv1

2 = 1
2mv′1

2+1
2mv′2

2+mv′1v′2 cos ⎛⎝θ1 − θ2
⎞
⎠

as discussed in the text.

52. Integrated Concepts

A 90.0-kg ice hockey player hits a 0.150-kg puck, giving the
puck a velocity of 45.0 m/s. If both are initially at rest and if
the ice is frictionless, how far does the player recoil in the
time it takes the puck to reach the goal 15.0 m away?

8.7 Introduction to Rocket Propulsion

53. Professional Application

Antiballistic missiles (ABMs) are designed to have very large
accelerations so that they may intercept fast-moving incoming
missiles in the short time available. What is the takeoff
acceleration of a 10,000-kg ABM that expels 196 kg of gas

per second at an exhaust velocity of 2.50×103 m/s?
54. Professional Application

What is the acceleration of a 5000-kg rocket taking off from
the Moon, where the acceleration due to gravity is only

1.6 m/s2 , if the rocket expels 8.00 kg of gas per second at

an exhaust velocity of 2.20×103 m/s?

55. Professional Application

Calculate the increase in velocity of a 4000-kg space probe
that expels 3500 kg of its mass at an exhaust velocity of

2.00×103 m/s . You may assume the gravitational force is

negligible at the probe’s location.

56. Professional Application

Ion-propulsion rockets have been proposed for use in space.
They employ atomic ionization techniques and nuclear energy
sources to produce extremely high exhaust velocities,

perhaps as great as 8.00×106 m/s . These techniques

allow a much more favorable payload-to-fuel ratio. To
illustrate this fact: (a) Calculate the increase in velocity of a
20,000-kg space probe that expels only 40.0-kg of its mass at
the given exhaust velocity. (b) These engines are usually
designed to produce a very small thrust for a very long
time—the type of engine that might be useful on a trip to the
outer planets, for example. Calculate the acceleration of such

an engine if it expels 4.50×10−6 kg/s at the given velocity,

assuming the acceleration due to gravity is negligible.

57. Derive the equation for the vertical acceleration of a
rocket.

58. Professional Application

(a) Calculate the maximum rate at which a rocket can expel
gases if its acceleration cannot exceed seven times that of
gravity. The mass of the rocket just as it runs out of fuel is

75,000-kg, and its exhaust velocity is 2.40×103 m/s .

Assume that the acceleration of gravity is the same as on

Earth’s surface
⎛
⎝9.80 m/s2⎞⎠ . (b) Why might it be necessary

to limit the acceleration of a rocket?

59. Given the following data for a fire extinguisher-toy wagon
rocket experiment, calculate the average exhaust velocity of
the gases expelled from the extinguisher. Starting from rest,
the final velocity is 10.0 m/s. The total mass is initially 75.0 kg
and is 70.0 kg after the extinguisher is fired.

60. How much of a single-stage rocket that is 100,000 kg can
be anything but fuel if the rocket is to have a final speed of
8.00 km/s , given that it expels gases at an exhaust velocity

of 2.20×103 m/s?
61. Professional Application

(a) A 5.00-kg squid initially at rest ejects 0.250-kg of fluid with
a velocity of 10.0 m/s. What is the recoil velocity of the squid
if the ejection is done in 0.100 s and there is a 5.00-N
frictional force opposing the squid’s movement. (b) How much
energy is lost to work done against friction?

62. Unreasonable Results

Squids have been reported to jump from the ocean and travel
30.0 m (measured horizontally) before re-entering the

water. (a) Calculate the initial speed of the squid if it leaves
the water at an angle of 20.0º , assuming negligible lift from

the air and negligible air resistance. (b) The squid propels
itself by squirting water. What fraction of its mass would it
have to eject in order to achieve the speed found in the
previous part? The water is ejected at 12.0 m/s ;

gravitational force and friction are neglected. (c) What is
unreasonable about the results? (d) Which premise is
unreasonable, or which premises are inconsistent?
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63. Construct Your Own Problem

Consider an astronaut in deep space cut free from her space
ship and needing to get back to it. The astronaut has a few
packages that she can throw away to move herself toward the
ship. Construct a problem in which you calculate the time it
takes her to get back by throwing all the packages at one time
compared to throwing them one at a time. Among the things
to be considered are the masses involved, the force she can
exert on the packages through some distance, and the
distance to the ship.

64. Construct Your Own Problem

Consider an artillery projectile striking armor plating.
Construct a problem in which you find the force exerted by
the projectile on the plate. Among the things to be considered
are the mass and speed of the projectile and the distance
over which its speed is reduced. Your instructor may also
wish for you to consider the relative merits of depleted
uranium versus lead projectiles based on the greater density
of uranium.
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9 STATICS AND TORQUE

Figure 9.1 On a short time scale, rocks like these in Australia’s Kings Canyon are static, or motionless relative to the Earth. (credit:
freeaussiestock.com)

Chapter Outline
9.1. The First Condition for Equilibrium

• State the first condition of equilibrium.
• Explain static equilibrium.
• Explain dynamic equilibrium.

9.2. The Second Condition for Equilibrium
• State the second condition that is necessary to achieve equilibrium.
• Explain torque and the factors on which it depends.
• Describe the role of torque in rotational mechanics.

9.3. Stability
• State the types of equilibrium.
• Describe stable and unstable equilibriums.
• Describe neutral equilibrium.

9.4. Applications of Statics, Including Problem-Solving Strategies
• Discuss the applications of Statics in real life.
• State and discuss various problem-solving strategies in Statics.

9.5. Simple Machines
• Describe different simple machines.
• Calculate the mechanical advantage.

9.6. Forces and Torques in Muscles and Joints
• Explain the forces exerted by muscles.
• State how a bad posture causes back strain.
• Discuss the benefits of skeletal muscles attached close to joints.
• Discuss various complexities in the real system of muscles, bones, and joints.

Introduction to Statics and Torque

What might desks, bridges, buildings, trees, and mountains have in common—at least in the eyes of a physicist? The answer is
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that they are ordinarily motionless relative to the Earth. Furthermore, their acceleration is zero because they remain motionless.
That means they also have something in common with a car moving at a constant velocity, because anything with a constant
velocity also has an acceleration of zero. Now, the important part—Newton’s second law states that net F = ma , and so the net

external force is zero for all stationary objects and for all objects moving at constant velocity. There are forces acting, but they are
balanced. That is, they are in equilibrium.

Statics

Statics is the study of forces in equilibrium, a large group of situations that makes up a special case of Newton’s second law.
We have already considered a few such situations; in this chapter, we cover the topic more thoroughly, including
consideration of such possible effects as the rotation and deformation of an object by the forces acting on it.

How can we guarantee that a body is in equilibrium and what can we learn from systems that are in equilibrium? There are
actually two conditions that must be satisfied to achieve equilibrium. These conditions are the topics of the first two sections of
this chapter.

9.1 The First Condition for Equilibrium

The first condition necessary to achieve equilibrium is the one already mentioned: the net external force on the system must be
zero. Expressed as an equation, this is simply

(9.1)net F = 0

Note that if net F is zero, then the net external force in any direction is zero. For example, the net external forces along the

typical x- and y-axes are zero. This is written as

(9.2)net Fx = 0 and net Fy = 0

Figure 9.2 and Figure 9.3 illustrate situations where net F = 0 for both static equilibrium (motionless), and dynamic

equilibrium (constant velocity).

Figure 9.2 This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case.

Figure 9.3 This car is in dynamic equilibrium because it is moving at constant velocity. There are horizontal and vertical forces, but the net external

force in any direction is zero. The applied force Fapp between the tires and the road is balanced by air friction, and the weight of the car is supported

by the normal forces, here shown to be equal for all four tires.

However, it is not sufficient for the net external force of a system to be zero for a system to be in equilibrium. Consider the two
situations illustrated in Figure 9.4 and Figure 9.5 where forces are applied to an ice hockey stick lying flat on ice. The net
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external force is zero in both situations shown in the figure; but in one case, equilibrium is achieved, whereas in the other, it is
not. In Figure 9.4, the ice hockey stick remains motionless. But in Figure 9.5, with the same forces applied in different places,
the stick experiences accelerated rotation. Therefore, we know that the point at which a force is applied is another factor in
determining whether or not equilibrium is achieved. This will be explored further in the next section.

Figure 9.4 An ice hockey stick lying flat on ice with two equal and opposite horizontal forces applied to it. Friction is negligible, and the gravitational

force is balanced by the support of the ice (a normal force). Thus, net F = 0 . Equilibrium is achieved, which is static equilibrium in this case.

Figure 9.5 The same forces are applied at other points and the stick rotates—in fact, it experiences an accelerated rotation. Here net F = 0 but the

system is not at equilibrium. Hence, the net F = 0 is a necessary—but not sufficient—condition for achieving equilibrium.

PhET Explorations: Torque

Investigate how torque causes an object to rotate. Discover the relationships between angular acceleration, moment of
inertia, angular momentum and torque. Click to open media in new browser. (https://phet.colorado.edu/en/simulation/
legacy/torque)

9.2 The Second Condition for Equilibrium

Torque

The second condition necessary to achieve equilibrium involves avoiding accelerated rotation (maintaining a constant
angular velocity). A rotating body or system can be in equilibrium if its rate of rotation is constant and remains unchanged by
the forces acting on it. To understand what factors affect rotation, let us think about what happens when you open an
ordinary door by rotating it on its hinges.

Several familiar factors determine how effective you are in opening the door. See Figure 9.6. First of all, the larger the force, the
more effective it is in opening the door—obviously, the harder you push, the more rapidly the door opens. Also, the point at which
you push is crucial. If you apply your force too close to the hinges, the door will open slowly, if at all. Most people have been
embarrassed by making this mistake and bumping up against a door when it did not open as quickly as expected. Finally, the
direction in which you push is also important. The most effective direction is perpendicular to the door—we push in this direction
almost instinctively.
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Figure 9.6 Torque is the turning or twisting effectiveness of a force, illustrated here for door rotation on its hinges (as viewed from overhead). Torque
has both magnitude and direction. (a) Counterclockwise torque is produced by this force, which means that the door will rotate in a counterclockwise

due to F . Note that r⊥ is the perpendicular distance of the pivot from the line of action of the force. (b) A smaller counterclockwise torque is

produced by a smaller force F′ acting at the same distance from the hinges (the pivot point). (c) The same force as in (a) produces a smaller

counterclockwise torque when applied at a smaller distance from the hinges. (d) The same force as in (a), but acting in the opposite direction, produces
a clockwise torque. (e) A smaller counterclockwise torque is produced by the same magnitude force acting at the same point but in a different direction.

Here, θ is less than 90º . (f) Torque is zero here since the force just pulls on the hinges, producing no rotation. In this case, θ = 0º .

The magnitude, direction, and point of application of the force are incorporated into the definition of the physical quantity called
torque. Torque is the rotational equivalent of a force. It is a measure of the effectiveness of a force in changing or accelerating a
rotation (changing the angular velocity over a period of time). In equation form, the magnitude of torque is defined to be

(9.3)τ = rF sin θ
where τ (the Greek letter tau) is the symbol for torque, r is the distance from the pivot point to the point where the force is

applied, F is the magnitude of the force, and θ is the angle between the force and the vector directed from the point of

application to the pivot point, as seen in Figure 9.6 and Figure 9.7. An alternative expression for torque is given in terms of the
perpendicular lever arm r ⊥ as shown in Figure 9.6 and Figure 9.7, which is defined as

(9.4)r ⊥ = r sin θ

so that

(9.5)τ = r⊥ F.
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Figure 9.7 A force applied to an object can produce a torque, which depends on the location of the pivot point. (a) The three factors r , F , and θ for

pivot point A on a body are shown here— r is the distance from the chosen pivot point to the point where the force F is applied, and θ is the angle

between F and the vector directed from the point of application to the pivot point. If the object can rotate around point A, it will rotate

counterclockwise. This means that torque is counterclockwise relative to pivot A. (b) In this case, point B is the pivot point. The torque from the applied
force will cause a clockwise rotation around point B, and so it is a clockwise torque relative to B.

The perpendicular lever arm r ⊥ is the shortest distance from the pivot point to the line along which F acts; it is shown as a

dashed line in Figure 9.6 and Figure 9.7. Note that the line segment that defines the distance r ⊥ is perpendicular to F , as its

name implies. It is sometimes easier to find or visualize r ⊥ than to find both r and θ . In such cases, it may be more

convenient to use τ = r ⊥ F rather than τ = rF sin θ for torque, but both are equally valid.

The SI unit of torque is newtons times meters, usually written as N · m . For example, if you push perpendicular to the door

with a force of 40 N at a distance of 0.800 m from the hinges, you exert a torque of 32 N·m(0.800 m × 40 N × sin 90º) relative to
the hinges. If you reduce the force to 20 N, the torque is reduced to 16 N·m , and so on.

The torque is always calculated with reference to some chosen pivot point. For the same applied force, a different choice for the
location of the pivot will give you a different value for the torque, since both r and θ depend on the location of the pivot. Any

point in any object can be chosen to calculate the torque about that point. The object may not actually pivot about the chosen
“pivot point.”

Note that for rotation in a plane, torque has two possible directions. Torque is either clockwise or counterclockwise relative to the
chosen pivot point, as illustrated for points B and A, respectively, in Figure 9.7. If the object can rotate about point A, it will rotate
counterclockwise, which means that the torque for the force is shown as counterclockwise relative to A. But if the object can
rotate about point B, it will rotate clockwise, which means the torque for the force shown is clockwise relative to B. Also, the
magnitude of the torque is greater when the lever arm is longer.

Now, the second condition necessary to achieve equilibrium is that the net external torque on a system must be zero. An external
torque is one that is created by an external force. You can choose the point around which the torque is calculated. The point can
be the physical pivot point of a system or any other point in space—but it must be the same point for all torques. If the second
condition (net external torque on a system is zero) is satisfied for one choice of pivot point, it will also hold true for any other
choice of pivot point in or out of the system of interest. (This is true only in an inertial frame of reference.) The second condition
necessary to achieve equilibrium is stated in equation form as

(9.6)net τ = 0
where net means total. Torques, which are in opposite directions are assigned opposite signs. A common convention is to call
counterclockwise (ccw) torques positive and clockwise (cw) torques negative.

When two children balance a seesaw as shown in Figure 9.8, they satisfy the two conditions for equilibrium. Most people have
perfect intuition about seesaws, knowing that the lighter child must sit farther from the pivot and that a heavier child can keep a
lighter one off the ground indefinitely.
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Figure 9.8 Two children balancing a seesaw satisfy both conditions for equilibrium. The lighter child sits farther from the pivot to create a torque equal
in magnitude to that of the heavier child.

Example 9.1 She Saw Torques On A Seesaw

The two children shown in Figure 9.8 are balanced on a seesaw of negligible mass. (This assumption is made to keep the
example simple—more involved examples will follow.) The first child has a mass of 26.0 kg and sits 1.60 m from the pivot.(a)
If the second child has a mass of 32.0 kg, how far is she from the pivot? (b) What is Fp , the supporting force exerted by the

pivot?

Strategy

Both conditions for equilibrium must be satisfied. In part (a), we are asked for a distance; thus, the second condition
(regarding torques) must be used, since the first (regarding only forces) has no distances in it. To apply the second condition
for equilibrium, we first identify the system of interest to be the seesaw plus the two children. We take the supporting pivot to
be the point about which the torques are calculated. We then identify all external forces acting on the system.

Solution (a)

The three external forces acting on the system are the weights of the two children and the supporting force of the pivot. Let
us examine the torque produced by each. Torque is defined to be

(9.7)τ = rF sin θ.

Here θ = 90º , so that sin θ = 1 for all three forces. That means r ⊥ = r for all three. The torques exerted by the three

forces are first,

(9.8)τ1 = r1w1

second,

(9.9)τ2 = – r2w2

and third,

(9.10)τp = rpFp

= 0 ⋅ Fp

= 0.
Note that a minus sign has been inserted into the second equation because this torque is clockwise and is therefore
negative by convention. Since Fp acts directly on the pivot point, the distance rp is zero. A force acting on the pivot

cannot cause a rotation, just as pushing directly on the hinges of a door will not cause it to rotate. Now, the second condition
for equilibrium is that the sum of the torques on both children is zero. Therefore

(9.11)τ2 = – τ1,

or

(9.12)r2 w2 = r1w1.

Weight is mass times the acceleration due to gravity. Entering mg for w , we get

(9.13)r2 m2 g = r1 m1 g.
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Solve this for the unknown r2 :

(9.14)r2 = r1
m1
m2

.

The quantities on the right side of the equation are known; thus, r2 is

(9.15)
r2 = (1.60 m)26.0 kg

32.0 kg = 1.30 m.

As expected, the heavier child must sit closer to the pivot (1.30 m versus 1.60 m) to balance the seesaw.

Solution (b)

This part asks for a force Fp . The easiest way to find it is to use the first condition for equilibrium, which is

(9.16)net F = 0.
The forces are all vertical, so that we are dealing with a one-dimensional problem along the vertical axis; hence, the
condition can be written as

(9.17)net Fy = 0

where we again call the vertical axis the y-axis. Choosing upward to be the positive direction, and using plus and minus
signs to indicate the directions of the forces, we see that

(9.18)Fp – w1 – w2 = 0.

This equation yields what might have been guessed at the beginning:

(9.19)Fp = w1 + w2.

So, the pivot supplies a supporting force equal to the total weight of the system:

(9.20)Fp = m1g + m2g.

Entering known values gives

(9.21)Fp = ⎛
⎝26.0 kg⎞⎠⎛⎝9.80 m/s2⎞⎠+ ⎛

⎝32.0 kg⎞⎠⎛⎝9.80 m/s2⎞⎠
= 568 N.

Discussion

The two results make intuitive sense. The heavier child sits closer to the pivot. The pivot supports the weight of the two
children. Part (b) can also be solved using the second condition for equilibrium, since both distances are known, but only if
the pivot point is chosen to be somewhere other than the location of the seesaw’s actual pivot!

Several aspects of the preceding example have broad implications. First, the choice of the pivot as the point around which
torques are calculated simplified the problem. Since Fp is exerted on the pivot point, its lever arm is zero. Hence, the torque

exerted by the supporting force Fp is zero relative to that pivot point. The second condition for equilibrium holds for any choice

of pivot point, and so we choose the pivot point to simplify the solution of the problem.

Second, the acceleration due to gravity canceled in this problem, and we were left with a ratio of masses. This will not always be
the case. Always enter the correct forces—do not jump ahead to enter some ratio of masses.

Third, the weight of each child is distributed over an area of the seesaw, yet we treated the weights as if each force were exerted
at a single point. This is not an approximation—the distances r1 and r2 are the distances to points directly below the center of

gravity of each child. As we shall see in the next section, the mass and weight of a system can act as if they are located at a
single point.

Finally, note that the concept of torque has an importance beyond static equilibrium. Torque plays the same role in rotational
motion that force plays in linear motion. We will examine this in the next chapter.

Take-Home Experiment

Take a piece of modeling clay and put it on a table, then mash a cylinder down into it so that a ruler can balance on the
round side of the cylinder while everything remains still. Put a penny 8 cm away from the pivot. Where would you need to put
two pennies to balance? Three pennies?
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9.3 Stability

It is one thing to have a system in equilibrium; it is quite another for it to be stable. The toy doll perched on the man’s hand in
Figure 9.9, for example, is not in stable equilibrium. There are three types of equilibrium: stable, unstable, and neutral. Figures
throughout this module illustrate various examples.

Figure 9.9 presents a balanced system, such as the toy doll on the man’s hand, which has its center of gravity (cg) directly over
the pivot, so that the torque of the total weight is zero. This is equivalent to having the torques of the individual parts balanced
about the pivot point, in this case the hand. The cgs of the arms, legs, head, and torso are labeled with smaller type.

Figure 9.9 A man balances a toy doll on one hand.

A system is said to be in stable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in a
direction opposite to the direction of the displacement. For example, a marble at the bottom of a bowl will experience a restoring
force when displaced from its equilibrium position. This force moves it back toward the equilibrium position. Most systems are in
stable equilibrium, especially for small displacements. For another example of stable equilibrium, see the pencil in Figure 9.10.

Figure 9.10 This pencil is in the condition of equilibrium. The net force on the pencil is zero and the total torque about any pivot is zero.

A system is in unstable equilibrium if, when displaced, it experiences a net force or torque in the same direction as the
displacement from equilibrium. A system in unstable equilibrium accelerates away from its equilibrium position if displaced even
slightly. An obvious example is a ball resting on top of a hill. Once displaced, it accelerates away from the crest. See the next
several figures for examples of unstable equilibrium.
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Figure 9.11 If the pencil is displaced slightly to the side (counterclockwise), it is no longer in equilibrium. Its weight produces a clockwise torque that
returns the pencil to its equilibrium position.

Figure 9.12 If the pencil is displaced too far, the torque caused by its weight changes direction to counterclockwise and causes the displacement to
increase.

Figure 9.13 This figure shows unstable equilibrium, although both conditions for equilibrium are satisfied.
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Figure 9.14 If the pencil is displaced even slightly, a torque is created by its weight that is in the same direction as the displacement, causing the
displacement to increase.

A system is in neutral equilibrium if its equilibrium is independent of displacements from its original position. A marble on a flat
horizontal surface is an example. Combinations of these situations are possible. For example, a marble on a saddle is stable for
displacements toward the front or back of the saddle and unstable for displacements to the side. Figure 9.15 shows another
example of neutral equilibrium.

Figure 9.15 (a) Here we see neutral equilibrium. The cg of a sphere on a flat surface lies directly above the point of support, independent of the
position on the surface. The sphere is therefore in equilibrium in any location, and if displaced, it will remain put. (b) Because it has a circular cross
section, the pencil is in neutral equilibrium for displacements perpendicular to its length.

When we consider how far a system in stable equilibrium can be displaced before it becomes unstable, we find that some
systems in stable equilibrium are more stable than others. The pencil in Figure 9.10 and the person in Figure 9.16(a) are in
stable equilibrium, but become unstable for relatively small displacements to the side. The critical point is reached when the cg is
no longer above the base of support. Additionally, since the cg of a person’s body is above the pivots in the hips, displacements
must be quickly controlled. This control is a central nervous system function that is developed when we learn to hold our bodies
erect as infants. For increased stability while standing, the feet should be spread apart, giving a larger base of support. Stability
is also increased by lowering one’s center of gravity by bending the knees, as when a football player prepares to receive a ball or
braces themselves for a tackle. A cane, a crutch, or a walker increases the stability of the user, even more as the base of support
widens. Usually, the cg of a female is lower (closer to the ground) than a male. Young children have their center of gravity
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between their shoulders, which increases the challenge of learning to walk.

Figure 9.16 (a) The center of gravity of an adult is above the hip joints (one of the main pivots in the body) and lies between two narrowly-separated
feet. Like a pencil standing on its eraser, this person is in stable equilibrium in relation to sideways displacements, but relatively small displacements
take his cg outside the base of support and make him unstable. Humans are less stable relative to forward and backward displacements because the
feet are not very long. Muscles are used extensively to balance the body in the front-to-back direction. (b) While bending in the manner shown, stability
is increased by lowering the center of gravity. Stability is also increased if the base is expanded by placing the feet farther apart.

Animals such as chickens have easier systems to control. Figure 9.17 shows that the cg of a chicken lies below its hip joints and
between its widely separated and broad feet. Even relatively large displacements of the chicken’s cg are stable and result in
restoring forces and torques that return the cg to its equilibrium position with little effort on the chicken’s part. Not all birds are like
chickens, of course. Some birds, such as the flamingo, have balance systems that are almost as sophisticated as that of
humans.

Figure 9.17 shows that the cg of a chicken is below the hip joints and lies above a broad base of support formed by widely-
separated and large feet. Hence, the chicken is in very stable equilibrium, since a relatively large displacement is needed to
render it unstable. The body of the chicken is supported from above by the hips and acts as a pendulum between the hips.
Therefore, the chicken is stable for front-to-back displacements as well as for side-to-side displacements.

Figure 9.17 The center of gravity of a chicken is below the hip joints. The chicken is in stable equilibrium. The body of the chicken is supported from
above by the hips and acts as a pendulum between them.

Engineers and architects strive to achieve extremely stable equilibriums for buildings and other systems that must withstand
wind, earthquakes, and other forces that displace them from equilibrium. Although the examples in this section emphasize
gravitational forces, the basic conditions for equilibrium are the same for all types of forces. The net external force must be zero,
and the net torque must also be zero.

Take-Home Experiment

Stand straight with your heels, back, and head against a wall. Bend forward from your waist, keeping your heels and bottom
against the wall, to touch your toes. Can you do this without toppling over? Explain why and what you need to do to be able
to touch your toes without losing your balance. Is it easier for a woman to do this?

9.4 Applications of Statics, Including Problem-Solving Strategies

Statics can be applied to a variety of situations, ranging from raising a drawbridge to bad posture and back strain. We begin with
a discussion of problem-solving strategies specifically used for statics. Since statics is a special case of Newton’s laws, both the
general problem-solving strategies and the special strategies for Newton’s laws, discussed in Problem-Solving Strategies, still
apply.
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Problem-Solving Strategy: Static Equilibrium Situations
1. The first step is to determine whether or not the system is in static equilibrium. This condition is always the case

when the acceleration of the system is zero and accelerated rotation does not occur.

2. It is particularly important to draw a free body diagram for the system of interest. Carefully label all forces, and note
their relative magnitudes, directions, and points of application whenever these are known.

3. Solve the problem by applying either or both of the conditions for equilibrium (represented by the equations
net F = 0 and net τ = 0 , depending on the list of known and unknown factors. If the second condition is involved,

choose the pivot point to simplify the solution. Any pivot point can be chosen, but the most useful ones cause torques
by unknown forces to be zero. (Torque is zero if the force is applied at the pivot (then r = 0 ), or along a line through

the pivot point (then θ = 0 )). Always choose a convenient coordinate system for projecting forces.

4. Check the solution to see if it is reasonable by examining the magnitude, direction, and units of the answer. The
importance of this last step never diminishes, although in unfamiliar applications, it is usually more difficult to judge
reasonableness. These judgments become progressively easier with experience.

Now let us apply this problem-solving strategy for the pole vaulter shown in the three figures below. The pole is uniform and has
a mass of 5.00 kg. In Figure 9.18, the pole’s cg lies halfway between the vaulter’s hands. It seems reasonable that the force
exerted by each hand is equal to half the weight of the pole, or 24.5 N. This obviously satisfies the first condition for equilibrium
(net F = 0) . The second condition (net τ = 0) is also satisfied, as we can see by choosing the cg to be the pivot point. The

weight exerts no torque about a pivot point located at the cg, since it is applied at that point and its lever arm is zero. The equal
forces exerted by the hands are equidistant from the chosen pivot, and so they exert equal and opposite torques. Similar
arguments hold for other systems where supporting forces are exerted symmetrically about the cg. For example, the four legs of
a uniform table each support one-fourth of its weight.

In Figure 9.18, a pole vaulter holding a pole with its cg halfway between his hands is shown. Each hand exerts a force equal to
half the weight of the pole, FR = FL = w / 2 . (b) The pole vaulter moves the pole to his left, and the forces that the hands exert

are no longer equal. See Figure 9.18. If the pole is held with its cg to the left of the person, then he must push down with his
right hand and up with his left. The forces he exerts are larger here because they are in opposite directions and the cg is at a
long distance from either hand.

Similar observations can be made using a meter stick held at different locations along its length.

Figure 9.18 A pole vaulter holds a pole horizontally with both hands.

Figure 9.19 A pole vaulter is holding a pole horizontally with both hands. The center of gravity is near his right hand.
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Figure 9.20 A pole vaulter is holding a pole horizontally with both hands. The center of gravity is to the left side of the vaulter.

If the pole vaulter holds the pole as shown in Figure 9.19, the situation is not as simple. The total force he exerts is still equal to
the weight of the pole, but it is not evenly divided between his hands. (If FL = FR , then the torques about the cg would not be

equal since the lever arms are different.) Logically, the right hand should support more weight, since it is closer to the cg. In fact,
if the right hand is moved directly under the cg, it will support all the weight. This situation is exactly analogous to two people
carrying a load; the one closer to the cg carries more of its weight. Finding the forces FL and FR is straightforward, as the next

example shows.

If the pole vaulter holds the pole from near the end of the pole (Figure 9.20), the direction of the force applied by the right hand
of the vaulter reverses its direction.

Example 9.2 What Force Is Needed to Support a Weight Held Near Its CG?

For the situation shown in Figure 9.19, calculate: (a) FR , the force exerted by the right hand, and (b) FL , the force

exerted by the left hand. The hands are 0.900 m apart, and the cg of the pole is 0.600 m from the left hand.

Strategy

Figure 9.19 includes a free body diagram for the pole, the system of interest. There is not enough information to use the first
condition for equilibrium (net F = 0 ), since two of the three forces are unknown and the hand forces cannot be assumed to

be equal in this case. There is enough information to use the second condition for equilibrium (net τ = 0) if the pivot point

is chosen to be at either hand, thereby making the torque from that hand zero. We choose to locate the pivot at the left hand
in this part of the problem, to eliminate the torque from the left hand.

Solution for (a)

There are now only two nonzero torques, those from the gravitational force ( τw ) and from the push or pull of the right hand

( τR ). Stating the second condition in terms of clockwise and counterclockwise torques,

(9.22)net τcw = –net τccw.

or the algebraic sum of the torques is zero.

Here this is

(9.23)τR = –τw

since the weight of the pole creates a counterclockwise torque and the right hand counters with a clockwise torque. Using
the definition of torque, τ = rF sin θ , noting that θ = 90º , and substituting known values, we obtain

(9.24)(0.900 m)⎛⎝FR
⎞
⎠ = (0.600 m)(mg).

Thus,

(9.25)FR = (0.667)⎛⎝5.00 kg⎞⎠⎛⎝9.80 m/s2⎞⎠
= 32.7 N.

Solution for (b)

The first condition for equilibrium is based on the free body diagram in the figure. This implies that by Newton’s second law:

(9.26)FL + FR – mg = 0
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From this we can conclude:

(9.27)FL + FR = w = mg

Solving for FL , we obtain

(9.28)FL = mg − FR
= mg − 32.7 N

= ⎛
⎝5.00 kg⎞⎠⎛⎝9.80 m/s2⎞⎠− 32.7 N

= 16.3 N
Discussion

FL is seen to be exactly half of FR , as we might have guessed, since FL is applied twice as far from the cg as FR .

If the pole vaulter holds the pole as he might at the start of a run, shown in Figure 9.20, the forces change again. Both are
considerably greater, and one force reverses direction.

Take-Home Experiment

This is an experiment to perform while standing in a bus or a train. Stand facing sideways. How do you move your body to
readjust the distribution of your mass as the bus accelerates and decelerates? Now stand facing forward. How do you move
your body to readjust the distribution of your mass as the bus accelerates and decelerates? Why is it easier and safer to
stand facing sideways rather than forward? Note: For your safety (and those around you), make sure you are holding onto
something while you carry out this activity!

PhET Explorations: Balancing Act

Play with objects on a teeter totter to learn about balance. Test what you've learned by trying the Balance Challenge game.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42173/1.11/#import-auto-
id3233)

Figure 9.21

9.5 Simple Machines

Simple machines are devices that can be used to multiply or augment a force that we apply – often at the expense of a distance
through which we apply the force. The word for “machine” comes from the Greek word meaning “to help make things easier.”
Levers, gears, pulleys, wedges, and screws are some examples of machines. Energy is still conserved for these devices
because a machine cannot do more work than the energy put into it. However, machines can reduce the input force that is
needed to perform the job. The ratio of output to input force magnitudes for any simple machine is called its mechanical
advantage (MA).

(9.29)MA = Fo
Fi

One of the simplest machines is the lever, which is a rigid bar pivoted at a fixed place called the fulcrum. Torques are involved in
levers, since there is rotation about a pivot point. Distances from the physical pivot of the lever are crucial, and we can obtain a
useful expression for the MA in terms of these distances.
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Figure 9.22 A nail puller is a lever with a large mechanical advantage. The external forces on the nail puller are represented by solid arrows. The force

that the nail puller applies to the nail ( Fo ) is not a force on the nail puller. The reaction force the nail exerts back on the puller ( Fn ) is an external

force and is equal and opposite to Fo . The perpendicular lever arms of the input and output forces are li and lo .

Figure 9.22 shows a lever type that is used as a nail puller. Crowbars, seesaws, and other such levers are all analogous to this
one. Fi is the input force and Fo is the output force. There are three vertical forces acting on the nail puller (the system of

interest) – these are Fi , Fn , and N . Fn is the reaction force back on the system, equal and opposite to Fo . (Note that Fo

is not a force on the system.) N is the normal force upon the lever, and its torque is zero since it is exerted at the pivot. The

torques due to Fi and Fn must be equal to each other if the nail is not moving, to satisfy the second condition for equilibrium

(net τ = 0) . (In order for the nail to actually move, the torque due to Fi must be ever-so-slightly greater than torque due to

Fn .) Hence,

(9.30)li Fi = loFo

Notice that ri is the distance from the pivot point to the point where the input force Fi is applied, and ro (not labeled on the

diagram) is the distance from the pivot point to the point where the output force Fo is applied. The distances li and lo are the

perpendicular components of the distances from where the input and output forces are applied to the pivot, as shown in the
figure. Rearranging the last equation gives

(9.31)Fo
Fi

= li
lo

.

What interests us most here is that the magnitude of the force exerted by the nail puller, Fo , is much greater than the magnitude

of the input force applied to the puller at the other end, Fi . For the nail puller,

(9.32)
MA = Fo

Fi
= li

lo
.

This equation is true for levers in general. For the nail puller, the MA is certainly greater than one. The longer the handle on the
nail puller, the greater the force you can exert with it.

Two other types of levers that differ slightly from the nail puller are a wheelbarrow and a shovel, shown in Figure 9.23. All these
lever types are similar in that only three forces are involved – the input force, the output force, and the force on the pivot – and

thus their MAs are given by MA = Fo
Fi

and MA = d1
d2

, with distances being measured relative to the physical pivot. The

wheelbarrow and shovel differ from the nail puller because both the input and output forces are on the same side of the pivot.

In the case of the wheelbarrow, the output force or load is between the pivot (the wheel’s axle) and the input or applied force. In
the case of the shovel, the input force is between the pivot (at the end of the handle) and the load, but the input lever arm is
shorter than the output lever arm. In this case, the MA is less than one.
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Figure 9.23 (a) In the case of the wheelbarrow, the output force or load is between the pivot and the input force. The pivot is the wheel’s axle. Here, the
output force is greater than the input force. Thus, a wheelbarrow enables you to lift much heavier loads than you could with your body alone. (b) In the
case of the shovel, the input force is between the pivot and the load, but the input lever arm is shorter than the output lever arm. The pivot is at the
handle held by the right hand. Here, the output force (supporting the shovel’s load) is less than the input force (from the hand nearest the load),
because the input is exerted closer to the pivot than is the output.

Example 9.3 What is the Advantage for the Wheelbarrow?

In the wheelbarrow of Figure 9.23, the load has a perpendicular lever arm of 7.50 cm, while the hands have a perpendicular
lever arm of 1.02 m. (a) What upward force must you exert to support the wheelbarrow and its load if their combined mass is
45.0 kg? (b) What force does the wheelbarrow exert on the ground?

Strategy

Here, we use the concept of mechanical advantage.

Solution

(a) In this case,
Fo
Fi

= li
lo

becomes

(9.33)
Fi = Fo

lo
li

.

Adding values into this equation yields

(9.34)Fi = ⎛
⎝45.0 kg⎞⎠⎛⎝9.80 m/s2⎞⎠0.075 m

1.02 m = 32.4 N.

The free-body diagram (see Figure 9.23) gives the following normal force: Fi + N = W . Therefore,

N = (45.0 kg)⎛⎝9.80 m/s2⎞⎠− 32.4 N = 409 N . N is the normal force acting on the wheel; by Newton’s third law, the

force the wheel exerts on the ground is 409 N .

Discussion

An even longer handle would reduce the force needed to lift the load. The MA here is MA = 1.02 / 0.0750 = 13.6 .

Another very simple machine is the inclined plane. Pushing a cart up a plane is easier than lifting the same cart straight up to the
top using a ladder, because the applied force is less. However, the work done in both cases (assuming the work done by friction
is negligible) is the same. Inclined lanes or ramps were probably used during the construction of the Egyptian pyramids to move
large blocks of stone to the top.

A crank is a lever that can be rotated 360º about its pivot, as shown in Figure 9.24. Such a machine may not look like a lever,
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but the physics of its actions remain the same. The MA for a crank is simply the ratio of the radii ri / r0 . Wheels and gears have

this simple expression for their MAs too. The MA can be greater than 1, as it is for the crank, or less than 1, as it is for the
simplified car axle driving the wheels, as shown. If the axle’s radius is 2.0 cm and the wheel’s radius is 24.0 cm , then

MA = 2.0 / 24.0 = 0.083 and the axle would have to exert a force of 12,000 N on the wheel to enable it to exert a force of

1000 N on the ground.

Figure 9.24 (a) A crank is a type of lever that can be rotated 360º about its pivot. Cranks are usually designed to have a large MA. (b) A simplified

automobile axle drives a wheel, which has a much larger diameter than the axle. The MA is less than 1. (c) An ordinary pulley is used to lift a heavy

load. The pulley changes the direction of the force T exerted by the cord without changing its magnitude. Hence, this machine has an MA of 1.

An ordinary pulley has an MA of 1; it only changes the direction of the force and not its magnitude. Combinations of pulleys, such
as those illustrated in Figure 9.25, are used to multiply force. If the pulleys are friction-free, then the force output is
approximately an integral multiple of the tension in the cable. The number of cables pulling directly upward on the system of
interest, as illustrated in the figures given below, is approximately the MA of the pulley system. Since each attachment applies an
external force in approximately the same direction as the others, they add, producing a total force that is nearly an integral
multiple of the input force T .
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Figure 9.25 (a) The combination of pulleys is used to multiply force. The force is an integral multiple of tension if the pulleys are frictionless. This pulley

system has two cables attached to its load, thus applying a force of approximately 2T . This machine has MA ≈ 2 . (b) Three pulleys are used to

lift a load in such a way that the mechanical advantage is about 3. Effectively, there are three cables attached to the load. (c) This pulley system

applies a force of 4T , so that it has MA ≈ 4 . Effectively, four cables are pulling on the system of interest.

9.6 Forces and Torques in Muscles and Joints

Muscles, bones, and joints are some of the most interesting applications of statics. There are some surprises. Muscles, for
example, exert far greater forces than we might think. Figure 9.26 shows a forearm holding a book and a schematic diagram of
an analogous lever system. The schematic is a good approximation for the forearm, which looks more complicated than it is, and
we can get some insight into the way typical muscle systems function by analyzing it.

Muscles can only contract, so they occur in pairs. In the arm, the biceps muscle is a flexor—that is, it closes the limb. The triceps
muscle is an extensor that opens the limb. This configuration is typical of skeletal muscles, bones, and joints in humans and
other vertebrates. Most skeletal muscles exert much larger forces within the body than the limbs apply to the outside world. The
reason is clear once we realize that most muscles are attached to bones via tendons close to joints, causing these systems to
have mechanical advantages much less than one. Viewing them as simple machines, the input force is much greater than the
output force, as seen in Figure 9.26.
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Figure 9.26 (a) The figure shows the forearm of a person holding a book. The biceps exert a force FB to support the weight of the forearm and the

book. The triceps are assumed to be relaxed. (b) Here, you can view an approximately equivalent mechanical system with the pivot at the elbow joint
as seen in Example 9.4.

Example 9.4 Muscles Exert Bigger Forces Than You Might Think

Calculate the force the biceps muscle must exert to hold the forearm and its load as shown in Figure 9.26, and compare this
force with the weight of the forearm plus its load. You may take the data in the figure to be accurate to three significant
figures.

Strategy

There are four forces acting on the forearm and its load (the system of interest). The magnitude of the force of the biceps is
FB ; that of the elbow joint is FE ; that of the weights of the forearm is wa , and its load is wb . Two of these are unknown

( FB and FE ), so that the first condition for equilibrium cannot by itself yield FB . But if we use the second condition and

choose the pivot to be at the elbow, then the torque due to FE is zero, and the only unknown becomes FB .

Solution

The torques created by the weights are clockwise relative to the pivot, while the torque created by the biceps is
counterclockwise; thus, the second condition for equilibrium (net τ = 0) becomes

(9.35)r2 wa + r3wb = r1FB.

Note that sin θ = 1 for all forces, since θ = 90º for all forces. This equation can easily be solved for FB in terms of

known quantities, yielding

(9.36)FB = r2 wa + r3wb
r1

.
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Entering the known values gives

(9.37)

FB =
(0.160 m)⎛⎝2.50 kg⎞⎠⎛⎝9.80 m/s2⎞⎠+ (0.380 m)⎛⎝4.00 kg⎞⎠⎛⎝9.80 m/s2⎞⎠

0.0400 m
which yields

(9.38)FB = 470 N.

Now, the combined weight of the arm and its load is ⎛
⎝6.50 kg⎞⎠⎛⎝9.80 m/s2⎞⎠ = 63.7 N , so that the ratio of the force exerted

by the biceps to the total weight is

(9.39)FB
wa + wb

= 470
63.7 = 7.38.

Discussion

This means that the biceps muscle is exerting a force 7.38 times the weight supported.

In the above example of the biceps muscle, the angle between the forearm and upper arm is 90°. If this angle changes, the force
exerted by the biceps muscle also changes. In addition, the length of the biceps muscle changes. The force the biceps muscle
can exert depends upon its length; it is smaller when it is shorter than when it is stretched.

Very large forces are also created in the joints. In the previous example, the downward force FE exerted by the humerus at the

elbow joint equals 407 N, or 6.38 times the total weight supported. (The calculation of FE is straightforward and is left as an

end-of-chapter problem.) Because muscles can contract, but not expand beyond their resting length, joints and muscles often
exert forces that act in opposite directions and thus subtract. (In the above example, the upward force of the muscle minus the
downward force of the joint equals the weight supported—that is, 470 N – 407 N = 63 N , approximately equal to the weight

supported.) Forces in muscles and joints are largest when their load is a long distance from the joint, as the book is in the
previous example.

In racquet sports such as tennis the constant extension of the arm during game play creates large forces in this way. The mass
times the lever arm of a tennis racquet is an important factor, and many players use the heaviest racquet they can handle. It is no
wonder that joint deterioration and damage to the tendons in the elbow, such as “tennis elbow,” can result from repetitive motion,
undue torques, and possibly poor racquet selection in such sports. Various tried techniques for holding and using a racquet or
bat or stick not only increases sporting prowess but can minimize fatigue and long-term damage to the body. For example, tennis
balls correctly hit at the “sweet spot” on the racquet will result in little vibration or impact force being felt in the racquet and the
body—less torque as explained in Collisions of Extended Bodies in Two Dimensions. Twisting the hand to provide top spin
on the ball or using an extended rigid elbow in a backhand stroke can also aggravate the tendons in the elbow.

Training coaches and physical therapists use the knowledge of relationships between forces and torques in the treatment of
muscles and joints. In physical therapy, an exercise routine can apply a particular force and torque which can, over a period of
time, revive muscles and joints. Some exercises are designed to be carried out under water, because this requires greater forces
to be exerted, further strengthening muscles. However, connecting tissues in the limbs, such as tendons and cartilage as well as
joints are sometimes damaged by the large forces they carry. Often, this is due to accidents, but heavily muscled athletes, such
as weightlifters, can tear muscles and connecting tissue through effort alone.

The back is considerably more complicated than the arm or leg, with various muscles and joints between vertebrae, all having
mechanical advantages less than 1. Back muscles must, therefore, exert very large forces, which are borne by the spinal
column. Discs crushed by mere exertion are very common. The jaw is somewhat exceptional—the masseter muscles that close
the jaw have a mechanical advantage greater than 1 for the back teeth, allowing us to exert very large forces with them. A cause
of stress headaches is persistent clenching of teeth where the sustained large force translates into fatigue in muscles around the
skull.

Figure 9.27 shows how bad posture causes back strain. In part (a), we see a person with good posture. Note that her upper
body’s cg is directly above the pivot point in the hips, which in turn is directly above the base of support at her feet. Because of
this, her upper body’s weight exerts no torque about the hips. The only force needed is a vertical force at the hips equal to the
weight supported. No muscle action is required, since the bones are rigid and transmit this force from the floor. This is a position
of unstable equilibrium, but only small forces are needed to bring the upper body back to vertical if it is slightly displaced. Bad
posture is shown in part (b); we see that the upper body’s cg is in front of the pivot in the hips. This creates a clockwise torque
around the hips that is counteracted by muscles in the lower back. These muscles must exert large forces, since they have
typically small mechanical advantages. (In other words, the perpendicular lever arm for the muscles is much smaller than for the
cg.) Poor posture can also cause muscle strain for people sitting at their desks using computers. Special chairs are available that
allow the body’s CG to be more easily situated above the seat, to reduce back pain. Prolonged muscle action produces muscle
strain. Note that the cg of the entire body is still directly above the base of support in part (b) of Figure 9.27. This is compulsory;
otherwise the person would not be in equilibrium. We lean forward for the same reason when carrying a load on our backs, to the
side when carrying a load in one arm, and backward when carrying a load in front of us, as seen in Figure 9.28.
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Figure 9.27 (a) Good posture places the upper body’s cg over the pivots in the hips, eliminating the need for muscle action to balance the body. (b)
Poor posture requires exertion by the back muscles to counteract the clockwise torque produced around the pivot by the upper body’s weight. The

back muscles have a small effective perpendicular lever arm, rb ⊥ , and must therefore exert a large force Fb . Note that the legs lean backward

to keep the cg of the entire body above the base of support in the feet.

You have probably been warned against lifting objects with your back. This action, even more than bad posture, can cause
muscle strain and damage discs and vertebrae, since abnormally large forces are created in the back muscles and spine.

Figure 9.28 People adjust their stance to maintain balance. (a) A father carrying his son piggyback leans forward to position their overall cg above the
base of support at his feet. (b) A student carrying a shoulder bag leans to the side to keep the overall cg over his feet. (c) Another student carrying a
load of books in her arms leans backward for the same reason.

Example 9.5 Do Not Lift with Your Back

Consider the person lifting a heavy box with his back, shown in Figure 9.29. (a) Calculate the magnitude of the force FB –
in the back muscles that is needed to support the upper body plus the box and compare this with his weight. The mass of
the upper body is 55.0 kg and the mass of the box is 30.0 kg. (b) Calculate the magnitude and direction of the force FV –
exerted by the vertebrae on the spine at the indicated pivot point. Again, data in the figure may be taken to be accurate to
three significant figures.

Strategy

By now, we sense that the second condition for equilibrium is a good place to start, and inspection of the known values
confirms that it can be used to solve for FB – if the pivot is chosen to be at the hips. The torques created by wub and

wbox – are clockwise, while that created by FB – is counterclockwise.

Solution for (a)

Using the perpendicular lever arms given in the figure, the second condition for equilibrium (net τ = 0) becomes

(9.40)(0.350 m)⎛⎝55.0 kg⎞⎠⎛⎝9.80 m/s2⎞⎠+ (0.500 m)⎛⎝30.0 kg⎞⎠⎛⎝9.80 m/s2⎞⎠ = (0.0800 m)FB.
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Solving for FB yields

(9.41)FB = 4.20×103 N.

The ratio of the force the back muscles exert to the weight of the upper body plus its load is

(9.42)FB
wub + wbox

= 4200 N
833 N = 5.04.

This force is considerably larger than it would be if the load were not present.

Solution for (b)

More important in terms of its damage potential is the force on the vertebrae FV . The first condition for equilibrium (

net F = 0 ) can be used to find its magnitude and direction. Using y for vertical and x for horizontal, the condition for the

net external forces along those axes to be zero

(9.43)net Fy = 0 and net Fx = 0.

Starting with the vertical ( y ) components, this yields

(9.44)FVy – wub – wbox – FB sin 29.0º = 0.

Thus,

(9.45)FVy = wub + wbox + FB sin 29.0º
= 833 N + (4200 N) sin 29.0º

yielding

(9.46)FVy = 2.87×103 N.

Similarly, for the horizontal ( x ) components,

(9.47)FVx – FB cos 29.0º = 0

yielding

(9.48)FVx = 3.67×103 N.

The magnitude of FV is given by the Pythagorean theorem:

(9.49)FV = FVx
2 + FVy

2 = 4.66×103 N.

The direction of FV is

(9.50)
θ = tan – 1⎛⎝

FVy
FVx

⎞
⎠ = 38.0º.

Note that the ratio of FV to the weight supported is

(9.51)FV
wub + wbox

= 4660 N
833 N = 5.59.

Discussion

This force is about 5.6 times greater than it would be if the person were standing erect. The trouble with the back is not so
much that the forces are large—because similar forces are created in our hips, knees, and ankles—but that our spines are
relatively weak. Proper lifting, performed with the back erect and using the legs to raise the body and load, creates much
smaller forces in the back—in this case, about 5.6 times smaller.
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center of gravity:

dynamic equilibrium:

mechanical advantage:

neutral equilibrium:

perpendicular lever arm:

SI units of torque:

stable equilibrium:

static equilibrium:

static equilibrium:

torque:

unstable equilibrium:

Figure 9.29 This figure shows that large forces are exerted by the back muscles and experienced in the vertebrae when a person lifts with their back,
since these muscles have small effective perpendicular lever arms. The data shown here are analyzed in the preceding example, Example 9.5.

What are the benefits of having most skeletal muscles attached so close to joints? One advantage is speed because small
muscle contractions can produce large movements of limbs in a short period of time. Other advantages are flexibility and agility,
made possible by the large numbers of joints and the ranges over which they function. For example, it is difficult to imagine a
system with biceps muscles attached at the wrist that would be capable of the broad range of movement we vertebrates
possess.

There are some interesting complexities in real systems of muscles, bones, and joints. For instance, the pivot point in many
joints changes location as the joint is flexed, so that the perpendicular lever arms and the mechanical advantage of the system
change, too. Thus the force the biceps muscle must exert to hold up a book varies as the forearm is flexed. Similar mechanisms
operate in the legs, which explain, for example, why there is less leg strain when a bicycle seat is set at the proper height. The
methods employed in this section give a reasonable description of real systems provided enough is known about the dimensions
of the system. There are many other interesting examples of force and torque in the body—a few of these are the subject of end-
of-chapter problems.

Glossary

the point where the total weight of the body is assumed to be concentrated

a state of equilibrium in which the net external force and torque on a system moving with constant
velocity are zero

the ratio of output to input forces for any simple machine

a state of equilibrium that is independent of a system’s displacements from its original position

the shortest distance from the pivot point to the line along which F lies

newton times meters, usually written as N·m

a system, when displaced, experiences a net force or torque in a direction opposite to the direction of the
displacement

a state of equilibrium in which the net external force and torque acting on a system is zero

equilibrium in which the acceleration of the system is zero and accelerated rotation does not occur

turning or twisting effectiveness of a force

a system, when displaced, experiences a net force or torque in the same direction as the displacement
from equilibrium
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Section Summary

9.1 The First Condition for Equilibrium
• Statics is the study of forces in equilibrium.
• Two conditions must be met to achieve equilibrium, which is defined to be motion without linear or rotational acceleration.
• The first condition necessary to achieve equilibrium is that the net external force on the system must be zero, so that

net F = 0 .

9.2 The Second Condition for Equilibrium
• The second condition assures those torques are also balanced. Torque is the rotational equivalent of a force in producing a

rotation and is defined to be
τ = rF sin θ

where τ is torque, r is the distance from the pivot point to the point where the force is applied, F is the magnitude of the

force, and θ is the angle between F and the vector directed from the point where the force acts to the pivot point. The

perpendicular lever arm r⊥ is defined to be

r⊥ = r sin θ
so that

τ = r⊥ F.
• The perpendicular lever arm r⊥ is the shortest distance from the pivot point to the line along which F acts. The SI unit

for torque is newton-meter (N·m) . The second condition necessary to achieve equilibrium is that the net external torque

on a system must be zero:
net τ = 0

By convention, counterclockwise torques are positive, and clockwise torques are negative.

9.3 Stability
• A system is said to be in stable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in a

direction opposite the direction of the displacement.
• A system is in unstable equilibrium if, when displaced from equilibrium, it experiences a net force or torque in the same

direction as the displacement from equilibrium.
• A system is in neutral equilibrium if its equilibrium is independent of displacements from its original position.

9.4 Applications of Statics, Including Problem-Solving Strategies
• Statics can be applied to a variety of situations, ranging from raising a drawbridge to bad posture and back strain. We have

discussed the problem-solving strategies specifically useful for statics. Statics is a special case of Newton’s laws, both the
general problem-solving strategies and the special strategies for Newton’s laws, discussed in Problem-Solving
Strategies, still apply.

9.5 Simple Machines
• Simple machines are devices that can be used to multiply or augment a force that we apply – often at the expense of a

distance through which we have to apply the force.
• The ratio of output to input forces for any simple machine is called its mechanical advantage
• A few simple machines are the lever, nail puller, wheelbarrow, crank, etc.

9.6 Forces and Torques in Muscles and Joints
• Statics plays an important part in understanding everyday strains in our muscles and bones.
• Many lever systems in the body have a mechanical advantage of significantly less than one, as many of our muscles are

attached close to joints.
• Someone with good posture stands or sits in such a way that the person's center of gravity lies directly above the pivot

point in the hips, thereby avoiding back strain and damage to disks.

Conceptual Questions

9.1 The First Condition for Equilibrium

1. What can you say about the velocity of a moving body that is in dynamic equilibrium? Draw a sketch of such a body using
clearly labeled arrows to represent all external forces on the body.

2. Under what conditions can a rotating body be in equilibrium? Give an example.
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9.2 The Second Condition for Equilibrium

3. What three factors affect the torque created by a force relative to a specific pivot point?

4. A wrecking ball is being used to knock down a building. One tall unsupported concrete wall remains standing. If the wrecking
ball hits the wall near the top, is the wall more likely to fall over by rotating at its base or by falling straight down? Explain your
answer. How is it most likely to fall if it is struck with the same force at its base? Note that this depends on how firmly the wall is
attached at its base.

5. Mechanics sometimes put a length of pipe over the handle of a wrench when trying to remove a very tight bolt. How does this
help? (It is also hazardous since it can break the bolt.)

9.3 Stability

6. A round pencil lying on its side as in Figure 9.12 is in neutral equilibrium relative to displacements perpendicular to its length.
What is its stability relative to displacements parallel to its length?

7. Explain the need for tall towers on a suspension bridge to ensure stable equilibrium.

9.4 Applications of Statics, Including Problem-Solving Strategies

8. When visiting some countries, you may see a person balancing a load on the head. Explain why the center of mass of the load
needs to be directly above the person’s neck vertebrae.

9.5 Simple Machines

9. Scissors are like a double-lever system. Which of the simple machines in Figure 9.22 and Figure 9.23 is most analogous to
scissors?

10. Suppose you pull a nail at a constant rate using a nail puller as shown in Figure 9.22. Is the nail puller in equilibrium? What if
you pull the nail with some acceleration – is the nail puller in equilibrium then? In which case is the force applied to the nail puller
larger and why?

11. Why are the forces exerted on the outside world by the limbs of our bodies usually much smaller than the forces exerted by
muscles inside the body?

12. Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can
these forces be even greater than muscle forces (see previous Question)?

9.6 Forces and Torques in Muscles and Joints

13. Why are the forces exerted on the outside world by the limbs of our bodies usually much smaller than the forces exerted by
muscles inside the body?

14. Explain why the forces in our joints are several times larger than the forces we exert on the outside world with our limbs. Can
these forces be even greater than muscle forces?

15. Certain types of dinosaurs were bipedal (walked on two legs). What is a good reason that these creatures invariably had long
tails if they had long necks?

16. Swimmers and athletes during competition need to go through certain postures at the beginning of the race. Consider the
balance of the person and why start-offs are so important for races.

17. If the maximum force the biceps muscle can exert is 1000 N, can we pick up an object that weighs 1000 N? Explain your
answer.

18. Suppose the biceps muscle was attached through tendons to the upper arm close to the elbow and the forearm near the
wrist. What would be the advantages and disadvantages of this type of construction for the motion of the arm?

19. Explain one of the reasons why pregnant women often suffer from back strain late in their pregnancy.
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Problems & Exercises

9.2 The Second Condition for Equilibrium

1. (a) When opening a door, you push on it perpendicularly
with a force of 55.0 N at a distance of 0.850m from the
hinges. What torque are you exerting relative to the hinges?
(b) Does it matter if you push at the same height as the
hinges?

2. When tightening a bolt, you push perpendicularly on a
wrench with a force of 165 N at a distance of 0.140 m from
the center of the bolt. (a) How much torque are you exerting
in newton × meters (relative to the center of the bolt)? (b)
Convert this torque to footpounds.

3. Two children push on opposite sides of a door during play.
Both push horizontally and perpendicular to the door. One
child pushes with a force of 17.5 N at a distance of 0.600 m
from the hinges, and the second child pushes at a distance of
0.450 m. What force must the second child exert to keep the
door from moving? Assume friction is negligible.

4. Use the second condition for equilibrium (net τ = 0) to

calculate Fp in Example 9.1, employing any data given or

solved for in part (a) of the example.

5. Repeat the seesaw problem in Example 9.1 with the
center of mass of the seesaw 0.160 m to the left of the pivot
(on the side of the lighter child) and assuming a mass of 12.0
kg for the seesaw. The other data given in the example
remain unchanged. Explicitly show how you follow the steps
in the Problem-Solving Strategy for static equilibrium.

9.3 Stability

6. Suppose a horse leans against a wall as in Figure 9.30.
Calculate the force exerted on the wall assuming that force is
horizontal while using the data in the schematic
representation of the situation. Note that the force exerted on
the wall is equal in magnitude and opposite in direction to the
force exerted on the horse, keeping it in equilibrium. The total
mass of the horse and rider is 500 kg. Take the data to be
accurate to three digits.

Figure 9.30

7. Two children of mass 20.0 kg and 30.0 kg sit balanced on a
seesaw with the pivot point located at the center of the
seesaw. If the children are separated by a distance of 3.00 m,
at what distance from the pivot point is the small child sitting
in order to maintain the balance?

8. (a) Calculate the magnitude and direction of the force on
each foot of the horse in Figure 9.30 (two are on the ground),
assuming the center of mass of the horse is midway between
the feet. The total mass of the horse and rider is 500kg. (b)
What is the minimum coefficient of friction between the
hooves and ground? Note that the force exerted by the wall is
horizontal.

9. A person carries a plank of wood 2.00 m long with one
hand pushing down on it at one end with a force F1 and the

other hand holding it up at .500 m from the end of the plank
with force F2 . If the plank has a mass of 20.0 kg and its

center of gravity is at the middle of the plank, what are the
magnitudes of the forces F1 and F2 ?

10. A 17.0-m-high and 11.0-m-long wall under construction
and its bracing are shown in Figure 9.31. The wall is in stable
equilibrium without the bracing but can pivot at its base.
Calculate the force exerted by each of the 10 braces if a
strong wind exerts a horizontal force of 650 N on each square
meter of the wall. Assume that the net force from the wind
acts at a height halfway up the wall and that all braces exert
equal forces parallel to their lengths. Neglect the thickness of
the wall.

Figure 9.31

11. (a) What force must be exerted by the wind to support a
2.50-kg chicken in the position shown in Figure 9.32? (b)
What is the ratio of this force to the chicken’s weight? (c)
Does this support the contention that the chicken has a
relatively stable construction?

Figure 9.32
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12. Suppose the weight of the drawbridge in Figure 9.33 is
supported entirely by its hinges and the opposite shore, so
that its cables are slack. The mass of the bridge is 2500 kg.
(a) What fraction of the weight is supported by the opposite
shore if the point of support is directly beneath the cable
attachments? (b) What is the direction and magnitude of the
force the hinges exert on the bridge under these
circumstances?

Figure 9.33 A small drawbridge, showing the forces on the hinges ( F ),

its weight ( w ), and the tension in its wires ( T ).

13. Suppose a 900-kg car is on the bridge in Figure 9.33 with
its center of mass halfway between the hinges and the cable
attachments. (The bridge is supported by the cables and
hinges only.) (a) Find the force in the cables. (b) Find the
direction and magnitude of the force exerted by the hinges on
the bridge.

14. A sandwich board advertising sign is constructed as
shown in Figure 9.34. The sign’s mass is 8.00 kg. (a)
Calculate the tension in the chain assuming no friction
between the legs and the sidewalk. (b) What force is exerted
by each side on the hinge?

Figure 9.34 A sandwich board advertising sign demonstrates tension.

15. (a) What minimum coefficient of friction is needed
between the legs and the ground to keep the sign in Figure
9.34 in the position shown if the chain breaks? (b) What force
is exerted by each side on the hinge?

16. A gymnast is attempting to perform splits. From the
information given in Figure 9.35, calculate the magnitude and
direction of the force exerted on each foot by the floor.

Figure 9.35 A gymnast performs full split. The center of gravity and the

various distances from it are shown.

9.4 Applications of Statics, Including Problem-
Solving Strategies

17. To get up on the roof, a person (mass 70.0 kg) places a
6.00-m aluminum ladder (mass 10.0 kg) against the house on
a concrete pad with the base of the ladder 2.00 m from the
house. The ladder rests against a plastic rain gutter, which we
can assume to be frictionless. The center of mass of the
ladder is 2 m from the bottom. The person is standing 3 m
from the bottom. What are the magnitudes of the forces on
the ladder at the top and bottom?

18. In Figure 9.20, the cg of the pole held by the pole vaulter
is 2.00 m from the left hand, and the hands are 0.700 m
apart. Calculate the force exerted by (a) his right hand and (b)
his left hand. (c) If each hand supports half the weight of the
pole in Figure 9.18, show that the second condition for
equilibrium (net τ = 0) is satisfied for a pivot other than the

one located at the center of gravity of the pole. Explicitly show
how you follow the steps in the Problem-Solving Strategy for
static equilibrium described above.

9.5 Simple Machines

19. What is the mechanical advantage of a nail puller—similar
to the one shown in Figure 9.22 —where you exert a force
45 cm from the pivot and the nail is 1.8 cm on the other

side? What minimum force must you exert to apply a force of
1250 N to the nail?

20. Suppose you needed to raise a 250-kg mower a distance
of 6.0 cm above the ground to change a tire. If you had a
2.0-m long lever, where would you place the fulcrum if your
force was limited to 300 N?

21. a) What is the mechanical advantage of a wheelbarrow,
such as the one in Figure 9.23, if the center of gravity of the
wheelbarrow and its load has a perpendicular lever arm of
5.50 cm, while the hands have a perpendicular lever arm of
1.02 m? (b) What upward force should you exert to support
the wheelbarrow and its load if their combined mass is 55.0
kg? (c) What force does the wheel exert on the ground?

22. A typical car has an axle with 1.10 cm radius driving a

tire with a radius of 27.5 cm . What is its mechanical

advantage assuming the very simplified model in Figure
9.24(b)?
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23. What force does the nail puller in Exercise 9.19 exert on
the supporting surface? The nail puller has a mass of 2.10 kg.

24. If you used an ideal pulley of the type shown in Figure
9.25(a) to support a car engine of mass 115 kg , (a) What

would be the tension in the rope? (b) What force must the
ceiling supply, assuming you pull straight down on the rope?
Neglect the pulley system’s mass.

25. Repeat Exercise 9.24 for the pulley shown in Figure
9.25(c), assuming you pull straight up on the rope. The pulley
system’s mass is 7.00 kg .

9.6 Forces and Torques in Muscles and Joints

26. Verify that the force in the elbow joint in Example 9.4 is
407 N, as stated in the text.

27. Two muscles in the back of the leg pull on the Achilles
tendon as shown in Figure 9.36. What total force do they
exert?

Figure 9.36 The Achilles tendon of the posterior leg serves to attach

plantaris, gastrocnemius, and soleus muscles to calcaneus bone.

28. The upper leg muscle (quadriceps) exerts a force of 1250
N, which is carried by a tendon over the kneecap (the patella)
at the angles shown in Figure 9.37. Find the direction and
magnitude of the force exerted by the kneecap on the upper
leg bone (the femur).

Figure 9.37 The knee joint works like a hinge to bend and straighten the

lower leg. It permits a person to sit, stand, and pivot.

29. A device for exercising the upper leg muscle is shown in
Figure 9.38, together with a schematic representation of an
equivalent lever system. Calculate the force exerted by the
upper leg muscle to lift the mass at a constant speed.
Explicitly show how you follow the steps in the Problem-
Solving Strategy for static equilibrium in Applications of
Statistics, Including Problem-Solving Strategies.

Figure 9.38 A mass is connected by pulleys and wires to the ankle in

this exercise device.
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30. A person working at a drafting board may hold her head
as shown in Figure 9.39, requiring muscle action to support
the head. The three major acting forces are shown. Calculate
the direction and magnitude of the force supplied by the
upper vertebrae FV to hold the head stationary, assuming

that this force acts along a line through the center of mass as
do the weight and muscle force.

Figure 9.39

31. We analyzed the biceps muscle example with the angle
between forearm and upper arm set at 90º . Using the same

numbers as in Example 9.4, find the force exerted by the
biceps muscle when the angle is 120º and the forearm is in

a downward position.

32. Even when the head is held erect, as in Figure 9.40, its
center of mass is not directly over the principal point of
support (the atlanto-occipital joint). The muscles at the back
of the neck should therefore exert a force to keep the head
erect. That is why your head falls forward when you fall
asleep in the class. (a) Calculate the force exerted by these
muscles using the information in the figure. (b) What is the
force exerted by the pivot on the head?

Figure 9.40 The center of mass of the head lies in front of its major point

of support, requiring muscle action to hold the head erect. A simplified

lever system is shown.

33. A 75-kg man stands on his toes by exerting an upward
force through the Achilles tendon, as in Figure 9.41. (a) What
is the force in the Achilles tendon if he stands on one foot? (b)
Calculate the force at the pivot of the simplified lever system
shown—that force is representative of forces in the ankle
joint.

Figure 9.41 The muscles in the back of the leg pull the Achilles tendon

when one stands on one’s toes. A simplified lever system is shown.

34. A father lifts his child as shown in Figure 9.42. What force
should the upper leg muscle exert to lift the child at a constant
speed?

Figure 9.42 A child being lifted by a father’s lower leg.
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35. Unlike most of the other muscles in our bodies, the
masseter muscle in the jaw, as illustrated in Figure 9.43, is
attached relatively far from the joint, enabling large forces to
be exerted by the back teeth. (a) Using the information in the
figure, calculate the force exerted by the lower teeth on the
bullet. (b) Calculate the force on the joint.

Figure 9.43 A person clenching a bullet between his teeth.

36. Integrated Concepts

Suppose we replace the 4.0-kg book in Exercise 9.31 of the
biceps muscle with an elastic exercise rope that obeys
Hooke’s Law. Assume its force constant k = 600 N/m . (a)

How much is the rope stretched (past equilibrium) to provide
the same force FB as in this example? Assume the rope is

held in the hand at the same location as the book. (b) What
force is on the biceps muscle if the exercise rope is pulled
straight up so that the forearm makes an angle of 25º with

the horizontal? Assume the biceps muscle is still
perpendicular to the forearm.

37. (a) What force should the woman in Figure 9.44 exert on
the floor with each hand to do a push-up? Assume that she
moves up at a constant speed. (b) The triceps muscle at the
back of her upper arm has an effective lever arm of 1.75 cm,
and she exerts force on the floor at a horizontal distance of
20.0 cm from the elbow joint. Calculate the magnitude of the
force in each triceps muscle, and compare it to her weight. (c)
How much work does she do if her center of mass rises 0.240
m? (d) What is her useful power output if she does 25
pushups in one minute?

Figure 9.44 A woman doing pushups.

38. You have just planted a sturdy 2-m-tall palm tree in your
front lawn for your mother’s birthday. Your brother kicks a 500
g ball, which hits the top of the tree at a speed of 5 m/s and
stays in contact with it for 10 ms. The ball falls to the ground
near the base of the tree and the recoil of the tree is minimal.
(a) What is the force on the tree? (b) The length of the sturdy
section of the root is only 20 cm. Furthermore, the soil around
the roots is loose and we can assume that an effective force
is applied at the tip of the 20 cm length. What is the effective
force exerted by the end of the tip of the root to keep the tree
from toppling? Assume the tree will be uprooted rather than
bend. (c) What could you have done to ensure that the tree
does not uproot easily?

39. Unreasonable Results

Suppose two children are using a uniform seesaw that is 3.00
m long and has its center of mass over the pivot. The first
child has a mass of 30.0 kg and sits 1.40 m from the pivot. (a)
Calculate where the second 18.0 kg child must sit to balance
the seesaw. (b) What is unreasonable about the result? (c)
Which premise is unreasonable, or which premises are
inconsistent?

40. Construct Your Own Problem

Consider a method for measuring the mass of a person’s arm
in anatomical studies. The subject lies on her back, extends
her relaxed arm to the side and two scales are placed below
the arm. One is placed under the elbow and the other under
the back of her hand. Construct a problem in which you
calculate the mass of the arm and find its center of mass
based on the scale readings and the distances of the scales
from the shoulder joint. You must include a free body diagram
of the arm to direct the analysis. Consider changing the
position of the scale under the hand to provide more
information, if needed. You may wish to consult references to
obtain reasonable mass values.
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10 ROTATIONAL MOTION AND ANGULAR
MOMENTUM

Figure 10.1 The mention of a tornado conjures up images of raw destructive power. Tornadoes blow houses away as if they were made of paper and
have been known to pierce tree trunks with pieces of straw. They descend from clouds in funnel-like shapes that spin violently, particularly at the
bottom where they are most narrow, producing winds as high as 500 km/h. (credit: Daphne Zaras, U.S. National Oceanic and Atmospheric
Administration)

Chapter Outline
10.1. Angular Acceleration

• Describe uniform circular motion.
• Explain non-uniform circular motion.
• Calculate angular acceleration of an object.
• Observe the link between linear and angular acceleration.

10.2. Kinematics of Rotational Motion
• Observe the kinematics of rotational motion.
• Derive rotational kinematic equations.
• Evaluate problem solving strategies for rotational kinematics.

10.3. Dynamics of Rotational Motion: Rotational Inertia
• Understand the relationship between force, mass and acceleration.
• Study the turning effect of force.
• Study the analogy between force and torque, mass and moment of inertia, and linear acceleration and angular

acceleration.
10.4. Rotational Kinetic Energy: Work and Energy Revisited

• Derive the equation for rotational work.
• Calculate rotational kinetic energy.
• Demonstrate the Law of Conservation of Energy.

10.5. Angular Momentum and Its Conservation
• Understand the analogy between angular momentum and linear momentum.
• Observe the relationship between torque and angular momentum.
• Apply the law of conservation of angular momentum.

10.6. Collisions of Extended Bodies in Two Dimensions
• Observe collisions of extended bodies in two dimensions.
• Examine collision at the point of percussion.

10.7. Gyroscopic Effects: Vector Aspects of Angular Momentum
• Describe the right-hand rule to find the direction of angular velocity, momentum, and torque.
• Explain the gyroscopic effect.
• Study how Earth acts like a gigantic gyroscope.
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Introduction to Rotational Motion and Angular Momentum

Why do tornadoes spin at all? And why do tornados spin so rapidly? The answer is that air masses that produce tornadoes are
themselves rotating, and when the radii of the air masses decrease, their rate of rotation increases. An ice skater increases her
spin in an exactly analogous manner as seen in Figure 10.2. The skater starts her rotation with outstretched limbs and increases
her spin by pulling them in toward her body. The same physics describes the exhilarating spin of a skater and the wrenching
force of a tornado.

Clearly, force, energy, and power are associated with rotational motion. These and other aspects of rotational motion are covered
in this chapter. We shall see that all important aspects of rotational motion either have already been defined for linear motion or
have exact analogs in linear motion. First, we look at angular acceleration—the rotational analog of linear acceleration.

Figure 10.2 This figure skater increases her rate of spin by pulling her arms and her extended leg closer to her axis of rotation. (credit: Luu, Wikimedia
Commons)

10.1 Angular Acceleration

Uniform Circular Motion and Gravitation discussed only uniform circular motion, which is motion in a circle at constant speed
and, hence, constant angular velocity. Recall that angular velocity ω was defined as the time rate of change of angle θ :

(10.1)ω = Δθ
Δt ,

where θ is the angle of rotation as seen in Figure 10.3. The relationship between angular velocity ω and linear velocity v was

also defined in Rotation Angle and Angular Velocity as

(10.2)v = rω
or

(10.3)ω = v
r ,

where r is the radius of curvature, also seen in Figure 10.3. According to the sign convention, the counter clockwise direction is

considered as positive direction and clockwise direction as negative

Figure 10.3 This figure shows uniform circular motion and some of its defined quantities.

Angular velocity is not constant when a skater pulls in her arms, when a child starts up a merry-go-round from rest, or when a
computer’s hard disk slows to a halt when switched off. In all these cases, there is an angular acceleration, in which ω
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changes. The faster the change occurs, the greater the angular acceleration. Angular acceleration α is defined as the rate of

change of angular velocity. In equation form, angular acceleration is expressed as follows:

(10.4)α = Δω
Δt ,

where Δω is the change in angular velocity and Δt is the change in time. The units of angular acceleration are (rad/s)/s ,

or rad/s2 . If ω increases, then α is positive. If ω decreases, then α is negative.

Example 10.1 Calculating the Angular Acceleration and Deceleration of a Bike Wheel

Suppose a teenager puts her bicycle on its back and starts the rear wheel spinning from rest to a final angular velocity of

250 rpm in 5.00 s. (a) Calculate the angular acceleration in rad/s2 . (b) If she now slams on the brakes, causing an angular

acceleration of – 87.3 rad/s2 , how long does it take the wheel to stop?

Strategy for (a)

The angular acceleration can be found directly from its definition in α = Δω
Δt because the final angular velocity and time

are given. We see that Δω is 250 rpm and Δt is 5.00 s.

Solution for (a)

Entering known information into the definition of angular acceleration, we get

(10.5)α = Δω
Δt

= 250 rpm
5.00 s .

Because Δω is in revolutions per minute (rpm) and we want the standard units of rad/s2 for angular acceleration, we

need to convert Δω from rpm to rad/s:

(10.6)Δω = 250 rev
min ⋅ 2π rad

rev ⋅ 1 min
60 s

= 26.2rad
s .

Entering this quantity into the expression for α , we get

(10.7)α = Δω
Δt

= 26.2 rad/s
5.00 s

= 5.24 rad/s2.
Strategy for (b)

In this part, we know the angular acceleration and the initial angular velocity. We can find the stoppage time by using the
definition of angular acceleration and solving for Δt , yielding

(10.8)Δt = Δω
α .

Solution for (b)

Here the angular velocity decreases from 26.2 rad/s (250 rpm) to zero, so that Δω is – 26.2 rad/s , and α is given to

be – 87.3 rad/s2 . Thus,

(10.9)Δt = – 26.2 rad/s
– 87.3 rad/s2

= 0.300 s.
Discussion

Note that the angular acceleration as the girl spins the wheel is small and positive; it takes 5 s to produce an appreciable
angular velocity. When she hits the brake, the angular acceleration is large and negative. The angular velocity quickly goes
to zero. In both cases, the relationships are analogous to what happens with linear motion. For example, there is a large
deceleration when you crash into a brick wall—the velocity change is large in a short time interval.
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If the bicycle in the preceding example had been on its wheels instead of upside-down, it would first have accelerated along the
ground and then come to a stop. This connection between circular motion and linear motion needs to be explored. For example,
it would be useful to know how linear and angular acceleration are related. In circular motion, linear acceleration is tangent to the
circle at the point of interest, as seen in Figure 10.4. Thus, linear acceleration is called tangential acceleration at .

Figure 10.4 In circular motion, linear acceleration a , occurs as the magnitude of the velocity changes: a is tangent to the motion. In the context of

circular motion, linear acceleration is also called tangential acceleration at .

Linear or tangential acceleration refers to changes in the magnitude of velocity but not its direction. We know from Uniform
Circular Motion and Gravitation that in circular motion centripetal acceleration, ac , refers to changes in the direction of the

velocity but not its magnitude. An object undergoing circular motion experiences centripetal acceleration, as seen in Figure 10.5.
Thus, at and ac are perpendicular and independent of one another. Tangential acceleration at is directly related to the

angular acceleration α and is linked to an increase or decrease in the velocity, but not its direction.

Figure 10.5 Centripetal acceleration ac occurs as the direction of velocity changes; it is perpendicular to the circular motion. Centripetal and

tangential acceleration are thus perpendicular to each other.

Now we can find the exact relationship between linear acceleration at and angular acceleration α . Because linear acceleration

is proportional to a change in the magnitude of the velocity, it is defined (as it was in One-Dimensional Kinematics) to be

(10.10)at = Δv
Δt .

For circular motion, note that v = rω , so that

(10.11)at = Δ(rω)
Δt .

The radius r is constant for circular motion, and so Δ(rω) = r(Δω) . Thus,

(10.12)at = rΔω
Δt .

By definition, α = Δω
Δt . Thus,

(10.13)at = rα,

or
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(10.14)α = at
r .

These equations mean that linear acceleration and angular acceleration are directly proportional. The greater the angular
acceleration is, the larger the linear (tangential) acceleration is, and vice versa. For example, the greater the angular acceleration
of a car’s drive wheels, the greater the acceleration of the car. The radius also matters. For example, the smaller a wheel, the
smaller its linear acceleration for a given angular acceleration α .

Example 10.2 Calculating the Angular Acceleration of a Motorcycle Wheel

A powerful motorcycle can accelerate from 0 to 30.0 m/s (about 108 km/h) in 4.20 s. What is the angular acceleration of its
0.320-m-radius wheels? (See Figure 10.6.)

Figure 10.6 The linear acceleration of a motorcycle is accompanied by an angular acceleration of its wheels.

Strategy

We are given information about the linear velocities of the motorcycle. Thus, we can find its linear acceleration at . Then,

the expression α = at
r can be used to find the angular acceleration.

Solution

The linear acceleration is

(10.15)at = Δv
Δt

= 30.0 m/s
4.20 s

= 7.14 m/s2.

We also know the radius of the wheels. Entering the values for at and r into α = at
r , we get

(10.16)α = at
r

= 7.14 m/s2

0.320 m
= 22.3 rad/s2.

Discussion

Units of radians are dimensionless and appear in any relationship between angular and linear quantities.

So far, we have defined three rotational quantities— θ, ω , and α . These quantities are analogous to the translational quantities

x, v , and a . Table 10.1 displays rotational quantities, the analogous translational quantities, and the relationships between

them.

Table 10.1 Rotational and Translational Quantities

Rotational Translational Relationship

θ x θ = x
r

ω v ω = v
r

α a α = at
r
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Making Connections: Take-Home Experiment

Sit down with your feet on the ground on a chair that rotates. Lift one of your legs such that it is unbent (straightened out).
Using the other leg, begin to rotate yourself by pushing on the ground. Stop using your leg to push the ground but allow the
chair to rotate. From the origin where you began, sketch the angle, angular velocity, and angular acceleration of your leg as
a function of time in the form of three separate graphs. Estimate the magnitudes of these quantities.

Check Your Understanding

Angular acceleration is a vector, having both magnitude and direction. How do we denote its magnitude and direction?
Illustrate with an example.

Solution

The magnitude of angular acceleration is α and its most common units are rad/s2 . The direction of angular acceleration

along a fixed axis is denoted by a + or a – sign, just as the direction of linear acceleration in one dimension is denoted by a +
or a – sign. For example, consider a gymnast doing a forward flip. Her angular momentum would be parallel to the mat and
to her left. The magnitude of her angular acceleration would be proportional to her angular velocity (spin rate) and her
moment of inertia about her spin axis.

PhET Explorations: Ladybug Revolution

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant
angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and
acceleration using vectors or graphs.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42177/
1.10/#Phet_module_10.1)

Figure 10.7

10.2 Kinematics of Rotational Motion

Just by using our intuition, we can begin to see how rotational quantities like θ , ω , and α are related to one another. For

example, if a motorcycle wheel has a large angular acceleration for a fairly long time, it ends up spinning rapidly and rotates
through many revolutions. In more technical terms, if the wheel’s angular acceleration α is large for a long period of time t ,

then the final angular velocity ω and angle of rotation θ are large. The wheel’s rotational motion is exactly analogous to the fact

that the motorcycle’s large translational acceleration produces a large final velocity, and the distance traveled will also be large.

Kinematics is the description of motion. The kinematics of rotational motion describes the relationships among rotation angle,
angular velocity, angular acceleration, and time. Let us start by finding an equation relating ω , α , and t . To determine this

equation, we recall a familiar kinematic equation for translational, or straight-line, motion:

(10.17)v = v0 + at     (constant a)

Note that in rotational motion a = at , and we shall use the symbol a for tangential or linear acceleration from now on. As in

linear kinematics, we assume a is constant, which means that angular acceleration α is also a constant, because a = rα .

Now, let us substitute v = rω and a = rα into the linear equation above:

(10.18)rω = rω0 + rαt.

The radius r cancels in the equation, yielding

(10.19)ω = ω0 + αt     (constant α),

where ω0 is the initial angular velocity. This last equation is a kinematic relationship among ω , α , and t —that is, it describes

their relationship without reference to forces or masses that may affect rotation. It is also precisely analogous in form to its
translational counterpart.

Making Connections

Kinematics for rotational motion is completely analogous to translational kinematics, first presented in One-Dimensional
Kinematics. Kinematics is concerned with the description of motion without regard to force or mass. We will find that
translational kinematic quantities, such as displacement, velocity, and acceleration have direct analogs in rotational motion.

Starting with the four kinematic equations we developed in One-Dimensional Kinematics, we can derive the following four
rotational kinematic equations (presented together with their translational counterparts):
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Table 10.2 Rotational Kinematic Equations

Rotational Translational

θ = ω¯ t x = v- t

ω = ω0 + αt v = v0 + at (constant α , a )

θ = ω0t + 1
2αt2 x = v0t + 1

2at2
(constant α , a )

ω2 = ω0
2 + 2αθ v2 = v0

2 + 2ax (constant α , a )

In these equations, the subscript 0 denotes initial values ( θ0 , x0 , and t0 are initial values), and the average angular velocity

ω- and average velocity v- are defined as follows:

(10.20)ω̄ = ω0 + ω
2  and v̄ = v0 + v

2 .

The equations given above in Table 10.2 can be used to solve any rotational or translational kinematics problem in which a and

α are constant.

Problem-Solving Strategy for Rotational Kinematics
1. Examine the situation to determine that rotational kinematics (rotational motion) is involved. Rotation must be involved,

but without the need to consider forces or masses that affect the motion.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the situation is useful.

3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be useful to think in
terms of a translational analog because by now you are familiar with such motion.

5. Substitute the known values along with their units into the appropriate equation, and obtain numerical solutions
complete with units. Be sure to use units of radians for angles.

6. Check your answer to see if it is reasonable: Does your answer make sense?

Example 10.3 Calculating the Acceleration of a Fishing Reel

A deep-sea fisherman hooks a big fish that swims away from the boat pulling the fishing line from his fishing reel. The whole
system is initially at rest and the fishing line unwinds from the reel at a radius of 4.50 cm from its axis of rotation. The reel is

given an angular acceleration of 110 rad/s2 for 2.00 s as seen in Figure 10.8.

(a) What is the final angular velocity of the reel?

(b) At what speed is fishing line leaving the reel after 2.00 s elapses?

(c) How many revolutions does the reel make?

(d) How many meters of fishing line come off the reel in this time?

Strategy

In each part of this example, the strategy is the same as it was for solving problems in linear kinematics. In particular, known
values are identified and a relationship is then sought that can be used to solve for the unknown.

Solution for (a)

Here α and t are given and ω needs to be determined. The most straightforward equation to use is ω = ω0 + αt
because the unknown is already on one side and all other terms are known. That equation states that

(10.21)ω = ω0 + αt.

We are also given that ω0 = 0 (it starts from rest), so that

(10.22)ω = 0 + ⎛⎝110 rad/s2⎞⎠(2.00s) = 220 rad/s.

Solution for (b)

Now that ω is known, the speed v can most easily be found using the relationship

(10.23)v = rω,
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where the radius r of the reel is given to be 4.50 cm; thus,

(10.24)v = (0.0450 m)(220 rad/s) = 9.90 m/s.

Note again that radians must always be used in any calculation relating linear and angular quantities. Also, because radians
are dimensionless, we have m×rad = m .

Solution for (c)

Here, we are asked to find the number of revolutions. Because 1 rev = 2π rad , we can find the number of revolutions by

finding θ in radians. We are given α and t , and we know ω 0 is zero, so that θ can be obtained using

θ = ω0t + 1
2αt2 .

(10.25)θ = ω0t + 1
2αt2

= 0 + (0.500)⎛⎝110 rad/s2⎞⎠(2.00 s)2 = 220 rad.

Converting radians to revolutions gives

(10.26)θ = (220 rad) 1 rev
2π rad = 35.0 rev.

Solution for (d)

The number of meters of fishing line is x , which can be obtained through its relationship with θ :

(10.27)x = rθ = (0.0450 m)(220 rad) = 9.90 m.

Discussion

This example illustrates that relationships among rotational quantities are highly analogous to those among linear quantities.
We also see in this example how linear and rotational quantities are connected. The answers to the questions are realistic.
After unwinding for two seconds, the reel is found to spin at 220 rad/s, which is 2100 rpm. (No wonder reels sometimes
make high-pitched sounds.) The amount of fishing line played out is 9.90 m, about right for when the big fish bites.

Figure 10.8 Fishing line coming off a rotating reel moves linearly. Example 10.3 and Example 10.4 consider relationships between rotational and
linear quantities associated with a fishing reel.

Example 10.4 Calculating the Duration When the Fishing Reel Slows Down and Stops

Now let us consider what happens if the fisherman applies a brake to the spinning reel, achieving an angular acceleration of

– 300 rad/s2 . How long does it take the reel to come to a stop?

Strategy

We are asked to find the time t for the reel to come to a stop. The initial and final conditions are different from those in the

previous problem, which involved the same fishing reel. Now we see that the initial angular velocity is ω0 = 220 rad/s and

the final angular velocity ω is zero. The angular acceleration is given to be α = −300 rad/s2 . Examining the available

equations, we see all quantities but t are known in ω = ω0 + αt, making it easiest to use this equation.

Solution

The equation states
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(10.28)ω = ω0 + αt.

We solve the equation algebraically for t, and then substitute the known values as usual, yielding

(10.29)t = ω − ω0
α = 0 − 220 rad/s

−300 rad/s2 = 0.733 s.

Discussion

Note that care must be taken with the signs that indicate the directions of various quantities. Also, note that the time to stop
the reel is fairly small because the acceleration is rather large. Fishing lines sometimes snap because of the accelerations
involved, and fishermen often let the fish swim for a while before applying brakes on the reel. A tired fish will be slower,
requiring a smaller acceleration.

Example 10.5 Calculating the Slow Acceleration of Trains and Their Wheels

Large freight trains accelerate very slowly. Suppose one such train accelerates from rest, giving its 0.350-m-radius wheels

an angular acceleration of 0.250 rad/s2 . After the wheels have made 200 revolutions (assume no slippage): (a) How far

has the train moved down the track? (b) What are the final angular velocity of the wheels and the linear velocity of the train?

Strategy

In part (a), we are asked to find x , and in (b) we are asked to find ω and v . We are given the number of revolutions θ ,

the radius of the wheels r , and the angular acceleration α .

Solution for (a)

The distance x is very easily found from the relationship between distance and rotation angle:

(10.30)θ = x
r .

Solving this equation for x yields

(10.31)x = rθ.
Before using this equation, we must convert the number of revolutions into radians, because we are dealing with a
relationship between linear and rotational quantities:

(10.32)θ = (200 rev)2π rad
1 rev = 1257 rad.

Now we can substitute the known values into x = rθ to find the distance the train moved down the track:

(10.33)x = rθ = (0.350 m)(1257 rad) = 440 m.

Solution for (b)

We cannot use any equation that incorporates t to find ω , because the equation would have at least two unknown values.

The equation ω2 = ω0
2 + 2αθ will work, because we know the values for all variables except ω :

(10.34)ω2 = ω0
2 + 2αθ

Taking the square root of this equation and entering the known values gives

(10.35)
ω = ⎡

⎣0 + 2(0.250 rad/s2)(1257 rad)⎤⎦
1 / 2

= 25.1 rad/s.
We can find the linear velocity of the train, v , through its relationship to ω :

(10.36)v = rω = (0.350 m)(25.1 rad/s) = 8.77 m/s.

Discussion

The distance traveled is fairly large and the final velocity is fairly slow (just under 32 km/h).

There is translational motion even for something spinning in place, as the following example illustrates. Figure 10.9 shows a fly
on the edge of a rotating microwave oven plate. The example below calculates the total distance it travels.
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Figure 10.9 The image shows a microwave plate. The fly makes revolutions while the food is heated (along with the fly).

Example 10.6 Calculating the Distance Traveled by a Fly on the Edge of a Microwave Oven
Plate

A person decides to use a microwave oven to reheat some lunch. In the process, a fly accidentally flies into the microwave
and lands on the outer edge of the rotating plate and remains there. If the plate has a radius of 0.15 m and rotates at 6.0
rpm, calculate the total distance traveled by the fly during a 2.0-min cooking period. (Ignore the start-up and slow-down
times.)

Strategy

First, find the total number of revolutions θ , and then the linear distance x traveled. θ = ω̄ t can be used to find θ
because ω- is given to be 6.0 rpm.

Solution

Entering known values into θ = ω̄ t gives

(10.37)θ = ω- t = ⎛
⎝6.0 rpm⎞⎠(2.0 min) = 12 rev.

As always, it is necessary to convert revolutions to radians before calculating a linear quantity like x from an angular

quantity like θ :

(10.38)θ = (12 rev)⎛⎝2π rad
1 rev

⎞
⎠ = 75.4 rad.

Now, using the relationship between x and θ , we can determine the distance traveled:

(10.39)x = rθ = (0.15 m)(75.4 rad) = 11 m.

Discussion

Quite a trip (if it survives)! Note that this distance is the total distance traveled by the fly. Displacement is actually zero for
complete revolutions because they bring the fly back to its original position. The distinction between total distance traveled
and displacement was first noted in One-Dimensional Kinematics.

Check Your Understanding

Rotational kinematics has many useful relationships, often expressed in equation form. Are these relationships laws of
physics or are they simply descriptive? (Hint: the same question applies to linear kinematics.)

Solution
Rotational kinematics (just like linear kinematics) is descriptive and does not represent laws of nature. With kinematics, we
can describe many things to great precision but kinematics does not consider causes. For example, a large angular
acceleration describes a very rapid change in angular velocity without any consideration of its cause.

10.3 Dynamics of Rotational Motion: Rotational Inertia

If you have ever spun a bike wheel or pushed a merry-go-round, you know that force is needed to change angular velocity as
seen in Figure 10.10. In fact, your intuition is reliable in predicting many of the factors that are involved. For example, we know
that a door opens slowly if we push too close to its hinges. Furthermore, we know that the more massive the door, the more
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slowly it opens. The first example implies that the farther the force is applied from the pivot, the greater the angular acceleration;
another implication is that angular acceleration is inversely proportional to mass. These relationships should seem very similar to
the familiar relationships among force, mass, and acceleration embodied in Newton’s second law of motion. There are, in fact,
precise rotational analogs to both force and mass.

Figure 10.10 Force is required to spin the bike wheel. The greater the force, the greater the angular acceleration produced. The more massive the
wheel, the smaller the angular acceleration. If you push on a spoke closer to the axle, the angular acceleration will be smaller.

To develop the precise relationship among force, mass, radius, and angular acceleration, consider what happens if we exert a
force F on a point mass m that is at a distance r from a pivot point, as shown in Figure 10.11. Because the force is

perpendicular to r , an acceleration a = F
m is obtained in the direction of F . We can rearrange this equation such that

F = ma and then look for ways to relate this expression to expressions for rotational quantities. We note that a = rα , and we

substitute this expression into F = ma , yielding

(10.40)F = mrα.

Recall that torque is the turning effectiveness of a force. In this case, because F is perpendicular to r , torque is simply

τ = Fr . So, if we multiply both sides of the equation above by r , we get torque on the left-hand side. That is,

(10.41)rF = mr2α
or

(10.42)τ = mr2α.

This last equation is the rotational analog of Newton’s second law ( F = ma ), where torque is analogous to force, angular

acceleration is analogous to translational acceleration, and mr2 is analogous to mass (or inertia). The quantity mr2 is called

the rotational inertia or moment of inertia of a point mass m a distance r from the center of rotation.

Figure 10.11 An object is supported by a horizontal frictionless table and is attached to a pivot point by a cord that supplies centripetal force. A force

F is applied to the object perpendicular to the radius r , causing it to accelerate about the pivot point. The force is kept perpendicular to r .

Making Connections: Rotational Motion Dynamics

Dynamics for rotational motion is completely analogous to linear or translational dynamics. Dynamics is concerned with
force and mass and their effects on motion. For rotational motion, we will find direct analogs to force and mass that behave
just as we would expect from our earlier experiences.

Rotational Inertia and Moment of Inertia

Before we can consider the rotation of anything other than a point mass like the one in Figure 10.11, we must extend the idea of
rotational inertia to all types of objects. To expand our concept of rotational inertia, we define the moment of inertia I of an
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object to be the sum of mr2 for all the point masses of which it is composed. That is, I = ∑ mr2 . Here I is analogous to m
in translational motion. Because of the distance r , the moment of inertia for any object depends on the chosen axis. Actually,

calculating I is beyond the scope of this text except for one simple case—that of a hoop, which has all its mass at the same

distance from its axis. A hoop’s moment of inertia around its axis is therefore MR2 , where M is its total mass and R its

radius. (We use M and R for an entire object to distinguish them from m and r for point masses.) In all other cases, we must

consult Figure 10.12 (note that the table is piece of artwork that has shapes as well as formulae) for formulas for I that have

been derived from integration over the continuous body. Note that I has units of mass multiplied by distance squared ( kg ⋅ m2

), as we might expect from its definition.

The general relationship among torque, moment of inertia, and angular acceleration is

(10.43)net τ = Iα
or

(10.44)α = net τ
I ,

where net τ is the total torque from all forces relative to a chosen axis. For simplicity, we will only consider torques exerted by

forces in the plane of the rotation. Such torques are either positive or negative and add like ordinary numbers. The relationship in

τ = Iα, α = net τ
I is the rotational analog to Newton’s second law and is very generally applicable. This equation is actually

valid for any torque, applied to any object, relative to any axis.

As we might expect, the larger the torque is, the larger the angular acceleration is. For example, the harder a child pushes on a
merry-go-round, the faster it accelerates. Furthermore, the more massive a merry-go-round, the slower it accelerates for the
same torque. The basic relationship between moment of inertia and angular acceleration is that the larger the moment of inertia,
the smaller is the angular acceleration. But there is an additional twist. The moment of inertia depends not only on the mass of
an object, but also on its distribution of mass relative to the axis around which it rotates. For example, it will be much easier to
accelerate a merry-go-round full of children if they stand close to its axis than if they all stand at the outer edge. The mass is the
same in both cases, but the moment of inertia is much larger when the children are at the edge.

Take-Home Experiment

Cut out a circle that has about a 10 cm radius from stiff cardboard. Near the edge of the circle, write numbers 1 to 12 like
hours on a clock face. Position the circle so that it can rotate freely about a horizontal axis through its center, like a wheel.
(You could loosely nail the circle to a wall.) Hold the circle stationary and with the number 12 positioned at the top, attach a
lump of blue putty (sticky material used for fixing posters to walls) at the number 3. How large does the lump need to be to
just rotate the circle? Describe how you can change the moment of inertia of the circle. How does this change affect the
amount of blue putty needed at the number 3 to just rotate the circle? Change the circle’s moment of inertia and then try
rotating the circle by using different amounts of blue putty. Repeat this process several times.

Problem-Solving Strategy for Rotational Dynamics
1. Examine the situation to determine that torque and mass are involved in the rotation. Draw a careful sketch of the

situation.

2. Determine the system of interest.

3. Draw a free body diagram. That is, draw and label all external forces acting on the system of interest.

4. Apply net τ = Iα, α = net τ
I , the rotational equivalent of Newton’s second law, to solve the problem. Care must be

taken to use the correct moment of inertia and to consider the torque about the point of rotation.

5. As always, check the solution to see if it is reasonable.

Making Connections

In statics, the net torque is zero, and there is no angular acceleration. In rotational motion, net torque is the cause of angular
acceleration, exactly as in Newton’s second law of motion for rotation.
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Figure 10.12 Some rotational inertias.

Example 10.7 Calculating the Effect of Mass Distribution on a Merry-Go-Round

Consider the father pushing a playground merry-go-round in Figure 10.13. He exerts a force of 250 N at the edge of the
50.0-kg merry-go-round, which has a 1.50 m radius. Calculate the angular acceleration produced (a) when no one is on the
merry-go-round and (b) when an 18.0-kg child sits 1.25 m away from the center. Consider the merry-go-round itself to be a
uniform disk with negligible retarding friction.

Figure 10.13 A father pushes a playground merry-go-round at its edge and perpendicular to its radius to achieve maximum torque.

Strategy
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Angular acceleration is given directly by the expression α = net τ
I :

(10.45)α = τ
I .

To solve for α , we must first calculate the torque τ (which is the same in both cases) and moment of inertia I (which is

greater in the second case). To find the torque, we note that the applied force is perpendicular to the radius and friction is
negligible, so that

(10.46)τ = rF sin θ = (1.50 m)(250 N) = 375 N ⋅ m.

Solution for (a)

The moment of inertia of a solid disk about this axis is given in Figure 10.12 to be

(10.47)1
2MR2,

where M = 50.0 kg and R = 1.50 m , so that

(10.48)I = (0.500)(50.0 kg)(1.50 m)2 = 56.25 kg ⋅ m2.

Now, after we substitute the known values, we find the angular acceleration to be

(10.49)α = τ
I = 375 N ⋅ m

56.25 kg ⋅ m2 = 6.67rad
s2 .

Solution for (b)

We expect the angular acceleration for the system to be less in this part, because the moment of inertia is greater when the
child is on the merry-go-round. To find the total moment of inertia I , we first find the child’s moment of inertia Ic by

considering the child to be equivalent to a point mass at a distance of 1.25 m from the axis. Then,

(10.50)Ic = MR2 = (18.0 kg)(1.25 m)2 = 28.13 kg ⋅ m2.

The total moment of inertia is the sum of moments of inertia of the merry-go-round and the child (about the same axis). To
justify this sum to yourself, examine the definition of I :

(10.51)I = 28.13 kg ⋅ m2 + 56.25 kg ⋅ m2 = 84.38 kg ⋅ m2.

Substituting known values into the equation for α gives

(10.52)α = τ
I = 375 N ⋅ m

84.38 kg ⋅ m2 = 4.44rad
s2 .

Discussion

The angular acceleration is less when the child is on the merry-go-round than when the merry-go-round is empty, as
expected. The angular accelerations found are quite large, partly due to the fact that friction was considered to be negligible.
If, for example, the father kept pushing perpendicularly for 2.00 s, he would give the merry-go-round an angular velocity of
13.3 rad/s when it is empty but only 8.89 rad/s when the child is on it. In terms of revolutions per second, these angular
velocities are 2.12 rev/s and 1.41 rev/s, respectively. The father would end up running at about 50 km/h in the first case.
Summer Olympics, here he comes! Confirmation of these numbers is left as an exercise for the reader.

Check Your Understanding

Torque is the analog of force and moment of inertia is the analog of mass. Force and mass are physical quantities that
depend on only one factor. For example, mass is related solely to the numbers of atoms of various types in an object. Are
torque and moment of inertia similarly simple?

Solution
No. Torque depends on three factors: force magnitude, force direction, and point of application. Moment of inertia depends
on both mass and its distribution relative to the axis of rotation. So, while the analogies are precise, these rotational
quantities depend on more factors.

10.4 Rotational Kinetic Energy: Work and Energy Revisited

In this module, we will learn about work and energy associated with rotational motion. Figure 10.14 shows a worker using an
electric grindstone propelled by a motor. Sparks are flying, and noise and vibration are created as layers of steel are pared from
the pole. The stone continues to turn even after the motor is turned off, but it is eventually brought to a stop by friction. Clearly,
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the motor had to work to get the stone spinning. This work went into heat, light, sound, vibration, and considerable rotational
kinetic energy.

Figure 10.14 The motor works in spinning the grindstone, giving it rotational kinetic energy. That energy is then converted to heat, light, sound, and
vibration. (credit: U.S. Navy photo by Mass Communication Specialist Seaman Zachary David Bell)

Work must be done to rotate objects such as grindstones or merry-go-rounds. Work was defined in Uniform Circular Motion
and Gravitation for translational motion, and we can build on that knowledge when considering work done in rotational motion.
The simplest rotational situation is one in which the net force is exerted perpendicular to the radius of a disk (as shown in Figure
10.15) and remains perpendicular as the disk starts to rotate. The force is parallel to the displacement, and so the net work done
is the product of the force times the arc length traveled:

(10.53)net W = (net F)Δs.

To get torque and other rotational quantities into the equation, we multiply and divide the right-hand side of the equation by r ,

and gather terms:

(10.54)net W = (r net F)Δs
r .

We recognize that r net F = net τ and Δs / r = θ , so that

(10.55)net W = (net τ)θ.

This equation is the expression for rotational work. It is very similar to the familiar definition of translational work as force
multiplied by distance. Here, torque is analogous to force, and angle is analogous to distance. The equation net W = (net τ)θ
is valid in general, even though it was derived for a special case.

To get an expression for rotational kinetic energy, we must again perform some algebraic manipulations. The first step is to note
that net τ = Iα , so that

(10.56)net W = Iαθ.

Figure 10.15 The net force on this disk is kept perpendicular to its radius as the force causes the disk to rotate. The net work done is thus

(net F)Δs . The net work goes into rotational kinetic energy.

Making Connections

Work and energy in rotational motion are completely analogous to work and energy in translational motion, first presented in
Uniform Circular Motion and Gravitation.

Now, we solve one of the rotational kinematics equations for αθ . We start with the equation
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(10.57)ω2 = ω0
2 + 2αθ.

Next, we solve for αθ :

(10.58)
αθ = ω2 − ω0

2

2 .

Substituting this into the equation for net W and gathering terms yields

(10.59)net W = 1
2Iω2 − 1

2Iω0
2.

This equation is the work-energy theorem for rotational motion only. As you may recall, net work changes the kinetic energy of

a system. Through an analogy with translational motion, we define the term
⎛
⎝12
⎞
⎠Iω2 to be rotational kinetic energy KErot for

an object with a moment of inertia I and an angular velocity ω :

(10.60)KErot = 1
2Iω2.

The expression for rotational kinetic energy is exactly analogous to translational kinetic energy, with I being analogous to m
and ω to v . Rotational kinetic energy has important effects. Flywheels, for example, can be used to store large amounts of

rotational kinetic energy in a vehicle, as seen in Figure 10.16.

Figure 10.16 Experimental vehicles, such as this bus, have been constructed in which rotational kinetic energy is stored in a large flywheel. When the

bus goes down a hill, its transmission converts its gravitational potential energy into KErot . It can also convert translational kinetic energy, when the

bus stops, into KErot . The flywheel’s energy can then be used to accelerate, to go up another hill, or to keep the bus from going against friction.

Example 10.8 Calculating the Work and Energy for Spinning a Grindstone

Consider a person who spins a large grindstone by placing her hand on its edge and exerting a force through part of a
revolution as shown in Figure 10.17. In this example, we verify that the work done by the torque she exerts equals the
change in rotational energy. (a) How much work is done if she exerts a force of 200 N through a rotation of 1.00 rad(57.3º)
? The force is kept perpendicular to the grindstone’s 0.320-m radius at the point of application, and the effects of friction are
negligible. (b) What is the final angular velocity if the grindstone has a mass of 85.0 kg? (c) What is the final rotational kinetic
energy? (It should equal the work.)

Strategy

To find the work, we can use the equation net W = (net τ)θ . We have enough information to calculate the torque and are

given the rotation angle. In the second part, we can find the final angular velocity using one of the kinematic relationships. In

the last part, we can calculate the rotational kinetic energy from its expression in KErot = 1
2Iω2 .

Solution for (a)

The net work is expressed in the equation

(10.61)net W = (net τ)θ,

where net τ is the applied force multiplied by the radius (rF) because there is no retarding friction, and the force is

perpendicular to r . The angle θ is given. Substituting the given values in the equation above yields

(10.62)net W = rFθ = (0.320 m)(200 N)(1.00 rad)
= 64.0 N ⋅ m.

Noting that 1 N · m = 1 J ,

(10.63)net W = 64.0 J.
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Figure 10.17 A large grindstone is given a spin by a person grasping its outer edge.

Solution for (b)

To find ω from the given information requires more than one step. We start with the kinematic relationship in the equation

(10.64)ω2 = ω0
2 + 2αθ.

Note that ω0 = 0 because we start from rest. Taking the square root of the resulting equation gives

(10.65)ω = (2αθ)1 / 2.

Now we need to find α . One possibility is

(10.66)α = net τ
I ,

where the torque is

(10.67)net τ = rF = (0.320 m)(200 N) = 64.0 N ⋅ m.

The formula for the moment of inertia for a disk is found in Figure 10.12:

(10.68)I = 1
2MR2 = 0.5⎛⎝85.0 kg⎞⎠(0.320 m)2 = 4.352 kg ⋅ m2.

Substituting the values of torque and moment of inertia into the expression for α , we obtain

(10.69)α = 64.0 N ⋅ m
4.352 kg ⋅ m2 = 14.7rad

s2 .

Now, substitute this value and the given value for θ into the above expression for ω :

(10.70)

ω = (2αθ)1 / 2 = ⎡⎣2
⎛
⎝14.7rad

s2
⎞
⎠(1.00 rad)⎤⎦

1 / 2
= 5.42rad

s .

Solution for (c)

The final rotational kinetic energy is

(10.71)KErot = 1
2Iω2.

Both I and ω were found above. Thus,

(10.72)KErot = (0.5)⎛⎝4.352 kg ⋅ m2⎞⎠(5.42 rad/s)2 = 64.0 J.

Discussion

The final rotational kinetic energy equals the work done by the torque, which confirms that the work done went into rotational
kinetic energy. We could, in fact, have used an expression for energy instead of a kinematic relation to solve part (b). We will
do this in later examples.

Helicopter pilots are quite familiar with rotational kinetic energy. They know, for example, that a point of no return will be reached
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if they allow their blades to slow below a critical angular velocity during flight. The blades lose lift, and it is impossible to
immediately get the blades spinning fast enough to regain it. Rotational kinetic energy must be supplied to the blades to get them
to rotate faster, and enough energy cannot be supplied in time to avoid a crash. Because of weight limitations, helicopter engines
are too small to supply both the energy needed for lift and to replenish the rotational kinetic energy of the blades once they have
slowed down. The rotational kinetic energy is put into them before takeoff and must not be allowed to drop below this crucial
level. One possible way to avoid a crash is to use the gravitational potential energy of the helicopter to replenish the rotational
kinetic energy of the blades by losing altitude and aligning the blades so that the helicopter is spun up in the descent. Of course,
if the helicopter’s altitude is too low, then there is insufficient time for the blade to regain lift before reaching the ground.

Problem-Solving Strategy for Rotational Energy
1. Determine that energy or work is involved in the rotation.

2. Determine the system of interest. A sketch usually helps.

3. Analyze the situation to determine the types of work and energy involved.

4. For closed systems, mechanical energy is conserved. That is, KEi + PEi = KEf + PEf. Note that KEi and KEf
may each include translational and rotational contributions.

5. For open systems, mechanical energy may not be conserved, and other forms of energy (referred to previously as
OE ), such as heat transfer, may enter or leave the system. Determine what they are, and calculate them as

necessary.

6. Eliminate terms wherever possible to simplify the algebra.

7. Check the answer to see if it is reasonable.

Example 10.9 Calculating Helicopter Energies

A typical small rescue helicopter, similar to the one in Figure 10.18, has four blades, each is 4.00 m long and has a mass of
50.0 kg. The blades can be approximated as thin rods that rotate about one end of an axis perpendicular to their length. The
helicopter has a total loaded mass of 1000 kg. (a) Calculate the rotational kinetic energy in the blades when they rotate at
300 rpm. (b) Calculate the translational kinetic energy of the helicopter when it flies at 20.0 m/s, and compare it with the
rotational energy in the blades. (c) To what height could the helicopter be raised if all of the rotational kinetic energy could be
used to lift it?

Strategy

Rotational and translational kinetic energies can be calculated from their definitions. The last part of the problem relates to
the idea that energy can change form, in this case from rotational kinetic energy to gravitational potential energy.

Solution for (a)

The rotational kinetic energy is

(10.73)KErot = 1
2Iω2.

We must convert the angular velocity to radians per second and calculate the moment of inertia before we can find KErot .

The angular velocity ω is

(10.74)ω = 300 rev
1.00 min ⋅ 2π rad

1 rev ⋅ 1.00 min
60.0 s = 31.4rad

s .

The moment of inertia of one blade will be that of a thin rod rotated about its end, found in Figure 10.12. The total I is four

times this moment of inertia, because there are four blades. Thus,

(10.75)
I = 4Mℓ2

3 = 4×
⎛
⎝50.0 kg⎞⎠(4.00 m)2

3 = 1067 kg ⋅ m2.

Entering ω and I into the expression for rotational kinetic energy gives

(10.76)KErot = 0.5(1067 kg ⋅ m2)(31.4 rad/s)2

= 5.26×105 J
Solution for (b)

Translational kinetic energy was defined in Uniform Circular Motion and Gravitation. Entering the given values of mass
and velocity, we obtain

(10.77)KEtrans = 1
2mv2 = (0.5)⎛⎝1000 kg⎞⎠(20.0 m/s)2 = 2.00×105 J.
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To compare kinetic energies, we take the ratio of translational kinetic energy to rotational kinetic energy. This ratio is

(10.78)2.00×105 J
5.26×105 J

= 0.380.

Solution for (c)

At the maximum height, all rotational kinetic energy will have been converted to gravitational energy. To find this height, we
equate those two energies:

(10.79)KErot = PEgrav

or

(10.80)1
2Iω2 = mgh.

We now solve for h and substitute known values into the resulting equation

(10.81)

h =
1
2Iω

2

mg = 5.26×105 J
⎛
⎝1000 kg⎞⎠⎛⎝9.80 m/s2⎞⎠

= 53.7 m.

Discussion

The ratio of translational energy to rotational kinetic energy is only 0.380. This ratio tells us that most of the kinetic energy of
the helicopter is in its spinning blades—something you probably would not suspect. The 53.7 m height to which the
helicopter could be raised with the rotational kinetic energy is also impressive, again emphasizing the amount of rotational
kinetic energy in the blades.

Figure 10.18 The first image shows how helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the
blades before takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and put significant
rotational energy into the blades. The second image shows a helicopter from the Auckland Westpac Rescue Helicopter Service. Over 50,000 lives
have been saved since its operations beginning in 1973. Here, a water rescue operation is shown. (credit: 111 Emergency, Flickr)

Making Connections

Conservation of energy includes rotational motion, because rotational kinetic energy is another form of KE . Uniform

Circular Motion and Gravitation has a detailed treatment of conservation of energy.

How Thick Is the Soup? Or Why Don’t All Objects Roll Downhill at the Same Rate?

One of the quality controls in a tomato soup factory consists of rolling filled cans down a ramp. If they roll too fast, the soup is too
thin. Why should cans of identical size and mass roll down an incline at different rates? And why should the thickest soup roll the
slowest?

The easiest way to answer these questions is to consider energy. Suppose each can starts down the ramp from rest. Each can
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starting from rest means each starts with the same gravitational potential energy PEgrav , which is converted entirely to KE ,

provided each rolls without slipping. KE , however, can take the form of KEtrans or KErot , and total KE is the sum of the

two. If a can rolls down a ramp, it puts part of its energy into rotation, leaving less for translation. Thus, the can goes slower than
it would if it slid down. Furthermore, the thin soup does not rotate, whereas the thick soup does, because it sticks to the can. The
thick soup thus puts more of the can’s original gravitational potential energy into rotation than the thin soup, and the can rolls
more slowly, as seen in Figure 10.19.

Figure 10.19 Three cans of soup with identical masses race down an incline. The first can has a low friction coating and does not roll but just slides
down the incline. It wins because it converts its entire PE into translational KE. The second and third cans both roll down the incline without slipping.
The second can contains thin soup and comes in second because part of its initial PE goes into rotating the can (but not the thin soup). The third can
contains thick soup. It comes in third because the soup rotates along with the can, taking even more of the initial PE for rotational KE, leaving less for
translational KE.

Assuming no losses due to friction, there is only one force doing work—gravity. Therefore the total work done is the change in
kinetic energy. As the cans start moving, the potential energy is changing into kinetic energy. Conservation of energy gives

(10.82)PEi = KEf.

More specifically,

(10.83)PEgrav = KEtrans + KErot

or

(10.84)mgh = 1
2mv2 + 1

2Iω2.

So, the initial mgh is divided between translational kinetic energy and rotational kinetic energy; and the greater I is, the less

energy goes into translation. If the can slides down without friction, then ω = 0 and all the energy goes into translation; thus,

the can goes faster.

Take-Home Experiment

Locate several cans each containing different types of food. First, predict which can will win the race down an inclined plane
and explain why. See if your prediction is correct. You could also do this experiment by collecting several empty cylindrical
containers of the same size and filling them with different materials such as wet or dry sand.

Example 10.10 Calculating the Speed of a Cylinder Rolling Down an Incline

Calculate the final speed of a solid cylinder that rolls down a 2.00-m-high incline. The cylinder starts from rest, has a mass of
0.750 kg, and has a radius of 4.00 cm.

Strategy

We can solve for the final velocity using conservation of energy, but we must first express rotational quantities in terms of
translational quantities to end up with v as the only unknown.

Solution

Conservation of energy for this situation is written as described above:

(10.85)mgh = 1
2mv2 + 1

2Iω2.

Before we can solve for v , we must get an expression for I from Figure 10.12. Because v and ω are related (note here

that the cylinder is rolling without slipping), we must also substitute the relationship ω = v / R into the expression. These

substitutions yield

(10.86)
mgh = 1

2mv2 + 1
2
⎛
⎝12mR2⎞⎠

⎛
⎝v

2

R2
⎞
⎠.
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Interestingly, the cylinder’s radius R and mass m cancel, yielding

(10.87)gh = 1
2v2 + 1

4v2 = 3
4v2.

Solving algebraically, the equation for the final velocity v gives

(10.88)
v = ⎛⎝

4gh
3
⎞
⎠

1 / 2
.

Substituting known values into the resulting expression yields

(10.89)

v =
⎡
⎣
⎢4
⎛
⎝9.80 m/s2⎞⎠(2.00 m)

3

⎤
⎦
⎥

1 / 2

= 5.11 m/s.

Discussion

Because m and R cancel, the result v = ⎛⎝43gh⎞⎠
1 / 2

is valid for any solid cylinder, implying that all solid cylinders will roll

down an incline at the same rate independent of their masses and sizes. (Rolling cylinders down inclines is what Galileo
actually did to show that objects fall at the same rate independent of mass.) Note that if the cylinder slid without friction down
the incline without rolling, then the entire gravitational potential energy would go into translational kinetic energy. Thus,
1
2mv2 = mgh and v = (2gh)1 / 2 , which is 22% greater than (4gh / 3)1 / 2 . That is, the cylinder would go faster at the

bottom.

Check Your Understanding

Analogy of Rotational and Translational Kinetic Energy

Is rotational kinetic energy completely analogous to translational kinetic energy? What, if any, are their differences? Give an
example of each type of kinetic energy.

Solution
Yes, rotational and translational kinetic energy are exact analogs. They both are the energy of motion involved with the
coordinated (non-random) movement of mass relative to some reference frame. The only difference between rotational and
translational kinetic energy is that translational is straight line motion while rotational is not. An example of both kinetic and
translational kinetic energy is found in a bike tire while being ridden down a bike path. The rotational motion of the tire
means it has rotational kinetic energy while the movement of the bike along the path means the tire also has translational
kinetic energy. If you were to lift the front wheel of the bike and spin it while the bike is stationary, then the wheel would have
only rotational kinetic energy relative to the Earth.

PhET Explorations: My Solar System

Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial
positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42180/
1.12/#Phet_module_11.4)

Figure 10.20

10.5 Angular Momentum and Its Conservation

Why does Earth keep on spinning? What started it spinning to begin with? And how does an ice skater manage to spin faster
and faster simply by pulling her arms in? Why does she not have to exert a torque to spin faster? Questions like these have
answers based in angular momentum, the rotational analog to linear momentum.

By now the pattern is clear—every rotational phenomenon has a direct translational analog. It seems quite reasonable, then, to
define angular momentum L as

(10.90)L = Iω.

This equation is an analog to the definition of linear momentum as p = mv . Units for linear momentum are kg ⋅ m/s while

units for angular momentum are kg ⋅ m2/s . As we would expect, an object that has a large moment of inertia I , such as Earth,

has a very large angular momentum. An object that has a large angular velocity ω , such as a centrifuge, also has a rather large

angular momentum.
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Making Connections

Angular momentum is completely analogous to linear momentum, first presented in Uniform Circular Motion and
Gravitation. It has the same implications in terms of carrying rotation forward, and it is conserved when the net external
torque is zero. Angular momentum, like linear momentum, is also a property of the atoms and subatomic particles.

Example 10.11 Calculating Angular Momentum of the Earth

Strategy

No information is given in the statement of the problem; so we must look up pertinent data before we can calculate L = Iω .

First, according to Figure 10.12, the formula for the moment of inertia of a sphere is

(10.91)
I = 2MR2

5
so that

(10.92)
L = Iω = 2MR2ω

5 .

Earth’s mass M is 5.979×1024 kg and its radius R is 6.376×106 m . The Earth’s angular velocity ω is, of course,

exactly one revolution per day, but we must covert ω to radians per second to do the calculation in SI units.

Solution

Substituting known information into the expression for L and converting ω to radians per second gives

(10.93)
L = 0.4⎛⎝5.979×1024 kg⎞⎠

⎛
⎝6.376×106 m⎞⎠

2⎛
⎝1 rev

d
⎞
⎠

= 9.72×1037 kg ⋅ m2 ⋅ rev/d.

Substituting 2π rad for 1 rev and 8.64×104 s for 1 day gives

(10.94)
L = ⎛

⎝9.72×1037 kg ⋅ m2⎞⎠
⎛
⎝ 2π rad/rev

8.64×104 s/d
⎞
⎠(1 rev/d)

= 7.07×1033 kg ⋅ m2/s.

Discussion

This number is large, demonstrating that Earth, as expected, has a tremendous angular momentum. The answer is
approximate, because we have assumed a constant density for Earth in order to estimate its moment of inertia.

When you push a merry-go-round, spin a bike wheel, or open a door, you exert a torque. If the torque you exert is greater than
opposing torques, then the rotation accelerates, and angular momentum increases. The greater the net torque, the more rapid
the increase in L . The relationship between torque and angular momentum is

(10.95)net τ = ΔL
Δt .

This expression is exactly analogous to the relationship between force and linear momentum, F = Δp / Δt . The equation

net τ = ΔL
Δt is very fundamental and broadly applicable. It is, in fact, the rotational form of Newton’s second law.

Example 10.12 Calculating the Torque Putting Angular Momentum Into a Lazy Susan

Figure 10.21 shows a Lazy Susan food tray being rotated by a person in quest of sustenance. Suppose the person exerts a
2.50 N force perpendicular to the lazy Susan’s 0.260-m radius for 0.150 s. (a) What is the final angular momentum of the
lazy Susan if it starts from rest, assuming friction is negligible? (b) What is the final angular velocity of the lazy Susan, given
that its mass is 4.00 kg and assuming its moment of inertia is that of a disk?
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Figure 10.21 A partygoer exerts a torque on a lazy Susan to make it rotate. The equation net τ = ΔL
Δt gives the relationship between torque

and the angular momentum produced.

Strategy

We can find the angular momentum by solving net τ = ΔL
Δt for ΔL , and using the given information to calculate the

torque. The final angular momentum equals the change in angular momentum, because the lazy Susan starts from rest.
That is, ΔL = L . To find the final velocity, we must calculate ω from the definition of L in L = Iω .

Solution for (a)

Solving net τ = ΔL
Δt for ΔL gives

(10.96)ΔL = (net τ)Δt.

Because the force is perpendicular to r , we see that net τ = rF , so that

(10.97)L = rFΔt = (0.260 m)(2.50 N)(0.150 s)
= 9.75×10−2 kg ⋅ m2 / s.

Solution for (b)

The final angular velocity can be calculated from the definition of angular momentum,

(10.98)L = Iω.
Solving for ω and substituting the formula for the moment of inertia of a disk into the resulting equation gives

(10.99)ω = L
I = L

1
2MR2.

And substituting known values into the preceding equation yields

(10.100)
ω = 9.75×10−2 kg ⋅ m2/s

(0.500)⎛⎝4.00 kg⎞⎠(0.260 m)2 = 0.721 rad/s.

Discussion

Note that the imparted angular momentum does not depend on any property of the object but only on torque and time. The
final angular velocity is equivalent to one revolution in 8.71 s (determination of the time period is left as an exercise for the
reader), which is about right for a lazy Susan.

Example 10.13 Calculating the Torque in a Kick

The person whose leg is shown in Figure 10.22 kicks his leg by exerting a 2000-N force with his upper leg muscle. The

effective perpendicular lever arm is 2.20 cm. Given the moment of inertia of the lower leg is 1.25 kg ⋅ m2 , (a) find the

angular acceleration of the leg. (b) Neglecting the gravitational force, what is the rotational kinetic energy of the leg after it
has rotated through 57.3º (1.00 rad)?
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Figure 10.22 The muscle in the upper leg gives the lower leg an angular acceleration and imparts rotational kinetic energy to it by exerting a

torque about the knee. F is a vector that is perpendicular to r . This example examines the situation.

Strategy

The angular acceleration can be found using the rotational analog to Newton’s second law, or α = net τ / I . The moment of

inertia I is given and the torque can be found easily from the given force and perpendicular lever arm. Once the angular

acceleration α is known, the final angular velocity and rotational kinetic energy can be calculated.

Solution to (a)

From the rotational analog to Newton’s second law, the angular acceleration α is

(10.101)α = net τ
I .

Because the force and the perpendicular lever arm are given and the leg is vertical so that its weight does not create a
torque, the net torque is thus

(10.102)net τ = r⊥ F
= (0.0220 m)(2000 N)
= 44.0 N ⋅ m.

Substituting this value for the torque and the given value for the moment of inertia into the expression for α gives

(10.103)α = 44.0 N ⋅ m
1.25 kg ⋅ m2 = 35.2 rad/s2.

Solution to (b)

The final angular velocity can be calculated from the kinematic expression

(10.104)ω2 = ω0
2 + 2αθ

or

(10.105)ω2 = 2αθ
because the initial angular velocity is zero. The kinetic energy of rotation is

(10.106)KErot = 1
2Iω2

so it is most convenient to use the value of ω2 just found and the given value for the moment of inertia. The kinetic energy

is then

(10.107)KErot = 0.5⎛⎝1.25 kg ⋅ m2⎞⎠
⎛
⎝70.4 rad2 / s2⎞⎠

= 44.0 J
.

Discussion

These values are reasonable for a person kicking his leg starting from the position shown. The weight of the leg can be
neglected in part (a) because it exerts no torque when the center of gravity of the lower leg is directly beneath the pivot in
the knee. In part (b), the force exerted by the upper leg is so large that its torque is much greater than that created by the
weight of the lower leg as it rotates. The rotational kinetic energy given to the lower leg is enough that it could give a ball a
significant velocity by transferring some of this energy in a kick.
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Making Connections: Conservation Laws

Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of
underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just as linear
momentum is conserved when the net external force is zero.

Conservation of Angular Momentum

We can now understand why Earth keeps on spinning. As we saw in the previous example, ΔL = (net τ)Δt . This equation

means that, to change angular momentum, a torque must act over some period of time. Because Earth has a large angular
momentum, a large torque acting over a long time is needed to change its rate of spin. So what external torques are there? Tidal
friction exerts torque that is slowing Earth’s rotation, but tens of millions of years must pass before the change is very significant.
Recent research indicates the length of the day was 18 h some 900 million years ago. Only the tides exert significant retarding
torques on Earth, and so it will continue to spin, although ever more slowly, for many billions of years.

What we have here is, in fact, another conservation law. If the net torque is zero, then angular momentum is constant or

conserved. We can see this rigorously by considering net τ = ΔL
Δt for the situation in which the net torque is zero. In that case,

(10.108)netτ = 0
implying that

(10.109)ΔL
Δt = 0.

If the change in angular momentum ΔL is zero, then the angular momentum is constant; thus,

(10.110)L = constant (net τ = 0)

or

(10.111)L = L′(netτ = 0).

These expressions are the law of conservation of angular momentum. Conservation laws are as scarce as they are
important.

An example of conservation of angular momentum is seen in Figure 10.23, in which an ice skater is executing a spin. The net
torque on her is very close to zero, because there is relatively little friction between her skates and the ice and because the
friction is exerted very close to the pivot point. (Both F and r are small, and so τ is negligibly small.) Consequently, she can

spin for quite some time. She can do something else, too. She can increase her rate of spin by pulling her arms and legs in. Why
does pulling her arms and legs in increase her rate of spin? The answer is that her angular momentum is constant, so that

(10.112)L = L′.
Expressing this equation in terms of the moment of inertia,

(10.113)Iω = I′ω′,

where the primed quantities refer to conditions after she has pulled in her arms and reduced her moment of inertia. Because I′
is smaller, the angular velocity ω′ must increase to keep the angular momentum constant. The change can be dramatic, as the

following example shows.

Figure 10.23 (a) An ice skater is spinning on the tip of her skate with her arms extended. Her angular momentum is conserved because the net torque
on her is negligibly small. In the next image, her rate of spin increases greatly when she pulls in her arms, decreasing her moment of inertia. The work
she does to pull in her arms results in an increase in rotational kinetic energy.
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Example 10.14 Calculating the Angular Momentum of a Spinning Skater

Suppose an ice skater, such as the one in Figure 10.23, is spinning at 0.800 rev/ s with her arms extended. She has a

moment of inertia of 2.34 kg ⋅ m2 with her arms extended and of 0.363 kg ⋅ m2 with her arms close to her body. (These

moments of inertia are based on reasonable assumptions about a 60.0-kg skater.) (a) What is her angular velocity in
revolutions per second after she pulls in her arms? (b) What is her rotational kinetic energy before and after she does this?

Strategy

In the first part of the problem, we are looking for the skater’s angular velocity ω′ after she has pulled in her arms. To find

this quantity, we use the conservation of angular momentum and note that the moments of inertia and initial angular velocity
are given. To find the initial and final kinetic energies, we use the definition of rotational kinetic energy given by

(10.114)KErot = 1
2Iω2.

Solution for (a)

Because torque is negligible (as discussed above), the conservation of angular momentum given in Iω = I′ω′ is

applicable. Thus,

(10.115)L = L′
or

(10.116)Iω = I′ω′

Solving for ω′ and substituting known values into the resulting equation gives

(10.117)
ω′ = I

I′ω =
⎛
⎝
⎜ 2.34 kg ⋅ m2

0.363 kg ⋅ m2

⎞
⎠
⎟(0.800 rev/s)

= 5.16 rev/s.
Solution for (b)

Rotational kinetic energy is given by

(10.118)KErot = 1
2Iω2.

The initial value is found by substituting known values into the equation and converting the angular velocity to rad/s:

(10.119)KErot = (0.5)⎛⎝2.34 kg ⋅ m2⎞⎠⎛⎝(0.800 rev/s)(2π rad/rev)⎞⎠2

= 29.6 J.
The final rotational kinetic energy is

(10.120)KErot ′ = 1
2I′ω′2.

Substituting known values into this equation gives

(10.121)KErot′ = (0.5)⎛⎝0.363 kg ⋅ m2⎞⎠⎡⎣(5.16 rev/s)(2π rad/rev)⎤⎦2

= 191 J.
Discussion

In both parts, there is an impressive increase. First, the final angular velocity is large, although most world-class skaters can
achieve spin rates about this great. Second, the final kinetic energy is much greater than the initial kinetic energy. The
increase in rotational kinetic energy comes from work done by the skater in pulling in her arms. This work is internal work
that depletes some of the skater’s food energy.

There are several other examples of objects that increase their rate of spin because something reduced their moment of inertia.
Tornadoes are one example. Storm systems that create tornadoes are slowly rotating. When the radius of rotation narrows, even
in a local region, angular velocity increases, sometimes to the furious level of a tornado. Earth is another example. Our planet
was born from a huge cloud of gas and dust, the rotation of which came from turbulence in an even larger cloud. Gravitational
forces caused the cloud to contract, and the rotation rate increased as a result. (See Figure 10.24.)
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Figure 10.24 The Solar System coalesced from a cloud of gas and dust that was originally rotating. The orbital motions and spins of the planets are in
the same direction as the original spin and conserve the angular momentum of the parent cloud.

In case of human motion, one would not expect angular momentum to be conserved when a body interacts with the environment
as its foot pushes off the ground. Astronauts floating in space aboard the International Space Station have no angular
momentum relative to the inside of the ship if they are motionless. Their bodies will continue to have this zero value no matter
how they twist about as long as they do not give themselves a push off the side of the vessel.

Check Your Undestanding

Is angular momentum completely analogous to linear momentum? What, if any, are their differences?

Solution
Yes, angular and linear momentums are completely analogous. While they are exact analogs they have different units and
are not directly inter-convertible like forms of energy are.

10.6 Collisions of Extended Bodies in Two Dimensions

Bowling pins are sent flying and spinning when hit by a bowling ball—angular momentum as well as linear momentum and
energy have been imparted to the pins. (See Figure 10.25). Many collisions involve angular momentum. Cars, for example, may
spin and collide on ice or a wet surface. Baseball pitchers throw curves by putting spin on the baseball. A tennis player can put a
lot of top spin on the tennis ball which causes it to dive down onto the court once it crosses the net. We now take a brief look at
what happens when objects that can rotate collide.

Consider the relatively simple collision shown in Figure 10.26, in which a disk strikes and adheres to an initially motionless stick
nailed at one end to a frictionless surface. After the collision, the two rotate about the nail. There is an unbalanced external force
on the system at the nail. This force exerts no torque because its lever arm r is zero. Angular momentum is therefore conserved

in the collision. Kinetic energy is not conserved, because the collision is inelastic. It is possible that momentum is not conserved
either because the force at the nail may have a component in the direction of the disk’s initial velocity. Let us examine a case of
rotation in a collision in Example 10.15.

Figure 10.25 The bowling ball causes the pins to fly, some of them spinning violently. (credit: Tinou Bao, Flickr)
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Figure 10.26 (a) A disk slides toward a motionless stick on a frictionless surface. (b) The disk hits the stick at one end and adheres to it, and they
rotate together, pivoting around the nail. Angular momentum is conserved for this inelastic collision because the surface is frictionless and the
unbalanced external force at the nail exerts no torque.

Example 10.15 Rotation in a Collision

Suppose the disk in Figure 10.26 has a mass of 50.0 g and an initial velocity of 30.0 m/s when it strikes the stick that is 1.20
m long and 2.00 kg.

(a) What is the angular velocity of the two after the collision?

(b) What is the kinetic energy before and after the collision?

(c) What is the total linear momentum before and after the collision?

Strategy for (a)

We can answer the first question using conservation of angular momentum as noted. Because angular momentum is Iω ,

we can solve for angular velocity.

Solution for (a)

Conservation of angular momentum states

(10.122)L = L′,

where primed quantities stand for conditions after the collision and both momenta are calculated relative to the pivot point.
The initial angular momentum of the system of stick-disk is that of the disk just before it strikes the stick. That is,

(10.123)L = Iω,

where I is the moment of inertia of the disk and ω is its angular velocity around the pivot point. Now, I = mr2 (taking the

disk to be approximately a point mass) and ω = v / r , so that

(10.124)L = mr2v
r = mvr.

After the collision,

(10.125)L′ = I′ω′.

It is ω′ that we wish to find. Conservation of angular momentum gives

(10.126)I′ω′ = mvr.
Rearranging the equation yields

(10.127)ω′ = mvr
I′ ,

where I′ is the moment of inertia of the stick and disk stuck together, which is the sum of their individual moments of inertia

about the nail. Figure 10.12 gives the formula for a rod rotating around one end to be I = Mr2 / 3 . Thus,

(10.128)
I′ = mr2 + Mr2

3 = ⎛⎝m + M
3
⎞
⎠r2.

Entering known values in this equation yields,

(10.129)I′ = ⎛
⎝0.0500 kg + 0.667 kg⎞⎠(1.20 m)2 = 1.032 kg ⋅ m2.

The value of I′ is now entered into the expression for ω′ , which yields

(10.130)
ω′ = mvr

I′ =
⎛
⎝0.0500 kg⎞⎠(30.0 m/s)(1.20 m)

1.032 kg ⋅ m2

= 1.744 rad/s ≈ 1.74 rad/s.
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Strategy for (b)

The kinetic energy before the collision is the incoming disk’s translational kinetic energy, and after the collision, it is the
rotational kinetic energy of the two stuck together.

Solution for (b)

First, we calculate the translational kinetic energy by entering given values for the mass and speed of the incoming disk.

(10.131)KE = 1
2mv2 = (0.500)⎛⎝0.0500 kg⎞⎠(30.0 m/s)2 = 22.5 J

After the collision, the rotational kinetic energy can be found because we now know the final angular velocity and the final
moment of inertia. Thus, entering the values into the rotational kinetic energy equation gives

(10.132)
KE′ = 1

2I′ω′2 = (0.5)⎛⎝1.032 kg ⋅ m2⎞⎠
⎛
⎝1.744rad

s
⎞
⎠
2

= 1.57 J.
Strategy for (c)

The linear momentum before the collision is that of the disk. After the collision, it is the sum of the disk’s momentum and that
of the center of mass of the stick.

Solution of (c)

Before the collision, then, linear momentum is

(10.133)p = mv = ⎛
⎝0.0500 kg⎞⎠(30.0 m/s) = 1.50 kg ⋅ m/s.

After the collision, the disk and the stick’s center of mass move in the same direction. The total linear momentum is that of
the disk moving at a new velocity v′ = rω′ plus that of the stick’s center of mass,

which moves at half this speed because vCM = ⎛⎝r2
⎞
⎠ω′ = v′

2 . Thus,

(10.134)p′ = mv′ + MvCM = mv′ + Mv′
2 .

Gathering similar terms in the equation yields,

(10.135)p′ = ⎛⎝m + M
2
⎞
⎠v′

so that

(10.136)p′ = ⎛⎝m + M
2
⎞
⎠rω′.

Substituting known values into the equation,

(10.137)p′ = ⎛
⎝1.050 kg⎞⎠(1.20 m)(1.744 rad/s) = 2.20 kg ⋅ m/s.

Discussion

First note that the kinetic energy is less after the collision, as predicted, because the collision is inelastic. More surprising is
that the momentum after the collision is actually greater than before the collision. This result can be understood if you
consider how the nail affects the stick and vice versa. Apparently, the stick pushes backward on the nail when first struck by
the disk. The nail’s reaction (consistent with Newton’s third law) is to push forward on the stick, imparting momentum to it in
the same direction in which the disk was initially moving, thereby increasing the momentum of the system.

The above example has other implications. For example, what would happen if the disk hit very close to the nail? Obviously, a
force would be exerted on the nail in the forward direction. So, when the stick is struck at the end farthest from the nail, a
backward force is exerted on the nail, and when it is hit at the end nearest the nail, a forward force is exerted on the nail. Thus,
striking it at a certain point in between produces no force on the nail. This intermediate point is known as the percussion point.

An analogous situation occurs in tennis as seen in Figure 10.27. If you hit a ball with the end of your racquet, the handle is
pulled away from your hand. If you hit a ball much farther down, for example, on the shaft of the racquet, the handle is pushed
into your palm. And if you hit the ball at the racquet’s percussion point (what some people call the “sweet spot”), then little or no
force is exerted on your hand, and there is less vibration, reducing chances of a tennis elbow. The same effect occurs for a
baseball bat.
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Figure 10.27 A disk hitting a stick is compared to a tennis ball being hit by a racquet. (a) When the ball strikes the racquet near the end, a backward
force is exerted on the hand. (b) When the racquet is struck much farther down, a forward force is exerted on the hand. (c) When the racquet is struck
at the percussion point, no force is delivered to the hand.

Check Your Understanding

Is rotational kinetic energy a vector? Justify your answer.

Solution
No, energy is always scalar whether motion is involved or not. No form of energy has a direction in space and you can see
that rotational kinetic energy does not depend on the direction of motion just as linear kinetic energy is independent of the
direction of motion.
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10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum

Angular momentum is a vector and, therefore, has direction as well as magnitude. Torque affects both the direction and the
magnitude of angular momentum. What is the direction of the angular momentum of a rotating object like the disk in Figure
10.28? The figure shows the right-hand rule used to find the direction of both angular momentum and angular velocity. Both L
and ω are vectors—each has direction and magnitude. Both can be represented by arrows. The right-hand rule defines both to

be perpendicular to the plane of rotation in the direction shown. Because angular momentum is related to angular velocity by
L = Iω , the direction of L is the same as the direction of ω . Notice in the figure that both point along the axis of rotation.

Figure 10.28 Figure (a) shows a disk is rotating counterclockwise when viewed from above. Figure (b) shows the right-hand rule. The direction of

angular velocity ω size and angular momentum L are defined to be the direction in which the thumb of your right hand points when you curl your

fingers in the direction of the disk’s rotation as shown.

Now, recall that torque changes angular momentum as expressed by

(10.138)net τ = ΔL
Δt .

This equation means that the direction of ΔL is the same as the direction of the torque τ that creates it. This result is

illustrated in Figure 10.29, which shows the direction of torque and the angular momentum it creates.

Let us now consider a bicycle wheel with a couple of handles attached to it, as shown in Figure 10.30. (This device is popular in
demonstrations among physicists, because it does unexpected things.) With the wheel rotating as shown, its angular momentum
is to the woman's left. Suppose the person holding the wheel tries to rotate it as in the figure. Her natural expectation is that the
wheel will rotate in the direction she pushes it—but what happens is quite different. The forces exerted create a torque that is
horizontal toward the person, as shown in Figure 10.30(a). This torque creates a change in angular momentum L in the same

direction, perpendicular to the original angular momentum L , thus changing the direction of L but not the magnitude of L .

Figure 10.30 shows how ΔL and L add, giving a new angular momentum with direction that is inclined more toward the

person than before. The axis of the wheel has thus moved perpendicular to the forces exerted on it, instead of in the expected
direction.

Figure 10.29 In figure (a), the torque is perpendicular to the plane formed by r and F and is the direction your right thumb would point to if you

curled your fingers in the direction of F . Figure (b) shows that the direction of the torque is the same as that of the angular momentum it produces.
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Figure 10.30 In figure (a), a person holding the spinning bike wheel lifts it with her right hand and pushes down with her left hand in an attempt to

rotate the wheel. This action creates a torque directly toward her. This torque causes a change in angular momentum ΔL in exactly the same

direction. Figure (b) shows a vector diagram depicting how ΔL and L add, producing a new angular momentum pointing more toward the person.

The wheel moves toward the person, perpendicular to the forces she exerts on it.

This same logic explains the behavior of gyroscopes. Figure 10.31 shows the two forces acting on a spinning gyroscope. The
torque produced is perpendicular to the angular momentum, thus the direction of the torque is changed, but not its magnitude.
The gyroscope precesses around a vertical axis, since the torque is always horizontal and perpendicular to L . If the gyroscope

is not spinning, it acquires angular momentum in the direction of the torque ( L = ΔL ), and it rotates around a horizontal axis,

falling over just as we would expect.

Earth itself acts like a gigantic gyroscope. Its angular momentum is along its axis and points at Polaris, the North Star. But Earth
is slowly precessing (once in about 26,000 years) due to the torque of the Sun and the Moon on its nonspherical shape.

Figure 10.31 As seen in figure (a), the forces on a spinning gyroscope are its weight and the supporting force from the stand. These forces create a

horizontal torque on the gyroscope, which create a change in angular momentum ΔL that is also horizontal. In figure (b), ΔL and L add to

produce a new angular momentum with the same magnitude, but different direction, so that the gyroscope precesses in the direction shown instead of
falling over.

Check Your Understanding

Rotational kinetic energy is associated with angular momentum? Does that mean that rotational kinetic energy is a vector?
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angular acceleration:

angular momentum:

change in angular velocity:

kinematics of rotational motion:

law of conservation of angular momentum:

moment of inertia:

right-hand rule:

rotational inertia:

rotational kinetic energy:

tangential acceleration:

torque:

work-energy theorem:

Solution
No, energy is always a scalar whether motion is involved or not. No form of energy has a direction in space and you can see
that rotational kinetic energy does not depend on the direction of motion just as linear kinetic energy is independent of the
direction of motion.

Glossary

the rate of change of angular velocity with time

the product of moment of inertia and angular velocity

the difference between final and initial values of angular velocity

describes the relationships among rotation angle, angular velocity, angular acceleration,
and time

angular momentum is conserved, i.e., the initial angular momentum is equal to
the final angular momentum when no external torque is applied to the system

mass times the square of perpendicular distance from the rotation axis; for a point mass, it is I = mr2

and, because any object can be built up from a collection of point masses, this relationship is the basis for all other
moments of inertia

direction of angular velocity ω and angular momentum L in which the thumb of your right hand points when
you curl your fingers in the direction of the disk’s rotation

resistance to change of rotation. The more rotational inertia an object has, the harder it is to rotate

the kinetic energy due to the rotation of an object. This is part of its total kinetic energy

the acceleration in a direction tangent to the circle at the point of interest in circular motion

the turning effectiveness of a force

if one or more external forces act upon a rigid object, causing its kinetic energy to change from KE1
to KE2 , then the work W done by the net force is equal to the change in kinetic energy

Section Summary

10.1 Angular Acceleration

• Uniform circular motion is the motion with a constant angular velocity ω = Δθ
Δt .

• In non-uniform circular motion, the velocity changes with time and the rate of change of angular velocity (i.e. angular

acceleration) is α = Δω
Δt .

• Linear or tangential acceleration refers to changes in the magnitude of velocity but not its direction, given as at = Δv
Δt .

• For circular motion, note that v = rω , so that

at = Δ(rω)
Δt .

• The radius r is constant for circular motion, and so Δ(rω) = rΔω . Thus,

at = rΔω
Δt .

• By definition, Δω / Δt = α . Thus,

at = rα
or

α = at
r .

10.2 Kinematics of Rotational Motion
• Kinematics is the description of motion.
• The kinematics of rotational motion describes the relationships among rotation angle, angular velocity, angular acceleration,
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and time.
• Starting with the four kinematic equations we developed in the One-Dimensional Kinematics, we can derive the four

rotational kinematic equations (presented together with their translational counterparts) seen in Table 10.2.
• In these equations, the subscript 0 denotes initial values ( x0 and t0 are initial values), and the average angular velocity

ω- and average velocity v- are defined as follows:

ω̄ = ω0 + ω
2  and v̄ = v0 + v

2 .

10.3 Dynamics of Rotational Motion: Rotational Inertia
• The farther the force is applied from the pivot, the greater is the angular acceleration; angular acceleration is inversely

proportional to mass.
• If we exert a force F on a point mass m that is at a distance r from a pivot point and because the force is perpendicular

to r , an acceleration a = F/m is obtained in the direction of F . We can rearrange this equation such that

F = ma,
and then look for ways to relate this expression to expressions for rotational quantities. We note that a = rα , and we

substitute this expression into F=ma , yielding

F=mrα
• Torque is the turning effectiveness of a force. In this case, because F is perpendicular to r , torque is simply τ = rF . If

we multiply both sides of the equation above by r , we get torque on the left-hand side. That is,

rF = mr2α
or

τ = mr2α.
• The moment of inertia I of an object is the sum of MR2 for all the point masses of which it is composed. That is,

I = ∑ mr2.
• The general relationship among torque, moment of inertia, and angular acceleration is

τ = Iα
or

α = net τ
I ⋅

10.4 Rotational Kinetic Energy: Work and Energy Revisited
• The rotational kinetic energy KErot for an object with a moment of inertia I and an angular velocity ω is given by

KErot = 1
2Iω2.

• Helicopters store large amounts of rotational kinetic energy in their blades. This energy must be put into the blades before
takeoff and maintained until the end of the flight. The engines do not have enough power to simultaneously provide lift and
put significant rotational energy into the blades.

• Work and energy in rotational motion are completely analogous to work and energy in translational motion.
• The equation for the work-energy theorem for rotational motion is,

net W = 1
2Iω2 − 1

2Iω0
2.

10.5 Angular Momentum and Its Conservation
• Every rotational phenomenon has a direct translational analog , likewise angular momentum L can be defined as

L = Iω.
• This equation is an analog to the definition of linear momentum as p = mv . The relationship between torque and angular

momentum is net τ = ΔL
Δt .

• Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of
underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just as linear
momentum is conserved when the net external force is zero.

10.6 Collisions of Extended Bodies in Two Dimensions
• Angular momentum L is analogous to linear momentum and is given by L = Iω .

380 Chapter 10 | Rotational Motion and Angular Momentum

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



• Angular momentum is changed by torque, following the relationship net τ = ΔL
Δt .

• Angular momentum is conserved if the net torque is zero L = constant (net τ = 0) or L = L′ (net τ = 0) . This

equation is known as the law of conservation of angular momentum, which may be conserved in collisions.

10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
• Torque is perpendicular to the plane formed by r and F and is the direction your right thumb would point if you curled the

fingers of your right hand in the direction of F . The direction of the torque is thus the same as that of the angular

momentum it produces.
• The gyroscope precesses around a vertical axis, since the torque is always horizontal and perpendicular to L . If the

gyroscope is not spinning, it acquires angular momentum in the direction of the torque ( L = ΔL ), and it rotates about a

horizontal axis, falling over just as we would expect.
• Earth itself acts like a gigantic gyroscope. Its angular momentum is along its axis and points at Polaris, the North Star.

Conceptual Questions

10.1 Angular Acceleration

1. Analogies exist between rotational and translational physical quantities. Identify the rotational term analogous to each of the
following: acceleration, force, mass, work, translational kinetic energy, linear momentum, impulse.

2. Explain why centripetal acceleration changes the direction of velocity in circular motion but not its magnitude.

3. In circular motion, a tangential acceleration can change the magnitude of the velocity but not its direction. Explain your
answer.

4. Suppose a piece of food is on the edge of a rotating microwave oven plate. Does it experience nonzero tangential
acceleration, centripetal acceleration, or both when: (a) The plate starts to spin? (b) The plate rotates at constant angular
velocity? (c) The plate slows to a halt?

10.3 Dynamics of Rotational Motion: Rotational Inertia

5. The moment of inertia of a long rod spun around an axis through one end perpendicular to its length is ML2 /3 . Why is this

moment of inertia greater than it would be if you spun a point mass M at the location of the center of mass of the rod (at L / 2
)? (That would be ML2 /4 .)

6. Why is the moment of inertia of a hoop that has a mass M and a radius R greater than the moment of inertia of a disk that

has the same mass and radius? Why is the moment of inertia of a spherical shell that has a mass M and a radius R greater

than that of a solid sphere that has the same mass and radius?

7. Give an example in which a small force exerts a large torque. Give another example in which a large force exerts a small
torque.

8. While reducing the mass of a racing bike, the greatest benefit is realized from reducing the mass of the tires and wheel rims.
Why does this allow a racer to achieve greater accelerations than would an identical reduction in the mass of the bicycle’s
frame?

Figure 10.32 The image shows a side view of a racing bicycle. Can you see evidence in the design of the wheels on this racing bicycle that their

moment of inertia has been purposely reduced? (credit: Jesús Rodriguez)

9. A ball slides up a frictionless ramp. It is then rolled without slipping and with the same initial velocity up another frictionless
ramp (with the same slope angle). In which case does it reach a greater height, and why?
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10.4 Rotational Kinetic Energy: Work and Energy Revisited

10. Describe the energy transformations involved when a yo-yo is thrown downward and then climbs back up its string to be
caught in the user’s hand.

11. What energy transformations are involved when a dragster engine is revved, its clutch let out rapidly, its tires spun, and it
starts to accelerate forward? Describe the source and transformation of energy at each step.

12. The Earth has more rotational kinetic energy now than did the cloud of gas and dust from which it formed. Where did this
energy come from?

Figure 10.33 An immense cloud of rotating gas and dust contracted under the influence of gravity to form the Earth and in the process rotational kinetic

energy increased. (credit: NASA)

10.5 Angular Momentum and Its Conservation

13. When you start the engine of your car with the transmission in neutral, you notice that the car rocks in the opposite sense of
the engine’s rotation. Explain in terms of conservation of angular momentum. Is the angular momentum of the car conserved for
long (for more than a few seconds)?

14. Suppose a child walks from the outer edge of a rotating merry-go round to the inside. Does the angular velocity of the merry-
go-round increase, decrease, or remain the same? Explain your answer.

Figure 10.34 A child may jump off a merry-go-round in a variety of directions.

15. Suppose a child gets off a rotating merry-go-round. Does the angular velocity of the merry-go-round increase, decrease, or
remain the same if: (a) He jumps off radially? (b) He jumps backward to land motionless? (c) He jumps straight up and hangs
onto an overhead tree branch? (d) He jumps off forward, tangential to the edge? Explain your answers. (Refer to Figure 10.34).

16. Helicopters have a small propeller on their tail to keep them from rotating in the opposite direction of their main lifting blades.
Explain in terms of Newton’s third law why the helicopter body rotates in the opposite direction to the blades.

17. Whenever a helicopter has two sets of lifting blades, they rotate in opposite directions (and there will be no tail propeller).
Explain why it is best to have the blades rotate in opposite directions.

18. Describe how work is done by a skater pulling in her arms during a spin. In particular, identify the force she exerts on each
arm to pull it in and the distance each moves, noting that a component of the force is in the direction moved. Why is angular
momentum not increased by this action?

19. When there is a global heating trend on Earth, the atmosphere expands and the length of the day increases very slightly.
Explain why the length of a day increases.
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20. Nearly all conventional piston engines have flywheels on them to smooth out engine vibrations caused by the thrust of
individual piston firings. Why does the flywheel have this effect?

21. Jet turbines spin rapidly. They are designed to fly apart if something makes them seize suddenly, rather than transfer angular
momentum to the plane’s wing, possibly tearing it off. Explain how flying apart conserves angular momentum without transferring
it to the wing.

22. An astronaut tightens a bolt on a satellite in orbit. He rotates in a direction opposite to that of the bolt, and the satellite rotates
in the same direction as the bolt. Explain why. If a handhold is available on the satellite, can this counter-rotation be prevented?
Explain your answer.

23. Competitive divers pull their limbs in and curl up their bodies when they do flips. Just before entering the water, they fully
extend their limbs to enter straight down. Explain the effect of both actions on their angular velocities. Also explain the effect on
their angular momenta.

Figure 10.35 The diver spins rapidly when curled up and slows when she extends her limbs before entering the water.

24. Draw a free body diagram to show how a diver gains angular momentum when leaving the diving board.

25. In terms of angular momentum, what is the advantage of giving a football or a rifle bullet a spin when throwing or releasing
it?

Figure 10.36 The image shows a view down the barrel of a cannon, emphasizing its rifling. Rifling in the barrel of a canon causes the projectile to spin

just as is the case for rifles (hence the name for the grooves in the barrel). (credit: Elsie esq., Flickr)

10.6 Collisions of Extended Bodies in Two Dimensions

26. Describe two different collisions—one in which angular momentum is conserved, and the other in which it is not. Which
condition determines whether or not angular momentum is conserved in a collision?

27. Suppose an ice hockey puck strikes a hockey stick that lies flat on the ice and is free to move in any direction. Which
quantities are likely to be conserved: angular momentum, linear momentum, or kinetic energy (assuming the puck and stick are
very resilient)?

28. While driving his motorcycle at highway speed, a physics student notices that pulling back lightly on the right handlebar tips
the cycle to the left and produces a left turn. Explain why this happens.

10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum

29. While driving his motorcycle at highway speed, a physics student notices that pulling back lightly on the right handlebar tips
the cycle to the left and produces a left turn. Explain why this happens.
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30. Gyroscopes used in guidance systems to indicate directions in space must have an angular momentum that does not change
in direction. Yet they are often subjected to large forces and accelerations. How can the direction of their angular momentum be
constant when they are accelerated?
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Problems & Exercises

10.1 Angular Acceleration

1. At its peak, a tornado is 60.0 m in diameter and carries 500
km/h winds. What is its angular velocity in revolutions per
second?

2. Integrated Concepts

An ultracentrifuge accelerates from rest to 100,000 rpm in

2.00 min. (a) What is its angular acceleration in rad/s2 ? (b)

What is the tangential acceleration of a point 9.50 cm from
the axis of rotation? (c) What is the radial acceleration in

m/s2 and multiples of g of this point at full rpm?

3. Integrated Concepts

You have a grindstone (a disk) that is 90.0 kg, has a 0.340-m
radius, and is turning at 90.0 rpm, and you press a steel axe
against it with a radial force of 20.0 N. (a) Assuming the
kinetic coefficient of friction between steel and stone is 0.20,
calculate the angular acceleration of the grindstone. (b) How
many turns will the stone make before coming to rest?

4. Unreasonable Results

You are told that a basketball player spins the ball with an

angular acceleration of 100 rad/s2 . (a) What is the ball’s

final angular velocity if the ball starts from rest and the
acceleration lasts 2.00 s? (b) What is unreasonable about the
result? (c) Which premises are unreasonable or inconsistent?

10.2 Kinematics of Rotational Motion

5. With the aid of a string, a gyroscope is accelerated from
rest to 32 rad/s in 0.40 s.

(a) What is its angular acceleration in rad/s2?

(b) How many revolutions does it go through in the process?

6. Suppose a piece of dust finds itself on a CD. If the spin rate
of the CD is 500 rpm, and the piece of dust is 4.3 cm from the
center, what is the total distance traveled by the dust in 3
minutes? (Ignore accelerations due to getting the CD
rotating.)

7. A gyroscope slows from an initial rate of 32.0 rad/s at a

rate of 0.700 rad/s2 .

(a) How long does it take to come to rest?

(b) How many revolutions does it make before stopping?

8. During a very quick stop, a car decelerates at 7.00 m/s2 .

(a) What is the angular acceleration of its 0.280-m-radius
tires, assuming they do not slip on the pavement?

(b) How many revolutions do the tires make before coming to
rest, given their initial angular velocity is 95.0 rad/s ?

(c) How long does the car take to stop completely?

(d) What distance does the car travel in this time?

(e) What was the car’s initial velocity?

(f) Do the values obtained seem reasonable, considering that
this stop happens very quickly?

Figure 10.37 Yo-yos are amusing toys that display significant physics

and are engineered to enhance performance based on physical laws.

(credit: Beyond Neon, Flickr)

9. Everyday application: Suppose a yo-yo has a center shaft
that has a 0.250 cm radius and that its string is being pulled.

(a) If the string is stationary and the yo-yo accelerates away

from it at a rate of 1.50 m/s2 , what is the angular

acceleration of the yo-yo?

(b) What is the angular velocity after 0.750 s if it starts from
rest?

(c) The outside radius of the yo-yo is 3.50 cm. What is the
tangential acceleration of a point on its edge?

10.3 Dynamics of Rotational Motion: Rotational
Inertia

10. This problem considers additional aspects of example
Calculating the Effect of Mass Distribution on a Merry-
Go-Round. (a) How long does it take the father to give the
merry-go-round an angular velocity of 1.50 rad/s? (b) How
many revolutions must he go through to generate this
velocity? (c) If he exerts a slowing force of 300 N at a radius
of 1.35 m, how long would it take him to stop them?

11. Calculate the moment of inertia of a skater given the
following information. (a) The 60.0-kg skater is approximated
as a cylinder that has a 0.110-m radius. (b) The skater with
arms extended is approximately a cylinder that is 52.5 kg, has
a 0.110-m radius, and has two 0.900-m-long arms which are
3.75 kg each and extend straight out from the cylinder like
rods rotated about their ends.

12. The triceps muscle in the back of the upper arm extends
the forearm. This muscle in a professional boxer exerts a

force of 2.00×103 N with an effective perpendicular lever

arm of 3.00 cm, producing an angular acceleration of the

forearm of 120 rad/s2 . What is the moment of inertia of the

boxer’s forearm?
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13. A soccer player extends her lower leg in a kicking motion
by exerting a force with the muscle above the knee in the
front of her leg. She produces an angular acceleration of

30.00 rad/s2 and her lower leg has a moment of inertia of

0.750 kg ⋅ m2 . What is the force exerted by the muscle if

its effective perpendicular lever arm is 1.90 cm?

14. Suppose you exert a force of 180 N tangential to a
0.280-m-radius 75.0-kg grindstone (a solid disk).

(a)What torque is exerted? (b) What is the angular
acceleration assuming negligible opposing friction? (c) What
is the angular acceleration if there is an opposing frictional
force of 20.0 N exerted 1.50 cm from the axis?

15. Consider the 12.0 kg motorcycle wheel shown in Figure
10.38. Assume it to be approximately an annular ring with an
inner radius of 0.280 m and an outer radius of 0.330 m. The
motorcycle is on its center stand, so that the wheel can spin
freely. (a) If the drive chain exerts a force of 2200 N at a
radius of 5.00 cm, what is the angular acceleration of the
wheel? (b) What is the tangential acceleration of a point on
the outer edge of the tire? (c) How long, starting from rest,
does it take to reach an angular velocity of 80.0 rad/s?

Figure 10.38 A motorcycle wheel has a moment of inertia approximately

that of an annular ring.

16. Zorch, an archenemy of Superman, decides to slow
Earth’s rotation to once per 28.0 h by exerting an opposing
force at and parallel to the equator. Superman is not
immediately concerned, because he knows Zorch can only

exert a force of 4.00×107 N (a little greater than a Saturn

V rocket’s thrust). How long must Zorch push with this force to
accomplish his goal? (This period gives Superman time to
devote to other villains.) Explicitly show how you follow the
steps found in Problem-Solving Strategy for Rotational
Dynamics.

17. An automobile engine can produce 200 N · m of torque.
Calculate the angular acceleration produced if 95.0% of this
torque is applied to the drive shaft, axle, and rear wheels of a
car, given the following information. The car is suspended so
that the wheels can turn freely. Each wheel acts like a 15.0 kg
disk that has a 0.180 m radius. The walls of each tire act like
a 2.00-kg annular ring that has inside radius of 0.180 m and
outside radius of 0.320 m. The tread of each tire acts like a
10.0-kg hoop of radius 0.330 m. The 14.0-kg axle acts like a
rod that has a 2.00-cm radius. The 30.0-kg drive shaft acts
like a rod that has a 3.20-cm radius.

18. Starting with the formula for the moment of inertia of a rod
rotated around an axis through one end perpendicular to its

length
⎛
⎝I = Mℓ  2 / 3⎞⎠ , prove that the moment of inertia of a

rod rotated about an axis through its center perpendicular to

its length is I = Mℓ  2 / 12 . You will find the graphics in

Figure 10.12 useful in visualizing these rotations.

19. Unreasonable Results

A gymnast doing a forward flip lands on the mat and exerts a
500-N · m torque to slow her angular velocity to zero. Her
initial angular velocity is 10.0 rad/s, and her moment of inertia

is 0.050 kg ⋅ m2 . (a) What time is required for her to

exactly stop her spin? (b) What is unreasonable about the
result? (c) Which premises are unreasonable or inconsistent?

20. Unreasonable Results

An advertisement claims that an 800-kg car is aided by its
20.0-kg flywheel, which can accelerate the car from rest to a
speed of 30.0 m/s. The flywheel is a disk with a 0.150-m
radius. (a) Calculate the angular velocity the flywheel must
have if 95.0% of its rotational energy is used to get the car up
to speed. (b) What is unreasonable about the result? (c)
Which premise is unreasonable or which premises are
inconsistent?

10.4 Rotational Kinetic Energy: Work and
Energy Revisited

21. This problem considers energy and work aspects of
Example 10.7—use data from that example as needed. (a)
Calculate the rotational kinetic energy in the merry-go-round
plus child when they have an angular velocity of 20.0 rpm. (b)
Using energy considerations, find the number of revolutions
the father will have to push to achieve this angular velocity
starting from rest. (c) Again, using energy considerations,
calculate the force the father must exert to stop the merry-go-
round in two revolutions

22. What is the final velocity of a hoop that rolls without
slipping down a 5.00-m-high hill, starting from rest?

23. (a) Calculate the rotational kinetic energy of Earth on its
axis. (b) What is the rotational kinetic energy of Earth in its
orbit around the Sun?

24. Calculate the rotational kinetic energy in the motorcycle
wheel (Figure 10.38) if its angular velocity is 120 rad/s.
Assume M = 12.0 kg, R1 = 0.280 m, and R2 = 0.330 m.

25. A baseball pitcher throws the ball in a motion where there
is rotation of the forearm about the elbow joint as well as
other movements. If the linear velocity of the ball relative to
the elbow joint is 20.0 m/s at a distance of 0.480 m from the
joint and the moment of inertia of the forearm is

0.500 kg ⋅ m2 , what is the rotational kinetic energy of the

forearm?

26. While punting a football, a kicker rotates his leg about the

hip joint. The moment of inertia of the leg is 3.75 kg ⋅ m2

and its rotational kinetic energy is 175 J. (a) What is the
angular velocity of the leg? (b) What is the velocity of tip of
the punter’s shoe if it is 1.05 m from the hip joint? (c) Explain
how the football can be given a velocity greater than the tip of
the shoe (necessary for a decent kick distance).
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27. A bus contains a 1500 kg flywheel (a disk that has a
0.600 m radius) and has a total mass of 10,000 kg. (a)
Calculate the angular velocity the flywheel must have to
contain enough energy to take the bus from rest to a speed of
20.0 m/s, assuming 90.0% of the rotational kinetic energy can
be transformed into translational energy. (b) How high a hill
can the bus climb with this stored energy and still have a
speed of 3.00 m/s at the top of the hill? Explicitly show how
you follow the steps in the Problem-Solving Strategy for
Rotational Energy.

28. A ball with an initial velocity of 8.00 m/s rolls up a hill
without slipping. Treating the ball as a spherical shell,
calculate the vertical height it reaches. (b) Repeat the
calculation for the same ball if it slides up the hill without
rolling.

29. While exercising in a fitness center, a man lies face down
on a bench and lifts a weight with one lower leg by contacting
the muscles in the back of the upper leg. (a) Find the angular
acceleration produced given the mass lifted is 10.0 kg at a
distance of 28.0 cm from the knee joint, the moment of inertia

of the lower leg is 0.900 kg ⋅ m2 , the muscle force is 1500

N, and its effective perpendicular lever arm is 3.00 cm. (b)
How much work is done if the leg rotates through an angle of
20.0º with a constant force exerted by the muscle?

30. To develop muscle tone, a woman lifts a 2.00-kg weight
held in her hand. She uses her biceps muscle to flex the
lower arm through an angle of 60.0º . (a) What is the angular

acceleration if the weight is 24.0 cm from the elbow joint, her

forearm has a moment of inertia of 0.250 kg ⋅ m2 , and the

net force she exerts is 750 N at an effective perpendicular
lever arm of 2.00 cm? (b) How much work does she do?

31. Consider two cylinders that start down identical inclines
from rest except that one is frictionless. Thus one cylinder
rolls without slipping, while the other slides frictionlessly
without rolling. They both travel a short distance at the bottom
and then start up another incline. (a) Show that they both
reach the same height on the other incline, and that this
height is equal to their original height. (b) Find the ratio of the
time the rolling cylinder takes to reach the height on the
second incline to the time the sliding cylinder takes to reach
the height on the second incline. (c) Explain why the time for
the rolling motion is greater than that for the sliding motion.

32. What is the moment of inertia of an object that rolls
without slipping down a 2.00-m-high incline starting from rest,
and has a final velocity of 6.00 m/s? Express the moment of

inertia as a multiple of MR2 , where M is the mass of the

object and R is its radius.

33. Suppose a 200-kg motorcycle has two wheels like, the
one described in Problem 10.15 and is heading toward a hill
at a speed of 30.0 m/s. (a) How high can it coast up the hill, if
you neglect friction? (b) How much energy is lost to friction if
the motorcycle only gains an altitude of 35.0 m before coming
to rest?

34. In softball, the pitcher throws with the arm fully extended
(straight at the elbow). In a fast pitch the ball leaves the hand
with a speed of 139 km/h. (a) Find the rotational kinetic
energy of the pitcher’s arm given its moment of inertia is

0.720 kg ⋅ m2 and the ball leaves the hand at a distance of

0.600 m from the pivot at the shoulder. (b) What force did the
muscles exert to cause the arm to rotate if their effective
perpendicular lever arm is 4.00 cm and the ball is 0.156 kg?

35. Construct Your Own Problem

Consider the work done by a spinning skater pulling her arms
in to increase her rate of spin. Construct a problem in which
you calculate the work done with a “force multiplied by
distance” calculation and compare it to the skater’s increase
in kinetic energy.

10.5 Angular Momentum and Its Conservation

36. (a) Calculate the angular momentum of the Earth in its
orbit around the Sun.

(b) Compare this angular momentum with the angular
momentum of Earth on its axis.

37. (a) What is the angular momentum of the Moon in its orbit
around Earth?

(b) How does this angular momentum compare with the
angular momentum of the Moon on its axis? Remember that
the Moon keeps one side toward Earth at all times.

(c) Discuss whether the values found in parts (a) and (b)
seem consistent with the fact that tidal effects with Earth have
caused the Moon to rotate with one side always facing Earth.

38. Suppose you start an antique car by exerting a force of
300 N on its crank for 0.250 s. What angular momentum is
given to the engine if the handle of the crank is 0.300 m from
the pivot and the force is exerted to create maximum torque
the entire time?

39. A playground merry-go-round has a mass of 120 kg and a
radius of 1.80 m and it is rotating with an angular velocity of
0.500 rev/s. What is its angular velocity after a 22.0-kg child
gets onto it by grabbing its outer edge? The child is initially at
rest.

40. Three children are riding on the edge of a merry-go-round
that is 100 kg, has a 1.60-m radius, and is spinning at 20.0
rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If
the child who has a mass of 28.0 kg moves to the center of
the merry-go-round, what is the new angular velocity in rpm?

41. (a) Calculate the angular momentum of an ice skater
spinning at 6.00 rev/s given his moment of inertia is

0.400 kg ⋅ m2 . (b) He reduces his rate of spin (his angular

velocity) by extending his arms and increasing his moment of
inertia. Find the value of his moment of inertia if his angular
velocity decreases to 1.25 rev/s. (c) Suppose instead he
keeps his arms in and allows friction of the ice to slow him to
3.00 rev/s. What average torque was exerted if this takes
15.0 s?

42. Consider the Earth-Moon system. Construct a problem in
which you calculate the total angular momentum of the
system including the spins of the Earth and the Moon on their
axes and the orbital angular momentum of the Earth-Moon
system in its nearly monthly rotation. Calculate what happens
to the Moon’s orbital radius if the Earth’s rotation decreases
due to tidal drag. Among the things to be considered are the
amount by which the Earth’s rotation slows and the fact that
the Moon will continue to have one side always facing the
Earth.

10.6 Collisions of Extended Bodies in Two
Dimensions

43. Repeat Example 10.15 in which the disk strikes and
adheres to the stick 0.100 m from the nail.
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44. Repeat Example 10.15 in which the disk originally spins
clockwise at 1000 rpm and has a radius of 1.50 cm.

45. Twin skaters approach one another as shown in Figure
10.39 and lock hands. (a) Calculate their final angular
velocity, given each had an initial speed of 2.50 m/s relative to
the ice. Each has a mass of 70.0 kg, and each has a center of
mass located 0.800 m from their locked hands. You may
approximate their moments of inertia to be that of point
masses at this radius. (b) Compare the initial kinetic energy
and final kinetic energy.

Figure 10.39 Twin skaters approach each other with identical speeds.

Then, the skaters lock hands and spin.

46. Suppose a 0.250-kg ball is thrown at 15.0 m/s to a
motionless person standing on ice who catches it with an
outstretched arm as shown in Figure 10.40.

(a) Calculate the final linear velocity of the person, given his
mass is 70.0 kg.

(b) What is his angular velocity if each arm is 5.00 kg? You
may treat the ball as a point mass and treat the person's arms
as uniform rods (each has a length of 0.900 m) and the rest of
his body as a uniform cylinder of radius 0.180 m. Neglect the
effect of the ball on his center of mass so that his center of
mass remains in his geometrical center.

(c) Compare the initial and final total kinetic energies.

Figure 10.40 The figure shows the overhead view of a person standing

motionless on ice about to catch a ball. Both arms are outstretched.

After catching the ball, the skater recoils and rotates.

47. Repeat Example 10.15 in which the stick is free to have
translational motion as well as rotational motion.

10.7 Gyroscopic Effects: Vector Aspects of
Angular Momentum

48. Integrated Concepts

The axis of Earth makes a 23.5° angle with a direction
perpendicular to the plane of Earth’s orbit. As shown in
Figure 10.41, this axis precesses, making one complete
rotation in 25,780 y.

(a) Calculate the change in angular momentum in half this
time.

(b) What is the average torque producing this change in
angular momentum?

(c) If this torque were created by a single force (it is not)
acting at the most effective point on the equator, what would
its magnitude be?

Figure 10.41 The Earth’s axis slowly precesses, always making an

angle of 23.5° with the direction perpendicular to the plane of Earth’s

orbit. The change in angular momentum for the two shown positions is

quite large, although the magnitude L is unchanged.
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11 FLUID STATICS

Figure 11.1 The fluid essential to all life has a beauty of its own. It also helps support the weight of this swimmer. (credit: Terren, Wikimedia Commons)

Chapter Outline
11.1. What Is a Fluid?

• State the common phases of matter.
• Explain the physical characteristics of solids, liquids, and gases.
• Describe the arrangement of atoms in solids, liquids, and gases.

11.2. Density
• Define density.
• Calculate the mass of a reservoir from its density.
• Compare and contrast the densities of various substances.

11.3. Pressure
• Define pressure.
• Explain the relationship between pressure and force.
• Calculate force given pressure and area.

11.4. Variation of Pressure with Depth in a Fluid
• Define pressure in terms of weight.
• Explain the variation of pressure with depth in a fluid.
• Calculate density given pressure and altitude.

11.5. Pascal’s Principle
• Define pressure.
• State Pascal’s principle.
• Understand applications of Pascal’s principle.
• Derive relationships between forces in a hydraulic system.

11.6. Gauge Pressure, Absolute Pressure, and Pressure Measurement
• Define gauge pressure and absolute pressure.
• Understand the working of aneroid and open-tube barometers.

11.7. Archimedes’ Principle
• Define buoyant force.
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• State Archimedes’ principle.
• Understand why objects float or sink.
• Understand the relationship between density and Archimedes’ principle.

11.8. Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
• Understand cohesive and adhesive forces.
• Define surface tension.
• Understand capillary action.

11.9. Pressures in the Body
• Explain the concept of pressure the in human body.
• Explain systolic and diastolic blood pressures.
• Describe pressures in the eye, lungs, spinal column, bladder, and skeletal system.

Introduction to Fluid Statics

Much of what we value in life is fluid: a breath of fresh winter air; the hot blue flame in our gas cooker; the water we drink, swim
in, and bathe in; the blood in our veins. What exactly is a fluid? Can we understand fluids with the laws already presented, or will
new laws emerge from their study? The physical characteristics of static or stationary fluids and some of the laws that govern
their behavior are the topics of this chapter. Fluid Dynamics and Its Biological and Medical Applications explores aspects of
fluid flow.

11.1 What Is a Fluid?

Matter most commonly exists as a solid, liquid, or gas; these states are known as the three common phases of matter. Solids
have a definite shape and a specific volume, liquids have a definite volume but their shape changes depending on the container
in which they are held, and gases have neither a definite shape nor a specific volume as their molecules move to fill the
container in which they are held. (See Figure 11.2.) Liquids and gases are considered to be fluids because they yield to shearing
forces, whereas solids resist them. Note that the extent to which fluids yield to shearing forces (and hence flow easily and
quickly) depends on a quantity called the viscosity which is discussed in detail in Viscosity and Laminar Flow; Poiseuille’s
Law. We can understand the phases of matter and what constitutes a fluid by considering the forces between atoms that make
up matter in the three phases.

Figure 11.2 (a) Atoms in a solid always have the same neighbors, held near home by forces represented here by springs. These atoms are essentially
in contact with one another. A rock is an example of a solid. This rock retains its shape because of the forces holding its atoms together. (b) Atoms in a
liquid are also in close contact but can slide over one another. Forces between them strongly resist attempts to push them closer together and also
hold them in close contact. Water is an example of a liquid. Water can flow, but it also remains in an open container because of the forces between its
atoms. (c) Atoms in a gas are separated by distances that are considerably larger than the size of the atoms themselves, and they move about freely. A
gas must be held in a closed container to prevent it from moving out freely.

Atoms in solids are in close contact, with forces between them that allow the atoms to vibrate but not to change positions with
neighboring atoms. (These forces can be thought of as springs that can be stretched or compressed, but not easily broken.)
Thus a solid resists all types of stress. A solid cannot be easily deformed because the atoms that make up the solid are not able
to move about freely. Solids also resist compression, because their atoms form part of a lattice structure in which the atoms are a
relatively fixed distance apart. Under compression, the atoms would be forced into one another. Most of the examples we have
studied so far have involved solid objects which deform very little when stressed.

Connections: Submicroscopic Explanation of Solids and Liquids

Atomic and molecular characteristics explain and underlie the macroscopic characteristics of solids and fluids. This
submicroscopic explanation is one theme of this text and is highlighted in the Things Great and Small features in
Conservation of Momentum. See, for example, microscopic description of collisions and momentum or microscopic
description of pressure in a gas. This present section is devoted entirely to the submicroscopic explanation of solids and
liquids.

In contrast, liquids deform easily when stressed and do not spring back to their original shape once the force is removed
because the atoms are free to slide about and change neighbors—that is, they flow (so they are a type of fluid), with the
molecules held together by their mutual attraction. When a liquid is placed in a container with no lid on, it remains in the
container (providing the container has no holes below the surface of the liquid!). Because the atoms are closely packed, liquids,
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like solids, resist compression.

Atoms in gases are separated by distances that are large compared with the size of the atoms. The forces between gas atoms
are therefore very weak, except when the atoms collide with one another. Gases thus not only flow (and are therefore considered
to be fluids) but they are relatively easy to compress because there is much space and little force between atoms. When placed
in an open container gases, unlike liquids, will escape. The major distinction is that gases are easily compressed, whereas
liquids are not. We shall generally refer to both gases and liquids simply as fluids, and make a distinction between them only
when they behave differently.

PhET Explorations: States of Matter—Basics

Heat, cool, and compress atoms and molecules and watch as they change between solid, liquid, and gas phases.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42186/
1.8/#Phet_module_12.1)

Figure 11.3

11.2 Density

Which weighs more, a ton of feathers or a ton of bricks? This old riddle plays with the distinction between mass and density. A
ton is a ton, of course; but bricks have much greater density than feathers, and so we are tempted to think of them as heavier.
(See Figure 11.4.)

Density, as you will see, is an important characteristic of substances. It is crucial, for example, in determining whether an object
sinks or floats in a fluid. Density is the mass per unit volume of a substance or object. In equation form, density is defined as

(11.1)ρ = m
V ,

where the Greek letter ρ (rho) is the symbol for density, m is the mass, and V is the volume occupied by the substance.

Density

Density is mass per unit volume.

(11.2)ρ = m
V ,

where ρ is the symbol for density, m is the mass, and V is the volume occupied by the substance.

In the riddle regarding the feathers and bricks, the masses are the same, but the volume occupied by the feathers is much

greater, since their density is much lower. The SI unit of density is kg/m3 , representative values are given in Table 11.1. The

metric system was originally devised so that water would have a density of 1 g/cm3 , equivalent to 103 kg/m3 . Thus the basic

mass unit, the kilogram, was first devised to be the mass of 1000 mL of water, which has a volume of 1000 cm3.
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Table 11.1 Densities of Various Substances

Substance ρ(103 kg/m3 or g/mL) Substance ρ(103 kg/m3 or g/mL) Substance ρ(103 kg/m3 or g/mL)

Solids Liquids Gases

Aluminum 2.7 Water (4ºC) 1.000 Air 1.29×10−3

Brass 8.44 Blood 1.05
Carbon
dioxide 1.98×10−3

Copper
(average)

8.8 Sea water 1.025
Carbon
monoxide 1.25×10−3

Gold 19.32 Mercury 13.6 Hydrogen 0.090×10−3

Iron or steel 7.8 Ethyl alcohol 0.79 Helium 0.18×10−3

Lead 11.3 Petrol 0.68 Methane 0.72×10−3

Polystyrene 0.10 Glycerin 1.26 Nitrogen 1.25×10−3

Tungsten 19.30 Olive oil 0.92 Nitrous oxide 1.98×10−3

Uranium 18.70 Oxygen 1.43×10−3

Concrete 2.30–3.0
Steam
(100º C) 0.60×10−3

Cork 0.24

Glass,
common
(average)

2.6

Granite 2.7

Earth’s crust 3.3

Wood 0.3–0.9

Ice (0°C) 0.917

Bone 1.7–2.0

Figure 11.4 A ton of feathers and a ton of bricks have the same mass, but the feathers make a much bigger pile because they have a much lower
density.

As you can see by examining Table 11.1, the density of an object may help identify its composition. The density of gold, for
example, is about 2.5 times the density of iron, which is about 2.5 times the density of aluminum. Density also reveals something
about the phase of the matter and its substructure. Notice that the densities of liquids and solids are roughly comparable,
consistent with the fact that their atoms are in close contact. The densities of gases are much less than those of liquids and
solids, because the atoms in gases are separated by large amounts of empty space.

Take-Home Experiment Sugar and Salt

A pile of sugar and a pile of salt look pretty similar, but which weighs more? If the volumes of both piles are the same, any
difference in mass is due to their different densities (including the air space between crystals). Which do you think has the
greater density? What values did you find? What method did you use to determine these values?
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Example 11.1 Calculating the Mass of a Reservoir From Its Volume

A reservoir has a surface area of 50.0 km2 and an average depth of 40.0 m. What mass of water is held behind the dam?

(See Figure 11.5 for a view of a large reservoir—the Three Gorges Dam site on the Yangtze River in central China.)

Strategy

We can calculate the volume V of the reservoir from its dimensions, and find the density of water ρ in Table 11.1. Then

the mass m can be found from the definition of density

(11.3)ρ = m
V .

Solution

Solving equation ρ = m / V for m gives m = ρV .

The volume V of the reservoir is its surface area A times its average depth h :

(11.4)V = Ah = ⎛⎝50.0 km2⎞⎠(40.0 m)

=
⎡
⎣
⎢⎛⎝50.0 km2⎞⎠

⎛
⎝103 m

1 km
⎞
⎠

2⎤
⎦
⎥(40.0 m) = 2.00×109 m3

The density of water ρ from Table 11.1 is 1.000×103 kg/m3 . Substituting V and ρ into the expression for mass gives

(11.5)m = ⎛
⎝1.00×103 kg/m3⎞⎠

⎛
⎝2.00×109 m3⎞⎠

= 2.00×1012 kg.

Discussion

A large reservoir contains a very large mass of water. In this example, the weight of the water in the reservoir is

mg = 1.96×1013 N , where g is the acceleration due to the Earth’s gravity (about 9.80 m/s2 ). It is reasonable to ask

whether the dam must supply a force equal to this tremendous weight. The answer is no. As we shall see in the following
sections, the force the dam must supply can be much smaller than the weight of the water it holds back.

Figure 11.5 Three Gorges Dam in central China. When completed in 2008, this became the world’s largest hydroelectric plant, generating power
equivalent to that generated by 22 average-sized nuclear power plants. The concrete dam is 181 m high and 2.3 km across. The reservoir made by
this dam is 660 km long. Over 1 million people were displaced by the creation of the reservoir. (credit: Le Grand Portage)

11.3 Pressure

You have no doubt heard the word pressure being used in relation to blood (high or low blood pressure) and in relation to the
weather (high- and low-pressure weather systems). These are only two of many examples of pressures in fluids. Pressure P is

defined as

(11.6)P = F
A

where F is a force applied to an area A that is perpendicular to the force.
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Pressure

Pressure is defined as the force divided by the area perpendicular to the force over which the force is applied, or

(11.7)P = F
A.

A given force can have a significantly different effect depending on the area over which the force is exerted, as shown in Figure
11.6. The SI unit for pressure is the pascal, where

(11.8)1 Pa = 1 N/m2.
In addition to the pascal, there are many other units for pressure that are in common use. In meteorology, atmospheric pressure
is often described in units of millibar (mb), where

(11.9)100 mb = 1×104 Pa .

Pounds per square inch
⎛
⎝lb/in2 or psi⎞⎠ is still sometimes used as a measure of tire pressure, and millimeters of mercury (mm

Hg) is still often used in the measurement of blood pressure. Pressure is defined for all states of matter but is particularly
important when discussing fluids.

Figure 11.6 (a) While the person being poked with the finger might be irritated, the force has little lasting effect. (b) In contrast, the same force applied
to an area the size of the sharp end of a needle is great enough to break the skin.

Example 11.2 Calculating Force Exerted by the Air: What Force Does a Pressure Exert?

An astronaut is working outside the International Space Station where the atmospheric pressure is essentially zero. The

pressure gauge on her air tank reads 6.90×106 Pa . What force does the air inside the tank exert on the flat end of the

cylindrical tank, a disk 0.150 m in diameter?

Strategy

We can find the force exerted from the definition of pressure given in P = F
A , provided we can find the area A acted upon.

Solution

By rearranging the definition of pressure to solve for force, we see that

(11.10)F = PA.

Here, the pressure P is given, as is the area of the end of the cylinder A , given by A = πr2 . Thus,

(11.11)F = ⎛
⎝6.90×106 N/m2⎞⎠(3.14)(0.0750 m)2

= 1.22×105 N.
Discussion

Wow! No wonder the tank must be strong. Since we found F = PA , we see that the force exerted by a pressure is directly

proportional to the area acted upon as well as the pressure itself.

The force exerted on the end of the tank is perpendicular to its inside surface. This direction is because the force is exerted by a
static or stationary fluid. We have already seen that fluids cannot withstand shearing (sideways) forces; they cannot exert
shearing forces, either. Fluid pressure has no direction, being a scalar quantity. The forces due to pressure have well-defined
directions: they are always exerted perpendicular to any surface. (See the tire in Figure 11.7, for example.) Finally, note that
pressure is exerted on all surfaces. Swimmers, as well as the tire, feel pressure on all sides. (See Figure 11.8.)
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Figure 11.7 Pressure inside this tire exerts forces perpendicular to all surfaces it contacts. The arrows give representative directions and magnitudes
of the forces exerted at various points. Note that static fluids do not exert shearing forces.

Figure 11.8 Pressure is exerted on all sides of this swimmer, since the water would flow into the space he occupies if he were not there. The arrows
represent the directions and magnitudes of the forces exerted at various points on the swimmer. Note that the forces are larger underneath, due to
greater depth, giving a net upward or buoyant force that is balanced by the weight of the swimmer.

PhET Explorations: Gas Properties

Pump gas molecules to a box and see what happens as you change the volume, add or remove heat, change gravity, and
more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.
Click to open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/gas-properties)

11.4 Variation of Pressure with Depth in a Fluid

If your ears have ever popped on a plane flight or ached during a deep dive in a swimming pool, you have experienced the effect
of depth on pressure in a fluid. At the Earth’s surface, the air pressure exerted on you is a result of the weight of air above you.
This pressure is reduced as you climb up in altitude and the weight of air above you decreases. Under water, the pressure
exerted on you increases with increasing depth. In this case, the pressure being exerted upon you is a result of both the weight
of water above you and that of the atmosphere above you. You may notice an air pressure change on an elevator ride that
transports you many stories, but you need only dive a meter or so below the surface of a pool to feel a pressure increase. The
difference is that water is much denser than air, about 775 times as dense.

Consider the container in Figure 11.9. Its bottom supports the weight of the fluid in it. Let us calculate the pressure exerted on
the bottom by the weight of the fluid. That pressure is the weight of the fluid mg divided by the area A supporting it (the area

of the bottom of the container):

(11.12)P = mg
A .

We can find the mass of the fluid from its volume and density:

(11.13)m = ρV.

The volume of the fluid V is related to the dimensions of the container. It is

(11.14)V = Ah,

where A is the cross-sectional area and h is the depth. Combining the last two equations gives

Chapter 11 | Fluid Statics 395

https://phet.colorado.edu/en/simulation/legacy/gas-properties


(11.15)m = ρAh.

If we enter this into the expression for pressure, we obtain

(11.16)
P =

⎛
⎝ρAh⎞⎠g

A .

The area cancels, and rearranging the variables yields

(11.17)P = hρg.

This value is the pressure due to the weight of a fluid. The equation has general validity beyond the special conditions under
which it is derived here. Even if the container were not there, the surrounding fluid would still exert this pressure, keeping the
fluid static. Thus the equation P = hρg represents the pressure due to the weight of any fluid of average density ρ at any

depth h below its surface. For liquids, which are nearly incompressible, this equation holds to great depths. For gases, which

are quite compressible, one can apply this equation as long as the density changes are small over the depth considered.
Example 11.4 illustrates this situation.

Figure 11.9 The bottom of this container supports the entire weight of the fluid in it. The vertical sides cannot exert an upward force on the fluid (since
it cannot withstand a shearing force), and so the bottom must support it all.

Example 11.3 Calculating the Average Pressure and Force Exerted: What Force Must a Dam
Withstand?

In Example 11.1, we calculated the mass of water in a large reservoir. We will now consider the pressure and force acting
on the dam retaining water. (See Figure 11.10.) The dam is 500 m wide, and the water is 80.0 m deep at the dam. (a) What
is the average pressure on the dam due to the water? (b) Calculate the force exerted against the dam and compare it with

the weight of water in the dam (previously found to be 1.96×1013 N ).

Strategy for (a)

The average pressure P
¯

due to the weight of the water is the pressure at the average depth h
¯

of 40.0 m, since pressure

increases linearly with depth.

Solution for (a)

The average pressure due to the weight of a fluid is

(11.18)
P
¯

= h
¯
ρg.

Entering the density of water from Table 11.1 and taking h
¯

to be the average depth of 40.0 m, we obtain

(11.19)
P̄ = (40.0 m)⎛⎝103 kg

m3
⎞
⎠
⎛
⎝9.80 m

s2
⎞
⎠

= 3.92×105 N
m2 = 392 kPa.

Strategy for (b)

The force exerted on the dam by the water is the average pressure times the area of contact:

(11.20)
F = P̄ A.

Solution for (b)
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We have already found the value for P̄ . The area of the dam is A = 80.0 m×500 m = 4.00×104 m2 , so that

(11.21)F = (3.92×105 N/m2)(4.00×104 m2)
= 1.57×1010 N.

Discussion

Although this force seems large, it is small compared with the 1.96×1013 N weight of the water in the reservoir—in fact, it

is only 0.0800% of the weight. Note that the pressure found in part (a) is completely independent of the width and length of

the lake—it depends only on its average depth at the dam. Thus the force depends only on the water’s average depth and
the dimensions of the dam, not on the horizontal extent of the reservoir. In the diagram, the thickness of the dam increases
with depth to balance the increasing force due to the increasing pressure.epth to balance the increasing force due to the
increasing pressure.

Figure 11.10 The dam must withstand the force exerted against it by the water it retains. This force is small compared with the weight of the water
behind the dam.

Atmospheric pressure is another example of pressure due to the weight of a fluid, in this case due to the weight of air above a
given height. The atmospheric pressure at the Earth’s surface varies a little due to the large-scale flow of the atmosphere
induced by the Earth’s rotation (this creates weather “highs” and “lows”). However, the average pressure at sea level is given by
the standard atmospheric pressure Patm , measured to be

(11.22)1 atmosphere (atm) = Patm = 1.01×105 N/m2 = 101 kPa.

This relationship means that, on average, at sea level, a column of air above 1.00 m2 of the Earth’s surface has a weight of

1.01×105 N , equivalent to 1 atm . (See Figure 11.11.)

Figure 11.11 Atmospheric pressure at sea level averages 1.01×105 Pa (equivalent to 1 atm), since the column of air over this 1 m2
, extending

to the top of the atmosphere, weighs 1.01×105 N .
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Example 11.4 Calculating Average Density: How Dense Is the Air?

Calculate the average density of the atmosphere, given that it extends to an altitude of 120 km. Compare this density with
that of air listed in Table 11.1.

Strategy

If we solve P = hρg for density, we see that

(11.23)ρ̄ = P
hg.

We then take P to be atmospheric pressure, h is given, and g is known, and so we can use this to calculate ρ̄ .

Solution

Entering known values into the expression for ρ̄ yields

(11.24)
ρ̄ = 1.01×105 N/m2

(120×103 m)(9.80 m/s2)
= 8.59×10−2 kg/m3.

Discussion

This result is the average density of air between the Earth’s surface and the top of the Earth’s atmosphere, which essentially

ends at 120 km. The density of air at sea level is given in Table 11.1 as 1.29 kg/m3 —about 15 times its average value.

Because air is so compressible, its density has its highest value near the Earth’s surface and declines rapidly with altitude.

Example 11.5 Calculating Depth Below the Surface of Water: What Depth of Water Creates the
Same Pressure as the Entire Atmosphere?

Calculate the depth below the surface of water at which the pressure due to the weight of the water equals 1.00 atm.

Strategy

We begin by solving the equation P = hρg for depth h :

(11.25)h = P
ρg.

Then we take P to be 1.00 atm and ρ to be the density of the water that creates the pressure.

Solution

Entering the known values into the expression for h gives

(11.26)
h = 1.01×105 N/m2

(1.00×103 kg/m3)(9.80 m/s2)
= 10.3 m.

Discussion

Just 10.3 m of water creates the same pressure as 120 km of air. Since water is nearly incompressible, we can neglect any
change in its density over this depth.

What do you suppose is the total pressure at a depth of 10.3 m in a swimming pool? Does the atmospheric pressure on the
water’s surface affect the pressure below? The answer is yes. This seems only logical, since both the water’s weight and the
atmosphere’s weight must be supported. So the total pressure at a depth of 10.3 m is 2 atm—half from the water above and half
from the air above. We shall see in Pascal’s Principle that fluid pressures always add in this way.

11.5 Pascal’s Principle

Pressure is defined as force per unit area. Can pressure be increased in a fluid by pushing directly on the fluid? Yes, but it is
much easier if the fluid is enclosed. The heart, for example, increases blood pressure by pushing directly on the blood in an
enclosed system (valves closed in a chamber). If you try to push on a fluid in an open system, such as a river, the fluid flows
away. An enclosed fluid cannot flow away, and so pressure is more easily increased by an applied force.

What happens to a pressure in an enclosed fluid? Since atoms in a fluid are free to move about, they transmit the pressure to all
parts of the fluid and to the walls of the container. Remarkably, the pressure is transmitted undiminished. This phenomenon is
called Pascal’s principle, because it was first clearly stated by the French philosopher and scientist Blaise Pascal (1623–1662):
A change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the walls of its
container.
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Pascal’s Principle

A change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the walls of its
container.

Pascal’s principle, an experimentally verified fact, is what makes pressure so important in fluids. Since a change in pressure is
transmitted undiminished in an enclosed fluid, we often know more about pressure than other physical quantities in fluids.
Moreover, Pascal’s principle implies that the total pressure in a fluid is the sum of the pressures from different sources. We shall
find this fact—that pressures add—very useful.

Blaise Pascal had an interesting life in that he was home-schooled by his father who removed all of the mathematics textbooks
from his house and forbade him to study mathematics until the age of 15. This, of course, raised the boy’s curiosity, and by the
age of 12, he started to teach himself geometry. Despite this early deprivation, Pascal went on to make major contributions in the
mathematical fields of probability theory, number theory, and geometry. He is also well known for being the inventor of the first
mechanical digital calculator, in addition to his contributions in the field of fluid statics.

Application of Pascal’s Principle

One of the most important technological applications of Pascal’s principle is found in a hydraulic system, which is an enclosed
fluid system used to exert forces. The most common hydraulic systems are those that operate car brakes. Let us first consider
the simple hydraulic system shown in Figure 11.12.

Figure 11.12 A typical hydraulic system with two fluid-filled cylinders, capped with pistons and connected by a tube called a hydraulic line. A downward

force F1 on the left piston creates a pressure that is transmitted undiminished to all parts of the enclosed fluid. This results in an upward force F2
on the right piston that is larger than F1 because the right piston has a larger area.

Relationship Between Forces in a Hydraulic System

We can derive a relationship between the forces in the simple hydraulic system shown in Figure 11.12 by applying Pascal’s
principle. Note first that the two pistons in the system are at the same height, and so there will be no difference in pressure due to

a difference in depth. Now the pressure due to F1 acting on area A1 is simply P1 = F1
A1

, as defined by P = F
A . According

to Pascal’s principle, this pressure is transmitted undiminished throughout the fluid and to all walls of the container. Thus, a
pressure P2 is felt at the other piston that is equal to P1 . That is P1 = P2 .

But since P2 = F2
A2

, we see that
F1
A1

= F2
A2

.

This equation relates the ratios of force to area in any hydraulic system, providing the pistons are at the same vertical height and
that friction in the system is negligible. Hydraulic systems can increase or decrease the force applied to them. To make the force
larger, the pressure is applied to a larger area. For example, if a 100-N force is applied to the left cylinder in Figure 11.12 and
the right one has an area five times greater, then the force out is 500 N. Hydraulic systems are analogous to simple levers, but
they have the advantage that pressure can be sent through tortuously curved lines to several places at once.

Example 11.6 Calculating Force of Slave Cylinders: Pascal Puts on the Brakes

Consider the automobile hydraulic system shown in Figure 11.13.
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Figure 11.13 Hydraulic brakes use Pascal’s principle. The driver exerts a force of 100 N on the brake pedal. This force is increased by the simple
lever and again by the hydraulic system. Each of the identical slave cylinders receives the same pressure and, therefore, creates the same force

output F2 . The circular cross-sectional areas of the master and slave cylinders are represented by A1 and A2 , respectively

A force of 100 N is applied to the brake pedal, which acts on the cylinder—called the master—through a lever. A force of 500
N is exerted on the master cylinder. (The reader can verify that the force is 500 N using techniques of statics from
Applications of Statics, Including Problem-Solving Strategies.) Pressure created in the master cylinder is transmitted to
four so-called slave cylinders. The master cylinder has a diameter of 0.500 cm, and each slave cylinder has a diameter of
2.50 cm. Calculate the force F2 created at each of the slave cylinders.

Strategy

We are given the force F1 that is applied to the master cylinder. The cross-sectional areas A1 and A2 can be calculated

from their given diameters. Then
F1
A1

= F2
A2

can be used to find the force F2 . Manipulate this algebraically to get F2 on

one side and substitute known values:

Solution

Pascal’s principle applied to hydraulic systems is given by
F1
A1

= F2
A2

:

(11.27)
F2 = A2

A1
F1 =

πr2
2

πr1
2F1 = (1.25 cm)2

(0.250 cm)2×500 N = 1.25×104 N.

Discussion

This value is the force exerted by each of the four slave cylinders. Note that we can add as many slave cylinders as we

wish. If each has a 2.50-cm diameter, each will exert 1.25×104 N.

A simple hydraulic system, such as a simple machine, can increase force but cannot do more work than done on it. Work is force
times distance moved, and the slave cylinder moves through a smaller distance than the master cylinder. Furthermore, the more
slaves added, the smaller the distance each moves. Many hydraulic systems—such as power brakes and those in
bulldozers—have a motorized pump that actually does most of the work in the system. The movement of the legs of a spider is
achieved partly by hydraulics. Using hydraulics, a jumping spider can create a force that makes it capable of jumping 25 times its
length!
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Making Connections: Conservation of Energy

Conservation of energy applied to a hydraulic system tells us that the system cannot do more work than is done on it. Work
transfers energy, and so the work output cannot exceed the work input. Power brakes and other similar hydraulic systems
use pumps to supply extra energy when needed.

11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement

If you limp into a gas station with a nearly flat tire, you will notice the tire gauge on the airline reads nearly zero when you begin
to fill it. In fact, if there were a gaping hole in your tire, the gauge would read zero, even though atmospheric pressure exists in
the tire. Why does the gauge read zero? There is no mystery here. Tire gauges are simply designed to read zero at atmospheric
pressure and positive when pressure is greater than atmospheric.

Similarly, atmospheric pressure adds to blood pressure in every part of the circulatory system. (As noted in Pascal’s Principle,
the total pressure in a fluid is the sum of the pressures from different sources—here, the heart and the atmosphere.) But
atmospheric pressure has no net effect on blood flow since it adds to the pressure coming out of the heart and going back into it,
too. What is important is how much greater blood pressure is than atmospheric pressure. Blood pressure measurements, like tire
pressures, are thus made relative to atmospheric pressure.

In brief, it is very common for pressure gauges to ignore atmospheric pressure—that is, to read zero at atmospheric pressure.
We therefore define gauge pressure to be the pressure relative to atmospheric pressure. Gauge pressure is positive for
pressures above atmospheric pressure, and negative for pressures below it.

Gauge Pressure

Gauge pressure is the pressure relative to atmospheric pressure. Gauge pressure is positive for pressures above
atmospheric pressure, and negative for pressures below it.

In fact, atmospheric pressure does add to the pressure in any fluid not enclosed in a rigid container. This happens because of
Pascal’s principle. The total pressure, or absolute pressure, is thus the sum of gauge pressure and atmospheric pressure:
Pabs = Pg + Patm where Pabs is absolute pressure, Pg is gauge pressure, and Patm is atmospheric pressure. For

example, if your tire gauge reads 34 psi (pounds per square inch), then the absolute pressure is 34 psi plus 14.7 psi ( Patm in

psi), or 48.7 psi (equivalent to 336 kPa).

Absolute Pressure

Absolute pressure is the sum of gauge pressure and atmospheric pressure.

For reasons we will explore later, in most cases the absolute pressure in fluids cannot be negative. Fluids push rather than pull,
so the smallest absolute pressure is zero. (A negative absolute pressure is a pull.) Thus the smallest possible gauge pressure is
Pg = −Patm (this makes Pabs zero). There is no theoretical limit to how large a gauge pressure can be.

There are a host of devices for measuring pressure, ranging from tire gauges to blood pressure cuffs. Pascal’s principle is of
major importance in these devices. The undiminished transmission of pressure through a fluid allows precise remote sensing of
pressures. Remote sensing is often more convenient than putting a measuring device into a system, such as a person’s artery.

Figure 11.14 shows one of the many types of mechanical pressure gauges in use today. In all mechanical pressure gauges,
pressure results in a force that is converted (or transduced) into some type of readout.

Figure 11.14 This aneroid gauge utilizes flexible bellows connected to a mechanical indicator to measure pressure.

An entire class of gauges uses the property that pressure due to the weight of a fluid is given by P = hρg. Consider the U-
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shaped tube shown in Figure 11.15, for example. This simple tube is called a manometer. In Figure 11.15(a), both sides of the
tube are open to the atmosphere. Atmospheric pressure therefore pushes down on each side equally so its effect cancels. If the
fluid is deeper on one side, there is a greater pressure on the deeper side, and the fluid flows away from that side until the
depths are equal.

Let us examine how a manometer is used to measure pressure. Suppose one side of the U-tube is connected to some source of
pressure Pabs such as the toy balloon in Figure 11.15(b) or the vacuum-packed peanut jar shown in Figure 11.15(c). Pressure

is transmitted undiminished to the manometer, and the fluid levels are no longer equal. In Figure 11.15(b), Pabs is greater than

atmospheric pressure, whereas in Figure 11.15(c), Pabs is less than atmospheric pressure. In both cases, Pabs differs from

atmospheric pressure by an amount hρg , where ρ is the density of the fluid in the manometer. In Figure 11.15(b), Pabs can

support a column of fluid of height h , and so it must exert a pressure hρg greater than atmospheric pressure (the gauge

pressure Pg is positive). In Figure 11.15(c), atmospheric pressure can support a column of fluid of height h , and so Pabs is

less than atmospheric pressure by an amount hρg (the gauge pressure Pg is negative). A manometer with one side open to

the atmosphere is an ideal device for measuring gauge pressures. The gauge pressure is Pg = hρg and is found by measuring

h .

Figure 11.15 An open-tube manometer has one side open to the atmosphere. (a) Fluid depth must be the same on both sides, or the pressure each

side exerts at the bottom will be unequal and there will be flow from the deeper side. (b) A positive gauge pressure Pg = hρg transmitted to one

side of the manometer can support a column of fluid of height h . (c) Similarly, atmospheric pressure is greater than a negative gauge pressure Pg

by an amount hρg . The jar’s rigidity prevents atmospheric pressure from being transmitted to the peanuts.

Mercury manometers are often used to measure arterial blood pressure. An inflatable cuff is placed on the upper arm as shown
in Figure 11.16. By squeezing the bulb, the person making the measurement exerts pressure, which is transmitted undiminished
to both the main artery in the arm and the manometer. When this applied pressure exceeds blood pressure, blood flow below the
cuff is cut off. The person making the measurement then slowly lowers the applied pressure and listens for blood flow to resume.
Blood pressure pulsates because of the pumping action of the heart, reaching a maximum, called systolic pressure, and a
minimum, called diastolic pressure, with each heartbeat. Systolic pressure is measured by noting the value of h when blood

flow first begins as cuff pressure is lowered. Diastolic pressure is measured by noting h when blood flows without interruption.

The typical blood pressure of a young adult raises the mercury to a height of 120 mm at systolic and 80 mm at diastolic. This is
commonly quoted as 120 over 80, or 120/80. The first pressure is representative of the maximum output of the heart; the second
is due to the elasticity of the arteries in maintaining the pressure between beats. The density of the mercury fluid in the
manometer is 13.6 times greater than water, so the height of the fluid will be 1/13.6 of that in a water manometer. This reduced
height can make measurements difficult, so mercury manometers are used to measure larger pressures, such as blood pressure.
The density of mercury is such that 1.0 mm Hg = 133 Pa .

Systolic Pressure

Systolic pressure is the maximum blood pressure.

Diastolic Pressure

Diastolic pressure is the minimum blood pressure.
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Figure 11.16 In routine blood pressure measurements, an inflatable cuff is placed on the upper arm at the same level as the heart. Blood flow is
detected just below the cuff, and corresponding pressures are transmitted to a mercury-filled manometer. (credit: U.S. Army photo by Spc. Micah E.
Clare\4TH BCT)

Example 11.7 Calculating Height of IV Bag: Blood Pressure and Intravenous Infusions

Intravenous infusions are usually made with the help of the gravitational force. Assuming that the density of the fluid being
administered is 1.00 g/ml, at what height should the IV bag be placed above the entry point so that the fluid just enters the
vein if the blood pressure in the vein is 18 mm Hg above atmospheric pressure? Assume that the IV bag is collapsible.

Strategy for (a)

For the fluid to just enter the vein, its pressure at entry must exceed the blood pressure in the vein (18 mm Hg above
atmospheric pressure). We therefore need to find the height of fluid that corresponds to this gauge pressure.

Solution

We first need to convert the pressure into SI units. Since 1.0 mm Hg = 133 Pa ,

(11.28)P = 18 mm Hg× 133 Pa
1.0 mm Hg = 2400 Pa.

Rearranging Pg = hρg for h gives h =
Pg
ρg . Substituting known values into this equation gives

(11.29)
h = 2400 N/m2

⎛
⎝1.0×103 kg/m3⎞⎠

⎛
⎝9.80 m/s2⎞⎠

= 0.24 m.
Discussion

The IV bag must be placed at 0.24 m above the entry point into the arm for the fluid to just enter the arm. Generally, IV bags
are placed higher than this. You may have noticed that the bags used for blood collection are placed below the donor to
allow blood to flow easily from the arm to the bag, which is the opposite direction of flow than required in the example
presented here.
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A barometer is a device that measures atmospheric pressure. A mercury barometer is shown in Figure 11.17. This device
measures atmospheric pressure, rather than gauge pressure, because there is a nearly pure vacuum above the mercury in the
tube. The height of the mercury is such that hρg = Patm . When atmospheric pressure varies, the mercury rises or falls, giving

important clues to weather forecasters. The barometer can also be used as an altimeter, since average atmospheric pressure
varies with altitude. Mercury barometers and manometers are so common that units of mm Hg are often quoted for atmospheric
pressure and blood pressures. Table 11.2 gives conversion factors for some of the more commonly used units of pressure.

Figure 11.17 A mercury barometer measures atmospheric pressure. The pressure due to the mercury’s weight, hρg , equals atmospheric pressure.

The atmosphere is able to force mercury in the tube to a height h because the pressure above the mercury is zero.

Table 11.2 Conversion Factors for Various Pressure Units

Conversion to N/m2 (Pa) Conversion from atm

1.0 atm = 1.013×105 N/m2 1.0 atm = 1.013×105 N/m2

1.0 dyne/cm2 = 0.10 N/m2 1.0 atm = 1.013×106 dyne/cm2

1.0 kg/cm2 = 9.8×104 N/m2 1.0 atm = 1.013 kg/cm2

1.0 lb/in.2 = 6.90×103 N/m2 1.0 atm = 14.7 lb/in.2

1.0 mm Hg = 133 N/m2 1.0 atm = 760 mm Hg

1.0 cm Hg = 1.33×103 N/m2 1.0 atm = 76.0 cm Hg

1.0 cm water = 98.1 N/m2 1.0 atm = 1.03×103 cm water

1.0 bar = 1.000×105 N/m2 1.0 atm = 1.013 bar

1.0 millibar = 1.000×102 N/m2 1.0 atm = 1013 millibar

11.7 Archimedes’ Principle

When you rise from lounging in a warm bath, your arms feel strangely heavy. This is because you no longer have the buoyant
support of the water. Where does this buoyant force come from? Why is it that some things float and others do not? Do objects
that sink get any support at all from the fluid? Is your body buoyed by the atmosphere, or are only helium balloons affected? (See
Figure 11.18.)
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Figure 11.18 (a) Even objects that sink, like this anchor, are partly supported by water when submerged. (b) Submarines have adjustable density
(ballast tanks) so that they may float or sink as desired. (credit: Allied Navy) (c) Helium-filled balloons tug upward on their strings, demonstrating air’s
buoyant effect. (credit: Crystl)

Answers to all these questions, and many others, are based on the fact that pressure increases with depth in a fluid. This means
that the upward force on the bottom of an object in a fluid is greater than the downward force on the top of the object. There is a
net upward, or buoyant force on any object in any fluid. (See Figure 11.19.) If the buoyant force is greater than the object’s
weight, the object will rise to the surface and float. If the buoyant force is less than the object’s weight, the object will sink. If the
buoyant force equals the object’s weight, the object will remain suspended at that depth. The buoyant force is always present
whether the object floats, sinks, or is suspended in a fluid.

Buoyant Force

The buoyant force is the net upward force on any object in any fluid.

Figure 11.19 Pressure due to the weight of a fluid increases with depth since P = hρg . This pressure and associated upward force on the bottom

of the cylinder are greater than the downward force on the top of the cylinder. Their difference is the buoyant force FB . (Horizontal forces cancel.)

Just how great is this buoyant force? To answer this question, think about what happens when a submerged object is removed
from a fluid, as in Figure 11.20.
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Figure 11.20 (a) An object submerged in a fluid experiences a buoyant force FB . If FB is greater than the weight of the object, the object will rise.

If FB is less than the weight of the object, the object will sink. (b) If the object is removed, it is replaced by fluid having weight wfl . Since this weight

is supported by surrounding fluid, the buoyant force must equal the weight of the fluid displaced. That is, FB = wfl ,a statement of Archimedes’

principle.

The space it occupied is filled by fluid having a weight wfl . This weight is supported by the surrounding fluid, and so the buoyant

force must equal wfl , the weight of the fluid displaced by the object. It is a tribute to the genius of the Greek mathematician and

inventor Archimedes (ca. 287–212 B.C.) that he stated this principle long before concepts of force were well established. Stated
in words, Archimedes’ principle is as follows: The buoyant force on an object equals the weight of the fluid it displaces. In
equation form, Archimedes’ principle is

(11.30)FB = wfl,

where FB is the buoyant force and wfl is the weight of the fluid displaced by the object. Archimedes’ principle is valid in

general, for any object in any fluid, whether partially or totally submerged.

Archimedes’ Principle

According to this principle the buoyant force on an object equals the weight of the fluid it displaces. In equation form,
Archimedes’ principle is

(11.31)FB = wfl,

where FB is the buoyant force and wfl is the weight of the fluid displaced by the object.

Humm … High-tech body swimsuits were introduced in 2008 in preparation for the Beijing Olympics. One concern (and
international rule) was that these suits should not provide any buoyancy advantage. How do you think that this rule could be
verified?

Making Connections: Take-Home Investigation

The density of aluminum foil is 2.7 times the density of water. Take a piece of foil, roll it up into a ball and drop it into water.
Does it sink? Why or why not? Can you make it sink?

Floating and Sinking

Drop a lump of clay in water. It will sink. Then mold the lump of clay into the shape of a boat, and it will float. Because of its
shape, the boat displaces more water than the lump and experiences a greater buoyant force. The same is true of steel ships.

Example 11.8 Calculating buoyant force: dependency on shape

(a) Calculate the buoyant force on 10,000 metric tons (1.00×107 kg) of solid steel completely submerged in water, and
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compare this with the steel’s weight. (b) What is the maximum buoyant force that water could exert on this same steel if it

were shaped into a boat that could displace 1.00×105 m3 of water?

Strategy for (a)

To find the buoyant force, we must find the weight of water displaced. We can do this by using the densities of water and
steel given in Table 11.1. We note that, since the steel is completely submerged, its volume and the water’s volume are the
same. Once we know the volume of water, we can find its mass and weight.

Solution for (a)

First, we use the definition of density ρ = m
V to find the steel’s volume, and then we substitute values for mass and density.

This gives

(11.32)
Vst = mst

ρst
= 1.00×107 kg

7.8×103 kg/m3 = 1.28×103 m3.

Because the steel is completely submerged, this is also the volume of water displaced, Vw . We can now find the mass of

water displaced from the relationship between its volume and density, both of which are known. This gives

(11.33)mw = ρwVw = (1.000×103 kg/m3)(1.28×103 m3)

= 1.28×106 kg.

By Archimedes’ principle, the weight of water displaced is mw g , so the buoyant force is

(11.34)FB = ww = mwg = ⎛⎝1.28×106 kg⎞⎠
⎛
⎝9.80 m/s2⎞⎠

= 1.3×107 N.

The steel’s weight is mw g = 9.80×107 N , which is much greater than the buoyant force, so the steel will remain

submerged. Note that the buoyant force is rounded to two digits because the density of steel is given to only two digits.

Strategy for (b)

Here we are given the maximum volume of water the steel boat can displace. The buoyant force is the weight of this volume
of water.

Solution for (b)

The mass of water displaced is found from its relationship to density and volume, both of which are known. That is,

(11.35)mw = ρwVw = ⎛⎝1.000×103 kg/m3⎞⎠
⎛
⎝1.00×105 m3⎞⎠

= 1.00×108 kg.

The maximum buoyant force is the weight of this much water, or

(11.36)FB = ww = mwg = ⎛⎝1.00×108 kg⎞⎠
⎛
⎝9.80 m/s2⎞⎠

= 9.80×108 N.
Discussion

The maximum buoyant force is ten times the weight of the steel, meaning the ship can carry a load nine times its own weight
without sinking.

Making Connections: Take-Home Investigation

A piece of household aluminum foil is 0.016 mm thick. Use a piece of foil that measures 10 cm by 15 cm. (a) What is the
mass of this amount of foil? (b) If the foil is folded to give it four sides, and paper clips or washers are added to this “boat,”
what shape of the boat would allow it to hold the most “cargo” when placed in water? Test your prediction.

Density and Archimedes’ Principle

Density plays a crucial role in Archimedes’ principle. The average density of an object is what ultimately determines whether it
floats. If its average density is less than that of the surrounding fluid, it will float. This is because the fluid, having a higher density,
contains more mass and hence more weight in the same volume. The buoyant force, which equals the weight of the fluid
displaced, is thus greater than the weight of the object. Likewise, an object denser than the fluid will sink.

The extent to which a floating object is submerged depends on how the object’s density is related to that of the fluid. In Figure
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11.21, for example, the unloaded ship has a lower density and less of it is submerged compared with the same ship loaded. We
can derive a quantitative expression for the fraction submerged by considering density. The fraction submerged is the ratio of the
volume submerged to the volume of the object, or

(11.37)
fraction submerged =Vsub

Vobj
= Vfl

Vobj
.

The volume submerged equals the volume of fluid displaced, which we call Vfl . Now we can obtain the relationship between the

densities by substituting ρ = m
V into the expression. This gives

(11.38)Vfl
Vobj

= mfl / ρfl
mobj / ρ̄ obj

,

where ρ̄ obj is the average density of the object and ρfl is the density of the fluid. Since the object floats, its mass and that of

the displaced fluid are equal, and so they cancel from the equation, leaving

(11.39)

fraction submerged =
ρ̄ obj
ρfl

.

Figure 11.21 An unloaded ship (a) floats higher in the water than a loaded ship (b).

We use this last relationship to measure densities. This is done by measuring the fraction of a floating object that is
submerged—for example, with a hydrometer. It is useful to define the ratio of the density of an object to a fluid (usually water) as
specific gravity:

(11.40)
specific gravity = ρ¯

ρw,

where ρ¯ is the average density of the object or substance and ρw is the density of water at 4.00°C. Specific gravity is

dimensionless, independent of whatever units are used for ρ . If an object floats, its specific gravity is less than one. If it sinks, its

specific gravity is greater than one. Moreover, the fraction of a floating object that is submerged equals its specific gravity. If an
object’s specific gravity is exactly 1, then it will remain suspended in the fluid, neither sinking nor floating. Scuba divers try to
obtain this state so that they can hover in the water. We measure the specific gravity of fluids, such as battery acid, radiator fluid,
and urine, as an indicator of their condition. One device for measuring specific gravity is shown in Figure 11.22.

Specific Gravity

Specific gravity is the ratio of the density of an object to a fluid (usually water).
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Figure 11.22 This hydrometer is floating in a fluid of specific gravity 0.87. The glass hydrometer is filled with air and weighted with lead at the bottom. It
floats highest in the densest fluids and has been calibrated and labeled so that specific gravity can be read from it directly.

Example 11.9 Calculating Average Density: Floating Woman

Suppose a 60.0-kg woman floats in freshwater with 97.0% of her volume submerged when her lungs are full of air. What is

her average density?

Strategy

We can find the woman’s density by solving the equation

(11.41)

fraction submerged =
ρ̄ obj
ρfl

for the density of the object. This yields

(11.42)ρ̄ obj = ρ̄ person = (fraction submerged) ⋅ ρfl.

We know both the fraction submerged and the density of water, and so we can calculate the woman’s density.

Solution

Entering the known values into the expression for her density, we obtain

(11.43)
ρ̄ person = 0.970 ⋅ ⎛⎝103 kg

m3
⎞
⎠ = 970 kg

m3.

Discussion

Her density is less than the fluid density. We expect this because she floats. Body density is one indicator of a person’s
percent body fat, of interest in medical diagnostics and athletic training. (See Figure 11.23.)
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Figure 11.23 Subject in a “fat tank,” where he is weighed while completely submerged as part of a body density determination. The subject must
completely empty his lungs and hold a metal weight in order to sink. Corrections are made for the residual air in his lungs (measured separately) and
the metal weight. His corrected submerged weight, his weight in air, and pinch tests of strategic fatty areas are used to calculate his percent body fat.

There are many obvious examples of lower-density objects or substances floating in higher-density fluids—oil on water, a hot-air
balloon, a bit of cork in wine, an iceberg, and hot wax in a “lava lamp,” to name a few. Less obvious examples include lava rising
in a volcano and mountain ranges floating on the higher-density crust and mantle beneath them. Even seemingly solid Earth has
fluid characteristics.

More Density Measurements

One of the most common techniques for determining density is shown in Figure 11.24.

Figure 11.24 (a) A coin is weighed in air. (b) The apparent weight of the coin is determined while it is completely submerged in a fluid of known density.
These two measurements are used to calculate the density of the coin.

An object, here a coin, is weighed in air and then weighed again while submerged in a liquid. The density of the coin, an
indication of its authenticity, can be calculated if the fluid density is known. This same technique can also be used to determine
the density of the fluid if the density of the coin is known. All of these calculations are based on Archimedes’ principle.

Archimedes’ principle states that the buoyant force on the object equals the weight of the fluid displaced. This, in turn, means
that the object appears to weigh less when submerged; we call this measurement the object’s apparent weight. The object
suffers an apparent weight loss equal to the weight of the fluid displaced. Alternatively, on balances that measure mass, the
object suffers an apparent mass loss equal to the mass of fluid displaced. That is

(11.44)apparent weight loss = weight of fluid displaced

or

(11.45)apparent mass loss = mass of fluid displaced.

The next example illustrates the use of this technique.
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Example 11.10 Calculating Density: Is the Coin Authentic?

The mass of an ancient Greek coin is determined in air to be 8.630 g. When the coin is submerged in water as shown in

Figure 11.24, its apparent mass is 7.800 g. Calculate its density, given that water has a density of 1.000 g/cm3 and that

effects caused by the wire suspending the coin are negligible.

Strategy

To calculate the coin’s density, we need its mass (which is given) and its volume. The volume of the coin equals the volume

of water displaced. The volume of water displaced Vw can be found by solving the equation for density ρ = m
V for V .

Solution

The volume of water is Vw = mw
ρw where mw is the mass of water displaced. As noted, the mass of the water displaced

equals the apparent mass loss, which is mw = 8.630 g−7.800 g = 0.830 g . Thus the volume of water is

Vw = 0.830 g
1.000 g/cm3 = 0.830 cm3 . This is also the volume of the coin, since it is completely submerged. We can now find

the density of the coin using the definition of density:

(11.46)
ρc = mc

Vc
= 8.630 g

0.830 cm3 = 10.4 g/cm3.

Discussion

You can see from Table 11.1 that this density is very close to that of pure silver, appropriate for this type of ancient coin.
Most modern counterfeits are not pure silver.

This brings us back to Archimedes’ principle and how it came into being. As the story goes, the king of Syracuse gave
Archimedes the task of determining whether the royal crown maker was supplying a crown of pure gold. The purity of gold is
difficult to determine by color (it can be diluted with other metals and still look as yellow as pure gold), and other analytical
techniques had not yet been conceived. Even ancient peoples, however, realized that the density of gold was greater than that of
any other then-known substance. Archimedes purportedly agonized over his task and had his inspiration one day while at the
public baths, pondering the support the water gave his body. He came up with his now-famous principle, saw how to apply it to
determine density, and ran naked down the streets of Syracuse crying “Eureka!” (Greek for “I have found it”). Similar behavior
can be observed in contemporary physicists from time to time!

PhET Explorations: Buoyancy

When will objects float and when will they sink? Learn how buoyancy works with blocks. Arrows show the applied forces,
and you can modify the properties of the blocks and the fluid.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42196/
1.12/#Phet_module_12.7)

Figure 11.25

11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action

Cohesion and Adhesion in Liquids

Children blow soap bubbles and play in the spray of a sprinkler on a hot summer day. (See Figure 11.26.) An underwater spider
keeps his air supply in a shiny bubble he carries wrapped around him. A technician draws blood into a small-diameter tube just
by touching it to a drop on a pricked finger. A premature infant struggles to inflate her lungs. What is the common thread? All
these activities are dominated by the attractive forces between atoms and molecules in liquids—both within a liquid and between
the liquid and its surroundings.

Attractive forces between molecules of the same type are called cohesive forces. Liquids can, for example, be held in open
containers because cohesive forces hold the molecules together. Attractive forces between molecules of different types are
called adhesive forces. Such forces cause liquid drops to cling to window panes, for example. In this section we examine effects
directly attributable to cohesive and adhesive forces in liquids.

Cohesive Forces

Attractive forces between molecules of the same type are called cohesive forces.

Chapter 11 | Fluid Statics 411

http://cnx.org/content/m42196/1.12/#Phet_module_12.7
http://cnx.org/content/m42196/1.12/#Phet_module_12.7


Adhesive Forces

Attractive forces between molecules of different types are called adhesive forces.

Figure 11.26 The soap bubbles in this photograph are caused by cohesive forces among molecules in liquids. (credit: Steve Ford Elliott)

Surface Tension

Cohesive forces between molecules cause the surface of a liquid to contract to the smallest possible surface area. This general
effect is called surface tension. Molecules on the surface are pulled inward by cohesive forces, reducing the surface area.
Molecules inside the liquid experience zero net force, since they have neighbors on all sides.

Surface Tension

Cohesive forces between molecules cause the surface of a liquid to contract to the smallest possible surface area. This
general effect is called surface tension.

Making Connections: Surface Tension

Forces between atoms and molecules underlie the macroscopic effect called surface tension. These attractive forces pull the
molecules closer together and tend to minimize the surface area. This is another example of a submicroscopic explanation
for a macroscopic phenomenon.

The model of a liquid surface acting like a stretched elastic sheet can effectively explain surface tension effects. For example,
some insects can walk on water (as opposed to floating in it) as we would walk on a trampoline—they dent the surface as shown
in Figure 11.27(a). Figure 11.27(b) shows another example, where a needle rests on a water surface. The iron needle cannot,
and does not, float, because its density is greater than that of water. Rather, its weight is supported by forces in the stretched
surface that try to make the surface smaller or flatter. If the needle were placed point down on the surface, its weight acting on a
smaller area would break the surface, and it would sink.
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Figure 11.27 Surface tension supporting the weight of an insect and an iron needle, both of which rest on the surface without penetrating it. They are

not floating; rather, they are supported by the surface of the liquid. (a) An insect leg dents the water surface. FST is a restoring force (surface

tension) parallel to the surface. (b) An iron needle similarly dents a water surface until the restoring force (surface tension) grows to equal its weight.

Surface tension is proportional to the strength of the cohesive force, which varies with the type of liquid. Surface tension γ is

defined to be the force F per unit length L exerted by a stretched liquid membrane:

(11.47)γ = F
L .

Table 11.3 lists values of γ for some liquids. For the insect of Figure 11.27(a), its weight w is supported by the upward

components of the surface tension force: w = γL sin θ , where L is the circumference of the insect’s foot in contact with the

water. Figure 11.28 shows one way to measure surface tension. The liquid film exerts a force on the movable wire in an attempt
to reduce its surface area. The magnitude of this force depends on the surface tension of the liquid and can be measured
accurately.

Surface tension is the reason why liquids form bubbles and droplets. The inward surface tension force causes bubbles to be
approximately spherical and raises the pressure of the gas trapped inside relative to atmospheric pressure outside. It can be
shown that the gauge pressure P inside a spherical bubble is given by

(11.48)
P = 4γ

r ,

where r is the radius of the bubble. Thus the pressure inside a bubble is greatest when the bubble is the smallest. Another bit of

evidence for this is illustrated in Figure 11.29. When air is allowed to flow between two balloons of unequal size, the smaller
balloon tends to collapse, filling the larger balloon.
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Figure 11.28 Sliding wire device used for measuring surface tension; the device exerts a force to reduce the film’s surface area. The force needed to

hold the wire in place is F = γL = γ(2l) , since there are two liquid surfaces attached to the wire. This force remains nearly constant as the film is

stretched, until the film approaches its breaking point.

Figure 11.29 With the valve closed, two balloons of different sizes are attached to each end of a tube. Upon opening the valve, the smaller balloon
decreases in size with the air moving to fill the larger balloon. The pressure in a spherical balloon is inversely proportional to its radius, so that the
smaller balloon has a greater internal pressure than the larger balloon, resulting in this flow.
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Table 11.3 Surface Tension of Some Liquids[1]

Liquid Surface tension γ(N/m)

Water at 0ºC 0.0756

Water at 20ºC 0.0728

Water at 100ºC 0.0589

Soapy water (typical) 0.0370

Ethyl alcohol 0.0223

Glycerin 0.0631

Mercury 0.465

Olive oil 0.032

Tissue fluids (typical) 0.050

Blood, whole at 37ºC 0.058

Blood plasma at 37ºC 0.073

Gold at 1070ºC 1.000

Oxygen at −193ºC 0.0157

Helium at −269ºC 0.00012

Example 11.11 Surface Tension: Pressure Inside a Bubble

Calculate the gauge pressure inside a soap bubble 2.00×10−4 m in radius using the surface tension for soapy water in

Table 11.3. Convert this pressure to mm Hg.

Strategy

The radius is given and the surface tension can be found in Table 11.3, and so P can be found directly from the equation

P = 4γ
r .

Solution

Substituting r and γ into the equation P = 4γ
r , we obtain

(11.49)
P = 4γ

r = 4(0.037 N/m)
2.00×10−4 m

= 740 N/m2 = 740 Pa.

We use a conversion factor to get this into units of mm Hg:

(11.50)
P = ⎛⎝740 N/m2⎞⎠

1.00 mm Hg
133 N/m2 = 5.56 mm Hg.

Discussion

Note that if a hole were to be made in the bubble, the air would be forced out, the bubble would decrease in radius, and the
pressure inside would increase to atmospheric pressure (760 mm Hg).

Our lungs contain hundreds of millions of mucus-lined sacs called alveoli, which are very similar in size, and about 0.1 mm in
diameter. (See Figure 11.30.) You can exhale without muscle action by allowing surface tension to contract these sacs. Medical
patients whose breathing is aided by a positive pressure respirator have air blown into the lungs, but are generally allowed to
exhale on their own. Even if there is paralysis, surface tension in the alveoli will expel air from the lungs. Since pressure
increases as the radii of the alveoli decrease, an occasional deep cleansing breath is needed to fully reinflate the alveoli.
Respirators are programmed to do this and we find it natural, as do our companion dogs and cats, to take a cleansing breath
before settling into a nap.

1. At 20ºC unless otherwise stated.

Chapter 11 | Fluid Statics 415



Figure 11.30 Bronchial tubes in the lungs branch into ever-smaller structures, finally ending in alveoli. The alveoli act like tiny bubbles. The surface
tension of their mucous lining aids in exhalation and can prevent inhalation if too great.

The tension in the walls of the alveoli results from the membrane tissue and a liquid on the walls of the alveoli containing a long
lipoprotein that acts as a surfactant (a surface-tension reducing substance). The need for the surfactant results from the
tendency of small alveoli to collapse and the air to fill into the larger alveoli making them even larger (as demonstrated in Figure
11.29). During inhalation, the lipoprotein molecules are pulled apart and the wall tension increases as the radius increases
(increased surface tension). During exhalation, the molecules slide back together and the surface tension decreases, helping to
prevent a collapse of the alveoli. The surfactant therefore serves to change the wall tension so that small alveoli don’t collapse
and large alveoli are prevented from expanding too much. This tension change is a unique property of these surfactants, and is
not shared by detergents (which simply lower surface tension). (See Figure 11.31.)

Figure 11.31 Surface tension as a function of surface area. The surface tension for lung surfactant decreases with decreasing area. This ensures that
small alveoli don’t collapse and large alveoli are not able to over expand.

If water gets into the lungs, the surface tension is too great and you cannot inhale. This is a severe problem in resuscitating
drowning victims. A similar problem occurs in newborn infants who are born without this surfactant—their lungs are very difficult
to inflate. This condition is known as hyaline membrane disease and is a leading cause of death for infants, particularly in
premature births. Some success has been achieved in treating hyaline membrane disease by spraying a surfactant into the
infant’s breathing passages. Emphysema produces the opposite problem with alveoli. Alveolar walls of emphysema victims
deteriorate, and the sacs combine to form larger sacs. Because pressure produced by surface tension decreases with increasing
radius, these larger sacs produce smaller pressure, reducing the ability of emphysema victims to exhale. A common test for
emphysema is to measure the pressure and volume of air that can be exhaled.

Making Connections: Take-Home Investigation

(1) Try floating a sewing needle on water. In order for this activity to work, the needle needs to be very clean as even the oil
from your fingers can be sufficient to affect the surface properties of the needle. (2) Place the bristles of a paint brush into
water. Pull the brush out and notice that for a short while, the bristles will stick together. The surface tension of the water
surrounding the bristles is sufficient to hold the bristles together. As the bristles dry out, the surface tension effect dissipates.
(3) Place a loop of thread on the surface of still water in such a way that all of the thread is in contact with the water. Note
the shape of the loop. Now place a drop of detergent into the middle of the loop. What happens to the shape of the loop?
Why? (4) Sprinkle pepper onto the surface of water. Add a drop of detergent. What happens? Why? (5) Float two matches
parallel to each other and add a drop of detergent between them. What happens? Note: For each new experiment, the water
needs to be replaced and the bowl washed to free it of any residual detergent.

Adhesion and Capillary Action

Why is it that water beads up on a waxed car but does not on bare paint? The answer is that the adhesive forces between water
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and wax are much smaller than those between water and paint. Competition between the forces of adhesion and cohesion are
important in the macroscopic behavior of liquids. An important factor in studying the roles of these two forces is the angle θ
between the tangent to the liquid surface and the surface. (See Figure 11.32.) The contact angle θ is directly related to the

relative strength of the cohesive and adhesive forces. The larger the strength of the cohesive force relative to the adhesive force,
the larger θ is, and the more the liquid tends to form a droplet. The smaller θ is, the smaller the relative strength, so that the

adhesive force is able to flatten the drop. Table 11.4 lists contact angles for several combinations of liquids and solids.

Contact Angle

The angle θ between the tangent to the liquid surface and the surface is called the contact angle.

Figure 11.32 In the photograph, water beads on the waxed car paint and flattens on the unwaxed paint. (a) Water forms beads on the waxed surface
because the cohesive forces responsible for surface tension are larger than the adhesive forces, which tend to flatten the drop. (b) Water beads on
bare paint are flattened considerably because the adhesive forces between water and paint are strong, overcoming surface tension. The contact angle

θ is directly related to the relative strengths of the cohesive and adhesive forces. The larger θ is, the larger the ratio of cohesive to adhesive forces.

(credit: P. P. Urone)

One important phenomenon related to the relative strength of cohesive and adhesive forces is capillary action—the tendency of
a fluid to be raised or suppressed in a narrow tube, or capillary tube. This action causes blood to be drawn into a small-diameter
tube when the tube touches a drop.

Capillary Action

The tendency of a fluid to be raised or suppressed in a narrow tube, or capillary tube, is called capillary action.

If a capillary tube is placed vertically into a liquid, as shown in Figure 11.33, capillary action will raise or suppress the liquid
inside the tube depending on the combination of substances. The actual effect depends on the relative strength of the cohesive
and adhesive forces and, thus, the contact angle θ given in the table. If θ is less than 90º , then the fluid will be raised; if θ is

greater than 90º , it will be suppressed. Mercury, for example, has a very large surface tension and a large contact angle with

glass. When placed in a tube, the surface of a column of mercury curves downward, somewhat like a drop. The curved surface
of a fluid in a tube is called a meniscus. The tendency of surface tension is always to reduce the surface area. Surface tension
thus flattens the curved liquid surface in a capillary tube. This results in a downward force in mercury and an upward force in
water, as seen in Figure 11.33.
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Figure 11.33 (a) Mercury is suppressed in a glass tube because its contact angle is greater than 90º . Surface tension exerts a downward force as it

flattens the mercury, suppressing it in the tube. The dashed line shows the shape the mercury surface would have without the flattening effect of

surface tension. (b) Water is raised in a glass tube because its contact angle is nearly 0º . Surface tension therefore exerts an upward force when it

flattens the surface to reduce its area.

Table 11.4 Contact Angles of Some Substances

Interface Contact angle Θ

Mercury–glass 140º

Water–glass 0º

Water–paraffin 107º

Water–silver 90º

Organic liquids (most)–glass 0º

Ethyl alcohol–glass 0º

Kerosene–glass 26º

Capillary action can move liquids horizontally over very large distances, but the height to which it can raise or suppress a liquid in
a tube is limited by its weight. It can be shown that this height h is given by

(11.51)
h = 2γ cos θ

ρgr .

If we look at the different factors in this expression, we might see how it makes good sense. The height is directly proportional to
the surface tension γ , which is its direct cause. Furthermore, the height is inversely proportional to tube radius—the smaller the

radius r , the higher the fluid can be raised, since a smaller tube holds less mass. The height is also inversely proportional to

fluid density ρ , since a larger density means a greater mass in the same volume. (See Figure 11.34.)
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Figure 11.34 (a) Capillary action depends on the radius of a tube. The smaller the tube, the greater the height reached. The height is negligible for
large-radius tubes. (b) A denser fluid in the same tube rises to a smaller height, all other factors being the same.

Example 11.12 Calculating Radius of a Capillary Tube: Capillary Action: Tree Sap

Can capillary action be solely responsible for sap rising in trees? To answer this question, calculate the radius of a capillary

tube that would raise sap 100 m to the top of a giant redwood, assuming that sap’s density is 1050 kg/m3 , its contact

angle is zero, and its surface tension is the same as that of water at 20.0º C .

Strategy

The height to which a liquid will rise as a result of capillary action is given by h = 2γ cos θ
ρgr , and every quantity is known

except for r .

Solution

Solving for r and substituting known values produces

(11.52)
r = 2γ cos θ

ρgh = 2(0.0728 N/m)cos(0º)
⎛
⎝1050 kg/m3⎞⎠

⎛
⎝9.80 m/s2⎞⎠(100 m)

= 1.41×10−7 m.
Discussion

This result is unreasonable. Sap in trees moves through the xylem, which forms tubes with radii as small as 2.5×10−5 m .

This value is about 180 times as large as the radius found necessary here to raise sap 100 m . This means that capillary

action alone cannot be solely responsible for sap getting to the tops of trees.

How does sap get to the tops of tall trees? (Recall that a column of water can only rise to a height of 10 m when there is a
vacuum at the top—see Example 11.5.) The question has not been completely resolved, but it appears that it is pulled up like a
chain held together by cohesive forces. As each molecule of sap enters a leaf and evaporates (a process called transpiration),
the entire chain is pulled up a notch. So a negative pressure created by water evaporation must be present to pull the sap up
through the xylem vessels. In most situations, fluids can push but can exert only negligible pull, because the cohesive forces
seem to be too small to hold the molecules tightly together. But in this case, the cohesive force of water molecules provides a
very strong pull. Figure 11.35 shows one device for studying negative pressure. Some experiments have demonstrated that
negative pressures sufficient to pull sap to the tops of the tallest trees can be achieved.
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Figure 11.35 (a) When the piston is raised, it stretches the liquid slightly, putting it under tension and creating a negative absolute pressure

P = −F / A . (b) The liquid eventually separates, giving an experimental limit to negative pressure in this liquid.

11.9 Pressures in the Body

Pressure in the Body

Next to taking a person’s temperature and weight, measuring blood pressure is the most common of all medical examinations.
Control of high blood pressure is largely responsible for the significant decreases in heart attack and stroke fatalities achieved in
the last three decades. The pressures in various parts of the body can be measured and often provide valuable medical
indicators. In this section, we consider a few examples together with some of the physics that accompanies them.

Table 11.5 lists some of the measured pressures in mm Hg, the units most commonly quoted.

Table 11.5 Typical Pressures in Humans

Body system Gauge pressure in mm Hg

Blood pressures in large arteries (resting)

Maximum (systolic) 100–140

Minimum (diastolic) 60–90

Blood pressure in large veins 4–15

Eye 12–24

Brain and spinal fluid (lying down) 5–12

Bladder

While filling 0–25

When full 100–150

Chest cavity between lungs and ribs −8 to −4

Inside lungs −2 to +3

Digestive tract

Esophagus −2

Stomach 0–20

Intestines 10–20

Middle ear <1

Blood Pressure

Common arterial blood pressure measurements typically produce values of 120 mm Hg and 80 mm Hg, respectively, for systolic
and diastolic pressures. Both pressures have health implications. When systolic pressure is chronically high, the risk of stroke
and heart attack is increased. If, however, it is too low, fainting is a problem. Systolic pressure increases dramatically during
exercise to increase blood flow and returns to normal afterward. This change produces no ill effects and, in fact, may be
beneficial to the tone of the circulatory system. Diastolic pressure can be an indicator of fluid balance. When low, it may
indicate that a person is hemorrhaging internally and needs a transfusion. Conversely, high diastolic pressure indicates a
ballooning of the blood vessels, which may be due to the transfusion of too much fluid into the circulatory system. High diastolic
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pressure is also an indication that blood vessels are not dilating properly to pass blood through. This can seriously strain the
heart in its attempt to pump blood.

Blood leaves the heart at about 120 mm Hg but its pressure continues to decrease (to almost 0) as it goes from the aorta to
smaller arteries to small veins (see Figure 11.36). The pressure differences in the circulation system are caused by blood flow
through the system as well as the position of the person. For a person standing up, the pressure in the feet will be larger than at
the heart due to the weight of the blood (P = hρg) . If we assume that the distance between the heart and the feet of a person

in an upright position is 1.4 m, then the increase in pressure in the feet relative to that in the heart (for a static column of blood) is
given by

(11.53)ΔP = Δhρg = (1.4 m)⎛⎝1050 kg/m3⎞⎠
⎛
⎝9.80 m/s2⎞⎠ = 1.4×104 Pa = 108 mm Hg.

Increase in Pressure in the Feet of a Person
(11.54)ΔP = Δhρg = (1.4 m)⎛⎝1050 kg/m3⎞⎠

⎛
⎝9.80 m/s2⎞⎠ = 1.4×104 Pa = 108 mm Hg.

Standing a long time can lead to an accumulation of blood in the legs and swelling. This is the reason why soldiers who are
required to stand still for long periods of time have been known to faint. Elastic bandages around the calf can help prevent this
accumulation and can also help provide increased pressure to enable the veins to send blood back up to the heart. For similar
reasons, doctors recommend tight stockings for long-haul flights.

Blood pressure may also be measured in the major veins, the heart chambers, arteries to the brain, and the lungs. But these
pressures are usually only monitored during surgery or for patients in intensive care since the measurements are invasive. To
obtain these pressure measurements, qualified health care workers thread thin tubes, called catheters, into appropriate locations
to transmit pressures to external measuring devices.

The heart consists of two pumps—the right side forcing blood through the lungs and the left causing blood to flow through the
rest of the body (Figure 11.36). Right-heart failure, for example, results in a rise in the pressure in the vena cavae and a drop in
pressure in the arteries to the lungs. Left-heart failure results in a rise in the pressure entering the left side of the heart and a
drop in aortal pressure. Implications of these and other pressures on flow in the circulatory system will be discussed in more
detail in Fluid Dynamics and Its Biological and Medical Applications.

Two Pumps of the Heart

The heart consists of two pumps—the right side forcing blood through the lungs and the left causing blood to flow through
the rest of the body.
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Figure 11.36 Schematic of the circulatory system showing typical pressures. The two pumps in the heart increase pressure and that pressure is
reduced as the blood flows through the body. Long-term deviations from these pressures have medical implications discussed in some detail in the
Fluid Dynamics and Its Biological and Medical Applications. Only aortal or arterial blood pressure can be measured noninvasively.

Pressure in the Eye

The shape of the eye is maintained by fluid pressure, called intraocular pressure, which is normally in the range of 12.0 to 24.0
mm Hg. When the circulation of fluid in the eye is blocked, it can lead to a buildup in pressure, a condition called glaucoma. The
net pressure can become as great as 85.0 mm Hg, an abnormally large pressure that can permanently damage the optic nerve.

To get an idea of the force involved, suppose the back of the eye has an area of 6.0 cm2 , and the net pressure is 85.0 mm Hg.

Force is given by F = PA . To get F in newtons, we convert the area to m2 ( 1 m2 = 104 cm2 ). Then we calculate as

follows:

(11.55)F = hρgA = ⎛⎝85.0×10−3 m⎞⎠
⎛
⎝13.6×103 kg/m3⎞⎠

⎛
⎝9.80 m/s2⎞⎠

⎛
⎝6.0×10−4 m2⎞⎠ = 6.8 N.

Eye Pressure

The shape of the eye is maintained by fluid pressure, called intraocular pressure. When the circulation of fluid in the eye is
blocked, it can lead to a buildup in pressure, a condition called glaucoma. The force is calculated as

(11.56)F = hρgA = ⎛⎝85.0×10−3 m⎞⎠
⎛
⎝13.6×103 kg/m3⎞⎠

⎛
⎝9.80 m/s2⎞⎠

⎛
⎝6.0×10−4 m2⎞⎠ = 6.8 N.

This force is the weight of about a 680-g mass. A mass of 680 g resting on the eye (imagine 1.5 lb resting on your eye) would be
sufficient to cause it damage. (A normal force here would be the weight of about 120 g, less than one-quarter of our initial value.)

People over 40 years of age are at greatest risk of developing glaucoma and should have their intraocular pressure tested
routinely. Most measurements involve exerting a force on the (anesthetized) eye over some area (a pressure) and observing the
eye’s response. A noncontact approach uses a puff of air and a measurement is made of the force needed to indent the eye
(Figure 11.37). If the intraocular pressure is high, the eye will deform less and rebound more vigorously than normal. Excessive
intraocular pressures can be detected reliably and sometimes controlled effectively.
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Figure 11.37 The intraocular eye pressure can be read with a tonometer. (credit: DevelopAll at the Wikipedia Project.)

Example 11.13 Calculating Gauge Pressure and Depth: Damage to the Eardrum

Suppose a 3.00-N force can rupture an eardrum. (a) If the eardrum has an area of 1.00 cm2 , calculate the maximum

tolerable gauge pressure on the eardrum in newtons per meter squared and convert it to millimeters of mercury. (b) At what
depth in freshwater would this person’s eardrum rupture, assuming the gauge pressure in the middle ear is zero?

Strategy for (a)

The pressure can be found directly from its definition since we know the force and area. We are looking for the gauge
pressure.

Solution for (a)

(11.57)Pg = F / A = 3.00 N / (1.00×10−4 m2 ) = 3.00×104 N/m2.

We now need to convert this to units of mm Hg:

(11.58)
Pg = 3.0×104 N/m2⎛⎝1.0 mm Hg

133 N/m2
⎞
⎠ = 226 mm Hg.

Strategy for (b)

Here we will use the fact that the water pressure varies linearly with depth h below the surface.

Solution for (b)

P = hρg and therefore h = P / ρg . Using the value above for P , we have

(11.59)
h = 3.0×104 N/m2

(1.00×103 kg/m3)(9.80 m/s2)
= 3.06 m.

Discussion

Similarly, increased pressure exerted upon the eardrum from the middle ear can arise when an infection causes a fluid
buildup.

Pressure Associated with the Lungs

The pressure inside the lungs increases and decreases with each breath. The pressure drops to below atmospheric pressure
(negative gauge pressure) when you inhale, causing air to flow into the lungs. It increases above atmospheric pressure (positive
gauge pressure) when you exhale, forcing air out.

Lung pressure is controlled by several mechanisms. Muscle action in the diaphragm and rib cage is necessary for inhalation; this
muscle action increases the volume of the lungs thereby reducing the pressure within them Figure 11.38. Surface tension in the
alveoli creates a positive pressure opposing inhalation. (See Cohesion and Adhesion in Liquids: Surface Tension and
Capillary Action.) You can exhale without muscle action by letting surface tension in the alveoli create its own positive pressure.
Muscle action can add to this positive pressure to produce forced exhalation, such as when you blow up a balloon, blow out a
candle, or cough.

The lungs, in fact, would collapse due to the surface tension in the alveoli, if they were not attached to the inside of the chest wall
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absolute pressure:

adhesive forces:

by liquid adhesion. The gauge pressure in the liquid attaching the lungs to the inside of the chest wall is thus negative, ranging
from −4 to −8 mm Hg during exhalation and inhalation, respectively. If air is allowed to enter the chest cavity, it breaks the

attachment, and one or both lungs may collapse. Suction is applied to the chest cavity of surgery patients and trauma victims to
reestablish negative pressure and inflate the lungs.

Figure 11.38 (a) During inhalation, muscles expand the chest, and the diaphragm moves downward, reducing pressure inside the lungs to less than
atmospheric (negative gauge pressure). Pressure between the lungs and chest wall is even lower to overcome the positive pressure created by
surface tension in the lungs. (b) During gentle exhalation, the muscles simply relax and surface tension in the alveoli creates a positive pressure inside
the lungs, forcing air out. Pressure between the chest wall and lungs remains negative to keep them attached to the chest wall, but it is less negative
than during inhalation.

Other Pressures in the Body
Spinal Column and Skull

Normally, there is a 5- to12-mm Hg pressure in the fluid surrounding the brain and filling the spinal column. This cerebrospinal
fluid serves many purposes, one of which is to supply flotation to the brain. The buoyant force supplied by the fluid nearly equals
the weight of the brain, since their densities are nearly equal. If there is a loss of fluid, the brain rests on the inside of the skull,
causing severe headaches, constricted blood flow, and serious damage. Spinal fluid pressure is measured by means of a needle
inserted between vertebrae that transmits the pressure to a suitable measuring device.

Bladder Pressure

This bodily pressure is one of which we are often aware. In fact, there is a relationship between our awareness of this pressure
and a subsequent increase in it. Bladder pressure climbs steadily from zero to about 25 mm Hg as the bladder fills to its normal

capacity of 500 cm3 . This pressure triggers the micturition reflex, which stimulates the feeling of needing to urinate. What is

more, it also causes muscles around the bladder to contract, raising the pressure to over 100 mm Hg, accentuating the
sensation. Coughing, straining, tensing in cold weather, wearing tight clothes, and experiencing simple nervous tension all can
increase bladder pressure and trigger this reflex. So can the weight of a pregnant woman’s fetus, especially if it is kicking
vigorously or pushing down with its head! Bladder pressure can be measured by a catheter or by inserting a needle through the
bladder wall and transmitting the pressure to an appropriate measuring device. One hazard of high bladder pressure (sometimes
created by an obstruction), is that such pressure can force urine back into the kidneys, causing potentially severe damage.

Pressures in the Skeletal System

These pressures are the largest in the body, due both to the high values of initial force, and the small areas to which this force is
applied, such as in the joints.. For example, when a person lifts an object improperly, a force of 5000 N may be created between

vertebrae in the spine, and this may be applied to an area as small as 10 cm2 . The pressure created is

P = F / A = (5000 N) / (10−3 m2 ) = 5.0×106 N/m2 or about 50 atm! This pressure can damage both the spinal discs (the

cartilage between vertebrae), as well as the bony vertebrae themselves. Even under normal circumstances, forces between
vertebrae in the spine are large enough to create pressures of several atmospheres. Most causes of excessive pressure in the
skeletal system can be avoided by lifting properly and avoiding extreme physical activity. (See Forces and Torques in Muscles
and Joints.)

There are many other interesting and medically significant pressures in the body. For example, pressure caused by various
muscle actions drives food and waste through the digestive system. Stomach pressure behaves much like bladder pressure and
is tied to the sensation of hunger. Pressure in the relaxed esophagus is normally negative because pressure in the chest cavity is
normally negative. Positive pressure in the stomach may thus force acid into the esophagus, causing “heartburn.” Pressure in the
middle ear can result in significant force on the eardrum if it differs greatly from atmospheric pressure, such as while scuba
diving. The decrease in external pressure is also noticeable during plane flights (due to a decrease in the weight of air above
relative to that at the Earth’s surface). The Eustachian tubes connect the middle ear to the throat and allow us to equalize
pressure in the middle ear to avoid an imbalance of force on the eardrum.

Many pressures in the human body are associated with the flow of fluids. Fluid flow will be discussed in detail in the Fluid
Dynamics and Its Biological and Medical Applications.

Glossary

the sum of gauge pressure and atmospheric pressure

the attractive forces between molecules of different types
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Archimedes’ principle:

buoyant force:

capillary action:

cohesive forces:

contact angle:

density:

diastolic pressure:

diastolic pressure:

fluids:

gauge pressure:

glaucoma:

intraocular pressure:

micturition reflex:

Pascal’s Principle:

pressure:

pressure:

specific gravity:

surface tension:

systolic pressure:

systolic pressure:

the buoyant force on an object equals the weight of the fluid it displaces

the net upward force on any object in any fluid

the tendency of a fluid to be raised or lowered in a narrow tube

the attractive forces between molecules of the same type

the angle θ between the tangent to the liquid surface and the surface

the mass per unit volume of a substance or object

the minimum blood pressure in the artery

minimum arterial blood pressure; indicator for the fluid balance

liquids and gases; a fluid is a state of matter that yields to shearing forces

the pressure relative to atmospheric pressure

condition caused by the buildup of fluid pressure in the eye

fluid pressure in the eye

stimulates the feeling of needing to urinate, triggered by bladder pressure

a change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid
and to the walls of its container

the force per unit area perpendicular to the force, over which the force acts

the weight of the fluid divided by the area supporting it

the ratio of the density of an object to a fluid (usually water)

the cohesive forces between molecules which cause the surface of a liquid to contract to the smallest
possible surface area

the maximum blood pressure in the artery

maximum arterial blood pressure; indicator for the blood flow

Section Summary

11.1 What Is a Fluid?
• A fluid is a state of matter that yields to sideways or shearing forces. Liquids and gases are both fluids. Fluid statics is the

physics of stationary fluids.

11.2 Density
• Density is the mass per unit volume of a substance or object. In equation form, density is defined as

ρ = m
V .

• The SI unit of density is kg/m3 .

11.3 Pressure
• Pressure is the force per unit perpendicular area over which the force is applied. In equation form, pressure is defined as

P = F
A.

• The SI unit of pressure is pascal and 1 Pa = 1 N/m2 .

11.4 Variation of Pressure with Depth in a Fluid
• Pressure is the weight of the fluid mg divided by the area A supporting it (the area of the bottom of the container):

P = mg
A .

• Pressure due to the weight of a liquid is given by
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P = hρg,
where P is the pressure, h is the height of the liquid, ρ is the density of the liquid, and g is the acceleration due to

gravity.

11.5 Pascal’s Principle
• Pressure is force per unit area.
• A change in pressure applied to an enclosed fluid is transmitted undiminished to all portions of the fluid and to the walls of

its container.
• A hydraulic system is an enclosed fluid system used to exert forces.

11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
• Gauge pressure is the pressure relative to atmospheric pressure.
• Absolute pressure is the sum of gauge pressure and atmospheric pressure.
• Aneroid gauge measures pressure using a bellows-and-spring arrangement connected to the pointer of a calibrated scale.
• Open-tube manometers have U-shaped tubes and one end is always open. It is used to measure pressure.
• A mercury barometer is a device that measures atmospheric pressure.

11.7 Archimedes’ Principle
• Buoyant force is the net upward force on any object in any fluid. If the buoyant force is greater than the object’s weight, the

object will rise to the surface and float. If the buoyant force is less than the object’s weight, the object will sink. If the
buoyant force equals the object’s weight, the object will remain suspended at that depth. The buoyant force is always
present whether the object floats, sinks, or is suspended in a fluid.

• Archimedes’ principle states that the buoyant force on an object equals the weight of the fluid it displaces.
• Specific gravity is the ratio of the density of an object to a fluid (usually water).

11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
• Attractive forces between molecules of the same type are called cohesive forces.
• Attractive forces between molecules of different types are called adhesive forces.
• Cohesive forces between molecules cause the surface of a liquid to contract to the smallest possible surface area. This

general effect is called surface tension.
• Capillary action is the tendency of a fluid to be raised or suppressed in a narrow tube, or capillary tube which is due to the

relative strength of cohesive and adhesive forces.

11.9 Pressures in the Body
• Measuring blood pressure is among the most common of all medical examinations.
• The pressures in various parts of the body can be measured and often provide valuable medical indicators.
• The shape of the eye is maintained by fluid pressure, called intraocular pressure.
• When the circulation of fluid in the eye is blocked, it can lead to a buildup in pressure, a condition called glaucoma.
• Some of the other pressures in the body are spinal and skull pressures, bladder pressure, pressures in the skeletal system.

Conceptual Questions

11.1 What Is a Fluid?

1. What physical characteristic distinguishes a fluid from a solid?

2. Which of the following substances are fluids at room temperature: air, mercury, water, glass?

3. Why are gases easier to compress than liquids and solids?

4. How do gases differ from liquids?

11.2 Density

5. Approximately how does the density of air vary with altitude?

6. Give an example in which density is used to identify the substance composing an object. Would information in addition to
average density be needed to identify the substances in an object composed of more than one material?
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7. Figure 11.39 shows a glass of ice water filled to the brim. Will the water overflow when the ice melts? Explain your answer.

Figure 11.39

11.3 Pressure

8. How is pressure related to the sharpness of a knife and its ability to cut?

9. Why does a dull hypodermic needle hurt more than a sharp one?

10. The outward force on one end of an air tank was calculated in Example 11.2. How is this force balanced? (The tank does not
accelerate, so the force must be balanced.)

11. Why is force exerted by static fluids always perpendicular to a surface?

12. In a remote location near the North Pole, an iceberg floats in a lake. Next to the lake (assume it is not frozen) sits a
comparably sized glacier sitting on land. If both chunks of ice should melt due to rising global temperatures (and the melted ice
all goes into the lake), which ice chunk would give the greatest increase in the level of the lake water, if any?

13. How do jogging on soft ground and wearing padded shoes reduce the pressures to which the feet and legs are subjected?

14. Toe dancing (as in ballet) is much harder on toes than normal dancing or walking. Explain in terms of pressure.

15. How do you convert pressure units like millimeters of mercury, centimeters of water, and inches of mercury into units like
newtons per meter squared without resorting to a table of pressure conversion factors?

11.4 Variation of Pressure with Depth in a Fluid

16. Atmospheric pressure exerts a large force (equal to the weight of the atmosphere above your body—about 10 tons) on the
top of your body when you are lying on the beach sunbathing. Why are you able to get up?

17. Why does atmospheric pressure decrease more rapidly than linearly with altitude?

18. What are two reasons why mercury rather than water is used in barometers?

19. Figure 11.40 shows how sandbags placed around a leak outside a river levee can effectively stop the flow of water under the
levee. Explain how the small amount of water inside the column formed by the sandbags is able to balance the much larger body
of water behind the levee.

Figure 11.40 Because the river level is very high, it has started to leak under the levee. Sandbags are placed around the leak, and the water held by

them rises until it is the same level as the river, at which point the water there stops rising.

20. Why is it difficult to swim under water in the Great Salt Lake?

21. Is there a net force on a dam due to atmospheric pressure? Explain your answer.

22. Does atmospheric pressure add to the gas pressure in a rigid tank? In a toy balloon? When, in general, does atmospheric
pressure not affect the total pressure in a fluid?
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23. You can break a strong wine bottle by pounding a cork into it with your fist, but the cork must press directly against the liquid
filling the bottle—there can be no air between the cork and liquid. Explain why the bottle breaks, and why it will not if there is air
between the cork and liquid.

11.5 Pascal’s Principle

24. Suppose the master cylinder in a hydraulic system is at a greater height than the slave cylinder. Explain how this will affect
the force produced at the slave cylinder.

11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement

25. Explain why the fluid reaches equal levels on either side of a manometer if both sides are open to the atmosphere, even if
the tubes are of different diameters.

26. Figure 11.16 shows how a common measurement of arterial blood pressure is made. Is there any effect on the measured
pressure if the manometer is lowered? What is the effect of raising the arm above the shoulder? What is the effect of placing the
cuff on the upper leg with the person standing? Explain your answers in terms of pressure created by the weight of a fluid.

27. Considering the magnitude of typical arterial blood pressures, why are mercury rather than water manometers used for these
measurements?

11.7 Archimedes’ Principle

28. More force is required to pull the plug in a full bathtub than when it is empty. Does this contradict Archimedes’ principle?
Explain your answer.

29. Do fluids exert buoyant forces in a “weightless” environment, such as in the space shuttle? Explain your answer.

30. Will the same ship float higher in salt water than in freshwater? Explain your answer.

31. Marbles dropped into a partially filled bathtub sink to the bottom. Part of their weight is supported by buoyant force, yet the
downward force on the bottom of the tub increases by exactly the weight of the marbles. Explain why.

11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action

32. The density of oil is less than that of water, yet a loaded oil tanker sits lower in the water than an empty one. Why?

33. Is surface tension due to cohesive or adhesive forces, or both?

34. Is capillary action due to cohesive or adhesive forces, or both?

35. Birds such as ducks, geese, and swans have greater densities than water, yet they are able to sit on its surface. Explain this
ability, noting that water does not wet their feathers and that they cannot sit on soapy water.

36. Water beads up on an oily sunbather, but not on her neighbor, whose skin is not oiled. Explain in terms of cohesive and
adhesive forces.

37. Could capillary action be used to move fluids in a “weightless” environment, such as in an orbiting space probe?

38. What effect does capillary action have on the reading of a manometer with uniform diameter? Explain your answer.

39. Pressure between the inside chest wall and the outside of the lungs normally remains negative. Explain how pressure inside
the lungs can become positive (to cause exhalation) without muscle action.
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Problems & Exercises

11.2 Density

1. Gold is sold by the troy ounce (31.103 g). What is the
volume of 1 troy ounce of pure gold?

2. Mercury is commonly supplied in flasks containing 34.5 kg
(about 76 lb). What is the volume in liters of this much
mercury?

3. (a) What is the mass of a deep breath of air having a
volume of 2.00 L? (b) Discuss the effect taking such a breath
has on your body’s volume and density.

4. A straightforward method of finding the density of an object
is to measure its mass and then measure its volume by
submerging it in a graduated cylinder. What is the density of a

240-g rock that displaces 89.0 cm3 of water? (Note that the

accuracy and practical applications of this technique are more
limited than a variety of others that are based on Archimedes’
principle.)

5. Suppose you have a coffee mug with a circular cross
section and vertical sides (uniform radius). What is its inside
radius if it holds 375 g of coffee when filled to a depth of 7.50
cm? Assume coffee has the same density as water.

6. (a) A rectangular gasoline tank can hold 50.0 kg of
gasoline when full. What is the depth of the tank if it is
0.500-m wide by 0.900-m long? (b) Discuss whether this gas
tank has a reasonable volume for a passenger car.

7. A trash compactor can reduce the volume of its contents to
0.350 their original value. Neglecting the mass of air expelled,
by what factor is the density of the rubbish increased?

8. A 2.50-kg steel gasoline can holds 20.0 L of gasoline when
full. What is the average density of the full gas can, taking into
account the volume occupied by steel as well as by
gasoline?

9. What is the density of 18.0-karat gold that is a mixture of
18 parts gold, 5 parts silver, and 1 part copper? (These
values are parts by mass, not volume.) Assume that this is a
simple mixture having an average density equal to the
weighted densities of its constituents.

10. There is relatively little empty space between atoms in
solids and liquids, so that the average density of an atom is
about the same as matter on a macroscopic

scale—approximately 103 kg/m3 . The nucleus of an atom

has a radius about 10−5 that of the atom and contains

nearly all the mass of the entire atom. (a) What is the
approximate density of a nucleus? (b) One remnant of a
supernova, called a neutron star, can have the density of a
nucleus. What would be the radius of a neutron star with a
mass 10 times that of our Sun (the radius of the Sun is

7×108 m )?

11.3 Pressure

11. As a woman walks, her entire weight is momentarily
placed on one heel of her high-heeled shoes. Calculate the
pressure exerted on the floor by the heel if it has an area of

1.50 cm2 and the woman’s mass is 55.0 kg. Express the

pressure in Pa. (In the early days of commercial flight, women
were not allowed to wear high-heeled shoes because aircraft
floors were too thin to withstand such large pressures.)

12. The pressure exerted by a phonograph needle on a
record is surprisingly large. If the equivalent of 1.00 g is
supported by a needle, the tip of which is a circle 0.200 mm in

radius, what pressure is exerted on the record in N/m2 ?

13. Nail tips exert tremendous pressures when they are hit by
hammers because they exert a large force over a small area.
What force must be exerted on a nail with a circular tip of 1.00

mm diameter to create a pressure of 3.00×109 N/m2 ?
(This high pressure is possible because the hammer striking
the nail is brought to rest in such a short distance.)

11.4 Variation of Pressure with Depth in a Fluid

14. What depth of mercury creates a pressure of 1.00 atm?

15. The greatest ocean depths on the Earth are found in the
Marianas Trench near the Philippines. Calculate the pressure
due to the ocean at the bottom of this trench, given its depth
is 11.0 km and assuming the density of seawater is constant
all the way down.

16. Verify that the SI unit of hρg is N/m2 .

17. Water towers store water above the level of consumers
for times of heavy use, eliminating the need for high-speed
pumps. How high above a user must the water level be to

create a gauge pressure of 3.00×105 N/m2 ?

18. The aqueous humor in a person’s eye is exerting a force

of 0.300 N on the 1.10-cm2 area of the cornea. (a) What

pressure is this in mm Hg? (b) Is this value within the normal
range for pressures in the eye?

19. How much force is exerted on one side of an 8.50 cm by
11.0 cm sheet of paper by the atmosphere? How can the
paper withstand such a force?

20. What pressure is exerted on the bottom of a 0.500-m-
wide by 0.900-m-long gas tank that can hold 50.0 kg of
gasoline by the weight of the gasoline in it when it is full?

21. Calculate the average pressure exerted on the palm of a
shot-putter’s hand by the shot if the area of contact is

50.0 cm2 and he exerts a force of 800 N on it. Express the

pressure in N/m2 and compare it with the 1.00×106 Pa
pressures sometimes encountered in the skeletal system.

22. The left side of the heart creates a pressure of 120 mm
Hg by exerting a force directly on the blood over an effective

area of 15.0 cm2. What force does it exert to accomplish

this?
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23. Show that the total force on a rectangular dam due to the
water behind it increases with the square of the water depth.

In particular, show that this force is given by F = ρgh2L / 2 ,

where ρ is the density of water, h is its depth at the dam,

and L is the length of the dam. You may assume the face of

the dam is vertical. (Hint: Calculate the average pressure
exerted and multiply this by the area in contact with the water.
(See Figure 11.41.)

Figure 11.41

11.5 Pascal’s Principle

24. How much pressure is transmitted in the hydraulic system
considered in Example 11.6? Express your answer in
pascals and in atmospheres.

25. What force must be exerted on the master cylinder of a
hydraulic lift to support the weight of a 2000-kg car (a large
car) resting on the slave cylinder? The master cylinder has a
2.00-cm diameter and the slave has a 24.0-cm diameter.

26. A crass host pours the remnants of several bottles of wine
into a jug after a party. He then inserts a cork with a 2.00-cm
diameter into the bottle, placing it in direct contact with the
wine. He is amazed when he pounds the cork into place and
the bottom of the jug (with a 14.0-cm diameter) breaks away.
Calculate the extra force exerted against the bottom if he
pounded the cork with a 120-N force.

27. A certain hydraulic system is designed to exert a force
100 times as large as the one put into it. (a) What must be the
ratio of the area of the slave cylinder to the area of the master
cylinder? (b) What must be the ratio of their diameters? (c) By
what factor is the distance through which the output force
moves reduced relative to the distance through which the
input force moves? Assume no losses to friction.

28. (a) Verify that work input equals work output for a
hydraulic system assuming no losses to friction. Do this by
showing that the distance the output force moves is reduced
by the same factor that the output force is increased. Assume
the volume of the fluid is constant. (b) What effect would
friction within the fluid and between components in the
system have on the output force? How would this depend on
whether or not the fluid is moving?

11.6 Gauge Pressure, Absolute Pressure, and
Pressure Measurement

29. Find the gauge and absolute pressures in the balloon and
peanut jar shown in Figure 11.15, assuming the manometer
connected to the balloon uses water whereas the manometer
connected to the jar contains mercury. Express in units of
centimeters of water for the balloon and millimeters of
mercury for the jar, taking h = 0.0500 m for each.

30. (a) Convert normal blood pressure readings of 120 over
80 mm Hg to newtons per meter squared using the
relationship for pressure due to the weight of a fluid
(P = hρg) rather than a conversion factor. (b) Discuss why

blood pressures for an infant could be smaller than those for
an adult. Specifically, consider the smaller height to which
blood must be pumped.

31. How tall must a water-filled manometer be to measure
blood pressures as high as 300 mm Hg?

32. Pressure cookers have been around for more than 300
years, although their use has strongly declined in recent
years (early models had a nasty habit of exploding). How
much force must the latches holding the lid onto a pressure
cooker be able to withstand if the circular lid is 25.0 cm in

diameter and the gauge pressure inside is 300 atm? Neglect
the weight of the lid.

33. Suppose you measure a standing person’s blood
pressure by placing the cuff on his leg 0.500 m below the
heart. Calculate the pressure you would observe (in units of
mm Hg) if the pressure at the heart were 120 over 80 mm Hg.
Assume that there is no loss of pressure due to resistance in
the circulatory system (a reasonable assumption, since major
arteries are large).

34. A submarine is stranded on the bottom of the ocean with
its hatch 25.0 m below the surface. Calculate the force
needed to open the hatch from the inside, given it is circular
and 0.450 m in diameter. Air pressure inside the submarine is
1.00 atm.

35. Assuming bicycle tires are perfectly flexible and support
the weight of bicycle and rider by pressure alone, calculate
the total area of the tires in contact with the ground. The
bicycle plus rider has a mass of 80.0 kg, and the gauge

pressure in the tires is 3.50×105 Pa .

11.7 Archimedes’ Principle

36. What fraction of ice is submerged when it floats in
freshwater, given the density of water at 0°C is very close to

1000 kg/m3 ?

37. Logs sometimes float vertically in a lake because one end
has become water-logged and denser than the other. What is
the average density of a uniform-diameter log that floats with
20.0% of its length above water?

38. Find the density of a fluid in which a hydrometer having a
density of 0.750 g/mL floats with 92.0% of its volume

submerged.

39. If your body has a density of 995 kg/m3 , what fraction

of you will be submerged when floating gently in: (a)
freshwater? (b) salt water, which has a density of

1027 kg/m3 ?
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40. Bird bones have air pockets in them to reduce their
weight—this also gives them an average density significantly
less than that of the bones of other animals. Suppose an
ornithologist weighs a bird bone in air and in water and finds
its mass is 45.0 g and its apparent mass when submerged

is 3.60 g (the bone is watertight). (a) What mass of water is

displaced? (b) What is the volume of the bone? (c) What is its
average density?

41. A rock with a mass of 540 g in air is found to have an
apparent mass of 342 g when submerged in water. (a) What
mass of water is displaced? (b) What is the volume of the
rock? (c) What is its average density? Is this consistent with
the value for granite?

42. Archimedes’ principle can be used to calculate the density
of a fluid as well as that of a solid. Suppose a chunk of iron
with a mass of 390.0 g in air is found to have an apparent
mass of 350.5 g when completely submerged in an unknown
liquid. (a) What mass of fluid does the iron displace? (b) What
is the volume of iron, using its density as given in Table 11.1
(c) Calculate the fluid’s density and identify it.

43. In an immersion measurement of a woman’s density, she
is found to have a mass of 62.0 kg in air and an apparent
mass of 0.0850 kg when completely submerged with lungs
empty. (a) What mass of water does she displace? (b) What
is her volume? (c) Calculate her density. (d) If her lung
capacity is 1.75 L, is she able to float without treading water
with her lungs filled with air?

44. Some fish have a density slightly less than that of water
and must exert a force (swim) to stay submerged. What force
must an 85.0-kg grouper exert to stay submerged in salt

water if its body density is 1015 kg/m3 ?

45. (a) Calculate the buoyant force on a 2.00-L helium
balloon. (b) Given the mass of the rubber in the balloon is
1.50 g, what is the net vertical force on the balloon if it is let
go? You can neglect the volume of the rubber.

46. (a) What is the density of a woman who floats in
freshwater with 4.00% of her volume above the surface?

This could be measured by placing her in a tank with marks
on the side to measure how much water she displaces when
floating and when held under water (briefly). (b) What percent
of her volume is above the surface when she floats in
seawater?

47. A certain man has a mass of 80 kg and a density of

955 kg/m3 (excluding the air in his lungs). (a) Calculate his

volume. (b) Find the buoyant force air exerts on him. (c) What
is the ratio of the buoyant force to his weight?

48. A simple compass can be made by placing a small bar
magnet on a cork floating in water. (a) What fraction of a plain
cork will be submerged when floating in water? (b) If the cork
has a mass of 10.0 g and a 20.0-g magnet is placed on it,
what fraction of the cork will be submerged? (c) Will the bar
magnet and cork float in ethyl alcohol?

49. What fraction of an iron anchor’s weight will be supported
by buoyant force when submerged in saltwater?

50. Scurrilous con artists have been known to represent gold-
plated tungsten ingots as pure gold and sell them to the
greedy at prices much below gold value but deservedly far
above the cost of tungsten. With what accuracy must you be
able to measure the mass of such an ingot in and out of water
to tell that it is almost pure tungsten rather than pure gold?

51. A twin-sized air mattress used for camping has
dimensions of 100 cm by 200 cm by 15 cm when blown up.
The weight of the mattress is 2 kg. How heavy a person could
the air mattress hold if it is placed in freshwater?

52. Referring to Figure 11.20, prove that the buoyant force on
the cylinder is equal to the weight of the fluid displaced
(Archimedes’ principle). You may assume that the buoyant
force is F2 − F1 and that the ends of the cylinder have

equal areas A . Note that the volume of the cylinder (and that

of the fluid it displaces) equals (h2 − h1)A .

53. (a) A 75.0-kg man floats in freshwater with 3.00% of his

volume above water when his lungs are empty, and 5.00%
of his volume above water when his lungs are full. Calculate
the volume of air he inhales—called his lung capacity—in
liters. (b) Does this lung volume seem reasonable?

11.8 Cohesion and Adhesion in Liquids:
Surface Tension and Capillary Action

54. What is the pressure inside an alveolus having a radius of

2.50×10−4 m if the surface tension of the fluid-lined wall is

the same as for soapy water? You may assume the pressure
is the same as that created by a spherical bubble.

55. (a) The pressure inside an alveolus with a 2.00×10−4

-m radius is 1.40×103 Pa , due to its fluid-lined walls.

Assuming the alveolus acts like a spherical bubble, what is
the surface tension of the fluid? (b) Identify the likely fluid.
(You may need to extrapolate between values in Table 11.3.)

56. What is the gauge pressure in millimeters of mercury
inside a soap bubble 0.100 m in diameter?

57. Calculate the force on the slide wire in Figure 11.28 if it is
3.50 cm long and the fluid is ethyl alcohol.

58. Figure 11.34(a) shows the effect of tube radius on the
height to which capillary action can raise a fluid. (a) Calculate
the height h for water in a glass tube with a radius of 0.900

cm—a rather large tube like the one on the left. (b) What is
the radius of the glass tube on the right if it raises water to
4.00 cm?

59. We stated in Example 11.12 that a xylem tube is of radius

2.50×10−5 m . Verify that such a tube raises sap less than

a meter by finding h for it, making the same assumptions

that sap’s density is 1050 kg/m3 , its contact angle is zero,

and its surface tension is the same as that of water at
20.0º C .

60. What fluid is in the device shown in Figure 11.28 if the

force is 3.16×10−3 N and the length of the wire is 2.50

cm? Calculate the surface tension γ and find a likely match

from Table 11.3.

61. If the gauge pressure inside a rubber balloon with a
10.0-cm radius is 1.50 cm of water, what is the effective
surface tension of the balloon?

62. Calculate the gauge pressures inside 2.00-cm-radius
bubbles of water, alcohol, and soapy water. Which liquid
forms the most stable bubbles, neglecting any effects of
evaporation?
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63. Suppose water is raised by capillary action to a height of
5.00 cm in a glass tube. (a) To what height will it be raised in
a paraffin tube of the same radius? (b) In a silver tube of the
same radius?

64. Calculate the contact angle θ for olive oil if capillary

action raises it to a height of 7.07 cm in a glass tube with a
radius of 0.100 mm. Is this value consistent with that for most
organic liquids?

65. When two soap bubbles touch, the larger is inflated by the
smaller until they form a single bubble. (a) What is the gauge
pressure inside a soap bubble with a 1.50-cm radius? (b)
Inside a 4.00-cm-radius soap bubble? (c) Inside the single
bubble they form if no air is lost when they touch?

66. Calculate the ratio of the heights to which water and
mercury are raised by capillary action in the same glass tube.

67. What is the ratio of heights to which ethyl alcohol and
water are raised by capillary action in the same glass tube?

11.9 Pressures in the Body

68. During forced exhalation, such as when blowing up a
balloon, the diaphragm and chest muscles create a pressure
of 60.0 mm Hg between the lungs and chest wall. What force

in newtons does this pressure create on the 600 cm2

surface area of the diaphragm?

69. You can chew through very tough objects with your
incisors because they exert a large force on the small area of
a pointed tooth. What pressure in pascals can you create by
exerting a force of 500 N with your tooth on an area of

1.00 mm2 ?

70. One way to force air into an unconscious person’s lungs
is to squeeze on a balloon appropriately connected to the
subject. What force must you exert on the balloon with your
hands to create a gauge pressure of 4.00 cm water, assuming

you squeeze on an effective area of 50.0 cm2 ?

71. Heroes in movies hide beneath water and breathe
through a hollow reed (villains never catch on to this trick). In
practice, you cannot inhale in this manner if your lungs are
more than 60.0 cm below the surface. What is the maximum
negative gauge pressure you can create in your lungs on dry
land, assuming you can achieve −3.00 cm water pressure

with your lungs 60.0 cm below the surface?

72. Gauge pressure in the fluid surrounding an infant’s brain
may rise as high as 85.0 mm Hg (5 to 12 mm Hg is normal),
creating an outward force large enough to make the skull
grow abnormally large. (a) Calculate this outward force in
newtons on each side of an infant’s skull if the effective area

of each side is 70.0 cm2 . (b) What is the net force acting on

the skull?

73. A full-term fetus typically has a mass of 3.50 kg. (a) What
pressure does the weight of such a fetus create if it rests on

the mother’s bladder, supported on an area of 90.0 cm2 ?

(b) Convert this pressure to millimeters of mercury and
determine if it alone is great enough to trigger the micturition
reflex (it will add to any pressure already existing in the
bladder).

74. If the pressure in the esophagus is −2.00 mm Hg while

that in the stomach is +20.0 mm Hg , to what height could

stomach fluid rise in the esophagus, assuming a density of
1.10 g/mL? (This movement will not occur if the muscle
closing the lower end of the esophagus is working properly.)

75. Pressure in the spinal fluid is measured as shown in
Figure 11.42. If the pressure in the spinal fluid is 10.0 mm
Hg: (a) What is the reading of the water manometer in cm
water? (b) What is the reading if the person sits up, placing
the top of the fluid 60 cm above the tap? The fluid density is
1.05 g/mL.

Figure 11.42 A water manometer used to measure pressure in the

spinal fluid. The height of the fluid in the manometer is measured

relative to the spinal column, and the manometer is open to the

atmosphere. The measured pressure will be considerably greater if the

person sits up.

76. Calculate the maximum force in newtons exerted by the
blood on an aneurysm, or ballooning, in a major artery, given
the maximum blood pressure for this person is 150 mm Hg

and the effective area of the aneurysm is 20.0 cm2 . Note

that this force is great enough to cause further enlargement
and subsequently greater force on the ever-thinner vessel
wall.

77. During heavy lifting, a disk between spinal vertebrae is
subjected to a 5000-N compressional force. (a) What
pressure is created, assuming that the disk has a uniform
circular cross section 2.00 cm in radius? (b) What
deformation is produced if the disk is 0.800 cm thick and has

a Young’s modulus of 1.5×109 N/m2 ?

78. When a person sits erect, increasing the vertical position
of their brain by 36.0 cm, the heart must continue to pump
blood to the brain at the same rate. (a) What is the gain in
gravitational potential energy for 100 mL of blood raised 36.0
cm? (b) What is the drop in pressure, neglecting any losses
due to friction? (c) Discuss how the gain in gravitational
potential energy and the decrease in pressure are related.

79. (a) How high will water rise in a glass capillary tube with a
0.500-mm radius? (b) How much gravitational potential
energy does the water gain? (c) Discuss possible sources of
this energy.
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80. A negative pressure of 25.0 atm can sometimes be
achieved with the device in Figure 11.43 before the water
separates. (a) To what height could such a negative gauge
pressure raise water? (b) How much would a steel wire of the
same diameter and length as this capillary stretch if
suspended from above?

Figure 11.43 (a) When the piston is raised, it stretches the liquid slightly,

putting it under tension and creating a negative absolute pressure

P = −F / A (b) The liquid eventually separates, giving an

experimental limit to negative pressure in this liquid.

81. Suppose you hit a steel nail with a 0.500-kg hammer,
initially moving at 15.0 m/s and brought to rest in 2.80 mm.

(a) What average force is exerted on the nail? (b) How much
is the nail compressed if it is 2.50 mm in diameter and
6.00-cm long? (c) What pressure is created on the 1.00-mm-
diameter tip of the nail?

82. Calculate the pressure due to the ocean at the bottom of
the Marianas Trench near the Philippines, given its depth is
11.0 km and assuming the density of sea water is constant

all the way down. (b) Calculate the percent decrease in
volume of sea water due to such a pressure, assuming its
bulk modulus is the same as water and is constant. (c) What
would be the percent increase in its density? Is the
assumption of constant density valid? Will the actual pressure
be greater or smaller than that calculated under this
assumption?

83. The hydraulic system of a backhoe is used to lift a load as
shown in Figure 11.44. (a) Calculate the force F the slave

cylinder must exert to support the 400-kg load and the 150-kg
brace and shovel. (b) What is the pressure in the hydraulic
fluid if the slave cylinder is 2.50 cm in diameter? (c) What
force would you have to exert on a lever with a mechanical
advantage of 5.00 acting on a master cylinder 0.800 cm in
diameter to create this pressure?

Figure 11.44 Hydraulic and mechanical lever systems are used in heavy

machinery such as this back hoe.

84. Some miners wish to remove water from a mine shaft. A
pipe is lowered to the water 90 m below, and a negative
pressure is applied to raise the water. (a) Calculate the
pressure needed to raise the water. (b) What is unreasonable
about this pressure? (c) What is unreasonable about the
premise?

85. You are pumping up a bicycle tire with a hand pump, the
piston of which has a 2.00-cm radius.

(a) What force in newtons must you exert to create a pressure

of 6.90×105 Pa (b) What is unreasonable about this (a)

result? (c) Which premises are unreasonable or inconsistent?

86. Consider a group of people trying to stay afloat after their
boat strikes a log in a lake. Construct a problem in which you
calculate the number of people that can cling to the log and
keep their heads out of the water. Among the variables to be
considered are the size and density of the log, and what is
needed to keep a person’s head and arms above water
without swimming or treading water.

87. The alveoli in emphysema victims are damaged and
effectively form larger sacs. Construct a problem in which you
calculate the loss of pressure due to surface tension in the
alveoli because of their larger average diameters. (Part of the
lung’s ability to expel air results from pressure created by
surface tension in the alveoli.) Among the things to consider
are the normal surface tension of the fluid lining the alveoli,
the average alveolar radius in normal individuals and its
average in emphysema sufferers.
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12 FLUID DYNAMICS AND ITS BIOLOGICAL
AND MEDICAL APPLICATIONS

Figure 12.1 Many fluids are flowing in this scene. Water from the hose and smoke from the fire are visible flows. Less visible are the flow of air and the
flow of fluids on the ground and within the people fighting the fire. Explore all types of flow, such as visible, implied, turbulent, laminar, and so on,
present in this scene. Make a list and discuss the relative energies involved in the various flows, including the level of confidence in your estimates.
(credit: Andrew Magill, Flickr)

Chapter Outline
12.1. Flow Rate and Its Relation to Velocity

• Calculate flow rate.
• Define units of volume.
• Describe incompressible fluids.
• Explain the consequences of the equation of continuity.

12.2. Bernoulli’s Equation
• Explain the terms in Bernoulli’s equation.
• Explain how Bernoulli’s equation is related to conservation of energy.
• Explain how to derive Bernoulli’s principle from Bernoulli’s equation.
• Calculate with Bernoulli’s principle.
• List some applications of Bernoulli’s principle.

12.3. The Most General Applications of Bernoulli’s Equation
• Calculate using Torricelli’s theorem.
• Calculate power in fluid flow.

12.4. Viscosity and Laminar Flow; Poiseuille’s Law
• Define laminar flow and turbulent flow.
• Explain what viscosity is.
• Calculate flow and resistance with Poiseuille’s law.
• Explain how pressure drops due to resistance.

12.5. The Onset of Turbulence
• Calculate Reynolds number.
• Use the Reynolds number for a system to determine whether it is laminar or turbulent.

12.6. Motion of an Object in a Viscous Fluid
• Calculate the Reynolds number for an object moving through a fluid.
• Explain whether the Reynolds number indicates laminar or turbulent flow.
• Describe the conditions under which an object has a terminal speed.

12.7. Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes
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• Define diffusion, osmosis, dialysis, and active transport.
• Calculate diffusion rates.

Introduction to Fluid Dynamics and Its Biological and Medical Applications

We have dealt with many situations in which fluids are static. But by their very definition, fluids flow. Examples come easily—a
column of smoke rises from a camp fire, water streams from a fire hose, blood courses through your veins. Why does rising
smoke curl and twist? How does a nozzle increase the speed of water emerging from a hose? How does the body regulate blood
flow? The physics of fluids in motion— fluid dynamics—allows us to answer these and many other questions.

12.1 Flow Rate and Its Relation to Velocity

Flow rate Q is defined to be the volume of fluid passing by some location through an area during a period of time, as seen in

Figure 12.2. In symbols, this can be written as

(12.1)Q = V
t ,

where V is the volume and t is the elapsed time.

The SI unit for flow rate is m3 /s , but a number of other units for Q are in common use. For example, the heart of a resting

adult pumps blood at a rate of 5.00 liters per minute (L/min). Note that a liter (L) is 1/1000 of a cubic meter or 1000 cubic

centimeters ( 10−3 m3 or 103 cm3 ). In this text we shall use whatever metric units are most convenient for a given situation.

Figure 12.2 Flow rate is the volume of fluid per unit time flowing past a point through the area A . Here the shaded cylinder of fluid flows past point P
in a uniform pipe in time t . The volume of the cylinder is Ad and the average velocity is v¯ = d / t so that the flow rate is Q = Ad / t = A v¯ .

Example 12.1 Calculating Volume from Flow Rate: The Heart Pumps a Lot of Blood in a
Lifetime

How many cubic meters of blood does the heart pump in a 75-year lifetime, assuming the average flow rate is 5.00 L/min?

Strategy

Time and flow rate Q are given, and so the volume V can be calculated from the definition of flow rate.

Solution

Solving Q = V / t for volume gives

(12.2)V = Qt.

Substituting known values yields

(12.3)
V = ⎛

⎝5.00 L
1 min

⎞
⎠(75 y)⎛⎝ 1 m3

103 L
⎞
⎠⎛⎝5.26×105min

y
⎞
⎠

= 2.0×105 m3 .
Discussion

This amount is about 200,000 tons of blood. For comparison, this value is equivalent to about 200 times the volume of water
contained in a 6-lane 50-m lap pool.

Flow rate and velocity are related, but quite different, physical quantities. To make the distinction clear, think about the flow rate
of a river. The greater the velocity of the water, the greater the flow rate of the river. But flow rate also depends on the size of the
river. A rapid mountain stream carries far less water than the Amazon River in Brazil, for example. The precise relationship
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between flow rate Q and velocity v¯ is

(12.4)Q = A v¯ ,

where A is the cross-sectional area and v¯ is the average velocity. This equation seems logical enough. The relationship tells

us that flow rate is directly proportional to both the magnitude of the average velocity (hereafter referred to as the speed) and the
size of a river, pipe, or other conduit. The larger the conduit, the greater its cross-sectional area. Figure 12.2 illustrates how this
relationship is obtained. The shaded cylinder has a volume

(12.5)V = Ad,

which flows past the point P in a time t . Dividing both sides of this relationship by t gives

(12.6)V
t = Ad

t .

We note that Q = V / t and the average speed is v¯ = d / t . Thus the equation becomes Q = A v¯ .

Figure 12.3 shows an incompressible fluid flowing along a pipe of decreasing radius. Because the fluid is incompressible, the
same amount of fluid must flow past any point in the tube in a given time to ensure continuity of flow. In this case, because the
cross-sectional area of the pipe decreases, the velocity must necessarily increase. This logic can be extended to say that the
flow rate must be the same at all points along the pipe. In particular, for points 1 and 2,

(12.7)
Q1 = Q2

A1 v¯ 1 = A2 v¯ 2

⎫
⎭
⎬.

This is called the equation of continuity and is valid for any incompressible fluid. The consequences of the equation of continuity
can be observed when water flows from a hose into a narrow spray nozzle: it emerges with a large speed—that is the purpose of
the nozzle. Conversely, when a river empties into one end of a reservoir, the water slows considerably, perhaps picking up speed
again when it leaves the other end of the reservoir. In other words, speed increases when cross-sectional area decreases, and
speed decreases when cross-sectional area increases.

Figure 12.3 When a tube narrows, the same volume occupies a greater length. For the same volume to pass points 1 and 2 in a given time, the speed
must be greater at point 2. The process is exactly reversible. If the fluid flows in the opposite direction, its speed will decrease when the tube widens.
(Note that the relative volumes of the two cylinders and the corresponding velocity vector arrows are not drawn to scale.)

Since liquids are essentially incompressible, the equation of continuity is valid for all liquids. However, gases are compressible,
and so the equation must be applied with caution to gases if they are subjected to compression or expansion.

Example 12.2 Calculating Fluid Speed: Speed Increases When a Tube Narrows

A nozzle with a radius of 0.250 cm is attached to a garden hose with a radius of 0.900 cm. The flow rate through hose and
nozzle is 0.500 L/s. Calculate the speed of the water (a) in the hose and (b) in the nozzle.

Strategy

We can use the relationship between flow rate and speed to find both velocities. We will use the subscript 1 for the hose and
2 for the nozzle.

Solution for (a)

First, we solve Q = A v¯ for v1 and note that the cross-sectional area is A = πr2 , yielding

(12.8)v¯ 1 = Q
A1

= Q
πr1

2.

Substituting known values and making appropriate unit conversions yields
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(12.9)
v¯ 1 = (0.500 L/s)(10−3 m3 / L)

π(9.00×10−3 m)2 = 1.96 m/s.

Solution for (b)

We could repeat this calculation to find the speed in the nozzle v¯ 2 , but we will use the equation of continuity to give a

somewhat different insight. Using the equation which states

(12.10)A1 v¯ 1 = A2 v¯ 2,

solving for v¯ 2 and substituting πr2 for the cross-sectional area yields

(12.11)
v¯ 2 = A1

A2
v¯ 1 =

πr1
2

πr2
2 v¯ 1 =

r12
r22 v¯ 1.

Substituting known values,

(12.12)
v¯ 2 = (0.900 cm)2

(0.250 cm)21.96 m/s = 25.5 m/s.

Discussion

A speed of 1.96 m/s is about right for water emerging from a nozzleless hose. The nozzle produces a considerably faster
stream merely by constricting the flow to a narrower tube.

The solution to the last part of the example shows that speed is inversely proportional to the square of the radius of the tube,
making for large effects when radius varies. We can blow out a candle at quite a distance, for example, by pursing our lips,
whereas blowing on a candle with our mouth wide open is quite ineffective.

In many situations, including in the cardiovascular system, branching of the flow occurs. The blood is pumped from the heart into
arteries that subdivide into smaller arteries (arterioles) which branch into very fine vessels called capillaries. In this situation,
continuity of flow is maintained but it is the sum of the flow rates in each of the branches in any portion along the tube that is
maintained. The equation of continuity in a more general form becomes

(12.13)n1 A1 v¯ 1 = n2A2 v¯ 2,

where n1 and n2 are the number of branches in each of the sections along the tube.

Example 12.3 Calculating Flow Speed and Vessel Diameter: Branching in the Cardiovascular
System

The aorta is the principal blood vessel through which blood leaves the heart in order to circulate around the body. (a)
Calculate the average speed of the blood in the aorta if the flow rate is 5.0 L/min. The aorta has a radius of 10 mm. (b) Blood
also flows through smaller blood vessels known as capillaries. When the rate of blood flow in the aorta is 5.0 L/min, the
speed of blood in the capillaries is about 0.33 mm/s. Given that the average diameter of a capillary is 8.0 μm , calculate the

number of capillaries in the blood circulatory system.

Strategy

We can use Q = A v¯ to calculate the speed of flow in the aorta and then use the general form of the equation of continuity

to calculate the number of capillaries as all of the other variables are known.

Solution for (a)

The flow rate is given by Q = A v¯ or v¯ = Q
πr2 for a cylindrical vessel.

Substituting the known values (converted to units of meters and seconds) gives

(12.14)

v¯ =
(5.0 L/min)⎛⎝10−3 m3 /L⎞⎠(1 min/60 s)

π(0.010 m)2 = 0.27 m/s.

Solution for (b)

Using n1 A1 v¯ 1 = n2A2 v¯ 1 , assigning the subscript 1 to the aorta and 2 to the capillaries, and solving for n2 (the
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number of capillaries) gives n2 = n1 A1 v¯ 1
A2 v¯ 2

. Converting all quantities to units of meters and seconds and substituting into

the equation above gives

(12.15)

n2 =
(1)(π)⎛⎝10×10−3 m⎞⎠

2
(0.27 m/s)

(π)⎛⎝4.0×10−6 m⎞⎠
2⎛
⎝0.33×10−3 m/s⎞⎠

= 5.0×109 capillaries.

Discussion

Note that the speed of flow in the capillaries is considerably reduced relative to the speed in the aorta due to the significant
increase in the total cross-sectional area at the capillaries. This low speed is to allow sufficient time for effective exchange to
occur although it is equally important for the flow not to become stationary in order to avoid the possibility of clotting. Does

this large number of capillaries in the body seem reasonable? In active muscle, one finds about 200 capillaries per mm3 ,

or about 200×106 per 1 kg of muscle. For 20 kg of muscle, this amounts to about 4×109 capillaries.

12.2 Bernoulli’s Equation

When a fluid flows into a narrower channel, its speed increases. That means its kinetic energy also increases. Where does that
change in kinetic energy come from? The increased kinetic energy comes from the net work done on the fluid to push it into the
channel and the work done on the fluid by the gravitational force, if the fluid changes vertical position. Recall the work-energy
theorem,

(12.16)Wnet = 1
2mv2 − 1

2mv0
2.

There is a pressure difference when the channel narrows. This pressure difference results in a net force on the fluid: recall that
pressure times area equals force. The net work done increases the fluid’s kinetic energy. As a result, the pressure will drop in a
rapidly-moving fluid, whether or not the fluid is confined to a tube.

There are a number of common examples of pressure dropping in rapidly-moving fluids. Shower curtains have a disagreeable
habit of bulging into the shower stall when the shower is on. The high-velocity stream of water and air creates a region of lower
pressure inside the shower, and standard atmospheric pressure on the other side. The pressure difference results in a net force
inward pushing the curtain in. You may also have noticed that when passing a truck on the highway, your car tends to veer
toward it. The reason is the same—the high velocity of the air between the car and the truck creates a region of lower pressure,
and the vehicles are pushed together by greater pressure on the outside. (See Figure 12.4.) This effect was observed as far
back as the mid-1800s, when it was found that trains passing in opposite directions tipped precariously toward one another.

Figure 12.4 An overhead view of a car passing a truck on a highway. Air passing between the vehicles flows in a narrower channel and must increase

its speed ( v2 is greater than v1 ), causing the pressure between them to drop ( Pi is less than Po ). Greater pressure on the outside pushes the

car and truck together.

Making Connections: Take-Home Investigation with a Sheet of Paper

Hold the short edge of a sheet of paper parallel to your mouth with one hand on each side of your mouth. The page should
slant downward over your hands. Blow over the top of the page. Describe what happens and explain the reason for this
behavior.
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Bernoulli’s Equation

The relationship between pressure and velocity in fluids is described quantitatively by Bernoulli’s equation, named after its
discoverer, the Swiss scientist Daniel Bernoulli (1700–1782). Bernoulli’s equation states that for an incompressible, frictionless
fluid, the following sum is constant:

(12.17)P + 1
2ρv2 + ρgh = constant,

where P is the absolute pressure, ρ is the fluid density, v is the velocity of the fluid, h is the height above some reference

point, and g is the acceleration due to gravity. If we follow a small volume of fluid along its path, various quantities in the sum

may change, but the total remains constant. Let the subscripts 1 and 2 refer to any two points along the path that the bit of fluid
follows; Bernoulli’s equation becomes

(12.18)P1 + 1
2ρv1

2 + ρgh1 = P2 + 1
2ρv2

2 +ρgh2.

Bernoulli’s equation is a form of the conservation of energy principle. Note that the second and third terms are the kinetic and
potential energy with m replaced by ρ . In fact, each term in the equation has units of energy per unit volume. We can prove

this for the second term by substituting ρ = m / V into it and gathering terms:

(12.19)
1
2ρv2 =

1
2mv2

V = KE
V .

So 1
2ρv2 is the kinetic energy per unit volume. Making the same substitution into the third term in the equation, we find

(12.20)
ρgh = mgh

V =
PEg
V ,

so ρgh is the gravitational potential energy per unit volume. Note that pressure P has units of energy per unit volume, too.

Since P = F / A , its units are N/m2 . If we multiply these by m/m, we obtain N ⋅ m/m3 = J/m3 , or energy per unit volume.

Bernoulli’s equation is, in fact, just a convenient statement of conservation of energy for an incompressible fluid in the absence of
friction.

Making Connections: Conservation of Energy

Conservation of energy applied to fluid flow produces Bernoulli’s equation. The net work done by the fluid’s pressure results
in changes in the fluid’s KE and PEg per unit volume. If other forms of energy are involved in fluid flow, Bernoulli’s

equation can be modified to take these forms into account. Such forms of energy include thermal energy dissipated because
of fluid viscosity.

The general form of Bernoulli’s equation has three terms in it, and it is broadly applicable. To understand it better, we will look at
a number of specific situations that simplify and illustrate its use and meaning.

Bernoulli’s Equation for Static Fluids

Let us first consider the very simple situation where the fluid is static—that is, v1 = v2 = 0 . Bernoulli’s equation in that case is

(12.21)P1 + ρgh1 = P2 + ρgh2.

We can further simplify the equation by taking h2 = 0 (we can always choose some height to be zero, just as we often have

done for other situations involving the gravitational force, and take all other heights to be relative to this). In that case, we get

(12.22)P2 = P1 + ρgh1.

This equation tells us that, in static fluids, pressure increases with depth. As we go from point 1 to point 2 in the fluid, the depth
increases by h1 , and consequently, P2 is greater than P1 by an amount ρgh1 . In the very simplest case, P1 is zero at the

top of the fluid, and we get the familiar relationship P = ρgh . (Recall that P = ρgh and ΔPEg = mgh. ) Bernoulli’s equation

includes the fact that the pressure due to the weight of a fluid is ρgh . Although we introduce Bernoulli’s equation for fluid flow, it

includes much of what we studied for static fluids in the preceding chapter.

Bernoulli’s Principle—Bernoulli’s Equation at Constant Depth

Another important situation is one in which the fluid moves but its depth is constant—that is, h1 = h2 . Under that condition,

Bernoulli’s equation becomes

440 Chapter 12 | Fluid Dynamics and Its Biological and Medical Applications

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



(12.23)P1 + 1
2ρv1

2 = P2 + 1
2ρv2

2 .

Situations in which fluid flows at a constant depth are so important that this equation is often called Bernoulli’s principle. It is
Bernoulli’s equation for fluids at constant depth. (Note again that this applies to a small volume of fluid as we follow it along its
path.) As we have just discussed, pressure drops as speed increases in a moving fluid. We can see this from Bernoulli’s
principle. For example, if v2 is greater than v1 in the equation, then P2 must be less than P1 for the equality to hold.

Example 12.4 Calculating Pressure: Pressure Drops as a Fluid Speeds Up

In Example 12.2, we found that the speed of water in a hose increased from 1.96 m/s to 25.5 m/s going from the hose to the

nozzle. Calculate the pressure in the hose, given that the absolute pressure in the nozzle is 1.01×105 N/m2

(atmospheric, as it must be) and assuming level, frictionless flow.

Strategy

Level flow means constant depth, so Bernoulli’s principle applies. We use the subscript 1 for values in the hose and 2 for
those in the nozzle. We are thus asked to find P1 .

Solution

Solving Bernoulli’s principle for P1 yields

(12.24)P1 = P2 + 1
2ρv2

2 −1
2ρv1

2 = P2 + 1
2ρ(v2

2 − v1
2).

Substituting known values,

(12.25)P1 = 1.01×105 N/m2

+ 1
2(103 kg/m3)⎡⎣(25.5 m/s)2 − (1.96 m/s)2⎤⎦

= 4.24×105 N/m2 .
Discussion

This absolute pressure in the hose is greater than in the nozzle, as expected since v is greater in the nozzle. The pressure

P2 in the nozzle must be atmospheric since it emerges into the atmosphere without other changes in conditions.

Applications of Bernoulli’s Principle

There are a number of devices and situations in which fluid flows at a constant height and, thus, can be analyzed with Bernoulli’s
principle.

Entrainment

People have long put the Bernoulli principle to work by using reduced pressure in high-velocity fluids to move things about. With
a higher pressure on the outside, the high-velocity fluid forces other fluids into the stream. This process is called entrainment.
Entrainment devices have been in use since ancient times, particularly as pumps to raise water small heights, as in draining
swamps, fields, or other low-lying areas. Some other devices that use the concept of entrainment are shown in Figure 12.5.

Figure 12.5 Examples of entrainment devices that use increased fluid speed to create low pressures, which then entrain one fluid into another. (a) A
Bunsen burner uses an adjustable gas nozzle, entraining air for proper combustion. (b) An atomizer uses a squeeze bulb to create a jet of air that
entrains drops of perfume. Paint sprayers and carburetors use very similar techniques to move their respective liquids. (c) A common aspirator uses a
high-speed stream of water to create a region of lower pressure. Aspirators may be used as suction pumps in dental and surgical situations or for
draining a flooded basement or producing a reduced pressure in a vessel. (d) The chimney of a water heater is designed to entrain air into the pipe
leading through the ceiling.
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Wings and Sails

The airplane wing is a beautiful example of Bernoulli’s principle in action. Figure 12.6(a) shows the characteristic shape of a
wing. The wing is tilted upward at a small angle and the upper surface is longer, causing air to flow faster over it. The pressure
on top of the wing is therefore reduced, creating a net upward force or lift. (Wings can also gain lift by pushing air downward,
utilizing the conservation of momentum principle. The deflected air molecules result in an upward force on the wing — Newton’s
third law.) Sails also have the characteristic shape of a wing. (See Figure 12.6(b).) The pressure on the front side of the sail,
Pfront , is lower than the pressure on the back of the sail, Pback . This results in a forward force and even allows you to sail into

the wind.

Making Connections: Take-Home Investigation with Two Strips of Paper

For a good illustration of Bernoulli’s principle, make two strips of paper, each about 15 cm long and 4 cm wide. Hold the
small end of one strip up to your lips and let it drape over your finger. Blow across the paper. What happens? Now hold two
strips of paper up to your lips, separated by your fingers. Blow between the strips. What happens?

Velocity measurement

Figure 12.7 shows two devices that measure fluid velocity based on Bernoulli’s principle. The manometer in Figure 12.7(a) is
connected to two tubes that are small enough not to appreciably disturb the flow. The tube facing the oncoming fluid creates a
dead spot having zero velocity ( v1 = 0 ) in front of it, while fluid passing the other tube has velocity v2 . This means that

Bernoulli’s principle as stated in P1 + 1
2ρv1

2 = P2 + 1
2ρv2

2 becomes

(12.26)P1 = P2 + 1
2ρv2

2 .

Figure 12.6 (a) The Bernoulli principle helps explain lift generated by a wing. (b) Sails use the same technique to generate part of their thrust.

Thus pressure P2 over the second opening is reduced by 1
2ρv2

2 , and so the fluid in the manometer rises by h on the side

connected to the second opening, where

(12.27)h ∝ 1
2ρv2

2.

(Recall that the symbol ∝ means “proportional to.”) Solving for v2 , we see that

(12.28)v2 ∝ h.

Figure 12.7(b) shows a version of this device that is in common use for measuring various fluid velocities; such devices are
frequently used as air speed indicators in aircraft.
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Figure 12.7 Measurement of fluid speed based on Bernoulli’s principle. (a) A manometer is connected to two tubes that are close together and small
enough not to disturb the flow. Tube 1 is open at the end facing the flow. A dead spot having zero speed is created there. Tube 2 has an opening on

the side, and so the fluid has a speed v across the opening; thus, pressure there drops. The difference in pressure at the manometer is 1
2ρv2

2
, and

so h is proportional to 1
2ρv2

2
. (b) This type of velocity measuring device is a Prandtl tube, also known as a pitot tube.

12.3 The Most General Applications of Bernoulli’s Equation

Torricelli’s Theorem

Figure 12.8 shows water gushing from a large tube through a dam. What is its speed as it emerges? Interestingly, if resistance is
negligible, the speed is just what it would be if the water fell a distance h from the surface of the reservoir; the water’s speed is

independent of the size of the opening. Let us check this out. Bernoulli’s equation must be used since the depth is not constant.
We consider water flowing from the surface (point 1) to the tube’s outlet (point 2). Bernoulli’s equation as stated in previously is

(12.29)P1 + 1
2ρv1

2 + ρgh1 = P2 + 1
2ρv2

2 + ρgh2.

Both P1 and P2 equal atmospheric pressure ( P1 is atmospheric pressure because it is the pressure at the top of the

reservoir. P2 must be atmospheric pressure, since the emerging water is surrounded by the atmosphere and cannot have a

pressure different from atmospheric pressure.) and subtract out of the equation, leaving

(12.30)1
2ρv1

2 + ρgh1 = 1
2ρv2

2 + ρgh2.

Solving this equation for v2
2 , noting that the density ρ cancels (because the fluid is incompressible), yields

(12.31)v2
2 = v1

2 + 2g(h1 − h2).

We let h = h1 − h2 ; the equation then becomes

(12.32)v2
2 = v1

2 + 2gh

where h is the height dropped by the water. This is simply a kinematic equation for any object falling a distance h with

negligible resistance. In fluids, this last equation is called Torricelli’s theorem. Note that the result is independent of the velocity’s
direction, just as we found when applying conservation of energy to falling objects.
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Figure 12.8 (a) Water gushes from the base of the Studen Kladenetz dam in Bulgaria. (credit: Kiril Kapustin; http://www.ImagesFromBulgaria.com) (b)

In the absence of significant resistance, water flows from the reservoir with the same speed it would have if it fell the distance h without friction. This

is an example of Torricelli’s theorem.

Figure 12.9 Pressure in the nozzle of this fire hose is less than at ground level for two reasons: the water has to go uphill to get to the nozzle, and
speed increases in the nozzle. In spite of its lowered pressure, the water can exert a large force on anything it strikes, by virtue of its kinetic energy.
Pressure in the water stream becomes equal to atmospheric pressure once it emerges into the air.

All preceding applications of Bernoulli’s equation involved simplifying conditions, such as constant height or constant pressure.
The next example is a more general application of Bernoulli’s equation in which pressure, velocity, and height all change. (See
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Figure 12.9.)

Example 12.5 Calculating Pressure: A Fire Hose Nozzle

Fire hoses used in major structure fires have inside diameters of 6.40 cm. Suppose such a hose carries a flow of 40.0 L/s

starting at a gauge pressure of 1.62×106 N/m2 . The hose goes 10.0 m up a ladder to a nozzle having an inside diameter

of 3.00 cm. Assuming negligible resistance, what is the pressure in the nozzle?

Strategy

Here we must use Bernoulli’s equation to solve for the pressure, since depth is not constant.

Solution

Bernoulli’s equation states

(12.33)P1 + 1
2ρv1

2 + ρgh1 = P2 + 1
2ρv2

2 + ρgh2,

where the subscripts 1 and 2 refer to the initial conditions at ground level and the final conditions inside the nozzle,
respectively. We must first find the speeds v1 and v2 . Since Q = A1v1 , we get

(12.34)
v1 = Q

A1
= 40.0×10−3 m3 /s

π(3.20×10−2 m)2 = 12.4 m/s.

Similarly, we find

(12.35)v2 = 56.6 m/s.

(This rather large speed is helpful in reaching the fire.) Now, taking h1 to be zero, we solve Bernoulli’s equation for P2 :

(12.36)P2 = P1 + 1
2ρ⎛⎝v1

2 − v2
2⎞⎠−ρgh2.

Substituting known values yields

P2 = 1.62×106 N/m2 + 1
2(1000 kg/m3)⎡⎣(12.4 m/s)2 − (56.6 m/s)2⎤⎦− (1000 kg/m3)(9.80 m/s2)(10.0 m) = 0.

(12.37)Discussion

This value is a gauge pressure, since the initial pressure was given as a gauge pressure. Thus the nozzle pressure equals
atmospheric pressure, as it must because the water exits into the atmosphere without changes in its conditions.

Power in Fluid Flow

Power is the rate at which work is done or energy in any form is used or supplied. To see the relationship of power to fluid flow,
consider Bernoulli’s equation:

(12.38)P + 1
2ρv2 + ρgh = constant.

All three terms have units of energy per unit volume, as discussed in the previous section. Now, considering units, if we multiply
energy per unit volume by flow rate (volume per unit time), we get units of power. That is, (E / V)(V / t) = E / t . This means

that if we multiply Bernoulli’s equation by flow rate Q , we get power. In equation form, this is

(12.39)⎛
⎝P + 1

2ρv2 + ρgh⎞⎠Q = power.

Each term has a clear physical meaning. For example, PQ is the power supplied to a fluid, perhaps by a pump, to give it its

pressure P . Similarly, 1
2ρv2 Q is the power supplied to a fluid to give it its kinetic energy. And ρghQ is the power going to

gravitational potential energy.

Making Connections: Power

Power is defined as the rate of energy transferred, or E / t . Fluid flow involves several types of power. Each type of power

is identified with a specific type of energy being expended or changed in form.
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Example 12.6 Calculating Power in a Moving Fluid

Suppose the fire hose in the previous example is fed by a pump that receives water through a hose with a 6.40-cm diameter

coming from a hydrant with a pressure of 0.700×106 N/m2 . What power does the pump supply to the water?

Strategy

Here we must consider energy forms as well as how they relate to fluid flow. Since the input and output hoses have the
same diameters and are at the same height, the pump does not change the speed of the water nor its height, and so the
water’s kinetic energy and gravitational potential energy are unchanged. That means the pump only supplies power to

increase water pressure by 0.92×106 N/m2 (from 0.700×106 N/m2 to 1.62×106 N/m2 ).

Solution

As discussed above, the power associated with pressure is

(12.40)power = PQ

= ⎛
⎝0.920×106 N/m2⎞⎠

⎛
⎝40.0×10−3 m3 /s⎞⎠.

= 3.68×104 W = 36.8 kW
Discussion

Such a substantial amount of power requires a large pump, such as is found on some fire trucks. (This kilowatt value
converts to about 50 hp.) The pump in this example increases only the water’s pressure. If a pump—such as the
heart—directly increases velocity and height as well as pressure, we would have to calculate all three terms to find the
power it supplies.

12.4 Viscosity and Laminar Flow; Poiseuille’s Law

Laminar Flow and Viscosity

When you pour yourself a glass of juice, the liquid flows freely and quickly. But when you pour syrup on your pancakes, that
liquid flows slowly and sticks to the pitcher. The difference is fluid friction, both within the fluid itself and between the fluid and its
surroundings. We call this property of fluids viscosity. Juice has low viscosity, whereas syrup has high viscosity. In the previous
sections we have considered ideal fluids with little or no viscosity. In this section, we will investigate what factors, including
viscosity, affect the rate of fluid flow.

The precise definition of viscosity is based on laminar, or nonturbulent, flow. Before we can define viscosity, then, we need to
define laminar flow and turbulent flow. Figure 12.10 shows both types of flow. Laminar flow is characterized by the smooth flow
of the fluid in layers that do not mix. Turbulent flow, or turbulence, is characterized by eddies and swirls that mix layers of fluid
together.

Figure 12.10 Smoke rises smoothly for a while and then begins to form swirls and eddies. The smooth flow is called laminar flow, whereas the swirls
and eddies typify turbulent flow. If you watch the smoke (being careful not to breathe on it), you will notice that it rises more rapidly when flowing
smoothly than after it becomes turbulent, implying that turbulence poses more resistance to flow. (credit: Creativity103)

Figure 12.11 shows schematically how laminar and turbulent flow differ. Layers flow without mixing when flow is laminar. When
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there is turbulence, the layers mix, and there are significant velocities in directions other than the overall direction of flow. The
lines that are shown in many illustrations are the paths followed by small volumes of fluids. These are called streamlines.
Streamlines are smooth and continuous when flow is laminar, but break up and mix when flow is turbulent. Turbulence has two
main causes. First, any obstruction or sharp corner, such as in a faucet, creates turbulence by imparting velocities perpendicular
to the flow. Second, high speeds cause turbulence. The drag both between adjacent layers of fluid and between the fluid and its
surroundings forms swirls and eddies, if the speed is great enough. We shall concentrate on laminar flow for the remainder of
this section, leaving certain aspects of turbulence for later sections.

Figure 12.11 (a) Laminar flow occurs in layers without mixing. Notice that viscosity causes drag between layers as well as with the fixed surface. (b)
An obstruction in the vessel produces turbulence. Turbulent flow mixes the fluid. There is more interaction, greater heating, and more resistance than in
laminar flow.

Making Connections: Take-Home Experiment: Go Down to the River

Try dropping simultaneously two sticks into a flowing river, one near the edge of the river and one near the middle. Which
one travels faster? Why?

Figure 12.12 shows how viscosity is measured for a fluid. Two parallel plates have the specific fluid between them. The bottom
plate is held fixed, while the top plate is moved to the right, dragging fluid with it. The layer (or lamina) of fluid in contact with
either plate does not move relative to the plate, and so the top layer moves at v while the bottom layer remains at rest. Each

successive layer from the top down exerts a force on the one below it, trying to drag it along, producing a continuous variation in
speed from v to 0 as shown. Care is taken to insure that the flow is laminar; that is, the layers do not mix. The motion in Figure

12.12 is like a continuous shearing motion. Fluids have zero shear strength, but the rate at which they are sheared is related to
the same geometrical factors A and L as is shear deformation for solids.

Figure 12.12 The graphic shows laminar flow of fluid between two plates of area A . The bottom plate is fixed. When the top plate is pushed to the

right, it drags the fluid along with it.

A force F is required to keep the top plate in Figure 12.12 moving at a constant velocity v , and experiments have shown that

this force depends on four factors. First, F is directly proportional to v (until the speed is so high that turbulence occurs—then

a much larger force is needed, and it has a more complicated dependence on v ). Second, F is proportional to the area A of

the plate. This relationship seems reasonable, since A is directly proportional to the amount of fluid being moved. Third, F is

inversely proportional to the distance between the plates L . This relationship is also reasonable; L is like a lever arm, and the

greater the lever arm, the less force that is needed. Fourth, F is directly proportional to the coefficient of viscosity, η . The

greater the viscosity, the greater the force required. These dependencies are combined into the equation

(12.41)F = ηvA
L ,

which gives us a working definition of fluid viscosity η . Solving for η gives
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(12.42)η = FL
vA ,

which defines viscosity in terms of how it is measured. The SI unit of viscosity is N ⋅ m/[(m/s)m2 ] = (N/m2)s or Pa ⋅ s .

Table 12.1 lists the coefficients of viscosity for various fluids.

Viscosity varies from one fluid to another by several orders of magnitude. As you might expect, the viscosities of gases are much
less than those of liquids, and these viscosities are often temperature dependent. The viscosity of blood can be reduced by
aspirin consumption, allowing it to flow more easily around the body. (When used over the long term in low doses, aspirin can
help prevent heart attacks, and reduce the risk of blood clotting.)

Laminar Flow Confined to Tubes—Poiseuille’s Law

What causes flow? The answer, not surprisingly, is pressure difference. In fact, there is a very simple relationship between
horizontal flow and pressure. Flow rate Q is in the direction from high to low pressure. The greater the pressure differential

between two points, the greater the flow rate. This relationship can be stated as

(12.43)
Q = P2 − P1

R ,

where P1 and P2 are the pressures at two points, such as at either end of a tube, and R is the resistance to flow. The

resistance R includes everything, except pressure, that affects flow rate. For example, R is greater for a long tube than for a

short one. The greater the viscosity of a fluid, the greater the value of R . Turbulence greatly increases R , whereas increasing

the diameter of a tube decreases R .

If viscosity is zero, the fluid is frictionless and the resistance to flow is also zero. Comparing frictionless flow in a tube to viscous
flow, as in Figure 12.13, we see that for a viscous fluid, speed is greatest at midstream because of drag at the boundaries. We
can see the effect of viscosity in a Bunsen burner flame, even though the viscosity of natural gas is small.

The resistance R to laminar flow of an incompressible fluid having viscosity η through a horizontal tube of uniform radius r
and length l , such as the one in Figure 12.14, is given by

(12.44)
R = 8ηl

πr4.

This equation is called Poiseuille’s law for resistance after the French scientist J. L. Poiseuille (1799–1869), who derived it in
an attempt to understand the flow of blood, an often turbulent fluid.

Figure 12.13 (a) If fluid flow in a tube has negligible resistance, the speed is the same all across the tube. (b) When a viscous fluid flows through a
tube, its speed at the walls is zero, increasing steadily to its maximum at the center of the tube. (c) The shape of the Bunsen burner flame is due to the
velocity profile across the tube. (credit: Jason Woodhead)

Let us examine Poiseuille’s expression for R to see if it makes good intuitive sense. We see that resistance is directly

proportional to both fluid viscosity η and the length l of a tube. After all, both of these directly affect the amount of friction

encountered—the greater either is, the greater the resistance and the smaller the flow. The radius r of a tube affects the

resistance, which again makes sense, because the greater the radius, the greater the flow (all other factors remaining the same).
But it is surprising that r is raised to the fourth power in Poiseuille’s law. This exponent means that any change in the radius of a

tube has a very large effect on resistance. For example, doubling the radius of a tube decreases resistance by a factor of
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24 = 16 .

Taken together, Q = P2 − P1
R and R = 8ηl

πr4 give the following expression for flow rate:

(12.45)
Q = (P2 − P1)πr4

8ηl .

This equation describes laminar flow through a tube. It is sometimes called Poiseuille’s law for laminar flow, or simply
Poiseuille’s law.

Example 12.7 Using Flow Rate: Plaque Deposits Reduce Blood Flow

Suppose the flow rate of blood in a coronary artery has been reduced to half its normal value by plaque deposits. By what
factor has the radius of the artery been reduced, assuming no turbulence occurs?

Strategy

Assuming laminar flow, Poiseuille’s law states that

(12.46)
Q = (P2 − P1)πr4

8ηl .

We need to compare the artery radius before and after the flow rate reduction.

Solution

With a constant pressure difference assumed and the same length and viscosity, along the artery we have

(12.47)Q1
r1

4 = Q2
r2

4 .

So, given that Q2 = 0.5Q1 , we find that r2
4 = 0.5r1

4 .

Therefore, r2 = (0.5)0.25r1 = 0.841r1 , a decrease in the artery radius of 16%.

Discussion

This decrease in radius is surprisingly small for this situation. To restore the blood flow in spite of this buildup would require

an increase in the pressure difference ⎛⎝P2 − P1
⎞
⎠ of a factor of two, with subsequent strain on the heart.
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Table 12.1 Coefficients of Viscosity of Various Fluids

Fluid Temperature (ºC) Viscosity η (mPa·s)

Gases

0 0.0171

20 0.0181

40 0.0190
Air

100 0.0218

Ammonia 20 0.00974

Carbon dioxide 20 0.0147

Helium 20 0.0196

Hydrogen 0 0.0090

Mercury 20 0.0450

Oxygen 20 0.0203

Steam 100 0.0130

Liquids

0 1.792

20 1.002

37 0.6947

40 0.653

Water

100 0.282

20 3.015
Whole blood[1]

37 2.084

20 1.810
Blood plasma[2]

37 1.257

Ethyl alcohol 20 1.20

Methanol 20 0.584

Oil (heavy machine) 20 660

Oil (motor, SAE 10) 30 200

Oil (olive) 20 138

Glycerin 20 1500

Honey 20 2000–10000

Maple Syrup 20 2000–3000

Milk 20 3.0

Oil (Corn) 20 65

The circulatory system provides many examples of Poiseuille’s law in action—with blood flow regulated by changes in vessel
size and blood pressure. Blood vessels are not rigid but elastic. Adjustments to blood flow are primarily made by varying the size
of the vessels, since the resistance is so sensitive to the radius. During vigorous exercise, blood vessels are selectively dilated to
important muscles and organs and blood pressure increases. This creates both greater overall blood flow and increased flow to
specific areas. Conversely, decreases in vessel radii, perhaps from plaques in the arteries, can greatly reduce blood flow. If a

vessel’s radius is reduced by only 5% (to 0.95 of its original value), the flow rate is reduced to about (0.95)4 = 0.81 of its

original value. A 19% decrease in flow is caused by a 5% decrease in radius. The body may compensate by increasing blood
pressure by 19%, but this presents hazards to the heart and any vessel that has weakened walls. Another example comes from
automobile engine oil. If you have a car with an oil pressure gauge, you may notice that oil pressure is high when the engine is
cold. Motor oil has greater viscosity when cold than when warm, and so pressure must be greater to pump the same amount of
cold oil.

1. The ratios of the viscosities of blood to water are nearly constant between 0°C and 37°C.
2. See note on Whole Blood.
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Figure 12.14 Poiseuille’s law applies to laminar flow of an incompressible fluid of viscosity η through a tube of length l and radius r . The direction

of flow is from greater to lower pressure. Flow rate Q is directly proportional to the pressure difference P2 − P1 , and inversely proportional to the

length l of the tube and viscosity η of the fluid. Flow rate increases with r4
, the fourth power of the radius.

Example 12.8 What Pressure Produces This Flow Rate?

An intravenous (IV) system is supplying saline solution to a patient at the rate of 0.120 cm3 /s through a needle of radius

0.150 mm and length 2.50 cm. What pressure is needed at the entrance of the needle to cause this flow, assuming the
viscosity of the saline solution to be the same as that of water? The gauge pressure of the blood in the patient’s vein is 8.00
mm Hg. (Assume that the temperature is 20ºC .)

Strategy

Assuming laminar flow, Poiseuille’s law applies. This is given by

(12.48)
Q = (P2 − P1)πr4

8ηl ,

where P2 is the pressure at the entrance of the needle and P1 is the pressure in the vein. The only unknown is P2 .

Solution

Solving for P2 yields

(12.49)
P2 = 8ηl

πr4Q + P1.

P1 is given as 8.00 mm Hg, which converts to 1.066×103 N/m2 . Substituting this and the other known values yields

(12.50)
P2 =

⎡
⎣
⎢8(1.00×10−3 N ⋅ s/m2)(2.50×10−2 m)

π(0.150×10−3 m)4

⎤
⎦
⎥(1.20×10−7 m3 /s) + 1.066×103 N/m2

= 1.62×104 N/m2 .
Discussion

This pressure could be supplied by an IV bottle with the surface of the saline solution 1.61 m above the entrance to the
needle (this is left for you to solve in this chapter’s Problems and Exercises), assuming that there is negligible pressure drop
in the tubing leading to the needle.

Flow and Resistance as Causes of Pressure Drops

You may have noticed that water pressure in your home might be lower than normal on hot summer days when there is more
use. This pressure drop occurs in the water main before it reaches your home. Let us consider flow through the water main as
illustrated in Figure 12.15. We can understand why the pressure P1 to the home drops during times of heavy use by

rearranging

(12.51)
Q = P2 − P1

R
to

(12.52)P2 − P1 = RQ,

where, in this case, P2 is the pressure at the water works and R is the resistance of the water main. During times of heavy
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use, the flow rate Q is large. This means that P2 − P1 must also be large. Thus P1 must decrease. It is correct to think of

flow and resistance as causing the pressure to drop from P2 to P1 . P2 − P1 = RQ is valid for both laminar and turbulent

flows.

Figure 12.15 During times of heavy use, there is a significant pressure drop in a water main, and P1 supplied to users is significantly less than P2
created at the water works. If the flow is very small, then the pressure drop is negligible, and P2 ≈ P1 .

We can use P2 − P1 = RQ to analyze pressure drops occurring in more complex systems in which the tube radius is not the

same everywhere. Resistance will be much greater in narrow places, such as an obstructed coronary artery. For a given flow rate
Q , the pressure drop will be greatest where the tube is most narrow. This is how water faucets control flow. Additionally, R is

greatly increased by turbulence, and a constriction that creates turbulence greatly reduces the pressure downstream. Plaque in
an artery reduces pressure and hence flow, both by its resistance and by the turbulence it creates.

Figure 12.16 is a schematic of the human circulatory system, showing average blood pressures in its major parts for an adult at
rest. Pressure created by the heart’s two pumps, the right and left ventricles, is reduced by the resistance of the blood vessels as
the blood flows through them. The left ventricle increases arterial blood pressure that drives the flow of blood through all parts of
the body except the lungs. The right ventricle receives the lower pressure blood from two major veins and pumps it through the
lungs for gas exchange with atmospheric gases – the disposal of carbon dioxide from the blood and the replenishment of
oxygen. Only one major organ is shown schematically, with typical branching of arteries to ever smaller vessels, the smallest of
which are the capillaries, and rejoining of small veins into larger ones. Similar branching takes place in a variety of organs in the
body, and the circulatory system has considerable flexibility in flow regulation to these organs by the dilation and constriction of
the arteries leading to them and the capillaries within them. The sensitivity of flow to tube radius makes this flexibility possible
over a large range of flow rates.
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Figure 12.16 Schematic of the circulatory system. Pressure difference is created by the two pumps in the heart and is reduced by resistance in the
vessels. Branching of vessels into capillaries allows blood to reach individual cells and exchange substances, such as oxygen and waste products, with
them. The system has an impressive ability to regulate flow to individual organs, accomplished largely by varying vessel diameters.

Each branching of larger vessels into smaller vessels increases the total cross-sectional area of the tubes through which the

blood flows. For example, an artery with a cross section of 1 cm2 may branch into 20 smaller arteries, each with cross sections

of 0.5 cm2 , with a total of 10 cm2 . In that manner, the resistance of the branchings is reduced so that pressure is not entirely

lost. Moreover, because Q = A v¯ and A increases through branching, the average velocity of the blood in the smaller vessels

is reduced. The blood velocity in the aorta ( diameter = 1 cm ) is about 25 cm/s, while in the capillaries ( 20μm in diameter)

the velocity is about 1 mm/s. This reduced velocity allows the blood to exchange substances with the cells in the capillaries and
alveoli in particular.

12.5 The Onset of Turbulence

Sometimes we can predict if flow will be laminar or turbulent. We know that flow in a very smooth tube or around a smooth,
streamlined object will be laminar at low velocity. We also know that at high velocity, even flow in a smooth tube or around a
smooth object will experience turbulence. In between, it is more difficult to predict. In fact, at intermediate velocities, flow may
oscillate back and forth indefinitely between laminar and turbulent.

An occlusion, or narrowing, of an artery, such as shown in Figure 12.17, is likely to cause turbulence because of the irregularity
of the blockage, as well as the complexity of blood as a fluid. Turbulence in the circulatory system is noisy and can sometimes be
detected with a stethoscope, such as when measuring diastolic pressure in the upper arm’s partially collapsed brachial artery.
These turbulent sounds, at the onset of blood flow when the cuff pressure becomes sufficiently small, are called Korotkoff
sounds. Aneurysms, or ballooning of arteries, create significant turbulence and can sometimes be detected with a stethoscope.
Heart murmurs, consistent with their name, are sounds produced by turbulent flow around damaged and insufficiently closed
heart valves. Ultrasound can also be used to detect turbulence as a medical indicator in a process analogous to Doppler-shift
radar used to detect storms.
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Figure 12.17 Flow is laminar in the large part of this blood vessel and turbulent in the part narrowed by plaque, where velocity is high. In the transition
region, the flow can oscillate chaotically between laminar and turbulent flow.

An indicator called the Reynolds number NR can reveal whether flow is laminar or turbulent. For flow in a tube of uniform

diameter, the Reynolds number is defined as

(12.53)
NR = 2ρvr

η (flow in tube),

where ρ is the fluid density, v its speed, η its viscosity, and r the tube radius. The Reynolds number is a unitless quantity.

Experiments have revealed that NR is related to the onset of turbulence. For NR below about 2000, flow is laminar. For NR
above about 3000, flow is turbulent. For values of NR between about 2000 and 3000, flow is unstable—that is, it can be

laminar, but small obstructions and surface roughness can make it turbulent, and it may oscillate randomly between being
laminar and turbulent. The blood flow through most of the body is a quiet, laminar flow. The exception is in the aorta, where the
speed of the blood flow rises above a critical value of 35 m/s and becomes turbulent.

Example 12.9 Is This Flow Laminar or Turbulent?

Calculate the Reynolds number for flow in the needle considered in Example 12.8 to verify the assumption that the flow is

laminar. Assume that the density of the saline solution is 1025 kg/m3 .

Strategy

We have all of the information needed, except the fluid speed v , which can be calculated from v¯ = Q / A = 1.70 m/s
(verification of this is in this chapter’s Problems and Exercises).

Solution

Entering the known values into NR = 2ρvr
η gives

(12.54)
NR = 2ρvr

η

= 2(1025 kg/m3)(1.70 m/s)(0.150×10−3 m)
1.00×10−3 N ⋅ s/m2

= 523.
Discussion

Since NR is well below 2000, the flow should indeed be laminar.

Take-Home Experiment: Inhalation

Under the conditions of normal activity, an adult inhales about 1 L of air during each inhalation. With the aid of a watch,
determine the time for one of your own inhalations by timing several breaths and dividing the total length by the number of
breaths. Calculate the average flow rate Q of air traveling through the trachea during each inhalation.

The topic of chaos has become quite popular over the last few decades. A system is defined to be chaotic when its behavior is
so sensitive to some factor that it is extremely difficult to predict. The field of chaos is the study of chaotic behavior. A good
example of chaotic behavior is the flow of a fluid with a Reynolds number between 2000 and 3000. Whether or not the flow is
turbulent is difficult, but not impossible, to predict—the difficulty lies in the extremely sensitive dependence on factors like
roughness and obstructions on the nature of the flow. A tiny variation in one factor has an exaggerated (or nonlinear) effect on
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the flow. Phenomena as disparate as turbulence, the orbit of Pluto, and the onset of irregular heartbeats are chaotic and can be
analyzed with similar techniques.

12.6 Motion of an Object in a Viscous Fluid

A moving object in a viscous fluid is equivalent to a stationary object in a flowing fluid stream. (For example, when you ride a
bicycle at 10 m/s in still air, you feel the air in your face exactly as if you were stationary in a 10-m/s wind.) Flow of the stationary
fluid around a moving object may be laminar, turbulent, or a combination of the two. Just as with flow in tubes, it is possible to
predict when a moving object creates turbulence. We use another form of the Reynolds number N′R , defined for an object

moving in a fluid to be

(12.55)N′R = ρvL
η (object in fluid),

where L is a characteristic length of the object (a sphere’s diameter, for example), ρ the fluid density, η its viscosity, and v
the object’s speed in the fluid. If N′R is less than about 1, flow around the object can be laminar, particularly if the object has a

smooth shape. The transition to turbulent flow occurs for N′R between 1 and about 10, depending on surface roughness and so

on. Depending on the surface, there can be a turbulent wake behind the object with some laminar flow over its surface. For an

N′R between 10 and 106 , the flow may be either laminar or turbulent and may oscillate between the two. For N′R greater

than about 106 , the flow is entirely turbulent, even at the surface of the object. (See Figure 12.18.) Laminar flow occurs mostly

when the objects in the fluid are small, such as raindrops, pollen, and blood cells in plasma.

Example 12.10 Does a Ball Have a Turbulent Wake?

Calculate the Reynolds number N′R for a ball with a 7.40-cm diameter thrown at 40.0 m/s.

Strategy

We can use N′R = ρvL
η to calculate N′R , since all values in it are either given or can be found in tables of density and

viscosity.

Solution

Substituting values into the equation for N′R yields

(12.56)
N′R = ρvL

η = (1.29 kg/m3)(40.0 m/s)(0.0740 m)
1.81×10−5 1.00 Pa ⋅ s

= 2.11×105 .
Discussion

This value is sufficiently high to imply a turbulent wake. Most large objects, such as airplanes and sailboats, create
significant turbulence as they move. As noted before, the Bernoulli principle gives only qualitatively-correct results in such
situations.

One of the consequences of viscosity is a resistance force called viscous drag FV that is exerted on a moving object. This

force typically depends on the object’s speed (in contrast with simple friction). Experiments have shown that for laminar flow (

N′R less than about one) viscous drag is proportional to speed, whereas for N′R between about 10 and 106 , viscous drag is

proportional to speed squared. (This relationship is a strong dependence and is pertinent to bicycle racing, where even a small
headwind causes significantly increased drag on the racer. Cyclists take turns being the leader in the pack for this reason.) For

N′R greater than 106 , drag increases dramatically and behaves with greater complexity. For laminar flow around a sphere,

FV is proportional to fluid viscosity η , the object’s characteristic size L , and its speed v . All of which makes sense—the more

viscous the fluid and the larger the object, the more drag we expect. Recall Stoke’s law FS = 6πrηv . For the special case of a

small sphere of radius R moving slowly in a fluid of viscosity η , the drag force FS is given by

(12.57)FS = 6πRηv.

Chapter 12 | Fluid Dynamics and Its Biological and Medical Applications 455



Figure 12.18 (a) Motion of this sphere to the right is equivalent to fluid flow to the left. Here the flow is laminar with N′R less than 1. There is a force,

called viscous drag FV , to the left on the ball due to the fluid’s viscosity. (b) At a higher speed, the flow becomes partially turbulent, creating a wake

starting where the flow lines separate from the surface. Pressure in the wake is less than in front of the sphere, because fluid speed is less, creating a

net force to the left F′V that is significantly greater than for laminar flow. Here N′R is greater than 10. (c) At much higher speeds, where N′R is

greater than 106
, flow becomes turbulent everywhere on the surface and behind the sphere. Drag increases dramatically.

An interesting consequence of the increase in FV with speed is that an object falling through a fluid will not continue to

accelerate indefinitely (as it would if we neglect air resistance, for example). Instead, viscous drag increases, slowing
acceleration, until a critical speed, called the terminal speed, is reached and the acceleration of the object becomes zero. Once
this happens, the object continues to fall at constant speed (the terminal speed). This is the case for particles of sand falling in
the ocean, cells falling in a centrifuge, and sky divers falling through the air. Figure 12.19 shows some of the factors that affect
terminal speed. There is a viscous drag on the object that depends on the viscosity of the fluid and the size of the object. But
there is also a buoyant force that depends on the density of the object relative to the fluid. Terminal speed will be greatest for
low-viscosity fluids and objects with high densities and small sizes. Thus a skydiver falls more slowly with outspread limbs than
when they are in a pike position—head first with hands at their side and legs together.

Take-Home Experiment: Don’t Lose Your Marbles

By measuring the terminal speed of a slowly moving sphere in a viscous fluid, one can find the viscosity of that fluid (at that
temperature). It can be difficult to find small ball bearings around the house, but a small marble will do. Gather two or three
fluids (syrup, motor oil, honey, olive oil, etc.) and a thick, tall clear glass or vase. Drop the marble into the center of the fluid
and time its fall (after letting it drop a little to reach its terminal speed). Compare your values for the terminal speed and see
if they are inversely proportional to the viscosities as listed in Table 12.1. Does it make a difference if the marble is dropped
near the side of the glass?

Knowledge of terminal speed is useful for estimating sedimentation rates of small particles. We know from watching mud settle
out of dirty water that sedimentation is usually a slow process. Centrifuges are used to speed sedimentation by creating
accelerated frames in which gravitational acceleration is replaced by centripetal acceleration, which can be much greater,
increasing the terminal speed.

Figure 12.19 There are three forces acting on an object falling through a viscous fluid: its weight w , the viscous drag FV , and the buoyant force

FB .
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12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

Diffusion

There is something fishy about the ice cube from your freezer—how did it pick up those food odors? How does soaking a
sprained ankle in Epsom salt reduce swelling? The answer to these questions are related to atomic and molecular transport
phenomena—another mode of fluid motion. Atoms and molecules are in constant motion at any temperature. In fluids they move
about randomly even in the absence of macroscopic flow. This motion is called a random walk and is illustrated in Figure 12.20.
Diffusion is the movement of substances due to random thermal molecular motion. Fluids, like fish fumes or odors entering ice
cubes, can even diffuse through solids.

Diffusion is a slow process over macroscopic distances. The densities of common materials are great enough that molecules
cannot travel very far before having a collision that can scatter them in any direction, including straight backward. It can be
shown that the average distance xrms that a molecule travels is proportional to the square root of time:

(12.58)xrms = 2Dt,

where xrms stands for the root-mean-square distance and is the statistical average for the process. The quantity D is the

diffusion constant for the particular molecule in a specific medium. Table 12.2 lists representative values of D for various

substances, in units of m2 /s .

Figure 12.20 The random thermal motion of a molecule in a fluid in time t . This type of motion is called a random walk.

Table 12.2 Diffusion Constants for Various
Molecules[3]

Diffusing molecule Medium D (m2/s)

Hydrogen ⎛⎝H2
⎞
⎠ Air 6.4×10–5

Oxygen ⎛⎝O2
⎞
⎠ Air 1.8×10–5

Oxygen ⎛⎝O2
⎞
⎠ Water 1.0×10–9

Glucose ⎛⎝C6 H12 O6
⎞
⎠ Water 6.7×10–10

Hemoglobin Water 6.9×10–11

DNA Water 1.3×10–12

Note that D gets progressively smaller for more massive molecules. This decrease is because the average molecular speed at

a given temperature is inversely proportional to molecular mass. Thus the more massive molecules diffuse more slowly. Another

3. At 20°C and 1 atm
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interesting point is that D for oxygen in air is much greater than D for oxygen in water. In water, an oxygen molecule makes

many more collisions in its random walk and is slowed considerably. In water, an oxygen molecule moves only about 40 μm in

1 s. (Each molecule actually collides about 1010 times per second!). Finally, note that diffusion constants increase with

temperature, because average molecular speed increases with temperature. This is because the average kinetic energy of

molecules, 1
2mv2 , is proportional to absolute temperature.

Example 12.11 Calculating Diffusion: How Long Does Glucose Diffusion Take?

Calculate the average time it takes a glucose molecule to move 1.0 cm in water.

Strategy

We can use xrms = 2Dt , the expression for the average distance moved in time t , and solve it for t . All other quantities

are known.

Solution

Solving for t and substituting known values yields

(12.59)
t = xrms

2

2D = (0.010 m)2

2(6.7×10−10 m2 /s)
= 7.5×104 s = 21 h.

Discussion

This is a remarkably long time for glucose to move a mere centimeter! For this reason, we stir sugar into water rather than
waiting for it to diffuse.

Because diffusion is typically very slow, its most important effects occur over small distances. For example, the cornea of the eye
gets most of its oxygen by diffusion through the thin tear layer covering it.

The Rate and Direction of Diffusion

If you very carefully place a drop of food coloring in a still glass of water, it will slowly diffuse into the colorless surroundings until
its concentration is the same everywhere. This type of diffusion is called free diffusion, because there are no barriers inhibiting it.
Let us examine its direction and rate. Molecular motion is random in direction, and so simple chance dictates that more
molecules will move out of a region of high concentration than into it. The net rate of diffusion is higher initially than after the
process is partially completed. (See Figure 12.21.)

Figure 12.21 Diffusion proceeds from a region of higher concentration to a lower one. The net rate of movement is proportional to the difference in
concentration.

The net rate of diffusion is proportional to the concentration difference. Many more molecules will leave a region of high
concentration than will enter it from a region of low concentration. In fact, if the concentrations were the same, there would be no
net movement. The net rate of diffusion is also proportional to the diffusion constant D , which is determined experimentally. The

farther a molecule can diffuse in a given time, the more likely it is to leave the region of high concentration. Many of the factors
that affect the rate are hidden in the diffusion constant D . For example, temperature and cohesive and adhesive forces all affect

values of D .

Diffusion is the dominant mechanism by which the exchange of nutrients and waste products occur between the blood and
tissue, and between air and blood in the lungs. In the evolutionary process, as organisms became larger, they needed quicker
methods of transportation than net diffusion, because of the larger distances involved in the transport, leading to the
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development of circulatory systems. Less sophisticated, single-celled organisms still rely totally on diffusion for the removal of
waste products and the uptake of nutrients.

Osmosis and Dialysis—Diffusion across Membranes

Some of the most interesting examples of diffusion occur through barriers that affect the rates of diffusion. For example, when
you soak a swollen ankle in Epsom salt, water diffuses through your skin. Many substances regularly move through cell
membranes; oxygen moves in, carbon dioxide moves out, nutrients go in, and wastes go out, for example. Because membranes

are thin structures (typically 6.5×10−9 to 10×10−9 m across) diffusion rates through them can be high. Diffusion through

membranes is an important method of transport.

Membranes are generally selectively permeable, or semipermeable. (See Figure 12.22.) One type of semipermeable
membrane has small pores that allow only small molecules to pass through. In other types of membranes, the molecules may
actually dissolve in the membrane or react with molecules in the membrane while moving across. Membrane function, in fact, is
the subject of much current research, involving not only physiology but also chemistry and physics.

Figure 12.22 (a) A semipermeable membrane with small pores that allow only small molecules to pass through. (b) Certain molecules dissolve in this
membrane and diffuse across it.

Osmosis is the transport of water through a semipermeable membrane from a region of high concentration to a region of low
concentration. Osmosis is driven by the imbalance in water concentration. For example, water is more concentrated in your body
than in Epsom salt. When you soak a swollen ankle in Epsom salt, the water moves out of your body into the lower-concentration
region in the salt. Similarly, dialysis is the transport of any other molecule through a semipermeable membrane due to its
concentration difference. Both osmosis and dialysis are used by the kidneys to cleanse the blood.

Osmosis can create a substantial pressure. Consider what happens if osmosis continues for some time, as illustrated in Figure
12.23. Water moves by osmosis from the left into the region on the right, where it is less concentrated, causing the solution on
the right to rise. This movement will continue until the pressure ρgh created by the extra height of fluid on the right is large

enough to stop further osmosis. This pressure is called a back pressure. The back pressure ρgh that stops osmosis is also

called the relative osmotic pressure if neither solution is pure water, and it is called the osmotic pressure if one solution is
pure water. Osmotic pressure can be large, depending on the size of the concentration difference. For example, if pure water and
sea water are separated by a semipermeable membrane that passes no salt, osmotic pressure will be 25.9 atm. This value
means that water will diffuse through the membrane until the salt water surface rises 268 m above the pure-water surface! One
example of pressure created by osmosis is turgor in plants (many wilt when too dry). Turgor describes the condition of a plant in
which the fluid in a cell exerts a pressure against the cell wall. This pressure gives the plant support. Dialysis can similarly cause
substantial pressures.
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Bernoulli’s equation:

Bernoulli’s principle:
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fluid dynamics:
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osmotic pressure:

Poiseuille’s law:

Poiseuille’s law for resistance:

relative osmotic pressure:

reverse dialysis:

Figure 12.23 (a) Two sugar-water solutions of different concentrations, separated by a semipermeable membrane that passes water but not sugar.

Osmosis will be to the right, since water is less concentrated there. (b) The fluid level rises until the back pressure ρgh equals the relative osmotic

pressure; then, the net transfer of water is zero.

Reverse osmosis and reverse dialysis (also called filtration) are processes that occur when back pressure is sufficient to
reverse the normal direction of substances through membranes. Back pressure can be created naturally as on the right side of
Figure 12.23. (A piston can also create this pressure.) Reverse osmosis can be used to desalinate water by simply forcing it
through a membrane that will not pass salt. Similarly, reverse dialysis can be used to filter out any substance that a given
membrane will not pass.

One further example of the movement of substances through membranes deserves mention. We sometimes find that substances
pass in the direction opposite to what we expect. Cypress tree roots, for example, extract pure water from salt water, although
osmosis would move it in the opposite direction. This is not reverse osmosis, because there is no back pressure to cause it.
What is happening is called active transport, a process in which a living membrane expends energy to move substances across
it. Many living membranes move water and other substances by active transport. The kidneys, for example, not only use osmosis
and dialysis—they also employ significant active transport to move substances into and out of blood. In fact, it is estimated that
at least 25% of the body’s energy is expended on active transport of substances at the cellular level. The study of active
transport carries us into the realms of microbiology, biophysics, and biochemistry and it is a fascinating application of the laws of
nature to living structures.

Glossary

the process in which a living membrane expends energy to move substances across

the equation resulting from applying conservation of energy to an incompressible frictionless fluid: P +

1/2pv2 + pgh = constant , through the fluid

Bernoulli’s equation applied at constant depth: P1 + 1/2pv1
2 = P2 + 1/2pv2

2

the transport of any molecule other than water through a semipermeable membrane from a region of high
concentration to one of low concentration

the movement of substances due to random thermal molecular motion

abbreviated Q, it is the volume V that flows past a particular point during a time t, or Q = V/t

the physics of fluids in motion

a type of fluid flow in which layers do not mix

a unit of volume, equal to 10−3 m3

the transport of water through a semipermeable membrane from a region of high concentration to one of low
concentration

the back pressure which stops the osmotic process if one solution is pure water

the rate of laminar flow of an incompressible fluid in a tube: Q = (P2 − P1)πr4/8ηl

the resistance to laminar flow of an incompressible fluid in a tube: R = 8ηl/πr4

the back pressure which stops the osmotic process if neither solution is pure water

the process that occurs when back pressure is sufficient to reverse the normal direction of dialysis through
membranes
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reverse osmosis:

Reynolds number:

semipermeable:

terminal speed:

turbulence:

viscosity:

viscous drag:

the process that occurs when back pressure is sufficient to reverse the normal direction of osmosis through
membranes

a dimensionless parameter that can reveal whether a particular flow is laminar or turbulent

a type of membrane that allows only certain small molecules to pass through

the speed at which the viscous drag of an object falling in a viscous fluid is equal to the other forces acting
on the object (such as gravity), so that the acceleration of the object is zero

fluid flow in which layers mix together via eddies and swirls

the friction in a fluid, defined in terms of the friction between layers

a resistance force exerted on a moving object, with a nontrivial dependence on velocity

Section Summary

12.1 Flow Rate and Its Relation to Velocity

• Flow rate Q is defined to be the volume V flowing past a point in time t , or Q = V
t where V is volume and t is time.

• The SI unit of volume is m3 .

• Another common unit is the liter (L), which is 10−3 m3 .

• Flow rate and velocity are related by Q = A v¯ where A is the cross-sectional area of the flow and v¯ is its average

velocity.
• For incompressible fluids, flow rate at various points is constant. That is,

Q1 = Q2

A1 v¯ 1 = A2 v¯ 2

n1 A1 v¯ 1 = n2A2 v¯ 2

⎫

⎭
⎬
⎪
⎪.

12.2 Bernoulli’s Equation
• Bernoulli’s equation states that the sum on each side of the following equation is constant, or the same at any two points in

an incompressible frictionless fluid:

P1 + 1
2ρv1

2 + ρgh1 = P2 + 1
2ρv2

2 + ρgh2.
• Bernoulli’s principle is Bernoulli’s equation applied to situations in which depth is constant. The terms involving depth (or

height h ) subtract out, yielding

P1 + 1
2ρv1

2 = P2 + 1
2ρv2

2.
• Bernoulli’s principle has many applications, including entrainment, wings and sails, and velocity measurement.

12.3 The Most General Applications of Bernoulli’s Equation

• Power in fluid flow is given by the equation
⎛
⎝P1 + 1

2ρv2 + ρgh⎞⎠Q = power, where the first term is power associated with

pressure, the second is power associated with velocity, and the third is power associated with height.

12.4 Viscosity and Laminar Flow; Poiseuille’s Law
• Laminar flow is characterized by smooth flow of the fluid in layers that do not mix.
• Turbulence is characterized by eddies and swirls that mix layers of fluid together.
• Fluid viscosity η is due to friction within a fluid. Representative values are given in Table 12.1. Viscosity has units of

(N/m2)s or Pa ⋅ s .

• Flow is proportional to pressure difference and inversely proportional to resistance:

Q = P2 − P1
R .

• For laminar flow in a tube, Poiseuille’s law for resistance states that

R = 8ηl
πr4.

• Poiseuille’s law for flow in a tube is
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Q = (P2 − P1)πr4

8ηl .
• The pressure drop caused by flow and resistance is given by

P2 − P1 = RQ.

12.5 The Onset of Turbulence
• The Reynolds number NR can reveal whether flow is laminar or turbulent. It is

NR = 2ρvr
η .

• For NR below about 2000, flow is laminar. For NR above about 3000, flow is turbulent. For values of NR between 2000

and 3000, it may be either or both.

12.6 Motion of an Object in a Viscous Fluid

• When an object moves in a fluid, there is a different form of the Reynolds number N′R = ρvL
η (object in fluid), which

indicates whether flow is laminar or turbulent.
• For N′R less than about one, flow is laminar.

• For N′R greater than 106 , flow is entirely turbulent.

12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes
• Diffusion is the movement of substances due to random thermal molecular motion.
• The average distance xrms a molecule travels by diffusion in a given amount of time is given by

xrms = 2Dt,
where D is the diffusion constant, representative values of which are found in Table 12.2.

• Osmosis is the transport of water through a semipermeable membrane from a region of high concentration to a region of
low concentration.

• Dialysis is the transport of any other molecule through a semipermeable membrane due to its concentration difference.
• Both processes can be reversed by back pressure.
• Active transport is a process in which a living membrane expends energy to move substances across it.

Conceptual Questions

12.1 Flow Rate and Its Relation to Velocity

1. What is the difference between flow rate and fluid velocity? How are they related?

2. Many figures in the text show streamlines. Explain why fluid velocity is greatest where streamlines are closest together. (Hint:
Consider the relationship between fluid velocity and the cross-sectional area through which it flows.)

3. Identify some substances that are incompressible and some that are not.

12.2 Bernoulli’s Equation

4. You can squirt water a considerably greater distance by placing your thumb over the end of a garden hose and then releasing,
than by leaving it completely uncovered. Explain how this works.

5. Water is shot nearly vertically upward in a decorative fountain and the stream is observed to broaden as it rises. Conversely, a
stream of water falling straight down from a faucet narrows. Explain why, and discuss whether surface tension enhances or
reduces the effect in each case.

6. Look back to Figure 12.4. Answer the following two questions. Why is Po less than atmospheric? Why is Po greater than

Pi ?

7. Give an example of entrainment not mentioned in the text.

8. Many entrainment devices have a constriction, called a Venturi, such as shown in Figure 12.24. How does this bolster
entrainment?
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Figure 12.24 A tube with a narrow segment designed to enhance entrainment is called a Venturi. These are very commonly used in carburetors and
aspirators.

9. Some chimney pipes have a T-shape, with a crosspiece on top that helps draw up gases whenever there is even a slight
breeze. Explain how this works in terms of Bernoulli’s principle.

10. Is there a limit to the height to which an entrainment device can raise a fluid? Explain your answer.

11. Why is it preferable for airplanes to take off into the wind rather than with the wind?

12. Roofs are sometimes pushed off vertically during a tropical cyclone, and buildings sometimes explode outward when hit by a
tornado. Use Bernoulli’s principle to explain these phenomena.

13. Why does a sailboat need a keel?

14. It is dangerous to stand close to railroad tracks when a rapidly moving commuter train passes. Explain why atmospheric
pressure would push you toward the moving train.

15. Water pressure inside a hose nozzle can be less than atmospheric pressure due to the Bernoulli effect. Explain in terms of
energy how the water can emerge from the nozzle against the opposing atmospheric pressure.

16. A perfume bottle or atomizer sprays a fluid that is in the bottle. (Figure 12.25.) How does the fluid rise up in the vertical tube
in the bottle?

Figure 12.25 Atomizer: perfume bottle with tube to carry perfume up through the bottle. (credit: Antonia Foy, Flickr)

17. If you lower the window on a car while moving, an empty plastic bag can sometimes fly out the window. Why does this
happen?

12.3 The Most General Applications of Bernoulli’s Equation

18. Based on Bernoulli’s equation, what are three forms of energy in a fluid? (Note that these forms are conservative, unlike heat
transfer and other dissipative forms not included in Bernoulli’s equation.)

19. Water that has emerged from a hose into the atmosphere has a gauge pressure of zero. Why? When you put your hand in
front of the emerging stream you feel a force, yet the water’s gauge pressure is zero. Explain where the force comes from in
terms of energy.
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20. The old rubber boot shown in Figure 12.26 has two leaks. To what maximum height can the water squirt from Leak 1? How
does the velocity of water emerging from Leak 2 differ from that of leak 1? Explain your responses in terms of energy.

Figure 12.26 Water emerges from two leaks in an old boot.

21. Water pressure inside a hose nozzle can be less than atmospheric pressure due to the Bernoulli effect. Explain in terms of
energy how the water can emerge from the nozzle against the opposing atmospheric pressure.

12.4 Viscosity and Laminar Flow; Poiseuille’s Law

22. Explain why the viscosity of a liquid decreases with temperature—that is, how might increased temperature reduce the
effects of cohesive forces in a liquid? Also explain why the viscosity of a gas increases with temperature—that is, how does
increased gas temperature create more collisions between atoms and molecules?

23. When paddling a canoe upstream, it is wisest to travel as near to the shore as possible. When canoeing downstream, it may
be best to stay near the middle. Explain why.

24. Why does flow decrease in your shower when someone flushes the toilet?

25. Plumbing usually includes air-filled tubes near water faucets, as shown in Figure 12.27. Explain why they are needed and
how they work.

Figure 12.27 The vertical tube near the water tap remains full of air and serves a useful purpose.

12.5 The Onset of Turbulence

26. Doppler ultrasound can be used to measure the speed of blood in the body. If there is a partial constriction of an artery,
where would you expect blood speed to be greatest, at or nearby the constriction? What are the two distinct causes of higher
resistance in the constriction?
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27. Sink drains often have a device such as that shown in Figure 12.28 to help speed the flow of water. How does this work?

Figure 12.28 You will find devices such as this in many drains. They significantly increase flow rate.

28. Some ceiling fans have decorative wicker reeds on their blades. Discuss whether these fans are as quiet and efficient as
those with smooth blades.

12.6 Motion of an Object in a Viscous Fluid

29. What direction will a helium balloon move inside a car that is slowing down—toward the front or back? Explain your answer.

30. Will identical raindrops fall more rapidly in 5º C air or 25º C air, neglecting any differences in air density? Explain your

answer.

31. If you took two marbles of different sizes, what would you expect to observe about the relative magnitudes of their terminal
velocities?

12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes

32. Why would you expect the rate of diffusion to increase with temperature? Can you give an example, such as the fact that you
can dissolve sugar more rapidly in hot water?

33. How are osmosis and dialysis similar? How do they differ?
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Problems & Exercises

12.1 Flow Rate and Its Relation to Velocity

1. What is the average flow rate in cm3 /s of gasoline to the

engine of a car traveling at 100 km/h if it averages 10.0 km/
L?

2. The heart of a resting adult pumps blood at a rate of 5.00

L/min. (a) Convert this to cm3 /s . (b) What is this rate in

m3 /s ?

3. Blood is pumped from the heart at a rate of 5.0 L/min into
the aorta (of radius 1.0 cm). Determine the speed of blood
through the aorta.

4. Blood is flowing through an artery of radius 2 mm at a rate
of 40 cm/s. Determine the flow rate and the volume that
passes through the artery in a period of 30 s.

5. The Huka Falls on the Waikato River is one of New
Zealand’s most visited natural tourist attractions (see Figure
12.29). On average the river has a flow rate of about 300,000
L/s. At the gorge, the river narrows to 20 m wide and
averages 20 m deep. (a) What is the average speed of the
river in the gorge? (b) What is the average speed of the water
in the river downstream of the falls when it widens to 60 m
and its depth increases to an average of 40 m?

Figure 12.29 The Huka Falls in Taupo, New Zealand, demonstrate flow

rate. (credit: RaviGogna, Flickr)

6. A major artery with a cross-sectional area of 1.00 cm2

branches into 18 smaller arteries, each with an average

cross-sectional area of 0.400 cm2 . By what factor is the

average velocity of the blood reduced when it passes into
these branches?

7. (a) As blood passes through the capillary bed in an organ,
the capillaries join to form venules (small veins). If the blood
speed increases by a factor of 4.00 and the total cross-

sectional area of the venules is 10.0 cm2 , what is the total

cross-sectional area of the capillaries feeding these venules?
(b) How many capillaries are involved if their average
diameter is 10.0 μm ?

8. The human circulation system has approximately 1×109

capillary vessels. Each vessel has a diameter of about 8 μm
. Assuming cardiac output is 5 L/min, determine the average
velocity of blood flow through each capillary vessel.

9. (a) Estimate the time it would take to fill a private swimming
pool with a capacity of 80,000 L using a garden hose
delivering 60 L/min. (b) How long would it take to fill if you

could divert a moderate size river, flowing at 5000 m3 /s ,

into it?

10. The flow rate of blood through a 2.00×10–6-m -radius

capillary is 3.80×10-9 cm3 /s . (a) What is the speed of the

blood flow? (This small speed allows time for diffusion of
materials to and from the blood.) (b) Assuming all the blood in
the body passes through capillaries, how many of them must

there be to carry a total flow of 90.0 cm3 /s ? (The large

number obtained is an overestimate, but it is still reasonable.)

11. (a) What is the fluid speed in a fire hose with a 9.00-cm
diameter carrying 80.0 L of water per second? (b) What is the
flow rate in cubic meters per second? (c) Would your answers
be different if salt water replaced the fresh water in the fire
hose?

12. The main uptake air duct of a forced air gas heater is
0.300 m in diameter. What is the average speed of air in the
duct if it carries a volume equal to that of the house’s interior
every 15 min? The inside volume of the house is equivalent to
a rectangular solid 13.0 m wide by 20.0 m long by 2.75 m
high.

13. Water is moving at a velocity of 2.00 m/s through a hose
with an internal diameter of 1.60 cm. (a) What is the flow rate
in liters per second? (b) The fluid velocity in this hose’s nozzle
is 15.0 m/s. What is the nozzle’s inside diameter?

14. Prove that the speed of an incompressible fluid through a
constriction, such as in a Venturi tube, increases by a factor
equal to the square of the factor by which the diameter
decreases. (The converse applies for flow out of a
constriction into a larger-diameter region.)

15. Water emerges straight down from a faucet with a
1.80-cm diameter at a speed of 0.500 m/s. (Because of the
construction of the faucet, there is no variation in speed

across the stream.) (a) What is the flow rate in cm3 /s ? (b)

What is the diameter of the stream 0.200 m below the faucet?
Neglect any effects due to surface tension.

16. Unreasonable Results

A mountain stream is 10.0 m wide and averages 2.00 m in
depth. During the spring runoff, the flow in the stream reaches

100,000 m3 /s . (a) What is the average velocity of the

stream under these conditions? (b) What is unreasonable
about this velocity? (c) What is unreasonable or inconsistent
about the premises?

12.2 Bernoulli’s Equation

17. Verify that pressure has units of energy per unit volume.

18. Suppose you have a wind speed gauge like the pitot tube
shown in Example 12.2(b). By what factor must wind speed
increase to double the value of h in the manometer? Is this

independent of the moving fluid and the fluid in the
manometer?

19. If the pressure reading of your pitot tube is 15.0 mm Hg at
a speed of 200 km/h, what will it be at 700 km/h at the same
altitude?
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20. Calculate the maximum height to which water could be
squirted with the hose in Example 12.2 example if it: (a)
Emerges from the nozzle. (b) Emerges with the nozzle
removed, assuming the same flow rate.

21. Every few years, winds in Boulder, Colorado, attain
sustained speeds of 45.0 m/s (about 100 mi/h) when the jet
stream descends during early spring. Approximately what is
the force due to the Bernoulli effect on a roof having an area

of 220 m2 ? Typical air density in Boulder is 1.14 kg/m3 ,

and the corresponding atmospheric pressure is

8.89×104 N/m2 . (Bernoulli’s principle as stated in the text

assumes laminar flow. Using the principle here produces only
an approximate result, because there is significant
turbulence.)

22. (a) Calculate the approximate force on a square meter of
sail, given the horizontal velocity of the wind is 6.00 m/s
parallel to its front surface and 3.50 m/s along its back

surface. Take the density of air to be 1.29 kg/m3 . (The

calculation, based on Bernoulli’s principle, is approximate due
to the effects of turbulence.) (b) Discuss whether this force is
great enough to be effective for propelling a sailboat.

23. (a) What is the pressure drop due to the Bernoulli effect
as water goes into a 3.00-cm-diameter nozzle from a
9.00-cm-diameter fire hose while carrying a flow of 40.0 L/s?
(b) To what maximum height above the nozzle can this water
rise? (The actual height will be significantly smaller due to air
resistance.)

24. (a) Using Bernoulli’s equation, show that the measured
fluid speed v for a pitot tube, like the one in Figure 12.7(b),

is given by v = ⎛⎝
2ρ′gh

ρ
⎞
⎠

1 / 2
,

where h is the height of the manometer fluid, ρ′ is the

density of the manometer fluid, ρ is the density of the

moving fluid, and g is the acceleration due to gravity. (Note

that v is indeed proportional to the square root of h , as

stated in the text.) (b) Calculate v for moving air if a mercury

manometer’s h is 0.200 m.

12.3 The Most General Applications of
Bernoulli’s Equation

25. Hoover Dam on the Colorado River is the highest dam in
the United States at 221 m, with an output of 1300 MW. The
dam generates electricity with water taken from a depth of

150 m and an average flow rate of 650 m3 /s . (a) Calculate

the power in this flow. (b) What is the ratio of this power to the
facility’s average of 680 MW?

26. A frequently quoted rule of thumb in aircraft design is that
wings should produce about 1000 N of lift per square meter of
wing. (The fact that a wing has a top and bottom surface does
not double its area.) (a) At takeoff, an aircraft travels at 60.0
m/s, so that the air speed relative to the bottom of the wing is
60.0 m/s. Given the sea level density of air to be

1.29 kg/m3 , how fast must it move over the upper surface

to create the ideal lift? (b) How fast must air move over the
upper surface at a cruising speed of 245 m/s and at an
altitude where air density is one-fourth that at sea level?
(Note that this is not all of the aircraft’s lift—some comes from
the body of the plane, some from engine thrust, and so on.
Furthermore, Bernoulli’s principle gives an approximate
answer because flow over the wing creates turbulence.)

27. The left ventricle of a resting adult’s heart pumps blood at

a flow rate of 83.0 cm3 /s , increasing its pressure by 110

mm Hg, its speed from zero to 30.0 cm/s, and its height by
5.00 cm. (All numbers are averaged over the entire
heartbeat.) Calculate the total power output of the left
ventricle. Note that most of the power is used to increase
blood pressure.

28. A sump pump (used to drain water from the basement of
houses built below the water table) is draining a flooded
basement at the rate of 0.750 L/s, with an output pressure of

3.00×105 N/m2 . (a) The water enters a hose with a

3.00-cm inside diameter and rises 2.50 m above the pump.
What is its pressure at this point? (b) The hose goes over the
foundation wall, losing 0.500 m in height, and widens to 4.00
cm in diameter. What is the pressure now? You may neglect
frictional losses in both parts of the problem.

12.4 Viscosity and Laminar Flow; Poiseuille’s
Law

29. (a) Calculate the retarding force due to the viscosity of the
air layer between a cart and a level air track given the
following information—air temperature is 20º C , the cart is

moving at 0.400 m/s, its surface area is 2.50×10−2 m2 ,

and the thickness of the air layer is 6.00×10−5 m . (b) What

is the ratio of this force to the weight of the 0.300-kg cart?

30. What force is needed to pull one microscope slide over
another at a speed of 1.00 cm/s, if there is a 0.500-mm-thick
layer of 20º C water between them and the contact area is

8.00 cm2 ?

31. A glucose solution being administered with an IV has a

flow rate of 4.00 cm3 /min . What will the new flow rate be if

the glucose is replaced by whole blood having the same
density but a viscosity 2.50 times that of the glucose? All
other factors remain constant.

32. The pressure drop along a length of artery is 100 Pa, the
radius is 10 mm, and the flow is laminar. The average speed
of the blood is 15 mm/s. (a) What is the net force on the blood
in this section of artery? (b) What is the power expended
maintaining the flow?

33. A small artery has a length of 1.1×10−3 m and a radius

of 2.5×10−5 m . If the pressure drop across the artery is

1.3 kPa, what is the flow rate through the artery? (Assume
that the temperature is 37º C .)
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34. Fluid originally flows through a tube at a rate of

100 cm3 /s . To illustrate the sensitivity of flow rate to various

factors, calculate the new flow rate for the following changes
with all other factors remaining the same as in the original
conditions. (a) Pressure difference increases by a factor of
1.50. (b) A new fluid with 3.00 times greater viscosity is
substituted. (c) The tube is replaced by one having 4.00 times
the length. (d) Another tube is used with a radius 0.100 times
the original. (e) Yet another tube is substituted with a radius
0.100 times the original and half the length, and the pressure
difference is increased by a factor of 1.50.

35. The arterioles (small arteries) leading to an organ,
constrict in order to decrease flow to the organ. To shut down
an organ, blood flow is reduced naturally to 1.00% of its
original value. By what factor did the radii of the arterioles
constrict? Penguins do this when they stand on ice to reduce
the blood flow to their feet.

36. Angioplasty is a technique in which arteries partially
blocked with plaque are dilated to increase blood flow. By
what factor must the radius of an artery be increased in order
to increase blood flow by a factor of 10?

37. (a) Suppose a blood vessel’s radius is decreased to
90.0% of its original value by plaque deposits and the body
compensates by increasing the pressure difference along the
vessel to keep the flow rate constant. By what factor must the
pressure difference increase? (b) If turbulence is created by
the obstruction, what additional effect would it have on the
flow rate?

38. A spherical particle falling at a terminal speed in a liquid
must have the gravitational force balanced by the drag force
and the buoyant force. The buoyant force is equal to the
weight of the displaced fluid, while the drag force is assumed
to be given by Stokes Law, Fs = 6πrηv . Show that the

terminal speed is given by v = 2R2 g
9η (ρs − ρ1),

where R is the radius of the sphere, ρs is its density, and

ρ1 is the density of the fluid and η the coefficient of

viscosity.

39. Using the equation of the previous problem, find the
viscosity of motor oil in which a steel ball of radius 0.8 mm
falls with a terminal speed of 4.32 cm/s. The densities of the
ball and the oil are 7.86 and 0.88 g/mL, respectively.

40. A skydiver will reach a terminal velocity when the air drag
equals their weight. For a skydiver with high speed and a
large body, turbulence is a factor. The drag force then is
approximately proportional to the square of the velocity.

Taking the drag force to be FD = 1
2ρAv2 and setting this

equal to the person’s weight, find the terminal speed for a
person falling “spread eagle.” Find both a formula and a
number for vt , with assumptions as to size.

41. A layer of oil 1.50 mm thick is placed between two
microscope slides. Researchers find that a force of

5.50×10−4 N is required to glide one over the other at a

speed of 1.00 cm/s when their contact area is 6.00 cm2 .

What is the oil’s viscosity? What type of oil might it be?

42. (a) Verify that a 19.0% decrease in laminar flow through a
tube is caused by a 5.00% decrease in radius, assuming that
all other factors remain constant, as stated in the text. (b)
What increase in flow is obtained from a 5.00% increase in
radius, again assuming all other factors remain constant?

43. Example 12.8 dealt with the flow of saline solution in an

IV system. (a) Verify that a pressure of 1.62×104 N/m2 is

created at a depth of 1.61 m in a saline solution, assuming its
density to be that of sea water. (b) Calculate the new flow rate
if the height of the saline solution is decreased to 1.50 m. (c)
At what height would the direction of flow be reversed? (This
reversal can be a problem when patients stand up.)

44. When physicians diagnose arterial blockages, they quote
the reduction in flow rate. If the flow rate in an artery has been
reduced to 10.0% of its normal value by a blood clot and the
average pressure difference has increased by 20.0%, by what
factor has the clot reduced the radius of the artery?

45. During a marathon race, a runner’s blood flow increases
to 10.0 times her resting rate. Her blood’s viscosity has
dropped to 95.0% of its normal value, and the blood pressure
difference across the circulatory system has increased by
50.0%. By what factor has the average radii of her blood
vessels increased?

46. Water supplied to a house by a water main has a

pressure of 3.00×105 N/m2 early on a summer day when

neighborhood use is low. This pressure produces a flow of
20.0 L/min through a garden hose. Later in the day, pressure
at the exit of the water main and entrance to the house drops,
and a flow of only 8.00 L/min is obtained through the same
hose. (a) What pressure is now being supplied to the house,
assuming resistance is constant? (b) By what factor did the
flow rate in the water main increase in order to cause this
decrease in delivered pressure? The pressure at the entrance

of the water main is 5.00×105 N/m2 , and the original flow

rate was 200 L/min. (c) How many more users are there,
assuming each would consume 20.0 L/min in the morning?

47. An oil gusher shoots crude oil 25.0 m into the air through
a pipe with a 0.100-m diameter. Neglecting air resistance but
not the resistance of the pipe, and assuming laminar flow,
calculate the gauge pressure at the entrance of the 50.0-m-
long vertical pipe. Take the density of the oil to be

900 kg/m3 and its viscosity to be 1.00 (N/m2 ) ⋅ s (or

1.00 Pa ⋅ s ). Note that you must take into account the

pressure due to the 50.0-m column of oil in the pipe.

48. Concrete is pumped from a cement mixer to the place it is
being laid, instead of being carried in wheelbarrows. The flow
rate is 200.0 L/min through a 50.0-m-long, 8.00-cm-diameter

hose, and the pressure at the pump is 8.00×106 N/m2 . (a)

Calculate the resistance of the hose. (b) What is the viscosity
of the concrete, assuming the flow is laminar? (c) How much
power is being supplied, assuming the point of use is at the
same level as the pump? You may neglect the power supplied
to increase the concrete’s velocity.

49. Construct Your Own Problem

Consider a coronary artery constricted by arteriosclerosis.
Construct a problem in which you calculate the amount by
which the diameter of the artery is decreased, based on an
assessment of the decrease in flow rate.
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50. Consider a river that spreads out in a delta region on its
way to the sea. Construct a problem in which you calculate
the average speed at which water moves in the delta region,
based on the speed at which it was moving up river. Among
the things to consider are the size and flow rate of the river
before it spreads out and its size once it has spread out. You
can construct the problem for the river spreading out into one
large river or into multiple smaller rivers.

12.5 The Onset of Turbulence

51. Verify that the flow of oil is laminar (barely) for an oil
gusher that shoots crude oil 25.0 m into the air through a pipe
with a 0.100-m diameter. The vertical pipe is 50 m long. Take

the density of the oil to be 900 kg/m3 and its viscosity to be

1.00 (N/m2 ) ⋅ s (or 1.00 Pa ⋅ s ).

52. Show that the Reynolds number NR is unitless by

substituting units for all the quantities in its definition and
cancelling.

53. Calculate the Reynolds numbers for the flow of water
through (a) a nozzle with a radius of 0.250 cm and (b) a
garden hose with a radius of 0.900 cm, when the nozzle is
attached to the hose. The flow rate through hose and nozzle
is 0.500 L/s. Can the flow in either possibly be laminar?

54. A fire hose has an inside diameter of 6.40 cm. Suppose
such a hose carries a flow of 40.0 L/s starting at a gauge

pressure of 1.62×106 N/m2 . The hose goes 10.0 m up a

ladder to a nozzle having an inside diameter of 3.00 cm.
Calculate the Reynolds numbers for flow in the fire hose and
nozzle to show that the flow in each must be turbulent.

55. Concrete is pumped from a cement mixer to the place it is
being laid, instead of being carried in wheelbarrows. The flow
rate is 200.0 L/min through a 50.0-m-long, 8.00-cm-diameter

hose, and the pressure at the pump is 8.00×106 N/m2 .

Verify that the flow of concrete is laminar taking concrete’s

viscosity to be 48.0 (N/m2) · s , and given its density is

2300 kg/m3 .

56. At what flow rate might turbulence begin to develop in a
water main with a 0.200-m diameter? Assume a 20º C
temperature.

57. What is the greatest average speed of blood flow at
37º C in an artery of radius 2.00 mm if the flow is to remain

laminar? What is the corresponding flow rate? Take the

density of blood to be 1025 kg / m3 .

58. In Take-Home Experiment: Inhalation, we measured the
average flow rate Q of air traveling through the trachea

during each inhalation. Now calculate the average air speed
in meters per second through your trachea during each
inhalation. The radius of the trachea in adult humans is

approximately 10−2 m . From the data above, calculate the

Reynolds number for the air flow in the trachea during
inhalation. Do you expect the air flow to be laminar or
turbulent?

59. Gasoline is piped underground from refineries to major

users. The flow rate is 3.00×10–2 m3 /s (about 500 gal/

min), the viscosity of gasoline is 1.00×10–3 (N/m2 ) ⋅ s ,

and its density is 680 kg/m3 . (a) What minimum diameter

must the pipe have if the Reynolds number is to be less than
2000? (b) What pressure difference must be maintained
along each kilometer of the pipe to maintain this flow rate?

60. Assuming that blood is an ideal fluid, calculate the critical
flow rate at which turbulence is a certainty in the aorta. Take
the diameter of the aorta to be 2.50 cm. (Turbulence will
actually occur at lower average flow rates, because blood is
not an ideal fluid. Furthermore, since blood flow pulses,
turbulence may occur during only the high-velocity part of
each heartbeat.)

61. Unreasonable Results

A fairly large garden hose has an internal radius of 0.600 cm
and a length of 23.0 m. The nozzleless horizontal hose is
attached to a faucet, and it delivers 50.0 L/s. (a) What water
pressure is supplied by the faucet? (b) What is unreasonable
about this pressure? (c) What is unreasonable about the
premise? (d) What is the Reynolds number for the given flow?

(Take the viscosity of water as 1.005×10–3 ⎛⎝N / m2⎞⎠ ⋅ s .)

12.7 Molecular Transport Phenomena:
Diffusion, Osmosis, and Related Processes

62. You can smell perfume very shortly after opening the
bottle. To show that it is not reaching your nose by diffusion,
calculate the average distance a perfume molecule moves in
one second in air, given its diffusion constant D to be

1.00×10–6 m2 /s .

63. What is the ratio of the average distances that oxygen will
diffuse in a given time in air and water? Why is this distance
less in water (equivalently, why is D less in water)?

64. Oxygen reaches the veinless cornea of the eye by
diffusing through its tear layer, which is 0.500-mm thick. How
long does it take the average oxygen molecule to do this?

65. (a) Find the average time required for an oxygen molecule
to diffuse through a 0.200-mm-thick tear layer on the cornea.

(b) How much time is required to diffuse 0.500 cm3 of

oxygen to the cornea if its surface area is 1.00 cm2 ?

66. Suppose hydrogen and oxygen are diffusing through air.
A small amount of each is released simultaneously. How
much time passes before the hydrogen is 1.00 s ahead of the
oxygen? Such differences in arrival times are used as an
analytical tool in gas chromatography.
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13 TEMPERATURE, KINETIC THEORY, AND
THE GAS LAWS

Figure 13.1 The welder’s gloves and helmet protect him from the electric arc that transfers enough thermal energy to melt the rod, spray sparks, and
burn the retina of an unprotected eye. The thermal energy can be felt on exposed skin a few meters away, and its light can be seen for kilometers.
(credit: Kevin S. O’Brien/U.S. Navy)

Chapter Outline
13.1. Temperature

• Define temperature.
• Convert temperatures between the Celsius, Fahrenheit, and Kelvin scales.
• Define thermal equilibrium.
• State the zeroth law of thermodynamics.

13.2. Thermal Expansion of Solids and Liquids
• Define and describe thermal expansion.
• Calculate the linear expansion of an object given its initial length, change in temperature, and coefficient of linear

expansion.
• Calculate the volume expansion of an object given its initial volume, change in temperature, and coefficient of volume

expansion.
• Calculate thermal stress on an object given its original volume, temperature change, volume change, and bulk

modulus.
13.3. The Ideal Gas Law

• State the ideal gas law in terms of molecules and in terms of moles.
• Use the ideal gas law to calculate pressure change, temperature change, volume change, or the number of

molecules or moles in a given volume.
• Use Avogadro’s number to convert between number of molecules and number of moles.

13.4. Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
• Express the ideal gas law in terms of molecular mass and velocity.
• Define thermal energy.
• Calculate the kinetic energy of a gas molecule, given its temperature.
• Describe the relationship between the temperature of a gas and the kinetic energy of atoms and molecules.
• Describe the distribution of speeds of molecules in a gas.

13.5. Phase Changes
• Interpret a phase diagram.
• State Dalton’s law.
• Identify and describe the triple point of a gas from its phase diagram.
• Describe the state of equilibrium between a liquid and a gas, a liquid and a solid, and a gas and a solid.

13.6. Humidity, Evaporation, and Boiling

Chapter 13 | Temperature, Kinetic Theory, and the Gas Laws 471



• Explain the relationship between vapor pressure of water and the capacity of air to hold water vapor.
• Explain the relationship between relative humidity and partial pressure of water vapor in the air.
• Calculate vapor density using vapor pressure.
• Calculate humidity and dew point.

Introduction to Temperature, Kinetic Theory, and the Gas Laws

Heat is something familiar to each of us. We feel the warmth of the summer Sun, the chill of a clear summer night, the heat of
coffee after a winter stroll, and the cooling effect of our sweat. Heat transfer is maintained by temperature differences.
Manifestations of heat transfer—the movement of heat energy from one place or material to another—are apparent throughout
the universe. Heat from beneath Earth’s surface is brought to the surface in flows of incandescent lava. The Sun warms Earth’s
surface and is the source of much of the energy we find on it. Rising levels of atmospheric carbon dioxide threaten to trap more
of the Sun’s energy, perhaps fundamentally altering the ecosphere. In space, supernovas explode, briefly radiating more heat
than an entire galaxy does.

What is heat? How do we define it? How is it related to temperature? What are heat’s effects? How is it related to other forms of
energy and to work? We will find that, in spite of the richness of the phenomena, there is a small set of underlying physical
principles that unite the subjects and tie them to other fields.

Figure 13.2 In a typical thermometer like this one, the alcohol, with a red dye, expands more rapidly than the glass containing it. When the
thermometer’s temperature increases, the liquid from the bulb is forced into the narrow tube, producing a large change in the length of the column for a
small change in temperature. (credit: Chemical Engineer, Wikimedia Commons)

13.1 Temperature

The concept of temperature has evolved from the common concepts of hot and cold. Human perception of what feels hot or cold
is a relative one. For example, if you place one hand in hot water and the other in cold water, and then place both hands in tepid
water, the tepid water will feel cool to the hand that was in hot water, and warm to the one that was in cold water. The scientific
definition of temperature is less ambiguous than your senses of hot and cold. Temperature is operationally defined to be what
we measure with a thermometer. (Many physical quantities are defined solely in terms of how they are measured. We shall see
later how temperature is related to the kinetic energies of atoms and molecules, a more physical explanation.) Two accurate
thermometers, one placed in hot water and the other in cold water, will show the hot water to have a higher temperature. If they
are then placed in the tepid water, both will give identical readings (within measurement uncertainties). In this section, we discuss
temperature, its measurement by thermometers, and its relationship to thermal equilibrium. Again, temperature is the quantity
measured by a thermometer.

Misconception Alert: Human Perception vs. Reality

On a cold winter morning, the wood on a porch feels warmer than the metal of your bike. The wood and bicycle are in
thermal equilibrium with the outside air, and are thus the same temperature. They feel different because of the difference in
the way that they conduct heat away from your skin. The metal conducts heat away from your body faster than the wood
does (see more about conductivity in Conduction). This is just one example demonstrating that the human sense of hot and
cold is not determined by temperature alone.

Another factor that affects our perception of temperature is humidity. Most people feel much hotter on hot, humid days than
on hot, dry days. This is because on humid days, sweat does not evaporate from the skin as efficiently as it does on dry
days. It is the evaporation of sweat (or water from a sprinkler or pool) that cools us off.

Any physical property that depends on temperature, and whose response to temperature is reproducible, can be used as the
basis of a thermometer. Because many physical properties depend on temperature, the variety of thermometers is remarkable.
For example, volume increases with temperature for most substances. This property is the basis for the common alcohol
thermometer, the old mercury thermometer, and the bimetallic strip (Figure 13.3). Other properties used to measure temperature
include electrical resistance and color, as shown in Figure 13.4, and the emission of infrared radiation, as shown in Figure 13.5.
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Figure 13.3 The curvature of a bimetallic strip depends on temperature. (a) The strip is straight at the starting temperature, where its two components
have the same length. (b) At a higher temperature, this strip bends to the right, because the metal on the left has expanded more than the metal on the
right.

Figure 13.4 Each of the six squares on this plastic (liquid crystal) thermometer contains a film of a different heat-sensitive liquid crystal material. Below

95ºF , all six squares are black. When the plastic thermometer is exposed to temperature that increases to 95ºF , the first liquid crystal square

changes color. When the temperature increases above 96.8ºF the second liquid crystal square also changes color, and so forth. (credit: Arkrishna,

Wikimedia Commons)

Figure 13.5 Fireman Jason Ormand uses a pyrometer to check the temperature of an aircraft carrier’s ventilation system. Infrared radiation (whose
emission varies with temperature) from the vent is measured and a temperature readout is quickly produced. Infrared measurements are also
frequently used as a measure of body temperature. These modern thermometers, placed in the ear canal, are more accurate than alcohol
thermometers placed under the tongue or in the armpit. (credit: Lamel J. Hinton/U.S. Navy)

Temperature Scales

Thermometers are used to measure temperature according to well-defined scales of measurement, which use pre-defined
reference points to help compare quantities. The three most common temperature scales are the Fahrenheit, Celsius, and Kelvin
scales. A temperature scale can be created by identifying two easily reproducible temperatures. The freezing and boiling
temperatures of water at standard atmospheric pressure are commonly used.

The Celsius scale (which replaced the slightly different centigrade scale) has the freezing point of water at 0ºC and the boiling

point at 100ºC . Its unit is the degree Celsius (ºC) . On the Fahrenheit scale (still the most frequently used in the United

States), the freezing point of water is at 32ºF and the boiling point is at 212ºF . The unit of temperature on this scale is the

degree Fahrenheit (ºF) . Note that a temperature difference of one degree Celsius is greater than a temperature difference of

one degree Fahrenheit. Only 100 Celsius degrees span the same range as 180 Fahrenheit degrees, thus one degree on the
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Celsius scale is 1.8 times larger than one degree on the Fahrenheit scale 180 / 100 = 9 / 5.
The Kelvin scale is the temperature scale that is commonly used in science. It is an absolute temperature scale defined to have
0 K at the lowest possible temperature, called absolute zero. The official temperature unit on this scale is the kelvin, which is
abbreviated K, and is not accompanied by a degree sign. The freezing and boiling points of water are 273.15 K and 373.15 K,
respectively. Thus, the magnitude of temperature differences is the same in units of kelvins and degrees Celsius. Unlike other
temperature scales, the Kelvin scale is an absolute scale. It is used extensively in scientific work because a number of physical
quantities, such as the volume of an ideal gas, are directly related to absolute temperature. The kelvin is the SI unit used in
scientific work.

Figure 13.6 Relationships between the Fahrenheit, Celsius, and Kelvin temperature scales, rounded to the nearest degree. The relative sizes of the
scales are also shown.

The relationships between the three common temperature scales is shown in Figure 13.6. Temperatures on these scales can be
converted using the equations in Table 13.1.

Table 13.1 Temperature Conversions

To convert from . . . Use this equation . . . Also written as . . .

Celsius to Fahrenheit T(ºF) = 9
5T(ºC) + 32 TºF = 9

5TºC + 32

Fahrenheit to Celsius T(ºC) = 5
9
⎛
⎝T(ºF) − 32⎞⎠ TºC = 5

9
⎛
⎝TºF − 32⎞⎠

Celsius to Kelvin T(K) = T(ºC) + 273.15 TK = TºC + 273.15

Kelvin to Celsius T(ºC) = T(K) − 273.15 TºC = TK − 273.15

Fahrenheit to Kelvin T(K) = 5
9
⎛
⎝T(ºF) − 32⎞⎠+ 273.15 TK = 5

9
⎛
⎝TºF − 32⎞⎠+ 273.15

Kelvin to Fahrenheit T(ºF) = 9
5
⎛
⎝T(K) − 273.15⎞⎠+ 32 TºF = 9

5
⎛
⎝TK − 273.15⎞⎠+ 32

Notice that the conversions between Fahrenheit and Kelvin look quite complicated. In fact, they are simple combinations of the
conversions between Fahrenheit and Celsius, and the conversions between Celsius and Kelvin.

Example 13.1 Converting between Temperature Scales: Room Temperature

“Room temperature” is generally defined to be 25ºC . (a) What is room temperature in ºF ? (b) What is it in K?

Strategy

To answer these questions, all we need to do is choose the correct conversion equations and plug in the known values.

Solution for (a)

1. Choose the right equation. To convert from ºC to ºF , use the equation

(13.1)TºF = 9
5TºC + 32.
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2. Plug the known value into the equation and solve:

(13.2)TºF = 9
525ºC + 32 = 77ºF.

Solution for (b)

1. Choose the right equation. To convert from ºC to K, use the equation

(13.3)TK = TºC + 273.15.

2. Plug the known value into the equation and solve:

(13.4)TK = 25ºC + 273.15 = 298 K.

Example 13.2 Converting between Temperature Scales: the Reaumur Scale

The Reaumur scale is a temperature scale that was used widely in Europe in the 18th and 19th centuries. On the Reaumur
temperature scale, the freezing point of water is 0ºR and the boiling temperature is 80ºR . If “room temperature” is 25ºC
on the Celsius scale, what is it on the Reaumur scale?

Strategy

To answer this question, we must compare the Reaumur scale to the Celsius scale. The difference between the freezing
point and boiling point of water on the Reaumur scale is 80ºR . On the Celsius scale it is 100ºC . Therefore

100ºC = 80ºR . Both scales start at 0º for freezing, so we can derive a simple formula to convert between temperatures

on the two scales.

Solution

1. Derive a formula to convert from one scale to the other:

(13.5)TºR = 0.8ºR
ºC × TºC.

2. Plug the known value into the equation and solve:

(13.6)TºR = 0.8ºR
ºC × 25ºC = 20ºR.

Temperature Ranges in the Universe

Figure 13.8 shows the wide range of temperatures found in the universe. Human beings have been known to survive with body
temperatures within a small range, from 24ºC to 44ºC (75ºF to 111ºF ). The average normal body temperature is usually

given as 37.0ºC ( 98.6ºF ), and variations in this temperature can indicate a medical condition: a fever, an infection, a tumor, or

circulatory problems (see Figure 13.7).
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Figure 13.7 This image of radiation from a person’s body (an infrared thermograph) shows the location of temperature abnormalities in the upper body.
Dark blue corresponds to cold areas and red to white corresponds to hot areas. An elevated temperature might be an indication of malignant tissue (a
cancerous tumor in the breast, for example), while a depressed temperature might be due to a decline in blood flow from a clot. In this case, the
abnormalities are caused by a condition called hyperhidrosis. (credit: Porcelina81, Wikimedia Commons)

The lowest temperatures ever recorded have been measured during laboratory experiments: 4.5×10–10 K at the

Massachusetts Institute of Technology (USA), and 1.0×10–10 K at Helsinki University of Technology (Finland). In comparison,

the coldest recorded place on Earth’s surface is Vostok, Antarctica at 183 K (–89ºC) , and the coldest place (outside the lab)

known in the universe is the Boomerang Nebula, with a temperature of 1 K.
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Figure 13.8 Each increment on this logarithmic scale indicates an increase by a factor of ten, and thus illustrates the tremendous range of
temperatures in nature. Note that zero on a logarithmic scale would occur off the bottom of the page at infinity.

Making Connections: Absolute Zero

What is absolute zero? Absolute zero is the temperature at which all molecular motion has ceased. The concept of absolute
zero arises from the behavior of gases. Figure 13.9 shows how the pressure of gases at a constant volume decreases as
temperature decreases. Various scientists have noted that the pressures of gases extrapolate to zero at the same
temperature, –273.15ºC . This extrapolation implies that there is a lowest temperature. This temperature is called absolute

zero. Today we know that most gases first liquefy and then freeze, and it is not actually possible to reach absolute zero. The
numerical value of absolute zero temperature is –273.15ºC or 0 K.
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Figure 13.9 Graph of pressure versus temperature for various gases kept at a constant volume. Note that all of the graphs extrapolate to zero pressure
at the same temperature.

Thermal Equilibrium and the Zeroth Law of Thermodynamics

Thermometers actually take their own temperature, not the temperature of the object they are measuring. This raises the
question of how we can be certain that a thermometer measures the temperature of the object with which it is in contact. It is
based on the fact that any two systems placed in thermal contact (meaning heat transfer can occur between them) will reach the
same temperature. That is, heat will flow from the hotter object to the cooler one until they have exactly the same temperature.
The objects are then in thermal equilibrium, and no further changes will occur. The systems interact and change because their
temperatures differ, and the changes stop once their temperatures are the same. Thus, if enough time is allowed for this transfer
of heat to run its course, the temperature a thermometer registers does represent the system with which it is in thermal
equilibrium. Thermal equilibrium is established when two bodies are in contact with each other and can freely exchange energy.

Furthermore, experimentation has shown that if two systems, A and B, are in thermal equilibrium with each another, and B is in
thermal equilibrium with a third system C, then A is also in thermal equilibrium with C. This conclusion may seem obvious,
because all three have the same temperature, but it is basic to thermodynamics. It is called the zeroth law of thermodynamics.

The Zeroth Law of Thermodynamics

If two systems, A and B, are in thermal equilibrium with each other, and B is in thermal equilibrium with a third system, C,
then A is also in thermal equilibrium with C.

This law was postulated in the 1930s, after the first and second laws of thermodynamics had been developed and named. It is
called the zeroth law because it comes logically before the first and second laws (discussed in Thermodynamics). Suppose, for
example, a cold metal block and a hot metal block are both placed on a metal plate at room temperature. Eventually the cold
block and the plate will be in thermal equilibrium. In addition, the hot block and the plate will be in thermal equilibrium. By the
zeroth law, we can conclude that the cold block and the hot block are also in thermal equilibrium.

Check Your Understanding

Does the temperature of a body depend on its size?

Solution
No, the system can be divided into smaller parts each of which is at the same temperature. We say that the temperature is
an intensive quantity. Intensive quantities are independent of size.
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13.2 Thermal Expansion of Solids and Liquids

Figure 13.10 Thermal expansion joints like these in the Auckland Harbour Bridge in New Zealand allow bridges to change length without buckling.
(credit: Ingolfson, Wikimedia Commons)

The expansion of alcohol in a thermometer is one of many commonly encountered examples of thermal expansion, the change
in size or volume of a given mass with temperature. Hot air rises because its volume increases, which causes the hot air’s
density to be smaller than the density of surrounding air, causing a buoyant (upward) force on the hot air. The same happens in
all liquids and gases, driving natural heat transfer upwards in homes, oceans, and weather systems. Solids also undergo thermal
expansion. Railroad tracks and bridges, for example, have expansion joints to allow them to freely expand and contract with
temperature changes.

What are the basic properties of thermal expansion? First, thermal expansion is clearly related to temperature change. The
greater the temperature change, the more a bimetallic strip will bend. Second, it depends on the material. In a thermometer, for
example, the expansion of alcohol is much greater than the expansion of the glass containing it.

What is the underlying cause of thermal expansion? As is discussed in Kinetic Theory: Atomic and Molecular Explanation of
Pressure and Temperature, an increase in temperature implies an increase in the kinetic energy of the individual atoms. In a
solid, unlike in a gas, the atoms or molecules are closely packed together, but their kinetic energy (in the form of small, rapid
vibrations) pushes neighboring atoms or molecules apart from each other. This neighbor-to-neighbor pushing results in a slightly
greater distance, on average, between neighbors, and adds up to a larger size for the whole body. For most substances under
ordinary conditions, there is no preferred direction, and an increase in temperature will increase the solid’s size by a certain
fraction in each dimension.

Linear Thermal Expansion—Thermal Expansion in One Dimension

The change in length ΔL is proportional to length L . The dependence of thermal expansion on temperature, substance,

and length is summarized in the equation

(13.7)ΔL = αLΔT ,

where ΔL is the change in length L , ΔT is the change in temperature, and α is the coefficient of linear expansion,

which varies slightly with temperature.

Table 13.2 lists representative values of the coefficient of linear expansion, which may have units of 1 / ºC or 1/K. Because the

size of a kelvin and a degree Celsius are the same, both α and ΔT can be expressed in units of kelvins or degrees Celsius.

The equation ΔL = αLΔT is accurate for small changes in temperature and can be used for large changes in temperature if

an average value of α is used.
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Table 13.2 Thermal Expansion Coefficients at 20ºC [1]

Material
Coefficient of linear expansion
α(1 / ºC)

Coefficient of volume expansion
β(1 / ºC)

Solids

Aluminum 25×10–6 75×10–6

Brass 19×10–6 56×10–6

Copper 17×10–6 51×10–6

Gold 14×10–6 42×10–6

Iron or Steel 12×10–6 35×10–6

Invar (Nickel-iron alloy) 0.9×10–6 2.7×10–6

Lead 29×10–6 87×10–6

Silver 18×10–6 54×10–6

Glass (ordinary) 9×10–6 27×10–6

Glass (Pyrex®) 3×10–6 9×10–6

Quartz 0.4×10–6 1×10–6

Concrete, Brick ~12×10–6 ~36×10–6

Marble (average) 7×10–6 2.1×10–5

Liquids

Ether 1650×10–6

Ethyl alcohol 1100×10–6

Petrol 950×10–6

Glycerin 500×10–6

Mercury 180×10–6

Water 210×10–6

Gases

Air and most other gases at atmospheric
pressure 3400×10–6

Example 13.3 Calculating Linear Thermal Expansion: The Golden Gate Bridge

The main span of San Francisco’s Golden Gate Bridge is 1275 m long at its coldest. The bridge is exposed to temperatures
ranging from –15ºC to 40ºC . What is its change in length between these temperatures? Assume that the bridge is made

entirely of steel.

Strategy

Use the equation for linear thermal expansion ΔL = αLΔT to calculate the change in length , ΔL . Use the coefficient of

linear expansion, α , for steel from Table 13.2, and note that the change in temperature, ΔT , is 55ºC .

Solution

Plug all of the known values into the equation to solve for ΔL .

1. Values for liquids and gases are approximate.
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(13.8)
ΔL = αLΔT = ⎛⎝12×10−6

ºC
⎞
⎠(1275 m)(55ºC) = 0.84 m.

Discussion

Although not large compared with the length of the bridge, this change in length is observable. It is generally spread over
many expansion joints so that the expansion at each joint is small.

Thermal Expansion in Two and Three Dimensions

Objects expand in all dimensions, as illustrated in Figure 13.11. That is, their areas and volumes, as well as their lengths,
increase with temperature. Holes also get larger with temperature. If you cut a hole in a metal plate, the remaining material will
expand exactly as it would if the plug was still in place. The plug would get bigger, and so the hole must get bigger too. (Think of
the ring of neighboring atoms or molecules on the wall of the hole as pushing each other farther apart as temperature increases.
Obviously, the ring of neighbors must get slightly larger, so the hole gets slightly larger).

Thermal Expansion in Two Dimensions

For small temperature changes, the change in area ΔA is given by

(13.9)ΔA = 2αAΔT ,

where ΔA is the change in area A , ΔT is the change in temperature, and α is the coefficient of linear expansion, which

varies slightly with temperature.

Figure 13.11 In general, objects expand in all directions as temperature increases. In these drawings, the original boundaries of the objects are shown
with solid lines, and the expanded boundaries with dashed lines. (a) Area increases because both length and width increase. The area of a circular
plug also increases. (b) If the plug is removed, the hole it leaves becomes larger with increasing temperature, just as if the expanding plug were still in
place. (c) Volume also increases, because all three dimensions increase.

Thermal Expansion in Three Dimensions

The change in volume ΔV is very nearly ΔV = 3αVΔT . This equation is usually written as

(13.10)ΔV = βVΔT ,

where β is the coefficient of volume expansion and β ≈ 3α . Note that the values of β in Table 13.2 are almost exactly

equal to 3α .

In general, objects will expand with increasing temperature. Water is the most important exception to this rule. Water expands
with increasing temperature (its density decreases) when it is at temperatures greater than 4ºC(40ºF) . However, it expands

with decreasing temperature when it is between +4ºC and 0ºC (40ºF to 32ºF) . Water is densest at +4ºC . (See Figure

13.12.) Perhaps the most striking effect of this phenomenon is the freezing of water in a pond. When water near the surface
cools down to 4ºC it is denser than the remaining water and thus will sink to the bottom. This “turnover” results in a layer of

warmer water near the surface, which is then cooled. Eventually the pond has a uniform temperature of 4ºC . If the temperature

in the surface layer drops below 4ºC , the water is less dense than the water below, and thus stays near the top. As a result, the

pond surface can completely freeze over. The ice on top of liquid water provides an insulating layer from winter’s harsh exterior
air temperatures. Fish and other aquatic life can survive in 4ºC water beneath ice, due to this unusual characteristic of water. It

also produces circulation of water in the pond that is necessary for a healthy ecosystem of the body of water.

Chapter 13 | Temperature, Kinetic Theory, and the Gas Laws 481



Figure 13.12 The density of water as a function of temperature. Note that the thermal expansion is actually very small. The maximum density at

+4ºC is only 0.0075% greater than the density at 2ºC , and 0.012% greater than that at 0ºC .

Making Connections: Real-World Connections—Filling the Tank

Differences in the thermal expansion of materials can lead to interesting effects at the gas station. One example is the
dripping of gasoline from a freshly filled tank on a hot day. Gasoline starts out at the temperature of the ground under the
gas station, which is cooler than the air temperature above. The gasoline cools the steel tank when it is filled. Both gasoline
and steel tank expand as they warm to air temperature, but gasoline expands much more than steel, and so it may overflow.

This difference in expansion can also cause problems when interpreting the gasoline gauge. The actual amount (mass) of
gasoline left in the tank when the gauge hits “empty” is a lot less in the summer than in the winter. The gasoline has the
same volume as it does in the winter when the “add fuel” light goes on, but because the gasoline has expanded, there is
less mass. If you are used to getting another 40 miles on “empty” in the winter, beware—you will probably run out much
more quickly in the summer.

Figure 13.13 Because the gas expands more than the gas tank with increasing temperature, you can’t drive as many miles on “empty” in the
summer as you can in the winter. (credit: Hector Alejandro, Flickr)

Example 13.4 Calculating Thermal Expansion: Gas vs. Gas Tank

Suppose your 60.0-L (15.9-gal) steel gasoline tank is full of gas, so both the tank and the gasoline have a temperature of
15.0ºC . How much gasoline has spilled by the time they warm to 35.0ºC ?

Strategy

The tank and gasoline increase in volume, but the gasoline increases more, so the amount spilled is the difference in their
volume changes. (The gasoline tank can be treated as solid steel.) We can use the equation for volume expansion to
calculate the change in volume of the gasoline and of the tank.

Solution

1. Use the equation for volume expansion to calculate the increase in volume of the steel tank:

(13.11)ΔV s = βsVs ΔT .

2. The increase in volume of the gasoline is given by this equation:
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(13.12)ΔV gas = βgasVgas ΔT .

3. Find the difference in volume to determine the amount spilled as

(13.13)Vspill = ΔV gas − ΔV s.

Alternatively, we can combine these three equations into a single equation. (Note that the original volumes are equal.)

(13.14)Vspill = ⎛
⎝βgas − βs

⎞
⎠VΔT

= ⎡
⎣(950 − 35)×10−6 / ºC⎤⎦(60.0 L)(20.0ºC)

= 1.10 L.
Discussion

This amount is significant, particularly for a 60.0-L tank. The effect is so striking because the gasoline and steel expand
quickly. The rate of change in thermal properties is discussed in Heat and Heat Transfer Methods.

If you try to cap the tank tightly to prevent overflow, you will find that it leaks anyway, either around the cap or by bursting the
tank. Tightly constricting the expanding gas is equivalent to compressing it, and both liquids and solids resist being
compressed with extremely large forces. To avoid rupturing rigid containers, these containers have air gaps, which allow
them to expand and contract without stressing them.

Thermal Stress

Thermal stress is created by thermal expansion or contraction (see Elasticity: Stress and Strain for a discussion of stress and
strain). Thermal stress can be destructive, such as when expanding gasoline ruptures a tank. It can also be useful, for example,
when two parts are joined together by heating one in manufacturing, then slipping it over the other and allowing the combination
to cool. Thermal stress can explain many phenomena, such as the weathering of rocks and pavement by the expansion of ice
when it freezes.

Example 13.5 Calculating Thermal Stress: Gas Pressure

What pressure would be created in the gasoline tank considered in Example 13.4, if the gasoline increases in temperature
from 15.0ºC to 35.0ºC without being allowed to expand? Assume that the bulk modulus B for gasoline is

1.00×109 N/m2 . (For more on bulk modulus, see Elasticity: Stress and Strain.)

Strategy

To solve this problem, we must use the following equation, which relates a change in volume ΔV to pressure:

(13.15)ΔV = 1
B

F
AV0 ,

where F / A is pressure, V0 is the original volume, and B is the bulk modulus of the material involved. We will use the

amount spilled in Example 13.4 as the change in volume, ΔV .

Solution

1. Rearrange the equation for calculating pressure:

(13.16)P = F
A = ΔV

V0
B.

2. Insert the known values. The bulk modulus for gasoline is B = 1.00×109 N/m2 . In the previous example, the change

in volume ΔV = 1.10 L is the amount that would spill. Here, V0 = 60.0 L is the original volume of the gasoline.

Substituting these values into the equation, we obtain

(13.17)P = 1.10 L
60.0 L

⎛
⎝1.00×109 Pa⎞⎠ = 1.83×107 Pa.

Discussion

This pressure is about 2500 lb/in2 , much more than a gasoline tank can handle.

Forces and pressures created by thermal stress are typically as great as that in the example above. Railroad tracks and
roadways can buckle on hot days if they lack sufficient expansion joints. (See Figure 13.14.) Power lines sag more in the
summer than in the winter, and will snap in cold weather if there is insufficient slack. Cracks open and close in plaster walls as a
house warms and cools. Glass cooking pans will crack if cooled rapidly or unevenly, because of differential contraction and the
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stresses it creates. (Pyrex® is less susceptible because of its small coefficient of thermal expansion.) Nuclear reactor pressure
vessels are threatened by overly rapid cooling, and although none have failed, several have been cooled faster than considered
desirable. Biological cells are ruptured when foods are frozen, detracting from their taste. Repeated thawing and freezing
accentuate the damage. Even the oceans can be affected. A significant portion of the rise in sea level that is resulting from global
warming is due to the thermal expansion of sea water.

Figure 13.14 Thermal stress contributes to the formation of potholes. (credit: Editor5807, Wikimedia Commons)

Metal is regularly used in the human body for hip and knee implants. Most implants need to be replaced over time because,
among other things, metal does not bond with bone. Researchers are trying to find better metal coatings that would allow metal-
to-bone bonding. One challenge is to find a coating that has an expansion coefficient similar to that of metal. If the expansion
coefficients are too different, the thermal stresses during the manufacturing process lead to cracks at the coating-metal interface.

Another example of thermal stress is found in the mouth. Dental fillings can expand differently from tooth enamel. It can give pain
when eating ice cream or having a hot drink. Cracks might occur in the filling. Metal fillings (gold, silver, etc.) are being replaced
by composite fillings (porcelain), which have smaller coefficients of expansion, and are closer to those of teeth.

Check Your Understanding

Two blocks, A and B, are made of the same material. Block A has dimensions l×w×h = L×2L×L and Block B has

dimensions 2L×2L×2L . If the temperature changes, what is (a) the change in the volume of the two blocks, (b) the

change in the cross-sectional area l×w , and (c) the change in the height h of the two blocks?

Figure 13.15

Solution

(a) The change in volume is proportional to the original volume. Block A has a volume of L×2L×L = 2L3. . Block B has a

volume of 2L×2L×2L = 8L3, which is 4 times that of Block A. Thus the change in volume of Block B should be 4 times

the change in volume of Block A.

(b) The change in area is proportional to the area. The cross-sectional area of Block A is L×2L = 2L2, while that of Block

B is 2L×2L = 4L2. Because cross-sectional area of Block B is twice that of Block A, the change in the cross-sectional

area of Block B is twice that of Block A.

(c) The change in height is proportional to the original height. Because the original height of Block B is twice that of A, the

484 Chapter 13 | Temperature, Kinetic Theory, and the Gas Laws

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



change in the height of Block B is twice that of Block A.

13.3 The Ideal Gas Law

Figure 13.16 The air inside this hot air balloon flying over Putrajaya, Malaysia, is hotter than the ambient air. As a result, the balloon experiences a
buoyant force pushing it upward. (credit: Kevin Poh, Flickr)

In this section, we continue to explore the thermal behavior of gases. In particular, we examine the characteristics of atoms and
molecules that compose gases. (Most gases, for example nitrogen, N2 , and oxygen, O2 , are composed of two or more atoms.

We will primarily use the term “molecule” in discussing a gas because the term can also be applied to monatomic gases, such as
helium.)

Gases are easily compressed. We can see evidence of this in Table 13.2, where you will note that gases have the largest
coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature
changes. In addition, you will note that most gases expand at the same rate, or have the same β . This raises the question as to

why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.

The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 13.17.
Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each
other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that
the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and
molecules are closer together and are quite sensitive to the forces between them.

Figure 13.17 Atoms and molecules in a gas are typically widely separated, as shown. Because the forces between them are quite weak at these
distances, the properties of a gas depend more on the number of atoms per unit volume and on temperature than on the type of atom.

To get some idea of how pressure, temperature, and volume of a gas are related to one another, consider what happens when
you pump air into an initially deflated tire. The tire’s volume first increases in direct proportion to the amount of air injected,
without much increase in the tire pressure. Once the tire has expanded to nearly its full size, the walls limit volume expansion. If
we continue to pump air into it, the pressure increases. The pressure will further increase when the car is driven and the tires
move. Most manufacturers specify optimal tire pressure for cold tires. (See Figure 13.18.)
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Figure 13.18 (a) When air is pumped into a deflated tire, its volume first increases without much increase in pressure. (b) When the tire is filled to a
certain point, the tire walls resist further expansion and the pressure increases with more air. (c) Once the tire is inflated, its pressure increases with
temperature.

At room temperatures, collisions between atoms and molecules can be ignored. In this case, the gas is called an ideal gas, in
which case the relationship between the pressure, volume, and temperature is given by the equation of state called the ideal gas
law.

Ideal Gas Law

The ideal gas law states that

(13.18)PV = NkT,

where P is the absolute pressure of a gas, V is the volume it occupies, N is the number of atoms and molecules in the

gas, and T is its absolute temperature. The constant k is called the Boltzmann constant in honor of Austrian physicist

Ludwig Boltzmann (1844–1906) and has the value

(13.19)k = 1.38×10−23 J / K.

The ideal gas law can be derived from basic principles, but was originally deduced from experimental measurements of Charles’
law (that volume occupied by a gas is proportional to temperature at a fixed pressure) and from Boyle’s law (that for a fixed
temperature, the product PV is a constant). In the ideal gas model, the volume occupied by its atoms and molecules is a

negligible fraction of V . The ideal gas law describes the behavior of real gases under most conditions. (Note, for example, that

N is the total number of atoms and molecules, independent of the type of gas.)

Let us see how the ideal gas law is consistent with the behavior of filling the tire when it is pumped slowly and the temperature is
constant. At first, the pressure P is essentially equal to atmospheric pressure, and the volume V increases in direct proportion

to the number of atoms and molecules N put into the tire. Once the volume of the tire is constant, the equation PV = NkT
predicts that the pressure should increase in proportion to the number N of atoms and molecules.

Example 13.6 Calculating Pressure Changes Due to Temperature Changes: Tire Pressure

Suppose your bicycle tire is fully inflated, with an absolute pressure of 7.00×105 Pa (a gauge pressure of just under

90.0 lb/in2 ) at a temperature of 18.0ºC . What is the pressure after its temperature has risen to 35.0ºC ? Assume that

there are no appreciable leaks or changes in volume.

Strategy

The pressure in the tire is changing only because of changes in temperature. First we need to identify what we know and
what we want to know, and then identify an equation to solve for the unknown.

We know the initial pressure P0 = 7.00×105 Pa , the initial temperature T0 = 18.0ºC , and the final temperature

Tf = 35.0ºC . We must find the final pressure Pf . How can we use the equation PV = NkT ? At first, it may seem that

not enough information is given, because the volume V and number of atoms N are not specified. What we can do is use

the equation twice: P0 V0 = NkT0 and Pf Vf = NkTf . If we divide Pf Vf by P0 V0 we can come up with an equation

that allows us to solve for Pf .

(13.20)Pf Vf
P0 V0

= Nf kTf
N0 kT0

Since the volume is constant, Vf and V0 are the same and they cancel out. The same is true for Nf and N0 , and k ,

which is a constant. Therefore,
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(13.21)Pf
P0

= Tf
T0

.

We can then rearrange this to solve for Pf :

(13.22)
Pf = P0

Tf
T0

,

where the temperature must be in units of kelvins, because T0 and Tf are absolute temperatures.

Solution

1. Convert temperatures from Celsius to Kelvin.

(13.23)T0 = (18.0 + 273)K = 291 K
Tf = (35.0 + 273)K = 308 K

2. Substitute the known values into the equation.

(13.24)
Pf = P0

Tf
T0

= 7.00×105 Pa⎛⎝308 K
291 K

⎞
⎠ = 7.41×105 Pa

Discussion

The final temperature is about 6% greater than the original temperature, so the final pressure is about 6% greater as well.
Note that absolute pressure and absolute temperature must be used in the ideal gas law.

Making Connections: Take-Home Experiment—Refrigerating a Balloon

Inflate a balloon at room temperature. Leave the inflated balloon in the refrigerator overnight. What happens to the balloon,
and why?

Example 13.7 Calculating the Number of Molecules in a Cubic Meter of Gas

How many molecules are in a typical object, such as gas in a tire or water in a drink? We can use the ideal gas law to give
us an idea of how large N typically is.

Calculate the number of molecules in a cubic meter of gas at standard temperature and pressure (STP), which is defined to
be 0ºC and atmospheric pressure.

Strategy

Because pressure, volume, and temperature are all specified, we can use the ideal gas law PV = NkT , to find N .

Solution

1. Identify the knowns.

(13.25)T = 0ºC = 273 K
P = 1.01×105 Pa
V = 1.00 m3

k = 1.38×10−23 J/K

2. Identify the unknown: number of molecules, N .

3. Rearrange the ideal gas law to solve for N .

(13.26)PV = NkT
N = PV

kT

4. Substitute the known values into the equation and solve for N .

(13.27)

N = PV
kT =

⎛
⎝1.01×105 Pa⎞⎠

⎛
⎝1.00 m3⎞⎠

⎛
⎝1.38×10−23 J/K⎞⎠(273 K)

= 2.68×1025 molecules

Discussion

Chapter 13 | Temperature, Kinetic Theory, and the Gas Laws 487



This number is undeniably large, considering that a gas is mostly empty space. N is huge, even in small volumes. For

example, 1 cm3 of a gas at STP has 2.68×1019 molecules in it. Once again, note that N is the same for all types or

mixtures of gases.

Moles and Avogadro’s Number

It is sometimes convenient to work with a unit other than molecules when measuring the amount of substance. A mole
(abbreviated mol) is defined to be the amount of a substance that contains as many atoms or molecules as there are atoms in
exactly 12 grams (0.012 kg) of carbon-12. The actual number of atoms or molecules in one mole is called Avogadro’s number
(NA) , in recognition of Italian scientist Amedeo Avogadro (1776–1856). He developed the concept of the mole, based on the

hypothesis that equal volumes of gas, at the same pressure and temperature, contain equal numbers of molecules. That is, the
number is independent of the type of gas. This hypothesis has been confirmed, and the value of Avogadro’s number is

(13.28)NA = 6.02×1023 mol−1 .
Avogadro’s Number

One mole always contains 6.02×1023 particles (atoms or molecules), independent of the element or substance. A mole of

any substance has a mass in grams equal to its molecular mass, which can be calculated from the atomic masses given in
the periodic table of elements.

(13.29)NA = 6.02×1023 mol−1

Figure 13.19 How big is a mole? On a macroscopic level, one mole of table tennis balls would cover the Earth to a depth of about 40 km.

Check Your Understanding

The active ingredient in a Tylenol pill is 325 mg of acetaminophen (C8 H9 NO2) . Find the number of active molecules of

acetaminophen in a single pill.

Solution

We first need to calculate the molar mass (the mass of one mole) of acetaminophen. To do this, we need to multiply the
number of atoms of each element by the element’s atomic mass.

(13.30)(8 moles of carbon)(12 grams/mole) + (9 moles hydrogen)(1 gram/mole)
+(1 mole nitrogen)(14 grams/mole) + (2 moles oxygen)(16 grams/mole) = 151 g

Then we need to calculate the number of moles in 325 mg.

(13.31)⎛
⎝

325 mg
151 grams/mole

⎞
⎠
⎛
⎝

1 gram
1000 mg

⎞
⎠ = 2.15×10−3 moles

Then use Avogadro’s number to calculate the number of molecules.

(13.32)N = ⎛⎝2.15×10−3 moles⎞⎠
⎛
⎝6.02×1023 molecules/mole⎞⎠ = 1.30×1021 molecules

Example 13.8 Calculating Moles per Cubic Meter and Liters per Mole

Calculate: (a) the number of moles in 1.00 m3 of gas at STP, and (b) the number of liters of gas per mole.
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Strategy and Solution

(a) We are asked to find the number of moles per cubic meter, and we know from Example 13.7 that the number of

molecules per cubic meter at STP is 2.68×1025 . The number of moles can be found by dividing the number of molecules

by Avogadro’s number. We let n stand for the number of moles,

(13.33)
n mol/m3 = N molecules/m3

6.02×1023 molecules/mol
= 2.68×1025 molecules/m3

6.02×1023 molecules/mol
= 44.5 mol/m3 .

(b) Using the value obtained for the number of moles in a cubic meter, and converting cubic meters to liters, we obtain

(13.34)⎛
⎝103 L/m3⎞⎠

44.5 mol/m3 = 22.5 L/mol.

Discussion

This value is very close to the accepted value of 22.4 L/mol. The slight difference is due to rounding errors caused by using
three-digit input. Again this number is the same for all gases. In other words, it is independent of the gas.

The (average) molar weight of air (approximately 80% N2 and 20% O2 is M = 28.8 g. Thus the mass of one cubic

meter of air is 1.28 kg. If a living room has dimensions 5 m×5 m×3 m, the mass of air inside the room is 96 kg, which is

the typical mass of a human.

Check Your Understanding

The density of air at standard conditions (P = 1 atm and T = 20ºC) is 1.28 kg/m3 . At what pressure is the density

0.64 kg/m3 if the temperature and number of molecules are kept constant?

Solution
The best way to approach this question is to think about what is happening. If the density drops to half its original value and
no molecules are lost, then the volume must double. If we look at the equation PV = NkT , we see that when the

temperature is constant, the pressure is inversely proportional to volume. Therefore, if the volume doubles, the pressure
must drop to half its original value, and Pf = 0.50 atm.

The Ideal Gas Law Restated Using Moles

A very common expression of the ideal gas law uses the number of moles, n , rather than the number of atoms and molecules,

N . We start from the ideal gas law,

(13.35)PV = NkT,

and multiply and divide the equation by Avogadro’s number NA . This gives

(13.36)PV = N
NA

NA kT.

Note that n = N / NA is the number of moles. We define the universal gas constant R = NAk , and obtain the ideal gas law in

terms of moles.

Ideal Gas Law (in terms of moles)

The ideal gas law (in terms of moles) is

(13.37)PV = nRT .

The numerical value of R in SI units is

(13.38)R = NAk = ⎛⎝6.02×1023 mol−1⎞⎠
⎛
⎝1.38×10−23 J/K⎞⎠ = 8.31 J / mol ⋅ K.

In other units,

(13.39)R = 1.99 cal/mol ⋅ K
R = 0.0821 L ⋅ atm/mol ⋅ K.

Chapter 13 | Temperature, Kinetic Theory, and the Gas Laws 489



You can use whichever value of R is most convenient for a particular problem.

Example 13.9 Calculating Number of Moles: Gas in a Bike Tire

How many moles of gas are in a bike tire with a volume of 2.00×10 – 3 m3(2.00 L), a pressure of 7.00×105 Pa (a

gauge pressure of just under 90.0 lb/in2 ), and at a temperature of 18.0ºC ?

Strategy

Identify the knowns and unknowns, and choose an equation to solve for the unknown. In this case, we solve the ideal gas
law, PV = nRT , for the number of moles n .

Solution

1. Identify the knowns.

(13.40)P = 7.00×105 Pa
V = 2.00×10−3 m3

T = 18.0ºC = 291 K
R = 8.31 J/mol ⋅ K

2. Rearrange the equation to solve for n and substitute known values.

(13.41)

n = PV
RT =

⎛
⎝7.00×105 Pa⎞⎠

⎛
⎝2.00×10−3 m3⎞⎠

(8.31 J/mol ⋅ K)(291 K)
= 0.579 mol

Discussion

The most convenient choice for R in this case is 8.31 J/mol ⋅ K, because our known quantities are in SI units. The

pressure and temperature are obtained from the initial conditions in Example 13.6, but we would get the same answer if we
used the final values.

The ideal gas law can be considered to be another manifestation of the law of conservation of energy (see Conservation of
Energy). Work done on a gas results in an increase in its energy, increasing pressure and/or temperature, or decreasing volume.
This increased energy can also be viewed as increased internal kinetic energy, given the gas’s atoms and molecules.

The Ideal Gas Law and Energy

Let us now examine the role of energy in the behavior of gases. When you inflate a bike tire by hand, you do work by repeatedly
exerting a force through a distance. This energy goes into increasing the pressure of air inside the tire and increasing the
temperature of the pump and the air.

The ideal gas law is closely related to energy: the units on both sides are joules. The right-hand side of the ideal gas law in
PV = NkT is NkT . This term is roughly the amount of translational kinetic energy of N atoms or molecules at an absolute

temperature T , as we shall see formally in Kinetic Theory: Atomic and Molecular Explanation of Pressure and

Temperature. The left-hand side of the ideal gas law is PV , which also has the units of joules. We know from our study of fluids

that pressure is one type of potential energy per unit volume, so pressure multiplied by volume is energy. The important point is
that there is energy in a gas related to both its pressure and its volume. The energy can be changed when the gas is doing work
as it expands—something we explore in Heat and Heat Transfer Methods—similar to what occurs in gasoline or steam engines
and turbines.

Problem-Solving Strategy: The Ideal Gas Law

Step 1 Examine the situation to determine that an ideal gas is involved. Most gases are nearly ideal.

Step 2 Make a list of what quantities are given, or can be inferred from the problem as stated (identify the known quantities).

Convert known values into proper SI units (K for temperature, Pa for pressure, m3 for volume, molecules for N , and

moles for n ).

Step 3 Identify exactly what needs to be determined in the problem (identify the unknown quantities). A written list is useful.

Step 4 Determine whether the number of molecules or the number of moles is known, in order to decide which form of the
ideal gas law to use. The first form is PV = NkT and involves N , the number of atoms or molecules. The second form is

PV = nRT and involves n , the number of moles.
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Step 5 Solve the ideal gas law for the quantity to be determined (the unknown quantity). You may need to take a ratio of final
states to initial states to eliminate the unknown quantities that are kept fixed.

Step 6 Substitute the known quantities, along with their units, into the appropriate equation, and obtain numerical solutions
complete with units. Be certain to use absolute temperature and absolute pressure.

Step 7 Check the answer to see if it is reasonable: Does it make sense?

Check Your Understanding

Liquids and solids have densities about 1000 times greater than gases. Explain how this implies that the distances between
atoms and molecules in gases are about 10 times greater than the size of their atoms and molecules.

Solution
Atoms and molecules are close together in solids and liquids. In gases they are separated by empty space. Thus gases
have lower densities than liquids and solids. Density is mass per unit volume, and volume is related to the size of a body
(such as a sphere) cubed. So if the distance between atoms and molecules increases by a factor of 10, then the volume
occupied increases by a factor of 1000, and the density decreases by a factor of 1000.

13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and
Temperature

We have developed macroscopic definitions of pressure and temperature. Pressure is the force divided by the area on which the
force is exerted, and temperature is measured with a thermometer. We gain a better understanding of pressure and temperature
from the kinetic theory of gases, which assumes that atoms and molecules are in continuous random motion.

Figure 13.20 When a molecule collides with a rigid wall, the component of its momentum perpendicular to the wall is reversed. A force is thus exerted
on the wall, creating pressure.

Figure 13.20 shows an elastic collision of a gas molecule with the wall of a container, so that it exerts a force on the wall (by
Newton’s third law). Because a huge number of molecules will collide with the wall in a short time, we observe an average force
per unit area. These collisions are the source of pressure in a gas. As the number of molecules increases, the number of
collisions and thus the pressure increase. Similarly, the gas pressure is higher if the average velocity of molecules is higher. The
actual relationship is derived in the Things Great and Small feature below. The following relationship is found:

(13.42)
PV = 1

3Nmv2,

where P is the pressure (average force per unit area), V is the volume of gas in the container, N is the number of molecules

in the container, m is the mass of a molecule, and v2 is the average of the molecular speed squared.

What can we learn from this atomic and molecular version of the ideal gas law? We can derive a relationship between
temperature and the average translational kinetic energy of molecules in a gas. Recall the previous expression of the ideal gas
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law:

(13.43)PV = NkT.

Equating the right-hand side of this equation with the right-hand side of PV = 1
3Nmv2 gives

(13.44)1
3Nmv2 = NkT.

Making Connections: Things Great and Small—Atomic and Molecular Origin of Pressure in a Gas

Figure 13.21 shows a box filled with a gas. We know from our previous discussions that putting more gas into the box
produces greater pressure, and that increasing the temperature of the gas also produces a greater pressure. But why should
increasing the temperature of the gas increase the pressure in the box? A look at the atomic and molecular scale gives us
some answers, and an alternative expression for the ideal gas law.

The figure shows an expanded view of an elastic collision of a gas molecule with the wall of a container. Calculating the
average force exerted by such molecules will lead us to the ideal gas law, and to the connection between temperature and
molecular kinetic energy. We assume that a molecule is small compared with the separation of molecules in the gas, and
that its interaction with other molecules can be ignored. We also assume the wall is rigid and that the molecule’s direction
changes, but that its speed remains constant (and hence its kinetic energy and the magnitude of its momentum remain
constant as well). This assumption is not always valid, but the same result is obtained with a more detailed description of the
molecule’s exchange of energy and momentum with the wall.

Figure 13.21 Gas in a box exerts an outward pressure on its walls. A molecule colliding with a rigid wall has the direction of its velocity and
momentum in the x -direction reversed. This direction is perpendicular to the wall. The components of its velocity momentum in the y - and z
-directions are not changed, which means there is no force parallel to the wall.

If the molecule’s velocity changes in the x -direction, its momentum changes from –mvx to +mvx . Thus, its change in

momentum is Δmv = +mvx–(–mvx) = 2mvx . The force exerted on the molecule is given by

(13.45)
F = Δp

Δt = 2mvx
Δt .

There is no force between the wall and the molecule until the molecule hits the wall. During the short time of the collision,
the force between the molecule and wall is relatively large. We are looking for an average force; we take Δt to be the

average time between collisions of the molecule with this wall. It is the time it would take the molecule to go across the box
and back (a distance 2l) at a speed of vx . Thus Δt = 2l / vx , and the expression for the force becomes

(13.46)
F = 2mvx

2l / vx
= mvx

2

l .

This force is due to one molecule. We multiply by the number of molecules N and use their average squared velocity to

find the force
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(13.47)

F = N mvx
2

l ,

where the bar over a quantity means its average value. We would like to have the force in terms of the speed v , rather than

the x -component of the velocity. We note that the total velocity squared is the sum of the squares of its components, so that

(13.48)
v2 = vx

2 + vy
2 + vz

2.

Because the velocities are random, their average components in all directions are the same:

(13.49)
vx

2 = vy
2 = vz

2.

Thus,

(13.50)
v2 = 3vx

2,

or

(13.51)
vx

2 = 1
3v2.

Substituting 1
3v2 into the expression for F gives

(13.52)

F = N mv2

3l .

The pressure is F / A, so that we obtain

(13.53)

P = F
A = N mv2

3Al = 1
3

Nmv2

V ,

where we used V = Al for the volume. This gives the important result.

(13.54)
PV = 1

3Nmv2

This equation is another expression of the ideal gas law.

We can get the average kinetic energy of a molecule, 1
2mv2 , from the right-hand side of the equation by canceling N and

multiplying by 3/2. This calculation produces the result that the average kinetic energy of a molecule is directly related to
absolute temperature.

(13.55)
KE = 1

2mv2 = 3
2kT

The average translational kinetic energy of a molecule, KE , is called thermal energy. The equation KE = 1
2mv2 = 3

2kT is a

molecular interpretation of temperature, and it has been found to be valid for gases and reasonably accurate in liquids and
solids. It is another definition of temperature based on an expression of the molecular energy.

It is sometimes useful to rearrange KE = 1
2mv2 = 3

2kT , and solve for the average speed of molecules in a gas in terms of

temperature,

(13.56)
v2 = vrms = 3kT

m ,

where vrms stands for root-mean-square (rms) speed.
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Example 13.10 Calculating Kinetic Energy and Speed of a Gas Molecule

(a) What is the average kinetic energy of a gas molecule at 20.0ºC (room temperature)? (b) Find the rms speed of a

nitrogen molecule (N2) at this temperature.

Strategy for (a)

The known in the equation for the average kinetic energy is the temperature.

(13.57)
KE = 1

2mv2 = 3
2kT

Before substituting values into this equation, we must convert the given temperature to kelvins. This conversion gives
T = (20.0 + 273) K = 293 K.

Solution for (a)

The temperature alone is sufficient to find the average translational kinetic energy. Substituting the temperature into the
translational kinetic energy equation gives

(13.58)
KE = 3

2kT = 3
2
⎛
⎝1.38×10−23 J/K⎞⎠(293 K) = 6.07×10−21 J.

Strategy for (b)

Finding the rms speed of a nitrogen molecule involves a straightforward calculation using the equation

(13.59)
v2 = vrms = 3kT

m ,

but we must first find the mass of a nitrogen molecule. Using the molecular mass of nitrogen N2 from the periodic table,

(13.60)
m = 2(14.0067)×10−3 kg/mol

6.02×1023 mol−1 = 4.65×10−26 kg.

Solution for (b)

Substituting this mass and the value for k into the equation for vrms yields

(13.61)

vrms = 3kT
m =

3⎛⎝1.38×10–23 J/K⎞⎠(293 K)

4.65×10–26 kg
= 511 m/s.

Discussion

Note that the average kinetic energy of the molecule is independent of the type of molecule. The average translational
kinetic energy depends only on absolute temperature. The kinetic energy is very small compared to macroscopic energies,
so that we do not feel when an air molecule is hitting our skin. The rms velocity of the nitrogen molecule is surprisingly large.
These large molecular velocities do not yield macroscopic movement of air, since the molecules move in all directions with
equal likelihood. The mean free path (the distance a molecule can move on average between collisions) of molecules in air
is very small, and so the molecules move rapidly but do not get very far in a second. The high value for rms speed is
reflected in the speed of sound, however, which is about 340 m/s at room temperature. The faster the rms speed of air
molecules, the faster that sound vibrations can be transferred through the air. The speed of sound increases with
temperature and is greater in gases with small molecular masses, such as helium. (See Figure 13.22.)

Figure 13.22 (a) There are many molecules moving so fast in an ordinary gas that they collide a billion times every second. (b) Individual molecules do
not move very far in a small amount of time, but disturbances like sound waves are transmitted at speeds related to the molecular speeds.

Making Connections: Historical Note—Kinetic Theory of Gases

The kinetic theory of gases was developed by Daniel Bernoulli (1700–1782), who is best known in physics for his work on
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fluid flow (hydrodynamics). Bernoulli’s work predates the atomistic view of matter established by Dalton.

Distribution of Molecular Speeds

The motion of molecules in a gas is random in magnitude and direction for individual molecules, but a gas of many molecules
has a predictable distribution of molecular speeds. This distribution is called the Maxwell-Boltzmann distribution, after its
originators, who calculated it based on kinetic theory, and has since been confirmed experimentally. (See Figure 13.23.) The
distribution has a long tail, because a few molecules may go several times the rms speed. The most probable speed vp is less

than the rms speed vrms . Figure 13.24 shows that the curve is shifted to higher speeds at higher temperatures, with a broader

range of speeds.

Figure 13.23 The Maxwell-Boltzmann distribution of molecular speeds in an ideal gas. The most likely speed vp is less than the rms speed vrms .

Although very high speeds are possible, only a tiny fraction of the molecules have speeds that are an order of magnitude greater than vrms .

The distribution of thermal speeds depends strongly on temperature. As temperature increases, the speeds are shifted to higher
values and the distribution is broadened.

Figure 13.24 The Maxwell-Boltzmann distribution is shifted to higher speeds and is broadened at higher temperatures.

What is the implication of the change in distribution with temperature shown in Figure 13.24 for humans? All other things being
equal, if a person has a fever, he or she is likely to lose more water molecules, particularly from linings along moist cavities such
as the lungs and mouth, creating a dry sensation in the mouth.

Example 13.11 Calculating Temperature: Escape Velocity of Helium Atoms

In order to escape Earth’s gravity, an object near the top of the atmosphere (at an altitude of 100 km) must travel away from
Earth at 11.1 km/s. This speed is called the escape velocity. At what temperature would helium atoms have an rms speed
equal to the escape velocity?
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Strategy

Identify the knowns and unknowns and determine which equations to use to solve the problem.

Solution

1. Identify the knowns: v is the escape velocity, 11.1 km/s.

2. Identify the unknowns: We need to solve for temperature, T . We also need to solve for the mass m of the helium atom.

3. Determine which equations are needed.

• To solve for mass m of the helium atom, we can use information from the periodic table:

(13.62)m = molar mass
number of atoms per mole.

• To solve for temperature T , we can rearrange either

(13.63)
KE = 1

2mv2 = 3
2kT

or

(13.64)
v2 = vrms = 3kT

m
to yield

(13.65)

T = mv2

3k ,

where k is the Boltzmann constant and m is the mass of a helium atom.

4. Plug the known values into the equations and solve for the unknowns.

(13.66)
m = molar mass

number of atoms per mole = 4.0026×10−3 kg/mol
6.02×1023 mol

= 6.65×10−27 kg

(13.67)

T =
⎛
⎝6.65×10−27 kg⎞⎠

⎛
⎝11.1×103 m/s⎞⎠

2

3⎛⎝1.38×10−23 J/K⎞⎠
= 1.98×104 K

Discussion

This temperature is much higher than atmospheric temperature, which is approximately 250 K (–25ºC or –10ºF) at high

altitude. Very few helium atoms are left in the atmosphere, but there were many when the atmosphere was formed. The
reason for the loss of helium atoms is that there are a small number of helium atoms with speeds higher than Earth’s escape
velocity even at normal temperatures. The speed of a helium atom changes from one instant to the next, so that at any
instant, there is a small, but nonzero chance that the speed is greater than the escape speed and the molecule escapes
from Earth’s gravitational pull. Heavier molecules, such as oxygen, nitrogen, and water (very little of which reach a very high
altitude), have smaller rms speeds, and so it is much less likely that any of them will have speeds greater than the escape
velocity. In fact, so few have speeds above the escape velocity that billions of years are required to lose significant amounts
of the atmosphere. Figure 13.25 shows the impact of a lack of an atmosphere on the Moon. Because the gravitational pull
of the Moon is much weaker, it has lost almost its entire atmosphere. The comparison between Earth and the Moon is
discussed in this chapter’s Problems and Exercises.
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Figure 13.25 This photograph of Apollo 17 Commander Eugene Cernan driving the lunar rover on the Moon in 1972 looks as though it was taken at
night with a large spotlight. In fact, the light is coming from the Sun. Because the acceleration due to gravity on the Moon is so low (about 1/6 that of
Earth), the Moon’s escape velocity is much smaller. As a result, gas molecules escape very easily from the Moon, leaving it with virtually no
atmosphere. Even during the daytime, the sky is black because there is no gas to scatter sunlight. (credit: Harrison H. Schmitt/NASA)

Check Your Understanding

If you consider a very small object such as a grain of pollen, in a gas, then the number of atoms and molecules striking its
surface would also be relatively small. Would the grain of pollen experience any fluctuations in pressure due to statistical
fluctuations in the number of gas atoms and molecules striking it in a given amount of time?

Solution
Yes. Such fluctuations actually occur for a body of any size in a gas, but since the numbers of atoms and molecules are
immense for macroscopic bodies, the fluctuations are a tiny percentage of the number of collisions, and the averages
spoken of in this section vary imperceptibly. Roughly speaking the fluctuations are proportional to the inverse square root of
the number of collisions, so for small bodies they can become significant. This was actually observed in the 19th century for
pollen grains in water, and is known as the Brownian effect.

PhET Explorations: Gas Properties

Pump gas molecules into a box and see what happens as you change the volume, add or remove heat, change gravity, and
more. Measure the temperature and pressure, and discover how the properties of the gas vary in relation to each other.
Click to open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/gas-properties)

13.5 Phase Changes

Up to now, we have considered the behavior of ideal gases. Real gases are like ideal gases at high temperatures. At lower
temperatures, however, the interactions between the molecules and their volumes cannot be ignored. The molecules are very
close (condensation occurs) and there is a dramatic decrease in volume, as seen in Figure 13.26. The substance changes from
a gas to a liquid. When a liquid is cooled to even lower temperatures, it becomes a solid. The volume never reaches zero
because of the finite volume of the molecules.
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Figure 13.26 A sketch of volume versus temperature for a real gas at constant pressure. The linear (straight line) part of the graph represents ideal

gas behavior—volume and temperature are directly and positively related and the line extrapolates to zero volume at – 273.15ºC , or absolute

zero. When the gas becomes a liquid, however, the volume actually decreases precipitously at the liquefaction point. The volume decreases slightly
once the substance is solid, but it never becomes zero.

High pressure may also cause a gas to change phase to a liquid. Carbon dioxide, for example, is a gas at room temperature and
atmospheric pressure, but becomes a liquid under sufficiently high pressure. If the pressure is reduced, the temperature drops
and the liquid carbon dioxide solidifies into a snow-like substance at the temperature – 78ºC . Solid CO2 is called “dry ice.”

Another example of a gas that can be in a liquid phase is liquid nitrogen (LN2) . LN2 is made by liquefaction of atmospheric

air (through compression and cooling). It boils at 77 K (–196ºC) at atmospheric pressure. LN2 is useful as a refrigerant and

allows for the preservation of blood, sperm, and other biological materials. It is also used to reduce noise in electronic sensors
and equipment, and to help cool down their current-carrying wires. In dermatology, LN2 is used to freeze and painlessly

remove warts and other growths from the skin.

PV Diagrams

We can examine aspects of the behavior of a substance by plotting a graph of pressure versus volume, called a PV diagram.
When the substance behaves like an ideal gas, the ideal gas law describes the relationship between its pressure and volume.
That is,

(13.68)PV = NkT (ideal gas).

Now, assuming the number of molecules and the temperature are fixed,

(13.69)PV = constant (ideal gas, constant temperature).

For example, the volume of the gas will decrease as the pressure increases. If you plot the relationship PV = constant on a

PV diagram, you find a hyperbola. Figure 13.27 shows a graph of pressure versus volume. The hyperbolas represent ideal-gas

behavior at various fixed temperatures, and are called isotherms. At lower temperatures, the curves begin to look less like
hyperbolas—the gas is not behaving ideally and may even contain liquid. There is a critical point—that is, a critical
temperature—above which liquid cannot exist. At sufficiently high pressure above the critical point, the gas will have the density
of a liquid but will not condense. Carbon dioxide, for example, cannot be liquefied at a temperature above 31.0ºC . Critical

pressure is the minimum pressure needed for liquid to exist at the critical temperature. Table 13.3 lists representative critical
temperatures and pressures.
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Figure 13.27 PV diagrams. (a) Each curve (isotherm) represents the relationship between P and V at a fixed temperature; the upper curves are

at higher temperatures. The lower curves are not hyperbolas, because the gas is no longer an ideal gas. (b) An expanded portion of the PV diagram

for low temperatures, where the phase can change from a gas to a liquid. The term “vapor” refers to the gas phase when it exists at a temperature
below the boiling temperature.

Table 13.3 Critical Temperatures and Pressures

Substance Critical temperature Critical pressure

K ºC Pa atm

Water 647.4 374.3 22.12×106 219.0

Sulfur dioxide 430.7 157.6 7.88×106 78.0

Ammonia 405.5 132.4 11.28×106 111.7

Carbon dioxide 304.2 31.1 7.39×106 73.2

Oxygen 154.8 −118.4 5.08×106 50.3

Nitrogen 126.2 −146.9 3.39×106 33.6

Hydrogen 33.3 −239.9 1.30×106 12.9

Helium 5.3 −267.9 0.229×106 2.27

Phase Diagrams

The plots of pressure versus temperatures provide considerable insight into thermal properties of substances. There are well-
defined regions on these graphs that correspond to various phases of matter, so PT graphs are called phase diagrams.

Figure 13.28 shows the phase diagram for water. Using the graph, if you know the pressure and temperature you can determine
the phase of water. The solid lines—boundaries between phases—indicate temperatures and pressures at which the phases
coexist (that is, they exist together in ratios, depending on pressure and temperature). For example, the boiling point of water is
100ºC at 1.00 atm. As the pressure increases, the boiling temperature rises steadily to 374ºC at a pressure of 218 atm. A

pressure cooker (or even a covered pot) will cook food faster because the water can exist as a liquid at temperatures greater
than 100ºC without all boiling away. The curve ends at a point called the critical point, because at higher temperatures the

liquid phase does not exist at any pressure. The critical point occurs at the critical temperature, as you can see for water from
Table 13.3. The critical temperature for oxygen is – 118ºC , so oxygen cannot be liquefied above this temperature.
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Figure 13.28 The phase diagram ( PT graph) for water. Note that the axes are nonlinear and the graph is not to scale. This graph is simplified—there

are several other exotic phases of ice at higher pressures.

Similarly, the curve between the solid and liquid regions in Figure 13.28 gives the melting temperature at various pressures. For
example, the melting point is 0ºC at 1.00 atm, as expected. Note that, at a fixed temperature, you can change the phase from

solid (ice) to liquid (water) by increasing the pressure. Ice melts from pressure in the hands of a snowball maker. From the phase
diagram, we can also say that the melting temperature of ice falls with increased pressure. When a car is driven over snow, the
increased pressure from the tires melts the snowflakes; afterwards the water refreezes and forms an ice layer.

At sufficiently low pressures there is no liquid phase, but the substance can exist as either gas or solid. For water, there is no
liquid phase at pressures below 0.00600 atm. The phase change from solid to gas is called sublimation. It accounts for large
losses of snow pack that never make it into a river, the routine automatic defrosting of a freezer, and the freeze-drying process
applied to many foods. Carbon dioxide, on the other hand, sublimates at standard atmospheric pressure of 1 atm. (The solid
form of CO2 is known as dry ice because it does not melt. Instead, it moves directly from the solid to the gas state.)

All three curves on the phase diagram meet at a single point, the triple point, where all three phases exist in equilibrium. For
water, the triple point occurs at 273.16 K (0.01ºC) , and is a more accurate calibration temperature than the melting point of

water at 1.00 atm, or 273.15 K (0.0ºC) . See Table 13.4 for the triple point values of other substances.

Equilibrium

Liquid and gas phases are in equilibrium at the boiling temperature. (See Figure 13.29.) If a substance is in a closed container at
the boiling point, then the liquid is boiling and the gas is condensing at the same rate without net change in their relative amount.
Molecules in the liquid escape as a gas at the same rate at which gas molecules stick to the liquid, or form droplets and become
part of the liquid phase. The combination of temperature and pressure has to be “just right”; if the temperature and pressure are
increased, equilibrium is maintained by the same increase of boiling and condensation rates.

Figure 13.29 Equilibrium between liquid and gas at two different boiling points inside a closed container. (a) The rates of boiling and condensation are
equal at this combination of temperature and pressure, so the liquid and gas phases are in equilibrium. (b) At a higher temperature, the boiling rate is
faster and the rates at which molecules leave the liquid and enter the gas are also faster. Because there are more molecules in the gas, the gas
pressure is higher and the rate at which gas molecules condense and enter the liquid is faster. As a result the gas and liquid are in equilibrium at this
higher temperature.
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Table 13.4 Triple Point Temperatures and Pressures

Substance Temperature Pressure

K ºC Pa atm

Water 273.16 0.01 6.10×102 0.00600

Carbon dioxide 216.55 −56.60 5.16×105 5.11

Sulfur dioxide 197.68 −75.47 1.67×103 0.0167

Ammonia 195.40 −77.75 6.06×103 0.0600

Nitrogen 63.18 −210.0 1.25×104 0.124

Oxygen 54.36 −218.8 1.52×102 0.00151

Hydrogen 13.84 −259.3 7.04×103 0.0697

One example of equilibrium between liquid and gas is that of water and steam at 100ºC and 1.00 atm. This temperature is the

boiling point at that pressure, so they should exist in equilibrium. Why does an open pot of water at 100ºC boil completely

away? The gas surrounding an open pot is not pure water: it is mixed with air. If pure water and steam are in a closed container
at 100ºC and 1.00 atm, they would coexist—but with air over the pot, there are fewer water molecules to condense, and water

boils. What about water at 20.0ºC and 1.00 atm? This temperature and pressure correspond to the liquid region, yet an open

glass of water at this temperature will completely evaporate. Again, the gas around it is air and not pure water vapor, so that the
reduced evaporation rate is greater than the condensation rate of water from dry air. If the glass is sealed, then the liquid phase
remains. We call the gas phase a vapor when it exists, as it does for water at 20.0ºC , at a temperature below the boiling

temperature.

Check Your Understanding

Explain why a cup of water (or soda) with ice cubes stays at 0ºC , even on a hot summer day.

Solution
The ice and liquid water are in thermal equilibrium, so that the temperature stays at the freezing temperature as long as ice
remains in the liquid. (Once all of the ice melts, the water temperature will start to rise.)

Vapor Pressure, Partial Pressure, and Dalton’s Law

Vapor pressure is defined as the pressure at which a gas coexists with its solid or liquid phase. Vapor pressure is created by
faster molecules that break away from the liquid or solid and enter the gas phase. The vapor pressure of a substance depends
on both the substance and its temperature—an increase in temperature increases the vapor pressure.

Partial pressure is defined as the pressure a gas would create if it occupied the total volume available. In a mixture of gases,
the total pressure is the sum of partial pressures of the component gases, assuming ideal gas behavior and no chemical
reactions between the components. This law is known as Dalton’s law of partial pressures, after the English scientist John
Dalton (1766–1844), who proposed it. Dalton’s law is based on kinetic theory, where each gas creates its pressure by molecular
collisions, independent of other gases present. It is consistent with the fact that pressures add according to Pascal’s Principle.
Thus water evaporates and ice sublimates when their vapor pressures exceed the partial pressure of water vapor in the
surrounding mixture of gases. If their vapor pressures are less than the partial pressure of water vapor in the surrounding gas,
liquid droplets or ice crystals (frost) form.

Check Your Understanding

Is energy transfer involved in a phase change? If so, will energy have to be supplied to change phase from solid to liquid
and liquid to gas? What about gas to liquid and liquid to solid? Why do they spray the orange trees with water in Florida
when the temperatures are near or just below freezing?

Solution
Yes, energy transfer is involved in a phase change. We know that atoms and molecules in solids and liquids are bound to
each other because we know that force is required to separate them. So in a phase change from solid to liquid and liquid to
gas, a force must be exerted, perhaps by collision, to separate atoms and molecules. Force exerted through a distance is
work, and energy is needed to do work to go from solid to liquid and liquid to gas. This is intuitively consistent with the need
for energy to melt ice or boil water. The converse is also true. Going from gas to liquid or liquid to solid involves atoms and
molecules pushing together, doing work and releasing energy.
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PhET Explorations: States of Matter—Basics

Heat, cool, and compress atoms and molecules and watch as they change between solid, liquid, and gas phases.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42218/1.9/#eip-
idm444614416)

Figure 13.30

13.6 Humidity, Evaporation, and Boiling

Figure 13.31 Dew drops like these, on a banana leaf photographed just after sunrise, form when the air temperature drops to or below the dew point.
At the dew point, the rate at which water molecules join together is greater than the rate at which they separate, and some of the water condenses to
form droplets. (credit: Aaron Escobar, Flickr)

The expression “it’s not the heat, it’s the humidity” makes a valid point. We keep cool in hot weather by evaporating sweat from
our skin and water from our breathing passages. Because evaporation is inhibited by high humidity, we feel hotter at a given
temperature when the humidity is high. Low humidity, on the other hand, can cause discomfort from excessive drying of mucous
membranes and can lead to an increased risk of respiratory infections.

When we say humidity, we really mean relative humidity. Relative humidity tells us how much water vapor is in the air
compared with the maximum possible. At its maximum, denoted as saturation, the relative humidity is 100%, and evaporation is
inhibited. The amount of water vapor in the air depends on temperature. For example, relative humidity rises in the evening, as
air temperature declines, sometimes reaching the dew point. At the dew point temperature, relative humidity is 100%, and fog
may result from the condensation of water droplets if they are small enough to stay in suspension. Conversely, if you wish to dry
something (perhaps your hair), it is more effective to blow hot air over it rather than cold air, because, among other things, the
increase in temperature increases the energy of the molecules, so the rate of evaporation increases.

The amount of water vapor in the air depends on the vapor pressure of water. The liquid and solid phases are continuously
giving off vapor because some of the molecules have high enough speeds to enter the gas phase; see Figure 13.32(a). If a lid is
placed over the container, as in Figure 13.32(b), evaporation continues, increasing the pressure, until sufficient vapor has built
up for condensation to balance evaporation. Then equilibrium has been achieved, and the vapor pressure is equal to the partial
pressure of water in the container. Vapor pressure increases with temperature because molecular speeds are higher as
temperature increases. Table 13.5 gives representative values of water vapor pressure over a range of temperatures.

Figure 13.32 (a) Because of the distribution of speeds and kinetic energies, some water molecules can break away to the vapor phase even at
temperatures below the ordinary boiling point. (b) If the container is sealed, evaporation will continue until there is enough vapor density for the
condensation rate to equal the evaporation rate. This vapor density and the partial pressure it creates are the saturation values. They increase with
temperature and are independent of the presence of other gases, such as air. They depend only on the vapor pressure of water.

Relative humidity is related to the partial pressure of water vapor in the air. At 100% humidity, the partial pressure is equal to the
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vapor pressure, and no more water can enter the vapor phase. If the partial pressure is less than the vapor pressure, then
evaporation will take place, as humidity is less than 100%. If the partial pressure is greater than the vapor pressure,
condensation takes place. In everyday language, people sometimes refer to the capacity of air to “hold” water vapor, but this is
not actually what happens. The water vapor is not held by the air. The amount of water in air is determined by the vapor pressure
of water and has nothing to do with the properties of air.

Table 13.5 Saturation Vapor Density of Water

Temperature (ºC) Vapor pressure (Pa) Saturation vapor density (g/m3)

−50 4.0 0.039

−20 1.04×102 0.89

−10 2.60×102 2.36

0 6.10×102 4.84

5 8.68×102 6.80

10 1.19×103 9.40

15 1.69×103 12.8

20 2.33×103 17.2

25 3.17×103 23.0

30 4.24×103 30.4

37 6.31×103 44.0

40 7.34×103 51.1

50 1.23×104 82.4

60 1.99×104 130

70 3.12×104 197

80 4.73×104 294

90 7.01×104 418

95 8.59×104 505

100 1.01×105 598

120 1.99×105 1095

150 4.76×105 2430

200 1.55×106 7090

220 2.32×106 10,200

Example 13.12 Calculating Density Using Vapor Pressure

Table 13.5 gives the vapor pressure of water at 20.0ºC as 2.33×103 Pa. Use the ideal gas law to calculate the density

of water vapor in g / m3 that would create a partial pressure equal to this vapor pressure. Compare the result with the

saturation vapor density given in the table.

Strategy
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To solve this problem, we need to break it down into a two steps. The partial pressure follows the ideal gas law,

(13.70)PV = nRT,

where n is the number of moles. If we solve this equation for n / V to calculate the number of moles per cubic meter, we

can then convert this quantity to grams per cubic meter as requested. To do this, we need to use the molecular mass of
water, which is given in the periodic table.

Solution

1. Identify the knowns and convert them to the proper units:

a. temperature T = 20ºC=293 K

b. vapor pressure P of water at 20ºC is 2.33×103 Pa

c. molecular mass of water is 18.0 g/mol

2. Solve the ideal gas law for n / V .

(13.71)n
V = P

RT

3. Substitute known values into the equation and solve for n / V .

(13.72)n
V = P

RT = 2.33×103 Pa
(8.31 J/mol ⋅ K)(293 K) = 0.957 mol/m3

4. Convert the density in moles per cubic meter to grams per cubic meter.

(13.73)
ρ = ⎛⎝0.957mol

m3
⎞
⎠⎛⎝18.0 g

mol
⎞
⎠ = 17.2 g/m3

Discussion

The density is obtained by assuming a pressure equal to the vapor pressure of water at 20.0ºC . The density found is

identical to the value in Table 13.5, which means that a vapor density of 17.2 g/m3 at 20.0ºC creates a partial pressure

of 2.33×103 Pa, equal to the vapor pressure of water at that temperature. If the partial pressure is equal to the vapor

pressure, then the liquid and vapor phases are in equilibrium, and the relative humidity is 100%. Thus, there can be no more

than 17.2 g of water vapor per m3 at 20.0ºC , so that this value is the saturation vapor density at that temperature. This

example illustrates how water vapor behaves like an ideal gas: the pressure and density are consistent with the ideal gas
law (assuming the density in the table is correct). The saturation vapor densities listed in Table 13.5 are the maximum
amounts of water vapor that air can hold at various temperatures.

Percent Relative Humidity

We define percent relative humidity as the ratio of vapor density to saturation vapor density, or

(13.74)
percent relative humidity = vapor density

saturation vapor density×100

We can use this and the data in Table 13.5 to do a variety of interesting calculations, keeping in mind that relative humidity is
based on the comparison of the partial pressure of water vapor in air and ice.

Example 13.13 Calculating Humidity and Dew Point

(a) Calculate the percent relative humidity on a day when the temperature is 25.0ºC and the air contains 9.40 g of water

vapor per m3 . (b) At what temperature will this air reach 100% relative humidity (the saturation density)? This temperature

is the dew point. (c) What is the humidity when the air temperature is 25.0ºC and the dew point is – 10.0ºC ?

Strategy and Solution

(a) Percent relative humidity is defined as the ratio of vapor density to saturation vapor density.

(13.75)
percent relative humidity = vapor density

saturation vapor density×100
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The first is given to be 9.40 g/m3 , and the second is found in Table 13.5 to be 23.0 g/m3 . Thus,

(13.76)
percent relative humidity = 9.40 g/m3

23.0 g/m3×100 = 40.9.%

(b) The air contains 9.40 g/m3 of water vapor. The relative humidity will be 100% at a temperature where 9.40 g/m3 is

the saturation density. Inspection of Table 13.5 reveals this to be the case at 10.0ºC , where the relative humidity will be

100%. That temperature is called the dew point for air with this concentration of water vapor.

(c) Here, the dew point temperature is given to be – 10.0ºC . Using Table 13.5, we see that the vapor density is

2.36 g/m3 , because this value is the saturation vapor density at – 10.0ºC . The saturation vapor density at 25.0ºC is

seen to be 23.0 g/m3 . Thus, the relative humidity at 25.0ºC is

(13.77)
percent relative humidity = 2.36 g/m3

23.0 g/m3×100 = 10.3%.

Discussion

The importance of dew point is that air temperature cannot drop below 10.0ºC in part (b), or – 10.0ºC in part (c), without

water vapor condensing out of the air. If condensation occurs, considerable transfer of heat occurs (discussed in Heat and
Heat Transfer Methods), which prevents the temperature from further dropping. When dew points are below 0ºC , freezing

temperatures are a greater possibility, which explains why farmers keep track of the dew point. Low humidity in deserts
means low dew-point temperatures. Thus condensation is unlikely. If the temperature drops, vapor does not condense in
liquid drops. Because no heat is released into the air, the air temperature drops more rapidly compared to air with higher
humidity. Likewise, at high temperatures, liquid droplets do not evaporate, so that no heat is removed from the gas to the
liquid phase. This explains the large range of temperature in arid regions.

Why does water boil at 100ºC ? You will note from Table 13.5 that the vapor pressure of water at 100ºC is 1.01×105 Pa , or

1.00 atm. Thus, it can evaporate without limit at this temperature and pressure. But why does it form bubbles when it boils? This
is because water ordinarily contains significant amounts of dissolved air and other impurities, which are observed as small
bubbles of air in a glass of water. If a bubble starts out at the bottom of the container at 20ºC , it contains water vapor (about

2.30%). The pressure inside the bubble is fixed at 1.00 atm (we ignore the slight pressure exerted by the water around it). As the
temperature rises, the amount of air in the bubble stays the same, but the water vapor increases; the bubble expands to keep the
pressure at 1.00 atm. At 100ºC , water vapor enters the bubble continuously since the partial pressure of water is equal to 1.00

atm in equilibrium. It cannot reach this pressure, however, since the bubble also contains air and total pressure is 1.00 atm. The
bubble grows in size and thereby increases the buoyant force. The bubble breaks away and rises rapidly to the surface—we call
this boiling! (See Figure 13.33.)

Figure 13.33 (a) An air bubble in water starts out saturated with water vapor at 20ºC . (b) As the temperature rises, water vapor enters the bubble

because its vapor pressure increases. The bubble expands to keep its pressure at 1.00 atm. (c) At 100ºC , water vapor enters the bubble

continuously because water’s vapor pressure exceeds its partial pressure in the bubble, which must be less than 1.00 atm. The bubble grows and rises
to the surface.

Check Your Understanding

Freeze drying is a process in which substances, such as foods, are dried by placing them in a vacuum chamber and
lowering the atmospheric pressure around them. How does the lowered atmospheric pressure speed the drying process,
and why does it cause the temperature of the food to drop?

Solution
Decreased the atmospheric pressure results in decreased partial pressure of water, hence a lower humidity. So evaporation
of water from food, for example, will be enhanced. The molecules of water most likely to break away from the food will be
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absolute zero:

Avogadro’s number:

Boltzmann constant:

Celsius scale:

coefficient of linear expansion:

coefficient of volume expansion:

critical point:

critical pressure:

critical temperature:

Dalton’s law of partial pressures:

degree Celsius:

degree Fahrenheit:

dew point:

Fahrenheit scale:

ideal gas law:

Kelvin scale:

mole:

partial pressure:

percent relative humidity:

phase diagram:

PV diagram:

relative humidity:

saturation:

sublimation:

those with the greatest velocities. Those remaining thus have a lower average velocity and a lower temperature. This can
(and does) result in the freezing and drying of the food; hence the process is aptly named freeze drying.

PhET Explorations: States of Matter

Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the
temperature or volume of a container and see a pressure-temperature diagram respond in real time. Relate the interaction
potential to the forces between molecules.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42219/1.10/#eip-
idm994508048)

Figure 13.34

Glossary

the lowest possible temperature; the temperature at which all molecular motion ceases

NA , the number of molecules or atoms in one mole of a substance; NA = 6.02×1023 particles/

mole

k , a physical constant that relates energy to temperature; k = 1.38×10–23 J/K

temperature scale in which the freezing point of water is 0ºC and the boiling point of water is 100ºC

α , the change in length, per unit length, per 1ºC change in temperature; a constant used

in the calculation of linear expansion; the coefficient of linear expansion depends on the material and to some degree on
the temperature of the material

β , the change in volume, per unit volume, per 1ºC change in temperature

the temperature above which a liquid cannot exist

the minimum pressure needed for a liquid to exist at the critical temperature

the temperature above which a liquid cannot exist

the physical law that states that the total pressure of a gas is the sum of partial pressures
of the component gases

unit on the Celsius temperature scale

unit on the Fahrenheit temperature scale

the temperature at which relative humidity is 100%; the temperature at which water starts to condense out of the
air

temperature scale in which the freezing point of water is 32ºF and the boiling point of water is 212ºF

the physical law that relates the pressure and volume of a gas to the number of gas molecules or number of
moles of gas and the temperature of the gas

temperature scale in which 0 K is the lowest possible temperature, representing absolute zero

the quantity of a substance whose mass (in grams) is equal to its molecular mass

the pressure a gas would create if it occupied the total volume of space available

the ratio of vapor density to saturation vapor density

a graph of pressure vs. temperature of a particular substance, showing at which pressures and temperatures
the three phases of the substance occur

a graph of pressure vs. volume

the amount of water in the air relative to the maximum amount the air can hold

the condition of 100% relative humidity

the phase change from solid to gas
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temperature:

thermal energy:

thermal equilibrium:

thermal expansion:

thermal stress:

triple point:

vapor:

vapor pressure:

zeroth law of thermodynamics:

the quantity measured by a thermometer

KE , the average translational kinetic energy of a molecule

the condition in which heat no longer flows between two objects that are in contact; the two objects
have the same temperature

the change in size or volume of an object with change in temperature

stress caused by thermal expansion or contraction

the pressure and temperature at which a substance exists in equilibrium as a solid, liquid, and gas

a gas at a temperature below the boiling temperature

the pressure at which a gas coexists with its solid or liquid phase

law that states that if two objects are in thermal equilibrium, and a third object is in thermal
equilibrium with one of those objects, it is also in thermal equilibrium with the other object

Section Summary

13.1 Temperature
• Temperature is the quantity measured by a thermometer.
• Temperature is related to the average kinetic energy of atoms and molecules in a system.
• Absolute zero is the temperature at which there is no molecular motion.
• There are three main temperature scales: Celsius, Fahrenheit, and Kelvin.
• Temperatures on one scale can be converted to temperatures on another scale using the following equations:

TºF = 9
5TºC + 32

TºC = 5
9
⎛
⎝TºF − 32⎞⎠

TK = TºC + 273.15
TºC = TK − 273.15

• Systems are in thermal equilibrium when they have the same temperature.
• Thermal equilibrium occurs when two bodies are in contact with each other and can freely exchange energy.
• The zeroth law of thermodynamics states that when two systems, A and B, are in thermal equilibrium with each other, and

B is in thermal equilibrium with a third system, C, then A is also in thermal equilibrium with C.

13.2 Thermal Expansion of Solids and Liquids
• Thermal expansion is the increase, or decrease, of the size (length, area, or volume) of a body due to a change in

temperature.
• Thermal expansion is large for gases, and relatively small, but not negligible, for liquids and solids.
• Linear thermal expansion is

ΔL = αLΔT ,
where ΔL is the change in length L , ΔT is the change in temperature, and α is the coefficient of linear expansion,

which varies slightly with temperature.
• The change in area due to thermal expansion is

ΔA = 2αAΔT ,
where ΔA is the change in area.

• The change in volume due to thermal expansion is

ΔV = βVΔT ,
where β is the coefficient of volume expansion and β ≈ 3α . Thermal stress is created when thermal expansion is

constrained.

13.3 The Ideal Gas Law
• The ideal gas law relates the pressure and volume of a gas to the number of gas molecules and the temperature of the

gas.
• The ideal gas law can be written in terms of the number of molecules of gas:
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PV = NkT,
where P is pressure, V is volume, T is temperature, N is number of molecules, and k is the Boltzmann constant

k = 1.38×10–23 J/K.
• A mole is the number of atoms in a 12-g sample of carbon-12.
• The number of molecules in a mole is called Avogadro’s number NA ,

NA = 6.02×1023 mol−1.
• A mole of any substance has a mass in grams equal to its molecular weight, which can be determined from the periodic

table of elements.
• The ideal gas law can also be written and solved in terms of the number of moles of gas:

PV = nRT ,
where n is number of moles and R is the universal gas constant,

R = 8.31 J/mol ⋅ K.
• The ideal gas law is generally valid at temperatures well above the boiling temperature.

13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
• Kinetic theory is the atomistic description of gases as well as liquids and solids.
• Kinetic theory models the properties of matter in terms of continuous random motion of atoms and molecules.
• The ideal gas law can also be expressed as

PV = 1
3Nmv2,

where P is the pressure (average force per unit area), V is the volume of gas in the container, N is the number of

molecules in the container, m is the mass of a molecule, and v2 is the average of the molecular speed squared.

• Thermal energy is defined to be the average translational kinetic energy KE of an atom or molecule.

• The temperature of gases is proportional to the average translational kinetic energy of atoms and molecules.

KE = 1
2mv2 = 3

2kT

or

v2 = vrms = 3kT
m .

• The motion of individual molecules in a gas is random in magnitude and direction. However, a gas of many molecules has a
predictable distribution of molecular speeds, known as the Maxwell-Boltzmann distribution.

13.5 Phase Changes
• Most substances have three distinct phases: gas, liquid, and solid.
• Phase changes among the various phases of matter depend on temperature and pressure.
• The existence of the three phases with respect to pressure and temperature can be described in a phase diagram.
• Two phases coexist (i.e., they are in thermal equilibrium) at a set of pressures and temperatures. These are described as a

line on a phase diagram.
• The three phases coexist at a single pressure and temperature. This is known as the triple point and is described by a

single point on a phase diagram.
• A gas at a temperature below its boiling point is called a vapor.
• Vapor pressure is the pressure at which a gas coexists with its solid or liquid phase.
• Partial pressure is the pressure a gas would create if it existed alone.
• Dalton’s law states that the total pressure is the sum of the partial pressures of all of the gases present.

13.6 Humidity, Evaporation, and Boiling
• Relative humidity is the fraction of water vapor in a gas compared to the saturation value.
• The saturation vapor density can be determined from the vapor pressure for a given temperature.
• Percent relative humidity is defined to be

percent relative humidity = vapor density
saturation vapor density×100.

• The dew point is the temperature at which air reaches 100% relative humidity.
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Conceptual Questions

13.1 Temperature

1. What does it mean to say that two systems are in thermal equilibrium?

2. Give an example of a physical property that varies with temperature and describe how it is used to measure temperature.

3. When a cold alcohol thermometer is placed in a hot liquid, the column of alcohol goes down slightly before going up. Explain
why.

4. If you add boiling water to a cup at room temperature, what would you expect the final equilibrium temperature of the unit to
be? You will need to include the surroundings as part of the system. Consider the zeroth law of thermodynamics.

13.2 Thermal Expansion of Solids and Liquids

5. Thermal stresses caused by uneven cooling can easily break glass cookware. Explain why Pyrex®, a glass with a small
coefficient of linear expansion, is less susceptible.

6. Water expands significantly when it freezes: a volume increase of about 9% occurs. As a result of this expansion and because
of the formation and growth of crystals as water freezes, anywhere from 10% to 30% of biological cells are burst when animal or
plant material is frozen. Discuss the implications of this cell damage for the prospect of preserving human bodies by freezing so
that they can be thawed at some future date when it is hoped that all diseases are curable.

7. One method of getting a tight fit, say of a metal peg in a hole in a metal block, is to manufacture the peg slightly larger than the
hole. The peg is then inserted when at a different temperature than the block. Should the block be hotter or colder than the peg
during insertion? Explain your answer.

8. Does it really help to run hot water over a tight metal lid on a glass jar before trying to open it? Explain your answer.

9. Liquids and solids expand with increasing temperature, because the kinetic energy of a body’s atoms and molecules
increases. Explain why some materials shrink with increasing temperature.

13.3 The Ideal Gas Law

10. Find out the human population of Earth. Is there a mole of people inhabiting Earth? If the average mass of a person is 60 kg,
calculate the mass of a mole of people. How does the mass of a mole of people compare with the mass of Earth?

11. Under what circumstances would you expect a gas to behave significantly differently than predicted by the ideal gas law?

12. A constant-volume gas thermometer contains a fixed amount of gas. What property of the gas is measured to indicate its
temperature?

13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature

13. How is momentum related to the pressure exerted by a gas? Explain on the atomic and molecular level, considering the
behavior of atoms and molecules.

13.5 Phase Changes

14. A pressure cooker contains water and steam in equilibrium at a pressure greater than atmospheric pressure. How does this
greater pressure increase cooking speed?

15. Why does condensation form most rapidly on the coldest object in a room—for example, on a glass of ice water?
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16. What is the vapor pressure of solid carbon dioxide (dry ice) at – 78.5ºC ?

Figure 13.35 The phase diagram for carbon dioxide. The axes are nonlinear, and the graph is not to scale. Dry ice is solid carbon dioxide and has a

sublimation temperature of – 78.5ºC .

17. Can carbon dioxide be liquefied at room temperature ( 20ºC )? If so, how? If not, why not? (See Figure 13.35.)

18. Oxygen cannot be liquefied at room temperature by placing it under a large enough pressure to force its molecules together.
Explain why this is.

19. What is the distinction between gas and vapor?

13.6 Humidity, Evaporation, and Boiling

20. Because humidity depends only on water’s vapor pressure and temperature, are the saturation vapor densities listed in Table

13.5 valid in an atmosphere of helium at a pressure of 1.01×105 N/m2 , rather than air? Are those values affected by altitude

on Earth?

21. Why does a beaker of 40.0ºC water placed in a vacuum chamber start to boil as the chamber is evacuated (air is pumped

out of the chamber)? At what pressure does the boiling begin? Would food cook any faster in such a beaker?

22. Why does rubbing alcohol evaporate much more rapidly than water at STP (standard temperature and pressure)?
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Problems & Exercises

13.1 Temperature

1. What is the Fahrenheit temperature of a person with a
39.0ºC fever?

2. Frost damage to most plants occurs at temperatures of
28.0ºF or lower. What is this temperature on the Kelvin

scale?

3. To conserve energy, room temperatures are kept at
68.0ºF in the winter and 78.0ºF in the summer. What are

these temperatures on the Celsius scale?

4. A tungsten light bulb filament may operate at 2900 K. What
is its Fahrenheit temperature? What is this on the Celsius
scale?

5. The surface temperature of the Sun is about 5750 K. What
is this temperature on the Fahrenheit scale?

6. One of the hottest temperatures ever recorded on the
surface of Earth was 134ºF in Death Valley, CA. What is this

temperature in Celsius degrees? What is this temperature in
Kelvin?

7. (a) Suppose a cold front blows into your locale and drops
the temperature by 40.0 Fahrenheit degrees. How many
degrees Celsius does the temperature decrease when there
is a 40.0ºF decrease in temperature? (b) Show that any

change in temperature in Fahrenheit degrees is nine-fifths the
change in Celsius degrees.

8. (a) At what temperature do the Fahrenheit and Celsius
scales have the same numerical value? (b) At what
temperature do the Fahrenheit and Kelvin scales have the
same numerical value?

13.2 Thermal Expansion of Solids and Liquids

9. The height of the Washington Monument is measured to be
170 m on a day when the temperature is 35.0ºC . What will

its height be on a day when the temperature falls to –10.0ºC
? Although the monument is made of limestone, assume that
its thermal coefficient of expansion is the same as marble’s.

10. How much taller does the Eiffel Tower become at the end
of a day when the temperature has increased by 15ºC ? Its

original height is 321 m and you can assume it is made of
steel.

11. What is the change in length of a 3.00-cm-long column of
mercury if its temperature changes from 37.0ºC to 40.0ºC ,

assuming the mercury is unconstrained?

12. How large an expansion gap should be left between steel
railroad rails if they may reach a maximum temperature
35.0ºC greater than when they were laid? Their original

length is 10.0 m.

13. You are looking to purchase a small piece of land in Hong
Kong. The price is “only” $60,000 per square meter! The land
title says the dimensions are 20 m × 30 m. By how much

would the total price change if you measured the parcel with a
steel tape measure on a day when the temperature was
20ºC above normal?

14. Global warming will produce rising sea levels partly due to
melting ice caps but also due to the expansion of water as
average ocean temperatures rise. To get some idea of the
size of this effect, calculate the change in length of a column
of water 1.00 km high for a temperature increase of 1.00ºC.
Note that this calculation is only approximate because ocean
warming is not uniform with depth.

15. Show that 60.0 L of gasoline originally at 15.0ºC will

expand to 61.1 L when it warms to 35.0ºC, as claimed in

Example 13.4.

16. (a) Suppose a meter stick made of steel and one made of
invar (an alloy of iron and nickel) are the same length at 0ºC
. What is their difference in length at 22.0ºC ? (b) Repeat the

calculation for two 30.0-m-long surveyor’s tapes.

17. (a) If a 500-mL glass beaker is filled to the brim with ethyl
alcohol at a temperature of 5.00ºC, how much will overflow

when its temperature reaches 22.0ºC ? (b) How much less

water would overflow under the same conditions?

18. Most automobiles have a coolant reservoir to catch
radiator fluid that may overflow when the engine is hot. A
radiator is made of copper and is filled to its 16.0-L capacity
when at 10.0ºC. What volume of radiator fluid will overflow

when the radiator and fluid reach their 95.0ºC operating

temperature, given that the fluid’s volume coefficient of

expansion is β = 400×10 – 6 / ºC ? Note that this coefficient

is approximate, because most car radiators have operating
temperatures of greater than 95.0ºC.
19. A physicist makes a cup of instant coffee and notices that,
as the coffee cools, its level drops 3.00 mm in the glass cup.
Show that this decrease cannot be due to thermal contraction

by calculating the decrease in level if the 350 cm3 of coffee

is in a 7.00-cm-diameter cup and decreases in temperature
from 95.0ºC to 45.0ºC. (Most of the drop in level is

actually due to escaping bubbles of air.)

20. (a) The density of water at 0ºC is very nearly

1000 kg/m3 (it is actually 999.84 kg/m3 ), whereas the

density of ice at 0ºC is 917 kg/m3 . Calculate the pressure

necessary to keep ice from expanding when it freezes,
neglecting the effect such a large pressure would have on the
freezing temperature. (This problem gives you only an
indication of how large the forces associated with freezing
water might be.) (b) What are the implications of this result for
biological cells that are frozen?

21. Show that β ≈ 3α, by calculating the change in volume

ΔV of a cube with sides of length L.

13.3 The Ideal Gas Law

22. The gauge pressure in your car tires is

2.50×105 N/m2 at a temperature of 35.0ºC when you

drive it onto a ferry boat to Alaska. What is their gauge
pressure later, when their temperature has dropped to
– 40.0ºC ?
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23. Convert an absolute pressure of 7.00×105 N/m2 to

gauge pressure in lb/in2 . (This value was stated to be just

less than 90.0 lb/in2 in Example 13.9. Is it?)

24. Suppose a gas-filled incandescent light bulb is
manufactured so that the gas inside the bulb is at
atmospheric pressure when the bulb has a temperature of
20.0ºC . (a) Find the gauge pressure inside such a bulb

when it is hot, assuming its average temperature is 60.0ºC
(an approximation) and neglecting any change in volume due
to thermal expansion or gas leaks. (b) The actual final
pressure for the light bulb will be less than calculated in part
(a) because the glass bulb will expand. What will the actual
final pressure be, taking this into account? Is this a negligible
difference?

25. Large helium-filled balloons are used to lift scientific
equipment to high altitudes. (a) What is the pressure inside
such a balloon if it starts out at sea level with a temperature of
10.0ºC and rises to an altitude where its volume is twenty

times the original volume and its temperature is – 50.0ºC ?

(b) What is the gauge pressure? (Assume atmospheric
pressure is constant.)

26. Confirm that the units of nRT are those of energy for

each value of R : (a) 8.31 J/mol ⋅ K , (b)

1.99 cal/mol ⋅ K , and (c) 0.0821 L ⋅ atm/mol ⋅ K .

27. In the text, it was shown that N / V = 2.68×1025 m−3

for gas at STP. (a) Show that this quantity is equivalent to

N / V = 2.68×1019 cm−3 , as stated. (b) About how many

atoms are there in one μm3 (a cubic micrometer) at STP?

(c) What does your answer to part (b) imply about the
separation of atoms and molecules?

28. Calculate the number of moles in the 2.00-L volume of air
in the lungs of the average person. Note that the air is at
37.0ºC (body temperature).

29. An airplane passenger has 100 cm3 of air in his

stomach just before the plane takes off from a sea-level
airport. What volume will the air have at cruising altitude if

cabin pressure drops to 7.50×104 N/m2?

30. (a) What is the volume (in km3 ) of Avogadro’s number of

sand grains if each grain is a cube and has sides that are 1.0
mm long? (b) How many kilometers of beaches in length
would this cover if the beach averages 100 m in width and
10.0 m in depth? Neglect air spaces between grains.

31. An expensive vacuum system can achieve a pressure as

low as 1.00×10 – 7 N/m2 at 20ºC . How many atoms are

there in a cubic centimeter at this pressure and temperature?

32. The number density of gas atoms at a certain location in

the space above our planet is about 1.00×1011 m−3 , and

the pressure is 2.75×10 – 10 N/m2 in this space. What is

the temperature there?

33. A bicycle tire has a pressure of 7.00×105 N/m2 at a

temperature of 18.0ºC and contains 2.00 L of gas. What will

its pressure be if you let out an amount of air that has a

volume of 100 cm3 at atmospheric pressure? Assume tire

temperature and volume remain constant.

34. A high-pressure gas cylinder contains 50.0 L of toxic gas

at a pressure of 1.40×107 N/m2 and a temperature of

25.0ºC . Its valve leaks after the cylinder is dropped. The

cylinder is cooled to dry ice temperature (–78.5ºC) to

reduce the leak rate and pressure so that it can be safely
repaired. (a) What is the final pressure in the tank, assuming
a negligible amount of gas leaks while being cooled and that
there is no phase change? (b) What is the final pressure if
one-tenth of the gas escapes? (c) To what temperature must
the tank be cooled to reduce the pressure to 1.00 atm
(assuming the gas does not change phase and that there is
no leakage during cooling)? (d) Does cooling the tank appear
to be a practical solution?

35. Find the number of moles in 2.00 L of gas at 35.0ºC and

under 7.41×107 N/m2 of pressure.

36. Calculate the depth to which Avogadro’s number of table
tennis balls would cover Earth. Each ball has a diameter of
3.75 cm. Assume the space between balls adds an extra
25.0% to their volume and assume they are not crushed by
their own weight.

37. (a) What is the gauge pressure in a 25.0ºC car tire

containing 3.60 mol of gas in a 30.0 L volume? (b) What will
its gauge pressure be if you add 1.00 L of gas originally at
atmospheric pressure and 25.0ºC ? Assume the temperature

returns to 25.0ºC and the volume remains constant.

38. (a) In the deep space between galaxies, the density of

atoms is as low as 106 atoms/m3 , and the temperature is

a frigid 2.7 K. What is the pressure? (b) What volume (in m3

) is occupied by 1 mol of gas? (c) If this volume is a cube,
what is the length of its sides in kilometers?

13.4 Kinetic Theory: Atomic and Molecular
Explanation of Pressure and Temperature

39. Some incandescent light bulbs are filled with argon gas.
What is vrms for argon atoms near the filament, assuming

their temperature is 2500 K?

40. Average atomic and molecular speeds (vrms) are large,

even at low temperatures. What is vrms for helium atoms at

5.00 K, just one degree above helium’s liquefaction
temperature?

41. (a) What is the average kinetic energy in joules of
hydrogen atoms on the 5500ºC surface of the Sun? (b)

What is the average kinetic energy of helium atoms in a
region of the solar corona where the temperature is

6.00×105 K ?

42. The escape velocity of any object from Earth is 11.2 km/s.
(a) Express this speed in m/s and km/h. (b) At what
temperature would oxygen molecules (molecular mass is
equal to 32.0 g/mol) have an average velocity vrms equal to

Earth’s escape velocity of 11.1 km/s?
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43. The escape velocity from the Moon is much smaller than
from Earth and is only 2.38 km/s. At what temperature would
hydrogen molecules (molecular mass is equal to 2.016 g/mol)
have an average velocity vrms equal to the Moon’s escape

velocity?

44. Nuclear fusion, the energy source of the Sun, hydrogen
bombs, and fusion reactors, occurs much more readily when
the average kinetic energy of the atoms is high—that is, at
high temperatures. Suppose you want the atoms in your
fusion experiment to have average kinetic energies of

6.40×10 – 14 J . What temperature is needed?

45. Suppose that the average velocity (vrms) of carbon

dioxide molecules (molecular mass is equal to 44.0 g/mol) in

a flame is found to be 1.05×105 m/s . What temperature

does this represent?

46. Hydrogen molecules (molecular mass is equal to 2.016 g/
mol) have an average velocity vrms equal to 193 m/s. What

is the temperature?

47. Much of the gas near the Sun is atomic hydrogen. Its

temperature would have to be 1.5×107 K for the average

velocity vrms to equal the escape velocity from the Sun.

What is that velocity?

48. There are two important isotopes of uranium— 235 U

and 238 U ; these isotopes are nearly identical chemically but

have different atomic masses. Only 235 U is very useful in

nuclear reactors. One of the techniques for separating them
(gas diffusion) is based on the different average velocities
vrms of uranium hexafluoride gas, UF6 . (a) The molecular

masses for 235 U UF6 and 238 U UF6 are 349.0 g/mol

and 352.0 g/mol, respectively. What is the ratio of their
average velocities? (b) At what temperature would their
average velocities differ by 1.00 m/s? (c) Do your answers in
this problem imply that this technique may be difficult?

13.6 Humidity, Evaporation, and Boiling

49. Dry air is 78.1% nitrogen. What is the partial pressure of
nitrogen when the atmospheric pressure is

1.01×105 N/m2 ?

50. (a) What is the vapor pressure of water at 20.0ºC ? (b)

What percentage of atmospheric pressure does this
correspond to? (c) What percent of 20.0ºC air is water vapor

if it has 100% relative humidity? (The density of dry air at

20.0ºC is 1.20 kg/m3 .)

51. Pressure cookers increase cooking speed by raising the
boiling temperature of water above its value at atmospheric
pressure. (a) What pressure is necessary to raise the boiling
point to 120.0ºC ? (b) What gauge pressure does this

correspond to?

52. (a) At what temperature does water boil at an altitude of
1500 m (about 5000 ft) on a day when atmospheric pressure

is 8.59×104 N/m2 ? (b) What about at an altitude of 3000

m (about 10,000 ft) when atmospheric pressure is

7.00×104 N/m2 ?

53. What is the atmospheric pressure on top of Mt. Everest
on a day when water boils there at a temperature of
70.0ºC?

54. At a spot in the high Andes, water boils at 80.0ºC ,

greatly reducing the cooking speed of potatoes, for example.
What is atmospheric pressure at this location?

55. What is the relative humidity on a 25.0ºC day when the

air contains 18.0 g/m3 of water vapor?

56. What is the density of water vapor in g/m3 on a hot dry

day in the desert when the temperature is 40.0ºC and the

relative humidity is 6.00%?

57. A deep-sea diver should breathe a gas mixture that has
the same oxygen partial pressure as at sea level, where dry
air contains 20.9% oxygen and has a total pressure of

1.01×105 N/m2 . (a) What is the partial pressure of oxygen

at sea level? (b) If the diver breathes a gas mixture at a

pressure of 2.00×106 N/m2 , what percent oxygen should

it be to have the same oxygen partial pressure as at sea
level?

58. The vapor pressure of water at 40.0ºC is

7.34×103 N/m2 . Using the ideal gas law, calculate the

density of water vapor in g/m3 that creates a partial

pressure equal to this vapor pressure. The result should be
the same as the saturation vapor density at that temperature

(51.1 g/m3).

59. Air in human lungs has a temperature of 37.0ºC and a

saturation vapor density of 44.0 g/m3 . (a) If 2.00 L of air is

exhaled and very dry air inhaled, what is the maximum loss of
water vapor by the person? (b) Calculate the partial pressure
of water vapor having this density, and compare it with the

vapor pressure of 6.31×103 N/m2 .

60. If the relative humidity is 90.0% on a muggy summer
morning when the temperature is 20.0ºC , what will it be later

in the day when the temperature is 30.0ºC , assuming the

water vapor density remains constant?

61. Late on an autumn day, the relative humidity is 45.0% and
the temperature is 20.0ºC . What will the relative humidity be

that evening when the temperature has dropped to 10.0ºC ,

assuming constant water vapor density?

62. Atmospheric pressure atop Mt. Everest is

3.30×104 N/m2 . (a) What is the partial pressure of oxygen

there if it is 20.9% of the air? (b) What percent oxygen should
a mountain climber breathe so that its partial pressure is the
same as at sea level, where atmospheric pressure is

1.01×105 N/m2 ? (c) One of the most severe problems for

those climbing very high mountains is the extreme drying of
breathing passages. Why does this drying occur?

63. What is the dew point (the temperature at which 100%
relative humidity would occur) on a day when relative
humidity is 39.0% at a temperature of 20.0ºC ?
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64. On a certain day, the temperature is 25.0ºC and the

relative humidity is 90.0%. How many grams of water must
condense out of each cubic meter of air if the temperature
falls to 15.0ºC ? Such a drop in temperature can, thus,

produce heavy dew or fog.

65. Integrated Concepts

The boiling point of water increases with depth because
pressure increases with depth. At what depth will fresh water
have a boiling point of 150ºC , if the surface of the water is at

sea level?

66. Integrated Concepts

(a) At what depth in fresh water is the critical pressure of
water reached, given that the surface is at sea level? (b) At
what temperature will this water boil? (c) Is a significantly
higher temperature needed to boil water at a greater depth?

67. Integrated Concepts

To get an idea of the small effect that temperature has on
Archimedes’ principle, calculate the fraction of a copper
block’s weight that is supported by the buoyant force in 0ºC
water and compare this fraction with the fraction supported in
95.0ºC water.

68. Integrated Concepts

If you want to cook in water at 150ºC , you need a pressure

cooker that can withstand the necessary pressure. (a) What
pressure is required for the boiling point of water to be this
high? (b) If the lid of the pressure cooker is a disk 25.0 cm in
diameter, what force must it be able to withstand at this
pressure?

69. Unreasonable Results

(a) How many moles per cubic meter of an ideal gas are there

at a pressure of 1.00×1014 N/m2 and at 0ºC ? (b) What

is unreasonable about this result? (c) Which premise or
assumption is responsible?

70. Unreasonable Results

(a) An automobile mechanic claims that an aluminum rod fits
loosely into its hole on an aluminum engine block because
the engine is hot and the rod is cold. If the hole is 10.0%
bigger in diameter than the 22.0ºC rod, at what temperature

will the rod be the same size as the hole? (b) What is
unreasonable about this temperature? (c) Which premise is
responsible?

71. Unreasonable Results

The temperature inside a supernova explosion is said to be

2.00×1013 K . (a) What would the average velocity vrms
of hydrogen atoms be? (b) What is unreasonable about this
velocity? (c) Which premise or assumption is responsible?

72. Unreasonable Results

Suppose the relative humidity is 80% on a day when the
temperature is 30.0ºC . (a) What will the relative humidity be

if the air cools to 25.0ºC and the vapor density remains

constant? (b) What is unreasonable about this result? (c)
Which premise is responsible?
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14 HEAT AND HEAT TRANSFER METHODS

Figure 14.1 (a) The chilling effect of a clear breezy night is produced by the wind and by radiative heat transfer to cold outer space. (b) There was once
great controversy about the Earth’s age, but it is now generally accepted to be about 4.5 billion years old. Much of the debate is centered on the Earth’s
molten interior. According to our understanding of heat transfer, if the Earth is really that old, its center should have cooled off long ago. The discovery
of radioactivity in rocks revealed the source of energy that keeps the Earth’s interior molten, despite heat transfer to the surface, and from there to cold
outer space.

Chapter Outline
14.1. Heat

• Define heat as transfer of energy.
14.2. Temperature Change and Heat Capacity

• Observe heat transfer and change in temperature and mass.
• Calculate final temperature after heat transfer between two objects.

14.3. Phase Change and Latent Heat
• Examine heat transfer.
• Calculate final temperature from heat transfer.

14.4. Heat Transfer Methods
• Discuss the different methods of heat transfer.

14.5. Conduction
• Calculate thermal conductivity.
• Observe conduction of heat in collisions.
• Study thermal conductivities of common substances.

14.6. Convection
• Discuss the method of heat transfer by convection.

14.7. Radiation
• Discuss heat transfer by radiation.
• Explain the power of different materials.

Introduction to Heat and Heat Transfer Methods

Energy can exist in many forms and heat is one of the most intriguing. Heat is often hidden, as it only exists when in transit, and
is transferred by a number of distinctly different methods. Heat transfer touches every aspect of our lives and helps us
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understand how the universe functions. It explains the chill we feel on a clear breezy night, or why Earth’s core has yet to cool.
This chapter defines and explores heat transfer, its effects, and the methods by which heat is transferred. These topics are
fundamental, as well as practical, and will often be referred to in the chapters ahead.

14.1 Heat

In Work, Energy, and Energy Resources, we defined work as force times distance and learned that work done on an object
changes its kinetic energy. We also saw in Temperature, Kinetic Theory, and the Gas Laws that temperature is proportional to
the (average) kinetic energy of atoms and molecules. We say that a thermal system has a certain internal energy: its internal
energy is higher if the temperature is higher. If two objects at different temperatures are brought in contact with each other,
energy is transferred from the hotter to the colder object until equilibrium is reached and the bodies reach thermal equilibrium
(i.e., they are at the same temperature). No work is done by either object, because no force acts through a distance. The transfer
of energy is caused by the temperature difference, and ceases once the temperatures are equal. These observations lead to the
following definition of heat: Heat is the spontaneous transfer of energy due to a temperature difference.

As noted in Temperature, Kinetic Theory, and the Gas Laws, heat is often confused with temperature. For example, we may
say the heat was unbearable, when we actually mean that the temperature was high. Heat is a form of energy, whereas
temperature is not. The misconception arises because we are sensitive to the flow of heat, rather than the temperature.

Owing to the fact that heat is a form of energy, it has the SI unit of joule (J). The calorie (cal) is a common unit of energy, defined
as the energy needed to change the temperature of 1.00 g of water by 1.00ºC —specifically, between 14.5ºC and 15.5ºC ,

since there is a slight temperature dependence. Perhaps the most common unit of heat is the kilocalorie (kcal), which is the
energy needed to change the temperature of 1.00 kg of water by 1.00ºC . Since mass is most often specified in kilograms,

kilocalorie is commonly used. Food calories (given the notation Cal, and sometimes called “big calorie”) are actually kilocalories (
1 kilocalorie = 1000 calories ), a fact not easily determined from package labeling.

Figure 14.2 In figure (a) the soft drink and the ice have different temperatures, T1 and T2 , and are not in thermal equilibrium. In figure (b), when the

soft drink and ice are allowed to interact, energy is transferred until they reach the same temperature T′ , achieving equilibrium. Heat transfer occurs

due to the difference in temperatures. In fact, since the soft drink and ice are both in contact with the surrounding air and bench, the equilibrium
temperature will be the same for both.

Mechanical Equivalent of Heat

It is also possible to change the temperature of a substance by doing work. Work can transfer energy into or out of a system.
This realization helped establish the fact that heat is a form of energy. James Prescott Joule (1818–1889) performed many
experiments to establish the mechanical equivalent of heat—the work needed to produce the same effects as heat transfer. In
terms of the units used for these two terms, the best modern value for this equivalence is

(14.1)1.000 kcal = 4186 J.
We consider this equation as the conversion between two different units of energy.

516 Chapter 14 | Heat and Heat Transfer Methods

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Figure 14.3 Schematic depiction of Joule’s experiment that established the equivalence of heat and work.

The figure above shows one of Joule’s most famous experimental setups for demonstrating the mechanical equivalent of heat. It
demonstrated that work and heat can produce the same effects, and helped establish the principle of conservation of energy.
Gravitational potential energy (PE) (work done by the gravitational force) is converted into kinetic energy (KE), and then
randomized by viscosity and turbulence into increased average kinetic energy of atoms and molecules in the system, producing
a temperature increase. His contributions to the field of thermodynamics were so significant that the SI unit of energy was named
after him.

Heat added or removed from a system changes its internal energy and thus its temperature. Such a temperature increase is
observed while cooking. However, adding heat does not necessarily increase the temperature. An example is melting of ice; that
is, when a substance changes from one phase to another. Work done on the system or by the system can also change the
internal energy of the system. Joule demonstrated that the temperature of a system can be increased by stirring. If an ice cube is
rubbed against a rough surface, work is done by the frictional force. A system has a well-defined internal energy, but we cannot
say that it has a certain “heat content” or “work content”. We use the phrase “heat transfer” to emphasize its nature.

Check Your Understanding

Two samples (A and B) of the same substance are kept in a lab. Someone adds 10 kilojoules (kJ) of heat to one sample,
while 10 kJ of work is done on the other sample. How can you tell to which sample the heat was added?

Solution
Heat and work both change the internal energy of the substance. However, the properties of the sample only depend on the
internal energy so that it is impossible to tell whether heat was added to sample A or B.

14.2 Temperature Change and Heat Capacity

One of the major effects of heat transfer is temperature change: heating increases the temperature while cooling decreases it.
We assume that there is no phase change and that no work is done on or by the system. Experiments show that the transferred
heat depends on three factors—the change in temperature, the mass of the system, and the substance and phase of the
substance.
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Figure 14.4 The heat Q transferred to cause a temperature change depends on the magnitude of the temperature change, the mass of the system,

and the substance and phase involved. (a) The amount of heat transferred is directly proportional to the temperature change. To double the
temperature change of a mass m , you need to add twice the heat. (b) The amount of heat transferred is also directly proportional to the mass. To

cause an equivalent temperature change in a doubled mass, you need to add twice the heat. (c) The amount of heat transferred depends on the

substance and its phase. If it takes an amount Q of heat to cause a temperature change ΔT in a given mass of copper, it will take 10.8 times that

amount of heat to cause the equivalent temperature change in the same mass of water assuming no phase change in either substance.

The dependence on temperature change and mass are easily understood. Owing to the fact that the (average) kinetic energy of
an atom or molecule is proportional to the absolute temperature, the internal energy of a system is proportional to the absolute
temperature and the number of atoms or molecules. Owing to the fact that the transferred heat is equal to the change in the
internal energy, the heat is proportional to the mass of the substance and the temperature change. The transferred heat also
depends on the substance so that, for example, the heat necessary to raise the temperature is less for alcohol than for water. For
the same substance, the transferred heat also depends on the phase (gas, liquid, or solid).

Heat Transfer and Temperature Change

The quantitative relationship between heat transfer and temperature change contains all three factors:

(14.2)Q = mcΔT,

where Q is the symbol for heat transfer, m is the mass of the substance, and ΔT is the change in temperature. The

symbol c stands for specific heat and depends on the material and phase. The specific heat is the amount of heat

necessary to change the temperature of 1.00 kg of mass by 1.00ºC . The specific heat c is a property of the substance; its

SI unit is J/(kg ⋅ K) or J/(kg⋅ºC). Recall that the temperature change (ΔT) is the same in units of kelvin and degrees

Celsius. If heat transfer is measured in kilocalories, then the unit of specific heat is kcal/(kg⋅ºC).

Values of specific heat must generally be looked up in tables, because there is no simple way to calculate them. In general, the
specific heat also depends on the temperature. Table 14.1 lists representative values of specific heat for various substances.
Except for gases, the temperature and volume dependence of the specific heat of most substances is weak. We see from this
table that the specific heat of water is five times that of glass and ten times that of iron, which means that it takes five times as
much heat to raise the temperature of water the same amount as for glass and ten times as much heat to raise the temperature
of water as for iron. In fact, water has one of the largest specific heats of any material, which is important for sustaining life on
Earth.

Example 14.1 Calculating the Required Heat: Heating Water in an Aluminum Pan

A 0.500 kg aluminum pan on a stove is used to heat 0.250 liters of water from 20.0ºC to 80.0ºC . (a) How much heat is

required? What percentage of the heat is used to raise the temperature of (b) the pan and (c) the water?

Strategy

The pan and the water are always at the same temperature. When you put the pan on the stove, the temperature of the
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water and the pan is increased by the same amount. We use the equation for the heat transfer for the given temperature
change and mass of water and aluminum. The specific heat values for water and aluminum are given in Table 14.1.

Solution

Because water is in thermal contact with the aluminum, the pan and the water are at the same temperature.

1. Calculate the temperature difference:

(14.3)ΔT = Tf − Ti = 60.0ºC.

2. Calculate the mass of water. Because the density of water is 1000 kg/m3 , one liter of water has a mass of 1 kg, and

the mass of 0.250 liters of water is mw = 0.250 kg .

3. Calculate the heat transferred to the water. Use the specific heat of water in Table 14.1:

(14.4)Qw = mwcw ΔT = ⎛
⎝0.250 kg⎞⎠⎛⎝4186 J/kgºC⎞⎠(60.0ºC) = 62.8 kJ.

4. Calculate the heat transferred to the aluminum. Use the specific heat for aluminum in Table 14.1:

(14.5)QAl = mAlcAl ΔT = ⎛
⎝0.500 kg⎞⎠⎛⎝900 J/kgºC⎞⎠(60.0ºC)= 27.0 × 104 J = 27.0 kJ.

5. Compare the percentage of heat going into the pan versus that going into the water. First, find the total transferred
heat:

(14.6)QTotal = QW + QAl = 62.8 kJ + 27.0 kJ = 89.8 kJ.

Thus, the amount of heat going into heating the pan is

(14.7)27.0 kJ
89.8 kJ×100% = 30.1%,

and the amount going into heating the water is

(14.8)62.8 kJ
89.8 kJ×100% = 69.9%.

Discussion

In this example, the heat transferred to the container is a significant fraction of the total transferred heat. Although the mass
of the pan is twice that of the water, the specific heat of water is over four times greater than that of aluminum. Therefore, it
takes a bit more than twice the heat to achieve the given temperature change for the water as compared to the aluminum
pan.

Figure 14.5 The smoking brakes on this truck are a visible evidence of the mechanical equivalent of heat.

Example 14.2 Calculating the Temperature Increase from the Work Done on a Substance: Truck
Brakes Overheat on Downhill Runs

Truck brakes used to control speed on a downhill run do work, converting gravitational potential energy into increased
internal energy (higher temperature) of the brake material. This conversion prevents the gravitational potential energy from
being converted into kinetic energy of the truck. The problem is that the mass of the truck is large compared with that of the
brake material absorbing the energy, and the temperature increase may occur too fast for sufficient heat to transfer from the
brakes to the environment.
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Calculate the temperature increase of 100 kg of brake material with an average specific heat of 800 J/kg ⋅ ºC if the

material retains 10% of the energy from a 10,000-kg truck descending 75.0 m (in vertical displacement) at a constant speed.

Strategy

If the brakes are not applied, gravitational potential energy is converted into kinetic energy. When brakes are applied,
gravitational potential energy is converted into internal energy of the brake material. We first calculate the gravitational
potential energy (Mgh) that the entire truck loses in its descent and then find the temperature increase produced in the

brake material alone.

Solution

1. Calculate the change in gravitational potential energy as the truck goes downhill

(14.9)Mgh = ⎛
⎝10,000 kg⎞⎠⎛⎝9.80 m/s2⎞⎠(75.0 m) = 7.35×106 J.

2. Calculate the temperature from the heat transferred using Q=Mgh and

(14.10)ΔT = Q
mc,

where m is the mass of the brake material. Insert the values m = 100 kg and c = 800 J/kg ⋅ ºC to find

(14.11)

ΔT =
⎛
⎝7.35×105 J⎞⎠

⎛
⎝100 kg⎞⎠⎛⎝800 J/kgºC⎞⎠

= 9.2ºC.

Discussion

This same idea underlies the recent hybrid technology of cars, where mechanical energy (gravitational potential energy) is
converted by the brakes into electrical energy (battery).
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Table 14.1 Specific Heats[1] of Various Substances

Substances Specific heat (c)

Solids J/kg⋅ºC kcal/kg⋅ºC[2]

Aluminum 900 0.215

Asbestos 800 0.19

Concrete, granite (average) 840 0.20

Copper 387 0.0924

Glass 840 0.20

Gold 129 0.0308

Human body (average at 37 °C) 3500 0.83

Ice (average, -50°C to 0°C) 2090 0.50

Iron, steel 452 0.108

Lead 128 0.0305

Silver 235 0.0562

Wood 1700 0.4

Liquids

Benzene 1740 0.415

Ethanol 2450 0.586

Glycerin 2410 0.576

Mercury 139 0.0333

Water (15.0 °C) 4186 1.000

Gases [3]

Air (dry) 721 (1015) 0.172 (0.242)

Ammonia 1670 (2190) 0.399 (0.523)

Carbon dioxide 638 (833) 0.152 (0.199)

Nitrogen 739 (1040) 0.177 (0.248)

Oxygen 651 (913) 0.156 (0.218)

Steam (100°C) 1520 (2020) 0.363 (0.482)

Note that Example 14.2 is an illustration of the mechanical equivalent of heat. Alternatively, the temperature increase could be
produced by a blow torch instead of mechanically.

Example 14.3 Calculating the Final Temperature When Heat Is Transferred Between Two Bodies:
Pouring Cold Water in a Hot Pan

Suppose you pour 0.250 kg of 20.0ºC water (about a cup) into a 0.500-kg aluminum pan off the stove with a temperature

of 150ºC . Assume that the pan is placed on an insulated pad and that a negligible amount of water boils off. What is the

temperature when the water and pan reach thermal equilibrium a short time later?

Strategy

The pan is placed on an insulated pad so that little heat transfer occurs with the surroundings. Originally the pan and water
are not in thermal equilibrium: the pan is at a higher temperature than the water. Heat transfer then restores thermal
equilibrium once the water and pan are in contact. Because heat transfer between the pan and water takes place rapidly, the
mass of evaporated water is negligible and the magnitude of the heat lost by the pan is equal to the heat gained by the
water. The exchange of heat stops once a thermal equilibrium between the pan and the water is achieved. The heat
exchange can be written as ∣ Qhot ∣ = Qcold .

1. The values for solids and liquids are at constant volume and at 25ºC , except as noted.

2. These values are identical in units of cal/g⋅ºC .

3. cv at constant volume and at 20.0ºC , except as noted, and at 1.00 atm average pressure. Values in parentheses are cp

at a constant pressure of 1.00 atm.
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Solution

1. Use the equation for heat transfer Q = mcΔT to express the heat lost by the aluminum pan in terms of the mass of

the pan, the specific heat of aluminum, the initial temperature of the pan, and the final temperature:

(14.12)Qhot = mAlcAl
⎛
⎝Tf − 150ºC⎞⎠.

2. Express the heat gained by the water in terms of the mass of the water, the specific heat of water, the initial
temperature of the water and the final temperature:

(14.13)Qcold = mWcW
⎛
⎝Tf − 20.0ºC⎞⎠.

3. Note that Qhot < 0 and Qcold > 0 and that they must sum to zero because the heat lost by the hot pan must be the

same as the heat gained by the cold water:

(14.14)Qcold +Qhot = 0,
Qcold = –Qhot,

mW cW
⎛
⎝Tf − 20.0ºC⎞⎠ = −mAl cAl

⎛
⎝Tf − 150ºC.⎞⎠

4. Bring all terms involving Tf on the left hand side and all other terms on the right hand side. Solve for Tf ,

(14.15)
Tf = mAl cAl (150ºC) + mWcW(20.0ºC)

mAl cAl + mWcW
,

and insert the numerical values:

(14.16)
Tf =

⎛
⎝0.500 kg⎞⎠⎛⎝900 J/kgºC⎞⎠(150ºC)+⎛⎝0.250 kg⎞⎠⎛⎝4186 J/kgºC⎞⎠(20.0ºC)

⎛
⎝0.500 kg⎞⎠⎛⎝900 J/kgºC⎞⎠+ ⎛

⎝0.250 kg⎞⎠⎛⎝4186 J/kgºC⎞⎠

= 88430 J
1496.5 J/ºC

= 59.1ºC.
Discussion

This is a typical calorimetry problem—two bodies at different temperatures are brought in contact with each other and
exchange heat until a common temperature is reached. Why is the final temperature so much closer to 20.0ºC than

150ºC ? The reason is that water has a greater specific heat than most common substances and thus undergoes a small

temperature change for a given heat transfer. A large body of water, such as a lake, requires a large amount of heat to
increase its temperature appreciably. This explains why the temperature of a lake stays relatively constant during a day even
when the temperature change of the air is large. However, the water temperature does change over longer times (e.g.,
summer to winter).

Take-Home Experiment: Temperature Change of Land and Water

What heats faster, land or water?

To study differences in heat capacity:

• Place equal masses of dry sand (or soil) and water at the same temperature into two small jars. (The average density
of soil or sand is about 1.6 times that of water, so you can achieve approximately equal masses by using 50% more

water by volume.)
• Heat both (using an oven or a heat lamp) for the same amount of time.
• Record the final temperature of the two masses.
• Now bring both jars to the same temperature by heating for a longer period of time.
• Remove the jars from the heat source and measure their temperature every 5 minutes for about 30 minutes.

Which sample cools off the fastest? This activity replicates the phenomena responsible for land breezes and sea breezes.

Check Your Understanding

If 25 kJ is necessary to raise the temperature of a block from 25ºC to 30ºC , how much heat is necessary to heat the block

from 45ºC to 50ºC ?

Solution
The heat transfer depends only on the temperature difference. Since the temperature differences are the same in both
cases, the same 25 kJ is necessary in the second case.
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14.3 Phase Change and Latent Heat

So far we have discussed temperature change due to heat transfer. No temperature change occurs from heat transfer if ice melts
and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof
warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings.

Figure 14.6 Heat from the air transfers to the ice causing it to melt. (credit: Mike Brand)

Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart such
that, in the liquid, the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature. Similarly,
energy is needed to vaporize a liquid, because molecules in a liquid interact with each other via attractive forces. There is no
temperature change until a phase change is complete. The temperature of a cup of soda initially at 0ºC stays at 0ºC until all

the ice has melted. Conversely, energy is released during freezing and condensation, usually in the form of thermal energy. Work
is done by cohesive forces when molecules are brought together. The corresponding energy must be given off (dissipated) to
allow them to stay together Figure 14.7.

The energy involved in a phase change depends on two major factors: the number and strength of bonds or force pairs. The
number of bonds is proportional to the number of molecules and thus to the mass of the sample. The strength of forces depends
on the type of molecules. The heat Q required to change the phase of a sample of mass m is given by

(14.17)Q = mL f (melting/freezing),
(14.18)Q = mLv (vaporization/condensation),

where the latent heat of fusion, Lf , and latent heat of vaporization, Lv , are material constants that are determined

experimentally. See (Table 14.2).
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Figure 14.7 (a) Energy is required to partially overcome the attractive forces between molecules in a solid to form a liquid. That same energy must be
removed for freezing to take place. (b) Molecules are separated by large distances when going from liquid to vapor, requiring significant energy to
overcome molecular attraction. The same energy must be removed for condensation to take place. There is no temperature change until a phase
change is complete.

Latent heat is measured in units of J/kg. Both Lf and Lv depend on the substance, particularly on the strength of its molecular

forces as noted earlier. Lf and Lv are collectively called latent heat coefficients. They are latent, or hidden, because in

phase changes, energy enters or leaves a system without causing a temperature change in the system; so, in effect, the energy
is hidden. Table 14.2 lists representative values of Lf and Lv , together with melting and boiling points.

The table shows that significant amounts of energy are involved in phase changes. Let us look, for example, at how much energy
is needed to melt a kilogram of ice at 0ºC to produce a kilogram of water at 0°C . Using the equation for a change in

temperature and the value for water from Table 14.2, we find that Q = mLf = (1.0 kg)(334 kJ/kg) = 334 kJ is the energy to

melt a kilogram of ice. This is a lot of energy as it represents the same amount of energy needed to raise the temperature of 1 kg
of liquid water from 0ºC to 79.8ºC . Even more energy is required to vaporize water; it would take 2256 kJ to change 1 kg of

liquid water at the normal boiling point ( 100ºC at atmospheric pressure) to steam (water vapor). This example shows that the

energy for a phase change is enormous compared to energy associated with temperature changes without a phase change.
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Table 14.2 Heats of Fusion and Vaporization [4]

Lf Lv

Substance Melting point (ºC) kJ/kg kcal/kg Boiling point (°C) kJ/kg kcal/kg

Helium −269.7 5.23 1.25 −268.9 20.9 4.99

Hydrogen −259.3 58.6 14.0 −252.9 452 108

Nitrogen −210.0 25.5 6.09 −195.8 201 48.0

Oxygen −218.8 13.8 3.30 −183.0 213 50.9

Ethanol −114 104 24.9 78.3 854 204

Ammonia −75 108 −33.4 1370 327

Mercury −38.9 11.8 2.82 357 272 65.0

Water 0.00 334 79.8 100.0 2256[5] 539[6]

Sulfur 119 38.1 9.10 444.6 326 77.9

Lead 327 24.5 5.85 1750 871 208

Antimony 631 165 39.4 1440 561 134

Aluminum 660 380 90 2450 11400 2720

Silver 961 88.3 21.1 2193 2336 558

Gold 1063 64.5 15.4 2660 1578 377

Copper 1083 134 32.0 2595 5069 1211

Uranium 1133 84 20 3900 1900 454

Tungsten 3410 184 44 5900 4810 1150

Phase changes can have a tremendous stabilizing effect even on temperatures that are not near the melting and boiling points,
because evaporation and condensation (conversion of a gas into a liquid state) occur even at temperatures below the boiling
point. Take, for example, the fact that air temperatures in humid climates rarely go above 35.0ºC , which is because most heat

transfer goes into evaporating water into the air. Similarly, temperatures in humid weather rarely fall below the dew point because
enormous heat is released when water vapor condenses.

We examine the effects of phase change more precisely by considering adding heat into a sample of ice at −20ºC (Figure

14.8). The temperature of the ice rises linearly, absorbing heat at a constant rate of 0.50 cal/g⋅ºC until it reaches 0ºC . Once at

this temperature, the ice begins to melt until all the ice has melted, absorbing 79.8 cal/g of heat. The temperature remains
constant at 0ºC during this phase change. Once all the ice has melted, the temperature of the liquid water rises, absorbing heat

at a new constant rate of 1.00 cal/g⋅ºC . At 100ºC , the water begins to boil and the temperature again remains constant while

the water absorbs 539 cal/g of heat during this phase change. When all the liquid has become steam vapor, the temperature
rises again, absorbing heat at a rate of 0.482 cal/g⋅ºC .

4. Values quoted at the normal melting and boiling temperatures at standard atmospheric pressure (1 atm).
5. At 37.0ºC (body temperature), the heat of vaporization Lv for water is 2430 kJ/kg or 580 kcal/kg

6. At 37.0ºC (body temperature), the heat of vaporization Lv for water is 2430 kJ/kg or 580 kcal/kg
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Figure 14.8 A graph of temperature versus energy added. The system is constructed so that no vapor evaporates while ice warms to become liquid

water, and so that, when vaporization occurs, the vapor remains in of the system. The long stretches of constant temperature values at 0ºC and

100ºC reflect the large latent heat of melting and vaporization, respectively.

Water can evaporate at temperatures below the boiling point. More energy is required than at the boiling point, because the
kinetic energy of water molecules at temperatures below 100ºC is less than that at 100ºC , hence less energy is available from

random thermal motions. Take, for example, the fact that, at body temperature, perspiration from the skin requires a heat input of
2428 kJ/kg, which is about 10 percent higher than the latent heat of vaporization at 100ºC . This heat comes from the skin, and

thus provides an effective cooling mechanism in hot weather. High humidity inhibits evaporation, so that body temperature might
rise, leaving unevaporated sweat on your brow.

Example 14.4 Calculate Final Temperature from Phase Change: Cooling Soda with Ice Cubes

Three ice cubes are used to chill a soda at 20ºC with mass msoda = 0.25 kg . The ice is at 0ºC and each ice cube has a

mass of 6.0 g. Assume that the soda is kept in a foam container so that heat loss can be ignored. Assume the soda has the
same heat capacity as water. Find the final temperature when all ice has melted.

Strategy

The ice cubes are at the melting temperature of 0ºC . Heat is transferred from the soda to the ice for melting. Melting of ice

occurs in two steps: first the phase change occurs and solid (ice) transforms into liquid water at the melting temperature,
then the temperature of this water rises. Melting yields water at 0ºC , so more heat is transferred from the soda to this water

until the water plus soda system reaches thermal equilibrium,

(14.19)Qice = −Qsoda.

The heat transferred to the ice is Qice = miceLf + micecW(Tf − 0ºC) . The heat given off by the soda is

Qsoda = msoda cW(Tf − 20ºC) . Since no heat is lost, Qice = −Qsoda , so that

(14.20)mice Lf + micecW
⎛
⎝Tf − 0ºC⎞⎠ = - msodacW

⎛
⎝Tf − 20ºC⎞⎠.

Bring all terms involving Tf on the left-hand-side and all other terms on the right-hand-side. Solve for the unknown quantity

Tf :

(14.21)
Tf = msoda cW (20ºC) − miceLf

(msoda + mice)cW
.

Solution

1. Identify the known quantities. The mass of ice is mice = 3×6.0 g = 0.018 kg and the mass of soda is

msoda = 0.25 kg .

2. Calculate the terms in the numerator:
(14.22)msoda cW (20ºC) = ⎛

⎝0.25 kg⎞⎠⎛⎝4186 J/kg⋅ºC⎞⎠(20ºC) = 20,930 J
and
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(14.23)mice Lf = ⎛
⎝0.018 kg⎞⎠⎛⎝334,000 J/kg⎞⎠=6012 J.

3. Calculate the denominator:

(14.24)(msoda + mice)cW = ⎛
⎝0.25 kg + 0.018 kg⎞⎠⎛⎝4186 K/(kg⋅ºC⎞⎠=1122 J/ºC.

4. Calculate the final temperature:

(14.25)Tf = 20,930 J − 6012 J
1122 J/ºC = 13ºC.

Discussion

This example illustrates the enormous energies involved during a phase change. The mass of ice is about 7 percent the
mass of water but leads to a noticeable change in the temperature of soda. Although we assumed that the ice was at the
freezing temperature, this is incorrect: the typical temperature is −6ºC . However, this correction gives a final temperature

that is essentially identical to the result we found. Can you explain why?

We have seen that vaporization requires heat transfer to a liquid from the surroundings, so that energy is released by the
surroundings. Condensation is the reverse process, increasing the temperature of the surroundings. This increase may seem
surprising, since we associate condensation with cold objects—the glass in the figure, for example. However, energy must be
removed from the condensing molecules to make a vapor condense. The energy is exactly the same as that required to make
the phase change in the other direction, from liquid to vapor, and so it can be calculated from Q = mLv .

Figure 14.9 Condensation forms on this glass of iced tea because the temperature of the nearby air is reduced to below the dew point. The rate at
which water molecules join together exceeds the rate at which they separate, and so water condenses. Energy is released when the water condenses,
speeding the melting of the ice in the glass. (credit: Jenny Downing)

Real-World Application

Energy is also released when a liquid freezes. This phenomenon is used by fruit growers in Florida to protect oranges when
the temperature is close to the freezing point (0ºC) . Growers spray water on the plants in orchards so that the water

freezes and heat is released to the growing oranges on the trees. This prevents the temperature inside the orange from
dropping below freezing, which would damage the fruit.
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Figure 14.10 The ice on these trees released large amounts of energy when it froze, helping to prevent the temperature of the trees from

dropping below 0ºC . Water is intentionally sprayed on orchards to help prevent hard frosts. (credit: Hermann Hammer)

Sublimation is the transition from solid to vapor phase. You may have noticed that snow can disappear into thin air without a
trace of liquid water, or the disappearance of ice cubes in a freezer. The reverse is also true: Frost can form on very cold
windows without going through the liquid stage. A popular effect is the making of “smoke” from dry ice, which is solid carbon
dioxide. Sublimation occurs because the equilibrium vapor pressure of solids is not zero. Certain air fresheners use the
sublimation of a solid to inject a perfume into the room. Moth balls are a slightly toxic example of a phenol (an organic
compound) that sublimates, while some solids, such as osmium tetroxide, are so toxic that they must be kept in sealed
containers to prevent human exposure to their sublimation-produced vapors.

Figure 14.11 Direct transitions between solid and vapor are common, sometimes useful, and even beautiful. (a) Dry ice sublimates directly to carbon
dioxide gas. The visible vapor is made of water droplets. (credit: Windell Oskay) (b) Frost forms patterns on a very cold window, an example of a solid
formed directly from a vapor. (credit: Liz West)

All phase transitions involve heat. In the case of direct solid-vapor transitions, the energy required is given by the equation
Q = mL s , where Ls is the heat of sublimation, which is the energy required to change 1.00 kg of a substance from the solid

phase to the vapor phase. Ls is analogous to Lf and Lv , and its value depends on the substance. Sublimation requires

energy input, so that dry ice is an effective coolant, whereas the reverse process (i.e., frosting) releases energy. The amount of
energy required for sublimation is of the same order of magnitude as that for other phase transitions.

The material presented in this section and the preceding section allows us to calculate any number of effects related to
temperature and phase change. In each case, it is necessary to identify which temperature and phase changes are taking place
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and then to apply the appropriate equation. Keep in mind that heat transfer and work can cause both temperature and phase
changes.

Problem-Solving Strategies for the Effects of Heat Transfer
1. Examine the situation to determine that there is a change in the temperature or phase. Is there heat transfer into or out of

the system? When the presence or absence of a phase change is not obvious, you may wish to first solve the problem as if
there were no phase changes, and examine the temperature change obtained. If it is sufficient to take you past a boiling or
melting point, you should then go back and do the problem in steps—temperature change, phase change, subsequent
temperature change, and so on.

2. Identify and list all objects that change temperature and phase.

3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.

4. Make a list of what is given or what can be inferred from the problem as stated (identify the knowns).

5. Solve the appropriate equation for the quantity to be determined (the unknown). If there is a temperature change, the
transferred heat depends on the specific heat (see Table 14.1) whereas, for a phase change, the transferred heat depends
on the latent heat. See Table 14.2.

6. Substitute the knowns along with their units into the appropriate equation and obtain numerical solutions complete with
units. You will need to do this in steps if there is more than one stage to the process (such as a temperature change
followed by a phase change).

7. Check the answer to see if it is reasonable: Does it make sense? As an example, be certain that the temperature change
does not also cause a phase change that you have not taken into account.

Check Your Understanding

Why does snow remain on mountain slopes even when daytime temperatures are higher than the freezing temperature?

Solution
Snow is formed from ice crystals and thus is the solid phase of water. Because enormous heat is necessary for phase
changes, it takes a certain amount of time for this heat to be accumulated from the air, even if the air is above 0ºC . The

warmer the air is, the faster this heat exchange occurs and the faster the snow melts.

14.4 Heat Transfer Methods

Equally as interesting as the effects of heat transfer on a system are the methods by which this occurs. Whenever there is a
temperature difference, heat transfer occurs. Heat transfer may occur rapidly, such as through a cooking pan, or slowly, such as
through the walls of a picnic ice chest. We can control rates of heat transfer by choosing materials (such as thick wool clothing
for the winter), controlling air movement (such as the use of weather stripping around doors), or by choice of color (such as a
white roof to reflect summer sunlight). So many processes involve heat transfer, so that it is hard to imagine a situation where no
heat transfer occurs. Yet every process involving heat transfer takes place by only three methods:

1. Conduction is heat transfer through stationary matter by physical contact. (The matter is stationary on a macroscopic
scale—we know there is thermal motion of the atoms and molecules at any temperature above absolute zero.) Heat
transferred between the electric burner of a stove and the bottom of a pan is transferred by conduction.

2. Convection is the heat transfer by the macroscopic movement of a fluid. This type of transfer takes place in a forced-air
furnace and in weather systems, for example.

3. Heat transfer by radiation occurs when microwaves, infrared radiation, visible light, or another form of electromagnetic
radiation is emitted or absorbed. An obvious example is the warming of the Earth by the Sun. A less obvious example is
thermal radiation from the human body.
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Figure 14.12 In a fireplace, heat transfer occurs by all three methods: conduction, convection, and radiation. Radiation is responsible for most of the
heat transferred into the room. Heat transfer also occurs through conduction into the room, but at a much slower rate. Heat transfer by convection also
occurs through cold air entering the room around windows and hot air leaving the room by rising up the chimney.

We examine these methods in some detail in the three following modules. Each method has unique and interesting
characteristics, but all three do have one thing in common: they transfer heat solely because of a temperature difference Figure
14.12.

Check Your Understanding

Name an example from daily life (different from the text) for each mechanism of heat transfer.

Solution

Conduction: Heat transfers into your hands as you hold a hot cup of coffee.

Convection: Heat transfers as the barista “steams” cold milk to make hot cocoa.

Radiation: Reheating a cold cup of coffee in a microwave oven.

14.5 Conduction

Figure 14.13 Insulation is used to limit the conduction of heat from the inside to the outside (in winters) and from the outside to the inside (in
summers). (credit: Giles Douglas)

Your feet feel cold as you walk barefoot across the living room carpet in your cold house and then step onto the kitchen tile floor.
This result is intriguing, since the carpet and tile floor are both at the same temperature. The different sensation you feel is
explained by the different rates of heat transfer: the heat loss during the same time interval is greater for skin in contact with the
tiles than with the carpet, so the temperature drop is greater on the tiles.

Some materials conduct thermal energy faster than others. In general, good conductors of electricity (metals like copper,
aluminum, gold, and silver) are also good heat conductors, whereas insulators of electricity (wood, plastic, and rubber) are poor
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heat conductors. Figure 14.14 shows molecules in two bodies at different temperatures. The (average) kinetic energy of a
molecule in the hot body is higher than in the colder body. If two molecules collide, an energy transfer from the molecule with
greater kinetic energy to the molecule with less kinetic energy occurs. The cumulative effect from all collisions results in a net flux
of heat from the hot body to the colder body. The heat flux thus depends on the temperature difference ΔΤ = Τhot − Tcold .

Therefore, you will get a more severe burn from boiling water than from hot tap water. Conversely, if the temperatures are the
same, the net heat transfer rate falls to zero, and equilibrium is achieved. Owing to the fact that the number of collisions
increases with increasing area, heat conduction depends on the cross-sectional area. If you touch a cold wall with your palm,
your hand cools faster than if you just touch it with your fingertip.

Figure 14.14 The molecules in two bodies at different temperatures have different average kinetic energies. Collisions occurring at the contact surface
tend to transfer energy from high-temperature regions to low-temperature regions. In this illustration, a molecule in the lower temperature region (right
side) has low energy before collision, but its energy increases after colliding with the contact surface. In contrast, a molecule in the higher temperature
region (left side) has high energy before collision, but its energy decreases after colliding with the contact surface.

A third factor in the mechanism of conduction is the thickness of the material through which heat transfers. The figure below
shows a slab of material with different temperatures on either side. Suppose that T2 is greater than T1 , so that heat is

transferred from left to right. Heat transfer from the left side to the right side is accomplished by a series of molecular collisions.
The thicker the material, the more time it takes to transfer the same amount of heat. This model explains why thick clothing is
warmer than thin clothing in winters, and why Arctic mammals protect themselves with thick blubber.

Figure 14.15 Heat conduction occurs through any material, represented here by a rectangular bar, whether window glass or walrus blubber. The

temperature of the material is T2 on the left and T1 on the right, where T2 is greater than T1 . The rate of heat transfer by conduction is directly

proportional to the surface area A , the temperature difference T2 − T1 , and the substance’s conductivity k . The rate of heat transfer is inversely

proportional to the thickness d .

Lastly, the heat transfer rate depends on the material properties described by the coefficient of thermal conductivity. All four
factors are included in a simple equation that was deduced from and is confirmed by experiments. The rate of conductive heat
transfer through a slab of material, such as the one in Figure 14.15, is given by

(14.26)Q
t = kA(T2 − T1)

d ,
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where Q / t is the rate of heat transfer in watts or kilocalories per second, k is the thermal conductivity of the material, A
and d are its surface area and thickness, as shown in Figure 14.15, and (T2 − T1) is the temperature difference across the

slab. Table 14.3 gives representative values of thermal conductivity.

Example 14.5 Calculating Heat Transfer Through Conduction: Conduction Rate Through an Ice
Box

A Styrofoam ice box has a total area of 0.950  m2 and walls with an average thickness of 2.50 cm. The box contains ice,

water, and canned beverages at 0ºC . The inside of the box is kept cold by melting ice. How much ice melts in one day if

the ice box is kept in the trunk of a car at 35.0ºC ?

Strategy

This question involves both heat for a phase change (melting of ice) and the transfer of heat by conduction. To find the
amount of ice melted, we must find the net heat transferred. This value can be obtained by calculating the rate of heat
transfer by conduction and multiplying by time.

Solution

1. Identify the knowns.

(14.27)A = 0.950 m2 ; d = 2.50 cm = 0.0250 m; T1 = 0ºC; T2 = 35.0ºC, t = 1 day = 24 hours = 86,400 s.
2. Identify the unknowns. We need to solve for the mass of the ice, m . We will also need to solve for the net heat

transferred to melt the ice, Q .

3. Determine which equations to use. The rate of heat transfer by conduction is given by

(14.28)Q
t = kA(T2 − T1)

d .

4. The heat is used to melt the ice: Q = mLf.

5. Insert the known values:

(14.29)Q
t =

(0.010 J/s ⋅ m⋅ºC)⎛⎝0.950  m2⎞⎠(35.0ºC − 0ºC)
0.0250 m = 13.3 J/s.

6. Multiply the rate of heat transfer by the time ( 1 day = 86,400 s ):

(14.30)Q = ⎛
⎝Q / t⎞⎠t = (13.3 J/s)(86,400 s) = 1.15×106 J.

7. Set this equal to the heat transferred to melt the ice: Q = mLf . Solve for the mass m :

(14.31)
m = Q

Lf
= 1.15×106 J

334 ×103 J/kg
= 3.44kg.

Discussion

The result of 3.44 kg, or about 7.6 lbs, seems about right, based on experience. You might expect to use about a 4 kg (7–10
lb) bag of ice per day. A little extra ice is required if you add any warm food or beverages.

Inspecting the conductivities in Table 14.3 shows that Styrofoam is a very poor conductor and thus a good insulator. Other
good insulators include fiberglass, wool, and goose-down feathers. Like Styrofoam, these all incorporate many small
pockets of air, taking advantage of air’s poor thermal conductivity.
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Table 14.3 Thermal Conductivities of Common Substances[7]

Substance Thermal conductivity k (J/s⋅m⋅ºC)

Silver 420

Copper 390

Gold 318

Aluminum 220

Steel iron 80

Steel (stainless) 14

Ice 2.2

Glass (average) 0.84

Concrete brick 0.84

Water 0.6

Fatty tissue (without blood) 0.2

Asbestos 0.16

Plasterboard 0.16

Wood 0.08–0.16

Snow (dry) 0.10

Cork 0.042

Glass wool 0.042

Wool 0.04

Down feathers 0.025

Air 0.023

Styrofoam 0.010

A combination of material and thickness is often manipulated to develop good insulators—the smaller the conductivity k and the

larger the thickness d , the better. The ratio of d / k will thus be large for a good insulator. The ratio d / k is called the R
factor. The rate of conductive heat transfer is inversely proportional to R . The larger the value of R , the better the insulation.

R factors are most commonly quoted for household insulation, refrigerators, and the like—unfortunately, it is still in non-metric

units of ft2·°F·h/Btu, although the unit usually goes unstated (1 British thermal unit [Btu] is the amount of energy needed to
change the temperature of 1.0 lb of water by 1.0 °F). A couple of representative values are an R factor of 11 for 3.5-in-thick

fiberglass batts (pieces) of insulation and an R factor of 19 for 6.5-in-thick fiberglass batts. Walls are usually insulated with

3.5-in batts, while ceilings are usually insulated with 6.5-in batts. In cold climates, thicker batts may be used in ceilings and walls.

Figure 14.16 The fiberglass batt is used for insulation of walls and ceilings to prevent heat transfer between the inside of the building and the outside
environment.

Note that in Table 14.3, the best thermal conductors—silver, copper, gold, and aluminum—are also the best electrical
conductors, again related to the density of free electrons in them. Cooking utensils are typically made from good conductors.

Example 14.6 Calculating the Temperature Difference Maintained by a Heat Transfer:
Conduction Through an Aluminum Pan

Water is boiling in an aluminum pan placed on an electrical element on a stovetop. The sauce pan has a bottom that is

7. At temperatures near 0ºC.
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0.800 cm thick and 14.0 cm in diameter. The boiling water is evaporating at the rate of 1.00 g/s. What is the temperature
difference across (through) the bottom of the pan?

Strategy

Conduction through the aluminum is the primary method of heat transfer here, and so we use the equation for the rate of
heat transfer and solve for the temperature difference.

(14.32)T2 − T1 = Q
t
⎛
⎝ d
kA
⎞
⎠.

Solution

1. Identify the knowns and convert them to the SI units.

The thickness of the pan, d = 0.800 cm = 8.0×10−3  m, the area of the pan,

A = π(0.14 / 2)2  m2 = 1.54×10−2  m2 , and the thermal conductivity, k = 220 J/s ⋅ m⋅°C.

2. Calculate the necessary heat of vaporization of 1 g of water:

(14.33)Q = mLv = ⎛⎝1.00×10−3 kg⎞⎠
⎛
⎝2256×103 J/kg⎞⎠ = 2256 J.

3. Calculate the rate of heat transfer given that 1 g of water melts in one second:

(14.34)Q / t = 2256 J/s or 2.26 kW.
4. Insert the knowns into the equation and solve for the temperature difference:

(14.35)
T2 − T1 = Q

t
⎛
⎝ d
kA
⎞
⎠ = (2256 J/s) 8.00 × 10−3m

(220 J/s ⋅ m⋅ºC)⎛⎝1.54×10−2 m2⎞⎠
= 5.33ºC.

Discussion

The value for the heat transfer Q / t = 2.26kW or 2256 J/s is typical for an electric stove. This value gives a remarkably

small temperature difference between the stove and the pan. Consider that the stove burner is red hot while the inside of the
pan is nearly 100ºC because of its contact with boiling water. This contact effectively cools the bottom of the pan in spite of

its proximity to the very hot stove burner. Aluminum is such a good conductor that it only takes this small temperature
difference to produce a heat transfer of 2.26 kW into the pan.

Conduction is caused by the random motion of atoms and molecules. As such, it is an ineffective mechanism for heat
transport over macroscopic distances and short time distances. Take, for example, the temperature on the Earth, which
would be unbearably cold during the night and extremely hot during the day if heat transport in the atmosphere was to be
only through conduction. In another example, car engines would overheat unless there was a more efficient way to remove
excess heat from the pistons.

Check Your Understanding

How does the rate of heat transfer by conduction change when all spatial dimensions are doubled?

Solution

Because area is the product of two spatial dimensions, it increases by a factor of four when each dimension is doubled
⎛
⎝Afinal = (2d)2 = 4d2 = 4Ainitial

⎞
⎠ . The distance, however, simply doubles. Because the temperature difference and the

coefficient of thermal conductivity are independent of the spatial dimensions, the rate of heat transfer by conduction
increases by a factor of four divided by two, or two:

(14.36)⎛
⎝
Q
t
⎞
⎠final = kAfinal

⎛
⎝T2 − T1

⎞
⎠

dfinal
= k⎛⎝4Ainitial

⎞
⎠
⎛
⎝T2 − T1

⎞
⎠

2dinitial
= 2kAinitial

⎛
⎝T2 − T1

⎞
⎠

dinitial
= 2⎛⎝

Q
t
⎞
⎠initial.

14.6 Convection

Convection is driven by large-scale flow of matter. In the case of Earth, the atmospheric circulation is caused by the flow of hot
air from the tropics to the poles, and the flow of cold air from the poles toward the tropics. (Note that Earth’s rotation causes the
observed easterly flow of air in the northern hemisphere). Car engines are kept cool by the flow of water in the cooling system,
with the water pump maintaining a flow of cool water to the pistons. The circulatory system is used the body: when the body
overheats, the blood vessels in the skin expand (dilate), which increases the blood flow to the skin where it can be cooled by
sweating. These vessels become smaller when it is cold outside and larger when it is hot (so more fluid flows, and more energy
is transferred).

The body also loses a significant fraction of its heat through the breathing process.
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While convection is usually more complicated than conduction, we can describe convection and do some straightforward,
realistic calculations of its effects. Natural convection is driven by buoyant forces: hot air rises because density decreases as
temperature increases. The house in Figure 14.17 is kept warm in this manner, as is the pot of water on the stove in Figure
14.18. Ocean currents and large-scale atmospheric circulation transfer energy from one part of the globe to another. Both are
examples of natural convection.

Figure 14.17 Air heated by the so-called gravity furnace expands and rises, forming a convective loop that transfers energy to other parts of the room.
As the air is cooled at the ceiling and outside walls, it contracts, eventually becoming denser than room air and sinking to the floor. A properly designed
heating system using natural convection, like this one, can be quite efficient in uniformly heating a home.

Figure 14.18 Convection plays an important role in heat transfer inside this pot of water. Once conducted to the inside, heat transfer to other parts of
the pot is mostly by convection. The hotter water expands, decreases in density, and rises to transfer heat to other regions of the water, while colder
water sinks to the bottom. This process keeps repeating.

Take-Home Experiment: Convection Rolls in a Heated Pan

Take two small pots of water and use an eye dropper to place a drop of food coloring near the bottom of each. Leave one on
a bench top and heat the other over a stovetop. Watch how the color spreads and how long it takes the color to reach the
top. Watch how convective loops form.

Example 14.7 Calculating Heat Transfer by Convection: Convection of Air Through the Walls of
a House

Most houses are not airtight: air goes in and out around doors and windows, through cracks and crevices, following wiring to
switches and outlets, and so on. The air in a typical house is completely replaced in less than an hour. Suppose that a
moderately-sized house has inside dimensions 12.0m×18.0m×3.00m high, and that all air is replaced in 30.0 min.

Calculate the heat transfer per unit time in watts needed to warm the incoming cold air by 10.0ºC , thus replacing the heat

transferred by convection alone.

Strategy

Heat is used to raise the temperature of air so that Q = mcΔT . The rate of heat transfer is then Q / t , where t is the time

for air turnover. We are given that ΔT is 10.0ºC , but we must still find values for the mass of air and its specific heat

before we can calculate Q . The specific heat of air is a weighted average of the specific heats of nitrogen and oxygen,

which gives c = cp ≅ 1000 J/kg⋅ºC from Table 14.4 (note that the specific heat at constant pressure must be used for

this process).
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Solution

1. Determine the mass of air from its density and the given volume of the house. The density is given from the density ρ
and the volume

(14.37)m = ρV = ⎛⎝1.29 kg/m3⎞⎠(12.0 m×18.0 m×3.00 m) = 836 kg.

2. Calculate the heat transferred from the change in air temperature: Q = mcΔT so that

(14.38)Q = ⎛
⎝836 kg⎞⎠⎛⎝1000 J/kg⋅ºC⎞⎠(10.0ºC)= 8.36×106 J.

3. Calculate the heat transfer from the heat Q and the turnover time t . Since air is turned over in

t = 0.500 h = 1800 s , the heat transferred per unit time is

(14.39)Q
t = 8.36×106 J

1800 s = 4.64 kW.

Discussion

This rate of heat transfer is equal to the power consumed by about forty-six 100-W light bulbs. Newly constructed homes are
designed for a turnover time of 2 hours or more, rather than 30 minutes for the house of this example. Weather stripping,
caulking, and improved window seals are commonly employed. More extreme measures are sometimes taken in very cold
(or hot) climates to achieve a tight standard of more than 6 hours for one air turnover. Still longer turnover times are
unhealthy, because a minimum amount of fresh air is necessary to supply oxygen for breathing and to dilute household
pollutants. The term used for the process by which outside air leaks into the house from cracks around windows, doors, and
the foundation is called “air infiltration.”

A cold wind is much more chilling than still cold air, because convection combines with conduction in the body to increase the
rate at which energy is transferred away from the body. The table below gives approximate wind-chill factors, which are the
temperatures of still air that produce the same rate of cooling as air of a given temperature and speed. Wind-chill factors are a
dramatic reminder of convection’s ability to transfer heat faster than conduction. For example, a 15.0 m/s wind at 0ºC has the

chilling equivalent of still air at about −18ºC .

Table 14.4 Wind-Chill Factors

Moving air temperature Wind speed (m/s)

(ºC) 2 5 10 15 20

5 3 −1 −8 −10 −12

2 0 −7 −12 −16 −18

0 −2 −9 −15 −18 −20

−5 −7 −15 −22 −26 −29

−10 −12 −21 −29 −34 −36

−20 −23 −34 −44 −50 −52

−40 −44 −59 −73 −82 −84

Although air can transfer heat rapidly by convection, it is a poor conductor and thus a good insulator. The amount of available
space for airflow determines whether air acts as an insulator or conductor. The space between the inside and outside walls of a
house, for example, is about 9 cm (3.5 in) —large enough for convection to work effectively. The addition of wall insulation
prevents airflow, so heat loss (or gain) is decreased. Similarly, the gap between the two panes of a double-paned window is
about 1 cm, which prevents convection and takes advantage of air’s low conductivity to prevent greater loss. Fur, fiber, and
fiberglass also take advantage of the low conductivity of air by trapping it in spaces too small to support convection, as shown in
the figure. Fur and feathers are lightweight and thus ideal for the protection of animals.
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Figure 14.19 Fur is filled with air, breaking it up into many small pockets. Convection is very slow here, because the loops are so small. The low
conductivity of air makes fur a very good lightweight insulator.

Some interesting phenomena happen when convection is accompanied by a phase change. It allows us to cool off by sweating,
even if the temperature of the surrounding air exceeds body temperature. Heat from the skin is required for sweat to evaporate
from the skin, but without air flow, the air becomes saturated and evaporation stops. Air flow caused by convection replaces the
saturated air by dry air and evaporation continues.

Example 14.8 Calculate the Flow of Mass during Convection: Sweat-Heat Transfer away from the
Body

The average person produces heat at the rate of about 120 W when at rest. At what rate must water evaporate from the
body to get rid of all this energy? (This evaporation might occur when a person is sitting in the shade and surrounding
temperatures are the same as skin temperature, eliminating heat transfer by other methods.)

Strategy

Energy is needed for a phase change ( Q = mLv ). Thus, the energy loss per unit time is

(14.40)Q
t = mLv

t = 120  W = 120 J/s.

We divide both sides of the equation by Lv to find that the mass evaporated per unit time is

(14.41)m
t = 120 J/s

Lv
.

Solution

(1) Insert the value of the latent heat from Table 14.2, Lv = 2430 kJ/kg = 2430 J/g . This yields

(14.42)m
t = 120 J/s

2430 J/g = 0.0494 g/s = 2.96 g/min.

Discussion

Evaporating about 3 g/min seems reasonable. This would be about 180 g (about 7 oz) per hour. If the air is very dry, the
sweat may evaporate without even being noticed. A significant amount of evaporation also takes place in the lungs and
breathing passages.

Another important example of the combination of phase change and convection occurs when water evaporates from the oceans.
Heat is removed from the ocean when water evaporates. If the water vapor condenses in liquid droplets as clouds form, heat is
released in the atmosphere. Thus, there is an overall transfer of heat from the ocean to the atmosphere. This process is the
driving power behind thunderheads, those great cumulus clouds that rise as much as 20.0 km into the stratosphere. Water vapor
carried in by convection condenses, releasing tremendous amounts of energy. This energy causes the air to expand and rise,
where it is colder. More condensation occurs in these colder regions, which in turn drives the cloud even higher. Such a
mechanism is called positive feedback, since the process reinforces and accelerates itself. These systems sometimes produce
violent storms, with lightning and hail, and constitute the mechanism driving hurricanes.
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Figure 14.20 Cumulus clouds are caused by water vapor that rises because of convection. The rise of clouds is driven by a positive feedback
mechanism. (credit: Mike Love)

Figure 14.21 Convection accompanied by a phase change releases the energy needed to drive this thunderhead into the stratosphere. (credit:
Gerardo García Moretti )

Figure 14.22 The phase change that occurs when this iceberg melts involves tremendous heat transfer. (credit: Dominic Alves)

The movement of icebergs is another example of convection accompanied by a phase change. Suppose an iceberg drifts from
Greenland into warmer Atlantic waters. Heat is removed from the warm ocean water when the ice melts and heat is released to
the land mass when the iceberg forms on Greenland.

Check Your Understanding

Explain why using a fan in the summer feels refreshing!

538 Chapter 14 | Heat and Heat Transfer Methods

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Solution
Using a fan increases the flow of air: warm air near your body is replaced by cooler air from elsewhere. Convection
increases the rate of heat transfer so that moving air “feels” cooler than still air.

14.7 Radiation

You can feel the heat transfer from a fire and from the Sun. Similarly, you can sometimes tell that the oven is hot without touching
its door or looking inside—it may just warm you as you walk by. The space between the Earth and the Sun is largely empty,
without any possibility of heat transfer by convection or conduction. In these examples, heat is transferred by radiation. That is,
the hot body emits electromagnetic waves that are absorbed by our skin: no medium is required for electromagnetic waves to
propagate. Different names are used for electromagnetic waves of different wavelengths: radio waves, microwaves, infrared
radiation, visible light, ultraviolet radiation, X-rays, and gamma rays.

Figure 14.23 Most of the heat transfer from this fire to the observers is through infrared radiation. The visible light, although dramatic, transfers
relatively little thermal energy. Convection transfers energy away from the observers as hot air rises, while conduction is negligibly slow here. Skin is
very sensitive to infrared radiation, so that you can sense the presence of a fire without looking at it directly. (credit: Daniel X. O’Neil)

The energy of electromagnetic radiation depends on the wavelength (color) and varies over a wide range: a smaller wavelength
(or higher frequency) corresponds to a higher energy. Because more heat is radiated at higher temperatures, a temperature
change is accompanied by a color change. Take, for example, an electrical element on a stove, which glows from red to orange,
while the higher-temperature steel in a blast furnace glows from yellow to white. The radiation you feel is mostly infrared, which
corresponds to a lower temperature than that of the electrical element and the steel. The radiated energy depends on its
intensity, which is represented in the figure below by the height of the distribution.

Electromagnetic Waves explains more about the electromagnetic spectrum and Introduction to Quantum Physics discusses
how the decrease in wavelength corresponds to an increase in energy.

Figure 14.24 (a) A graph of the spectra of electromagnetic waves emitted from an ideal radiator at three different temperatures. The intensity or rate of
radiation emission increases dramatically with temperature, and the spectrum shifts toward the visible and ultraviolet parts of the spectrum. The
shaded portion denotes the visible part of the spectrum. It is apparent that the shift toward the ultraviolet with temperature makes the visible
appearance shift from red to white to blue as temperature increases. (b) Note the variations in color corresponding to variations in flame temperature.
(credit: Tuohirulla)
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All objects absorb and emit electromagnetic radiation. The rate of heat transfer by radiation is largely determined by the color of
the object. Black is the most effective, and white is the least effective. People living in hot climates generally avoid wearing black
clothing, for instance (see Take-Home Experiment: Temperature in the Sun). Similarly, black asphalt in a parking lot will be
hotter than adjacent gray sidewalk on a summer day, because black absorbs better than gray. The reverse is also true—black
radiates better than gray. Thus, on a clear summer night, the asphalt will be colder than the gray sidewalk, because black
radiates the energy more rapidly than gray. An ideal radiator is the same color as an ideal absorber, and captures all the
radiation that falls on it. In contrast, white is a poor absorber and is also a poor radiator. A white object reflects all radiation, like a
mirror. (A perfect, polished white surface is mirror-like in appearance, and a crushed mirror looks white.)

Figure 14.25 This illustration shows that the darker pavement is hotter than the lighter pavement (much more of the ice on the right has melted),
although both have been in the sunlight for the same time. The thermal conductivities of the pavements are the same.

Gray objects have a uniform ability to absorb all parts of the electromagnetic spectrum. Colored objects behave in similar but
more complex ways, which gives them a particular color in the visible range and may make them special in other ranges of the
nonvisible spectrum. Take, for example, the strong absorption of infrared radiation by the skin, which allows us to be very
sensitive to it.

Figure 14.26 A black object is a good absorber and a good radiator, while a white (or silver) object is a poor absorber and a poor radiator. It is as if
radiation from the inside is reflected back into the silver object, whereas radiation from the inside of the black object is “absorbed” when it hits the
surface and finds itself on the outside and is strongly emitted.

The rate of heat transfer by emitted radiation is determined by the Stefan-Boltzmann law of radiation:

(14.43)Q
t = σeAT 4,

where σ = 5.67×10−8 J/s ⋅ m2 ⋅ K4 is the Stefan-Boltzmann constant, A is the surface area of the object, and T is its

absolute temperature in kelvin. The symbol e stands for the emissivity of the object, which is a measure of how well it radiates.

An ideal jet-black (or black body) radiator has e = 1 , whereas a perfect reflector has e = 0 . Real objects fall between these

two values. Take, for example, tungsten light bulb filaments which have an e of about 0.5 , and carbon black (a material used in

printer toner), which has the (greatest known) emissivity of about 0.99 .

The radiation rate is directly proportional to the fourth power of the absolute temperature—a remarkably strong temperature
dependence. Furthermore, the radiated heat is proportional to the surface area of the object. If you knock apart the coals of a
fire, there is a noticeable increase in radiation due to an increase in radiating surface area.
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Figure 14.27 A thermograph of part of a building shows temperature variations, indicating where heat transfer to the outside is most severe. Windows
are a major region of heat transfer to the outside of homes. (credit: U.S. Army)

Skin is a remarkably good absorber and emitter of infrared radiation, having an emissivity of 0.97 in the infrared spectrum. Thus,
we are all nearly (jet) black in the infrared, in spite of the obvious variations in skin color. This high infrared emissivity is why we
can so easily feel radiation on our skin. It is also the basis for the use of night scopes used by law enforcement and the military to

detect human beings. Even small temperature variations can be detected because of the T 4 dependence. Images, called

thermographs, can be used medically to detect regions of abnormally high temperature in the body, perhaps indicative of
disease. Similar techniques can be used to detect heat leaks in homes Figure 14.27, optimize performance of blast furnaces,
improve comfort levels in work environments, and even remotely map the Earth’s temperature profile.

All objects emit and absorb radiation. The net rate of heat transfer by radiation (absorption minus emission) is related to both the
temperature of the object and the temperature of its surroundings. Assuming that an object with a temperature T1 is surrounded

by an environment with uniform temperature T2 , the net rate of heat transfer by radiation is

(14.44)Qnet
t = σeA⎛⎝T2

4 − T1
4⎞⎠,

where e is the emissivity of the object alone. In other words, it does not matter whether the surroundings are white, gray, or

black; the balance of radiation into and out of the object depends on how well it emits and absorbs radiation. When T2 > T1 ,

the quantity Qnet / t is positive; that is, the net heat transfer is from hot to cold.

Take-Home Experiment: Temperature in the Sun

Place a thermometer out in the sunshine and shield it from direct sunlight using an aluminum foil. What is the reading? Now
remove the shield, and note what the thermometer reads. Take a handkerchief soaked in nail polish remover, wrap it around
the thermometer and place it in the sunshine. What does the thermometer read?

Example 14.9 Calculate the Net Heat Transfer of a Person: Heat Transfer by Radiation

What is the rate of heat transfer by radiation, with an unclothed person standing in a dark room whose ambient temperature

is 22.0ºC . The person has a normal skin temperature of 33.0ºC and a surface area of 1.50 m2 . The emissivity of skin is

0.97 in the infrared, where the radiation takes place.

Strategy

We can solve this by using the equation for the rate of radiative heat transfer.

Solution

Insert the temperatures values T2 = 295 K and T1 = 306 K , so that

(14.45)Q
t =σeA⎛⎝T2

4 − T1
4⎞⎠

(14.46)= ⎛
⎝5.67×10−8 J/s ⋅  m2 ⋅  K  4⎞⎠(0.97)⎛⎝1.50 m2⎞⎠

⎡
⎣(295 K)4 − (306 K)4⎤⎦

(14.47)= −99 J/s = −99 W.
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Discussion

This value is a significant rate of heat transfer to the environment (note the minus sign), considering that a person at rest
may produce energy at the rate of 125 W and that conduction and convection will also be transferring energy to the
environment. Indeed, we would probably expect this person to feel cold. Clothing significantly reduces heat transfer to the
environment by many methods, because clothing slows down both conduction and convection, and has a lower emissivity
(especially if it is white) than skin.

The Earth receives almost all its energy from radiation of the Sun and reflects some of it back into outer space. Because the Sun
is hotter than the Earth, the net energy flux is from the Sun to the Earth. However, the rate of energy transfer is less than the
equation for the radiative heat transfer would predict because the Sun does not fill the sky. The average emissivity ( e ) of the

Earth is about 0.65, but the calculation of this value is complicated by the fact that the highly reflective cloud coverage varies
greatly from day to day. There is a negative feedback (one in which a change produces an effect that opposes that change)
between clouds and heat transfer; greater temperatures evaporate more water to form more clouds, which reflect more radiation
back into space, reducing the temperature. The often mentioned greenhouse effect is directly related to the variation of the
Earth’s emissivity with radiation type (see the figure given below). The greenhouse effect is a natural phenomenon responsible
for providing temperatures suitable for life on Earth. The Earth’s relatively constant temperature is a result of the energy balance
between the incoming solar radiation and the energy radiated from the Earth. Most of the infrared radiation emitted from the
Earth is absorbed by carbon dioxide ( CO2 ) and water ( H2 O ) in the atmosphere and then re-radiated back to the Earth or into

outer space. Re-radiation back to the Earth maintains its surface temperature about 40ºC higher than it would be if there was

no atmosphere, similar to the way glass increases temperatures in a greenhouse.

Figure 14.28 The greenhouse effect is a name given to the trapping of energy in the Earth’s atmosphere by a process similar to that used in
greenhouses. The atmosphere, like window glass, is transparent to incoming visible radiation and most of the Sun’s infrared. These wavelengths are
absorbed by the Earth and re-emitted as infrared. Since Earth’s temperature is much lower than that of the Sun, the infrared radiated by the Earth has
a much longer wavelength. The atmosphere, like glass, traps these longer infrared rays, keeping the Earth warmer than it would otherwise be. The
amount of trapping depends on concentrations of trace gases like carbon dioxide, and a change in the concentration of these gases is believed to
affect the Earth’s surface temperature.

The greenhouse effect is also central to the discussion of global warming due to emission of carbon dioxide and methane (and
other so-called greenhouse gases) into the Earth’s atmosphere from industrial production and farming. Changes in global climate
could lead to more intense storms, precipitation changes (affecting agriculture), reduction in rain forest biodiversity, and rising
sea levels.

Heating and cooling are often significant contributors to energy use in individual homes. Current research efforts into developing
environmentally friendly homes quite often focus on reducing conventional heating and cooling through better building materials,
strategically positioning windows to optimize radiation gain from the Sun, and opening spaces to allow convection. It is possible
to build a zero-energy house that allows for comfortable living in most parts of the United States with hot and humid summers
and cold winters.
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conduction:

Figure 14.29 This simple but effective solar cooker uses the greenhouse effect and reflective material to trap and retain solar energy. Made of
inexpensive, durable materials, it saves money and labor, and is of particular economic value in energy-poor developing countries. (credit: E.B. Kauai)

Conversely, dark space is very cold, about 3K(−454ºF) , so that the Earth radiates energy into the dark sky. Owing to the fact

that clouds have lower emissivity than either oceans or land masses, they reflect some of the radiation back to the surface,
greatly reducing heat transfer into dark space, just as they greatly reduce heat transfer into the atmosphere during the day. The
rate of heat transfer from soil and grasses can be so rapid that frost may occur on clear summer evenings, even in warm
latitudes.

Check Your Understanding

What is the change in the rate of the radiated heat by a body at the temperature T1 = 20ºC compared to when the body is

at the temperature T2 = 40ºC ?

Solution
The radiated heat is proportional to the fourth power of the absolute temperature. Because T1 = 293 K and T2 = 313 K
, the rate of heat transfer increases by about 30 percent of the original rate.

Career Connection: Energy Conservation Consultation

The cost of energy is generally believed to remain very high for the foreseeable future. Thus, passive control of heat loss in
both commercial and domestic housing will become increasingly important. Energy consultants measure and analyze the
flow of energy into and out of houses and ensure that a healthy exchange of air is maintained inside the house. The job
prospects for an energy consultant are strong.

Problem-Solving Strategies for the Methods of Heat Transfer
1. Examine the situation to determine what type of heat transfer is involved.

2. Identify the type(s) of heat transfer—conduction, convection, or radiation.

3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is very useful.

4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

5. Solve the appropriate equation for the quantity to be determined (the unknown).

6. For conduction, equation
Q
t = kA(T2 − T1)

d is appropriate. Table 14.3 lists thermal conductivities. For convection,

determine the amount of matter moved and use equation Q = mcΔT , to calculate the heat transfer involved in the

temperature change of the fluid. If a phase change accompanies convection, equation Q = mLf or Q = mLv is

appropriate to find the heat transfer involved in the phase change. Table 14.2 lists information relevant to phase

change. For radiation, equation
Qnet

t = σeA⎛⎝T2
4 − T1

4⎞⎠ gives the net heat transfer rate.

7. Insert the knowns along with their units into the appropriate equation and obtain numerical solutions complete with
units.

8. Check the answer to see if it is reasonable. Does it make sense?

Glossary

heat transfer through stationary matter by physical contact
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convection:

emissivity:

greenhouse effect:

heat:

heat of sublimation:

kilocalorie:

latent heat coefficient:

mechanical equivalent of heat:

net rate of heat transfer by radiation:

R factor:

radiation:

radiation:

rate of conductive heat transfer:

specific heat:

Stefan-Boltzmann law of radiation:

sublimation:

thermal conductivity:

heat transfer by the macroscopic movement of fluid

measure of how well an object radiates

warming of the Earth that is due to gases such as carbon dioxide and methane that absorb infrared
radiation from the Earth’s surface and reradiate it in all directions, thus sending a fraction of it back toward the surface of
the Earth

the spontaneous transfer of energy due to a temperature difference

the energy required to change a substance from the solid phase to the vapor phase

1 kilocalorie = 1000 calories

a physical constant equal to the amount of heat transferred for every 1 kg of a substance during the
change in phase of the substance

the work needed to produce the same effects as heat transfer

is
Qnet

t = σeA⎛⎝T2
4 − T1

4⎞⎠

the ratio of thickness to the conductivity of a material

heat transfer which occurs when microwaves, infrared radiation, visible light, or other electromagnetic radiation is
emitted or absorbed

energy transferred by electromagnetic waves directly as a result of a temperature difference

rate of heat transfer from one material to another

the amount of heat necessary to change the temperature of 1.00 kg of a substance by 1.00 ºC

Q
t = σeAT 4 , where σ is the Stefan-Boltzmann constant, A is the surface area of

the object, T is the absolute temperature, and e is the emissivity

the transition from the solid phase to the vapor phase

the property of a material’s ability to conduct heat

Section Summary

14.1 Heat
• Heat and work are the two distinct methods of energy transfer.
• Heat is energy transferred solely due to a temperature difference.
• Any energy unit can be used for heat transfer, and the most common are kilocalorie (kcal) and joule (J).
• Kilocalorie is defined to be the energy needed to change the temperature of 1.00 kg of water between 14.5ºC and

15.5ºC .

• The mechanical equivalent of this heat transfer is 1.00 kcal = 4186 J.

14.2 Temperature Change and Heat Capacity
• The transfer of heat Q that leads to a change ΔT in the temperature of a body with mass m is Q = mcΔT , where c

is the specific heat of the material. This relationship can also be considered as the definition of specific heat.

14.3 Phase Change and Latent Heat
• Most substances can exist either in solid, liquid, and gas forms, which are referred to as “phases.”
• Phase changes occur at fixed temperatures for a given substance at a given pressure, and these temperatures are called

boiling and freezing (or melting) points.
• During phase changes, heat absorbed or released is given by:

Q = mL,
where L is the latent heat coefficient.
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14.4 Heat Transfer Methods
• Heat is transferred by three different methods: conduction, convection, and radiation.

14.5 Conduction
• Heat conduction is the transfer of heat between two objects in direct contact with each other.
• The rate of heat transfer Q / t (energy per unit time) is proportional to the temperature difference T2 − T1 and the

contact area A and inversely proportional to the distance d between the objects:

Q
t = kA⎛⎝T2 − T1

⎞
⎠

d .

14.6 Convection
• Convection is heat transfer by the macroscopic movement of mass. Convection can be natural or forced and generally

transfers thermal energy faster than conduction. Table 14.4 gives wind-chill factors, indicating that moving air has the same
chilling effect of much colder stationary air. Convection that occurs along with a phase change can transfer energy from
cold regions to warm ones.

14.7 Radiation
• Radiation is the rate of heat transfer through the emission or absorption of electromagnetic waves.
• The rate of heat transfer depends on the surface area and the fourth power of the absolute temperature:

Q
t = σeAT 4 ,

where σ = 5.67×10−8 J/s ⋅ m2 ⋅ K4 is the Stefan-Boltzmann constant and e is the emissivity of the body. For a black

body, e = 1 whereas a shiny white or perfect reflector has e = 0 , with real objects having values of e between 1 and 0.

The net rate of heat transfer by radiation is

Qnet
t = σeA⎛⎝T2

4 − T1
4⎞⎠

where T1 is the temperature of an object surrounded by an environment with uniform temperature T2 and e is the

emissivity of the object.

Conceptual Questions

14.1 Heat

1. How is heat transfer related to temperature?

2. Describe a situation in which heat transfer occurs. What are the resulting forms of energy?

3. When heat transfers into a system, is the energy stored as heat? Explain briefly.

14.2 Temperature Change and Heat Capacity

4. What three factors affect the heat transfer that is necessary to change an object’s temperature?

5. The brakes in a car increase in temperature by ΔT when bringing the car to rest from a speed v . How much greater would

ΔT be if the car initially had twice the speed? You may assume the car to stop sufficiently fast so that no heat transfers out of

the brakes.

14.3 Phase Change and Latent Heat

6. Heat transfer can cause temperature and phase changes. What else can cause these changes?

7. How does the latent heat of fusion of water help slow the decrease of air temperatures, perhaps preventing temperatures from
falling significantly below 0ºC , in the vicinity of large bodies of water?

8. What is the temperature of ice right after it is formed by freezing water?

9. If you place 0ºC ice into 0ºC water in an insulated container, what will happen? Will some ice melt, will more water freeze,

or will neither take place?

10. What effect does condensation on a glass of ice water have on the rate at which the ice melts? Will the condensation speed
up the melting process or slow it down?

11. In very humid climates where there are numerous bodies of water, such as in Florida, it is unusual for temperatures to rise
above about 35ºC(95ºF) . In deserts, however, temperatures can rise far above this. Explain how the evaporation of water

helps limit high temperatures in humid climates.
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12. In winters, it is often warmer in San Francisco than in nearby Sacramento, 150 km inland. In summers, it is nearly always
hotter in Sacramento. Explain how the bodies of water surrounding San Francisco moderate its extreme temperatures.

13. Putting a lid on a boiling pot greatly reduces the heat transfer necessary to keep it boiling. Explain why.

14. Freeze-dried foods have been dehydrated in a vacuum. During the process, the food freezes and must be heated to facilitate
dehydration. Explain both how the vacuum speeds up dehydration and why the food freezes as a result.

15. When still air cools by radiating at night, it is unusual for temperatures to fall below the dew point. Explain why.

16. In a physics classroom demonstration, an instructor inflates a balloon by mouth and then cools it in liquid nitrogen. When
cold, the shrunken balloon has a small amount of light blue liquid in it, as well as some snow-like crystals. As it warms up, the
liquid boils, and part of the crystals sublimate, with some crystals lingering for awhile and then producing a liquid. Identify the
blue liquid and the two solids in the cold balloon. Justify your identifications using data from Table 14.2.

14.4 Heat Transfer Methods

17. What are the main methods of heat transfer from the hot core of Earth to its surface? From Earth’s surface to outer space?

18. When our bodies get too warm, they respond by sweating and increasing blood circulation to the surface to transfer thermal
energy away from the core. What effect will this have on a person in a 40.0ºC hot tub?

19. Figure 14.30 shows a cut-away drawing of a thermos bottle (also known as a Dewar flask), which is a device designed
specifically to slow down all forms of heat transfer. Explain the functions of the various parts, such as the vacuum, the silvering of
the walls, the thin-walled long glass neck, the rubber support, the air layer, and the stopper.

Figure 14.30 The construction of a thermos bottle is designed to inhibit all methods of heat transfer.

14.5 Conduction

20. Some electric stoves have a flat ceramic surface with heating elements hidden beneath. A pot placed over a heating element
will be heated, while it is safe to touch the surface only a few centimeters away. Why is ceramic, with a conductivity less than that
of a metal but greater than that of a good insulator, an ideal choice for the stove top?
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21. Loose-fitting white clothing covering most of the body is ideal for desert dwellers, both in the hot Sun and during cold
evenings. Explain how such clothing is advantageous during both day and night.

Figure 14.31 A jellabiya is worn by many men in Egypt. (credit: Zerida)

14.6 Convection

22. One way to make a fireplace more energy efficient is to have an external air supply for the combustion of its fuel. Another is
to have room air circulate around the outside of the fire box and back into the room. Detail the methods of heat transfer involved
in each.

23. On cold, clear nights horses will sleep under the cover of large trees. How does this help them keep warm?

14.7 Radiation

24. When watching a daytime circus in a large, dark-colored tent, you sense significant heat transfer from the tent. Explain why
this occurs.

25. Satellites designed to observe the radiation from cold (3 K) dark space have sensors that are shaded from the Sun, Earth,
and Moon and that are cooled to very low temperatures. Why must the sensors be at low temperature?

26. Why are cloudy nights generally warmer than clear ones?

27. Why are thermometers that are used in weather stations shielded from the sunshine? What does a thermometer measure if it
is shielded from the sunshine and also if it is not?

28. On average, would Earth be warmer or cooler without the atmosphere? Explain your answer.
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Problems & Exercises

14.2 Temperature Change and Heat Capacity

1. On a hot day, the temperature of an 80,000-L swimming
pool increases by 1.50ºC . What is the net heat transfer

during this heating? Ignore any complications, such as loss of
water by evaporation.

2. Show that 1 cal/g ⋅ ºC = 1 kcal/kg ⋅ ºC .

3. To sterilize a 50.0-g glass baby bottle, we must raise its
temperature from 22.0ºC to 95.0ºC . How much heat

transfer is required?

4. The same heat transfer into identical masses of different
substances produces different temperature changes.
Calculate the final temperature when 1.00 kcal of heat
transfers into 1.00 kg of the following, originally at 20.0ºC :

(a) water; (b) concrete; (c) steel; and (d) mercury.

5. Rubbing your hands together warms them by converting
work into thermal energy. If a woman rubs her hands back
and forth for a total of 20 rubs, at a distance of 7.50 cm per
rub, and with an average frictional force of 40.0 N, what is the
temperature increase? The mass of tissues warmed is only
0.100 kg, mostly in the palms and fingers.

6. A 0.250-kg block of a pure material is heated from 20.0ºC
to 65.0ºC by the addition of 4.35 kJ of energy. Calculate its

specific heat and identify the substance of which it is most
likely composed.

7. Suppose identical amounts of heat transfer into different
masses of copper and water, causing identical changes in
temperature. What is the ratio of the mass of copper to
water?

8. (a) The number of kilocalories in food is determined by
calorimetry techniques in which the food is burned and the
amount of heat transfer is measured. How many kilocalories
per gram are there in a 5.00-g peanut if the energy from
burning it is transferred to 0.500 kg of water held in a
0.100-kg aluminum cup, causing a 54.9ºC temperature

increase? (b) Compare your answer to labeling information
found on a package of peanuts and comment on whether the
values are consistent.

9. Following vigorous exercise, the body temperature of an
80.0-kg person is 40.0ºC . At what rate in watts must the

person transfer thermal energy to reduce the the body
temperature to 37.0ºC in 30.0 min, assuming the body

continues to produce energy at the rate of 150 W?
⎛
⎝1 watt = 1 joule/second or 1 W = 1 J/s ⎞⎠ .

10. Even when shut down after a period of normal use, a
large commercial nuclear reactor transfers thermal energy at
the rate of 150 MW by the radioactive decay of fission
products. This heat transfer causes a rapid increase in
temperature if the cooling system fails
(1 watt = 1 joule/second or 1 W = 1 J/s and 1 MW = 1 megawatt)
. (a) Calculate the rate of temperature increase in degrees
Celsius per second (ºC/s) if the mass of the reactor core is

1.60×105 kg and it has an average specific heat of

0.3349 kJ/kgº ⋅ C . (b) How long would it take to obtain a

temperature increase of 2000ºC , which could cause some

metals holding the radioactive materials to melt? (The initial
rate of temperature increase would be greater than that
calculated here because the heat transfer is concentrated in a
smaller mass. Later, however, the temperature increase

would slow down because the 5×105-kg steel containment

vessel would also begin to heat up.)

Figure 14.32 Radioactive spent-fuel pool at a nuclear power plant.
Spent fuel stays hot for a long time. (credit: U.S. Department of Energy)

14.3 Phase Change and Latent Heat

11. How much heat transfer (in kilocalories) is required to
thaw a 0.450-kg package of frozen vegetables originally at
0ºC if their heat of fusion is the same as that of water?

12. A bag containing 0ºC ice is much more effective in

absorbing energy than one containing the same amount of
0ºC water.

a. How much heat transfer is necessary to raise the
temperature of 0.800 kg of water from 0ºC to

30.0ºC?
b. How much heat transfer is required to first melt 0.800 kg

of 0ºC ice and then raise its temperature?

c. Explain how your answer supports the contention that
the ice is more effective.
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13. (a) How much heat transfer is required to raise the
temperature of a 0.750-kg aluminum pot containing 2.50 kg of
water from 30.0ºC to the boiling point and then boil away

0.750 kg of water? (b) How long does this take if the rate of
heat transfer is 500 W
1 watt = 1 joule/second (1 W = 1 J/s) ?

14. The formation of condensation on a glass of ice water
causes the ice to melt faster than it would otherwise. If 8.00 g
of condensation forms on a glass containing both water and
200 g of ice, how many grams of the ice will melt as a result?
Assume no other heat transfer occurs.

15. On a trip, you notice that a 3.50-kg bag of ice lasts an
average of one day in your cooler. What is the average power
in watts entering the ice if it starts at 0ºC and completely

melts to 0ºC water in exactly one day

1 watt = 1 joule/second  (1 W = 1 J/s) ?

16. On a certain dry sunny day, a swimming pool’s
temperature would rise by 1.50ºC if not for evaporation.

What fraction of the water must evaporate to carry away
precisely enough energy to keep the temperature constant?

17. (a) How much heat transfer is necessary to raise the
temperature of a 0.200-kg piece of ice from −20.0ºC to

130ºC , including the energy needed for phase changes?

(b) How much time is required for each stage, assuming a
constant 20.0 kJ/s rate of heat transfer?
(c) Make a graph of temperature versus time for this process.

18. In 1986, a gargantuan iceberg broke away from the Ross
Ice Shelf in Antarctica. It was approximately a rectangle 160
km long, 40.0 km wide, and 250 m thick.

(a) What is the mass of this iceberg, given that the density of

ice is 917 kg/m3 ?

(b) How much heat transfer (in joules) is needed to melt it?

(c) How many years would it take sunlight alone to melt ice

this thick, if the ice absorbs an average of 100 W/m2 , 12.00

h per day?

19. How many grams of coffee must evaporate from 350 g of
coffee in a 100-g glass cup to cool the coffee from 95.0ºC to

45.0ºC ? You may assume the coffee has the same thermal

properties as water and that the average heat of vaporization
is 2340 kJ/kg (560 cal/g). (You may neglect the change in
mass of the coffee as it cools, which will give you an answer
that is slightly larger than correct.)

20. (a) It is difficult to extinguish a fire on a crude oil tanker,

because each liter of crude oil releases 2.80×107 J of

energy when burned. To illustrate this difficulty, calculate the
number of liters of water that must be expended to absorb the
energy released by burning 1.00 L of crude oil, if the water
has its temperature raised from 20.0ºC to 100ºC , it boils,

and the resulting steam is raised to 300ºC . (b) Discuss

additional complications caused by the fact that crude oil has
a smaller density than water.

21. The energy released from condensation in thunderstorms
can be very large. Calculate the energy released into the
atmosphere for a small storm of radius 1 km, assuming that
1.0 cm of rain is precipitated uniformly over this area.

22. To help prevent frost damage, 4.00 kg of 0ºC water is

sprayed onto a fruit tree.

(a) How much heat transfer occurs as the water freezes?

(b) How much would the temperature of the 200-kg tree
decrease if this amount of heat transferred from the tree?
Take the specific heat to be 3.35 kJ/kg⋅ºC , and assume that

no phase change occurs.

23. A 0.250-kg aluminum bowl holding 0.800 kg of soup at
25.0ºC is placed in a freezer. What is the final temperature if

377 kJ of energy is transferred from the bowl and soup,
assuming the soup’s thermal properties are the same as that
of water? Explicitly show how you follow the steps in
Problem-Solving Strategies for the Effects of Heat
Transfer.

24. A 0.0500-kg ice cube at −30.0ºC is placed in 0.400 kg

of 35.0ºC water in a very well-insulated container. What is

the final temperature?

25. If you pour 0.0100 kg of 20.0ºC water onto a 1.20-kg

block of ice (which is initially at −15.0ºC ), what is the final

temperature? You may assume that the water cools so rapidly
that effects of the surroundings are negligible.

26. Indigenous people sometimes cook in watertight baskets
by placing hot rocks into water to bring it to a boil. What mass
of 500ºC rock must be placed in 4.00 kg of 15.0ºC water

to bring its temperature to 100ºC , if 0.0250 kg of water

escapes as vapor from the initial sizzle? You may neglect the
effects of the surroundings and take the average specific heat
of the rocks to be that of granite.

27. What would be the final temperature of the pan and water
in Calculating the Final Temperature When Heat Is
Transferred Between Two Bodies: Pouring Cold Water in
a Hot Pan if 0.260 kg of water was placed in the pan and
0.0100 kg of the water evaporated immediately, leaving the
remainder to come to a common temperature with the pan?

28. In some countries, liquid nitrogen is used on dairy trucks
instead of mechanical refrigerators. A 3.00-hour delivery trip
requires 200 L of liquid nitrogen, which has a density of

808 kg/m3 .

(a) Calculate the heat transfer necessary to evaporate this
amount of liquid nitrogen and raise its temperature to
3.00ºC . (Use cp and assume it is constant over the

temperature range.) This value is the amount of cooling the
liquid nitrogen supplies.

(b) What is this heat transfer rate in kilowatt-hours?

(c) Compare the amount of cooling obtained from melting an
identical mass of 0ºC ice with that from evaporating the

liquid nitrogen.

29. Some gun fanciers make their own bullets, which involves
melting and casting the lead slugs. How much heat transfer is
needed to raise the temperature and melt 0.500 kg of lead,
starting from 25.0ºC ?
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14.5 Conduction

30. (a) Calculate the rate of heat conduction through house
walls that are 13.0 cm thick and that have an average thermal
conductivity twice that of glass wool. Assume there are no

windows or doors. The surface area of the walls is 120 m2

and their inside surface is at 18.0ºC , while their outside

surface is at 5.00ºC . (b) How many 1-kW room heaters

would be needed to balance the heat transfer due to
conduction?

31. The rate of heat conduction out of a window on a winter
day is rapid enough to chill the air next to it. To see just how
rapidly the windows transfer heat by conduction, calculate the

rate of conduction in watts through a 3.00-m2 window that

is 0.635 cm thick (1/4 in) if the temperatures of the inner

and outer surfaces are 5.00ºC and −10.0ºC , respectively.

This rapid rate will not be maintained—the inner surface will
cool, and even result in frost formation.

32. Calculate the rate of heat conduction out of the human
body, assuming that the core internal temperature is 37.0ºC ,

the skin temperature is 34.0ºC , the thickness of the tissues

between averages 1.00 cm , and the surface area is

1.40 m2 .

33. Suppose you stand with one foot on ceramic flooring and
one foot on a wool carpet, making contact over an area of

80.0 cm2 with each foot. Both the ceramic and the carpet

are 2.00 cm thick and are 10.0ºC on their bottom sides. At

what rate must heat transfer occur from each foot to keep the
top of the ceramic and carpet at 33.0ºC ?

34. A man consumes 3000 kcal of food in one day, converting
most of it to maintain body temperature. If he loses half this
energy by evaporating water (through breathing and
sweating), how many kilograms of water evaporate?

35. (a) A firewalker runs across a bed of hot coals without
sustaining burns. Calculate the heat transferred by
conduction into the sole of one foot of a firewalker given that
the bottom of the foot is a 3.00-mm-thick callus with a
conductivity at the low end of the range for wood and its

density is 300 kg/m3 . The area of contact is 25.0 cm2 ,

the temperature of the coals is 700ºC , and the time in

contact is 1.00 s.

(b) What temperature increase is produced in the 25.0 cm3

of tissue affected?

(c) What effect do you think this will have on the tissue,
keeping in mind that a callus is made of dead cells?

36. (a) What is the rate of heat conduction through the

3.00-cm-thick fur of a large animal having a 1.40-m2

surface area? Assume that the animal’s skin temperature is
32.0ºC , that the air temperature is −5.00ºC , and that fur

has the same thermal conductivity as air. (b) What food intake
will the animal need in one day to replace this heat transfer?

37. A walrus transfers energy by conduction through its
blubber at the rate of 150 W when immersed in −1.00ºC
water. The walrus’s internal core temperature is 37.0ºC , and

it has a surface area of 2.00 m2 . What is the average

thickness of its blubber, which has the conductivity of fatty
tissues without blood?

Figure 14.33 Walrus on ice. (credit: Captain Budd Christman, NOAA

Corps)

38. Compare the rate of heat conduction through a 13.0-cm-

thick wall that has an area of 10.0 m2 and a thermal

conductivity twice that of glass wool with the rate of heat
conduction through a window that is 0.750 cm thick and that

has an area of 2.00 m2 , assuming the same temperature

difference across each.

39. Suppose a person is covered head to foot by wool
clothing with average thickness of 2.00 cm and is transferring
energy by conduction through the clothing at the rate of 50.0
W. What is the temperature difference across the clothing,

given the surface area is 1.40 m2 ?

40. Some stove tops are smooth ceramic for easy cleaning. If
the ceramic is 0.600 cm thick and heat conduction occurs
through the same area and at the same rate as computed in
Example 14.6, what is the temperature difference across it?
Ceramic has the same thermal conductivity as glass and
brick.

41. One easy way to reduce heating (and cooling) costs is to
add extra insulation in the attic of a house. Suppose the
house already had 15 cm of fiberglass insulation in the attic
and in all the exterior surfaces. If you added an extra 8.0 cm
of fiberglass to the attic, then by what percentage would the
heating cost of the house drop? Take the single story house
to be of dimensions 10 m by 15 m by 3.0 m. Ignore air
infiltration and heat loss through windows and doors.

42. (a) Calculate the rate of heat conduction through a

double-paned window that has a 1.50-m2 area and is made

of two panes of 0.800-cm-thick glass separated by a 1.00-cm
air gap. The inside surface temperature is 15.0ºC , while that

on the outside is −10.0ºC . (Hint: There are identical

temperature drops across the two glass panes. First find
these and then the temperature drop across the air gap. This
problem ignores the increased heat transfer in the air gap due
to convection.)

(b) Calculate the rate of heat conduction through a 1.60-cm-
thick window of the same area and with the same
temperatures. Compare your answer with that for part (a).
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43. Many decisions are made on the basis of the payback
period: the time it will take through savings to equal the
capital cost of an investment. Acceptable payback times
depend upon the business or philosophy one has. (For some
industries, a payback period is as small as two years.)
Suppose you wish to install the extra insulation in Exercise
14.41. If energy cost $1.00 per million joules and the
insulation was $4.00 per square meter, then calculate the
simple payback time. Take the average ΔT for the 120 day

heating season to be 15.0ºC .

44. For the human body, what is the rate of heat transfer by
conduction through the body’s tissue with the following
conditions: the tissue thickness is 3.00 cm, the change in

temperature is 2.00ºC , and the skin area is 1.50  m2 . How

does this compare with the average heat transfer rate to the
body resulting from an energy intake of about 2400 kcal per
day? (No exercise is included.)

14.6 Convection

45. At what wind speed does −10ºC air cause the same

chill factor as still air at −29ºC ?

46. At what temperature does still air cause the same chill
factor as −5ºC air moving at 15 m/s?

47. The “steam” above a freshly made cup of instant coffee is
really water vapor droplets condensing after evaporating from
the hot coffee. What is the final temperature of 250 g of hot
coffee initially at 90.0ºC if 2.00 g evaporates from it? The

coffee is in a Styrofoam cup, so other methods of heat
transfer can be neglected.

48. (a) How many kilograms of water must evaporate from a
60.0-kg woman to lower her body temperature by 0.750ºC ?

(b) Is this a reasonable amount of water to evaporate in the
form of perspiration, assuming the relative humidity of the
surrounding air is low?

49. On a hot dry day, evaporation from a lake has just enough

heat transfer to balance the 1.00 kW/m2 of incoming heat

from the Sun. What mass of water evaporates in 1.00 h from
each square meter? Explicitly show how you follow the steps
in the Problem-Solving Strategies for the Effects of Heat
Transfer.

50. One winter day, the climate control system of a large
university classroom building malfunctions. As a result,

500 m3 of excess cold air is brought in each minute. At

what rate in kilowatts must heat transfer occur to warm this air
by 10.0ºC (that is, to bring the air to room temperature)?

51. The Kilauea volcano in Hawaii is the world’s most active,

disgorging about 5×105 m3 of 1200ºC lava per day. What

is the rate of heat transfer out of Earth by convection if this

lava has a density of 2700 kg/m3 and eventually cools to

30ºC ? Assume that the specific heat of lava is the same as

that of granite.

Figure 14.34 Lava flow on Kilauea volcano in Hawaii. (credit: J. P.

Eaton, U.S. Geological Survey)

52. During heavy exercise, the body pumps 2.00 L of blood
per minute to the surface, where it is cooled by 2.00ºC .

What is the rate of heat transfer from this forced convection
alone, assuming blood has the same specific heat as water

and its density is 1050 kg/m3 ?

53. A person inhales and exhales 2.00 L of 37.0ºC air,

evaporating 4.00×10−2 g of water from the lungs and

breathing passages with each breath.

(a) How much heat transfer occurs due to evaporation in each
breath?

(b) What is the rate of heat transfer in watts if the person is
breathing at a moderate rate of 18.0 breaths per minute?

(c) If the inhaled air had a temperature of 20.0ºC , what is

the rate of heat transfer for warming the air?

(d) Discuss the total rate of heat transfer as it relates to
typical metabolic rates. Will this breathing be a major form of
heat transfer for this person?

54. A glass coffee pot has a circular bottom with a 9.00-cm
diameter in contact with a heating element that keeps the
coffee warm with a continuous heat transfer rate of 50.0 W

(a) What is the temperature of the bottom of the pot, if it is
3.00 mm thick and the inside temperature is 60.0ºC ?

(b) If the temperature of the coffee remains constant and all of
the heat transfer is removed by evaporation, how many
grams per minute evaporate? Take the heat of vaporization to
be 2340 kJ/kg.

14.7 Radiation

55. At what net rate does heat radiate from a 275-m2 black

roof on a night when the roof’s temperature is 30.0ºC and

the surrounding temperature is 15.0ºC ? The emissivity of

the roof is 0.900.
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56. (a) Cherry-red embers in a fireplace are at 850ºC and

have an exposed area of 0.200  m2 and an emissivity of

0.980. The surrounding room has a temperature of 18.0ºC .

If 50% of the radiant energy enters the room, what is the net
rate of radiant heat transfer in kilowatts? (b) Does your
answer support the contention that most of the heat transfer
into a room by a fireplace comes from infrared radiation?

57. Radiation makes it impossible to stand close to a hot lava
flow. Calculate the rate of heat transfer by radiation from

1.00  m2 of 1200ºC fresh lava into 30.0ºC surroundings,

assuming lava’s emissivity is 1.00.

58. (a) Calculate the rate of heat transfer by radiation from a
car radiator at 110°C into a 50.0ºC environment, if the

radiator has an emissivity of 0.750 and a 1.20-m2 surface

area. (b) Is this a significant fraction of the heat transfer by an
automobile engine? To answer this, assume a horsepower of
200 hp (1.5 kW) and the efficiency of automobile engines

as 25%.

59. Find the net rate of heat transfer by radiation from a skier
standing in the shade, given the following. She is completely
clothed in white (head to foot, including a ski mask), the
clothes have an emissivity of 0.200 and a surface
temperature of 10.0ºC , the surroundings are at −15.0ºC ,

and her surface area is 1.60 m2 .

60. Suppose you walk into a sauna that has an ambient
temperature of 50.0ºC . (a) Calculate the rate of heat

transfer to you by radiation given your skin temperature is
37.0ºC , the emissivity of skin is 0.98, and the surface area

of your body is 1.50 m2 . (b) If all other forms of heat

transfer are balanced (the net heat transfer is zero), at what
rate will your body temperature increase if your mass is 75.0
kg?

61. Thermography is a technique for measuring radiant heat
and detecting variations in surface temperatures that may be
medically, environmentally, or militarily meaningful.(a) What is
the percent increase in the rate of heat transfer by radiation
from a given area at a temperature of 34.0ºC compared with

that at 33.0ºC , such as on a person’s skin? (b) What is the

percent increase in the rate of heat transfer by radiation from
a given area at a temperature of 34.0ºC compared with that

at 20.0ºC , such as for warm and cool automobile hoods?

Figure 14.35 Artist’s rendition of a thermograph of a patient’s upper

body, showing the distribution of heat represented by different colors.

62. The Sun radiates like a perfect black body with an
emissivity of exactly 1. (a) Calculate the surface temperature

of the Sun, given that it is a sphere with a 7.00×108-m
radius that radiates 3.80×1026 W into 3-K space. (b) How

much power does the Sun radiate per square meter of its
surface? (c) How much power in watts per square meter is

that value at the distance of Earth, 1.50×1011 m away?

(This number is called the solar constant.)

63. A large body of lava from a volcano has stopped flowing
and is slowly cooling. The interior of the lava is at 1200ºC ,

its surface is at 450ºC , and the surroundings are at 27.0ºC
. (a) Calculate the rate at which energy is transferred by

radiation from 1.00  m2 of surface lava into the

surroundings, assuming the emissivity is 1.00. (b) Suppose
heat conduction to the surface occurs at the same rate. What
is the thickness of the lava between the 450ºC surface and

the 1200ºC interior, assuming that the lava’s conductivity is

the same as that of brick?

64. Calculate the temperature the entire sky would have to be

in order to transfer energy by radiation at 1000 W/m2

—about the rate at which the Sun radiates when it is directly
overhead on a clear day. This value is the effective
temperature of the sky, a kind of average that takes account
of the fact that the Sun occupies only a small part of the sky
but is much hotter than the rest. Assume that the body
receiving the energy has a temperature of 27.0ºC .
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65. (a) A shirtless rider under a circus tent feels the heat
radiating from the sunlit portion of the tent. Calculate the
temperature of the tent canvas based on the following
information: The shirtless rider’s skin temperature is 34.0ºC
and has an emissivity of 0.970. The exposed area of skin is

0.400  m2 . He receives radiation at the rate of 20.0 W—half

what you would calculate if the entire region behind him was
hot. The rest of the surroundings are at 34.0ºC . (b) Discuss

how this situation would change if the sunlit side of the tent
was nearly pure white and if the rider was covered by a white
tunic.

66. Integrated Concepts

One 30.0ºC day the relative humidity is 75.0% , and that

evening the temperature drops to 20.0ºC , well below the

dew point. (a) How many grams of water condense from each
cubic meter of air? (b) How much heat transfer occurs by this
condensation? (c) What temperature increase could this
cause in dry air?

67. Integrated Concepts

Large meteors sometimes strike the Earth, converting most of
their kinetic energy into thermal energy. (a) What is the kinetic

energy of a 109  kg meteor moving at 25.0 km/s? (b) If this

meteor lands in a deep ocean and 80% of its kinetic energy

goes into heating water, how many kilograms of water could it
raise by 5.0ºC? (c) Discuss how the energy of the meteor is

more likely to be deposited in the ocean and the likely effects
of that energy.

68. Integrated Concepts

Frozen waste from airplane toilets has sometimes been
accidentally ejected at high altitude. Ordinarily it breaks up
and disperses over a large area, but sometimes it holds
together and strikes the ground. Calculate the mass of 0ºC
ice that can be melted by the conversion of kinetic and
gravitational potential energy when a 20.0  kg piece of

frozen waste is released at 12.0 km altitude while moving at
250 m/s and strikes the ground at 100 m/s (since less than
20.0 kg melts, a significant mess results).

69. Integrated Concepts

(a) A large electrical power facility produces 1600 MW of
“waste heat,” which is dissipated to the environment in
cooling towers by warming air flowing through the towers by

5.00ºC . What is the necessary flow rate of air in m3 /s ? (b)

Is your result consistent with the large cooling towers used by
many large electrical power plants?

70. Integrated Concepts

(a) Suppose you start a workout on a Stairmaster, producing
power at the same rate as climbing 116 stairs per minute.
Assuming your mass is 76.0 kg and your efficiency is 20.0%
, how long will it take for your body temperature to rise
1.00ºC if all other forms of heat transfer in and out of your

body are balanced? (b) Is this consistent with your experience
in getting warm while exercising?

71. Integrated Concepts

A 76.0-kg person suffering from hypothermia comes indoors
and shivers vigorously. How long does it take the heat
transfer to increase the person’s body temperature by
2.00ºC if all other forms of heat transfer are balanced?

72. Integrated Concepts

In certain large geographic regions, the underlying rock is hot.
Wells can be drilled and water circulated through the rock for
heat transfer for the generation of electricity. (a) Calculate the

heat transfer that can be extracted by cooling 1.00  km3 of

granite by 100ºC . (b) How long will this take if heat is

transferred at a rate of 300 MW, assuming no heat transfers
back into the 1.00 km of rock by its surroundings?

73. Integrated Concepts

Heat transfers from your lungs and breathing passages by
evaporating water. (a) Calculate the maximum number of
grams of water that can be evaporated when you inhale 1.50
L of 37ºC air with an original relative humidity of 40.0%.

(Assume that body temperature is also 37ºC .) (b) How many

joules of energy are required to evaporate this amount? (c)
What is the rate of heat transfer in watts from this method, if
you breathe at a normal resting rate of 10.0 breaths per
minute?

74. Integrated Concepts

(a) What is the temperature increase of water falling 55.0 m
over Niagara Falls? (b) What fraction must evaporate to keep
the temperature constant?

75. Integrated Concepts

Hot air rises because it has expanded. It then displaces a
greater volume of cold air, which increases the buoyant force
on it. (a) Calculate the ratio of the buoyant force to the weight
of 50.0ºC air surrounded by 20.0ºC air. (b) What energy is

needed to cause 1.00 m3 of air to go from 20.0ºC to

50.0ºC ? (c) What gravitational potential energy is gained by

this volume of air if it rises 1.00 m? Will this cause a
significant cooling of the air?

76. Unreasonable Results

(a) What is the temperature increase of an 80.0 kg person
who consumes 2500 kcal of food in one day with 95.0% of the
energy transferred as heat to the body? (b) What is
unreasonable about this result? (c) Which premise or
assumption is responsible?

77. Unreasonable Results

A slightly deranged Arctic inventor surrounded by ice thinks it
would be much less mechanically complex to cool a car
engine by melting ice on it than by having a water-cooled
system with a radiator, water pump, antifreeze, and so on. (a)
If 80.0% of the energy in 1.00 gal of gasoline is converted

into “waste heat” in a car engine, how many kilograms of
0ºC ice could it melt? (b) Is this a reasonable amount of ice

to carry around to cool the engine for 1.00 gal of gasoline
consumption? (c) What premises or assumptions are
unreasonable?
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78. Unreasonable Results

(a) Calculate the rate of heat transfer by conduction through a

window with an area of 1.00  m2 that is 0.750 cm thick, if its

inner surface is at 22.0ºC and its outer surface is at

35.0ºC . (b) What is unreasonable about this result? (c)

Which premise or assumption is responsible?

79. Unreasonable Results

A meteorite 1.20 cm in diameter is so hot immediately after
penetrating the atmosphere that it radiates 20.0 kW of power.
(a) What is its temperature, if the surroundings are at
20.0ºC and it has an emissivity of 0.800? (b) What is

unreasonable about this result? (c) Which premise or
assumption is responsible?

80. Construct Your Own Problem

Consider a new model of commercial airplane having its
brakes tested as a part of the initial flight permission
procedure. The airplane is brought to takeoff speed and then
stopped with the brakes alone. Construct a problem in which
you calculate the temperature increase of the brakes during
this process. You may assume most of the kinetic energy of
the airplane is converted to thermal energy in the brakes and
surrounding materials, and that little escapes. Note that the
brakes are expected to become so hot in this procedure that
they ignite and, in order to pass the test, the airplane must be
able to withstand the fire for some time without a general
conflagration.

81. Construct Your Own Problem

Consider a person outdoors on a cold night. Construct a
problem in which you calculate the rate of heat transfer from
the person by all three heat transfer methods. Make the initial
circumstances such that at rest the person will have a net
heat transfer and then decide how much physical activity of a
chosen type is necessary to balance the rate of heat transfer.
Among the things to consider are the size of the person, type
of clothing, initial metabolic rate, sky conditions, amount of
water evaporated, and volume of air breathed. Of course,
there are many other factors to consider and your instructor
may wish to guide you in the assumptions made as well as
the detail of analysis and method of presenting your results.
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15 THERMODYNAMICS

Figure 15.1 A steam engine uses heat transfer to do work. Tourists regularly ride this narrow-gauge steam engine train near the San Juan Skyway in
Durango, Colorado, part of the National Scenic Byways Program. (credit: Dennis Adams)

Chapter Outline
15.1. The First Law of Thermodynamics

• Define the first law of thermodynamics.
• Describe how conservation of energy relates to the first law of thermodynamics.
• Identify instances of the first law of thermodynamics working in everyday situations, including biological metabolism.
• Calculate changes in the internal energy of a system, after accounting for heat transfer and work done.

15.2. The First Law of Thermodynamics and Some Simple Processes
• Describe the processes of a simple heat engine.
• Explain the differences among the simple thermodynamic processes—isobaric, isochoric, isothermal, and adiabatic.
• Calculate total work done in a cyclical thermodynamic process.

15.3. Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
• State the expressions of the second law of thermodynamics.
• Calculate the efficiency and carbon dioxide emission of a coal-fired electricity plant, using second law characteristics.
• Describe and define the Otto cycle.

15.4. Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
• Identify a Carnot cycle.
• Calculate maximum theoretical efficiency of a nuclear reactor.
• Explain how dissipative processes affect the ideal Carnot engine.

15.5. Applications of Thermodynamics: Heat Pumps and Refrigerators
• Describe the use of heat engines in heat pumps and refrigerators.
• Demonstrate how a heat pump works to warm an interior space.
• Explain the differences between heat pumps and refrigerators.
• Calculate a heat pump’s coefficient of performance.

15.6. Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
• Define entropy and calculate the increase of entropy in a system with reversible and irreversible processes.
• Explain the expected fate of the universe in entropic terms.
• Calculate the increasing disorder of a system.

15.7. Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation
• Identify probabilities in entropy.
• Analyze statistical probabilities in entropic systems.

Introduction to Thermodynamics

Heat transfer is energy in transit, and it can be used to do work. It can also be converted to any other form of energy. A car
engine, for example, burns fuel for heat transfer into a gas. Work is done by the gas as it exerts a force through a distance,
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converting its energy into a variety of other forms—into the car’s kinetic or gravitational potential energy; into electrical energy to
run the spark plugs, radio, and lights; and back into stored energy in the car’s battery. But most of the heat transfer produced
from burning fuel in the engine does not do work on the gas. Rather, the energy is released into the environment, implying that
the engine is quite inefficient.

It is often said that modern gasoline engines cannot be made to be significantly more efficient. We hear the same about heat
transfer to electrical energy in large power stations, whether they are coal, oil, natural gas, or nuclear powered. Why is that the
case? Is the inefficiency caused by design problems that could be solved with better engineering and superior materials? Is it
part of some money-making conspiracy by those who sell energy? Actually, the truth is more interesting, and reveals much about
the nature of heat transfer.

Basic physical laws govern how heat transfer for doing work takes place and place insurmountable limits onto its efficiency. This
chapter will explore these laws as well as many applications and concepts associated with them. These topics are part of
thermodynamics—the study of heat transfer and its relationship to doing work.

15.1 The First Law of Thermodynamics

Figure 15.2 This boiling tea kettle represents energy in motion. The water in the kettle is turning to water vapor because heat is being transferred from
the stove to the kettle. As the entire system gets hotter, work is done—from the evaporation of the water to the whistling of the kettle. (credit: Gina
Hamilton)

If we are interested in how heat transfer is converted into doing work, then the conservation of energy principle is important. The
first law of thermodynamics applies the conservation of energy principle to systems where heat transfer and doing work are the
methods of transferring energy into and out of the system. The first law of thermodynamics states that the change in internal
energy of a system equals the net heat transfer into the system minus the net work done by the system. In equation form, the
first law of thermodynamics is

(15.1)ΔU = Q − W.

Here ΔU is the change in internal energy U of the system. Q is the net heat transferred into the system—that is, Q is the

sum of all heat transfer into and out of the system. W is the net work done by the system—that is, W is the sum of all work

done on or by the system. We use the following sign conventions: if Q is positive, then there is a net heat transfer into the

system; if W is positive, then there is net work done by the system. So positive Q adds energy to the system and positive W
takes energy from the system. Thus ΔU = Q − W . Note also that if more heat transfer into the system occurs than work done,

the difference is stored as internal energy. Heat engines are a good example of this—heat transfer into them takes place so that
they can do work. (See Figure 15.3.) We will now examine Q , W , and ΔU further.
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Figure 15.3 The first law of thermodynamics is the conservation-of-energy principle stated for a system where heat and work are the methods of

transferring energy for a system in thermal equilibrium. Q represents the net heat transfer—it is the sum of all heat transfers into and out of the

system. Q is positive for net heat transfer into the system. W is the total work done on and by the system. W is positive when more work is done

by the system than on it. The change in the internal energy of the system, ΔU , is related to heat and work by the first law of thermodynamics,

ΔU = Q − W .

Making Connections: Law of Thermodynamics and Law of Conservation of Energy

The first law of thermodynamics is actually the law of conservation of energy stated in a form most useful in
thermodynamics. The first law gives the relationship between heat transfer, work done, and the change in internal energy of
a system.

Heat Q and Work W

Heat transfer ( Q ) and doing work ( W ) are the two everyday means of bringing energy into or taking energy out of a system.

The processes are quite different. Heat transfer, a less organized process, is driven by temperature differences. Work, a quite
organized process, involves a macroscopic force exerted through a distance. Nevertheless, heat and work can produce identical
results.For example, both can cause a temperature increase. Heat transfer into a system, such as when the Sun warms the air in
a bicycle tire, can increase its temperature, and so can work done on the system, as when the bicyclist pumps air into the tire.
Once the temperature increase has occurred, it is impossible to tell whether it was caused by heat transfer or by doing work. This
uncertainty is an important point. Heat transfer and work are both energy in transit—neither is stored as such in a system.
However, both can change the internal energy U of a system. Internal energy is a form of energy completely different from

either heat or work.

Internal Energy U

We can think about the internal energy of a system in two different but consistent ways. The first is the atomic and molecular
view, which examines the system on the atomic and molecular scale. The internal energy U of a system is the sum of the

kinetic and potential energies of its atoms and molecules. Recall that kinetic plus potential energy is called mechanical energy.
Thus internal energy is the sum of atomic and molecular mechanical energy. Because it is impossible to keep track of all
individual atoms and molecules, we must deal with averages and distributions. A second way to view the internal energy of a
system is in terms of its macroscopic characteristics, which are very similar to atomic and molecular average values.

Macroscopically, we define the change in internal energy ΔU to be that given by the first law of thermodynamics:

(15.2)ΔU = Q − W.

Many detailed experiments have verified that ΔU = Q − W , where ΔU is the change in total kinetic and potential energy of

all atoms and molecules in a system. It has also been determined experimentally that the internal energy U of a system

depends only on the state of the system and not how it reached that state. More specifically, U is found to be a function of a few

macroscopic quantities (pressure, volume, and temperature, for example), independent of past history such as whether there has
been heat transfer or work done. This independence means that if we know the state of a system, we can calculate changes in
its internal energy U from a few macroscopic variables.

Making Connections: Macroscopic and Microscopic

In thermodynamics, we often use the macroscopic picture when making calculations of how a system behaves, while the
atomic and molecular picture gives underlying explanations in terms of averages and distributions. We shall see this again in
later sections of this chapter. For example, in the topic of entropy, calculations will be made using the atomic and molecular
view.

To get a better idea of how to think about the internal energy of a system, let us examine a system going from State 1 to State 2.
The system has internal energy U1 in State 1, and it has internal energy U2 in State 2, no matter how it got to either state. So
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the change in internal energy ΔU = U2 − U1 is independent of what caused the change. In other words, ΔU is independent

of path. By path, we mean the method of getting from the starting point to the ending point. Why is this independence important?
Note that ΔU = Q − W . Both Q and W depend on path, but ΔU does not. This path independence means that internal

energy U is easier to consider than either heat transfer or work done.

Example 15.1 Calculating Change in Internal Energy: The Same Change in U is Produced by

Two Different Processes

(a) Suppose there is heat transfer of 40.00 J to a system, while the system does 10.00 J of work. Later, there is heat transfer
of 25.00 J out of the system while 4.00 J of work is done on the system. What is the net change in internal energy of the
system?

(b) What is the change in internal energy of a system when a total of 150.00 J of heat transfer occurs out of (from) the
system and 159.00 J of work is done on the system? (See Figure 15.4).

Strategy

In part (a), we must first find the net heat transfer and net work done from the given information. Then the first law of
thermodynamics ⎛

⎝ΔU = Q − W ⎞
⎠ can be used to find the change in internal energy. In part (b), the net heat transfer and

work done are given, so the equation can be used directly.

Solution for (a)

The net heat transfer is the heat transfer into the system minus the heat transfer out of the system, or

(15.3)Q = 40.00 J − 25.00 J = 15.00 J.

Similarly, the total work is the work done by the system minus the work done on the system, or

(15.4)W = 10.00 J − 4.00 J = 6.00 J.
Thus the change in internal energy is given by the first law of thermodynamics:

(15.5)ΔU = Q − W = 15.00 J − 6.00 J = 9.00 J.

We can also find the change in internal energy for each of the two steps. First, consider 40.00 J of heat transfer in and 10.00
J of work out, or

(15.6)ΔU1 = Q1 − W1 = 40.00 J − 10.00 J = 30.00 J.

Now consider 25.00 J of heat transfer out and 4.00 J of work in, or

(15.7)ΔU2 = Q2 − W2= - 25.00 J − ( − 4.00 J ) = –21.00 J.

The total change is the sum of these two steps, or

(15.8)ΔU = ΔU1 + ΔU2 = 30.00 J + (−21.00 J ) = 9.00 J.

Discussion on (a)

No matter whether you look at the overall process or break it into steps, the change in internal energy is the same.

Solution for (b)

Here the net heat transfer and total work are given directly to be Q = – 150.00 J and W = – 159.00 J , so that

(15.9)ΔU = Q – W = – 150.00 J – ( − 159.00 J) = 9.00 J.

Discussion on (b)

A very different process in part (b) produces the same 9.00-J change in internal energy as in part (a). Note that the change
in the system in both parts is related to ΔU and not to the individual Q s or W s involved. The system ends up in the

same state in both (a) and (b). Parts (a) and (b) present two different paths for the system to follow between the same
starting and ending points, and the change in internal energy for each is the same—it is independent of path.
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Figure 15.4 Two different processes produce the same change in a system. (a) A total of 15.00 J of heat transfer occurs into the system, while work

takes out a total of 6.00 J. The change in internal energy is ΔU = Q − W = 9.00 J . (b) Heat transfer removes 150.00 J from the system while

work puts 159.00 J into it, producing an increase of 9.00 J in internal energy. If the system starts out in the same state in (a) and (b), it will end up in the
same final state in either case—its final state is related to internal energy, not how that energy was acquired.

Human Metabolism and the First Law of Thermodynamics

Human metabolism is the conversion of food into heat transfer, work, and stored fat. Metabolism is an interesting example of
the first law of thermodynamics in action. We now take another look at these topics via the first law of thermodynamics.
Considering the body as the system of interest, we can use the first law to examine heat transfer, doing work, and internal energy
in activities ranging from sleep to heavy exercise. What are some of the major characteristics of heat transfer, doing work, and
energy in the body? For one, body temperature is normally kept constant by heat transfer to the surroundings. This means Q is

negative. Another fact is that the body usually does work on the outside world. This means W is positive. In such situations,

then, the body loses internal energy, since ΔU = Q − W is negative.

Now consider the effects of eating. Eating increases the internal energy of the body by adding chemical potential energy (this is
an unromantic view of a good steak). The body metabolizes all the food we consume. Basically, metabolism is an oxidation
process in which the chemical potential energy of food is released. This implies that food input is in the form of work. Food
energy is reported in a special unit, known as the Calorie. This energy is measured by burning food in a calorimeter, which is
how the units are determined.

In chemistry and biochemistry, one calorie (spelled with a lowercase c) is defined as the energy (or heat transfer) required to
raise the temperature of one gram of pure water by one degree Celsius. Nutritionists and weight-watchers tend to use the dietary
calorie, which is frequently called a Calorie (spelled with a capital C). One food Calorie is the energy needed to raise the
temperature of one kilogram of water by one degree Celsius. This means that one dietary Calorie is equal to one kilocalorie for
the chemist, and one must be careful to avoid confusion between the two.

Again, consider the internal energy the body has lost. There are three places this internal energy can go—to heat transfer, to
doing work, and to stored fat (a tiny fraction also goes to cell repair and growth). Heat transfer and doing work take internal
energy out of the body, and food puts it back. If you eat just the right amount of food, then your average internal energy remains
constant. Whatever you lose to heat transfer and doing work is replaced by food, so that, in the long run, ΔU = 0 . If you

overeat repeatedly, then ΔU is always positive, and your body stores this extra internal energy as fat. The reverse is true if you

eat too little. If ΔU is negative for a few days, then the body metabolizes its own fat to maintain body temperature and do work

that takes energy from the body. This process is how dieting produces weight loss.

Life is not always this simple, as any dieter knows. The body stores fat or metabolizes it only if energy intake changes for a
period of several days. Once you have been on a major diet, the next one is less successful because your body alters the way it
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responds to low energy intake. Your basal metabolic rate (BMR) is the rate at which food is converted into heat transfer and work
done while the body is at complete rest. The body adjusts its basal metabolic rate to partially compensate for over-eating or
under-eating. The body will decrease the metabolic rate rather than eliminate its own fat to replace lost food intake. You will chill
more easily and feel less energetic as a result of the lower metabolic rate, and you will not lose weight as fast as before.
Exercise helps to lose weight, because it produces both heat transfer from your body and work, and raises your metabolic rate
even when you are at rest. Weight loss is also aided by the quite low efficiency of the body in converting internal energy to work,
so that the loss of internal energy resulting from doing work is much greater than the work done.It should be noted, however, that
living systems are not in thermalequilibrium.

The body provides us with an excellent indication that many thermodynamic processes are irreversible. An irreversible process
can go in one direction but not the reverse, under a given set of conditions. For example, although body fat can be converted to
do work and produce heat transfer, work done on the body and heat transfer into it cannot be converted to body fat. Otherwise,
we could skip lunch by sunning ourselves or by walking down stairs. Another example of an irreversible thermodynamic process
is photosynthesis. This process is the intake of one form of energy—light—by plants and its conversion to chemical potential
energy. Both applications of the first law of thermodynamics are illustrated in Figure 15.5. One great advantage of conservation
laws such as the first law of thermodynamics is that they accurately describe the beginning and ending points of complex
processes, such as metabolism and photosynthesis, without regard to the complications in between. Table 15.1 presents a
summary of terms relevant to the first law of thermodynamics.

Figure 15.5 (a) The first law of thermodynamics applied to metabolism. Heat transferred out of the body ( Q ) and work done by the body ( W )

remove internal energy, while food intake replaces it. (Food intake may be considered as work done on the body.) (b) Plants convert part of the radiant
heat transfer in sunlight to stored chemical energy, a process called photosynthesis.

Table 15.1 Summary of Terms for the First Law of Thermodynamics, ΔU=Q−W

Term Definition

U
Internal energy—the sum of the kinetic and potential energies of a system’s atoms and molecules. Can be divided
into many subcategories, such as thermal and chemical energy. Depends only on the state of a system (such as its
P , V , and T ), not on how the energy entered the system. Change in internal energy is path independent.

Q Heat—energy transferred because of a temperature difference. Characterized by random molecular motion. Highly
dependent on path. Q entering a system is positive.

W Work—energy transferred by a force moving through a distance. An organized, orderly process. Path dependent. W
done by a system (either against an external force or to increase the volume of the system) is positive.
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15.2 The First Law of Thermodynamics and Some Simple Processes

Figure 15.6 Beginning with the Industrial Revolution, humans have harnessed power through the use of the first law of thermodynamics, before we
even understood it completely. This photo, of a steam engine at the Turbinia Works, dates from 1911, a mere 61 years after the first explicit statement
of the first law of thermodynamics by Rudolph Clausius. (credit: public domain; author unknown)

One of the most important things we can do with heat transfer is to use it to do work for us. Such a device is called a heat
engine. Car engines and steam turbines that generate electricity are examples of heat engines. Figure 15.7 shows
schematically how the first law of thermodynamics applies to the typical heat engine.

Figure 15.7 Schematic representation of a heat engine, governed, of course, by the first law of thermodynamics. It is impossible to devise a system

where Qout = 0 , that is, in which no heat transfer occurs to the environment.
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Figure 15.8 (a) Heat transfer to the gas in a cylinder increases the internal energy of the gas, creating higher pressure and temperature. (b) The force
exerted on the movable cylinder does work as the gas expands. Gas pressure and temperature decrease when it expands, indicating that the gas’s
internal energy has been decreased by doing work. (c) Heat transfer to the environment further reduces pressure in the gas so that the piston can be
more easily returned to its starting position.

The illustrations above show one of the ways in which heat transfer does work. Fuel combustion produces heat transfer to a gas
in a cylinder, increasing the pressure of the gas and thereby the force it exerts on a movable piston. The gas does work on the
outside world, as this force moves the piston through some distance. Heat transfer to the gas cylinder results in work being done.
To repeat this process, the piston needs to be returned to its starting point. Heat transfer now occurs from the gas to the
surroundings so that its pressure decreases, and a force is exerted by the surroundings to push the piston back through some
distance. Variations of this process are employed daily in hundreds of millions of heat engines. We will examine heat engines in
detail in the next section. In this section, we consider some of the simpler underlying processes on which heat engines are
based.

PV Diagrams and their Relationship to Work Done on or by a Gas

A process by which a gas does work on a piston at constant pressure is called an isobaric process. Since the pressure is
constant, the force exerted is constant and the work done is given as

(15.10)PΔV .
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Figure 15.9 An isobaric expansion of a gas requires heat transfer to keep the pressure constant. Since pressure is constant, the work done is PΔV .

(15.11)W = Fd

See the symbols as shown in Figure 15.9. Now F = PA , and so

(15.12)W = PAd .

Because the volume of a cylinder is its cross-sectional area A times its length d , we see that Ad = ΔV , the change in

volume; thus,

(15.13)W = PΔV  (isobaric process).

Note that if ΔV is positive, then W is positive, meaning that work is done by the gas on the outside world.

(Note that the pressure involved in this work that we’ve called P is the pressure of the gas inside the tank. If we call the

pressure outside the tank Pext , an expanding gas would be working against the external pressure; the work done would

therefore be W = −PextΔV (isobaric process). Many texts use this definition of work, and not the definition based on internal

pressure, as the basis of the First Law of Thermodynamics. This definition reverses the sign conventions for work, and results in
a statement of the first law that becomes ΔU = Q + W .)

It is not surprising that W = PΔV , since we have already noted in our treatment of fluids that pressure is a type of potential

energy per unit volume and that pressure in fact has units of energy divided by volume. We also noted in our discussion of the
ideal gas law that PV has units of energy. In this case, some of the energy associated with pressure becomes work.

Figure 15.10 shows a graph of pressure versus volume (that is, a PV diagram for an isobaric process. You can see in the

figure that the work done is the area under the graph. This property of PV diagrams is very useful and broadly applicable: the

work done on or by a system in going from one state to another equals the area under the curve on a PV diagram.
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Figure 15.10 A graph of pressure versus volume for a constant-pressure, or isobaric, process, such as the one shown in Figure 15.9. The area under

the curve equals the work done by the gas, since W = PΔV .

Figure 15.11 (a) A PV diagram in which pressure varies as well as volume. The work done for each interval is its average pressure times the change

in volume, or the area under the curve over that interval. Thus the total area under the curve equals the total work done. (b) Work must be done on the
system to follow the reverse path. This is interpreted as a negative area under the curve.

We can see where this leads by considering Figure 15.11(a), which shows a more general process in which both pressure and
volume change. The area under the curve is closely approximated by dividing it into strips, each having an average constant
pressure Pi(ave) . The work done is Wi = Pi(ave)ΔVi for each strip, and the total work done is the sum of the Wi . Thus the

total work done is the total area under the curve. If the path is reversed, as in Figure 15.11(b), then work is done on the system.
The area under the curve in that case is negative, because ΔV is negative.

PV diagrams clearly illustrate that the work done depends on the path taken and not just the endpoints. This path dependence

is seen in Figure 15.12(a), where more work is done in going from A to C by the path via point B than by the path via point D.
The vertical paths, where volume is constant, are called isochoric processes. Since volume is constant, ΔV = 0 , and no work

is done in an isochoric process. Now, if the system follows the cyclical path ABCDA, as in Figure 15.12(b), then the total work
done is the area inside the loop. The negative area below path CD subtracts, leaving only the area inside the rectangle. In fact,
the work done in any cyclical process (one that returns to its starting point) is the area inside the loop it forms on a PV diagram,

as Figure 15.12(c) illustrates for a general cyclical process. Note that the loop must be traversed in the clockwise direction for
work to be positive—that is, for there to be a net work output.
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Figure 15.12 (a) The work done in going from A to C depends on path. The work is greater for the path ABC than for the path ADC, because the
former is at higher pressure. In both cases, the work done is the area under the path. This area is greater for path ABC. (b) The total work done in the
cyclical process ABCDA is the area inside the loop, since the negative area below CD subtracts out, leaving just the area inside the rectangle. (The
values given for the pressures and the change in volume are intended for use in the example below.) (c) The area inside any closed loop is the work

done in the cyclical process. If the loop is traversed in a clockwise direction, W is positive—it is work done on the outside environment. If the loop is

traveled in a counter-clockwise direction, W is negative—it is work that is done to the system.

Example 15.2 Total Work Done in a Cyclical Process Equals the Area Inside the Closed Loop on
a PV Diagram

Calculate the total work done in the cyclical process ABCDA shown in Figure 15.12(b) by the following two methods to
verify that work equals the area inside the closed loop on the PV diagram. (Take the data in the figure to be precise to

three significant figures.) (a) Calculate the work done along each segment of the path and add these values to get the total
work. (b) Calculate the area inside the rectangle ABCDA.

Strategy

To find the work along any path on a PV diagram, you use the fact that work is pressure times change in volume, or

W = PΔV . So in part (a), this value is calculated for each leg of the path around the closed loop.

Solution for (a)

The work along path AB is
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(15.14)WAB = PABΔVAB

= (1.50×106 N/m2)(5.00×10–4 m3 ) = 750 J.

Since the path BC is isochoric, ΔVBC = 0 , and so WBC = 0 . The work along path CD is negative, since ΔVCD is

negative (the volume decreases). The work is

(15.15)WCD = PCDΔVCD

= (2.00×105 N/m2)(–5.00×10–4 m3) = –100 J.

Again, since the path DA is isochoric, ΔVDA = 0 , and so WDA = 0 . Now the total work is

(15.16)W = WAB + WBC + WCD + WDA
= 750 J+0 + ( − 100J) + 0 = 650 J.

Solution for (b)

The area inside the rectangle is its height times its width, or

(15.17)area = (PAB − PCD)ΔV

= ⎡
⎣(1.50×106 N/m2 ) − (2.00×105 N/m2)⎤⎦(5.00×10−4 m3)

= 650 J.
Thus,

(15.18)area = 650 J = W.
Discussion

The result, as anticipated, is that the area inside the closed loop equals the work done. The area is often easier to calculate
than is the work done along each path. It is also convenient to visualize the area inside different curves on PV diagrams in

order to see which processes might produce the most work. Recall that work can be done to the system, or by the system,
depending on the sign of W . A positive W is work that is done by the system on the outside environment; a negative W
represents work done by the environment on the system.

Figure 15.13(a) shows two other important processes on a PV diagram. For comparison, both are shown starting from the

same point A. The upper curve ending at point B is an isothermal process—that is, one in which temperature is kept
constant. If the gas behaves like an ideal gas, as is often the case, and if no phase change occurs, then PV = nRT . Since

T is constant, PV is a constant for an isothermal process. We ordinarily expect the temperature of a gas to decrease as it

expands, and so we correctly suspect that heat transfer must occur from the surroundings to the gas to keep the
temperature constant during an isothermal expansion. To show this more rigorously for the special case of a monatomic
ideal gas, we note that the average kinetic energy of an atom in such a gas is given by

(15.19)1
2m v̄ 2 = 3

2kT.

The kinetic energy of the atoms in a monatomic ideal gas is its only form of internal energy, and so its total internal energy
U is

(15.20)U = N 1
2m v̄ 2 = 3

2NkT, (monatomic ideal gas),

where N is the number of atoms in the gas. This relationship means that the internal energy of an ideal monatomic gas is

constant during an isothermal process—that is, ΔU = 0 . If the internal energy does not change, then the net heat transfer

into the gas must equal the net work done by the gas. That is, because ΔU = Q − W = 0 here, Q = W . We must have

just enough heat transfer to replace the work done. An isothermal process is inherently slow, because heat transfer occurs
continuously to keep the gas temperature constant at all times and must be allowed to spread through the gas so that there
are no hot or cold regions.

Also shown in Figure 15.13(a) is a curve AC for an adiabatic process, defined to be one in which there is no heat
transfer—that is, Q = 0 . Processes that are nearly adiabatic can be achieved either by using very effective insulation or by

performing the process so fast that there is little time for heat transfer. Temperature must decrease during an adiabatic
expansion process, since work is done at the expense of internal energy:

(15.21)U = 3
2NkT.

(You might have noted that a gas released into atmospheric pressure from a pressurized cylinder is substantially colder than
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the gas in the cylinder.) In fact, because Q = 0, ΔU = – W for an adiabatic process. Lower temperature results in lower

pressure along the way, so that curve AC is lower than curve AB, and less work is done. If the path ABCA could be followed
by cooling the gas from B to C at constant volume (isochorically), Figure 15.13(b), there would be a net work output.

Figure 15.13 (a) The upper curve is an isothermal process ( ΔT = 0 ), whereas the lower curve is an adiabatic process ( Q = 0 ). Both start

from the same point A, but the isothermal process does more work than the adiabatic because heat transfer into the gas takes place to keep its
temperature constant. This keeps the pressure higher all along the isothermal path than along the adiabatic path, producing more work. The
adiabatic path thus ends up with a lower pressure and temperature at point C, even though the final volume is the same as for the isothermal
process. (b) The cycle ABCA produces a net work output.

Reversible Processes

Both isothermal and adiabatic processes such as shown in Figure 15.13 are reversible in principle. A reversible process is one
in which both the system and its environment can return to exactly the states they were in by following the reverse path. The
reverse isothermal and adiabatic paths are BA and CA, respectively. Real macroscopic processes are never exactly reversible.
In the previous examples, our system is a gas (like that in Figure 15.9), and its environment is the piston, cylinder, and the rest
of the universe. If there are any energy-dissipating mechanisms, such as friction or turbulence, then heat transfer to the
environment occurs for either direction of the piston. So, for example, if the path BA is followed and there is friction, then the gas
will be returned to its original state but the environment will not—it will have been heated in both directions. Reversibility requires
the direction of heat transfer to reverse for the reverse path. Since dissipative mechanisms cannot be completely eliminated, real
processes cannot be reversible.

There must be reasons that real macroscopic processes cannot be reversible. We can imagine them going in reverse. For
example, heat transfer occurs spontaneously from hot to cold and never spontaneously the reverse. Yet it would not violate the
first law of thermodynamics for this to happen. In fact, all spontaneous processes, such as bubbles bursting, never go in reverse.
There is a second thermodynamic law that forbids them from going in reverse. When we study this law, we will learn something
about nature and also find that such a law limits the efficiency of heat engines. We will find that heat engines with the greatest
possible theoretical efficiency would have to use reversible processes, and even they cannot convert all heat transfer into doing
work. Table 15.2 summarizes the simpler thermodynamic processes and their definitions.

Table 15.2 Summary of Simple
Thermodynamic Processes

Isobaric Constant pressure W = PΔV

Isochoric Constant volume W = 0

Isothermal Constant temperature Q = W

Adiabatic No heat transfer Q = 0
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PhET Explorations: States of Matter

Watch different types of molecules form a solid, liquid, or gas. Add or remove heat and watch the phase change. Change the
temperature or volume of a container and see a pressure-temperature diagram respond in real time. Relate the interaction
potential to the forces between molecules.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42233/1.11/#eip-
idm287711424)

Figure 15.14

15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their
Efficiency

Figure 15.15 These ice floes melt during the Arctic summer. Some of them refreeze in the winter, but the second law of thermodynamics predicts that it
would be extremely unlikely for the water molecules contained in these particular floes to reform the distinctive alligator-like shape they formed when
the picture was taken in the summer of 2009. (credit: Patrick Kelley, U.S. Coast Guard, U.S. Geological Survey)

The second law of thermodynamics deals with the direction taken by spontaneous processes. Many processes occur
spontaneously in one direction only—that is, they are irreversible, under a given set of conditions. Although irreversibility is seen
in day-to-day life—a broken glass does not resume its original state, for instance—complete irreversibility is a statistical
statement that cannot be seen during the lifetime of the universe. More precisely, an irreversible process is one that depends
on path. If the process can go in only one direction, then the reverse path differs fundamentally and the process cannot be
reversible. For example, as noted in the previous section, heat involves the transfer of energy from higher to lower temperature.
A cold object in contact with a hot one never gets colder, transferring heat to the hot object and making it hotter. Furthermore,
mechanical energy, such as kinetic energy, can be completely converted to thermal energy by friction, but the reverse is
impossible. A hot stationary object never spontaneously cools off and starts moving. Yet another example is the expansion of a
puff of gas introduced into one corner of a vacuum chamber. The gas expands to fill the chamber, but it never regroups in the
corner. The random motion of the gas molecules could take them all back to the corner, but this is never observed to happen.
(See Figure 15.16.)
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Figure 15.16 Examples of one-way processes in nature. (a) Heat transfer occurs spontaneously from hot to cold and not from cold to hot. (b) The
brakes of this car convert its kinetic energy to heat transfer to the environment. The reverse process is impossible. (c) The burst of gas let into this
vacuum chamber quickly expands to uniformly fill every part of the chamber. The random motions of the gas molecules will never return them to the
corner.

The fact that certain processes never occur suggests that there is a law forbidding them to occur. The first law of
thermodynamics would allow them to occur—none of those processes violate conservation of energy. The law that forbids these
processes is called the second law of thermodynamics. We shall see that the second law can be stated in many ways that may
seem different, but which in fact are equivalent. Like all natural laws, the second law of thermodynamics gives insights into
nature, and its several statements imply that it is broadly applicable, fundamentally affecting many apparently disparate
processes.

The already familiar direction of heat transfer from hot to cold is the basis of our first version of the second law of
thermodynamics.

The Second Law of Thermodynamics (first expression)

Heat transfer occurs spontaneously from higher- to lower-temperature bodies but never spontaneously in the reverse
direction.

Another way of stating this: It is impossible for any process to have as its sole result heat transfer from a cooler to a hotter object.

Heat Engines

Now let us consider a device that uses heat transfer to do work. As noted in the previous section, such a device is called a heat
engine, and one is shown schematically in Figure 15.17(b). Gasoline and diesel engines, jet engines, and steam turbines are all
heat engines that do work by using part of the heat transfer from some source. Heat transfer from the hot object (or hot reservoir)
is denoted as Qh , while heat transfer into the cold object (or cold reservoir) is Qc , and the work done by the engine is W . The

temperatures of the hot and cold reservoirs are Th and Tc , respectively.
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Figure 15.17 (a) Heat transfer occurs spontaneously from a hot object to a cold one, consistent with the second law of thermodynamics. (b) A heat

engine, represented here by a circle, uses part of the heat transfer to do work. The hot and cold objects are called the hot and cold reservoirs. Qh is

the heat transfer out of the hot reservoir, W is the work output, and Qc is the heat transfer into the cold reservoir.

Because the hot reservoir is heated externally, which is energy intensive, it is important that the work is done as efficiently as
possible. In fact, we would like W to equal Qh , and for there to be no heat transfer to the environment ( Qc = 0 ).

Unfortunately, this is impossible. The second law of thermodynamics also states, with regard to using heat transfer to do work
(the second expression of the second law):

The Second Law of Thermodynamics (second expression)

It is impossible in any system for heat transfer from a reservoir to completely convert to work in a cyclical process in which
the system returns to its initial state.

A cyclical process brings a system, such as the gas in a cylinder, back to its original state at the end of every cycle. Most heat
engines, such as reciprocating piston engines and rotating turbines, use cyclical processes. The second law, just stated in its
second form, clearly states that such engines cannot have perfect conversion of heat transfer into work done. Before going into
the underlying reasons for the limits on converting heat transfer into work, we need to explore the relationships among W , Qh ,

and Qc , and to define the efficiency of a cyclical heat engine. As noted, a cyclical process brings the system back to its original

condition at the end of every cycle. Such a system’s internal energy U is the same at the beginning and end of every

cycle—that is, ΔU = 0 . The first law of thermodynamics states that

(15.22)ΔU = Q − W,

where Q is the net heat transfer during the cycle ( Q = Qh − Qc ) and W is the net work done by the system. Since

ΔU = 0 for a complete cycle, we have

(15.23)0 = Q − W,

so that

(15.24)W = Q.

Thus the net work done by the system equals the net heat transfer into the system, or

(15.25)W = Qh − Qc (cyclical process),

just as shown schematically in Figure 15.17(b). The problem is that in all processes, there is some heat transfer Qc to the

environment—and usually a very significant amount at that.

In the conversion of energy to work, we are always faced with the problem of getting less out than we put in. We define
conversion efficiency Eff to be the ratio of useful work output to the energy input (or, in other words, the ratio of what we get to

what we spend). In that spirit, we define the efficiency of a heat engine to be its net work output W divided by heat transfer to

the engine Qh ; that is,
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(15.26)Eff = W
Qh

.

Since W = Qh − Qc in a cyclical process, we can also express this as

(15.27)
Eff = Qh − Qc

Qh
= 1 − Qc

Qh
(cyclical process),

making it clear that an efficiency of 1, or 100%, is possible only if there is no heat transfer to the environment ( Qc = 0 ). Note

that all Q s are positive. The direction of heat transfer is indicated by a plus or minus sign. For example, Qc is out of the system

and so is preceded by a minus sign.

Example 15.3 Daily Work Done by a Coal-Fired Power Station, Its Efficiency and Carbon Dioxide
Emissions

A coal-fired power station is a huge heat engine. It uses heat transfer from burning coal to do work to turn turbines, which

are used to generate electricity. In a single day, a large coal power station has 2.50×1014 J of heat transfer from coal and

1.48×1014 J of heat transfer into the environment. (a) What is the work done by the power station? (b) What is the

efficiency of the power station? (c) In the combustion process, the following chemical reaction occurs: C + O2 → CO2 .

This implies that every 12 kg of coal puts 12 kg + 16 kg + 16 kg = 44 kg of carbon dioxide into the atmosphere. Assuming

that 1 kg of coal can provide 2.5×106 J of heat transfer upon combustion, how much CO2 is emitted per day by this

power plant?

Strategy for (a)

We can use W = Qh − Qc to find the work output W , assuming a cyclical process is used in the power station. In this

process, water is boiled under pressure to form high-temperature steam, which is used to run steam turbine-generators, and
then condensed back to water to start the cycle again.

Solution for (a)

Work output is given by:

(15.28)W = Qh − Qc.

Substituting the given values:

(15.29)W = 2.50×1014 J – 1.48×1014 J
= 1.02×1014 J.

Strategy for (b)

The efficiency can be calculated with Eff = W
Qh

since Qh is given and work W was found in the first part of this

example.

Solution for (b)

Efficiency is given by: Eff = W
Qh

. The work W was just found to be 1.02 × 1014 J , and Qh is given, so the efficiency is

(15.30)
Eff = 1.02×1014 J

2.50×1014 J
= 0.408, or 40.8%

Strategy for (c)

The daily consumption of coal is calculated using the information that each day there is 2.50×1014 J of heat transfer from

coal. In the combustion process, we have C + O2 → CO2 . So every 12 kg of coal puts 12 kg + 16 kg + 16 kg = 44 kg of

CO2 into the atmosphere.

Solution for (c)

The daily coal consumption is
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(15.31)2.50×1014 J
2.50×106 J/kg

= 1.0×108 kg.

Assuming that the coal is pure and that all the coal goes toward producing carbon dioxide, the carbon dioxide produced per
day is

(15.32)
1.0×108 kg coal×44 kg CO2

12 kg coal = 3.7×108 kg CO2.

This is 370,000 metric tons of CO2 produced every day.

Discussion

If all the work output is converted to electricity in a period of one day, the average power output is 1180 MW (this is left to
you as an end-of-chapter problem). This value is about the size of a large-scale conventional power plant. The efficiency
found is acceptably close to the value of 42% given for coal power stations. It means that fully 59.2% of the energy is heat
transfer to the environment, which usually results in warming lakes, rivers, or the ocean near the power station, and is
implicated in a warming planet generally. While the laws of thermodynamics limit the efficiency of such plants—including
plants fired by nuclear fuel, oil, and natural gas—the heat transfer to the environment could be, and sometimes is, used for
heating homes or for industrial processes. The generally low cost of energy has not made it economical to make better use
of the waste heat transfer from most heat engines. Coal-fired power plants produce the greatest amount of CO2 per unit

energy output (compared to natural gas or oil), making coal the least efficient fossil fuel.

With the information given in Example 15.3, we can find characteristics such as the efficiency of a heat engine without any
knowledge of how the heat engine operates, but looking further into the mechanism of the engine will give us greater insight.
Figure 15.18 illustrates the operation of the common four-stroke gasoline engine. The four steps shown complete this heat
engine’s cycle, bringing the gasoline-air mixture back to its original condition.

The Otto cycle shown in Figure 15.19(a) is used in four-stroke internal combustion engines, although in fact the true Otto cycle
paths do not correspond exactly to the strokes of the engine.

The adiabatic process AB corresponds to the nearly adiabatic compression stroke of the gasoline engine. In both cases, work is
done on the system (the gas mixture in the cylinder), increasing its temperature and pressure. Along path BC of the Otto cycle,
heat transfer Qh into the gas occurs at constant volume, causing a further increase in pressure and temperature. This process

corresponds to burning fuel in an internal combustion engine, and takes place so rapidly that the volume is nearly constant. Path
CD in the Otto cycle is an adiabatic expansion that does work on the outside world, just as the power stroke of an internal
combustion engine does in its nearly adiabatic expansion. The work done by the system along path CD is greater than the work
done on the system along path AB, because the pressure is greater, and so there is a net work output. Along path DA in the Otto
cycle, heat transfer Qc from the gas at constant volume reduces its temperature and pressure, returning it to its original state. In

an internal combustion engine, this process corresponds to the exhaust of hot gases and the intake of an air-gasoline mixture at
a considerably lower temperature. In both cases, heat transfer into the environment occurs along this final path.

The net work done by a cyclical process is the area inside the closed path on a PV diagram, such as that inside path ABCDA in

Figure 15.19. Note that in every imaginable cyclical process, it is absolutely necessary for heat transfer from the system to occur
in order to get a net work output. In the Otto cycle, heat transfer occurs along path DA. If no heat transfer occurs, then the return
path is the same, and the net work output is zero. The lower the temperature on the path AB, the less work has to be done to
compress the gas. The area inside the closed path is then greater, and so the engine does more work and is thus more efficient.
Similarly, the higher the temperature along path CD, the more work output there is. (See Figure 15.20.) So efficiency is related to
the temperatures of the hot and cold reservoirs. In the next section, we shall see what the absolute limit to the efficiency of a heat
engine is, and how it is related to temperature.
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Figure 15.18 In the four-stroke internal combustion gasoline engine, heat transfer into work takes place in the cyclical process shown here. The piston
is connected to a rotating crankshaft, which both takes work out of and does work on the gas in the cylinder. (a) Air is mixed with fuel during the intake
stroke. (b) During the compression stroke, the air-fuel mixture is rapidly compressed in a nearly adiabatic process, as the piston rises with the valves
closed. Work is done on the gas. (c) The power stroke has two distinct parts. First, the air-fuel mixture is ignited, converting chemical potential energy
into thermal energy almost instantaneously, which leads to a great increase in pressure. Then the piston descends, and the gas does work by exerting
a force through a distance in a nearly adiabatic process. (d) The exhaust stroke expels the hot gas to prepare the engine for another cycle, starting
again with the intake stroke.

Figure 15.19 PV diagram for a simplified Otto cycle, analogous to that employed in an internal combustion engine. Point A corresponds to the start

of the compression stroke of an internal combustion engine. Paths AB and CD are adiabatic and correspond to the compression and power strokes of
an internal combustion engine, respectively. Paths BC and DA are isochoric and accomplish similar results to the ignition and exhaust-intake portions,
respectively, of the internal combustion engine’s cycle. Work is done on the gas along path AB, but more work is done by the gas along path CD, so
that there is a net work output.

Figure 15.20 This Otto cycle produces a greater work output than the one in Figure 15.19, because the starting temperature of path CD is higher and
the starting temperature of path AB is lower. The area inside the loop is greater, corresponding to greater net work output.
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15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated

Figure 15.21 This novelty toy, known as the drinking bird, is an example of Carnot’s engine. It contains methylene chloride (mixed with a dye) in the

abdomen, which boils at a very low temperature—about 100ºF . To operate, one gets the bird’s head wet. As the water evaporates, fluid moves up

into the head, causing the bird to become top-heavy and dip forward back into the water. This cools down the methylene chloride in the head, and it
moves back into the abdomen, causing the bird to become bottom heavy and tip up. Except for a very small input of energy—the original head-
wetting—the bird becomes a perpetual motion machine of sorts. (credit: Arabesk.nl, Wikimedia Commons)

We know from the second law of thermodynamics that a heat engine cannot be 100% efficient, since there must always be some
heat transfer Qc to the environment, which is often called waste heat. How efficient, then, can a heat engine be? This question

was answered at a theoretical level in 1824 by a young French engineer, Sadi Carnot (1796–1832), in his study of the then-
emerging heat engine technology crucial to the Industrial Revolution. He devised a theoretical cycle, now called the Carnot
cycle, which is the most efficient cyclical process possible. The second law of thermodynamics can be restated in terms of the
Carnot cycle, and so what Carnot actually discovered was this fundamental law. Any heat engine employing the Carnot cycle is
called a Carnot engine.

What is crucial to the Carnot cycle—and, in fact, defines it—is that only reversible processes are used. Irreversible processes
involve dissipative factors, such as friction and turbulence. This increases heat transfer Qc to the environment and reduces the

efficiency of the engine. Obviously, then, reversible processes are superior.

Carnot Engine

Stated in terms of reversible processes, the second law of thermodynamics has a third form:

A Carnot engine operating between two given temperatures has the greatest possible efficiency of any heat engine
operating between these two temperatures. Furthermore, all engines employing only reversible processes have this same
maximum efficiency when operating between the same given temperatures.

Figure 15.22 shows the PV diagram for a Carnot cycle. The cycle comprises two isothermal and two adiabatic processes.

Recall that both isothermal and adiabatic processes are, in principle, reversible.

Carnot also determined the efficiency of a perfect heat engine—that is, a Carnot engine. It is always true that the efficiency of a
cyclical heat engine is given by:

(15.33)
Eff = Qh − Qc

Qh
= 1 − Qc

Qh
.

What Carnot found was that for a perfect heat engine, the ratio Qc / Qh equals the ratio of the absolute temperatures of the

heat reservoirs. That is, Qc / Qh = Tc / Th for a Carnot engine, so that the maximum or Carnot efficiency EffC is given by

(15.34)EffC = 1 − Tc
Th

,

where Th and Tc are in kelvins (or any other absolute temperature scale). No real heat engine can do as well as the Carnot

efficiency—an actual efficiency of about 0.7 of this maximum is usually the best that can be accomplished. But the ideal Carnot
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engine, like the drinking bird above, while a fascinating novelty, has zero power. This makes it unrealistic for any applications.

Carnot’s interesting result implies that 100% efficiency would be possible only if Tc = 0 K —that is, only if the cold reservoir

were at absolute zero, a practical and theoretical impossibility. But the physical implication is this—the only way to have all heat
transfer go into doing work is to remove all thermal energy, and this requires a cold reservoir at absolute zero.

It is also apparent that the greatest efficiencies are obtained when the ratio Tc / Th is as small as possible. Just as discussed

for the Otto cycle in the previous section, this means that efficiency is greatest for the highest possible temperature of the hot
reservoir and lowest possible temperature of the cold reservoir. (This setup increases the area inside the closed loop on the PV
diagram; also, it seems reasonable that the greater the temperature difference, the easier it is to divert the heat transfer to work.)
The actual reservoir temperatures of a heat engine are usually related to the type of heat source and the temperature of the
environment into which heat transfer occurs. Consider the following example.

Figure 15.22 PV diagram for a Carnot cycle, employing only reversible isothermal and adiabatic processes. Heat transfer Qh occurs into the

working substance during the isothermal path AB, which takes place at constant temperature Th . Heat transfer Qc occurs out of the working

substance during the isothermal path CD, which takes place at constant temperature Tc . The net work output W equals the area inside the path

ABCDA. Also shown is a schematic of a Carnot engine operating between hot and cold reservoirs at temperatures Th and Tc . Any heat engine

using reversible processes and operating between these two temperatures will have the same maximum efficiency as the Carnot engine.

Example 15.4 Maximum Theoretical Efficiency for a Nuclear Reactor

A nuclear power reactor has pressurized water at 300ºC . (Higher temperatures are theoretically possible but practically

not, due to limitations with materials used in the reactor.) Heat transfer from this water is a complex process (see Figure
15.23). Steam, produced in the steam generator, is used to drive the turbine-generators. Eventually the steam is condensed
to water at 27ºC and then heated again to start the cycle over. Calculate the maximum theoretical efficiency for a heat

engine operating between these two temperatures.
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Figure 15.23 Schematic diagram of a pressurized water nuclear reactor and the steam turbines that convert work into electrical energy. Heat
exchange is used to generate steam, in part to avoid contamination of the generators with radioactivity. Two turbines are used because this is less
expensive than operating a single generator that produces the same amount of electrical energy. The steam is condensed to liquid before being
returned to the heat exchanger, to keep exit steam pressure low and aid the flow of steam through the turbines (equivalent to using a lower-
temperature cold reservoir). The considerable energy associated with condensation must be dissipated into the local environment; in this
example, a cooling tower is used so there is no direct heat transfer to an aquatic environment. (Note that the water going to the cooling tower
does not come into contact with the steam flowing over the turbines.)

Strategy

Since temperatures are given for the hot and cold reservoirs of this heat engine, EffC
= 1 − Tc

Th
can be used to calculate

the Carnot (maximum theoretical) efficiency. Those temperatures must first be converted to kelvins.

Solution

The hot and cold reservoir temperatures are given as 300ºC and 27.0ºC , respectively. In kelvins, then, Th = 573 K
and Tc = 300 K , so that the maximum efficiency is

(15.35)
EffC

= 1 − Tc
Th

.

Thus,

(15.36)EffC = 1 − 300 K
573 K

= 0.476, or 47.6%.

Discussion

A typical nuclear power station’s actual efficiency is about 35%, a little better than 0.7 times the maximum possible value, a
tribute to superior engineering. Electrical power stations fired by coal, oil, and natural gas have greater actual efficiencies
(about 42%), because their boilers can reach higher temperatures and pressures. The cold reservoir temperature in any of
these power stations is limited by the local environment. Figure 15.24 shows (a) the exterior of a nuclear power station and
(b) the exterior of a coal-fired power station. Both have cooling towers into which water from the condenser enters the tower
near the top and is sprayed downward, cooled by evaporation.
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Figure 15.24 (a) A nuclear power station (credit: BlatantWorld.com) and (b) a coal-fired power station. Both have cooling towers in which water

evaporates into the environment, representing Qc . The nuclear reactor, which supplies Qh , is housed inside the dome-shaped containment

buildings. (credit: Robert & Mihaela Vicol, publicphoto.org)

Since all real processes are irreversible, the actual efficiency of a heat engine can never be as great as that of a Carnot engine,
as illustrated in Figure 15.25(a). Even with the best heat engine possible, there are always dissipative processes in peripheral
equipment, such as electrical transformers or car transmissions. These further reduce the overall efficiency by converting some
of the engine’s work output back into heat transfer, as shown in Figure 15.25(b).
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Figure 15.25 Real heat engines are less efficient than Carnot engines. (a) Real engines use irreversible processes, reducing the heat transfer to work.
Solid lines represent the actual process; the dashed lines are what a Carnot engine would do between the same two reservoirs. (b) Friction and other
dissipative processes in the output mechanisms of a heat engine convert some of its work output into heat transfer to the environment.

15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators

Figure 15.26 Almost every home contains a refrigerator. Most people don’t realize they are also sharing their homes with a heat pump. (credit:
Id1337x, Wikimedia Commons)

Heat pumps, air conditioners, and refrigerators utilize heat transfer from cold to hot. They are heat engines run backward. We
say backward, rather than reverse, because except for Carnot engines, all heat engines, though they can be run backward,
cannot truly be reversed. Heat transfer occurs from a cold reservoir Qc and into a hot one. This requires work input W , which

is also converted to heat transfer. Thus the heat transfer to the hot reservoir is Qh = Qc + W . (Note that Qh , Qc , and W
are positive, with their directions indicated on schematics rather than by sign.) A heat pump’s mission is for heat transfer Qh to

occur into a warm environment, such as a home in the winter. The mission of air conditioners and refrigerators is for heat transfer
Qc to occur from a cool environment, such as chilling a room or keeping food at lower temperatures than the environment.

(Actually, a heat pump can be used both to heat and cool a space. It is essentially an air conditioner and a heating unit all in one.
In this section we will concentrate on its heating mode.)
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Figure 15.27 Heat pumps, air conditioners, and refrigerators are heat engines operated backward. The one shown here is based on a Carnot

(reversible) engine. (a) Schematic diagram showing heat transfer from a cold reservoir to a warm reservoir with a heat pump. The directions of W ,

Qh , and Qc are opposite what they would be in a heat engine. (b) PV diagram for a Carnot cycle similar to that in Figure 15.28 but reversed,

following path ADCBA. The area inside the loop is negative, meaning there is a net work input. There is heat transfer Qc into the system from a cold

reservoir along path DC, and heat transfer Qh out of the system into a hot reservoir along path BA.

Heat Pumps

The great advantage of using a heat pump to keep your home warm, rather than just burning fuel, is that a heat pump supplies
Qh = Qc + W . Heat transfer is from the outside air, even at a temperature below freezing, to the indoor space. You only pay

for W , and you get an additional heat transfer of Qc from the outside at no cost; in many cases, at least twice as much energy

is transferred to the heated space as is used to run the heat pump. When you burn fuel to keep warm, you pay for all of it. The
disadvantage is that the work input (required by the second law of thermodynamics) is sometimes more expensive than simply
burning fuel, especially if the work is done by electrical energy.

The basic components of a heat pump in its heating mode are shown in Figure 15.28. A working fluid such as a non-CFC
refrigerant is used. In the outdoor coils (the evaporator), heat transfer Qc occurs to the working fluid from the cold outdoor air,

turning it into a gas.

Figure 15.28 A simple heat pump has four basic components: (1) condenser, (2) expansion valve, (3) evaporator, and (4) compressor. In the heating

mode, heat transfer Qc occurs to the working fluid in the evaporator (3) from the colder outdoor air, turning it into a gas. The electrically driven

compressor (4) increases the temperature and pressure of the gas and forces it into the condenser coils (1) inside the heated space. Because the
temperature of the gas is higher than the temperature in the room, heat transfer from the gas to the room occurs as the gas condenses to a liquid. The
working fluid is then cooled as it flows back through an expansion valve (2) to the outdoor evaporator coils.

The electrically driven compressor (work input W ) raises the temperature and pressure of the gas and forces it into the

condenser coils that are inside the heated space. Because the temperature of the gas is higher than the temperature inside the
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room, heat transfer to the room occurs and the gas condenses to a liquid. The liquid then flows back through a pressure-
reducing valve to the outdoor evaporator coils, being cooled through expansion. (In a cooling cycle, the evaporator and
condenser coils exchange roles and the flow direction of the fluid is reversed.)

The quality of a heat pump is judged by how much heat transfer Qh occurs into the warm space compared with how much work

input W is required. In the spirit of taking the ratio of what you get to what you spend, we define a heat pump’s coefficient of

performance ( COPhp ) to be

(15.37)
COPhp = Qh

W .

Since the efficiency of a heat engine is Eff = W / Qh , we see that COPhp = 1 / Eff , an important and interesting fact. First,

since the efficiency of any heat engine is less than 1, it means that COPhp is always greater than 1—that is, a heat pump

always has more heat transfer Qh than work put into it. Second, it means that heat pumps work best when temperature

differences are small. The efficiency of a perfect, or Carnot, engine is EffC = 1 − ⎛⎝Tc / Th
⎞
⎠ ; thus, the smaller the temperature

difference, the smaller the efficiency and the greater the COPhp (because COPhp = 1 / Eff ). In other words, heat pumps do

not work as well in very cold climates as they do in more moderate climates.

Friction and other irreversible processes reduce heat engine efficiency, but they do not benefit the operation of a heat
pump—instead, they reduce the work input by converting part of it to heat transfer back into the cold reservoir before it gets into
the heat pump.

Figure 15.29 When a real heat engine is run backward, some of the intended work input (W) goes into heat transfer before it gets into the heat

engine, thereby reducing its coefficient of performance COPhp . In this figure, W' represents the portion of W that goes into the heat pump, while

the remainder of W is lost in the form of frictional heat
⎛
⎝Q f
⎞
⎠ to the cold reservoir. If all of W had gone into the heat pump, then Qh would have

been greater. The best heat pump uses adiabatic and isothermal processes, since, in theory, there would be no dissipative processes to reduce the
heat transfer to the hot reservoir.

Example 15.5 The Best COP hp of a Heat Pump for Home Use

A heat pump used to warm a home must employ a cycle that produces a working fluid at temperatures greater than typical
indoor temperature so that heat transfer to the inside can take place. Similarly, it must produce a working fluid at
temperatures that are colder than the outdoor temperature so that heat transfer occurs from outside. Its hot and cold
reservoir temperatures therefore cannot be too close, placing a limit on its COPhp . (See Figure 15.30.) What is the best

coefficient of performance possible for such a heat pump, if it has a hot reservoir temperature of 45.0ºC and a cold

reservoir temperature of −15.0ºC ?

Strategy

A Carnot engine reversed will give the best possible performance as a heat pump. As noted above, COPhp = 1 / Eff , so

that we need to first calculate the Carnot efficiency to solve this problem.

Solution
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Carnot efficiency in terms of absolute temperature is given by:

(15.38)EffC = 1 − Tc
Th

.

The temperatures in kelvins are Th = 318 K and Tc = 258 K , so that

(15.39)EffC = 1 − 258 K
318 K = 0.1887.

Thus, from the discussion above,

(15.40)COPhp = 1
Eff = 1

0.1887 = 5.30,

or

(15.41)
COPhp = Qh

W = 5.30,

so that

(15.42)Qh = 5.30 W.

Discussion

This result means that the heat transfer by the heat pump is 5.30 times as much as the work put into it. It would cost 5.30
times as much for the same heat transfer by an electric room heater as it does for that produced by this heat pump. This is
not a violation of conservation of energy. Cold ambient air provides 4.3 J per 1 J of work from the electrical outlet.

Figure 15.30 Heat transfer from the outside to the inside, along with work done to run the pump, takes place in the heat pump of the example
above. Note that the cold temperature produced by the heat pump is lower than the outside temperature, so that heat transfer into the working
fluid occurs. The pump’s compressor produces a temperature greater than the indoor temperature in order for heat transfer into the house to
occur.

Real heat pumps do not perform quite as well as the ideal one in the previous example; their values of COPhp range from

about 2 to 4. This range means that the heat transfer Qh from the heat pumps is 2 to 4 times as great as the work W put into

them. Their economical feasibility is still limited, however, since W is usually supplied by electrical energy that costs more per

joule than heat transfer by burning fuels like natural gas. Furthermore, the initial cost of a heat pump is greater than that of many
furnaces, so that a heat pump must last longer for its cost to be recovered. Heat pumps are most likely to be economically
superior where winter temperatures are mild, electricity is relatively cheap, and other fuels are relatively expensive. Also, since
they can cool as well as heat a space, they have advantages where cooling in summer months is also desired. Thus some of the
best locations for heat pumps are in warm summer climates with cool winters. Figure 15.31 shows a heat pump, called a
“reverse cycle” or “split-system cooler” in some countries.
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Figure 15.31 In hot weather, heat transfer occurs from air inside the room to air outside, cooling the room. In cool weather, heat transfer occurs from
air outside to air inside, warming the room. This switching is achieved by reversing the direction of flow of the working fluid.

Air Conditioners and Refrigerators

Air conditioners and refrigerators are designed to cool something down in a warm environment. As with heat pumps, work input
is required for heat transfer from cold to hot, and this is expensive. The quality of air conditioners and refrigerators is judged by
how much heat transfer Qc occurs from a cold environment compared with how much work input W is required. What is

considered the benefit in a heat pump is considered waste heat in a refrigerator. We thus define the coefficient of performance
(COPref ) of an air conditioner or refrigerator to be

(15.43)COPref = Qc
W .

Noting again that Qh = Qc + W , we can see that an air conditioner will have a lower coefficient of performance than a heat

pump, because COPhp = Qh / W and Qh is greater than Qc . In this module’s Problems and Exercises, you will show that

(15.44)COPref = COPhp − 1

for a heat engine used as either an air conditioner or a heat pump operating between the same two temperatures. Real air
conditioners and refrigerators typically do remarkably well, having values of COPref ranging from 2 to 6. These numbers are

better than the COPhp values for the heat pumps mentioned above, because the temperature differences are smaller, but they

are less than those for Carnot engines operating between the same two temperatures.

A type of COP rating system called the “energy efficiency rating” ( EER ) has been developed. This rating is an example where

non-SI units are still used and relevant to consumers. To make it easier for the consumer, Australia, Canada, New Zealand, and
the U.S. use an Energy Star Rating out of 5 stars—the more stars, the more energy efficient the appliance. EERs are

expressed in mixed units of British thermal units (Btu) per hour of heating or cooling divided by the power input in watts. Room
air conditioners are readily available with EERs ranging from 6 to 12. Although not the same as the COPs just described,

these EERs are good for comparison purposes—the greater the EER , the cheaper an air conditioner is to operate (but the

higher its purchase price is likely to be).

The EER of an air conditioner or refrigerator can be expressed as

(15.45)
EER = Qc / t1

W / t2
,

where Qc is the amount of heat transfer from a cold environment in British thermal units, t1 is time in hours, W is the work

input in joules, and t2 is time in seconds.

Problem-Solving Strategies for Thermodynamics
1. Examine the situation to determine whether heat, work, or internal energy are involved. Look for any system where the

primary methods of transferring energy are heat and work. Heat engines, heat pumps, refrigerators, and air
conditioners are examples of such systems.

2. Identify the system of interest and draw a labeled diagram of the system showing energy flow.

3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful. Maximum
efficiency means a Carnot engine is involved. Efficiency is not the same as the coefficient of performance.

4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Be sure to distinguish
heat transfer into a system from heat transfer out of the system, as well as work input from work output. In many
situations, it is useful to determine the type of process, such as isothermal or adiabatic.
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5. Solve the appropriate equation for the quantity to be determined (the unknown).

6. Substitute the known quantities along with their units into the appropriate equation and obtain numerical solutions
complete with units.

7. Check the answer to see if it is reasonable: Does it make sense? For example, efficiency is always less than 1,
whereas coefficients of performance are greater than 1.

15.6 Entropy and the Second Law of Thermodynamics: Disorder and the
Unavailability of Energy

Figure 15.32 The ice in this drink is slowly melting. Eventually the liquid will reach thermal equilibrium, as predicted by the second law of
thermodynamics. (credit: Jon Sullivan, PDPhoto.org)

There is yet another way of expressing the second law of thermodynamics. This version relates to a concept called entropy. By
examining it, we shall see that the directions associated with the second law—heat transfer from hot to cold, for example—are
related to the tendency in nature for systems to become disordered and for less energy to be available for use as work. The
entropy of a system can in fact be shown to be a measure of its disorder and of the unavailability of energy to do work.

Making Connections: Entropy, Energy, and Work

Recall that the simple definition of energy is the ability to do work. Entropy is a measure of how much energy is not available
to do work. Although all forms of energy are interconvertible, and all can be used to do work, it is not always possible, even
in principle, to convert the entire available energy into work. That unavailable energy is of interest in thermodynamics,
because the field of thermodynamics arose from efforts to convert heat to work.

We can see how entropy is defined by recalling our discussion of the Carnot engine. We noted that for a Carnot cycle, and hence
for any reversible processes, Qc / Qh = Tc / Th . Rearranging terms yields

(15.46)Qc
Tc

= Qh
Th

for any reversible process. Qc and Qh are absolute values of the heat transfer at temperatures Tc and Th , respectively. This

ratio of Q / T is defined to be the change in entropy ΔS for a reversible process,

(15.47)ΔS = ⎛⎝
Q
T
⎞
⎠rev,

where Q is the heat transfer, which is positive for heat transfer into and negative for heat transfer out of, and T is the absolute

temperature at which the reversible process takes place. The SI unit for entropy is joules per kelvin (J/K). If temperature changes
during the process, then it is usually a good approximation (for small changes in temperature) to take T to be the average

temperature, avoiding the need to use integral calculus to find ΔS .

The definition of ΔS is strictly valid only for reversible processes, such as used in a Carnot engine. However, we can find ΔS
precisely even for real, irreversible processes. The reason is that the entropy S of a system, like internal energy U , depends

Chapter 15 | Thermodynamics 583



only on the state of the system and not how it reached that condition. Entropy is a property of state. Thus the change in entropy
ΔS of a system between state 1 and state 2 is the same no matter how the change occurs. We just need to find or imagine a

reversible process that takes us from state 1 to state 2 and calculate ΔS for that process. That will be the change in entropy for

any process going from state 1 to state 2. (See Figure 15.33.)

Figure 15.33 When a system goes from state 1 to state 2, its entropy changes by the same amount ΔS , whether a hypothetical reversible path is

followed or a real irreversible path is taken.

Now let us take a look at the change in entropy of a Carnot engine and its heat reservoirs for one full cycle. The hot reservoir has
a loss of entropy ΔSh = −Qh / Th , because heat transfer occurs out of it (remember that when heat transfers out, then Q has

a negative sign). The cold reservoir has a gain of entropy ΔSc = Qc / Tc , because heat transfer occurs into it. (We assume the

reservoirs are sufficiently large that their temperatures are constant.) So the total change in entropy is

(15.48)ΔStot = ΔSh + ΔSc.

Thus, since we know that Qh / Th = Qc / Tc for a Carnot engine,

(15.49)
ΔStot =–Qh

Th
+ Qc

Tc
= 0.

This result, which has general validity, means that the total change in entropy for a system in any reversible process is zero.

The entropy of various parts of the system may change, but the total change is zero. Furthermore, the system does not affect the
entropy of its surroundings, since heat transfer between them does not occur. Thus the reversible process changes neither the
total entropy of the system nor the entropy of its surroundings. Sometimes this is stated as follows: Reversible processes do not
affect the total entropy of the universe. Real processes are not reversible, though, and they do change total entropy. We can,
however, use hypothetical reversible processes to determine the value of entropy in real, irreversible processes. The following
example illustrates this point.

Example 15.6 Entropy Increases in an Irreversible (Real) Process

Spontaneous heat transfer from hot to cold is an irreversible process. Calculate the total change in entropy if 4000 J of heat
transfer occurs from a hot reservoir at Th = 600 K(327º C) to a cold reservoir at Tc = 250 K(−23º C) , assuming there

is no temperature change in either reservoir. (See Figure 15.34.)

Strategy

How can we calculate the change in entropy for an irreversible process when ΔStot = ΔSh + ΔSc is valid only for

reversible processes? Remember that the total change in entropy of the hot and cold reservoirs will be the same whether a
reversible or irreversible process is involved in heat transfer from hot to cold. So we can calculate the change in entropy of
the hot reservoir for a hypothetical reversible process in which 4000 J of heat transfer occurs from it; then we do the same
for a hypothetical reversible process in which 4000 J of heat transfer occurs to the cold reservoir. This produces the same
changes in the hot and cold reservoirs that would occur if the heat transfer were allowed to occur irreversibly between them,
and so it also produces the same changes in entropy.

Solution
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We now calculate the two changes in entropy using ΔStot = ΔSh + ΔSc . First, for the heat transfer from the hot reservoir,

(15.50)
ΔSh = −Qh

Th
= −4000 J

600 K = – 6.67 J/K.

And for the cold reservoir,

(15.51)ΔSc = Qc
Tc

= 4000 J
250 K = 16.0 J/K.

Thus the total is

(15.52)ΔStot = ΔSh + ΔSc
= ( – 6.67 +16.0) J/K
= 9.33 J/K.

Discussion

There is an increase in entropy for the system of two heat reservoirs undergoing this irreversible heat transfer. We will see
that this means there is a loss of ability to do work with this transferred energy. Entropy has increased, and energy has
become unavailable to do work.

Figure 15.34 (a) Heat transfer from a hot object to a cold one is an irreversible process that produces an overall increase in entropy. (b) The
same final state and, thus, the same change in entropy is achieved for the objects if reversible heat transfer processes occur between the two
objects whose temperatures are the same as the temperatures of the corresponding objects in the irreversible process.

It is reasonable that entropy increases for heat transfer from hot to cold. Since the change in entropy is Q / T , there is a larger

change at lower temperatures. The decrease in entropy of the hot object is therefore less than the increase in entropy of the cold
object, producing an overall increase, just as in the previous example. This result is very general:

There is an increase in entropy for any system undergoing an irreversible process.

With respect to entropy, there are only two possibilities: entropy is constant for a reversible process, and it increases for an
irreversible process. There is a fourth version of the second law of thermodynamics stated in terms of entropy:

The total entropy of a system either increases or remains constant in any process; it never decreases.

For example, heat transfer cannot occur spontaneously from cold to hot, because entropy would decrease.

Entropy is very different from energy. Entropy is not conserved but increases in all real processes. Reversible processes (such
as in Carnot engines) are the processes in which the most heat transfer to work takes place and are also the ones that keep
entropy constant. Thus we are led to make a connection between entropy and the availability of energy to do work.

Entropy and the Unavailability of Energy to Do Work

What does a change in entropy mean, and why should we be interested in it? One reason is that entropy is directly related to the
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fact that not all heat transfer can be converted into work. The next example gives some indication of how an increase in entropy
results in less heat transfer into work.

Example 15.7 Less Work is Produced by a Given Heat Transfer When Entropy Change is
Greater

(a) Calculate the work output of a Carnot engine operating between temperatures of 600 K and 100 K for 4000 J of heat
transfer to the engine. (b) Now suppose that the 4000 J of heat transfer occurs first from the 600 K reservoir to a 250 K
reservoir (without doing any work, and this produces the increase in entropy calculated above) before transferring into a
Carnot engine operating between 250 K and 100 K. What work output is produced? (See Figure 15.35.)

Strategy

In both parts, we must first calculate the Carnot efficiency and then the work output.

Solution (a)

The Carnot efficiency is given by

(15.53)EffC = 1 − Tc
Th

.

Substituting the given temperatures yields

(15.54)EffC = 1 − 100 K
600 K = 0.833.

Now the work output can be calculated using the definition of efficiency for any heat engine as given by

(15.55)Eff = W
Qh

.

Solving for W and substituting known terms gives

(15.56)W = EffC Qh
= (0.833)(4000 J) = 3333 J.

Solution (b)

Similarly,

(15.57)Eff ′C = 1 − Tc
T′c

= 1 − 100 K
250 K = 0.600,

so that

(15.58)W = Eff ′CQh
= (0.600)(4000 J) = 2400 J.

Discussion

There is 933 J less work from the same heat transfer in the second process. This result is important. The same heat transfer
into two perfect engines produces different work outputs, because the entropy change differs in the two cases. In the second
case, entropy is greater and less work is produced. Entropy is associated with the unavailability of energy to do work.
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Figure 15.35 (a) A Carnot engine working at between 600 K and 100 K has 4000 J of heat transfer and performs 3333 J of work. (b) The 4000 J
of heat transfer occurs first irreversibly to a 250 K reservoir and then goes into a Carnot engine. The increase in entropy caused by the heat
transfer to a colder reservoir results in a smaller work output of 2400 J. There is a permanent loss of 933 J of energy for the purpose of doing
work.

When entropy increases, a certain amount of energy becomes permanently unavailable to do work. The energy is not lost, but its
character is changed, so that some of it can never be converted to doing work—that is, to an organized force acting through a
distance. For instance, in the previous example, 933 J less work was done after an increase in entropy of 9.33 J/K occurred in
the 4000 J heat transfer from the 600 K reservoir to the 250 K reservoir. It can be shown that the amount of energy that becomes
unavailable for work is

(15.59)Wunavail = ΔS ⋅ T0,

where T0 is the lowest temperature utilized. In the previous example,

(15.60)Wunavail = (9.33 J/K)(100 K) = 933 J

as found.

Heat Death of the Universe: An Overdose of Entropy

In the early, energetic universe, all matter and energy were easily interchangeable and identical in nature. Gravity played a vital
role in the young universe. Although it may have seemed disorderly, and therefore, superficially entropic, in fact, there was
enormous potential energy available to do work—all the future energy in the universe.

As the universe matured, temperature differences arose, which created more opportunity for work. Stars are hotter than planets,
for example, which are warmer than icy asteroids, which are warmer still than the vacuum of the space between them.

Most of these are cooling down from their usually violent births, at which time they were provided with energy of their
own—nuclear energy in the case of stars, volcanic energy on Earth and other planets, and so on. Without additional energy
input, however, their days are numbered.

As entropy increases, less and less energy in the universe is available to do work. On Earth, we still have great stores of energy
such as fossil and nuclear fuels; large-scale temperature differences, which can provide wind energy; geothermal energies due
to differences in temperature in Earth’s layers; and tidal energies owing to our abundance of liquid water. As these are used, a
certain fraction of the energy they contain can never be converted into doing work. Eventually, all fuels will be exhausted, all
temperatures will equalize, and it will be impossible for heat engines to function, or for work to be done.

Entropy increases in a closed system, such as the universe. But in parts of the universe, for instance, in the Solar system, it is
not a locally closed system. Energy flows from the Sun to the planets, replenishing Earth’s stores of energy. The Sun will
continue to supply us with energy for about another five billion years. We will enjoy direct solar energy, as well as side effects of
solar energy, such as wind power and biomass energy from photosynthetic plants. The energy from the Sun will keep our water
at the liquid state, and the Moon’s gravitational pull will continue to provide tidal energy. But Earth’s geothermal energy will slowly
run down and won’t be replenished.

But in terms of the universe, and the very long-term, very large-scale picture, the entropy of the universe is increasing, and so
the availability of energy to do work is constantly decreasing. Eventually, when all stars have died, all forms of potential energy
have been utilized, and all temperatures have equalized (depending on the mass of the universe, either at a very high
temperature following a universal contraction, or a very low one, just before all activity ceases) there will be no possibility of
doing work.

Either way, the universe is destined for thermodynamic equilibrium—maximum entropy. This is often called the heat death of the
universe, and will mean the end of all activity. However, whether the universe contracts and heats up, or continues to expand and

cools down, the end is not near. Calculations of black holes suggest that entropy can easily continue for at least 10100 years.
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Order to Disorder

Entropy is related not only to the unavailability of energy to do work—it is also a measure of disorder. This notion was initially
postulated by Ludwig Boltzmann in the 1800s. For example, melting a block of ice means taking a highly structured and orderly
system of water molecules and converting it into a disorderly liquid in which molecules have no fixed positions. (See Figure
15.36.) There is a large increase in entropy in the process, as seen in the following example.

Example 15.8 Entropy Associated with Disorder

Find the increase in entropy of 1.00 kg of ice originally at 0º C that is melted to form water at 0º C .

Strategy

As before, the change in entropy can be calculated from the definition of ΔS once we find the energy Q needed to melt

the ice.

Solution

The change in entropy is defined as:

(15.61)ΔS = Q
T .

Here Q is the heat transfer necessary to melt 1.00 kg of ice and is given by

(15.62)Q = mLf,

where m is the mass and Lf is the latent heat of fusion. Lf = 334 kJ/kg for water, so that

(15.63)Q = (1.00 kg)(334 kJ/kg) = 3.34×105 J.

Now the change in entropy is positive, since heat transfer occurs into the ice to cause the phase change; thus,

(15.64)
ΔS = Q

T = 3.34×105 J
T .

T is the melting temperature of ice. That is, T = 0ºC=273 K . So the change in entropy is

(15.65)
ΔS = 3.34×105 J

273 K
= 1.22×103 J/K.

Discussion

This is a significant increase in entropy accompanying an increase in disorder.

Figure 15.36 When ice melts, it becomes more disordered and less structured. The systematic arrangement of molecules in a crystal structure is
replaced by a more random and less orderly movement of molecules without fixed locations or orientations. Its entropy increases because heat transfer
occurs into it. Entropy is a measure of disorder.

In another easily imagined example, suppose we mix equal masses of water originally at two different temperatures, say
20.0º C and 40.0º C . The result is water at an intermediate temperature of 30.0º C . Three outcomes have resulted: entropy

has increased, some energy has become unavailable to do work, and the system has become less orderly. Let us think about
each of these results.
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First, entropy has increased for the same reason that it did in the example above. Mixing the two bodies of water has the same
effect as heat transfer from the hot one and the same heat transfer into the cold one. The mixing decreases the entropy of the
hot water but increases the entropy of the cold water by a greater amount, producing an overall increase in entropy.

Second, once the two masses of water are mixed, there is only one temperature—you cannot run a heat engine with them. The
energy that could have been used to run a heat engine is now unavailable to do work.

Third, the mixture is less orderly, or to use another term, less structured. Rather than having two masses at different
temperatures and with different distributions of molecular speeds, we now have a single mass with a uniform temperature.

These three results—entropy, unavailability of energy, and disorder—are not only related but are in fact essentially equivalent.

Life, Evolution, and the Second Law of Thermodynamics

Some people misunderstand the second law of thermodynamics, stated in terms of entropy, to say that the process of the
evolution of life violates this law. Over time, complex organisms evolved from much simpler ancestors, representing a large
decrease in entropy of the Earth’s biosphere. It is a fact that living organisms have evolved to be highly structured, and much
lower in entropy than the substances from which they grow. But it is always possible for the entropy of one part of the universe to
decrease, provided the total change in entropy of the universe increases. In equation form, we can write this as

(15.66)ΔStot = ΔSsyst + ΔSenvir > 0.

Thus ΔSsyst can be negative as long as ΔSenvir is positive and greater in magnitude.

How is it possible for a system to decrease its entropy? Energy transfer is necessary. If I pick up marbles that are scattered about
the room and put them into a cup, my work has decreased the entropy of that system. If I gather iron ore from the ground and
convert it into steel and build a bridge, my work has decreased the entropy of that system. Energy coming from the Sun can
decrease the entropy of local systems on Earth—that is, ΔSsyst is negative. But the overall entropy of the rest of the universe

increases by a greater amount—that is, ΔSenvir is positive and greater in magnitude. Thus, ΔStot = ΔSsyst + ΔSenvir > 0 ,

and the second law of thermodynamics is not violated.

Every time a plant stores some solar energy in the form of chemical potential energy, or an updraft of warm air lifts a soaring bird,
the Earth can be viewed as a heat engine operating between a hot reservoir supplied by the Sun and a cold reservoir supplied by
dark outer space—a heat engine of high complexity, causing local decreases in entropy as it uses part of the heat transfer from
the Sun into deep space. There is a large total increase in entropy resulting from this massive heat transfer. A small part of this
heat transfer is stored in structured systems on Earth, producing much smaller local decreases in entropy. (See Figure 15.37.)

Figure 15.37 Earth’s entropy may decrease in the process of intercepting a small part of the heat transfer from the Sun into deep space. Entropy for
the entire process increases greatly while Earth becomes more structured with living systems and stored energy in various forms.

PhET Explorations: Reversible Reactions

Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and
potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to
extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of
chemical reactions. Click to open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/reversible-
reactions)
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15.7 Statistical Interpretation of Entropy and the Second Law of
Thermodynamics: The Underlying Explanation

Figure 15.38 When you toss a coin a large number of times, heads and tails tend to come up in roughly equal numbers. Why doesn’t heads come up
100, 90, or even 80% of the time? (credit: Jon Sullivan, PDPhoto.org)

The various ways of formulating the second law of thermodynamics tell what happens rather than why it happens. Why should
heat transfer occur only from hot to cold? Why should energy become ever less available to do work? Why should the universe
become increasingly disorderly? The answer is that it is a matter of overwhelming probability. Disorder is simply vastly more
likely than order.

When you watch an emerging rain storm begin to wet the ground, you will notice that the drops fall in a disorganized manner
both in time and in space. Some fall close together, some far apart, but they never fall in straight, orderly rows. It is not
impossible for rain to fall in an orderly pattern, just highly unlikely, because there are many more disorderly ways than orderly
ones. To illustrate this fact, we will examine some random processes, starting with coin tosses.

Coin Tosses

What are the possible outcomes of tossing 5 coins? Each coin can land either heads or tails. On the large scale, we are
concerned only with the total heads and tails and not with the order in which heads and tails appear. The following possibilities
exist:

(15.67)5 heads, 0 tails
4 heads, 1 tail
3 heads, 2 tails
2 heads, 3 tails
1 head, 4 tails
0 head, 5 tails

These are what we call macrostates. A macrostate is an overall property of a system. It does not specify the details of the
system, such as the order in which heads and tails occur or which coins are heads or tails.

Using this nomenclature, a system of 5 coins has the 6 possible macrostates just listed. Some macrostates are more likely to
occur than others. For instance, there is only one way to get 5 heads, but there are several ways to get 3 heads and 2 tails,
making the latter macrostate more probable. Table 15.3 lists of all the ways in which 5 coins can be tossed, taking into account
the order in which heads and tails occur. Each sequence is called a microstate—a detailed description of every element of a
system.
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Table 15.3 5-Coin Toss

Individual microstates
Number of
microstates

5 heads, 0
tails

HHHHH 1

4 heads, 1 tail HHHHT, HHHTH, HHTHH, HTHHH, THHHH 5

3 heads, 2
tails

HTHTH, THTHH, HTHHT, THHTH, THHHT HTHTH, THTHH, HTHHT, THHTH,
THHHT

10

2 heads, 3
tails

TTTHH, TTHHT, THHTT, HHTTT, TTHTH, THTHT, HTHTT, THTTH, HTTHT,
HTTTH

10

1 head, 4 tails TTTTH, TTTHT, TTHTT, THTTT, HTTTT 5

0 heads, 5
tails

TTTTT 1

Total: 32

The macrostate of 3 heads and 2 tails can be achieved in 10 ways and is thus 10 times more probable than the one having 5
heads. Not surprisingly, it is equally probable to have the reverse, 2 heads and 3 tails. Similarly, it is equally probable to get 5
tails as it is to get 5 heads. Note that all of these conclusions are based on the crucial assumption that each microstate is equally
probable. With coin tosses, this requires that the coins not be asymmetric in a way that favors one side over the other, as with
loaded dice. With any system, the assumption that all microstates are equally probable must be valid, or the analysis will be
erroneous.

The two most orderly possibilities are 5 heads or 5 tails. (They are more structured than the others.) They are also the least
likely, only 2 out of 32 possibilities. The most disorderly possibilities are 3 heads and 2 tails and its reverse. (They are the least
structured.) The most disorderly possibilities are also the most likely, with 20 out of 32 possibilities for the 3 heads and 2 tails and
its reverse. If we start with an orderly array like 5 heads and toss the coins, it is very likely that we will get a less orderly array as
a result, since 30 out of the 32 possibilities are less orderly. So even if you start with an orderly state, there is a strong tendency
to go from order to disorder, from low entropy to high entropy. The reverse can happen, but it is unlikely.
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Table 15.4 100-Coin Toss

Macrostate Number of microstates

Heads Tails (W)

100 0 1

99 1 1.0×102

95 5 7.5×107

90 10 1.7×1013

75 25 2.4×1023

60 40 1.4×1028

55 45 6.1×1028

51 49 9.9×1028

50 50 1.0×1029

49 51 9.9×1028

45 55 6.1×1028

40 60 1.4×1028

25 75 2.4×1023

10 90 1.7×1013

5 95 7.5×107

1 99 1.0×102

0 100 1

Total: 1.27×1030

This result becomes dramatic for larger systems. Consider what happens if you have 100 coins instead of just 5. The most
orderly arrangements (most structured) are 100 heads or 100 tails. The least orderly (least structured) is that of 50 heads and 50
tails. There is only 1 way (1 microstate) to get the most orderly arrangement of 100 heads. There are 100 ways (100 microstates)

to get the next most orderly arrangement of 99 heads and 1 tail (also 100 to get its reverse). And there are 1.0×1029 ways to

get 50 heads and 50 tails, the least orderly arrangement. Table 15.4 is an abbreviated list of the various macrostates and the
number of microstates for each macrostate. The total number of microstates—the total number of different ways 100 coins can

be tossed—is an impressively large 1.27×1030 . Now, if we start with an orderly macrostate like 100 heads and toss the coins,

there is a virtual certainty that we will get a less orderly macrostate. If we keep tossing the coins, it is possible, but exceedingly
unlikely, that we will ever get back to the most orderly macrostate. If you tossed the coins once each second, you could expect to

get either 100 heads or 100 tails once in 2×1022 years! This period is 1 trillion ( 1012 ) times longer than the age of the

universe, and so the chances are essentially zero. In contrast, there is an 8% chance of getting 50 heads, a 73% chance of
getting from 45 to 55 heads, and a 96% chance of getting from 40 to 60 heads. Disorder is highly likely.

Disorder in a Gas

The fantastic growth in the odds favoring disorder that we see in going from 5 to 100 coins continues as the number of entities in
the system increases. Let us now imagine applying this approach to perhaps a small sample of gas. Because counting
microstates and macrostates involves statistics, this is called statistical analysis. The macrostates of a gas correspond to its
macroscopic properties, such as volume, temperature, and pressure; and its microstates correspond to the detailed description

of the positions and velocities of its atoms. Even a small amount of gas has a huge number of atoms: 1.0 cm3 of an ideal gas

at 1.0 atm and 0º C has 2.7×1019 atoms. So each macrostate has an immense number of microstates. In plain language,

this means that there are an immense number of ways in which the atoms in a gas can be arranged, while still having the same
pressure, temperature, and so on.
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The most likely conditions (or macrostates) for a gas are those we see all the time—a random distribution of atoms in space with
a Maxwell-Boltzmann distribution of speeds in random directions, as predicted by kinetic theory. This is the most disorderly and
least structured condition we can imagine. In contrast, one type of very orderly and structured macrostate has all of the atoms in
one corner of a container with identical velocities. There are very few ways to accomplish this (very few microstates
corresponding to it), and so it is exceedingly unlikely ever to occur. (See Figure 15.39(b).) Indeed, it is so unlikely that we have a
law saying that it is impossible, which has never been observed to be violated—the second law of thermodynamics.

Figure 15.39 (a) The ordinary state of gas in a container is a disorderly, random distribution of atoms or molecules with a Maxwell-Boltzmann
distribution of speeds. It is so unlikely that these atoms or molecules would ever end up in one corner of the container that it might as well be
impossible. (b) With energy transfer, the gas can be forced into one corner and its entropy greatly reduced. But left alone, it will spontaneously increase
its entropy and return to the normal conditions, because they are immensely more likely.

The disordered condition is one of high entropy, and the ordered one has low entropy. With a transfer of energy from another
system, we could force all of the atoms into one corner and have a local decrease in entropy, but at the cost of an overall
increase in entropy of the universe. If the atoms start out in one corner, they will quickly disperse and become uniformly
distributed and will never return to the orderly original state (Figure 15.39(b)). Entropy will increase. With such a large sample of
atoms, it is possible—but unimaginably unlikely—for entropy to decrease. Disorder is vastly more likely than order.

The arguments that disorder and high entropy are the most probable states are quite convincing. The great Austrian physicist
Ludwig Boltzmann (1844–1906)—who, along with Maxwell, made so many contributions to kinetic theory—proved that the
entropy of a system in a given state (a macrostate) can be written as

(15.68)S = klnW,

where k = 1.38×10−23 J/K is Boltzmann’s constant, and lnW is the natural logarithm of the number of microstates W
corresponding to the given macrostate. W is proportional to the probability that the macrostate will occur. Thus entropy is

directly related to the probability of a state—the more likely the state, the greater its entropy. Boltzmann proved that this
expression for S is equivalent to the definition ΔS = Q / T , which we have used extensively.

Thus the second law of thermodynamics is explained on a very basic level: entropy either remains the same or increases in
every process. This phenomenon is due to the extraordinarily small probability of a decrease, based on the extraordinarily larger
number of microstates in systems with greater entropy. Entropy can decrease, but for any macroscopic system, this outcome is
so unlikely that it will never be observed.

Example 15.9 Entropy Increases in a Coin Toss

Suppose you toss 100 coins starting with 60 heads and 40 tails, and you get the most likely result, 50 heads and 50 tails.
What is the change in entropy?

Strategy

Noting that the number of microstates is labeled W in Table 15.4 for the 100-coin toss, we can use

ΔS = Sf − Si = klnWf - klnWi to calculate the change in entropy.
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adiabatic process:

Carnot cycle:

Carnot efficiency:

Carnot engine:

change in entropy:

coefficient of performance:

cyclical process:

entropy:

first law of thermodynamics:

heat engine:

Solution

The change in entropy is

(15.69)ΔS = Sf – Si = klnWf – klnWi,

where the subscript i stands for the initial 60 heads and 40 tails state, and the subscript f for the final 50 heads and 50 tails
state. Substituting the values for W from Table 15.4 gives

(15.70)ΔS = (1.38×10 – 23 J/K)[ln(1.0×1029 ) – ln(1.4×1028)]
= 2.7×10 – 23 J/K

Discussion

This increase in entropy means we have moved to a less orderly situation. It is not impossible for further tosses to produce
the initial state of 60 heads and 40 tails, but it is less likely. There is about a 1 in 90 chance for that decrease in entropy (

– 2.7×10 – 23 J/K ) to occur. If we calculate the decrease in entropy to move to the most orderly state, we get

ΔS = – 92×10 – 23 J/K . There is about a 1 in 1030 chance of this change occurring. So while very small decreases in

entropy are unlikely, slightly greater decreases are impossibly unlikely. These probabilities imply, again, that for a
macroscopic system, a decrease in entropy is impossible. For example, for heat transfer to occur spontaneously from 1.00

kg of 0ºC ice to its 0ºC environment, there would be a decrease in entropy of 1.22×103 J/K . Given that a

ΔS of 10 – 21 J/K corresponds to about a 1 in 1030 chance, a decrease of this size ( 103 J/K ) is an utter impossibility.

Even for a milligram of melted ice to spontaneously refreeze is impossible.

Problem-Solving Strategies for Entropy
1. Examine the situation to determine if entropy is involved.

2. Identify the system of interest and draw a labeled diagram of the system showing energy flow.

3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.

4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). You must carefully
identify the heat transfer, if any, and the temperature at which the process takes place. It is also important to identify
the initial and final states.

5. Solve the appropriate equation for the quantity to be determined (the unknown). Note that the change in entropy can
be determined between any states by calculating it for a reversible process.

6. Substitute the known value along with their units into the appropriate equation, and obtain numerical solutions
complete with units.

7. To see if it is reasonable: Does it make sense? For example, total entropy should increase for any real process or be
constant for a reversible process. Disordered states should be more probable and have greater entropy than ordered
states.

Glossary

a process in which no heat transfer takes place

a cyclical process that uses only reversible processes, the adiabatic and isothermal processes

the maximum theoretical efficiency for a heat engine

a heat engine that uses a Carnot cycle

the ratio of heat transfer to temperature Q / T

for a heat pump, it is the ratio of heat transfer at the output (the hot reservoir) to the work
supplied; for a refrigerator or air conditioner, it is the ratio of heat transfer from the cold reservoir to the work supplied

a process in which the path returns to its original state at the end of every cycle

a measurement of a system's disorder and its inability to do work in a system

states that the change in internal energy of a system equals the net heat transfer into the
system minus the net work done by the system

a machine that uses heat transfer to do work
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heat pump:

human metabolism:

internal energy:

irreversible process:

isobaric process:

isochoric process:

isothermal process:

macrostate:

microstate:

Otto cycle:

reversible process:

second law of thermodynamics:

second law of thermodynamics stated in terms of entropy:

statistical analysis:

a machine that generates heat transfer from cold to hot

conversion of food into heat transfer, work, and stored fat

the sum of the kinetic and potential energies of a system’s atoms and molecules

any process that depends on path direction

constant-pressure process in which a gas does work

a constant-volume process

a constant-temperature process

an overall property of a system

each sequence within a larger macrostate

a thermodynamic cycle, consisting of a pair of adiabatic processes and a pair of isochoric processes, that
converts heat into work, e.g., the four-stroke engine cycle of intake, compression, ignition, and exhaust

a process in which both the heat engine system and the external environment theoretically can be
returned to their original states

heat transfer flows from a hotter to a cooler object, never the reverse, and some heat
energy in any process is lost to available work in a cyclical process

the total entropy of a system either increases or remains
constant; it never decreases

using statistics to examine data, such as counting microstates and macrostates

Section Summary

15.1 The First Law of Thermodynamics
• The first law of thermodynamics is given as ΔU = Q − W , where ΔU is the change in internal energy of a system, Q

is the net heat transfer (the sum of all heat transfer into and out of the system), and W is the net work done (the sum of all

work done on or by the system).
• Both Q and W are energy in transit; only ΔU represents an independent quantity capable of being stored.

• The internal energy U of a system depends only on the state of the system and not how it reached that state.

• Metabolism of living organisms, and photosynthesis of plants, are specialized types of heat transfer, doing work, and
internal energy of systems.

15.2 The First Law of Thermodynamics and Some Simple Processes
• One of the important implications of the first law of thermodynamics is that machines can be harnessed to do work that

humans previously did by hand or by external energy supplies such as running water or the heat of the Sun. A machine that
uses heat transfer to do work is known as a heat engine.

• There are several simple processes, used by heat engines, that flow from the first law of thermodynamics. Among them are
the isobaric, isochoric, isothermal and adiabatic processes.

• These processes differ from one another based on how they affect pressure, volume, temperature, and heat transfer.
• If the work done is performed on the outside environment, work ( W ) will be a positive value. If the work done is done to

the heat engine system, work ( W ) will be a negative value.

• Some thermodynamic processes, including isothermal and adiabatic processes, are reversible in theory; that is, both the
thermodynamic system and the environment can be returned to their initial states. However, because of loss of energy
owing to the second law of thermodynamics, complete reversibility does not work in practice.

15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
• The two expressions of the second law of thermodynamics are: (i) Heat transfer occurs spontaneously from higher- to

lower-temperature bodies but never spontaneously in the reverse direction; and (ii) It is impossible in any system for heat
transfer from a reservoir to completely convert to work in a cyclical process in which the system returns to its initial state.

• Irreversible processes depend on path and do not return to their original state. Cyclical processes are processes that return
to their original state at the end of every cycle.

• In a cyclical process, such as a heat engine, the net work done by the system equals the net heat transfer into the system,
or W = Qh – Qc , where Qh is the heat transfer from the hot object (hot reservoir), and Qc is the heat transfer into

the cold object (cold reservoir).
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• Efficiency can be expressed as Eff = W
Qh

, the ratio of work output divided by the amount of energy input.

• The four-stroke gasoline engine is often explained in terms of the Otto cycle, which is a repeating sequence of processes
that convert heat into work.

15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
• The Carnot cycle is a theoretical cycle that is the most efficient cyclical process possible. Any engine using the Carnot

cycle, which uses only reversible processes (adiabatic and isothermal), is known as a Carnot engine.
• Any engine that uses the Carnot cycle enjoys the maximum theoretical efficiency.
• While Carnot engines are ideal engines, in reality, no engine achieves Carnot’s theoretical maximum efficiency, since

dissipative processes, such as friction, play a role. Carnot cycles without heat loss may be possible at absolute zero, but
this has never been seen in nature.

15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators
• An artifact of the second law of thermodynamics is the ability to heat an interior space using a heat pump. Heat pumps

compress cold ambient air and, in so doing, heat it to room temperature without violation of conservation principles.

• To calculate the heat pump’s coefficient of performance, use the equation COPhp = Qh
W .

• A refrigerator is a heat pump; it takes warm ambient air and expands it to chill it.

15.6 Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
• Entropy is the loss of energy available to do work.
• Another form of the second law of thermodynamics states that the total entropy of a system either increases or remains

constant; it never decreases.
• Entropy is zero in a reversible process; it increases in an irreversible process.
• The ultimate fate of the universe is likely to be thermodynamic equilibrium, where the universal temperature is constant and

no energy is available to do work.
• Entropy is also associated with the tendency toward disorder in a closed system.

15.7 Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying
Explanation

• Disorder is far more likely than order, which can be seen statistically.
• The entropy of a system in a given state (a macrostate) can be written as

S = klnW,

where k = 1.38×10–23 J/K is Boltzmann’s constant, and lnW is the natural logarithm of the number of microstates W
corresponding to the given macrostate.

Conceptual Questions

15.1 The First Law of Thermodynamics

1. Describe the photo of the tea kettle at the beginning of this section in terms of heat transfer, work done, and internal energy.
How is heat being transferred? What is the work done and what is doing it? How does the kettle maintain its internal energy?

2. The first law of thermodynamics and the conservation of energy, as discussed in Conservation of Energy, are clearly related.
How do they differ in the types of energy considered?

3. Heat transfer Q and work done W are always energy in transit, whereas internal energy U is energy stored in a system.

Give an example of each type of energy, and state specifically how it is either in transit or resides in a system.

4. How do heat transfer and internal energy differ? In particular, which can be stored as such in a system and which cannot?

5. If you run down some stairs and stop, what happens to your kinetic energy and your initial gravitational potential energy?

6. Give an explanation of how food energy (calories) can be viewed as molecular potential energy (consistent with the atomic
and molecular definition of internal energy).

7. Identify the type of energy transferred to your body in each of the following as either internal energy, heat transfer, or doing
work: (a) basking in sunlight; (b) eating food; (c) riding an elevator to a higher floor.

15.2 The First Law of Thermodynamics and Some Simple Processes

8. A great deal of effort, time, and money has been spent in the quest for the so-called perpetual-motion machine, which is
defined as a hypothetical machine that operates or produces useful work indefinitely and/or a hypothetical machine that
produces more work or energy than it consumes. Explain, in terms of heat engines and the first law of thermodynamics, why or
why not such a machine is likely to be constructed.
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9. One method of converting heat transfer into doing work is for heat transfer into a gas to take place, which expands, doing work
on a piston, as shown in the figure below. (a) Is the heat transfer converted directly to work in an isobaric process, or does it go
through another form first? Explain your answer. (b) What about in an isothermal process? (c) What about in an adiabatic
process (where heat transfer occurred prior to the adiabatic process)?

Figure 15.40

10. Would the previous question make any sense for an isochoric process? Explain your answer.

11. We ordinarily say that ΔU = 0 for an isothermal process. Does this assume no phase change takes place? Explain your

answer.

12. The temperature of a rapidly expanding gas decreases. Explain why in terms of the first law of thermodynamics. (Hint:
Consider whether the gas does work and whether heat transfer occurs rapidly into the gas through conduction.)

Chapter 15 | Thermodynamics 597



13. Which cyclical process represented by the two closed loops, ABCFA and ABDEA, on the PV diagram in the figure below

produces the greatest net work? Is that process also the one with the smallest work input required to return it to point A? Explain
your responses.

Figure 15.41 The two cyclical processes shown on this PV diagram start with and return the system to the conditions at point A, but they follow

different paths and produce different amounts of work.

14. A real process may be nearly adiabatic if it occurs over a very short time. How does the short time span help the process to
be adiabatic?

15. It is unlikely that a process can be isothermal unless it is a very slow process. Explain why. Is the same true for isobaric and
isochoric processes? Explain your answer.

15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency

16. Imagine you are driving a car up Pike’s Peak in Colorado. To raise a car weighing 1000 kilograms a distance of 100 meters
would require about a million joules. You could raise a car 12.5 kilometers with the energy in a gallon of gas. Driving up Pike's
Peak (a mere 3000-meter climb) should consume a little less than a quart of gas. But other considerations have to be taken into
account. Explain, in terms of efficiency, what factors may keep you from realizing your ideal energy use on this trip.

17. Is a temperature difference necessary to operate a heat engine? State why or why not.

18. Definitions of efficiency vary depending on how energy is being converted. Compare the definitions of efficiency for the
human body and heat engines. How does the definition of efficiency in each relate to the type of energy being converted into
doing work?

19. Why—other than the fact that the second law of thermodynamics says reversible engines are the most efficient—should heat
engines employing reversible processes be more efficient than those employing irreversible processes? Consider that dissipative
mechanisms are one cause of irreversibility.

15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated

20. Think about the drinking bird at the beginning of this section (Figure 15.21). Although the bird enjoys the theoretical
maximum efficiency possible, if left to its own devices over time, the bird will cease “drinking.” What are some of the dissipative
processes that might cause the bird’s motion to cease?

21. Can improved engineering and materials be employed in heat engines to reduce heat transfer into the environment? Can
they eliminate heat transfer into the environment entirely?

22. Does the second law of thermodynamics alter the conservation of energy principle?

15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators

23. Explain why heat pumps do not work as well in very cold climates as they do in milder ones. Is the same true of
refrigerators?

24. In some Northern European nations, homes are being built without heating systems of any type. They are very well insulated
and are kept warm by the body heat of the residents. However, when the residents are not at home, it is still warm in these
houses. What is a possible explanation?

25. Why do refrigerators, air conditioners, and heat pumps operate most cost-effectively for cycles with a small difference
between Th and Tc ? (Note that the temperatures of the cycle employed are crucial to its COP .)

26. Grocery store managers contend that there is less total energy consumption in the summer if the store is kept at a low
temperature. Make arguments to support or refute this claim, taking into account that there are numerous refrigerators and
freezers in the store.

27. Can you cool a kitchen by leaving the refrigerator door open?
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15.6 Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy

28. A woman shuts her summer cottage up in September and returns in June. No one has entered the cottage in the meantime.
Explain what she is likely to find, in terms of the second law of thermodynamics.

29. Consider a system with a certain energy content, from which we wish to extract as much work as possible. Should the
system’s entropy be high or low? Is this orderly or disorderly? Structured or uniform? Explain briefly.

30. Does a gas become more orderly when it liquefies? Does its entropy change? If so, does the entropy increase or decrease?
Explain your answer.

31. Explain how water’s entropy can decrease when it freezes without violating the second law of thermodynamics. Specifically,
explain what happens to the entropy of its surroundings.

32. Is a uniform-temperature gas more or less orderly than one with several different temperatures? Which is more structured? In
which can heat transfer result in work done without heat transfer from another system?

33. Give an example of a spontaneous process in which a system becomes less ordered and energy becomes less available to
do work. What happens to the system’s entropy in this process?

34. What is the change in entropy in an adiabatic process? Does this imply that adiabatic processes are reversible? Can a
process be precisely adiabatic for a macroscopic system?

35. Does the entropy of a star increase or decrease as it radiates? Does the entropy of the space into which it radiates (which
has a temperature of about 3 K) increase or decrease? What does this do to the entropy of the universe?

36. Explain why a building made of bricks has smaller entropy than the same bricks in a disorganized pile. Do this by considering
the number of ways that each could be formed (the number of microstates in each macrostate).

15.7 Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying
Explanation

37. Explain why a building made of bricks has smaller entropy than the same bricks in a disorganized pile. Do this by considering
the number of ways that each could be formed (the number of microstates in each macrostate).
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Problems & Exercises

15.1 The First Law of Thermodynamics

1. What is the change in internal energy of a car if you put
12.0 gal of gasoline into its tank? The energy content of

gasoline is 1.3×108 J/gal . All other factors, such as the

car’s temperature, are constant.

2. How much heat transfer occurs from a system, if its internal
energy decreased by 150 J while it was doing 30.0 J of
work?

3. A system does 1.80×108 J of work while 7.50×108 J
of heat transfer occurs to the environment. What is the
change in internal energy of the system assuming no other
changes (such as in temperature or by the addition of fuel)?

4. What is the change in internal energy of a system which

does 4.50×105 J of work while 3.00×106 J of heat

transfer occurs into the system, and 8.00×106 J of heat

transfer occurs to the environment?

5. Suppose a woman does 500 J of work and 9500 J of heat
transfer occurs into the environment in the process. (a) What
is the decrease in her internal energy, assuming no change in
temperature or consumption of food? (That is, there is no
other energy transfer.) (b) What is her efficiency?

6. (a) How much food energy will a man metabolize in the
process of doing 35.0 kJ of work with an efficiency of 5.00%?
(b) How much heat transfer occurs to the environment to
keep his temperature constant? Explicitly show how you
follow the steps in the Problem-Solving Strategy for
thermodynamics found in Problem-Solving Strategies for
Thermodynamics.

7. (a) What is the average metabolic rate in watts of a man
who metabolizes 10,500 kJ of food energy in one day? (b)
What is the maximum amount of work in joules he can do
without breaking down fat, assuming a maximum efficiency of
20.0%? (c) Compare his work output with the daily output of a
187-W (0.250-horsepower) motor.

8. (a) How long will the energy in a 1470-kJ (350-kcal) cup of
yogurt last in a woman doing work at the rate of 150 W with
an efficiency of 20.0% (such as in leisurely climbing stairs)?
(b) Does the time found in part (a) imply that it is easy to
consume more food energy than you can reasonably expect
to work off with exercise?

9. (a) A woman climbing the Washington Monument

metabolizes 6.00×102 kJ of food energy. If her efficiency is

18.0%, how much heat transfer occurs to the environment to
keep her temperature constant? (b) Discuss the amount of
heat transfer found in (a). Is it consistent with the fact that you
quickly warm up when exercising?

15.2 The First Law of Thermodynamics and
Some Simple Processes

10. A car tire contains 0.0380 m3 of air at a pressure of

2.20×105 N/m2 (about 32 psi). How much more internal

energy does this gas have than the same volume has at zero
gauge pressure (which is equivalent to normal atmospheric
pressure)?

11. A helium-filled toy balloon has a gauge pressure of 0.200
atm and a volume of 10.0 L. How much greater is the internal
energy of the helium in the balloon than it would be at zero
gauge pressure?

12. Steam to drive an old-fashioned steam locomotive is

supplied at a constant gauge pressure of 1.75×106 N/m2

(about 250 psi) to a piston with a 0.200-m radius. (a) By
calculating PΔV , find the work done by the steam when the

piston moves 0.800 m. Note that this is the net work output,
since gauge pressure is used. (b) Now find the amount of
work by calculating the force exerted times the distance
traveled. Is the answer the same as in part (a)?

13. A hand-driven tire pump has a piston with a 2.50-cm
diameter and a maximum stroke of 30.0 cm. (a) How much
work do you do in one stroke if the average gauge pressure is

2.40×105 N/m2 (about 35 psi)? (b) What average force do

you exert on the piston, neglecting friction and gravitational
force?

14. Calculate the net work output of a heat engine following
path ABCDA in the figure below.

Figure 15.42

15. What is the net work output of a heat engine that follows
path ABDA in the figure above, with a straight line from B to
D? Why is the work output less than for path ABCDA?
Explicitly show how you follow the steps in the Problem-
Solving Strategies for Thermodynamics.

16. Unreasonable Results

What is wrong with the claim that a cyclical heat engine does
4.00 kJ of work on an input of 24.0 kJ of heat transfer while
16.0 kJ of heat transfers to the environment?

17. (a) A cyclical heat engine, operating between
temperatures of 450º C and 150º C produces 4.00 MJ of

work on a heat transfer of 5.00 MJ into the engine. How much
heat transfer occurs to the environment? (b) What is
unreasonable about the engine? (c) Which premise is
unreasonable?
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18. Construct Your Own Problem

Consider a car’s gasoline engine. Construct a problem in
which you calculate the maximum efficiency this engine can
have. Among the things to consider are the effective hot and
cold reservoir temperatures. Compare your calculated
efficiency with the actual efficiency of car engines.

19. Construct Your Own Problem

Consider a car trip into the mountains. Construct a problem in
which you calculate the overall efficiency of the car for the trip
as a ratio of kinetic and potential energy gained to fuel
consumed. Compare this efficiency to the thermodynamic
efficiency quoted for gasoline engines and discuss why the
thermodynamic efficiency is so much greater. Among the
factors to be considered are the gain in altitude and speed,
the mass of the car, the distance traveled, and typical fuel
economy.

15.3 Introduction to the Second Law of
Thermodynamics: Heat Engines and Their
Efficiency

20. A certain heat engine does 10.0 kJ of work and 8.50 kJ of
heat transfer occurs to the environment in a cyclical process.
(a) What was the heat transfer into this engine? (b) What was
the engine’s efficiency?

21. With 2.56×106 J of heat transfer into this engine, a

given cyclical heat engine can do only 1.50×105 J of work.

(a) What is the engine’s efficiency? (b) How much heat
transfer to the environment takes place?

22. (a) What is the work output of a cyclical heat engine

having a 22.0% efficiency and 6.00×109 J of heat transfer

into the engine? (b) How much heat transfer occurs to the
environment?

23. (a) What is the efficiency of a cyclical heat engine in
which 75.0 kJ of heat transfer occurs to the environment for
every 95.0 kJ of heat transfer into the engine? (b) How much
work does it produce for 100 kJ of heat transfer into the
engine?

24. The engine of a large ship does 2.00×108 J of work

with an efficiency of 5.00%. (a) How much heat transfer
occurs to the environment? (b) How many barrels of fuel are

consumed, if each barrel produces 6.00×109 J of heat

transfer when burned?

25. (a) How much heat transfer occurs to the environment by

an electrical power station that uses 1.25×1014 J of heat

transfer into the engine with an efficiency of 42.0%? (b) What
is the ratio of heat transfer to the environment to work output?
(c) How much work is done?

26. Assume that the turbines at a coal-powered power plant
were upgraded, resulting in an improvement in efficiency of
3.32%. Assume that prior to the upgrade the power station
had an efficiency of 36% and that the heat transfer into the

engine in one day is still the same at 2.50×1014 J . (a) How

much more electrical energy is produced due to the upgrade?
(b) How much less heat transfer occurs to the environment
due to the upgrade?

27. This problem compares the energy output and heat
transfer to the environment by two different types of nuclear
power stations—one with the normal efficiency of 34.0%, and
another with an improved efficiency of 40.0%. Suppose both
have the same heat transfer into the engine in one day,

2.50×1014 J . (a) How much more electrical energy is

produced by the more efficient power station? (b) How much
less heat transfer occurs to the environment by the more
efficient power station? (One type of more efficient nuclear
power station, the gas-cooled reactor, has not been reliable
enough to be economically feasible in spite of its greater
efficiency.)

15.4 Carnot’s Perfect Heat Engine: The Second
Law of Thermodynamics Restated

28. A certain gasoline engine has an efficiency of 30.0%.
What would the hot reservoir temperature be for a Carnot
engine having that efficiency, if it operates with a cold
reservoir temperature of 200ºC ?

29. A gas-cooled nuclear reactor operates between hot and
cold reservoir temperatures of 700ºC and 27.0ºC . (a)

What is the maximum efficiency of a heat engine operating
between these temperatures? (b) Find the ratio of this
efficiency to the Carnot efficiency of a standard nuclear
reactor (found in Example 15.4).

30. (a) What is the hot reservoir temperature of a Carnot
engine that has an efficiency of 42.0% and a cold reservoir
temperature of 27.0ºC ? (b) What must the hot reservoir

temperature be for a real heat engine that achieves 0.700 of
the maximum efficiency, but still has an efficiency of 42.0%
(and a cold reservoir at 27.0ºC )? (c) Does your answer

imply practical limits to the efficiency of car gasoline engines?

31. Steam locomotives have an efficiency of 17.0% and
operate with a hot steam temperature of 425ºC . (a) What

would the cold reservoir temperature be if this were a Carnot
engine? (b) What would the maximum efficiency of this steam
engine be if its cold reservoir temperature were 150ºC ?

32. Practical steam engines utilize 450ºC steam, which is

later exhausted at 270ºC . (a) What is the maximum

efficiency that such a heat engine can have? (b) Since
270ºC steam is still quite hot, a second steam engine is

sometimes operated using the exhaust of the first. What is the
maximum efficiency of the second engine if its exhaust has a
temperature of 150ºC ? (c) What is the overall efficiency of

the two engines? (d) Show that this is the same efficiency as
a single Carnot engine operating between 450ºC and

150ºC . Explicitly show how you follow the steps in the

Problem-Solving Strategies for Thermodynamics.

33. A coal-fired electrical power station has an efficiency of
38%. The temperature of the steam leaving the boiler is
550ºC . What percentage of the maximum efficiency does

this station obtain? (Assume the temperature of the
environment is 20ºC .)

34. Would you be willing to financially back an inventor who is
marketing a device that she claims has 25 kJ of heat transfer
at 600 K, has heat transfer to the environment at 300 K, and
does 12 kJ of work? Explain your answer.

Chapter 15 | Thermodynamics 601



35. Unreasonable Results

(a) Suppose you want to design a steam engine that has heat
transfer to the environment at 270ºC and has a Carnot

efficiency of 0.800. What temperature of hot steam must you
use? (b) What is unreasonable about the temperature? (c)
Which premise is unreasonable?

36. Unreasonable Results

Calculate the cold reservoir temperature of a steam engine
that uses hot steam at 450ºC and has a Carnot efficiency of

0.700. (b) What is unreasonable about the temperature? (c)
Which premise is unreasonable?

15.5 Applications of Thermodynamics: Heat
Pumps and Refrigerators

37. What is the coefficient of performance of an ideal heat
pump that has heat transfer from a cold temperature of
−25.0ºC to a hot temperature of 40.0ºC ?

38. Suppose you have an ideal refrigerator that cools an
environment at −20.0ºC and has heat transfer to another

environment at 50.0ºC . What is its coefficient of

performance?

39. What is the best coefficient of performance possible for a
hypothetical refrigerator that could make liquid nitrogen at
−200ºC and has heat transfer to the environment at

35.0ºC ?

40. In a very mild winter climate, a heat pump has heat
transfer from an environment at 5.00ºC to one at 35.0ºC .

What is the best possible coefficient of performance for these
temperatures? Explicitly show how you follow the steps in the
Problem-Solving Strategies for Thermodynamics.

41. (a) What is the best coefficient of performance for a heat
pump that has a hot reservoir temperature of 50.0ºC and a

cold reservoir temperature of −20.0ºC ? (b) How much heat

transfer occurs into the warm environment if 3.60×107 J of

work ( 10.0kW ⋅ h ) is put into it? (c) If the cost of this work

input is 10.0 cents/kW ⋅ h , how does its cost compare with

the direct heat transfer achieved by burning natural gas at a
cost of 85.0 cents per therm. (A therm is a common unit of

energy for natural gas and equals 1.055×108 J .)

42. (a) What is the best coefficient of performance for a
refrigerator that cools an environment at −30.0ºC and has

heat transfer to another environment at 45.0ºC ? (b) How

much work in joules must be done for a heat transfer of 4186
kJ from the cold environment? (c) What is the cost of doing

this if the work costs 10.0 cents per 3.60×106 J (a kilowatt-

hour)? (d) How many kJ of heat transfer occurs into the warm
environment? (e) Discuss what type of refrigerator might
operate between these temperatures.

43. Suppose you want to operate an ideal refrigerator with a
cold temperature of −10.0ºC , and you would like it to have

a coefficient of performance of 7.00. What is the hot reservoir
temperature for such a refrigerator?

44. An ideal heat pump is being considered for use in heating
an environment with a temperature of 22.0ºC . What is the

cold reservoir temperature if the pump is to have a coefficient
of performance of 12.0?

45. A 4-ton air conditioner removes 5.06×107 J (48,000

British thermal units) from a cold environment in 1.00 h. (a)
What energy input in joules is necessary to do this if the air
conditioner has an energy efficiency rating ( EER ) of 12.0?

(b) What is the cost of doing this if the work costs 10.0 cents

per 3.60×106 J (one kilowatt-hour)? (c) Discuss whether

this cost seems realistic. Note that the energy efficiency rating
( EER ) of an air conditioner or refrigerator is defined to be

the number of British thermal units of heat transfer from a
cold environment per hour divided by the watts of power
input.

46. Show that the coefficients of performance of refrigerators
and heat pumps are related by COPref = COPhp − 1 .

Start with the definitions of the COP s and the conservation

of energy relationship between Qh , Qc , and W .

15.6 Entropy and the Second Law of
Thermodynamics: Disorder and the
Unavailability of Energy

47. (a) On a winter day, a certain house loses 5.00×108 J
of heat to the outside (about 500,000 Btu). What is the total
change in entropy due to this heat transfer alone, assuming
an average indoor temperature of 21.0º C and an average

outdoor temperature of 5.00º C ? (b) This large change in

entropy implies a large amount of energy has become
unavailable to do work. Where do we find more energy when
such energy is lost to us?

48. On a hot summer day, 4.00×106 J of heat transfer into

a parked car takes place, increasing its temperature from
35.0º C to 45.0º C . What is the increase in entropy of the

car due to this heat transfer alone?

49. A hot rock ejected from a volcano’s lava fountain cools
from 1100º C to 40.0º C , and its entropy decreases by

950 J/K. How much heat transfer occurs from the rock?

50. When 1.60×105 J of heat transfer occurs into a meat

pie initially at 20.0º C , its entropy increases by 480 J/K.

What is its final temperature?

51. The Sun radiates energy at the rate of 3.80×1026 W
from its 5500º C surface into dark empty space (a negligible

fraction radiates onto Earth and the other planets). The
effective temperature of deep space is −270º C . (a) What is

the increase in entropy in one day due to this heat transfer?
(b) How much work is made unavailable?
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52. (a) In reaching equilibrium, how much heat transfer
occurs from 1.00 kg of water at 40.0º C when it is placed in

contact with 1.00 kg of 20.0º C water in reaching

equilibrium? (b) What is the change in entropy due to this
heat transfer? (c) How much work is made unavailable, taking
the lowest temperature to be 20.0º C ? Explicitly show how

you follow the steps in the Problem-Solving Strategies for
Entropy.

53. What is the decrease in entropy of 25.0 g of water that
condenses on a bathroom mirror at a temperature of
35.0º C , assuming no change in temperature and given the

latent heat of vaporization to be 2450 kJ/kg?

54. Find the increase in entropy of 1.00 kg of liquid nitrogen
that starts at its boiling temperature, boils, and warms to
20.0º C at constant pressure.

55. A large electrical power station generates 1000 MW of
electricity with an efficiency of 35.0%. (a) Calculate the heat
transfer to the power station, Qh , in one day. (b) How much

heat transfer Qc occurs to the environment in one day? (c) If

the heat transfer in the cooling towers is from 35.0º C water

into the local air mass, which increases in temperature from
18.0º C to 20.0º C , what is the total increase in entropy

due to this heat transfer? (d) How much energy becomes
unavailable to do work because of this increase in entropy,
assuming an 18.0º C lowest temperature? (Part of Qc
could be utilized to operate heat engines or for simply heating
the surroundings, but it rarely is.)

56. (a) How much heat transfer occurs from 20.0 kg of
90.0º C water placed in contact with 20.0 kg of 10.0º C
water, producing a final temperature of 50.0º C ? (b) How

much work could a Carnot engine do with this heat transfer,
assuming it operates between two reservoirs at constant
temperatures of 90.0º C and 10.0º C ? (c) What increase

in entropy is produced by mixing 20.0 kg of 90.0º C water

with 20.0 kg of 10.0º C water? (d) Calculate the amount of

work made unavailable by this mixing using a low
temperature of 10.0º C , and compare it with the work done

by the Carnot engine. Explicitly show how you follow the
steps in the Problem-Solving Strategies for Entropy. (e)
Discuss how everyday processes make increasingly more
energy unavailable to do work, as implied by this problem.

15.7 Statistical Interpretation of Entropy and
the Second Law of Thermodynamics: The
Underlying Explanation

57. Using Table 15.4, verify the contention that if you toss
100 coins each second, you can expect to get 100 heads or

100 tails once in 2×1022 years; calculate the time to two-

digit accuracy.

58. What percent of the time will you get something in the
range from 60 heads and 40 tails through 40 heads and 60
tails when tossing 100 coins? The total number of microstates

in that range is 1.22×1030 . (Consult Table 15.4.)

59. (a) If tossing 100 coins, how many ways (microstates) are
there to get the three most likely macrostates of 49 heads and
51 tails, 50 heads and 50 tails, and 51 heads and 49 tails? (b)
What percent of the total possibilities is this? (Consult Table
15.4.)

60. (a) What is the change in entropy if you start with 100
coins in the 45 heads and 55 tails macrostate, toss them, and
get 51 heads and 49 tails? (b) What if you get 75 heads and
25 tails? (c) How much more likely is 51 heads and 49 tails
than 75 heads and 25 tails? (d) Does either outcome violate
the second law of thermodynamics?

61. (a) What is the change in entropy if you start with 10 coins
in the 5 heads and 5 tails macrostate, toss them, and get 2
heads and 8 tails? (b) How much more likely is 5 heads and 5
tails than 2 heads and 8 tails? (Take the ratio of the number of
microstates to find out.) (c) If you were betting on 2 heads
and 8 tails would you accept odds of 252 to 45? Explain why
or why not.

Table 15.5 10-Coin Toss

Macrostate Number of Microstates (W)

Heads Tails

10 0 1

9 1 10

8 2 45

7 3 120

6 4 210

5 5 252

4 6 210

3 7 120

2 8 45

1 9 10

0 10 1

Total: 1024

62. (a) If you toss 10 coins, what percent of the time will you
get the three most likely macrostates (6 heads and 4 tails, 5
heads and 5 tails, 4 heads and 6 tails)? (b) You can
realistically toss 10 coins and count the number of heads and
tails about twice a minute. At that rate, how long will it take on
average to get either 10 heads and 0 tails or 0 heads and 10
tails?

63. (a) Construct a table showing the macrostates and all of
the individual microstates for tossing 6 coins. (Use Table 15.5
as a guide.) (b) How many macrostates are there? (c) What is
the total number of microstates? (d) What percent chance is
there of tossing 5 heads and 1 tail? (e) How much more likely
are you to toss 3 heads and 3 tails than 5 heads and 1 tail?
(Take the ratio of the number of microstates to find out.)

64. In an air conditioner, 12.65 MJ of heat transfer occurs
from a cold environment in 1.00 h. (a) What mass of ice
melting would involve the same heat transfer? (b) How many
hours of operation would be equivalent to melting 900 kg of
ice? (c) If ice costs 20 cents per kg, do you think the air
conditioner could be operated more cheaply than by simply
using ice? Describe in detail how you evaluate the relative
costs.
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16 OSCILLATORY MOTION AND WAVES

Figure 16.1 There are at least four types of waves in this picture—only the water waves are evident. There are also sound waves, light waves, and
waves on the guitar strings. (credit: John Norton)

Chapter Outline
16.1. Hooke’s Law: Stress and Strain Revisited

• Explain Newton’s third law of motion with respect to stress and deformation.
• Describe the restoration of force and displacement.
• Calculate the energy in Hooke’s Law of deformation, and the stored energy in a spring.

16.2. Period and Frequency in Oscillations
• Observe the vibrations of a guitar string.
• Determine the frequency of oscillations.

16.3. Simple Harmonic Motion: A Special Periodic Motion
• Describe a simple harmonic oscillator.
• Explain the link between simple harmonic motion and waves.

16.4. The Simple Pendulum
• Measure acceleration due to gravity.

16.5. Energy and the Simple Harmonic Oscillator
• Determine the maximum speed of an oscillating system.

16.6. Uniform Circular Motion and Simple Harmonic Motion
• Compare simple harmonic motion with uniform circular motion.

16.7. Damped Harmonic Motion
• Compare and discuss underdamped and overdamped oscillating systems.
• Explain critically damped system.

16.8. Forced Oscillations and Resonance
• Observe resonance of a paddle ball on a string.
• Observe amplitude of a damped harmonic oscillator.

16.9. Waves
• State the characteristics of a wave.
• Calculate the velocity of wave propagation.

16.10. Superposition and Interference
• Explain standing waves.
• Describe the mathematical representation of overtones and beat frequency.

16.11. Energy in Waves: Intensity
• Calculate the intensity and the power of rays and waves.
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Introduction to Oscillatory Motion and Waves

What do an ocean buoy, a child in a swing, the cone inside a speaker, a guitar, atoms in a crystal, the motion of chest cavities,
and the beating of hearts all have in common? They all oscillate—-that is, they move back and forth between two points. Many
systems oscillate, and they have certain characteristics in common. All oscillations involve force and energy. You push a child in
a swing to get the motion started. The energy of atoms vibrating in a crystal can be increased with heat. You put energy into a
guitar string when you pluck it.

Some oscillations create waves. A guitar creates sound waves. You can make water waves in a swimming pool by slapping the
water with your hand. You can no doubt think of other types of waves. Some, such as water waves, are visible. Some, such as
sound waves, are not. But every wave is a disturbance that moves from its source and carries energy. Other examples of waves
include earthquakes and visible light. Even subatomic particles, such as electrons, can behave like waves.

By studying oscillatory motion and waves, we shall find that a small number of underlying principles describe all of them and that
wave phenomena are more common than you have ever imagined. We begin by studying the type of force that underlies the
simplest oscillations and waves. We will then expand our exploration of oscillatory motion and waves to include concepts such as
simple harmonic motion, uniform circular motion, and damped harmonic motion. Finally, we will explore what happens when two
or more waves share the same space, in the phenomena known as superposition and interference.

16.1 Hooke’s Law: Stress and Strain Revisited

Figure 16.2 When displaced from its vertical equilibrium position, this plastic ruler oscillates back and forth because of the restoring force opposing
displacement. When the ruler is on the left, there is a force to the right, and vice versa.

Newton’s first law implies that an object oscillating back and forth is experiencing forces. Without force, the object would move in
a straight line at a constant speed rather than oscillate. Consider, for example, plucking a plastic ruler to the left as shown in
Figure 16.2. The deformation of the ruler creates a force in the opposite direction, known as a restoring force. Once released,
the restoring force causes the ruler to move back toward its stable equilibrium position, where the net force on it is zero.
However, by the time the ruler gets there, it gains momentum and continues to move to the right, producing the opposite
deformation. It is then forced to the left, back through equilibrium, and the process is repeated until dissipative forces dampen the
motion. These forces remove mechanical energy from the system, gradually reducing the motion until the ruler comes to rest.

The simplest oscillations occur when the restoring force is directly proportional to displacement. When stress and strain were
covered in Newton’s Third Law of Motion, the name was given to this relationship between force and displacement was
Hooke’s law:

(16.1)F = −kx.

Here, F is the restoring force, x is the displacement from equilibrium or deformation, and k is a constant related to the

difficulty in deforming the system. The minus sign indicates the restoring force is in the direction opposite to the displacement.

Figure 16.3 (a) The plastic ruler has been released, and the restoring force is returning the ruler to its equilibrium position. (b) The net force is zero at
the equilibrium position, but the ruler has momentum and continues to move to the right. (c) The restoring force is in the opposite direction. It stops the
ruler and moves it back toward equilibrium again. (d) Now the ruler has momentum to the left. (e) In the absence of damping (caused by frictional
forces), the ruler reaches its original position. From there, the motion will repeat itself.
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The force constant k is related to the rigidity (or stiffness) of a system—the larger the force constant, the greater the restoring

force, and the stiffer the system. The units of k are newtons per meter (N/m). For example, k is directly related to Young’s

modulus when we stretch a string. Figure 16.4 shows a graph of the absolute value of the restoring force versus the
displacement for a system that can be described by Hooke’s law—a simple spring in this case. The slope of the graph equals the
force constant k in newtons per meter. A common physics laboratory exercise is to measure restoring forces created by springs,

determine if they follow Hooke’s law, and calculate their force constants if they do.

Figure 16.4 (a) A graph of absolute value of the restoring force versus displacement is displayed. The fact that the graph is a straight line means that

the system obeys Hooke’s law. The slope of the graph is the force constant k . (b) The data in the graph were generated by measuring the

displacement of a spring from equilibrium while supporting various weights. The restoring force equals the weight supported, if the mass is stationary.

Example 16.1 How Stiff Are Car Springs?

Figure 16.5 The mass of a car increases due to the introduction of a passenger. This affects the displacement of the car on its suspension
system. (credit: exfordy on Flickr)

What is the force constant for the suspension system of a car that settles 1.20 cm when an 80.0-kg person gets in?
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Strategy

Consider the car to be in its equilibrium position x = 0 before the person gets in. The car then settles down 1.20 cm, which

means it is displaced to a position x = −1.20×10−2 m . At that point, the springs supply a restoring force F equal to the

person’s weight w = mg = ⎛
⎝80.0 kg⎞⎠⎛⎝9.80 m/s2⎞⎠ = 784 N . We take this force to be F in Hooke’s law. Knowing F and

x , we can then solve the force constant k .

Solution

1. Solve Hooke’s law, F = −kx , for k :

(16.2)k = −F
x .

Substitute known values and solve k :

(16.3)k = − 784 N
−1.20×10−2 m

= 6.53×104 N/m.
Discussion

Note that F and x have opposite signs because they are in opposite directions—the restoring force is up, and the

displacement is down. Also, note that the car would oscillate up and down when the person got in if it were not for damping
(due to frictional forces) provided by shock absorbers. Bouncing cars are a sure sign of bad shock absorbers.

Energy in Hooke’s Law of Deformation

In order to produce a deformation, work must be done. That is, a force must be exerted through a distance, whether you pluck a
guitar string or compress a car spring. If the only result is deformation, and no work goes into thermal, sound, or kinetic energy,
then all the work is initially stored in the deformed object as some form of potential energy. The potential energy stored in a

spring is PEel = 1
2kx 2 . Here, we generalize the idea to elastic potential energy for a deformation of any system that can be

described by Hooke’s law. Hence,

(16.4)PEel = 1
2kx 2,

where PEel is the elastic potential energy stored in any deformed system that obeys Hooke’s law and has a displacement x
from equilibrium and a force constant k .

It is possible to find the work done in deforming a system in order to find the energy stored. This work is performed by an applied
force Fapp . The applied force is exactly opposite to the restoring force (action-reaction), and so Fapp = kx . Figure 16.6 shows

a graph of the applied force versus deformation x for a system that can be described by Hooke’s law. Work done on the system

is force multiplied by distance, which equals the area under the curve or (1 / 2)kx 2 (Method A in the figure). Another way to

determine the work is to note that the force increases linearly from 0 to kx , so that the average force is (1 / 2)kx , the distance

moved is x , and thus W = Fappd = [(1 / 2)kx](x) = (1 / 2)kx 2 (Method B in the figure).
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Figure 16.6 A graph of applied force versus distance for the deformation of a system that can be described by Hooke’s law is displayed. The work

done on the system equals the area under the graph or the area of the triangle, which is half its base multiplied by its height, or W = (1 / 2)kx 2
.

Example 16.2 Calculating Stored Energy: A Tranquilizer Gun Spring

We can use a toy gun’s spring mechanism to ask and answer two simple questions: (a) How much energy is stored in the
spring of a tranquilizer gun that has a force constant of 50.0 N/m and is compressed 0.150 m? (b) If you neglect friction and
the mass of the spring, at what speed will a 2.00-g projectile be ejected from the gun?

Figure 16.7 (a) In this image of the gun, the spring is uncompressed before being cocked. (b) The spring has been compressed a distance x ,

and the projectile is in place. (c) When released, the spring converts elastic potential energy PEel into kinetic energy.

Strategy for a

(a): The energy stored in the spring can be found directly from elastic potential energy equation, because k and x are

given.

Solution for a

Entering the given values for k and x yields

(16.5)PEel = 1
2kx 2 = 1

2(50.0 N/m)(0.150 m)2 = 0.563 N ⋅ m

= 0.563 J
Strategy for b

Because there is no friction, the potential energy is converted entirely into kinetic energy. The expression for kinetic energy
can be solved for the projectile’s speed.

Solution for b
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1. Identify known quantities:

(16.6)KEf = PEel or 1 / 2mv2 = (1 / 2)kx2 = PEel = 0.563 J
2. Solve for v :

(16.7)

v = ⎡⎣
2PEel

m
⎤
⎦

1 / 2
= ⎡⎣2(0.563 J)

0.002 kg
⎤
⎦

1 / 2
= 23.7⎛⎝J/kg⎞⎠1 / 2

3. Convert units: 23.7 m / s
Discussion

(a) and (b): This projectile speed is impressive for a tranquilizer gun (more than 80 km/h). The numbers in this problem
seem reasonable. The force needed to compress the spring is small enough for an adult to manage, and the energy
imparted to the dart is small enough to limit the damage it might do. Yet, the speed of the dart is great enough for it to travel
an acceptable distance.

Check your Understanding

Envision holding the end of a ruler with one hand and deforming it with the other. When you let go, you can see the
oscillations of the ruler. In what way could you modify this simple experiment to increase the rigidity of the system?

Solution

You could hold the ruler at its midpoint so that the part of the ruler that oscillates is half as long as in the original experiment.

Check your Understanding

If you apply a deforming force on an object and let it come to equilibrium, what happened to the work you did on the system?

Solution

It was stored in the object as potential energy.

16.2 Period and Frequency in Oscillations

Figure 16.8 The strings on this guitar vibrate at regular time intervals. (credit: JAR)

When you pluck a guitar string, the resulting sound has a steady tone and lasts a long time. Each successive vibration of the
string takes the same time as the previous one. We define periodic motion to be a motion that repeats itself at regular time
intervals, such as exhibited by the guitar string or by an object on a spring moving up and down. The time to complete one
oscillation remains constant and is called the period T . Its units are usually seconds, but may be any convenient unit of time.

The word period refers to the time for some event whether repetitive or not; but we shall be primarily interested in periodic
motion, which is by definition repetitive. A concept closely related to period is the frequency of an event. For example, if you get a
paycheck twice a month, the frequency of payment is two per month and the period between checks is half a month. Frequency
f is defined to be the number of events per unit time. For periodic motion, frequency is the number of oscillations per unit time.

The relationship between frequency and period is

(16.8)f = 1
T .

The SI unit for frequency is the cycle per second, which is defined to be a hertz (Hz):
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(16.9)
1 Hz = 1cycle

s or 1 Hz = 1
s

A cycle is one complete oscillation. Note that a vibration can be a single or multiple event, whereas oscillations are usually
repetitive for a significant number of cycles.

Example 16.3 Determine the Frequency of Two Oscillations: Medical Ultrasound and the Period
of Middle C

We can use the formulas presented in this module to determine both the frequency based on known oscillations and the
oscillation based on a known frequency. Let’s try one example of each. (a) A medical imaging device produces ultrasound by
oscillating with a period of 0.400 µs. What is the frequency of this oscillation? (b) The frequency of middle C on a typical
musical instrument is 264 Hz. What is the time for one complete oscillation?

Strategy

Both questions (a) and (b) can be answered using the relationship between period and frequency. In question (a), the period
T is given and we are asked to find frequency f . In question (b), the frequency f is given and we are asked to find the

period T .

Solution a

1. Substitute 0.400 μs for T in f = 1
T :

(16.10)f = 1
T = 1

0.400×10−6 s
.

Solve to find

(16.11)f = 2.50×106 Hz.

Discussion a

The frequency of sound found in (a) is much higher than the highest frequency that humans can hear and, therefore, is
called ultrasound. Appropriate oscillations at this frequency generate ultrasound used for noninvasive medical diagnoses,
such as observations of a fetus in the womb.

Solution b

1. Identify the known values:
The time for one complete oscillation is the period T :

(16.12)f = 1
T .

2. Solve for T :

(16.13)T = 1
f .

3. Substitute the given value for the frequency into the resulting expression:

(16.14)T = 1
f = 1

264 Hz = 1
264 cycles/s = 3.79×10−3 s = 3.79 ms.

Discussion

The period found in (b) is the time per cycle, but this value is often quoted as simply the time in convenient units (ms or
milliseconds in this case).

Check your Understanding

Identify an event in your life (such as receiving a paycheck) that occurs regularly. Identify both the period and frequency of
this event.

Solution
I visit my parents for dinner every other Sunday. The frequency of my visits is 26 per calendar year. The period is two weeks.

16.3 Simple Harmonic Motion: A Special Periodic Motion

The oscillations of a system in which the net force can be described by Hooke’s law are of special importance, because they are
very common. They are also the simplest oscillatory systems. Simple Harmonic Motion (SHM) is the name given to oscillatory
motion for a system where the net force can be described by Hooke’s law, and such a system is called a simple harmonic
oscillator. If the net force can be described by Hooke’s law and there is no damping (by friction or other non-conservative
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forces), then a simple harmonic oscillator will oscillate with equal displacement on either side of the equilibrium position, as
shown for an object on a spring in Figure 16.9. The maximum displacement from equilibrium is called the amplitude X . The

units for amplitude and displacement are the same, but depend on the type of oscillation. For the object on the spring, the units
of amplitude and displacement are meters; whereas for sound oscillations, they have units of pressure (and other types of
oscillations have yet other units). Because amplitude is the maximum displacement, it is related to the energy in the oscillation.

Take-Home Experiment: SHM and the Marble

Find a bowl or basin that is shaped like a hemisphere on the inside. Place a marble inside the bowl and tilt the bowl
periodically so the marble rolls from the bottom of the bowl to equally high points on the sides of the bowl. Get a feel for the
force required to maintain this periodic motion. What is the restoring force and what role does the force you apply play in the
simple harmonic motion (SHM) of the marble?

Figure 16.9 An object attached to a spring sliding on a frictionless surface is an uncomplicated simple harmonic oscillator. When displaced from

equilibrium, the object performs simple harmonic motion that has an amplitude X and a period T . The object’s maximum speed occurs as it passes

through equilibrium. The stiffer the spring is, the smaller the period T . The greater the mass of the object is, the greater the period T .

What is so significant about simple harmonic motion? One special thing is that the period T and frequency f of a simple

harmonic oscillator are independent of amplitude. The string of a guitar, for example, will oscillate with the same frequency
whether plucked gently or hard. Because the period is constant, a simple harmonic oscillator can be used as a clock.

Two important factors do affect the period of a simple harmonic oscillator. The period is related to how stiff the system is. A very
stiff object has a large force constant k , which causes the system to have a smaller period. For example, you can adjust a diving

board’s stiffness—the stiffer it is, the faster it vibrates, and the shorter its period. Period also depends on the mass of the
oscillating system. The more massive the system is, the longer the period. For example, a heavy person on a diving board
bounces up and down more slowly than a light one.

In fact, the mass m and the force constant k are the only factors that affect the period and frequency of simple harmonic

motion.

Period of Simple Harmonic Oscillator

The period of a simple harmonic oscillator is given by

(16.15)T = 2π m
k

and, because f = 1 / T , the frequency of a simple harmonic oscillator is

(16.16)f = 1
2π

k
m.
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Note that neither T nor f has any dependence on amplitude.

Take-Home Experiment: Mass and Ruler Oscillations

Find two identical wooden or plastic rulers. Tape one end of each ruler firmly to the edge of a table so that the length of each
ruler that protrudes from the table is the same. On the free end of one ruler tape a heavy object such as a few large coins.
Pluck the ends of the rulers at the same time and observe which one undergoes more cycles in a time period, and measure
the period of oscillation of each of the rulers.

Example 16.4 Calculate the Frequency and Period of Oscillations: Bad Shock Absorbers in a
Car

If the shock absorbers in a car go bad, then the car will oscillate at the least provocation, such as when going over bumps in
the road and after stopping (See Figure 16.10). Calculate the frequency and period of these oscillations for such a car if the

car’s mass (including its load) is 900 kg and the force constant ( k ) of the suspension system is 6.53×104 N/m .

Strategy

The frequency of the car’s oscillations will be that of a simple harmonic oscillator as given in the equation f = 1
2π

k
m . The

mass and the force constant are both given.

Solution

1. Enter the known values of k and m:

(16.17)
f = 1

2π
k
m = 1

2π
6.53×104 N/m

900 kg .

2. Calculate the frequency:

(16.18)1
2π 72.6 / s–2 = 1.3656 / s–1 ≈ 1.36 / s–1 = 1.36 Hz.

3. You could use T = 2π m
k to calculate the period, but it is simpler to use the relationship T = 1 / f and substitute

the value just found for f :

(16.19)T = 1
f = 1

1.356 Hz = 0.738 s.

Discussion

The values of T and f both seem about right for a bouncing car. You can observe these oscillations if you push down hard

on the end of a car and let go.

The Link between Simple Harmonic Motion and Waves

If a time-exposure photograph of the bouncing car were taken as it drove by, the headlight would make a wavelike streak, as
shown in Figure 16.10. Similarly, Figure 16.11 shows an object bouncing on a spring as it leaves a wavelike "trace of its position
on a moving strip of paper. Both waves are sine functions. All simple harmonic motion is intimately related to sine and cosine
waves.

Figure 16.10 The bouncing car makes a wavelike motion. If the restoring force in the suspension system can be described only by Hooke’s law, then
the wave is a sine function. (The wave is the trace produced by the headlight as the car moves to the right.)
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Figure 16.11 The vertical position of an object bouncing on a spring is recorded on a strip of moving paper, leaving a sine wave.

The displacement as a function of time t in any simple harmonic motion—that is, one in which the net restoring force can be
described by Hooke’s law, is given by

(16.20)x(t) = X cos2πt
T ,

where X is amplitude. At t = 0 , the initial position is x0 = X , and the displacement oscillates back and forth with a period T .

(When t = T , we get x = X again because cos 2π = 1 .). Furthermore, from this expression for x , the velocity v as a

function of time is given by:

(16.21)v(t) = −vmax sin ⎛⎝2πt
T
⎞
⎠,

where vmax = 2πX / T = X k / m . The object has zero velocity at maximum displacement—for example, v = 0 when t = 0 ,

and at that time x = X . The minus sign in the first equation for v(t) gives the correct direction for the velocity. Just after the

start of the motion, for instance, the velocity is negative because the system is moving back toward the equilibrium point. Finally,
we can get an expression for acceleration using Newton’s second law. [Then we have x(t), v(t), t, and a(t) , the quantities

needed for kinematics and a description of simple harmonic motion.] According to Newton’s second law, the acceleration is
a = F / m = kx / m . So, a(t) is also a cosine function:

(16.22)a(t) = −kX
m cos2πt

T .

Hence, a(t) is directly proportional to and in the opposite direction to x(t) .

Figure 16.12 shows the simple harmonic motion of an object on a spring and presents graphs of x(t),v(t), and a(t) versus

time.
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Figure 16.12 Graphs of x(t), v(t), and a(t) versus t for the motion of an object on a spring. The net force on the object can be described by

Hooke’s law, and so the object undergoes simple harmonic motion. Note that the initial position has the vertical displacement at its maximum value X ;

v is initially zero and then negative as the object moves down; and the initial acceleration is negative, back toward the equilibrium position and

becomes zero at that point.

The most important point here is that these equations are mathematically straightforward and are valid for all simple harmonic
motion. They are very useful in visualizing waves associated with simple harmonic motion, including visualizing how waves add
with one another.

Check Your Understanding

Suppose you pluck a banjo string. You hear a single note that starts out loud and slowly quiets over time. Describe what
happens to the sound waves in terms of period, frequency and amplitude as the sound decreases in volume.

Solution
Frequency and period remain essentially unchanged. Only amplitude decreases as volume decreases.

Check Your Understanding

A babysitter is pushing a child on a swing. At the point where the swing reaches x , where would the corresponding point on

a wave of this motion be located?

Solution
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x is the maximum deformation, which corresponds to the amplitude of the wave. The point on the wave would either be at

the very top or the very bottom of the curve.

PhET Explorations: Masses and Springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can
even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each
spring.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42242/1.11/#eip-
idm1008489376)

Figure 16.13

16.4 The Simple Pendulum

Figure 16.14 A simple pendulum has a small-diameter bob and a string that has a very small mass but is strong enough not to stretch appreciably. The

linear displacement from equilibrium is s , the length of the arc. Also shown are the forces on the bob, which result in a net force of −mg sinθ
toward the equilibrium position—that is, a restoring force.

Pendulums are in common usage. Some have crucial uses, such as in clocks; some are for fun, such as a child’s swing; and
some are just there, such as the sinker on a fishing line. For small displacements, a pendulum is a simple harmonic oscillator. A
simple pendulum is defined to have an object that has a small mass, also known as the pendulum bob, which is suspended
from a light wire or string, such as shown in Figure 16.14. Exploring the simple pendulum a bit further, we can discover the
conditions under which it performs simple harmonic motion, and we can derive an interesting expression for its period.

We begin by defining the displacement to be the arc length s . We see from Figure 16.14 that the net force on the bob is tangent

to the arc and equals −mg sin θ . (The weight mg has components mg cos θ along the string and mg sin θ tangent to the

arc.) Tension in the string exactly cancels the component mg cos θ parallel to the string. This leaves a net restoring force back

toward the equilibrium position at θ = 0 .

Now, if we can show that the restoring force is directly proportional to the displacement, then we have a simple harmonic
oscillator. In trying to determine if we have a simple harmonic oscillator, we should note that for small angles (less than about
15º ), sin θ ≈ θ ( sin θ and θ differ by about 1% or less at smaller angles). Thus, for angles less than about 15º , the

restoring force F is

(16.23)F ≈ −mgθ.

The displacement s is directly proportional to θ . When θ is expressed in radians, the arc length in a circle is related to its

radius ( L in this instance) by:

(16.24)s = Lθ,

so that

(16.25)θ = s
L.

For small angles, then, the expression for the restoring force is:

(16.26)F ≈ −mg
L s

This expression is of the form:

(16.27)F = −kx,
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where the force constant is given by k = mg / L and the displacement is given by x = s . For angles less than about 15º , the

restoring force is directly proportional to the displacement, and the simple pendulum is a simple harmonic oscillator.

Using this equation, we can find the period of a pendulum for amplitudes less than about 15º . For the simple pendulum:

(16.28)T = 2π m
k = 2π m

mg / L.

Thus,

(16.29)T = 2π L
g

for the period of a simple pendulum. This result is interesting because of its simplicity. The only things that affect the period of a
simple pendulum are its length and the acceleration due to gravity. The period is completely independent of other factors, such
as mass. As with simple harmonic oscillators, the period T for a pendulum is nearly independent of amplitude, especially if θ is

less than about 15º . Even simple pendulum clocks can be finely adjusted and accurate.

Note the dependence of T on g . If the length of a pendulum is precisely known, it can actually be used to measure the

acceleration due to gravity. Consider the following example.

Example 16.5 Measuring Acceleration due to Gravity: The Period of a Pendulum

What is the acceleration due to gravity in a region where a simple pendulum having a length 75.000 cm has a period of
1.7357 s?

Strategy

We are asked to find g given the period T and the length L of a pendulum. We can solve T = 2π L
g for g , assuming

only that the angle of deflection is less than 15º .

Solution

1. Square T = 2π L
g and solve for g :

(16.30)g = 4π2 L
T 2.

2. Substitute known values into the new equation:

(16.31)g = 4π2 0.75000 m
(1.7357 s)2.

3. Calculate to find g :

(16.32)g = 9.8281 m / s2.

Discussion

This method for determining g can be very accurate. This is why length and period are given to five digits in this example.

For the precision of the approximation sin θ ≈ θ to be better than the precision of the pendulum length and period, the

maximum displacement angle should be kept below about 0.5º .

Making Career Connections

Knowing g can be important in geological exploration; for example, a map of g over large geographical regions aids the

study of plate tectonics and helps in the search for oil fields and large mineral deposits.

Take Home Experiment: Determining g

Use a simple pendulum to determine the acceleration due to gravity g in your own locale. Cut a piece of a string or dental

floss so that it is about 1 m long. Attach a small object of high density to the end of the string (for example, a metal nut or a
car key). Starting at an angle of less than 10º , allow the pendulum to swing and measure the pendulum’s period for 10

oscillations using a stopwatch. Calculate g . How accurate is this measurement? How might it be improved?
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Check Your Understanding

An engineer builds two simple pendula. Both are suspended from small wires secured to the ceiling of a room. Each
pendulum hovers 2 cm above the floor. Pendulum 1 has a bob with a mass of 10 kg . Pendulum 2 has a bob with a mass of

100 kg . Describe how the motion of the pendula will differ if the bobs are both displaced by 12º .

Solution
The movement of the pendula will not differ at all because the mass of the bob has no effect on the motion of a simple
pendulum. The pendula are only affected by the period (which is related to the pendulum’s length) and by the acceleration
due to gravity.

PhET Explorations: Pendulum Lab

Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the
mass of the pendulum bob, and the amplitude of the swing. It’s easy to measure the period using the photogate timer. You
can vary friction and the strength of gravity. Use the pendulum to find the value of g on planet X. Notice the anharmonic

behavior at large amplitude.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42243/1.9/#eip-
idm504883360)

Figure 16.15

16.5 Energy and the Simple Harmonic Oscillator

To study the energy of a simple harmonic oscillator, we first consider all the forms of energy it can have We know from Hooke’s
Law: Stress and Strain Revisited that the energy stored in the deformation of a simple harmonic oscillator is a form of potential
energy given by:

(16.33)PEel = 1
2kx2.

Because a simple harmonic oscillator has no dissipative forces, the other important form of energy is kinetic energy KE .

Conservation of energy for these two forms is:

(16.34)KE + PEel = constant

or

(16.35)1
2mv2 + 1

2kx2 = constant.

This statement of conservation of energy is valid for all simple harmonic oscillators, including ones where the gravitational force
plays a role

Namely, for a simple pendulum we replace the velocity with v = Lω , the spring constant with k = mg / L , and the

displacement term with x = Lθ . Thus

(16.36)1
2mL2ω2 + 1

2mgLθ2 = constant.

In the case of undamped simple harmonic motion, the energy oscillates back and forth between kinetic and potential, going
completely from one to the other as the system oscillates. So for the simple example of an object on a frictionless surface
attached to a spring, as shown again in Figure 16.16, the motion starts with all of the energy stored in the spring. As the object
starts to move, the elastic potential energy is converted to kinetic energy, becoming entirely kinetic energy at the equilibrium
position. It is then converted back into elastic potential energy by the spring, the velocity becomes zero when the kinetic energy
is completely converted, and so on. This concept provides extra insight here and in later applications of simple harmonic motion,
such as alternating current circuits.
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Figure 16.16 The transformation of energy in simple harmonic motion is illustrated for an object attached to a spring on a frictionless surface.

The conservation of energy principle can be used to derive an expression for velocity v . If we start our simple harmonic motion

with zero velocity and maximum displacement ( x = X ), then the total energy is

(16.37)1
2kX2.

This total energy is constant and is shifted back and forth between kinetic energy and potential energy, at most times being
shared by each. The conservation of energy for this system in equation form is thus:

(16.38)1
2mv2 + 1

2kx2 = 1
2kX2.

Solving this equation for v yields:

(16.39)v = ± k
m
⎛
⎝X2 − x2⎞⎠.

Manipulating this expression algebraically gives:

(16.40)
v = ± k

mX 1 − x2

X2

and so

(16.41)
v = ±vmax 1 − x2

X2,

where

(16.42)vmax = k
mX.

From this expression, we see that the velocity is a maximum ( vmax ) at x = 0 , as stated earlier in v(t) = − vmax sin 2πt
T .

Notice that the maximum velocity depends on three factors. Maximum velocity is directly proportional to amplitude. As you might
guess, the greater the maximum displacement the greater the maximum velocity. Maximum velocity is also greater for stiffer
systems, because they exert greater force for the same displacement. This observation is seen in the expression for vmax; it is

proportional to the square root of the force constant k . Finally, the maximum velocity is smaller for objects that have larger

masses, because the maximum velocity is inversely proportional to the square root of m . For a given force, objects that have

large masses accelerate more slowly.

A similar calculation for the simple pendulum produces a similar result, namely:
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(16.43)ωmax = g
Lθmax.

Example 16.6 Determine the Maximum Speed of an Oscillating System: A Bumpy Road

Suppose that a car is 900 kg and has a suspension system that has a force constant k = 6.53×104 N/m . The car hits a

bump and bounces with an amplitude of 0.100 m. What is its maximum vertical velocity if you assume no damping occurs?

Strategy

We can use the expression for vmax given in vmax = k
mX to determine the maximum vertical velocity. The variables m

and k are given in the problem statement, and the maximum displacement X is 0.100 m.

Solution

1. Identify known.

2. Substitute known values into vmax = k
mX :

(16.44)
vmax = 6.53×104 N/m

900 kg (0.100 m).

3. Calculate to find vmax= 0.852 m/s.

Discussion

This answer seems reasonable for a bouncing car. There are other ways to use conservation of energy to find vmax . We

could use it directly, as was done in the example featured in Hooke’s Law: Stress and Strain Revisited.

The small vertical displacement y of an oscillating simple pendulum, starting from its equilibrium position, is given as

(16.45)y(t) = a sin ωt,

where a is the amplitude, ω is the angular velocity and t is the time taken. Substituting ω = 2π
T , we have

(16.46)y(t) = a sin⎛⎝2πt
T
⎞
⎠.

Thus, the displacement of pendulum is a function of time as shown above.

Also the velocity of the pendulum is given by

(16.47)v(t) = 2aπ
T cos ⎛⎝2πt

T
⎞
⎠,

so the motion of the pendulum is a function of time.

Check Your Understanding

Why does it hurt more if your hand is snapped with a ruler than with a loose spring, even if the displacement of each system
is equal?

Solution
The ruler is a stiffer system, which carries greater force for the same amount of displacement. The ruler snaps your hand
with greater force, which hurts more.

Check Your Understanding

You are observing a simple harmonic oscillator. Identify one way you could decrease the maximum velocity of the system.

Solution
You could increase the mass of the object that is oscillating.

16.6 Uniform Circular Motion and Simple Harmonic Motion
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Figure 16.17 The horses on this merry-go-round exhibit uniform circular motion. (credit: Wonderlane, Flickr)

There is an easy way to produce simple harmonic motion by using uniform circular motion. Figure 16.18 shows one way of using
this method. A ball is attached to a uniformly rotating vertical turntable, and its shadow is projected on the floor as shown. The
shadow undergoes simple harmonic motion. Hooke’s law usually describes uniform circular motions ( ω constant) rather than

systems that have large visible displacements. So observing the projection of uniform circular motion, as in Figure 16.18, is often
easier than observing a precise large-scale simple harmonic oscillator. If studied in sufficient depth, simple harmonic motion
produced in this manner can give considerable insight into many aspects of oscillations and waves and is very useful
mathematically. In our brief treatment, we shall indicate some of the major features of this relationship and how they might be
useful.

Figure 16.18 The shadow of a ball rotating at constant angular velocity ω on a turntable goes back and forth in precise simple harmonic motion.

Figure 16.19 shows the basic relationship between uniform circular motion and simple harmonic motion. The point P travels
around the circle at constant angular velocity ω . The point P is analogous to an object on the merry-go-round. The projection of

the position of P onto a fixed axis undergoes simple harmonic motion and is analogous to the shadow of the object. At the time
shown in the figure, the projection has position x and moves to the left with velocity v . The velocity of the point P around the

circle equals v̄ max .The projection of v̄ max on the x -axis is the velocity v of the simple harmonic motion along the x -axis.
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Figure 16.19 A point P moving on a circular path with a constant angular velocity ω is undergoing uniform circular motion. Its projection on the x-axis

undergoes simple harmonic motion. Also shown is the velocity of this point around the circle, v̄ max , and its projection, which is v . Note that these

velocities form a similar triangle to the displacement triangle.

To see that the projection undergoes simple harmonic motion, note that its position x is given by

(16.48)x = X cos θ,

where θ = ωt , ω is the constant angular velocity, and X is the radius of the circular path. Thus,

(16.49)x = X cos ωt.

The angular velocity ω is in radians per unit time; in this case 2π radians is the time for one revolution T . That is,

ω = 2π / T . Substituting this expression for ω , we see that the position x is given by:

(16.50)x(t) = cos⎛⎝2πt
T
⎞
⎠.

This expression is the same one we had for the position of a simple harmonic oscillator in Simple Harmonic Motion: A Special
Periodic Motion. If we make a graph of position versus time as in Figure 16.20, we see again the wavelike character (typical of
simple harmonic motion) of the projection of uniform circular motion onto the x -axis.

Figure 16.20 The position of the projection of uniform circular motion performs simple harmonic motion, as this wavelike graph of x versus t
indicates.

Now let us use Figure 16.19 to do some further analysis of uniform circular motion as it relates to simple harmonic motion. The

triangle formed by the velocities in the figure and the triangle formed by the displacements ( X, x, and X2 − x2 ) are similar

right triangles. Taking ratios of similar sides, we see that
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(16.51)v
vmax

= X2 − x2

X = 1 − x2

X2.

We can solve this equation for the speed v or

(16.52)
v = vmax 1 − x2

X2.

This expression for the speed of a simple harmonic oscillator is exactly the same as the equation obtained from conservation of
energy considerations in Energy and the Simple Harmonic Oscillator.You can begin to see that it is possible to get all of the
characteristics of simple harmonic motion from an analysis of the projection of uniform circular motion.

Finally, let us consider the period T of the motion of the projection. This period is the time it takes the point P to complete one

revolution. That time is the circumference of the circle 2πX divided by the velocity around the circle, vmax . Thus, the period T
is

(16.53)T = 2πX
vmax

.

We know from conservation of energy considerations that

(16.54)vmax = k
mX.

Solving this equation for X / vmax gives

(16.55)X
vmax

= m
k .

Substituting this expression into the equation for T yields

(16.56)T = 2π m
k .

Thus, the period of the motion is the same as for a simple harmonic oscillator. We have determined the period for any simple
harmonic oscillator using the relationship between uniform circular motion and simple harmonic motion.

Some modules occasionally refer to the connection between uniform circular motion and simple harmonic motion. Moreover, if
you carry your study of physics and its applications to greater depths, you will find this relationship useful. It can, for example,
help to analyze how waves add when they are superimposed.

Check Your Understanding

Identify an object that undergoes uniform circular motion. Describe how you could trace the simple harmonic motion of this
object as a wave.

Solution
A record player undergoes uniform circular motion. You could attach dowel rod to one point on the outside edge of the
turntable and attach a pen to the other end of the dowel. As the record player turns, the pen will move. You can drag a long
piece of paper under the pen, capturing its motion as a wave.

16.7 Damped Harmonic Motion

Figure 16.21 In order to counteract dampening forces, this mom needs to keep pushing the swing. (credit: Erik A. Johnson, Flickr)

A guitar string stops oscillating a few seconds after being plucked. To keep a child happy on a swing, you must keep pushing.
Although we can often make friction and other non-conservative forces negligibly small, completely undamped motion is rare. In
fact, we may even want to damp oscillations, such as with car shock absorbers.

For a system that has a small amount of damping, the period and frequency are nearly the same as for simple harmonic motion,
but the amplitude gradually decreases as shown in Figure 16.22. This occurs because the non-conservative damping force
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removes energy from the system, usually in the form of thermal energy. In general, energy removal by non-conservative forces is
described as

(16.57)Wnc = Δ(KE + PE),

where Wnc is work done by a non-conservative force (here the damping force). For a damped harmonic oscillator, Wnc is

negative because it removes mechanical energy (KE + PE) from the system.

Figure 16.22 In this graph of displacement versus time for a harmonic oscillator with a small amount of damping, the amplitude slowly decreases, but
the period and frequency are nearly the same as if the system were completely undamped.

If you gradually increase the amount of damping in a system, the period and frequency begin to be affected, because damping
opposes and hence slows the back and forth motion. (The net force is smaller in both directions.) If there is very large damping,
the system does not even oscillate—it slowly moves toward equilibrium. Figure 16.23 shows the displacement of a harmonic
oscillator for different amounts of damping. When we want to damp out oscillations, such as in the suspension of a car, we may
want the system to return to equilibrium as quickly as possible Critical damping is defined as the condition in which the damping
of an oscillator results in it returning as quickly as possible to its equilibrium position The critically damped system may overshoot
the equilibrium position, but if it does, it will do so only once. Critical damping is represented by Curve A in Figure 16.23. With
less-than critical damping, the system will return to equilibrium faster but will overshoot and cross over one or more times. Such
a system is underdamped; its displacement is represented by the curve in Figure 16.22. Curve B in Figure 16.23 represents an
overdamped system. As with critical damping, it too may overshoot the equilibrium position, but will reach equilibrium over a
longer period of time.

Figure 16.23 Displacement versus time for a critically damped harmonic oscillator (A) and an overdamped harmonic oscillator (B). The critically

damped oscillator returns to equilibrium at X = 0 in the smallest time possible without overshooting.

Critical damping is often desired, because such a system returns to equilibrium rapidly and remains at equilibrium as well. In
addition, a constant force applied to a critically damped system moves the system to a new equilibrium position in the shortest
time possible without overshooting or oscillating about the new position. For example, when you stand on bathroom scales that
have a needle gauge, the needle moves to its equilibrium position without oscillating. It would be quite inconvenient if the needle
oscillated about the new equilibrium position for a long time before settling. Damping forces can vary greatly in character.
Friction, for example, is sometimes independent of velocity (as assumed in most places in this text). But many damping forces
depend on velocity—sometimes in complex ways, sometimes simply being proportional to velocity.

Example 16.7 Damping an Oscillatory Motion: Friction on an Object Connected to a Spring

Damping oscillatory motion is important in many systems, and the ability to control the damping is even more so. This is
generally attained using non-conservative forces such as the friction between surfaces, and viscosity for objects moving
through fluids. The following example considers friction. Suppose a 0.200-kg object is connected to a spring as shown in
Figure 16.24, but there is simple friction between the object and the surface, and the coefficient of friction μk is equal to

0.0800. (a) What is the frictional force between the surfaces? (b) What total distance does the object travel if it is released
0.100 m from equilibrium, starting at v = 0 ? The force constant of the spring is k = 50.0 N/m .
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Figure 16.24 The transformation of energy in simple harmonic motion is illustrated for an object attached to a spring on a frictionless surface.

Strategy

This problem requires you to integrate your knowledge of various concepts regarding waves, oscillations, and damping. To
solve an integrated concept problem, you must first identify the physical principles involved. Part (a) is about the frictional
force. This is a topic involving the application of Newton’s Laws. Part (b) requires an understanding of work and conservation
of energy, as well as some understanding of horizontal oscillatory systems.

Now that we have identified the principles we must apply in order to solve the problems, we need to identify the knowns and
unknowns for each part of the question, as well as the quantity that is constant in Part (a) and Part (b) of the question.

Solution a

1. Choose the proper equation: Friction is f = μkmg .

2. Identify the known values.

3. Enter the known values into the equation:

(16.58)f = (0.0800)(0.200 kg)(9.80 m / s2 ).
4. Calculate and convert units: f = 0.157 N.

Discussion a

The force here is small because the system and the coefficients are small.

Solution b

Identify the known:

• The system involves elastic potential energy as the spring compresses and expands, friction that is related to the work
done, and the kinetic energy as the body speeds up and slows down.

• Energy is not conserved as the mass oscillates because friction is a non-conservative force.
• The motion is horizontal, so gravitational potential energy does not need to be considered.

• Because the motion starts from rest, the energy in the system is initially PEel,i = (1 / 2)kX2 . This energy is removed

by work done by friction Wnc = – fd , where d is the total distance traveled and f = μkmg is the force of friction.

When the system stops moving, the friction force will balance the force exerted by the spring, so PEe1,f = (1 / 2)kx2

where x is the final position and is given by

(16.59)Fel = f
kx = μk mg

x = μk mg
k

.

1. By equating the work done to the energy removed, solve for the distance d .

2. The work done by the non-conservative forces equals the initial, stored elastic potential energy. Identify the correct
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equation to use:

(16.60)
Wnc = Δ(KE + PE) = PEel,f − PEel,i = 1

2k
⎛
⎝
⎜⎛⎝

μk mg
k
⎞
⎠

2
− X2
⎞
⎠
⎟.

3. Recall that Wnc = – fd .

4. Enter the friction as f = μkmg into Wnc = – fd , thus

(16.61)Wnc = – μk mgd.
5. Combine these two equations to find

(16.62)1
2k
⎛
⎝
⎜⎛⎝

μk mg
k
⎞
⎠

2
− X2
⎞
⎠
⎟ = −μkmgd.

6. Solve the equation for d :

(16.63)
d = k

2μk mg
⎛
⎝
⎜X2 – ⎛⎝

μk mg
k
⎞
⎠

2⎞
⎠
⎟.

7. Enter the known values into the resulting equation:

(16.64)

d = 50.0 N/m
2(0.0800)⎛⎝0.200 kg⎞⎠⎛⎝9.80 m/s2⎞⎠

⎛

⎝
⎜
⎜(0.100 m)2 −

⎛
⎝
⎜(0.0800)⎛⎝0.200 kg⎞⎠⎛⎝9.80 m/s2⎞⎠

50.0 N/m
⎞
⎠
⎟

2⎞

⎠
⎟
⎟.

8. Calculate d and convert units:

(16.65)d = 1.59 m.
Discussion b

This is the total distance traveled back and forth across x = 0 , which is the undamped equilibrium position. The number of

oscillations about the equilibrium position will be more than d / X = (1.59 m) / (0.100 m) = 15.9 because the amplitude

of the oscillations is decreasing with time. At the end of the motion, this system will not return to x = 0 for this type of

damping force, because static friction will exceed the restoring force. This system is underdamped. In contrast, an
overdamped system with a simple constant damping force would not cross the equilibrium position x = 0 a single time. For

example, if this system had a damping force 20 times greater, it would only move 0.0484 m toward the equilibrium position
from its original 0.100-m position.

This worked example illustrates how to apply problem-solving strategies to situations that integrate the different concepts
you have learned. The first step is to identify the physical principles involved in the problem. The second step is to solve for
the unknowns using familiar problem-solving strategies. These are found throughout the text, and many worked examples
show how to use them for single topics. In this integrated concepts example, you can see how to apply them across several
topics. You will find these techniques useful in applications of physics outside a physics course, such as in your profession,
in other science disciplines, and in everyday life.

Check Your Understanding

Why are completely undamped harmonic oscillators so rare?

Solution
Friction often comes into play whenever an object is moving. Friction causes damping in a harmonic oscillator.

Check Your Understanding

Describe the difference between overdamping, underdamping, and critical damping.

Solution
An overdamped system moves slowly toward equilibrium. An underdamped system moves quickly to equilibrium, but will
oscillate about the equilibrium point as it does so. A critically damped system moves as quickly as possible toward
equilibrium without oscillating about the equilibrium.
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16.8 Forced Oscillations and Resonance

Figure 16.25 You can cause the strings in a piano to vibrate simply by producing sound waves from your voice. (credit: Matt Billings, Flickr)

Sit in front of a piano sometime and sing a loud brief note at it with the dampers off its strings. It will sing the same note back at
you—the strings, having the same frequencies as your voice, are resonating in response to the forces from the sound waves that
you sent to them. Your voice and a piano’s strings is a good example of the fact that objects—in this case, piano strings—can be
forced to oscillate but oscillate best at their natural frequency. In this section, we shall briefly explore applying a periodic driving
force acting on a simple harmonic oscillator. The driving force puts energy into the system at a certain frequency, not necessarily
the same as the natural frequency of the system. The natural frequency is the frequency at which a system would oscillate if
there were no driving and no damping force.

Most of us have played with toys involving an object supported on an elastic band, something like the paddle ball suspended
from a finger in Figure 16.26. Imagine the finger in the figure is your finger. At first you hold your finger steady, and the ball
bounces up and down with a small amount of damping. If you move your finger up and down slowly, the ball will follow along
without bouncing much on its own. As you increase the frequency at which you move your finger up and down, the ball will
respond by oscillating with increasing amplitude. When you drive the ball at its natural frequency, the ball’s oscillations increase
in amplitude with each oscillation for as long as you drive it. The phenomenon of driving a system with a frequency equal to its
natural frequency is called resonance. A system being driven at its natural frequency is said to resonate. As the driving
frequency gets progressively higher than the resonant or natural frequency, the amplitude of the oscillations becomes smaller,
until the oscillations nearly disappear and your finger simply moves up and down with little effect on the ball.

Figure 16.26 The paddle ball on its rubber band moves in response to the finger supporting it. If the finger moves with the natural frequency f0 of the

ball on the rubber band, then a resonance is achieved, and the amplitude of the ball’s oscillations increases dramatically. At higher and lower driving
frequencies, energy is transferred to the ball less efficiently, and it responds with lower-amplitude oscillations.

Figure 16.27 shows a graph of the amplitude of a damped harmonic oscillator as a function of the frequency of the periodic force
driving it. There are three curves on the graph, each representing a different amount of damping. All three curves peak at the
point where the frequency of the driving force equals the natural frequency of the harmonic oscillator. The highest peak, or
greatest response, is for the least amount of damping, because less energy is removed by the damping force.
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Figure 16.27 Amplitude of a harmonic oscillator as a function of the frequency of the driving force. The curves represent the same oscillator with the
same natural frequency but with different amounts of damping. Resonance occurs when the driving frequency equals the natural frequency, and the
greatest response is for the least amount of damping. The narrowest response is also for the least damping.

It is interesting that the widths of the resonance curves shown in Figure 16.27 depend on damping: the less the damping, the
narrower the resonance. The message is that if you want a driven oscillator to resonate at a very specific frequency, you need as
little damping as possible. Little damping is the case for piano strings and many other musical instruments. Conversely, if you
want small-amplitude oscillations, such as in a car’s suspension system, then you want heavy damping. Heavy damping reduces
the amplitude, but the tradeoff is that the system responds at more frequencies.

These features of driven harmonic oscillators apply to a huge variety of systems. When you tune a radio, for example, you are
adjusting its resonant frequency so that it only oscillates to the desired station’s broadcast (driving) frequency. The more
selective the radio is in discriminating between stations, the smaller its damping. Magnetic resonance imaging (MRI) is a widely
used medical diagnostic tool in which atomic nuclei (mostly hydrogen nuclei) are made to resonate by incoming radio waves (on
the order of 100 MHz). A child on a swing is driven by a parent at the swing’s natural frequency to achieve maximum amplitude.
In all of these cases, the efficiency of energy transfer from the driving force into the oscillator is best at resonance. Speed bumps
and gravel roads prove that even a car’s suspension system is not immune to resonance. In spite of finely engineered shock
absorbers, which ordinarily convert mechanical energy to thermal energy almost as fast as it comes in, speed bumps still cause
a large-amplitude oscillation. On gravel roads that are corrugated, you may have noticed that if you travel at the “wrong” speed,
the bumps are very noticeable whereas at other speeds you may hardly feel the bumps at all. Figure 16.28 shows a photograph
of a famous example (the Tacoma Narrows Bridge) of the destructive effects of a driven harmonic oscillation. The Millennium
Bridge in London was closed for a short period of time for the same reason while inspections were carried out.

In our bodies, the chest cavity is a clear example of a system at resonance. The diaphragm and chest wall drive the oscillations
of the chest cavity which result in the lungs inflating and deflating. The system is critically damped and the muscular diaphragm
oscillates at the resonant value for the system, making it highly efficient.

Figure 16.28 In 1940, the Tacoma Narrows Bridge in Washington state collapsed. Heavy cross winds drove the bridge into oscillations at its resonant
frequency. Damping decreased when support cables broke loose and started to slip over the towers, allowing increasingly greater amplitudes until the
structure failed (credit: PRI's Studio 360, via Flickr)

Check Your Understanding

A famous magic trick involves a performer singing a note toward a crystal glass until the glass shatters. Explain why the trick
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works in terms of resonance and natural frequency.

Solution
The performer must be singing a note that corresponds to the natural frequency of the glass. As the sound wave is directed
at the glass, the glass responds by resonating at the same frequency as the sound wave. With enough energy introduced
into the system, the glass begins to vibrate and eventually shatters.

16.9 Waves

Figure 16.29 Waves in the ocean behave similarly to all other types of waves. (credit: Steve Jurveston, Flickr)

What do we mean when we say something is a wave? The most intuitive and easiest wave to imagine is the familiar water wave.
More precisely, a wave is a disturbance that propagates, or moves from the place it was created. For water waves, the
disturbance is in the surface of the water, perhaps created by a rock thrown into a pond or by a swimmer splashing the surface
repeatedly. For sound waves, the disturbance is a change in air pressure, perhaps created by the oscillating cone inside a
speaker. For earthquakes, there are several types of disturbances, including disturbance of Earth’s surface and pressure
disturbances under the surface. Even radio waves are most easily understood using an analogy with water waves. Visualizing
water waves is useful because there is more to it than just a mental image. Water waves exhibit characteristics common to all
waves, such as amplitude, period, frequency and energy. All wave characteristics can be described by a small set of underlying
principles.

A wave is a disturbance that propagates, or moves from the place it was created. The simplest waves repeat themselves for
several cycles and are associated with simple harmonic motion. Let us start by considering the simplified water wave in Figure
16.30. The wave is an up and down disturbance of the water surface. It causes a sea gull to move up and down in simple
harmonic motion as the wave crests and troughs (peaks and valleys) pass under the bird. The time for one complete up and
down motion is the wave’s period T . The wave’s frequency is f = 1 / T , as usual. The wave itself moves to the right in the

figure. This movement of the wave is actually the disturbance moving to the right, not the water itself (or the bird would move to
the right). We define wave velocity vw to be the speed at which the disturbance moves. Wave velocity is sometimes also called

the propagation velocity or propagation speed, because the disturbance propagates from one location to another.

Misconception Alert

Many people think that water waves push water from one direction to another. In fact, the particles of water tend to stay in
one location, save for moving up and down due to the energy in the wave. The energy moves forward through the water, but
the water stays in one place. If you feel yourself pushed in an ocean, what you feel is the energy of the wave, not a rush of
water.
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Figure 16.30 An idealized ocean wave passes under a sea gull that bobs up and down in simple harmonic motion. The wave has a wavelength λ ,

which is the distance between adjacent identical parts of the wave. The up and down disturbance of the surface propagates parallel to the surface at a
speed vw .

The water wave in the figure also has a length associated with it, called its wavelength λ , the distance between adjacent

identical parts of a wave. ( λ is the distance parallel to the direction of propagation.) The speed of propagation vw is the

distance the wave travels in a given time, which is one wavelength in the time of one period. In equation form, that is

(16.66)vw = λ
T

or

(16.67)vw = fλ.

This fundamental relationship holds for all types of waves. For water waves, vw is the speed of a surface wave; for sound, vw
is the speed of sound; and for visible light, vw is the speed of light, for example.

Take-Home Experiment: Waves in a Bowl

Fill a large bowl or basin with water and wait for the water to settle so there are no ripples. Gently drop a cork into the middle
of the bowl. Estimate the wavelength and period of oscillation of the water wave that propagates away from the cork.
Remove the cork from the bowl and wait for the water to settle again. Gently drop the cork at a height that is different from
the first drop. Does the wavelength depend upon how high above the water the cork is dropped?

Example 16.8 Calculate the Velocity of Wave Propagation: Gull in the Ocean

Calculate the wave velocity of the ocean wave in Figure 16.30 if the distance between wave crests is 10.0 m and the time
for a sea gull to bob up and down is 5.00 s.

Strategy

We are asked to find vw . The given information tells us that λ = 10.0 m and T = 5.00 s . Therefore, we can use

vw = λ
T to find the wave velocity.

Solution

1. Enter the known values into vw = λ
T :

(16.68)vw = 10.0 m
5.00 s .

2. Solve for vw to find vw = 2.00 m/s.

Discussion

This slow speed seems reasonable for an ocean wave. Note that the wave moves to the right in the figure at this speed, not
the varying speed at which the sea gull moves up and down.
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Transverse and Longitudinal Waves

A simple wave consists of a periodic disturbance that propagates from one place to another. The wave in Figure 16.31
propagates in the horizontal direction while the surface is disturbed in the vertical direction. Such a wave is called a transverse
wave or shear wave; in such a wave, the disturbance is perpendicular to the direction of propagation. In contrast, in a
longitudinal wave or compressional wave, the disturbance is parallel to the direction of propagation. Figure 16.32 shows an
example of a longitudinal wave. The size of the disturbance is its amplitude X and is completely independent of the speed of
propagation vw .

Figure 16.31 In this example of a transverse wave, the wave propagates horizontally, and the disturbance in the cord is in the vertical direction.

Figure 16.32 In this example of a longitudinal wave, the wave propagates horizontally, and the disturbance in the cord is also in the horizontal
direction.

Waves may be transverse, longitudinal, or a combination of the two. (Water waves are actually a combination of transverse and
longitudinal. The simplified water wave illustrated in Figure 16.30 shows no longitudinal motion of the bird.) The waves on the
strings of musical instruments are transverse—so are electromagnetic waves, such as visible light.

Sound waves in air and water are longitudinal. Their disturbances are periodic variations in pressure that are transmitted in
fluids. Fluids do not have appreciable shear strength, and thus the sound waves in them must be longitudinal or compressional.
Sound in solids can be both longitudinal and transverse.

Figure 16.33 The wave on a guitar string is transverse. The sound wave rattles a sheet of paper in a direction that shows the sound wave is
longitudinal.

Earthquake waves under Earth’s surface also have both longitudinal and transverse components (called compressional or P-
waves and shear or S-waves, respectively). These components have important individual characteristics—they propagate at
different speeds, for example. Earthquakes also have surface waves that are similar to surface waves on water.

Check Your Understanding

Why is it important to differentiate between longitudinal and transverse waves?

Solution

Chapter 16 | Oscillatory Motion and Waves 631



In the different types of waves, energy can propagate in a different direction relative to the motion of the wave. This is
important to understand how different types of waves affect the materials around them.

PhET Explorations: Wave on a String

Watch a string vibrate in slow motion. Wiggle the end of the string and make waves, or adjust the frequency and amplitude
of an oscillator. Adjust the damping and tension. The end can be fixed, loose, or open.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42248/1.10/#eip-
idm388733328)

Figure 16.34

16.10 Superposition and Interference

Figure 16.35 These waves result from the superposition of several waves from different sources, producing a complex pattern. (credit: waterborough,
Wikimedia Commons)

Most waves do not look very simple. They look more like the waves in Figure 16.35 than like the simple water wave considered
in Waves. (Simple waves may be created by a simple harmonic oscillation, and thus have a sinusoidal shape). Complex waves
are more interesting, even beautiful, but they look formidable. Most waves appear complex because they result from several
simple waves adding together. Luckily, the rules for adding waves are quite simple.

When two or more waves arrive at the same point, they superimpose themselves on one another. More specifically, the
disturbances of waves are superimposed when they come together—a phenomenon called superposition. Each disturbance
corresponds to a force, and forces add. If the disturbances are along the same line, then the resulting wave is a simple addition
of the disturbances of the individual waves—that is, their amplitudes add. Figure 16.36 and Figure 16.37 illustrate superposition
in two special cases, both of which produce simple results.

Figure 16.36 shows two identical waves that arrive at the same point exactly in phase. The crests of the two waves are precisely
aligned, as are the troughs. This superposition produces pure constructive interference. Because the disturbances add, pure
constructive interference produces a wave that has twice the amplitude of the individual waves, but has the same wavelength.

Figure 16.37 shows two identical waves that arrive exactly out of phase—that is, precisely aligned crest to trough—producing
pure destructive interference. Because the disturbances are in the opposite direction for this superposition, the resulting
amplitude is zero for pure destructive interference—the waves completely cancel.

Figure 16.36 Pure constructive interference of two identical waves produces one with twice the amplitude, but the same wavelength.
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Figure 16.37 Pure destructive interference of two identical waves produces zero amplitude, or complete cancellation.

While pure constructive and pure destructive interference do occur, they require precisely aligned identical waves. The
superposition of most waves produces a combination of constructive and destructive interference and can vary from place to
place and time to time. Sound from a stereo, for example, can be loud in one spot and quiet in another. Varying loudness means
the sound waves add partially constructively and partially destructively at different locations. A stereo has at least two speakers
creating sound waves, and waves can reflect from walls. All these waves superimpose. An example of sounds that vary over
time from constructive to destructive is found in the combined whine of airplane jets heard by a stationary passenger. The
combined sound can fluctuate up and down in volume as the sound from the two engines varies in time from constructive to
destructive. These examples are of waves that are similar.

An example of the superposition of two dissimilar waves is shown in Figure 16.38. Here again, the disturbances add and
subtract, producing a more complicated looking wave.

Figure 16.38 Superposition of non-identical waves exhibits both constructive and destructive interference.

Standing Waves

Sometimes waves do not seem to move; rather, they just vibrate in place. Unmoving waves can be seen on the surface of a
glass of milk in a refrigerator, for example. Vibrations from the refrigerator motor create waves on the milk that oscillate up and
down but do not seem to move across the surface. These waves are formed by the superposition of two or more moving waves,
such as illustrated in Figure 16.39 for two identical waves moving in opposite directions. The waves move through each other
with their disturbances adding as they go by. If the two waves have the same amplitude and wavelength, then they alternate
between constructive and destructive interference. The resultant looks like a wave standing in place and, thus, is called a
standing wave. Waves on the glass of milk are one example of standing waves. There are other standing waves, such as on
guitar strings and in organ pipes. With the glass of milk, the two waves that produce standing waves may come from reflections
from the side of the glass.

A closer look at earthquakes provides evidence for conditions appropriate for resonance, standing waves, and constructive and
destructive interference. A building may be vibrated for several seconds with a driving frequency matching that of the natural
frequency of vibration of the building—producing a resonance resulting in one building collapsing while neighboring buildings do
not. Often buildings of a certain height are devastated while other taller buildings remain intact. The building height matches the
condition for setting up a standing wave for that particular height. As the earthquake waves travel along the surface of Earth and
reflect off denser rocks, constructive interference occurs at certain points. Often areas closer to the epicenter are not damaged
while areas farther away are damaged.
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Figure 16.39 Standing wave created by the superposition of two identical waves moving in opposite directions. The oscillations are at fixed locations in
space and result from alternately constructive and destructive interference.

Standing waves are also found on the strings of musical instruments and are due to reflections of waves from the ends of the
string. Figure 16.40 and Figure 16.41 show three standing waves that can be created on a string that is fixed at both ends.
Nodes are the points where the string does not move; more generally, nodes are where the wave disturbance is zero in a
standing wave. The fixed ends of strings must be nodes, too, because the string cannot move there. The word antinode is used
to denote the location of maximum amplitude in standing waves. Standing waves on strings have a frequency that is related to
the propagation speed vw of the disturbance on the string. The wavelength λ is determined by the distance between the points

where the string is fixed in place.

The lowest frequency, called the fundamental frequency, is thus for the longest wavelength, which is seen to be λ1 = 2L .

Therefore, the fundamental frequency is f1 = vw / λ1 = vw / 2L . In this case, the overtones or harmonics are multiples of the

fundamental frequency. As seen in Figure 16.41, the first harmonic can easily be calculated since λ2 = L . Thus,

f2 = vw / λ2 = vw / 2L = 2 f 1 . Similarly, f3 = 3 f 1 , and so on. All of these frequencies can be changed by adjusting the

tension in the string. The greater the tension, the greater vw is and the higher the frequencies. This observation is familiar to

anyone who has ever observed a string instrument being tuned. We will see in later chapters that standing waves are crucial to
many resonance phenomena, such as in sounding boxes on string instruments.

Figure 16.40 The figure shows a string oscillating at its fundamental frequency.
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Figure 16.41 First and second harmonic frequencies are shown.

Beats

Striking two adjacent keys on a piano produces a warbling combination usually considered to be unpleasant. The superposition
of two waves of similar but not identical frequencies is the culprit. Another example is often noticeable in jet aircraft, particularly
the two-engine variety, while taxiing. The combined sound of the engines goes up and down in loudness. This varying loudness
happens because the sound waves have similar but not identical frequencies. The discordant warbling of the piano and the
fluctuating loudness of the jet engine noise are both due to alternately constructive and destructive interference as the two waves
go in and out of phase. Figure 16.42 illustrates this graphically.

Figure 16.42 Beats are produced by the superposition of two waves of slightly different frequencies but identical amplitudes. The waves alternate in
time between constructive interference and destructive interference, giving the resulting wave a time-varying amplitude.

The wave resulting from the superposition of two similar-frequency waves has a frequency that is the average of the two. This
wave fluctuates in amplitude, or beats, with a frequency called the beat frequency. We can determine the beat frequency by
adding two waves together mathematically. Note that a wave can be represented at one point in space as

(16.69)x = X cos⎛⎝2π t
T
⎞
⎠ = X cos⎛⎝2π ft⎞⎠,

where f = 1 / T is the frequency of the wave. Adding two waves that have different frequencies but identical amplitudes

produces a resultant

(16.70)x = x1 + x2.

More specifically,

(16.71)x = X cos⎛⎝2π f1 t⎞⎠+ X cos⎛⎝2π f2 t⎞⎠.

Using a trigonometric identity, it can be shown that

(16.72)x = 2X cos⎛⎝π fB t⎞⎠cos⎛⎝2π fave t⎞⎠,

where

(16.73)fB = ∣ f1 − f2 ∣

is the beat frequency, and fave is the average of f1 and f2 . These results mean that the resultant wave has twice the

amplitude and the average frequency of the two superimposed waves, but it also fluctuates in overall amplitude at the beat
frequency fB . The first cosine term in the expression effectively causes the amplitude to go up and down. The second cosine

term is the wave with frequency fave . This result is valid for all types of waves. However, if it is a sound wave, providing the two

frequencies are similar, then what we hear is an average frequency that gets louder and softer (or warbles) at the beat frequency.

Making Career Connections

Piano tuners use beats routinely in their work. When comparing a note with a tuning fork, they listen for beats and adjust the
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string until the beats go away (to zero frequency). For example, if the tuning fork has a 256 Hz frequency and two beats

per second are heard, then the other frequency is either 254 or 258 Hz . Most keys hit multiple strings, and these strings

are actually adjusted until they have nearly the same frequency and give a slow beat for richness. Twelve-string guitars and
mandolins are also tuned using beats.

While beats may sometimes be annoying in audible sounds, we will find that beats have many applications. Observing beats is a
very useful way to compare similar frequencies. There are applications of beats as apparently disparate as in ultrasonic imaging
and radar speed traps.

Check Your Understanding

Imagine you are holding one end of a jump rope, and your friend holds the other. If your friend holds her end still, you can
move your end up and down, creating a transverse wave. If your friend then begins to move her end up and down,
generating a wave in the opposite direction, what resultant wave forms would you expect to see in the jump rope?

Solution
The rope would alternate between having waves with amplitudes two times the original amplitude and reaching equilibrium
with no amplitude at all. The wavelengths will result in both constructive and destructive interference

Check Your Understanding

Define nodes and antinodes.

Solution
Nodes are areas of wave interference where there is no motion. Antinodes are areas of wave interference where the motion
is at its maximum point.

Check Your Understanding

You hook up a stereo system. When you test the system, you notice that in one corner of the room, the sounds seem dull. In
another area, the sounds seem excessively loud. Describe how the sound moving about the room could result in these
effects.

Solution
With multiple speakers putting out sounds into the room, and these sounds bouncing off walls, there is bound to be some
wave interference. In the dull areas, the interference is probably mostly destructive. In the louder areas, the interference is
probably mostly constructive.

PhET Explorations: Wave Interference

Make waves with a dripping faucet, audio speaker, or laser! Add a second source or a pair of slits to create an interference
pattern.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42249/1.8/#phet-16-10)
Figure 16.43
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16.11 Energy in Waves: Intensity

Figure 16.44 The destructive effect of an earthquake is palpable evidence of the energy carried in these waves. The Richter scale rating of
earthquakes is related to both their amplitude and the energy they carry. (credit: Petty Officer 2nd Class Candice Villarreal, U.S. Navy)

All waves carry energy. The energy of some waves can be directly observed. Earthquakes can shake whole cities to the ground,
performing the work of thousands of wrecking balls.

Loud sounds pulverize nerve cells in the inner ear, causing permanent hearing loss. Ultrasound is used for deep-heat treatment
of muscle strains. A laser beam can burn away a malignancy. Water waves chew up beaches.

The amount of energy in a wave is related to its amplitude. Large-amplitude earthquakes produce large ground displacements.
Loud sounds have higher pressure amplitudes and come from larger-amplitude source vibrations than soft sounds. Large ocean
breakers churn up the shore more than small ones. More quantitatively, a wave is a displacement that is resisted by a restoring
force. The larger the displacement x , the larger the force F = kx needed to create it. Because work W is related to force

multiplied by distance ( Fx ) and energy is put into the wave by the work done to create it, the energy in a wave is related to

amplitude. In fact, a wave’s energy is directly proportional to its amplitude squared because

(16.74)W ∝ Fx = kx2.
The energy effects of a wave depend on time as well as amplitude. For example, the longer deep-heat ultrasound is applied, the
more energy it transfers. Waves can also be concentrated or spread out. Sunlight, for example, can be focused to burn wood.
Earthquakes spread out, so they do less damage the farther they get from the source. In both cases, changing the area the
waves cover has important effects. All these pertinent factors are included in the definition of intensity I as power per unit area:

(16.75)I = P
A

where P is the power carried by the wave through area A . The definition of intensity is valid for any energy in transit, including

that carried by waves. The SI unit for intensity is watts per square meter ( W/m2 ). For example, infrared and visible energy

from the Sun impinge on Earth at an intensity of 1300 W/m2 just above the atmosphere. There are other intensity-related units

in use, too. The most common is the decibel. For example, a 90 decibel sound level corresponds to an intensity of 10−3 W/m2

. (This quantity is not much power per unit area considering that 90 decibels is a relatively high sound level. Decibels will be
discussed in some detail in a later chapter.

Example 16.9 Calculating intensity and power: How much energy is in a ray of sunlight?

The average intensity of sunlight on Earth’s surface is about 700 W/m2 .

(a) Calculate the amount of energy that falls on a solar collector having an area of 0.500 m2 in 4.00 h .

(b) What intensity would such sunlight have if concentrated by a magnifying glass onto an area 200 times smaller than its
own?

Strategy a

Because power is energy per unit time or P = E
t , the definition of intensity can be written as I = P

A = E / t
A , and this

equation can be solved for E with the given information.

Solution a

1. Begin with the equation that states the definition of intensity:
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(16.76)I = P
A.

2. Replace P with its equivalent E / t :

(16.77)I = E / t
A .

3. Solve for E :

(16.78)E = IAt.
4. Substitute known values into the equation:

(16.79)E = ⎛⎝700 W/m2⎞⎠
⎛
⎝0.500 m2⎞⎠⎡⎣(4.00 h)(3600 s/h)⎤⎦.

5. Calculate to find E and convert units:

(16.80)5.04×106 J,

Discussion a

The energy falling on the solar collector in 4 h in part is enough to be useful—for example, for heating a significant amount
of water.

Strategy b

Taking a ratio of new intensity to old intensity and using primes for the new quantities, we will find that it depends on the ratio
of the areas. All other quantities will cancel.

Solution b

1. Take the ratio of intensities, which yields:

(16.81)I′
I = P′ / A′

P / A = A
A′
⎛
⎝The powers cancel because P′ = P⎞⎠.

2. Identify the knowns:

(16.82)A = 200A′,
(16.83)I′

I = 200.

3. Substitute known quantities:

(16.84)I′ = 200I = 200⎛⎝700 W/m2⎞⎠.

4. Calculate to find I′ :

(16.85)I′ = 1.40×105 W/m2.
Discussion b

Decreasing the area increases the intensity considerably. The intensity of the concentrated sunlight could even start a fire.

Example 16.10 Determine the combined intensity of two waves: Perfect constructive
interference

If two identical waves, each having an intensity of 1.00 W/m2 , interfere perfectly constructively, what is the intensity of the

resulting wave?

Strategy

We know from Superposition and Interference that when two identical waves, which have equal amplitudes X , interfere

perfectly constructively, the resulting wave has an amplitude of 2X . Because a wave’s intensity is proportional to amplitude

squared, the intensity of the resulting wave is four times as great as in the individual waves.

Solution

1. Recall that intensity is proportional to amplitude squared.

2. Calculate the new amplitude:

(16.86)I′ ∝ (X′)2 = (2X)2 = 4X2.
3. Recall that the intensity of the old amplitude was:

(16.87)I ∝ X2.
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amplitude:

antinode:

beat frequency:

constructive interference:

critical damping:

deformation:

destructive interference:

elastic potential energy:

4. Take the ratio of new intensity to the old intensity. This gives:

(16.88)I′
I = 4.

5. Calculate to find I′ :

(16.89)I′ = 4I = 4.00 W/m2.
Discussion

The intensity goes up by a factor of 4 when the amplitude doubles. This answer is a little disquieting. The two individual

waves each have intensities of 1.00 W/m2 , yet their sum has an intensity of 4.00 W/m2 , which may appear to violate

conservation of energy. This violation, of course, cannot happen. What does happen is intriguing. The area over which the

intensity is 4.00 W/m2 is much less than the area covered by the two waves before they interfered. There are other areas

where the intensity is zero. The addition of waves is not as simple as our first look in Superposition and Interference
suggested. We actually get a pattern of both constructive interference and destructive interference whenever two waves are

added. For example, if we have two stereo speakers putting out 1.00 W/m2 each, there will be places in the room where

the intensity is 4.00 W/m2 , other places where the intensity is zero, and others in between. Figure 16.45 shows what this

interference might look like. We will pursue interference patterns elsewhere in this text.

Figure 16.45 These stereo speakers produce both constructive interference and destructive interference in the room, a property common to the
superposition of all types of waves. The shading is proportional to intensity.

Check Your Understanding

Which measurement of a wave is most important when determining the wave's intensity?

Solution
Amplitude, because a wave’s energy is directly proportional to its amplitude squared.

Glossary

the maximum displacement from the equilibrium position of an object oscillating around the equilibrium position

the location of maximum amplitude in standing waves

the frequency of the amplitude fluctuations of a wave

when two waves arrive at the same point exactly in phase; that is, the crests of the two waves are
precisely aligned, as are the troughs

the condition in which the damping of an oscillator causes it to return as quickly as possible to its
equilibrium position without oscillating back and forth about this position

displacement from equilibrium

when two identical waves arrive at the same point exactly out of phase; that is, precisely aligned
crest to trough

potential energy stored as a result of deformation of an elastic object, such as the stretching of a
spring
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force constant:

frequency:

fundamental frequency:

intensity:

longitudinal wave:

natural frequency:

nodes:

oscillate:

over damping:

overtones:

period:

periodic motion:

resonance:

resonate:

restoring force:

simple harmonic motion:

simple harmonic oscillator:

simple pendulum:

superposition:

transverse wave:

under damping:

wave:

wave velocity:

wavelength:

a constant related to the rigidity of a system: the larger the force constant, the more rigid the system; the
force constant is represented by k

number of events per unit of time

the lowest frequency of a periodic waveform

power per unit area

a wave in which the disturbance is parallel to the direction of propagation

the frequency at which a system would oscillate if there were no driving and no damping forces

the points where the string does not move; more generally, nodes are where the wave disturbance is zero in a
standing wave

moving back and forth regularly between two points

the condition in which damping of an oscillator causes it to return to equilibrium without oscillating; oscillator
moves more slowly toward equilibrium than in the critically damped system

multiples of the fundamental frequency of a sound

time it takes to complete one oscillation

motion that repeats itself at regular time intervals

the phenomenon of driving a system with a frequency equal to the system's natural frequency

a system being driven at its natural frequency

force acting in opposition to the force caused by a deformation

the oscillatory motion in a system where the net force can be described by Hooke’s law

a device that implements Hooke’s law, such as a mass that is attached to a spring, with the
other end of the spring being connected to a rigid support such as a wall

an object with a small mass suspended from a light wire or string

the phenomenon that occurs when two or more waves arrive at the same point

a wave in which the disturbance is perpendicular to the direction of propagation

the condition in which damping of an oscillator causes it to return to equilibrium with the amplitude gradually
decreasing to zero; system returns to equilibrium faster but overshoots and crosses the equilibrium position one or more
times

a disturbance that moves from its source and carries energy

the speed at which the disturbance moves. Also called the propagation velocity or propagation speed

the distance between adjacent identical parts of a wave

Section Summary

16.1 Hooke’s Law: Stress and Strain Revisited
• An oscillation is a back and forth motion of an object between two points of deformation.
• An oscillation may create a wave, which is a disturbance that propagates from where it was created.
• The simplest type of oscillations and waves are related to systems that can be described by Hooke’s law:

F = −kx,
where F is the restoring force, x is the displacement from equilibrium or deformation, and k is the force constant of the

system.
• Elastic potential energy PEel stored in the deformation of a system that can be described by Hooke’s law is given by

PEel = (1 / 2)kx2.

16.2 Period and Frequency in Oscillations
• Periodic motion is a repetitious oscillation.
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• The time for one oscillation is the period T .

• The number of oscillations per unit time is the frequency f .

• These quantities are related by

f = 1
T .

16.3 Simple Harmonic Motion: A Special Periodic Motion
• Simple harmonic motion is oscillatory motion for a system that can be described only by Hooke’s law. Such a system is also

called a simple harmonic oscillator.
• Maximum displacement is the amplitude X . The period T and frequency f of a simple harmonic oscillator are given by

T = 2π m
k and f = 1

2π
k
m , where m is the mass of the system.

• Displacement in simple harmonic motion as a function of time is given by x(t) = X cos 2πt
T .

• The velocity is given by v(t) = − vmax sin2πt
T , where vmax = k / mX .

• The acceleration is found to be a(t) = −kX
m cos 2πt

T .

16.4 The Simple Pendulum
• A mass m suspended by a wire of length L is a simple pendulum and undergoes simple harmonic motion for amplitudes

less than about 15º.
The period of a simple pendulum is

T = 2π L
g ,

where L is the length of the string and g is the acceleration due to gravity.

16.5 Energy and the Simple Harmonic Oscillator
• Energy in the simple harmonic oscillator is shared between elastic potential energy and kinetic energy, with the total being

constant:

1
2mv2 + 1

2kx2 = constant.
• Maximum velocity depends on three factors: it is directly proportional to amplitude, it is greater for stiffer systems, and it is

smaller for objects that have larger masses:

vmax = k
mX.

16.6 Uniform Circular Motion and Simple Harmonic Motion

A projection of uniform circular motion undergoes simple harmonic oscillation.

16.7 Damped Harmonic Motion
• Damped harmonic oscillators have non-conservative forces that dissipate their energy.
• Critical damping returns the system to equilibrium as fast as possible without overshooting.
• An underdamped system will oscillate through the equilibrium position.
• An overdamped system moves more slowly toward equilibrium than one that is critically damped.

16.8 Forced Oscillations and Resonance
• A system’s natural frequency is the frequency at which the system will oscillate if not affected by driving or damping forces.
• A periodic force driving a harmonic oscillator at its natural frequency produces resonance. The system is said to resonate.
• The less damping a system has, the higher the amplitude of the forced oscillations near resonance. The more damping a

system has, the broader response it has to varying driving frequencies.

16.9 Waves
• A wave is a disturbance that moves from the point of creation with a wave velocity vw .

• A wave has a wavelength λ , which is the distance between adjacent identical parts of the wave.

• Wave velocity and wavelength are related to the wave’s frequency and period by vw = λ
T or vw = fλ.
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• A transverse wave has a disturbance perpendicular to its direction of propagation, whereas a longitudinal wave has a
disturbance parallel to its direction of propagation.

16.10 Superposition and Interference
• Superposition is the combination of two waves at the same location.
• Constructive interference occurs when two identical waves are superimposed in phase.
• Destructive interference occurs when two identical waves are superimposed exactly out of phase.
• A standing wave is one in which two waves superimpose to produce a wave that varies in amplitude but does not

propagate.
• Nodes are points of no motion in standing waves.
• An antinode is the location of maximum amplitude of a standing wave.
• Waves on a string are resonant standing waves with a fundamental frequency and can occur at higher multiples of the

fundamental, called overtones or harmonics.
• Beats occur when waves of similar frequencies f1 and f2 are superimposed. The resulting amplitude oscillates with a

beat frequency given by

fB = ∣ f1 − f2 ∣ .

16.11 Energy in Waves: Intensity

Intensity is defined to be the power per unit area:

I = P
A and has units of W/m2 .

Conceptual Questions

16.1 Hooke’s Law: Stress and Strain Revisited

1. Describe a system in which elastic potential energy is stored.

16.3 Simple Harmonic Motion: A Special Periodic Motion

2. What conditions must be met to produce simple harmonic motion?

3. (a) If frequency is not constant for some oscillation, can the oscillation be simple harmonic motion?

(b) Can you think of any examples of harmonic motion where the frequency may depend on the amplitude?

4. Give an example of a simple harmonic oscillator, specifically noting how its frequency is independent of amplitude.

5. Explain why you expect an object made of a stiff material to vibrate at a higher frequency than a similar object made of a
spongy material.

6. As you pass a freight truck with a trailer on a highway, you notice that its trailer is bouncing up and down slowly. Is it more
likely that the trailer is heavily loaded or nearly empty? Explain your answer.

7. Some people modify cars to be much closer to the ground than when manufactured. Should they install stiffer springs? Explain
your answer.

16.4 The Simple Pendulum

8. Pendulum clocks are made to run at the correct rate by adjusting the pendulum’s length. Suppose you move from one city to
another where the acceleration due to gravity is slightly greater, taking your pendulum clock with you, will you have to lengthen or
shorten the pendulum to keep the correct time, other factors remaining constant? Explain your answer.

16.5 Energy and the Simple Harmonic Oscillator

9. Explain in terms of energy how dissipative forces such as friction reduce the amplitude of a harmonic oscillator. Also explain
how a driving mechanism can compensate. (A pendulum clock is such a system.)

16.7 Damped Harmonic Motion

10. Give an example of a damped harmonic oscillator. (They are more common than undamped or simple harmonic oscillators.)

11. How would a car bounce after a bump under each of these conditions?
• overdamping
• underdamping
• critical damping

12. Most harmonic oscillators are damped and, if undriven, eventually come to a stop. How is this observation related to the
second law of thermodynamics?
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16.8 Forced Oscillations and Resonance

13. Why are soldiers in general ordered to “route step” (walk out of step) across a bridge?

16.9 Waves

14. Give one example of a transverse wave and another of a longitudinal wave, being careful to note the relative directions of the
disturbance and wave propagation in each.

15. What is the difference between propagation speed and the frequency of a wave? Does one or both affect wavelength? If so,
how?

16.10 Superposition and Interference

16. Speakers in stereo systems have two color-coded terminals to indicate how to hook up the wires. If the wires are reversed,
the speaker moves in a direction opposite that of a properly connected speaker. Explain why it is important to have both
speakers connected the same way.

16.11 Energy in Waves: Intensity

17. Two identical waves undergo pure constructive interference. Is the resultant intensity twice that of the individual waves?
Explain your answer.

18. Circular water waves decrease in amplitude as they move away from where a rock is dropped. Explain why.
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Problems & Exercises

16.1 Hooke’s Law: Stress and Strain Revisited

1. Fish are hung on a spring scale to determine their mass
(most fishermen feel no obligation to truthfully report the
mass).

(a) What is the force constant of the spring in such a scale if it
the spring stretches 8.00 cm for a 10.0 kg load?

(b) What is the mass of a fish that stretches the spring 5.50
cm?

(c) How far apart are the half-kilogram marks on the scale?

2. It is weigh-in time for the local under-85-kg rugby team.
The bathroom scale used to assess eligibility can be
described by Hooke’s law and is depressed 0.75 cm by its
maximum load of 120 kg. (a) What is the spring’s effective
spring constant? (b) A player stands on the scales and
depresses it by 0.48 cm. Is he eligible to play on this under-85
kg team?

3. One type of BB gun uses a spring-driven plunger to blow
the BB from its barrel. (a) Calculate the force constant of its
plunger’s spring if you must compress it 0.150 m to drive the
0.0500-kg plunger to a top speed of 20.0 m/s. (b) What force
must be exerted to compress the spring?

4. (a) The springs of a pickup truck act like a single spring

with a force constant of 1.30×105 N/m . By how much will

the truck be depressed by its maximum load of 1000 kg?

(b) If the pickup truck has four identical springs, what is the
force constant of each?

5. When an 80.0-kg man stands on a pogo stick, the spring is
compressed 0.120 m.

(a) What is the force constant of the spring? (b) Will the
spring be compressed more when he hops down the road?

6. A spring has a length of 0.200 m when a 0.300-kg mass
hangs from it, and a length of 0.750 m when a 1.95-kg mass
hangs from it. (a) What is the force constant of the spring? (b)
What is the unloaded length of the spring?

16.2 Period and Frequency in Oscillations

7. What is the period of 60.0 Hz electrical power?

8. If your heart rate is 150 beats per minute during strenuous
exercise, what is the time per beat in units of seconds?

9. Find the frequency of a tuning fork that takes

2.50×10−3 s to complete one oscillation.

10. A stroboscope is set to flash every 8.00×10−5 s . What

is the frequency of the flashes?

11. A tire has a tread pattern with a crevice every 2.00 cm.
Each crevice makes a single vibration as the tire moves.
What is the frequency of these vibrations if the car moves at
30.0 m/s?

12. Engineering Application

Each piston of an engine makes a sharp sound every other
revolution of the engine. (a) How fast is a race car going if its
eight-cylinder engine emits a sound of frequency 750 Hz,
given that the engine makes 2000 revolutions per kilometer?
(b) At how many revolutions per minute is the engine
rotating?

16.3 Simple Harmonic Motion: A Special
Periodic Motion

13. A type of cuckoo clock keeps time by having a mass
bouncing on a spring, usually something cute like a cherub in
a chair. What force constant is needed to produce a period of
0.500 s for a 0.0150-kg mass?

14. If the spring constant of a simple harmonic oscillator is
doubled, by what factor will the mass of the system need to
change in order for the frequency of the motion to remain the
same?

15. A 0.500-kg mass suspended from a spring oscillates with
a period of 1.50 s. How much mass must be added to the
object to change the period to 2.00 s?

16. By how much leeway (both percentage and mass) would
you have in the selection of the mass of the object in the
previous problem if you did not wish the new period to be
greater than 2.01 s or less than 1.99 s?

17. Suppose you attach the object with mass m to a vertical

spring originally at rest, and let it bounce up and down. You
release the object from rest at the spring’s original rest length.
(a) Show that the spring exerts an upward force of 2.00 mg
on the object at its lowest point. (b) If the spring has a force
constant of 10.0 N/m and a 0.25-kg-mass object is set in

motion as described, find the amplitude of the oscillations. (c)
Find the maximum velocity.

18. A diver on a diving board is undergoing simple harmonic
motion. Her mass is 55.0 kg and the period of her motion is
0.800 s. The next diver is a male whose period of simple
harmonic oscillation is 1.05 s. What is his mass if the mass of
the board is negligible?

19. Suppose a diving board with no one on it bounces up and
down in a simple harmonic motion with a frequency of 4.00
Hz. The board has an effective mass of 10.0 kg. What is the
frequency of the simple harmonic motion of a 75.0-kg diver on
the board?
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20.

Figure 16.46 This child’s toy relies on springs to keep infants

entertained. (credit: By Humboldthead, Flickr)

The device pictured in Figure 16.46 entertains infants while
keeping them from wandering. The child bounces in a
harness suspended from a door frame by a spring constant.

(a) If the spring stretches 0.250 m while supporting an 8.0-kg
child, what is its spring constant?

(b) What is the time for one complete bounce of this child? (c)
What is the child’s maximum velocity if the amplitude of her
bounce is 0.200 m?

21. A 90.0-kg skydiver hanging from a parachute bounces up
and down with a period of 1.50 s. What is the new period of
oscillation when a second skydiver, whose mass is 60.0 kg,
hangs from the legs of the first, as seen in Figure 16.47.

Figure 16.47 The oscillations of one skydiver are about to be affected

by a second skydiver. (credit: U.S. Army, www.army.mil)

16.4 The Simple Pendulum

As usual, the acceleration due to gravity in these

problems is taken to be g = 9.80 m / s2 , unless

otherwise specified.

22. What is the length of a pendulum that has a period of
0.500 s?

23. Some people think a pendulum with a period of 1.00 s can
be driven with “mental energy” or psycho kinetically, because
its period is the same as an average heartbeat. True or not,
what is the length of such a pendulum?

24. What is the period of a 1.00-m-long pendulum?

25. How long does it take a child on a swing to complete one
swing if her center of gravity is 4.00 m below the pivot?

26. The pendulum on a cuckoo clock is 5.00 cm long. What is
its frequency?

27. Two parakeets sit on a swing with their combined center
of mass 10.0 cm below the pivot. At what frequency do they
swing?

28. (a) A pendulum that has a period of 3.00000 s and that is

located where the acceleration due to gravity is 9.79 m/s2 is

moved to a location where it the acceleration due to gravity is

9.82 m/s2 . What is its new period? (b) Explain why so many

digits are needed in the value for the period, based on the
relation between the period and the acceleration due to
gravity.

29. A pendulum with a period of 2.00000 s in one location
⎛
⎝g = 9.80 m/s2⎞⎠ is moved to a new location where the

period is now 1.99796 s. What is the acceleration due to
gravity at its new location?

30. (a) What is the effect on the period of a pendulum if you
double its length?

(b) What is the effect on the period of a pendulum if you
decrease its length by 5.00%?

31. Find the ratio of the new/old periods of a pendulum if the
pendulum were transported from Earth to the Moon, where

the acceleration due to gravity is 1.63 m/s2 .

32. At what rate will a pendulum clock run on the Moon,

where the acceleration due to gravity is 1.63 m/s2 , if it

keeps time accurately on Earth? That is, find the time (in
hours) it takes the clock’s hour hand to make one revolution
on the Moon.

33. Suppose the length of a clock’s pendulum is changed by
1.000%, exactly at noon one day. What time will it read 24.00
hours later, assuming it the pendulum has kept perfect time
before the change? Note that there are two answers, and
perform the calculation to four-digit precision.

34. If a pendulum-driven clock gains 5.00 s/day, what
fractional change in pendulum length must be made for it to
keep perfect time?

16.5 Energy and the Simple Harmonic
Oscillator

35. The length of nylon rope from which a mountain climber is

suspended has a force constant of 1.40×104 N/m .

(a) What is the frequency at which he bounces, given his
mass plus and the mass of his equipment are 90.0 kg?

(b) How much would this rope stretch to break the climber’s
fall if he free-falls 2.00 m before the rope runs out of slack?
Hint: Use conservation of energy.

(c) Repeat both parts of this problem in the situation where
twice this length of nylon rope is used.
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36. Engineering Application

Near the top of the Citigroup Center building in New York City,

there is an object with mass of 4.00×105 kg on springs that

have adjustable force constants. Its function is to dampen
wind-driven oscillations of the building by oscillating at the
same frequency as the building is being driven—the driving
force is transferred to the object, which oscillates instead of
the entire building. (a) What effective force constant should
the springs have to make the object oscillate with a period of
2.00 s? (b) What energy is stored in the springs for a 2.00-m
displacement from equilibrium?

16.6 Uniform Circular Motion and Simple
Harmonic Motion

37. (a)What is the maximum velocity of an 85.0-kg person
bouncing on a bathroom scale having a force constant of

1.50×106 N/m , if the amplitude of the bounce is 0.200 cm?

(b)What is the maximum energy stored in the spring?

38. A novelty clock has a 0.0100-kg mass object bouncing on
a spring that has a force constant of 1.25 N/m. What is the
maximum velocity of the object if the object bounces 3.00 cm
above and below its equilibrium position? (b) How many
joules of kinetic energy does the object have at its maximum
velocity?

39. At what positions is the speed of a simple harmonic
oscillator half its maximum? That is, what values of x / X
give v = ±vmax / 2 , where X is the amplitude of the

motion?

40. A ladybug sits 12.0 cm from the center of a Beatles music
album spinning at 33.33 rpm. What is the maximum velocity
of its shadow on the wall behind the turntable, if illuminated
parallel to the record by the parallel rays of the setting Sun?

16.7 Damped Harmonic Motion

41. The amplitude of a lightly damped oscillator decreases by
3.0% during each cycle. What percentage of the mechanical

energy of the oscillator is lost in each cycle?

16.8 Forced Oscillations and Resonance

42. How much energy must the shock absorbers of a 1200-kg
car dissipate in order to damp a bounce that initially has a
velocity of 0.800 m/s at the equilibrium position? Assume the
car returns to its original vertical position.

43. If a car has a suspension system with a force constant of

5.00×104 N/m , how much energy must the car’s shocks

remove to dampen an oscillation starting with a maximum
displacement of 0.0750 m?

44. (a) How much will a spring that has a force constant of
40.0 N/m be stretched by an object with a mass of 0.500 kg
when hung motionless from the spring? (b) Calculate the
decrease in gravitational potential energy of the 0.500-kg
object when it descends this distance. (c) Part of this
gravitational energy goes into the spring. Calculate the
energy stored in the spring by this stretch, and compare it
with the gravitational potential energy. Explain where the rest
of the energy might go.

45. Suppose you have a 0.750-kg object on a horizontal
surface connected to a spring that has a force constant of 150
N/m. There is simple friction between the object and surface
with a static coefficient of friction μs = 0.100 . (a) How far

can the spring be stretched without moving the mass? (b) If
the object is set into oscillation with an amplitude twice the
distance found in part (a), and the kinetic coefficient of friction
is μk = 0.0850 , what total distance does it travel before

stopping? Assume it starts at the maximum amplitude.

46. Engineering Application: A suspension bridge oscillates

with an effective force constant of 1.00×108 N/m . (a) How

much energy is needed to make it oscillate with an amplitude
of 0.100 m? (b) If soldiers march across the bridge with a
cadence equal to the bridge’s natural frequency and impart

1.00×104 J of energy each second, how long does it take

for the bridge’s oscillations to go from 0.100 m to 0.500 m
amplitude?

16.9 Waves

47. Storms in the South Pacific can create waves that travel
all the way to the California coast, which are 12,000 km away.
How long does it take them if they travel at 15.0 m/s?

48. Waves on a swimming pool propagate at 0.750 m/s. You
splash the water at one end of the pool and observe the wave
go to the opposite end, reflect, and return in 30.0 s. How far
away is the other end of the pool?

49. Wind gusts create ripples on the ocean that have a
wavelength of 5.00 cm and propagate at 2.00 m/s. What is
their frequency?

50. How many times a minute does a boat bob up and down
on ocean waves that have a wavelength of 40.0 m and a
propagation speed of 5.00 m/s?

51. Scouts at a camp shake the rope bridge they have just
crossed and observe the wave crests to be 8.00 m apart. If
they shake it the bridge twice per second, what is the
propagation speed of the waves?

52. What is the wavelength of the waves you create in a
swimming pool if you splash your hand at a rate of 2.00 Hz
and the waves propagate at 0.800 m/s?

53. What is the wavelength of an earthquake that shakes you
with a frequency of 10.0 Hz and gets to another city 84.0 km
away in 12.0 s?

54. Radio waves transmitted through space at

3.00×108 m/s by the Voyager spacecraft have a

wavelength of 0.120 m. What is their frequency?

55. Your ear is capable of differentiating sounds that arrive at
the ear just 1.00 ms apart. What is the minimum distance
between two speakers that produce sounds that arrive at
noticeably different times on a day when the speed of sound
is 340 m/s?
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56. (a) Seismographs measure the arrival times of
earthquakes with a precision of 0.100 s. To get the distance to
the epicenter of the quake, they compare the arrival times of
S- and P-waves, which travel at different speeds. Figure
16.48) If S- and P-waves travel at 4.00 and 7.20 km/s,
respectively, in the region considered, how precisely can the
distance to the source of the earthquake be determined? (b)
Seismic waves from underground detonations of nuclear
bombs can be used to locate the test site and detect
violations of test bans. Discuss whether your answer to (a)
implies a serious limit to such detection. (Note also that the
uncertainty is greater if there is an uncertainty in the
propagation speeds of the S- and P-waves.)

Figure 16.48 A seismograph as described in above problem.(credit:

Oleg Alexandrov)

16.10 Superposition and Interference

57. A car has two horns, one emitting a frequency of 199 Hz
and the other emitting a frequency of 203 Hz. What beat
frequency do they produce?

58. The middle-C hammer of a piano hits two strings,
producing beats of 1.50 Hz. One of the strings is tuned to
260.00 Hz. What frequencies could the other string have?

59. Two tuning forks having frequencies of 460 and 464 Hz
are struck simultaneously. What average frequency will you
hear, and what will the beat frequency be?

60. Twin jet engines on an airplane are producing an average
sound frequency of 4100 Hz with a beat frequency of 0.500
Hz. What are their individual frequencies?

61. A wave traveling on a Slinky® that is stretched to 4 m
takes 2.4 s to travel the length of the Slinky and back again.
(a) What is the speed of the wave? (b) Using the same Slinky
stretched to the same length, a standing wave is created
which consists of three antinodes and four nodes. At what
frequency must the Slinky be oscillating?

62. Three adjacent keys on a piano (F, F-sharp, and G) are
struck simultaneously, producing frequencies of 349, 370, and
392 Hz. What beat frequencies are produced by this
discordant combination?

16.11 Energy in Waves: Intensity

63. Medical Application

Ultrasound of intensity 1.50×102 W/m2 is produced by the

rectangular head of a medical imaging device measuring 3.00
by 5.00 cm. What is its power output?

64. The low-frequency speaker of a stereo set has a surface

area of 0.05 m2 and produces 1W of acoustical power.

What is the intensity at the speaker? If the speaker projects
sound uniformly in all directions, at what distance from the

speaker is the intensity 0.1 W/m2 ?

65. To increase intensity of a wave by a factor of 50, by what
factor should the amplitude be increased?

66. Engineering Application

A device called an insolation meter is used to measure the

intensity of sunlight has an area of 100 cm2 and registers

6.50 W. What is the intensity in W/m2 ?

67. Astronomy Application

Energy from the Sun arrives at the top of the Earth’s

atmosphere with an intensity of 1.30 kW/m2. How long

does it take for 1.8×109 J to arrive on an area of 1.00 m2

?

68. Suppose you have a device that extracts energy from
ocean breakers in direct proportion to their intensity. If the
device produces 10.0 kW of power on a day when the
breakers are 1.20 m high, how much will it produce when they
are 0.600 m high?

69. Engineering Application

(a) A photovoltaic array of (solar cells) is 10.0% efficient in
gathering solar energy and converting it to electricity. If the

average intensity of sunlight on one day is 700 W/m2,
what area should your array have to gather energy at the rate
of 100 W? (b) What is the maximum cost of the array if it must
pay for itself in two years of operation averaging 10.0 hours
per day? Assume that it earns money at the rate of 9.00 ¢ per
kilowatt-hour.

70. A microphone receiving a pure sound tone feeds an
oscilloscope, producing a wave on its screen. If the sound

intensity is originally 2.00×10–5 W/m2, but is turned up

until the amplitude increases by 30.0%, what is the new
intensity?

71. Medical Application

(a) What is the intensity in W/m2 of a laser beam used to

burn away cancerous tissue that, when 90.0% absorbed, puts
500 J of energy into a circular spot 2.00 mm in diameter in
4.00 s? (b) Discuss how this intensity compares to the

average intensity of sunlight (about 700 W/m2 ) and the

implications that would have if the laser beam entered your
eye. Note how your answer depends on the time duration of
the exposure.
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17 PHYSICS OF HEARING

Figure 17.1 This tree fell some time ago. When it fell, atoms in the air were disturbed. Physicists would call this disturbance sound whether someone
was around to hear it or not. (credit: B.A. Bowen Photography)

Chapter Outline
17.1. Sound

• Define sound and hearing.
• Describe sound as a longitudinal wave.

17.2. Speed of Sound, Frequency, and Wavelength
• Define pitch.
• Describe the relationship between the speed of sound, its frequency, and its wavelength.
• Describe the effects on the speed of sound as it travels through various media.
• Describe the effects of temperature on the speed of sound.

17.3. Sound Intensity and Sound Level
• Define intensity, sound intensity, and sound pressure level.
• Calculate sound intensity levels in decibels (dB).

17.4. Doppler Effect and Sonic Booms
• Define Doppler effect, Doppler shift, and sonic boom.
• Calculate the frequency of a sound heard by someone observing Doppler shift.
• Describe the sounds produced by objects moving faster than the speed of sound.

17.5. Sound Interference and Resonance: Standing Waves in Air Columns
• Define antinode, node, fundamental, overtones, and harmonics.
• Identify instances of sound interference in everyday situations.
• Describe how sound interference occurring inside open and closed tubes changes the characteristics of the sound,

and how this applies to sounds produced by musical instruments.
• Calculate the length of a tube using sound wave measurements.

17.6. Hearing
• Define hearing, pitch, loudness, timbre, note, tone, phon, ultrasound, and infrasound.
• Compare loudness to frequency and intensity of a sound.
• Identify structures of the inner ear and explain how they relate to sound perception.

17.7. Ultrasound
• Define acoustic impedance and intensity reflection coefficient.
• Describe medical and other uses of ultrasound technology.
• Calculate acoustic impedance using density values and the speed of ultrasound.
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• Calculate the velocity of a moving object using Doppler-shifted ultrasound.

Introduction to the Physics of Hearing

If a tree falls in the forest and no one is there to hear it, does it make a sound? The answer to this old philosophical question
depends on how you define sound. If sound only exists when someone is around to perceive it, then there was no sound.
However, if we define sound in terms of physics; that is, a disturbance of the atoms in matter transmitted from its origin outward
(in other words, a wave), then there was a sound, even if nobody was around to hear it.

Such a wave is the physical phenomenon we call sound. Its perception is hearing. Both the physical phenomenon and its
perception are interesting and will be considered in this text. We shall explore both sound and hearing; they are related, but are
not the same thing. We will also explore the many practical uses of sound waves, such as in medical imaging.

17.1 Sound

Figure 17.2 This glass has been shattered by a high-intensity sound wave of the same frequency as the resonant frequency of the glass. While the
sound is not visible, the effects of the sound prove its existence. (credit: ||read||, Flickr)

Sound can be used as a familiar illustration of waves. Because hearing is one of our most important senses, it is interesting to
see how the physical properties of sound correspond to our perceptions of it. Hearing is the perception of sound, just as vision is
the perception of visible light. But sound has important applications beyond hearing. Ultrasound, for example, is not heard but
can be employed to form medical images and is also used in treatment.

The physical phenomenon of sound is defined to be a disturbance of matter that is transmitted from its source outward. Sound is
a wave. On the atomic scale, it is a disturbance of atoms that is far more ordered than their thermal motions. In many instances,
sound is a periodic wave, and the atoms undergo simple harmonic motion. In this text, we shall explore such periodic sound
waves.

A vibrating string produces a sound wave as illustrated in Figure 17.3, Figure 17.4, and Figure 17.5. As the string oscillates
back and forth, it transfers energy to the air, mostly as thermal energy created by turbulence. But a small part of the string’s
energy goes into compressing and expanding the surrounding air, creating slightly higher and lower local pressures. These
compressions (high pressure regions) and rarefactions (low pressure regions) move out as longitudinal pressure waves having
the same frequency as the string—they are the disturbance that is a sound wave. (Sound waves in air and most fluids are
longitudinal, because fluids have almost no shear strength. In solids, sound waves can be both transverse and longitudinal.)
Figure 17.5 shows a graph of gauge pressure versus distance from the vibrating string.

Figure 17.3 A vibrating string moving to the right compresses the air in front of it and expands the air behind it.

Figure 17.4 As the string moves to the left, it creates another compression and rarefaction as the ones on the right move away from the string.
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Figure 17.5 After many vibrations, there are a series of compressions and rarefactions moving out from the string as a sound wave. The graph shows
gauge pressure versus distance from the source. Pressures vary only slightly from atmospheric for ordinary sounds.

The amplitude of a sound wave decreases with distance from its source, because the energy of the wave is spread over a larger
and larger area. But it is also absorbed by objects, such as the eardrum in Figure 17.6, and converted to thermal energy by the
viscosity of air. In addition, during each compression a little heat transfers to the air and during each rarefaction even less heat
transfers from the air, so that the heat transfer reduces the organized disturbance into random thermal motions. (These
processes can be viewed as a manifestation of the second law of thermodynamics presented in Introduction to the Second
Law of Thermodynamics: Heat Engines and Their Efficiency.) Whether the heat transfer from compression to rarefaction is
significant depends on how far apart they are—that is, it depends on wavelength. Wavelength, frequency, amplitude, and speed
of propagation are important for sound, as they are for all waves.

Figure 17.6 Sound wave compressions and rarefactions travel up the ear canal and force the eardrum to vibrate. There is a net force on the eardrum,
since the sound wave pressures differ from the atmospheric pressure found behind the eardrum. A complicated mechanism converts the vibrations to
nerve impulses, which are perceived by the person.

PhET Explorations: Wave Interference

WMake waves with a dripping faucet, audio speaker, or laser! Add a second source or a pair of slits to create an interference
pattern.
(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42255/
1.7/#eip-idm375110816)
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17.2 Speed of Sound, Frequency, and Wavelength

Figure 17.7 When a firework explodes, the light energy is perceived before the sound energy. Sound travels more slowly than light does. (credit:
Dominic Alves, Flickr)

Sound, like all waves, travels at a certain speed and has the properties of frequency and wavelength. You can observe direct
evidence of the speed of sound while watching a fireworks display. The flash of an explosion is seen well before its sound is
heard, implying both that sound travels at a finite speed and that it is much slower than light. You can also directly sense the
frequency of a sound. Perception of frequency is called pitch. The wavelength of sound is not directly sensed, but indirect
evidence is found in the correlation of the size of musical instruments with their pitch. Small instruments, such as a piccolo,
typically make high-pitch sounds, while large instruments, such as a tuba, typically make low-pitch sounds. High pitch means
small wavelength, and the size of a musical instrument is directly related to the wavelengths of sound it produces. So a small
instrument creates short-wavelength sounds. Similar arguments hold that a large instrument creates long-wavelength sounds.

The relationship of the speed of sound, its frequency, and wavelength is the same as for all waves:

(17.1)vw = fλ,

where vw is the speed of sound, f is its frequency, and λ is its wavelength. The wavelength of a sound is the distance

between adjacent identical parts of a wave—for example, between adjacent compressions as illustrated in Figure 17.8. The
frequency is the same as that of the source and is the number of waves that pass a point per unit time.

Figure 17.8 A sound wave emanates from a source vibrating at a frequency f , propagates at vw , and has a wavelength λ .

Table 17.1 makes it apparent that the speed of sound varies greatly in different media. The speed of sound in a medium is
determined by a combination of the medium’s rigidity (or compressibility in gases) and its density. The more rigid (or less
compressible) the medium, the faster the speed of sound. This observation is analogous to the fact that the frequency of a
simple harmonic motion is directly proportional to the stiffness of the oscillating object. The greater the density of a medium, the
slower the speed of sound. This observation is analogous to the fact that the frequency of a simple harmonic motion is inversely
proportional to the mass of the oscillating object. The speed of sound in air is low, because air is compressible. Because liquids
and solids are relatively rigid and very difficult to compress, the speed of sound in such media is generally greater than in gases.
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Table 17.1 Speed of Sound in
Various Media

Medium vw(m/s)

Gases at 0ºC

Air 331

Carbon dioxide 259

Oxygen 316

Helium 965

Hydrogen 1290

Liquids at 20ºC

Ethanol 1160

Mercury 1450

Water, fresh 1480

Sea water 1540

Human tissue 1540

Solids (longitudinal or bulk)

Vulcanized rubber 54

Polyethylene 920

Marble 3810

Glass, Pyrex 5640

Lead 1960

Aluminum 5120

Steel 5960

Earthquakes, essentially sound waves in Earth’s crust, are an interesting example of how the speed of sound depends on the
rigidity of the medium. Earthquakes have both longitudinal and transverse components, and these travel at different speeds. The
bulk modulus of granite is greater than its shear modulus. For that reason, the speed of longitudinal or pressure waves (P-
waves) in earthquakes in granite is significantly higher than the speed of transverse or shear waves (S-waves). Both components
of earthquakes travel slower in less rigid material, such as sediments. P-waves have speeds of 4 to 7 km/s, and S-waves
correspondingly range in speed from 2 to 5 km/s, both being faster in more rigid material. The P-wave gets progressively farther
ahead of the S-wave as they travel through Earth’s crust. The time between the P- and S-waves is routinely used to determine
the distance to their source, the epicenter of the earthquake.

The speed of sound is affected by temperature in a given medium. For air at sea level, the speed of sound is given by

(17.2)vw = (331 m/s) T
273 K,

where the temperature (denoted as T ) is in units of kelvin. The speed of sound in gases is related to the average speed of

particles in the gas, vrms , and that

(17.3)vrms = 3kT
m ,

where k is the Boltzmann constant ( 1.38×10−23 J/K ) and m is the mass of each (identical) particle in the gas. So, it is

reasonable that the speed of sound in air and other gases should depend on the square root of temperature. While not
negligible, this is not a strong dependence. At 0ºC , the speed of sound is 331 m/s, whereas at 20.0ºC it is 343 m/s, less than

a 4% increase. Figure 17.9 shows a use of the speed of sound by a bat to sense distances. Echoes are also used in medical
imaging.
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Figure 17.9 A bat uses sound echoes to find its way about and to catch prey. The time for the echo to return is directly proportional to the distance.

One of the more important properties of sound is that its speed is nearly independent of frequency. This independence is
certainly true in open air for sounds in the audible range of 20 to 20,000 Hz. If this independence were not true, you would
certainly notice it for music played by a marching band in a football stadium, for example. Suppose that high-frequency sounds
traveled faster—then the farther you were from the band, the more the sound from the low-pitch instruments would lag that from
the high-pitch ones. But the music from all instruments arrives in cadence independent of distance, and so all frequencies must
travel at nearly the same speed. Recall that

(17.4)vw = fλ.

In a given medium under fixed conditions, vw is constant, so that there is a relationship between f and λ ; the higher the

frequency, the smaller the wavelength. See Figure 17.10 and consider the following example.

Figure 17.10 Because they travel at the same speed in a given medium, low-frequency sounds must have a greater wavelength than high-frequency
sounds. Here, the lower-frequency sounds are emitted by the large speaker, called a woofer, while the higher-frequency sounds are emitted by the
small speaker, called a tweeter.

Example 17.1 Calculating Wavelengths: What Are the Wavelengths of Audible Sounds?

Calculate the wavelengths of sounds at the extremes of the audible range, 20 and 20,000 Hz, in 30.0ºC air. (Assume that

the frequency values are accurate to two significant figures.)

Strategy

To find wavelength from frequency, we can use vw = fλ .

Solution

1. Identify knowns. The value for vw , is given by

(17.5)vw = (331 m/s) T
273 K.

2. Convert the temperature into kelvin and then enter the temperature into the equation

(17.6)vw = (331 m/s) 303 K
273 K = 348.7 m/s.

3. Solve the relationship between speed and wavelength for λ :

(17.7)λ = vw
f .

4. Enter the speed and the minimum frequency to give the maximum wavelength:

(17.8)λmax = 348.7 m/s
20 Hz = 17 m.

5. Enter the speed and the maximum frequency to give the minimum wavelength:
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(17.9)λmin = 348.7 m/s
20,000 Hz = 0.017 m = 1.7 cm.

Discussion

Because the product of f multiplied by λ equals a constant, the smaller f is, the larger λ must be, and vice versa.

The speed of sound can change when sound travels from one medium to another. However, the frequency usually remains the
same because it is like a driven oscillation and has the frequency of the original source. If vw changes and f remains the

same, then the wavelength λ must change. That is, because vw = fλ , the higher the speed of a sound, the greater its

wavelength for a given frequency.

Making Connections: Take-Home Investigation—Voice as a Sound Wave

Suspend a sheet of paper so that the top edge of the paper is fixed and the bottom edge is free to move. You could tape the
top edge of the paper to the edge of a table. Gently blow near the edge of the bottom of the sheet and note how the sheet
moves. Speak softly and then louder such that the sounds hit the edge of the bottom of the paper, and note how the sheet
moves. Explain the effects.

Check Your Understanding

Imagine you observe two fireworks explode. You hear the explosion of one as soon as you see it. However, you see the
other firework for several milliseconds before you hear the explosion. Explain why this is so.

Solution
Sound and light both travel at definite speeds. The speed of sound is slower than the speed of light. The first firework is
probably very close by, so the speed difference is not noticeable. The second firework is farther away, so the light arrives at
your eyes noticeably sooner than the sound wave arrives at your ears.

Check Your Understanding

You observe two musical instruments that you cannot identify. One plays high-pitch sounds and the other plays low-pitch
sounds. How could you determine which is which without hearing either of them play?

Solution
Compare their sizes. High-pitch instruments are generally smaller than low-pitch instruments because they generate a
smaller wavelength.

17.3 Sound Intensity and Sound Level

Figure 17.11 Noise on crowded roadways like this one in Delhi makes it hard to hear others unless they shout. (credit: Lingaraj G J, Flickr)

In a quiet forest, you can sometimes hear a single leaf fall to the ground. After settling into bed, you may hear your blood pulsing
through your ears. But when a passing motorist has his stereo turned up, you cannot even hear what the person next to you in
your car is saying. We are all very familiar with the loudness of sounds and aware that they are related to how energetically the
source is vibrating. In cartoons depicting a screaming person (or an animal making a loud noise), the cartoonist often shows an
open mouth with a vibrating uvula, the hanging tissue at the back of the mouth, to suggest a loud sound coming from the throat
Figure 17.12. High noise exposure is hazardous to hearing, and it is common for musicians to have hearing losses that are
sufficiently severe that they interfere with the musicians’ abilities to perform. The relevant physical quantity is sound intensity, a
concept that is valid for all sounds whether or not they are in the audible range.
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Intensity is defined to be the power per unit area carried by a wave. Power is the rate at which energy is transferred by the wave.
In equation form, intensity I is

(17.10)I = P
A,

where P is the power through an area A . The SI unit for I is W/m2 . The intensity of a sound wave is related to its amplitude

squared by the following relationship:

(17.11)
I =

⎛
⎝Δp⎞⎠2
2ρvw

.

Here Δp is the pressure variation or pressure amplitude (half the difference between the maximum and minimum pressure in

the sound wave) in units of pascals (Pa) or N/m2 . (We are using a lower case p for pressure to distinguish it from power,

denoted by P above.) The energy (as kinetic energy mv2

2 ) of an oscillating element of air due to a traveling sound wave is

proportional to its amplitude squared. In this equation, ρ is the density of the material in which the sound wave travels, in units

of kg/m3 , and vw is the speed of sound in the medium, in units of m/s. The pressure variation is proportional to the amplitude

of the oscillation, and so I varies as (Δp)2 (Figure 17.12). This relationship is consistent with the fact that the sound wave is

produced by some vibration; the greater its pressure amplitude, the more the air is compressed in the sound it creates.

Figure 17.12 Graphs of the gauge pressures in two sound waves of different intensities. The more intense sound is produced by a source that has
larger-amplitude oscillations and has greater pressure maxima and minima. Because pressures are higher in the greater-intensity sound, it can exert
larger forces on the objects it encounters.

Sound intensity levels are quoted in decibels (dB) much more often than sound intensities in watts per meter squared. Decibels
are the unit of choice in the scientific literature as well as in the popular media. The reasons for this choice of units are related to
how we perceive sounds. How our ears perceive sound can be more accurately described by the logarithm of the intensity rather
than directly to the intensity. The sound intensity level β in decibels of a sound having an intensity I in watts per meter

squared is defined to be

(17.12)
β (dB) = 10 log10

⎛
⎝ I

I0

⎞
⎠,

where I0 = 10–12 W/m2 is a reference intensity. In particular, I0 is the lowest or threshold intensity of sound a person with

normal hearing can perceive at a frequency of 1000 Hz. Sound intensity level is not the same as intensity. Because β is defined

in terms of a ratio, it is a unitless quantity telling you the level of the sound relative to a fixed standard ( 10–12 W/m2 , in this

case). The units of decibels (dB) are used to indicate this ratio is multiplied by 10 in its definition. The bel, upon which the decibel
is based, is named for Alexander Graham Bell, the inventor of the telephone.
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Table 17.2 Sound Intensity Levels and Intensities

Sound intensity level β (dB) Intensity I(W/m2) Example/effect

0 1×10–12 Threshold of hearing at 1000 Hz

10 1×10–11 Rustle of leaves

20 1×10–10 Whisper at 1 m distance

30 1×10–9 Quiet home

40 1×10–8 Average home

50 1×10–7 Average office, soft music

60 1×10–6 Normal conversation

70 1×10–5 Noisy office, busy traffic

80 1×10–4 Loud radio, classroom lecture

90 1×10–3 Inside a heavy truck; damage from prolonged exposure[1]

100 1×10–2 Noisy factory, siren at 30 m; damage from 8 h per day exposure

110 1×10–1 Damage from 30 min per day exposure

120 1 Loud rock concert, pneumatic chipper at 2 m; threshold of pain

140 1×102 Jet airplane at 30 m; severe pain, damage in seconds

160 1×104 Bursting of eardrums

The decibel level of a sound having the threshold intensity of 10 – 12 W/m2 is β = 0 dB , because log10 1 = 0 . That is, the

threshold of hearing is 0 decibels. Table 17.2 gives levels in decibels and intensities in watts per meter squared for some familiar
sounds.

One of the more striking things about the intensities in Table 17.2 is that the intensity in watts per meter squared is quite small for
most sounds. The ear is sensitive to as little as a trillionth of a watt per meter squared—even more impressive when you realize

that the area of the eardrum is only about 1 cm2 , so that only 10 – 16 W falls on it at the threshold of hearing! Air molecules in

a sound wave of this intensity vibrate over a distance of less than one molecular diameter, and the gauge pressures involved are

less than 10 – 9 atm.

Another impressive feature of the sounds in Table 17.2 is their numerical range. Sound intensity varies by a factor of 1012 from

threshold to a sound that causes damage in seconds. You are unaware of this tremendous range in sound intensity because how
your ears respond can be described approximately as the logarithm of intensity. Thus, sound intensity levels in decibels fit your
experience better than intensities in watts per meter squared. The decibel scale is also easier to relate to because most people

are more accustomed to dealing with numbers such as 0, 53, or 120 than numbers such as 1.00×10 – 11 .

One more observation readily verified by examining Table 17.2 or using I =
⎛
⎝Δp⎞⎠
2ρvw

2
is that each factor of 10 in intensity

corresponds to 10 dB. For example, a 90 dB sound compared with a 60 dB sound is 30 dB greater, or three factors of 10 (that is,

103 times) as intense. Another example is that if one sound is 107 as intense as another, it is 70 dB higher. See Table 17.3.

1. Several government agencies and health-related professional associations recommend that 85 dB not be exceeded for
8-hour daily exposures in the absence of hearing protection.
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Table 17.3 Ratios of
Intensities and
Corresponding Differences
in Sound Intensity Levels

I2 / I1 β2 – β1

2.0 3.0 dB

5.0 7.0 dB

10.0 10.0 dB

Example 17.2 Calculating Sound Intensity Levels: Sound Waves

Calculate the sound intensity level in decibels for a sound wave traveling in air at 0ºC and having a pressure amplitude of

0.656 Pa.

Strategy

We are given Δp , so we can calculate I using the equation I = ⎛
⎝Δp⎞⎠2 / ⎛⎝2pvw

⎞
⎠
2 . Using I , we can calculate β straight

from its definition in β (dB) = 10 log10
⎛
⎝I / I0

⎞
⎠ .

Solution

(1) Identify knowns:

Sound travels at 331 m/s in air at 0ºC .

Air has a density of 1.29 kg/m3 at atmospheric pressure and 0ºC .

(2) Enter these values and the pressure amplitude into I = ⎛
⎝Δp⎞⎠2 / ⎛⎝2ρvw

⎞
⎠ :

(17.13)
I =

⎛
⎝Δp⎞⎠2
2ρvw

= (0.656 Pa)2

2⎛⎝1.29 kg/m3⎞⎠(331 m/s)
= 5.04×10−4 W/m2.

(3) Enter the value for I and the known value for I0 into β (dB) = 10 log10
⎛
⎝I / I0

⎞
⎠ . Calculate to find the sound intensity

level in decibels:

(17.14)10 log10
⎛
⎝5.04×108⎞⎠ = 10 ⎛⎝8.70⎞⎠ dB = 87 dB.

Discussion

This 87 dB sound has an intensity five times as great as an 80 dB sound. So a factor of five in intensity corresponds to a
difference of 7 dB in sound intensity level. This value is true for any intensities differing by a factor of five.

Example 17.3 Change Intensity Levels of a Sound: What Happens to the Decibel Level?

Show that if one sound is twice as intense as another, it has a sound level about 3 dB higher.

Strategy

You are given that the ratio of two intensities is 2 to 1, and are then asked to find the difference in their sound levels in
decibels. You can solve this problem using of the properties of logarithms.

Solution

(1) Identify knowns:

The ratio of the two intensities is 2 to 1, or:

(17.15)I2
I1

= 2.00.

We wish to show that the difference in sound levels is about 3 dB. That is, we want to show:

(17.16)β2 − β1 = 3 dB.

Note that:

(17.17)log10 b − log10a = log10
⎛
⎝ba
⎞
⎠.
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(2) Use the definition of β to get:

(17.18)
β2 − β1 = 10 log10

⎛
⎝

I2
I1

⎞
⎠ = 10 log10 2.00 = 10 (0.301) dB.

Thus,

(17.19)β2 − β1 = 3.01 dB.

Discussion

This means that the two sound intensity levels differ by 3.01 dB, or about 3 dB, as advertised. Note that because only the
ratio I2 / I1 is given (and not the actual intensities), this result is true for any intensities that differ by a factor of two. For

example, a 56.0 dB sound is twice as intense as a 53.0 dB sound, a 97.0 dB sound is half as intense as a 100 dB sound,
and so on.

It should be noted at this point that there is another decibel scale in use, called the sound pressure level, based on the ratio of
the pressure amplitude to a reference pressure. This scale is used particularly in applications where sound travels in water. It is
beyond the scope of most introductory texts to treat this scale because it is not commonly used for sounds in air, but it is
important to note that very different decibel levels may be encountered when sound pressure levels are quoted. For example,
ocean noise pollution produced by ships may be as great as 200 dB expressed in the sound pressure level, where the more
familiar sound intensity level we use here would be something under 140 dB for the same sound.

Take-Home Investigation: Feeling Sound

Find a CD player and a CD that has rock music. Place the player on a light table, insert the CD into the player, and start
playing the CD. Place your hand gently on the table next to the speakers. Increase the volume and note the level when the
table just begins to vibrate as the rock music plays. Increase the reading on the volume control until it doubles. What has
happened to the vibrations?

Check Your Understanding

Describe how amplitude is related to the loudness of a sound.

Solution
Amplitude is directly proportional to the experience of loudness. As amplitude increases, loudness increases.

Check Your Understanding

Identify common sounds at the levels of 10 dB, 50 dB, and 100 dB.

Solution

10 dB: Running fingers through your hair.

50 dB: Inside a quiet home with no television or radio.

100 dB: Take-off of a jet plane.

17.4 Doppler Effect and Sonic Booms

The characteristic sound of a motorcycle buzzing by is an example of the Doppler effect. The high-pitch scream shifts
dramatically to a lower-pitch roar as the motorcycle passes by a stationary observer. The closer the motorcycle brushes by, the
more abrupt the shift. The faster the motorcycle moves, the greater the shift. We also hear this characteristic shift in frequency
for passing race cars, airplanes, and trains. It is so familiar that it is used to imply motion and children often mimic it in play.

The Doppler effect is an alteration in the observed frequency of a sound due to motion of either the source or the observer.
Although less familiar, this effect is easily noticed for a stationary source and moving observer. For example, if you ride a train
past a stationary warning bell, you will hear the bell’s frequency shift from high to low as you pass by. The actual change in
frequency due to relative motion of source and observer is called a Doppler shift. The Doppler effect and Doppler shift are
named for the Austrian physicist and mathematician Christian Johann Doppler (1803–1853), who did experiments with both
moving sources and moving observers. Doppler, for example, had musicians play on a moving open train car and also play
standing next to the train tracks as a train passed by. Their music was observed both on and off the train, and changes in
frequency were measured.

What causes the Doppler shift? Figure 17.13, Figure 17.14, and Figure 17.15 compare sound waves emitted by stationary and
moving sources in a stationary air mass. Each disturbance spreads out spherically from the point where the sound was emitted.
If the source is stationary, then all of the spheres representing the air compressions in the sound wave centered on the same
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point, and the stationary observers on either side see the same wavelength and frequency as emitted by the source, as in Figure
17.13. If the source is moving, as in Figure 17.14, then the situation is different. Each compression of the air moves out in a
sphere from the point where it was emitted, but the point of emission moves. This moving emission point causes the air
compressions to be closer together on one side and farther apart on the other. Thus, the wavelength is shorter in the direction
the source is moving (on the right in Figure 17.14), and longer in the opposite direction (on the left in Figure 17.14). Finally, if the
observers move, as in Figure 17.15, the frequency at which they receive the compressions changes. The observer moving
toward the source receives them at a higher frequency, and the person moving away from the source receives them at a lower
frequency.

Figure 17.13 Sounds emitted by a source spread out in spherical waves. Because the source, observers, and air are stationary, the wavelength and
frequency are the same in all directions and to all observers.

Figure 17.14 Sounds emitted by a source moving to the right spread out from the points at which they were emitted. The wavelength is reduced and,
consequently, the frequency is increased in the direction of motion, so that the observer on the right hears a higher-pitch sound. The opposite is true for
the observer on the left, where the wavelength is increased and the frequency is reduced.

Figure 17.15 The same effect is produced when the observers move relative to the source. Motion toward the source increases frequency as the
observer on the right passes through more wave crests than she would if stationary. Motion away from the source decreases frequency as the observer
on the left passes through fewer wave crests than he would if stationary.

We know that wavelength and frequency are related by vw = fλ , where vw is the fixed speed of sound. The sound moves in a

medium and has the same speed vw in that medium whether the source is moving or not. Thus f multiplied by λ is a

constant. Because the observer on the right in Figure 17.14 receives a shorter wavelength, the frequency she receives must be
higher. Similarly, the observer on the left receives a longer wavelength, and hence he hears a lower frequency. The same thing
happens in Figure 17.15. A higher frequency is received by the observer moving toward the source, and a lower frequency is
received by an observer moving away from the source. In general, then, relative motion of source and observer toward one
another increases the received frequency. Relative motion apart decreases frequency. The greater the relative speed is, the
greater the effect.

The Doppler Effect

The Doppler effect occurs not only for sound but for any wave when there is relative motion between the observer and the
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source. There are Doppler shifts in the frequency of sound, light, and water waves, for example. Doppler shifts can be used
to determine velocity, such as when ultrasound is reflected from blood in a medical diagnostic. The recession of galaxies is
determined by the shift in the frequencies of light received from them and has implied much about the origins of the
universe. Modern physics has been profoundly affected by observations of Doppler shifts.

For a stationary observer and a moving source, the frequency fobs received by the observer can be shown to be

(17.20)fobs = fs
⎛
⎝

vw
vw ± vs

⎞
⎠,

where fs is the frequency of the source, vs is the speed of the source along a line joining the source and observer, and vw is

the speed of sound. The minus sign is used for motion toward the observer and the plus sign for motion away from the observer,
producing the appropriate shifts up and down in frequency. Note that the greater the speed of the source, the greater the effect.
Similarly, for a stationary source and moving observer, the frequency received by the observer fobs is given by

(17.21)fobs = fs
⎛
⎝
vw ± vobs

vw
⎞
⎠,

where vobs is the speed of the observer along a line joining the source and observer. Here the plus sign is for motion toward the

source, and the minus is for motion away from the source.

Example 17.4 Calculate Doppler Shift: A Train Horn

Suppose a train that has a 150-Hz horn is moving at 35.0 m/s in still air on a day when the speed of sound is 340 m/s.

(a) What frequencies are observed by a stationary person at the side of the tracks as the train approaches and after it
passes?

(b) What frequency is observed by the train’s engineer traveling on the train?

Strategy

To find the observed frequency in (a), fobs = fs
⎛
⎝

vw
vw ± vs

⎞
⎠, must be used because the source is moving. The minus sign

is used for the approaching train, and the plus sign for the receding train. In (b), there are two Doppler shifts—one for a
moving source and the other for a moving observer.

Solution for (a)

(1) Enter known values into fobs = fs
⎛
⎝

vw
vw – vs

⎞
⎠.

(17.22)fobs = fs
⎛
⎝

vw
vw − vs

⎞
⎠ = (150 Hz)⎛⎝ 340 m/s

340 m/s – 35.0 m/s
⎞
⎠

(2) Calculate the frequency observed by a stationary person as the train approaches.

(17.23)fobs = (150 Hz)(1.11) = 167 Hz

(3) Use the same equation with the plus sign to find the frequency heard by a stationary person as the train recedes.

(17.24)fobs = fs
⎛
⎝

vw
vw + vs

⎞
⎠ = (150 Hz)⎛⎝ 340 m/s

340 m/s + 35.0 m/s
⎞
⎠

(4) Calculate the second frequency.

(17.25)fobs = (150 Hz)(0.907) = 136 Hz

Discussion on (a)

The numbers calculated are valid when the train is far enough away that the motion is nearly along the line joining train and
observer. In both cases, the shift is significant and easily noticed. Note that the shift is 17.0 Hz for motion toward and 14.0
Hz for motion away. The shifts are not symmetric.

Solution for (b)

(1) Identify knowns:

• It seems reasonable that the engineer would receive the same frequency as emitted by the horn, because the relative
velocity between them is zero.

• Relative to the medium (air), the speeds are vs = vobs = 35.0 m/s.
• The first Doppler shift is for the moving observer; the second is for the moving source.
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(2) Use the following equation:

(17.26)fobs = ⎡⎣ fs
⎛
⎝
vw ± vobs

vw
⎞
⎠
⎤
⎦⎛⎝

vw
vw ± vs

⎞
⎠.

The quantity in the square brackets is the Doppler-shifted frequency due to a moving observer. The factor on the right is the
effect of the moving source.

(3) Because the train engineer is moving in the direction toward the horn, we must use the plus sign for vobs; however,

because the horn is also moving in the direction away from the engineer, we also use the plus sign for vs . But the train is

carrying both the engineer and the horn at the same velocity, so vs = vobs . As a result, everything but fs cancels, yielding

(17.27)fobs = fs.

Discussion for (b)

We may expect that there is no change in frequency when source and observer move together because it fits your
experience. For example, there is no Doppler shift in the frequency of conversations between driver and passenger on a
motorcycle. People talking when a wind moves the air between them also observe no Doppler shift in their conversation.
The crucial point is that source and observer are not moving relative to each other.

Sonic Booms to Bow Wakes

What happens to the sound produced by a moving source, such as a jet airplane, that approaches or even exceeds the speed of
sound? The answer to this question applies not only to sound but to all other waves as well.

Suppose a jet airplane is coming nearly straight at you, emitting a sound of frequency fs . The greater the plane’s speed vs , the

greater the Doppler shift and the greater the value observed for fobs . Now, as vs approaches the speed of sound, fobs

approaches infinity, because the denominator in fobs = fs
⎛
⎝

vw
vw ± vs

⎞
⎠ approaches zero. At the speed of sound, this result

means that in front of the source, each successive wave is superimposed on the previous one because the source moves
forward at the speed of sound. The observer gets them all at the same instant, and so the frequency is infinite. (Before airplanes
exceeded the speed of sound, some people argued it would be impossible because such constructive superposition would
produce pressures great enough to destroy the airplane.) If the source exceeds the speed of sound, no sound is received by the
observer until the source has passed, so that the sounds from the approaching source are mixed with those from it when
receding. This mixing appears messy, but something interesting happens—a sonic boom is created. (See Figure 17.16.)

Figure 17.16 Sound waves from a source that moves faster than the speed of sound spread spherically from the point where they are emitted, but the
source moves ahead of each. Constructive interference along the lines shown (actually a cone in three dimensions) creates a shock wave called a

sonic boom. The faster the speed of the source, the smaller the angle θ .

There is constructive interference along the lines shown (a cone in three dimensions) from similar sound waves arriving there
simultaneously. This superposition forms a disturbance called a sonic boom, a constructive interference of sound created by an
object moving faster than sound. Inside the cone, the interference is mostly destructive, and so the sound intensity there is much
less than on the shock wave. An aircraft creates two sonic booms, one from its nose and one from its tail. (See Figure 17.17.)
During television coverage of space shuttle landings, two distinct booms could often be heard. These were separated by exactly
the time it would take the shuttle to pass by a point. Observers on the ground often do not see the aircraft creating the sonic
boom, because it has passed by before the shock wave reaches them, as seen in Figure 17.17. If the aircraft flies close by at
low altitude, pressures in the sonic boom can be destructive and break windows as well as rattle nerves. Because of how
destructive sonic booms can be, supersonic flights are banned over populated areas of the United States.
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Figure 17.17 Two sonic booms, created by the nose and tail of an aircraft, are observed on the ground after the plane has passed by.

Sonic booms are one example of a broader phenomenon called bow wakes. A bow wake, such as the one in Figure 17.18, is
created when the wave source moves faster than the wave propagation speed. Water waves spread out in circles from the point
where created, and the bow wake is the familiar V-shaped wake trailing the source. A more exotic bow wake is created when a
subatomic particle travels through a medium faster than the speed of light travels in that medium. (In a vacuum, the maximum

speed of light will be c = 3.00×108 m/s ; in the medium of water, the speed of light is closer to 0.75c . If the particle creates

light in its passage, that light spreads on a cone with an angle indicative of the speed of the particle, as illustrated in Figure
17.19. Such a bow wake is called Cerenkov radiation and is commonly observed in particle physics.

Figure 17.18 Bow wake created by a duck. Constructive interference produces the rather structured wake, while there is relatively little wave action
inside the wake, where interference is mostly destructive. (credit: Horia Varlan, Flickr)

Figure 17.19 The blue glow in this research reactor pool is Cerenkov radiation caused by subatomic particles traveling faster than the speed of light in
water. (credit: U.S. Nuclear Regulatory Commission)

Doppler shifts and sonic booms are interesting sound phenomena that occur in all types of waves. They can be of considerable
use. For example, the Doppler shift in ultrasound can be used to measure blood velocity, while police use the Doppler shift in
radar (a microwave) to measure car velocities. In meteorology, the Doppler shift is used to track the motion of storm clouds; such
“Doppler Radar” can give velocity and direction and rain or snow potential of imposing weather fronts. In astronomy, we can
examine the light emitted from distant galaxies and determine their speed relative to ours. As galaxies move away from us, their
light is shifted to a lower frequency, and so to a longer wavelength—the so-called red shift. Such information from galaxies far, far
away has allowed us to estimate the age of the universe (from the Big Bang) as about 14 billion years.
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Check Your Understanding

Why did scientist Christian Doppler observe musicians both on a moving train and also from a stationary point not on the
train?

Solution
Doppler needed to compare the perception of sound when the observer is stationary and the sound source moves, as well
as when the sound source and the observer are both in motion.

Check Your Understanding

Describe a situation in your life when you might rely on the Doppler shift to help you either while driving a car or walking near
traffic.

Solution
If I am driving and I hear Doppler shift in an ambulance siren, I would be able to tell when it was getting closer and also if it
has passed by. This would help me to know whether I needed to pull over and let the ambulance through.

17.5 Sound Interference and Resonance: Standing Waves in Air Columns

Figure 17.20 Some types of headphones use the phenomena of constructive and destructive interference to cancel out outside noises. (credit: JVC
America, Flickr)

Interference is the hallmark of waves, all of which exhibit constructive and destructive interference exactly analogous to that seen
for water waves. In fact, one way to prove something “is a wave” is to observe interference effects. So, sound being a wave, we
expect it to exhibit interference; we have already mentioned a few such effects, such as the beats from two similar notes played
simultaneously.

Figure 17.21 shows a clever use of sound interference to cancel noise. Larger-scale applications of active noise reduction by
destructive interference are contemplated for entire passenger compartments in commercial aircraft. To obtain destructive
interference, a fast electronic analysis is performed, and a second sound is introduced with its maxima and minima exactly
reversed from the incoming noise. Sound waves in fluids are pressure waves and consistent with Pascal’s principle; pressures
from two different sources add and subtract like simple numbers; that is, positive and negative gauge pressures add to a much
smaller pressure, producing a lower-intensity sound. Although completely destructive interference is possible only under the
simplest conditions, it is possible to reduce noise levels by 30 dB or more using this technique.

Figure 17.21 Headphones designed to cancel noise with destructive interference create a sound wave exactly opposite to the incoming sound. These
headphones can be more effective than the simple passive attenuation used in most ear protection. Such headphones were used on the record-
setting, around the world nonstop flight of the Voyager aircraft to protect the pilots’ hearing from engine noise.
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Where else can we observe sound interference? All sound resonances, such as in musical instruments, are due to constructive
and destructive interference. Only the resonant frequencies interfere constructively to form standing waves, while others interfere
destructively and are absent. From the toot made by blowing over a bottle, to the characteristic flavor of a violin’s sounding box,
to the recognizability of a great singer’s voice, resonance and standing waves play a vital role.

Interference

Interference is such a fundamental aspect of waves that observing interference is proof that something is a wave. The wave
nature of light was established by experiments showing interference. Similarly, when electrons scattered from crystals
exhibited interference, their wave nature was confirmed to be exactly as predicted by symmetry with certain wave
characteristics of light.

Suppose we hold a tuning fork near the end of a tube that is closed at the other end, as shown in Figure 17.22, Figure 17.23,
Figure 17.24, and Figure 17.25. If the tuning fork has just the right frequency, the air column in the tube resonates loudly, but at
most frequencies it vibrates very little. This observation just means that the air column has only certain natural frequencies. The
figures show how a resonance at the lowest of these natural frequencies is formed. A disturbance travels down the tube at the
speed of sound and bounces off the closed end. If the tube is just the right length, the reflected sound arrives back at the tuning
fork exactly half a cycle later, and it interferes constructively with the continuing sound produced by the tuning fork. The incoming
and reflected sounds form a standing wave in the tube as shown.

Figure 17.22 Resonance of air in a tube closed at one end, caused by a tuning fork. A disturbance moves down the tube.

Figure 17.23 Resonance of air in a tube closed at one end, caused by a tuning fork. The disturbance reflects from the closed end of the tube.

Figure 17.24 Resonance of air in a tube closed at one end, caused by a tuning fork. If the length of the tube L is just right, the disturbance gets back

to the tuning fork half a cycle later and interferes constructively with the continuing sound from the tuning fork. This interference forms a standing wave,
and the air column resonates.
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Figure 17.25 Resonance of air in a tube closed at one end, caused by a tuning fork. A graph of air displacement along the length of the tube shows
none at the closed end, where the motion is constrained, and a maximum at the open end. This standing wave has one-fourth of its wavelength in the

tube, so that λ = 4L .

The standing wave formed in the tube has its maximum air displacement (an antinode) at the open end, where motion is
unconstrained, and no displacement (a node) at the closed end, where air movement is halted. The distance from a node to an
antinode is one-fourth of a wavelength, and this equals the length of the tube; thus, λ = 4L . This same resonance can be

produced by a vibration introduced at or near the closed end of the tube, as shown in Figure 17.26. It is best to consider this a
natural vibration of the air column independently of how it is induced.

Figure 17.26 The same standing wave is created in the tube by a vibration introduced near its closed end.

Given that maximum air displacements are possible at the open end and none at the closed end, there are other, shorter
wavelengths that can resonate in the tube, such as the one shown in Figure 17.27. Here the standing wave has three-fourths of
its wavelength in the tube, or L = (3 / 4)λ′ , so that λ′ = 4L / 3 . Continuing this process reveals a whole series of shorter-

wavelength and higher-frequency sounds that resonate in the tube. We use specific terms for the resonances in any system. The
lowest resonant frequency is called the fundamental, while all higher resonant frequencies are called overtones. All resonant
frequencies are integral multiples of the fundamental, and they are collectively called harmonics. The fundamental is the first
harmonic, the first overtone is the second harmonic, and so on. Figure 17.28 shows the fundamental and the first three
overtones (the first four harmonics) in a tube closed at one end.

Figure 17.27 Another resonance for a tube closed at one end. This has maximum air displacements at the open end, and none at the closed end. The

wavelength is shorter, with three-fourths λ′ equaling the length of the tube, so that λ′ = 4L / 3 . This higher-frequency vibration is the first

overtone.
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Figure 17.28 The fundamental and three lowest overtones for a tube closed at one end. All have maximum air displacements at the open end and
none at the closed end.

The fundamental and overtones can be present simultaneously in a variety of combinations. For example, middle C on a trumpet
has a sound distinctively different from middle C on a clarinet, both instruments being modified versions of a tube closed at one
end. The fundamental frequency is the same (and usually the most intense), but the overtones and their mix of intensities are
different and subject to shading by the musician. This mix is what gives various musical instruments (and human voices) their
distinctive characteristics, whether they have air columns, strings, sounding boxes, or drumheads. In fact, much of our speech is
determined by shaping the cavity formed by the throat and mouth and positioning the tongue to adjust the fundamental and
combination of overtones. Simple resonant cavities can be made to resonate with the sound of the vowels, for example. (See
Figure 17.29.) In boys, at puberty, the larynx grows and the shape of the resonant cavity changes giving rise to the difference in
predominant frequencies in speech between men and women.

Figure 17.29 The throat and mouth form an air column closed at one end that resonates in response to vibrations in the voice box. The spectrum of
overtones and their intensities vary with mouth shaping and tongue position to form different sounds. The voice box can be replaced with a mechanical
vibrator, and understandable speech is still possible. Variations in basic shapes make different voices recognizable.

Now let us look for a pattern in the resonant frequencies for a simple tube that is closed at one end. The fundamental has
λ = 4L , and frequency is related to wavelength and the speed of sound as given by:

(17.28)vw = fλ.

Solving for f in this equation gives

(17.29)f = vw
λ = vw

4L ,

where vw is the speed of sound in air. Similarly, the first overtone has λ′ = 4L / 3 (see Figure 17.28), so that

(17.30)f ′ = 3vw
4L = 3 f .

Because f ′ = 3 f , we call the first overtone the third harmonic. Continuing this process, we see a pattern that can be

generalized in a single expression. The resonant frequencies of a tube closed at one end are

(17.31)fn = nvw
4L , n = 1,3,5,

where f1 is the fundamental, f3 is the first overtone, and so on. It is interesting that the resonant frequencies depend on the

speed of sound and, hence, on temperature. This dependence poses a noticeable problem for organs in old unheated
cathedrals, and it is also the reason why musicians commonly bring their wind instruments to room temperature before playing
them.

Example 17.5 Find the Length of a Tube with a 128 Hz Fundamental

(a) What length should a tube closed at one end have on a day when the air temperature, is 22.0ºC , if its fundamental
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frequency is to be 128 Hz (C below middle C)?

(b) What is the frequency of its fourth overtone?

Strategy

The length L can be found from the relationship in fn = nvw
4L , but we will first need to find the speed of sound vw .

Solution for (a)

(1) Identify knowns:

• the fundamental frequency is 128 Hz
• the air temperature is 22.0ºC

(2) Use fn = nvw
4L to find the fundamental frequency ( n = 1 ).

(17.32)f1 = vw
4L

(3) Solve this equation for length.

(17.33)L = vw
4 f 1

(4) Find the speed of sound using vw = (331 m/s) T
273 K .

(17.34)
vw = (331 m/s) 295 K

273 K = 344 m/s

(5) Enter the values of the speed of sound and frequency into the expression for L .

(17.35)L = vw
4 f 1

= 344 m/s
4(128 Hz) = 0.672 m

Discussion on (a)

Many wind instruments are modified tubes that have finger holes, valves, and other devices for changing the length of the
resonating air column and hence, the frequency of the note played. Horns producing very low frequencies, such as tubas,
require tubes so long that they are coiled into loops.

Solution for (b)

(1) Identify knowns:

• the first overtone has n = 3
• the second overtone has n = 5
• the third overtone has n = 7
• the fourth overtone has n = 9

(2) Enter the value for the fourth overtone into fn = nvw
4L .

(17.36)f9 = 9vw
4L = 9 f 1 = 1.15 kHz

Discussion on (b)

Whether this overtone occurs in a simple tube or a musical instrument depends on how it is stimulated to vibrate and the
details of its shape. The trombone, for example, does not produce its fundamental frequency and only makes overtones.

Another type of tube is one that is open at both ends. Examples are some organ pipes, flutes, and oboes. The resonances of
tubes open at both ends can be analyzed in a very similar fashion to those for tubes closed at one end. The air columns in tubes
open at both ends have maximum air displacements at both ends, as illustrated in Figure 17.30. Standing waves form as shown.
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Figure 17.30 The resonant frequencies of a tube open at both ends are shown, including the fundamental and the first three overtones. In all cases the
maximum air displacements occur at both ends of the tube, giving it different natural frequencies than a tube closed at one end.

Based on the fact that a tube open at both ends has maximum air displacements at both ends, and using Figure 17.30 as a
guide, we can see that the resonant frequencies of a tube open at both ends are:

(17.37)fn = nvw
2L , n = 1, 2, 3...,

where f1 is the fundamental, f2 is the first overtone, f3 is the second overtone, and so on. Note that a tube open at both

ends has a fundamental frequency twice what it would have if closed at one end. It also has a different spectrum of overtones
than a tube closed at one end. So if you had two tubes with the same fundamental frequency but one was open at both ends and
the other was closed at one end, they would sound different when played because they have different overtones. Middle C, for
example, would sound richer played on an open tube, because it has even multiples of the fundamental as well as odd. A closed
tube has only odd multiples.

Real-World Applications: Resonance in Everyday Systems

Resonance occurs in many different systems, including strings, air columns, and atoms. Resonance is the driven or forced
oscillation of a system at its natural frequency. At resonance, energy is transferred rapidly to the oscillating system, and the
amplitude of its oscillations grows until the system can no longer be described by Hooke’s law. An example of this is the
distorted sound intentionally produced in certain types of rock music.

Wind instruments use resonance in air columns to amplify tones made by lips or vibrating reeds. Other instruments also use air
resonance in clever ways to amplify sound. Figure 17.31 shows a violin and a guitar, both of which have sounding boxes but
with different shapes, resulting in different overtone structures. The vibrating string creates a sound that resonates in the
sounding box, greatly amplifying the sound and creating overtones that give the instrument its characteristic flavor. The more
complex the shape of the sounding box, the greater its ability to resonate over a wide range of frequencies. The marimba, like
the one shown in Figure 17.32 uses pots or gourds below the wooden slats to amplify their tones. The resonance of the pot can
be adjusted by adding water.
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Figure 17.31 String instruments such as violins and guitars use resonance in their sounding boxes to amplify and enrich the sound created by their
vibrating strings. The bridge and supports couple the string vibrations to the sounding boxes and air within. (credits: guitar, Feliciano Guimares,
Fotopedia; violin, Steve Snodgrass, Flickr)

Figure 17.32 Resonance has been used in musical instruments since prehistoric times. This marimba uses gourds as resonance chambers to amplify
its sound. (credit: APC Events, Flickr)

We have emphasized sound applications in our discussions of resonance and standing waves, but these ideas apply to any
system that has wave characteristics. Vibrating strings, for example, are actually resonating and have fundamentals and
overtones similar to those for air columns. More subtle are the resonances in atoms due to the wave character of their electrons.
Their orbitals can be viewed as standing waves, which have a fundamental (ground state) and overtones (excited states). It is
fascinating that wave characteristics apply to such a wide range of physical systems.

Check Your Understanding

Describe how noise-canceling headphones differ from standard headphones used to block outside sounds.

Solution
Regular headphones only block sound waves with a physical barrier. Noise-canceling headphones use destructive
interference to reduce the loudness of outside sounds.
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Check Your Understanding

How is it possible to use a standing wave's node and antinode to determine the length of a closed-end tube?

Solution
When the tube resonates at its natural frequency, the wave's node is located at the closed end of the tube, and the antinode
is located at the open end. The length of the tube is equal to one-fourth of the wavelength of this wave. Thus, if we know the
wavelength of the wave, we can determine the length of the tube.

PhET Explorations: Sound

This simulation lets you see sound waves. Adjust the frequency or volume and you can see and hear how the wave
changes. Move the listener around and hear what she hears.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42296/1.8/#eip-
idm653375152)

Figure 17.33

17.6 Hearing

Figure 17.34 Hearing allows this vocalist, his band, and his fans to enjoy music. (credit: West Point Public Affairs, Flickr)

The human ear has a tremendous range and sensitivity. It can give us a wealth of simple information—such as pitch, loudness,
and direction. And from its input we can detect musical quality and nuances of voiced emotion. How is our hearing related to the
physical qualities of sound, and how does the hearing mechanism work?

Hearing is the perception of sound. (Perception is commonly defined to be awareness through the senses, a typically circular
definition of higher-level processes in living organisms.) Normal human hearing encompasses frequencies from 20 to 20,000 Hz,
an impressive range. Sounds below 20 Hz are called infrasound, whereas those above 20,000 Hz are ultrasound. Neither is
perceived by the ear, although infrasound can sometimes be felt as vibrations. When we do hear low-frequency vibrations, such
as the sounds of a diving board, we hear the individual vibrations only because there are higher-frequency sounds in each. Other
animals have hearing ranges different from that of humans. Dogs can hear sounds as high as 30,000 Hz, whereas bats and
dolphins can hear up to 100,000-Hz sounds. You may have noticed that dogs respond to the sound of a dog whistle which
produces sound out of the range of human hearing. Elephants are known to respond to frequencies below 20 Hz.

The perception of frequency is called pitch. Most of us have excellent relative pitch, which means that we can tell whether one
sound has a different frequency from another. Typically, we can discriminate between two sounds if their frequencies differ by
0.3% or more. For example, 500.0 and 501.5 Hz are noticeably different. Pitch perception is directly related to frequency and is
not greatly affected by other physical quantities such as intensity. Musical notes are particular sounds that can be produced by
most instruments and in Western music have particular names. Combinations of notes constitute music. Some people can
identify musical notes, such as A-sharp, C, or E-flat, just by listening to them. This uncommon ability is called perfect pitch.

The ear is remarkably sensitive to low-intensity sounds. The lowest audible intensity or threshold is about 10−12 W/m2 or 0

dB. Sounds as much as 1012 more intense can be briefly tolerated. Very few measuring devices are capable of observations

over a range of a trillion. The perception of intensity is called loudness. At a given frequency, it is possible to discern differences
of about 1 dB, and a change of 3 dB is easily noticed. But loudness is not related to intensity alone. Frequency has a major effect
on how loud a sound seems. The ear has its maximum sensitivity to frequencies in the range of 2000 to 5000 Hz, so that sounds
in this range are perceived as being louder than, say, those at 500 or 10,000 Hz, even when they all have the same intensity.
Sounds near the high- and low-frequency extremes of the hearing range seem even less loud, because the ear is even less
sensitive at those frequencies. Table 17.4 gives the dependence of certain human hearing perceptions on physical quantities.
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Table 17.4 Sound Perceptions

Perception Physical quantity

Pitch Frequency

Loudness Intensity and Frequency

Timbre
Number and relative intensity of multiple frequencies.
Subtle craftsmanship leads to non-linear effects and more detail.

Note Basic unit of music with specific names, combined to generate tunes

Tone Number and relative intensity of multiple frequencies.

When a violin plays middle C, there is no mistaking it for a piano playing the same note. The reason is that each instrument
produces a distinctive set of frequencies and intensities. We call our perception of these combinations of frequencies and
intensities tone quality, or more commonly the timbre of the sound. It is more difficult to correlate timbre perception to physical
quantities than it is for loudness or pitch perception. Timbre is more subjective. Terms such as dull, brilliant, warm, cold, pure,
and rich are employed to describe the timbre of a sound. So the consideration of timbre takes us into the realm of perceptual
psychology, where higher-level processes in the brain are dominant. This is true for other perceptions of sound, such as music
and noise. We shall not delve further into them; rather, we will concentrate on the question of loudness perception.

A unit called a phon is used to express loudness numerically. Phons differ from decibels because the phon is a unit of loudness
perception, whereas the decibel is a unit of physical intensity. Figure 17.35 shows the relationship of loudness to intensity (or
intensity level) and frequency for persons with normal hearing. The curved lines are equal-loudness curves. Each curve is
labeled with its loudness in phons. Any sound along a given curve will be perceived as equally loud by the average person. The
curves were determined by having large numbers of people compare the loudness of sounds at different frequencies and sound
intensity levels. At a frequency of 1000 Hz, phons are taken to be numerically equal to decibels. The following example helps
illustrate how to use the graph:

Figure 17.35 The relationship of loudness in phons to intensity level (in decibels) and intensity (in watts per meter squared) for persons with normal
hearing. The curved lines are equal-loudness curves—all sounds on a given curve are perceived as equally loud. Phons and decibels are defined to be
the same at 1000 Hz.

Example 17.6 Measuring Loudness: Loudness Versus Intensity Level and Frequency

(a) What is the loudness in phons of a 100-Hz sound that has an intensity level of 80 dB? (b) What is the intensity level in
decibels of a 4000-Hz sound having a loudness of 70 phons? (c) At what intensity level will an 8000-Hz sound have the
same loudness as a 200-Hz sound at 60 dB?

Strategy for (a)

The graph in Figure 17.35 should be referenced in order to solve this example. To find the loudness of a given sound, you
must know its frequency and intensity level and locate that point on the square grid, then interpolate between loudness
curves to get the loudness in phons.

Solution for (a)

(1) Identify knowns:

• The square grid of the graph relating phons and decibels is a plot of intensity level versus frequency—both physical
quantities.

• 100 Hz at 80 dB lies halfway between the curves marked 70 and 80 phons.

(2) Find the loudness: 75 phons.

Strategy for (b)
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The graph in Figure 17.35 should be referenced in order to solve this example. To find the intensity level of a sound, you
must have its frequency and loudness. Once that point is located, the intensity level can be determined from the vertical
axis.

Solution for (b)

(1) Identify knowns:

• Values are given to be 4000 Hz at 70 phons.

(2) Follow the 70-phon curve until it reaches 4000 Hz. At that point, it is below the 70 dB line at about 67 dB.

(3) Find the intensity level:

67 dB

Strategy for (c)

The graph in Figure 17.35 should be referenced in order to solve this example.

Solution for (c)

(1) Locate the point for a 200 Hz and 60 dB sound.

(2) Find the loudness: This point lies just slightly above the 50-phon curve, and so its loudness is 51 phons.

(3) Look for the 51-phon level is at 8000 Hz: 63 dB.

Discussion

These answers, like all information extracted from Figure 17.35, have uncertainties of several phons or several decibels,
partly due to difficulties in interpolation, but mostly related to uncertainties in the equal-loudness curves.

Further examination of the graph in Figure 17.35 reveals some interesting facts about human hearing. First, sounds below the
0-phon curve are not perceived by most people. So, for example, a 60 Hz sound at 40 dB is inaudible. The 0-phon curve
represents the threshold of normal hearing. We can hear some sounds at intensity levels below 0 dB. For example, a 3-dB,
5000-Hz sound is audible, because it lies above the 0-phon curve. The loudness curves all have dips in them between about
2000 and 5000 Hz. These dips mean the ear is most sensitive to frequencies in that range. For example, a 15-dB sound at 4000
Hz has a loudness of 20 phons, the same as a 20-dB sound at 1000 Hz. The curves rise at both extremes of the frequency
range, indicating that a greater-intensity level sound is needed at those frequencies to be perceived to be as loud as at middle
frequencies. For example, a sound at 10,000 Hz must have an intensity level of 30 dB to seem as loud as a 20 dB sound at 1000
Hz. Sounds above 120 phons are painful as well as damaging.

We do not often utilize our full range of hearing. This is particularly true for frequencies above 8000 Hz, which are rare in the
environment and are unnecessary for understanding conversation or appreciating music. In fact, people who have lost the ability
to hear such high frequencies are usually unaware of their loss until tested. The shaded region in Figure 17.36 is the frequency
and intensity region where most conversational sounds fall. The curved lines indicate what effect hearing losses of 40 and 60
phons will have. A 40-phon hearing loss at all frequencies still allows a person to understand conversation, although it will seem
very quiet. A person with a 60-phon loss at all frequencies will hear only the lowest frequencies and will not be able to
understand speech unless it is much louder than normal. Even so, speech may seem indistinct, because higher frequencies are
not as well perceived. The conversational speech region also has a gender component, in that female voices are usually
characterized by higher frequencies. So the person with a 60-phon hearing impediment might have difficulty understanding the
normal conversation of a woman.

Figure 17.36 The shaded region represents frequencies and intensity levels found in normal conversational speech. The 0-phon line represents the
normal hearing threshold, while those at 40 and 60 represent thresholds for people with 40- and 60-phon hearing losses, respectively.

Hearing tests are performed over a range of frequencies, usually from 250 to 8000 Hz, and can be displayed graphically in an
audiogram like that in Figure 17.37. The hearing threshold is measured in dB relative to the normal threshold, so that normal
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hearing registers as 0 dB at all frequencies. Hearing loss caused by noise typically shows a dip near the 4000 Hz frequency,
irrespective of the frequency that caused the loss and often affects both ears. The most common form of hearing loss comes with
age and is called presbycusis—literally elder ear. Such loss is increasingly severe at higher frequencies, and interferes with
music appreciation and speech recognition.

Figure 17.37 Audiograms showing the threshold in intensity level versus frequency for three different individuals. Intensity level is measured relative to
the normal threshold. The top left graph is that of a person with normal hearing. The graph to its right has a dip at 4000 Hz and is that of a child who
suffered hearing loss due to a cap gun. The third graph is typical of presbycusis, the progressive loss of higher frequency hearing with age. Tests
performed by bone conduction (brackets) can distinguish nerve damage from middle ear damage.

The Hearing Mechanism

The hearing mechanism involves some interesting physics. The sound wave that impinges upon our ear is a pressure wave.
The ear is a transducer that converts sound waves into electrical nerve impulses in a manner much more sophisticated than,
but analogous to, a microphone. Figure 17.38 shows the gross anatomy of the ear with its division into three parts: the outer
ear or ear canal; the middle ear, which runs from the eardrum to the cochlea; and the inner ear, which is the cochlea itself.
The body part normally referred to as the ear is technically called the pinna.

Figure 17.38 The illustration shows the gross anatomy of the human ear.

The outer ear, or ear canal, carries sound to the recessed protected eardrum. The air column in the ear canal resonates and is
partially responsible for the sensitivity of the ear to sounds in the 2000 to 5000 Hz range. The middle ear converts sound into
mechanical vibrations and applies these vibrations to the cochlea. The lever system of the middle ear takes the force exerted on
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the eardrum by sound pressure variations, amplifies it and transmits it to the inner ear via the oval window, creating pressure
waves in the cochlea approximately 40 times greater than those impinging on the eardrum. (See Figure 17.39.) Two muscles in
the middle ear (not shown) protect the inner ear from very intense sounds. They react to intense sound in a few milliseconds and
reduce the force transmitted to the cochlea. This protective reaction can also be triggered by your own voice, so that humming
while shooting a gun, for example, can reduce noise damage.

Figure 17.39 This schematic shows the middle ear’s system for converting sound pressure into force, increasing that force through a lever system, and
applying the increased force to a small area of the cochlea, thereby creating a pressure about 40 times that in the original sound wave. A protective
muscle reaction to intense sounds greatly reduces the mechanical advantage of the lever system.

Figure 17.40 shows the middle and inner ear in greater detail. Pressure waves moving through the cochlea cause the tectorial
membrane to vibrate, rubbing cilia (called hair cells), which stimulate nerves that send electrical signals to the brain. The
membrane resonates at different positions for different frequencies, with high frequencies stimulating nerves at the near end and
low frequencies at the far end. The complete operation of the cochlea is still not understood, but several mechanisms for sending
information to the brain are known to be involved. For sounds below about 1000 Hz, the nerves send signals at the same
frequency as the sound. For frequencies greater than about 1000 Hz, the nerves signal frequency by position. There is a
structure to the cilia, and there are connections between nerve cells that perform signal processing before information is sent to
the brain. Intensity information is partly indicated by the number of nerve signals and by volleys of signals. The brain processes
the cochlear nerve signals to provide additional information such as source direction (based on time and intensity comparisons of
sounds from both ears). Higher-level processing produces many nuances, such as music appreciation.

Figure 17.40 The inner ear, or cochlea, is a coiled tube about 3 mm in diameter and 3 cm in length if uncoiled. When the oval window is forced inward,
as shown, a pressure wave travels through the perilymph in the direction of the arrows, stimulating nerves at the base of cilia in the organ of Corti.

Hearing losses can occur because of problems in the middle or inner ear. Conductive losses in the middle ear can be partially
overcome by sending sound vibrations to the cochlea through the skull. Hearing aids for this purpose usually press against the
bone behind the ear, rather than simply amplifying the sound sent into the ear canal as many hearing aids do. Damage to the
nerves in the cochlea is not repairable, but amplification can partially compensate. There is a risk that amplification will produce
further damage. Another common failure in the cochlea is damage or loss of the cilia but with nerves remaining functional.
Cochlear implants that stimulate the nerves directly are now available and widely accepted. Over 100,000 implants are in use, in
about equal numbers of adults and children.

The cochlear implant was pioneered in Melbourne, Australia, by Graeme Clark in the 1970s for his deaf father. The implant
consists of three external components and two internal components. The external components are a microphone for picking up
sound and converting it into an electrical signal, a speech processor to select certain frequencies and a transmitter to transfer the
signal to the internal components through electromagnetic induction. The internal components consist of a receiver/transmitter
secured in the bone beneath the skin, which converts the signals into electric impulses and sends them through an internal cable
to the cochlea and an array of about 24 electrodes wound through the cochlea. These electrodes in turn send the impulses
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directly into the brain. The electrodes basically emulate the cilia.

Check Your Understanding

Are ultrasound and infrasound imperceptible to all hearing organisms? Explain your answer.

Solution
No, the range of perceptible sound is based in the range of human hearing. Many other organisms perceive either
infrasound or ultrasound.

17.7 Ultrasound

Figure 17.41 Ultrasound is used in medicine to painlessly and noninvasively monitor patient health and diagnose a wide range of disorders. (credit:
abbybatchelder, Flickr)

Any sound with a frequency above 20,000 Hz (or 20 kHz)—that is, above the highest audible frequency—is defined to be
ultrasound. In practice, it is possible to create ultrasound frequencies up to more than a gigahertz. (Higher frequencies are
difficult to create; furthermore, they propagate poorly because they are very strongly absorbed.) Ultrasound has a tremendous
number of applications, which range from burglar alarms to use in cleaning delicate objects to the guidance systems of bats. We
begin our discussion of ultrasound with some of its applications in medicine, in which it is used extensively both for diagnosis and
for therapy.

Characteristics of Ultrasound

The characteristics of ultrasound, such as frequency and intensity, are wave properties common to all types of waves.
Ultrasound also has a wavelength that limits the fineness of detail it can detect. This characteristic is true of all waves. We
can never observe details significantly smaller than the wavelength of our probe; for example, we will never see individual
atoms with visible light, because the atoms are so small compared with the wavelength of light.

Ultrasound in Medical Therapy

Ultrasound, like any wave, carries energy that can be absorbed by the medium carrying it, producing effects that vary with

intensity. When focused to intensities of 103 to 105 W/m2 , ultrasound can be used to shatter gallstones or pulverize

cancerous tissue in surgical procedures. (See Figure 17.42.) Intensities this great can damage individual cells, variously causing
their protoplasm to stream inside them, altering their permeability, or rupturing their walls through cavitation. Cavitation is the
creation of vapor cavities in a fluid—the longitudinal vibrations in ultrasound alternatively compress and expand the medium, and
at sufficient amplitudes the expansion separates molecules. Most cavitation damage is done when the cavities collapse,
producing even greater shock pressures.
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Figure 17.42 The tip of this small probe oscillates at 23 kHz with such a large amplitude that it pulverizes tissue on contact. The debris is then
aspirated. The speed of the tip may exceed the speed of sound in tissue, thus creating shock waves and cavitation, rather than a smooth simple
harmonic oscillator–type wave.

Most of the energy carried by high-intensity ultrasound in tissue is converted to thermal energy. In fact, intensities of 103 to

104 W/m2 are commonly used for deep-heat treatments called ultrasound diathermy. Frequencies of 0.8 to 1 MHz are typical.

In both athletics and physical therapy, ultrasound diathermy is most often applied to injured or overworked muscles to relieve
pain and improve flexibility. Skill is needed by the therapist to avoid “bone burns” and other tissue damage caused by
overheating and cavitation, sometimes made worse by reflection and focusing of the ultrasound by joint and bone tissue.

In some instances, you may encounter a different decibel scale, called the sound pressure level, when ultrasound travels in
water or in human and other biological tissues. We shall not use the scale here, but it is notable that numbers for sound pressure
levels range 60 to 70 dB higher than you would quote for β , the sound intensity level used in this text. Should you encounter a

sound pressure level of 220 decibels, then, it is not an astronomically high intensity, but equivalent to about 155 dB—high
enough to destroy tissue, but not as unreasonably high as it might seem at first.

Ultrasound in Medical Diagnostics

When used for imaging, ultrasonic waves are emitted from a transducer, a crystal exhibiting the piezoelectric effect (the
expansion and contraction of a substance when a voltage is applied across it, causing a vibration of the crystal). These high-
frequency vibrations are transmitted into any tissue in contact with the transducer. Similarly, if a pressure is applied to the crystal
(in the form of a wave reflected off tissue layers), a voltage is produced which can be recorded. The crystal therefore acts as both
a transmitter and a receiver of sound. Ultrasound is also partially absorbed by tissue on its path, both on its journey away from
the transducer and on its return journey. From the time between when the original signal is sent and when the reflections from
various boundaries between media are received, (as well as a measure of the intensity loss of the signal), the nature and
position of each boundary between tissues and organs may be deduced.

Reflections at boundaries between two different media occur because of differences in a characteristic known as the acoustic
impedance Z of each substance. Impedance is defined as

(17.38)Z = ρv,

where ρ is the density of the medium (in kg/m3 ) and v is the speed of sound through the medium (in m/s). The units for Z

are therefore kg/(m2 · s) .

Table 17.5 shows the density and speed of sound through various media (including various soft tissues) and the associated
acoustic impedances. Note that the acoustic impedances for soft tissue do not vary much but that there is a big difference
between the acoustic impedance of soft tissue and air and also between soft tissue and bone.
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Table 17.5 The Ultrasound Properties of Various Media, Including Soft Tissue Found in the Body

Medium
Density (kg/

m3)
Speed of Ultrasound (m/
s)

Acoustic Impedance
⎛
⎝kg/⎛⎝m2 ⋅ s⎞⎠

⎞
⎠

Air 1.3 330 429

Water 1000 1500 1.5×106

Blood 1060 1570 1.66×106

Fat 925 1450 1.34×106

Muscle (average) 1075 1590 1.70×106

Bone (varies) 1400–1900 4080 5.7×106 to 7.8×106

Barium titanate (transducer
material)

5600 5500 30.8×106

At the boundary between media of different acoustic impedances, some of the wave energy is reflected and some is transmitted.
The greater the difference in acoustic impedance between the two media, the greater the reflection and the smaller the
transmission.

The intensity reflection coefficient a is defined as the ratio of the intensity of the reflected wave relative to the incident

(transmitted) wave. This statement can be written mathematically as

(17.39)
a =

⎛
⎝Z2 − Z1

⎞
⎠
2

⎛
⎝Z1 + Z2

⎞
⎠
2,

where Z1 and Z2 are the acoustic impedances of the two media making up the boundary. A reflection coefficient of zero

(corresponding to total transmission and no reflection) occurs when the acoustic impedances of the two media are the same. An
impedance “match” (no reflection) provides an efficient coupling of sound energy from one medium to another. The image formed
in an ultrasound is made by tracking reflections (as shown in Figure 17.43) and mapping the intensity of the reflected sound
waves in a two-dimensional plane.

Example 17.7 Calculate Acoustic Impedance and Intensity Reflection Coefficient: Ultrasound
and Fat Tissue

(a) Using the values for density and the speed of ultrasound given in Table 17.5, show that the acoustic impedance of fat

tissue is indeed 1.34×106 kg/(m2 ·s) .

(b) Calculate the intensity reflection coefficient of ultrasound when going from fat to muscle tissue.

Strategy for (a)

The acoustic impedance can be calculated using Z = ρv and the values for ρ and v found in Table 17.5.

Solution for (a)

(1) Substitute known values from Table 17.5 into Z = ρv .

(17.40)Z = ρv = ⎛⎝925 kg/m3⎞⎠(1450 m/s)

(2) Calculate to find the acoustic impedance of fat tissue.

(17.41)1.34×106 kg/(m2 ·s)

This value is the same as the value given for the acoustic impedance of fat tissue.

Strategy for (b)

The intensity reflection coefficient for any boundary between two media is given by a =
⎛
⎝Z2 − Z1

⎞
⎠
2

⎛
⎝Z1 + Z2

⎞
⎠
2 , and the acoustic

impedance of muscle is given in Table 17.5.

Solution for (b)
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Substitute known values into a =
⎛
⎝Z2 − Z1

⎞
⎠
2

⎛
⎝Z1 + Z2

⎞
⎠
2 to find the intensity reflection coefficient:

(17.42)

a =
⎛
⎝Z2 − Z1

⎞
⎠
2

⎛
⎝Z1 + Z2

⎞
⎠
2 =

⎛
⎝1.34×106 kg/(m2 · s) − 1.70×106 kg/(m2 · s)⎞⎠

2

⎛
⎝1.70×106 kg/(m2 · s) + 1.34×106 kg/(m2 · s)⎞⎠

2 = 0.014

Discussion

This result means that only 1.4% of the incident intensity is reflected, with the remaining being transmitted.

The applications of ultrasound in medical diagnostics have produced untold benefits with no known risks. Diagnostic intensities

are too low (about 10−2 W/m2 ) to cause thermal damage. More significantly, ultrasound has been in use for several decades

and detailed follow-up studies do not show evidence of ill effects, quite unlike the case for x-rays.

Figure 17.43 (a) An ultrasound speaker doubles as a microphone. Brief bleeps are broadcast, and echoes are recorded from various depths. (b)
Graph of echo intensity versus time. The time for echoes to return is directly proportional to the distance of the reflector, yielding this information
noninvasively.

The most common ultrasound applications produce an image like that shown in Figure 17.44. The speaker-microphone
broadcasts a directional beam, sweeping the beam across the area of interest. This is accomplished by having multiple
ultrasound sources in the probe’s head, which are phased to interfere constructively in a given, adjustable direction. Echoes are
measured as a function of position as well as depth. A computer constructs an image that reveals the shape and density of
internal structures.
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Figure 17.44 (a) An ultrasonic image is produced by sweeping the ultrasonic beam across the area of interest, in this case the woman’s abdomen.
Data are recorded and analyzed in a computer, providing a two-dimensional image. (b) Ultrasound image of 12-week-old fetus. (credit: Margaret W.
Carruthers, Flickr)

How much detail can ultrasound reveal? The image in Figure 17.44 is typical of low-cost systems, but that in Figure 17.45
shows the remarkable detail possible with more advanced systems, including 3D imaging. Ultrasound today is commonly used in
prenatal care. Such imaging can be used to see if the fetus is developing at a normal rate, and help in the determination of
serious problems early in the pregnancy. Ultrasound is also in wide use to image the chambers of the heart and the flow of blood
within the beating heart, using the Doppler effect (echocardiology).

Whenever a wave is used as a probe, it is very difficult to detect details smaller than its wavelength λ . Indeed, current

technology cannot do quite this well. Abdominal scans may use a 7-MHz frequency, and the speed of sound in tissue is about

1540 m/s—so the wavelength limit to detail would be λ = vw
f = 1540 m/s

7×106 Hz
= 0.22 mm . In practice, 1-mm detail is

attainable, which is sufficient for many purposes. Higher-frequency ultrasound would allow greater detail, but it does not
penetrate as well as lower frequencies do. The accepted rule of thumb is that you can effectively scan to a depth of about 500λ
into tissue. For 7 MHz, this penetration limit is 500×0.22 mm , which is 0.11 m. Higher frequencies may be employed in

smaller organs, such as the eye, but are not practical for looking deep into the body.
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Figure 17.45 A 3D ultrasound image of a fetus. As well as for the detection of any abnormalities, such scans have also been shown to be useful for
strengthening the emotional bonding between parents and their unborn child. (credit: Jennie Cu, Wikimedia Commons)

In addition to shape information, ultrasonic scans can produce density information superior to that found in X-rays, because the
intensity of a reflected sound is related to changes in density. Sound is most strongly reflected at places where density changes
are greatest.

Another major use of ultrasound in medical diagnostics is to detect motion and determine velocity through the Doppler shift of an
echo, known as Doppler-shifted ultrasound. This technique is used to monitor fetal heartbeat, measure blood velocity, and
detect occlusions in blood vessels, for example. (See Figure 17.46.) The magnitude of the Doppler shift in an echo is directly
proportional to the velocity of whatever reflects the sound. Because an echo is involved, there is actually a double shift. The first
occurs because the reflector (say a fetal heart) is a moving observer and receives a Doppler-shifted frequency. The reflector then
acts as a moving source, producing a second Doppler shift.

Figure 17.46 This Doppler-shifted ultrasonic image of a partially occluded artery uses color to indicate velocity. The highest velocities are in red, while
the lowest are blue. The blood must move faster through the constriction to carry the same flow. (credit: Arning C, Grzyska U, Wikimedia Commons)

A clever technique is used to measure the Doppler shift in an echo. The frequency of the echoed sound is superimposed on the
broadcast frequency, producing beats. The beat frequency is FB = ∣ f1 − f2 ∣ , and so it is directly proportional to the Doppler

shift ( f1 − f2 ) and hence, the reflector’s velocity. The advantage in this technique is that the Doppler shift is small (because the

reflector’s velocity is small), so that great accuracy would be needed to measure the shift directly. But measuring the beat
frequency is easy, and it is not affected if the broadcast frequency varies somewhat. Furthermore, the beat frequency is in the
audible range and can be amplified for audio feedback to the medical observer.

Uses for Doppler-Shifted Radar

Doppler-shifted radar echoes are used to measure wind velocities in storms as well as aircraft and automobile speeds. The
principle is the same as for Doppler-shifted ultrasound. There is evidence that bats and dolphins may also sense the velocity
of an object (such as prey) reflecting their ultrasound signals by observing its Doppler shift.

Example 17.8 Calculate Velocity of Blood: Doppler-Shifted Ultrasound

Ultrasound that has a frequency of 2.50 MHz is sent toward blood in an artery that is moving toward the source at 20.0 cm/s,
as illustrated in Figure 17.47. Use the speed of sound in human tissue as 1540 m/s. (Assume that the frequency of 2.50
MHz is accurate to seven significant figures.)
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a. What frequency does the blood receive?

b. What frequency returns to the source?

c. What beat frequency is produced if the source and returning frequencies are mixed?

Figure 17.47 Ultrasound is partly reflected by blood cells and plasma back toward the speaker-microphone. Because the cells are moving, two
Doppler shifts are produced—one for blood as a moving observer, and the other for the reflected sound coming from a moving source. The
magnitude of the shift is directly proportional to blood velocity.

Strategy

The first two questions can be answered using fobs = fs
⎛
⎝

vw
vw ± vs

⎞
⎠ and fobs = fs

⎛
⎝
vw ± vobs

vw
⎞
⎠ for the Doppler shift.

The last question asks for beat frequency, which is the difference between the original and returning frequencies.

Solution for (a)

(1) Identify knowns:

• The blood is a moving observer, and so the frequency it receives is given by

(17.43)fobs = fs
⎛
⎝
vw ± vobs

vw
⎞
⎠.

• vb is the blood velocity ( vobs here) and the plus sign is chosen because the motion is toward the source.

(2) Enter the given values into the equation.

(17.44)fobs = (2,500,000 Hz)⎛⎝1540 m/s+0.2 m/s
1540 m/s

⎞
⎠

(3) Calculate to find the frequency: 2,500,325 Hz.

Solution for (b)

(1) Identify knowns:

• The blood acts as a moving source.
• The microphone acts as a stationary observer.
• The frequency leaving the blood is 2,500,325 Hz, but it is shifted upward as given by

(17.45)fobs = fs
⎛
⎝

vw
vw – vb

⎞
⎠.

fobs is the frequency received by the speaker-microphone.

• The source velocity is vb .

• The minus sign is used because the motion is toward the observer.

The minus sign is used because the motion is toward the observer.

(2) Enter the given values into the equation:

(17.46)fobs = (2,500,325 Hz)⎛⎝ 1540 m/s
1540 m/s − 0.200 m/s

⎞
⎠
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acoustic impedance:

antinode:

bow wake:

(3) Calculate to find the frequency returning to the source: 2,500,649 Hz.

Solution for (c)

(1) Identify knowns:

• The beat frequency is simply the absolute value of the difference between fs and fobs , as stated in:

(17.47)fB = ∣ fobs − fs ∣ .

(2) Substitute known values:

(17.48)∣ 2,500,649 Hz − 2,500,000 Hz ∣

(3) Calculate to find the beat frequency: 649 Hz.

Discussion

The Doppler shifts are quite small compared with the original frequency of 2.50 MHz. It is far easier to measure the beat
frequency than it is to measure the echo frequency with an accuracy great enough to see shifts of a few hundred hertz out of
a couple of megahertz. Furthermore, variations in the source frequency do not greatly affect the beat frequency, because
both fs and fobs would increase or decrease. Those changes subtract out in fB = ∣ fobs − fs ∣ .

Industrial and Other Applications of Ultrasound

Industrial, retail, and research applications of ultrasound are common. A few are discussed here. Ultrasonic cleaners have
many uses. Jewelry, machined parts, and other objects that have odd shapes and crevices are immersed in a cleaning fluid
that is agitated with ultrasound typically about 40 kHz in frequency. The intensity is great enough to cause cavitation, which
is responsible for most of the cleansing action. Because cavitation-produced shock pressures are large and well transmitted
in a fluid, they reach into small crevices where even a low-surface-tension cleaning fluid might not penetrate.

Sonar is a familiar application of ultrasound. Sonar typically employs ultrasonic frequencies in the range from 30.0 to 100
kHz. Bats, dolphins, submarines, and even some birds use ultrasonic sonar. Echoes are analyzed to give distance and size
information both for guidance and finding prey. In most sonar applications, the sound reflects quite well because the objects
of interest have significantly different density than the medium in which they travel. When the Doppler shift is observed,
velocity information can also be obtained. Submarine sonar can be used to obtain such information, and there is evidence
that some bats also sense velocity from their echoes.

Similarly, there are a range of relatively inexpensive devices that measure distance by timing ultrasonic echoes. Many
cameras, for example, use such information to focus automatically. Some doors open when their ultrasonic ranging devices
detect a nearby object, and certain home security lights turn on when their ultrasonic rangers observe motion. Ultrasonic
“measuring tapes” also exist to measure such things as room dimensions. Sinks in public restrooms are sometimes
automated with ultrasound devices to turn faucets on and off when people wash their hands. These devices reduce the
spread of germs and can conserve water.

Ultrasound is used for nondestructive testing in industry and by the military. Because ultrasound reflects well from any large
change in density, it can reveal cracks and voids in solids, such as aircraft wings, that are too small to be seen with x-rays.
For similar reasons, ultrasound is also good for measuring the thickness of coatings, particularly where there are several
layers involved.

Basic research in solid state physics employs ultrasound. Its attenuation is related to a number of physical characteristics,
making it a useful probe. Among these characteristics are structural changes such as those found in liquid crystals, the
transition of a material to a superconducting phase, as well as density and other properties.

These examples of the uses of ultrasound are meant to whet the appetites of the curious, as well as to illustrate the
underlying physics of ultrasound. There are many more applications, as you can easily discover for yourself.

Check Your Understanding

Why is it possible to use ultrasound both to observe a fetus in the womb and also to destroy cancerous tumors in the body?

Solution
Ultrasound can be used medically at different intensities. Lower intensities do not cause damage and are used for medical
imaging. Higher intensities can pulverize and destroy targeted substances in the body, such as tumors.

Glossary

property of medium that makes the propagation of sound waves more difficult

point of maximum displacement

V-shaped disturbance created when the wave source moves faster than the wave propagation speed
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Doppler effect:

Doppler shift:

Doppler-shifted ultrasound:

fundamental:

harmonics:

hearing:

infrasound:

intensity:

intensity reflection coefficient:

loudness:

node:

note:

overtones:

phon:

pitch:

sonic boom:

sound:

sound intensity level:

sound pressure level:

timbre:

tone:

ultrasound:

an alteration in the observed frequency of a sound due to motion of either the source or the observer

the actual change in frequency due to relative motion of source and observer

a medical technique to detect motion and determine velocity through the Doppler shift of an
echo

the lowest-frequency resonance

the term used to refer collectively to the fundamental and its overtones

the perception of sound

sounds below 20 Hz

the power per unit area carried by a wave

a measure of the ratio of the intensity of the wave reflected off a boundary between two
media relative to the intensity of the incident wave

the perception of sound intensity

point of zero displacement

basic unit of music with specific names, combined to generate tunes

all resonant frequencies higher than the fundamental

the numerical unit of loudness

the perception of the frequency of a sound

a constructive interference of sound created by an object moving faster than sound

a disturbance of matter that is transmitted from its source outward

a unitless quantity telling you the level of the sound relative to a fixed standard

the ratio of the pressure amplitude to a reference pressure

number and relative intensity of multiple sound frequencies

number and relative intensity of multiple sound frequencies

sounds above 20,000 Hz

Section Summary

17.1 Sound
• Sound is a disturbance of matter that is transmitted from its source outward.
• Sound is one type of wave.
• Hearing is the perception of sound.

17.2 Speed of Sound, Frequency, and Wavelength

The relationship of the speed of sound vw , its frequency f , and its wavelength λ is given by

vw = fλ,

which is the same relationship given for all waves.

In air, the speed of sound is related to air temperature T by

vw = (331 m/s) T
273 K.

vw is the same for all frequencies and wavelengths.

17.3 Sound Intensity and Sound Level
• Intensity is the same for a sound wave as was defined for all waves; it is
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I = P
A,

where P is the power crossing area A . The SI unit for I is watts per meter squared. The intensity of a sound wave is

also related to the pressure amplitude Δp

I =
⎛
⎝Δp⎞⎠2
2ρvw

,

where ρ is the density of the medium in which the sound wave travels and vw is the speed of sound in the medium.

• Sound intensity level in units of decibels (dB) is

β (dB) = 10 log10
⎛
⎝ I

I0

⎞
⎠,

where I0 = 10–12 W/m2 is the threshold intensity of hearing.

17.4 Doppler Effect and Sonic Booms
• The Doppler effect is an alteration in the observed frequency of a sound due to motion of either the source or the observer.
• The actual change in frequency is called the Doppler shift.
• A sonic boom is constructive interference of sound created by an object moving faster than sound.
• A sonic boom is a type of bow wake created when any wave source moves faster than the wave propagation speed.
• For a stationary observer and a moving source, the observed frequency fobs is:

fobs = fs
⎛
⎝

vw
vw ± vs

⎞
⎠,

where fs is the frequency of the source, vs is the speed of the source, and vw is the speed of sound. The minus sign is

used for motion toward the observer and the plus sign for motion away.
• For a stationary source and moving observer, the observed frequency is:

fobs = fs
⎛
⎝
vw ± vobs

vw
⎞
⎠,

where vobs is the speed of the observer.

17.5 Sound Interference and Resonance: Standing Waves in Air Columns
• Sound interference and resonance have the same properties as defined for all waves.
• In air columns, the lowest-frequency resonance is called the fundamental, whereas all higher resonant frequencies are

called overtones. Collectively, they are called harmonics.
• The resonant frequencies of a tube closed at one end are:

fn = nvw
4L , n = 1, 3, 5...,

f1 is the fundamental and L is the length of the tube.

• The resonant frequencies of a tube open at both ends are:

fn = nvw
2L , n = 1, 2, 3...

17.6 Hearing
• The range of audible frequencies is 20 to 20,000 Hz.
• Those sounds above 20,000 Hz are ultrasound, whereas those below 20 Hz are infrasound.
• The perception of frequency is pitch.
• The perception of intensity is loudness.
• Loudness has units of phons.

17.7 Ultrasound
• The acoustic impedance is defined as:

Z = ρv,
ρ is the density of a medium through which the sound travels and v is the speed of sound through that medium.

• The intensity reflection coefficient a , a measure of the ratio of the intensity of the wave reflected off a boundary between

two media relative to the intensity of the incident wave, is given by
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a =
⎛
⎝Z2 − Z1

⎞
⎠
2

⎛
⎝Z1 + Z2

⎞
⎠
2.

• The intensity reflection coefficient is a unitless quantity.

Conceptual Questions

17.2 Speed of Sound, Frequency, and Wavelength

1. How do sound vibrations of atoms differ from thermal motion?

2. When sound passes from one medium to another where its propagation speed is different, does its frequency or wavelength
change? Explain your answer briefly.

17.3 Sound Intensity and Sound Level

3. Six members of a synchronized swim team wear earplugs to protect themselves against water pressure at depths, but they
can still hear the music and perform the combinations in the water perfectly. One day, they were asked to leave the pool so the
dive team could practice a few dives, and they tried to practice on a mat, but seemed to have a lot more difficulty. Why might this
be?

4. A community is concerned about a plan to bring train service to their downtown from the town’s outskirts. The current sound
intensity level, even though the rail yard is blocks away, is 70 dB downtown. The mayor assures the public that there will be a
difference of only 30 dB in sound in the downtown area. Should the townspeople be concerned? Why?

17.4 Doppler Effect and Sonic Booms

5. Is the Doppler shift real or just a sensory illusion?

6. Due to efficiency considerations related to its bow wake, the supersonic transport aircraft must maintain a cruising speed that
is a constant ratio to the speed of sound (a constant Mach number). If the aircraft flies from warm air into colder air, should it
increase or decrease its speed? Explain your answer.

7. When you hear a sonic boom, you often cannot see the plane that made it. Why is that?

17.5 Sound Interference and Resonance: Standing Waves in Air Columns

8. How does an unamplified guitar produce sounds so much more intense than those of a plucked string held taut by a simple
stick?

9. You are given two wind instruments of identical length. One is open at both ends, whereas the other is closed at one end.
Which is able to produce the lowest frequency?

10. What is the difference between an overtone and a harmonic? Are all harmonics overtones? Are all overtones harmonics?

17.6 Hearing

11. Why can a hearing test show that your threshold of hearing is 0 dB at 250 Hz, when Figure 17.36 implies that no one can
hear such a frequency at less than 20 dB?

17.7 Ultrasound

12. If audible sound follows a rule of thumb similar to that for ultrasound, in terms of its absorption, would you expect the high or
low frequencies from your neighbor’s stereo to penetrate into your house? How does this expectation compare with your
experience?

13. Elephants and whales are known to use infrasound to communicate over very large distances. What are the advantages of
infrasound for long distance communication?

14. It is more difficult to obtain a high-resolution ultrasound image in the abdominal region of someone who is overweight than for
someone who has a slight build. Explain why this statement is accurate.

15. Suppose you read that 210-dB ultrasound is being used to pulverize cancerous tumors. You calculate the intensity in watts

per centimeter squared and find it is unreasonably high ( 105 W/cm2 ). What is a possible explanation?
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Problems & Exercises

17.2 Speed of Sound, Frequency, and
Wavelength

1. When poked by a spear, an operatic soprano lets out a
1200-Hz shriek. What is its wavelength if the speed of sound
is 345 m/s?

2. What frequency sound has a 0.10-m wavelength when the
speed of sound is 340 m/s?

3. Calculate the speed of sound on a day when a 1500 Hz
frequency has a wavelength of 0.221 m.

4. (a) What is the speed of sound in a medium where a
100-kHz frequency produces a 5.96-cm wavelength? (b)
Which substance in Table 17.1 is this likely to be?

5. Show that the speed of sound in 20.0ºC air is 343 m/s, as

claimed in the text.

6. Air temperature in the Sahara Desert can reach 56.0ºC
(about 134ºF ). What is the speed of sound in air at that

temperature?

7. Dolphins make sounds in air and water. What is the ratio of
the wavelength of a sound in air to its wavelength in
seawater? Assume air temperature is 20.0ºC .

8. A sonar echo returns to a submarine 1.20 s after being
emitted. What is the distance to the object creating the echo?
(Assume that the submarine is in the ocean, not in fresh
water.)

9. (a) If a submarine’s sonar can measure echo times with a
precision of 0.0100 s, what is the smallest difference in
distances it can detect? (Assume that the submarine is in the
ocean, not in fresh water.)

(b) Discuss the limits this time resolution imposes on the
ability of the sonar system to detect the size and shape of the
object creating the echo.

10. A physicist at a fireworks display times the lag between
seeing an explosion and hearing its sound, and finds it to be
0.400 s. (a) How far away is the explosion if air temperature is
24.0ºC and if you neglect the time taken for light to reach

the physicist? (b) Calculate the distance to the explosion
taking the speed of light into account. Note that this distance
is negligibly greater.

11. Suppose a bat uses sound echoes to locate its insect
prey, 3.00 m away. (See Figure 17.9.) (a) Calculate the echo
times for temperatures of 5.00ºC and 35.0ºC . (b) What

percent uncertainty does this cause for the bat in locating the
insect? (c) Discuss the significance of this uncertainty and
whether it could cause difficulties for the bat. (In practice, the
bat continues to use sound as it closes in, eliminating most of
any difficulties imposed by this and other effects, such as
motion of the prey.)

17.3 Sound Intensity and Sound Level

12. What is the intensity in watts per meter squared of
85.0-dB sound?

13. The warning tag on a lawn mower states that it produces
noise at a level of 91.0 dB. What is this in watts per meter
squared?

14. A sound wave traveling in 20ºC air has a pressure

amplitude of 0.5 Pa. What is the intensity of the wave?

15. What intensity level does the sound in the preceding
problem correspond to?

16. What sound intensity level in dB is produced by

earphones that create an intensity of 4.00×10−2 W/m2 ?

17. Show that an intensity of 10–12 W/m2 is the same as

10–16 W/cm2 .

18. (a) What is the decibel level of a sound that is twice as
intense as a 90.0-dB sound? (b) What is the decibel level of a
sound that is one-fifth as intense as a 90.0-dB sound?

19. (a) What is the intensity of a sound that has a level 7.00

dB lower than a 4.00×10–9 W/m2 sound? (b) What is the

intensity of a sound that is 3.00 dB higher than a

4.00×10–9 W/m2 sound?

20. (a) How much more intense is a sound that has a level
17.0 dB higher than another? (b) If one sound has a level
23.0 dB less than another, what is the ratio of their
intensities?

21. People with good hearing can perceive sounds as low in
level as –8.00 dB at a frequency of 3000 Hz. What is the

intensity of this sound in watts per meter squared?

22. If a large housefly 3.0 m away from you makes a noise of
40.0 dB, what is the noise level of 1000 flies at that distance,
assuming interference has a negligible effect?

23. Ten cars in a circle at a boom box competition produce a
120-dB sound intensity level at the center of the circle. What
is the average sound intensity level produced there by each
stereo, assuming interference effects can be neglected?

24. The amplitude of a sound wave is measured in terms of
its maximum gauge pressure. By what factor does the
amplitude of a sound wave increase if the sound intensity
level goes up by 40.0 dB?

25. If a sound intensity level of 0 dB at 1000 Hz corresponds
to a maximum gauge pressure (sound amplitude) of

10–9 atm , what is the maximum gauge pressure in a 60-dB

sound? What is the maximum gauge pressure in a 120-dB
sound?

26. An 8-hour exposure to a sound intensity level of 90.0 dB
may cause hearing damage. What energy in joules falls on a
0.800-cm-diameter eardrum so exposed?

27. (a) Ear trumpets were never very common, but they did
aid people with hearing losses by gathering sound over a
large area and concentrating it on the smaller area of the
eardrum. What decibel increase does an ear trumpet produce

if its sound gathering area is 900 cm2 and the area of the

eardrum is 0.500 cm2 , but the trumpet only has an

efficiency of 5.00% in transmitting the sound to the eardrum?
(b) Comment on the usefulness of the decibel increase found
in part (a).
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28. Sound is more effectively transmitted into a stethoscope
by direct contact than through the air, and it is further
intensified by being concentrated on the smaller area of the
eardrum. It is reasonable to assume that sound is transmitted
into a stethoscope 100 times as effectively compared with
transmission though the air. What, then, is the gain in
decibels produced by a stethoscope that has a sound

gathering area of 15.0 cm2 , and concentrates the sound

onto two eardrums with a total area of 0.900 cm2 with an

efficiency of 40.0%?

29. Loudspeakers can produce intense sounds with
surprisingly small energy input in spite of their low
efficiencies. Calculate the power input needed to produce a
90.0-dB sound intensity level for a 12.0-cm-diameter speaker
that has an efficiency of 1.00%. (This value is the sound
intensity level right at the speaker.)

17.4 Doppler Effect and Sonic Booms

30. (a) What frequency is received by a person watching an
oncoming ambulance moving at 110 km/h and emitting a
steady 800-Hz sound from its siren? The speed of sound on
this day is 345 m/s. (b) What frequency does she receive
after the ambulance has passed?

31. (a) At an air show a jet flies directly toward the stands at a
speed of 1200 km/h, emitting a frequency of 3500 Hz, on a
day when the speed of sound is 342 m/s. What frequency is
received by the observers? (b) What frequency do they
receive as the plane flies directly away from them?

32. What frequency is received by a mouse just before being
dispatched by a hawk flying at it at 25.0 m/s and emitting a
screech of frequency 3500 Hz? Take the speed of sound to
be 331 m/s.

33. A spectator at a parade receives an 888-Hz tone from an
oncoming trumpeter who is playing an 880-Hz note. At what
speed is the musician approaching if the speed of sound is
338 m/s?

34. A commuter train blows its 200-Hz horn as it approaches
a crossing. The speed of sound is 335 m/s. (a) An observer
waiting at the crossing receives a frequency of 208 Hz. What
is the speed of the train? (b) What frequency does the
observer receive as the train moves away?

35. Can you perceive the shift in frequency produced when
you pull a tuning fork toward you at 10.0 m/s on a day when
the speed of sound is 344 m/s? To answer this question,
calculate the factor by which the frequency shifts and see if it
is greater than 0.300%.

36. Two eagles fly directly toward one another, the first at
15.0 m/s and the second at 20.0 m/s. Both screech, the first
one emitting a frequency of 3200 Hz and the second one
emitting a frequency of 3800 Hz. What frequencies do they
receive if the speed of sound is 330 m/s?

37. What is the minimum speed at which a source must travel
toward you for you to be able to hear that its frequency is
Doppler shifted? That is, what speed produces a shift of
0.300% on a day when the speed of sound is 331 m/s?

17.5 Sound Interference and Resonance:
Standing Waves in Air Columns

38. A “showy” custom-built car has two brass horns that are
supposed to produce the same frequency but actually emit
263.8 and 264.5 Hz. What beat frequency is produced?

39. What beat frequencies will be present: (a) If the musical
notes A and C are played together (frequencies of 220 and
264 Hz)? (b) If D and F are played together (frequencies of
297 and 352 Hz)? (c) If all four are played together?

40. What beat frequencies result if a piano hammer hits three
strings that emit frequencies of 127.8, 128.1, and 128.3 Hz?

41. A piano tuner hears a beat every 2.00 s when listening to
a 264.0-Hz tuning fork and a single piano string. What are the
two possible frequencies of the string?

42. (a) What is the fundamental frequency of a 0.672-m-long
tube, open at both ends, on a day when the speed of sound is
344 m/s? (b) What is the frequency of its second harmonic?

43. If a wind instrument, such as a tuba, has a fundamental
frequency of 32.0 Hz, what are its first three overtones? It is
closed at one end. (The overtones of a real tuba are more
complex than this example, because it is a tapered tube.)

44. What are the first three overtones of a bassoon that has a
fundamental frequency of 90.0 Hz? It is open at both ends.
(The overtones of a real bassoon are more complex than this
example, because its double reed makes it act more like a
tube closed at one end.)

45. How long must a flute be in order to have a fundamental
frequency of 262 Hz (this frequency corresponds to middle C
on the evenly tempered chromatic scale) on a day when air
temperature is 20.0ºC ? It is open at both ends.

46. What length should an oboe have to produce a
fundamental frequency of 110 Hz on a day when the speed of
sound is 343 m/s? It is open at both ends.

47. What is the length of a tube that has a fundamental
frequency of 176 Hz and a first overtone of 352 Hz if the
speed of sound is 343 m/s?

48. (a) Find the length of an organ pipe closed at one end that
produces a fundamental frequency of 256 Hz when air
temperature is 18.0ºC . (b) What is its fundamental

frequency at 25.0ºC ?

49. By what fraction will the frequencies produced by a wind
instrument change when air temperature goes from 10.0ºC
to 30.0ºC ? That is, find the ratio of the frequencies at those

temperatures.

50. The ear canal resonates like a tube closed at one end.
(See Figure 17.38.) If ear canals range in length from 1.80 to
2.60 cm in an average population, what is the range of
fundamental resonant frequencies? Take air temperature to
be 37.0ºC , which is the same as body temperature. How

does this result correlate with the intensity versus frequency
graph (Figure 17.36 of the human ear?

51. Calculate the first overtone in an ear canal, which
resonates like a 2.40-cm-long tube closed at one end, by
taking air temperature to be 37.0ºC . Is the ear particularly

sensitive to such a frequency? (The resonances of the ear
canal are complicated by its nonuniform shape, which we
shall ignore.)

52. A crude approximation of voice production is to consider
the breathing passages and mouth to be a resonating tube
closed at one end. (See Figure 17.29.) (a) What is the
fundamental frequency if the tube is 0.240-m long, by taking
air temperature to be 37.0ºC ? (b) What would this frequency

become if the person replaced the air with helium? Assume
the same temperature dependence for helium as for air.
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53. (a) Students in a physics lab are asked to find the length
of an air column in a tube closed at one end that has a
fundamental frequency of 256 Hz. They hold the tube
vertically and fill it with water to the top, then lower the water
while a 256-Hz tuning fork is rung and listen for the first
resonance. What is the air temperature if the resonance
occurs for a length of 0.336 m? (b) At what length will they
observe the second resonance (first overtone)?

54. What frequencies will a 1.80-m-long tube produce in the
audible range at 20.0ºC if: (a) The tube is closed at one

end? (b) It is open at both ends?

17.6 Hearing

55. The factor of 10−12 in the range of intensities to which

the ear can respond, from threshold to that causing damage
after brief exposure, is truly remarkable. If you could measure
distances over the same range with a single instrument and
the smallest distance you could measure was 1 mm, what
would the largest be?

56. The frequencies to which the ear responds vary by a

factor of 103 . Suppose the speedometer on your car

measured speeds differing by the same factor of 103 , and

the greatest speed it reads is 90.0 mi/h. What would be the
slowest nonzero speed it could read?

57. What are the closest frequencies to 500 Hz that an
average person can clearly distinguish as being different in
frequency from 500 Hz? The sounds are not present
simultaneously.

58. Can the average person tell that a 2002-Hz sound has a
different frequency than a 1999-Hz sound without playing
them simultaneously?

59. If your radio is producing an average sound intensity level
of 85 dB, what is the next lowest sound intensity level that is
clearly less intense?

60. Can you tell that your roommate turned up the sound on
the TV if its average sound intensity level goes from 70 to 73
dB?

61. Based on the graph in Figure 17.35, what is the threshold
of hearing in decibels for frequencies of 60, 400, 1000, 4000,
and 15,000 Hz? Note that many AC electrical appliances
produce 60 Hz, music is commonly 400 Hz, a reference
frequency is 1000 Hz, your maximum sensitivity is near 4000
Hz, and many older TVs produce a 15,750 Hz whine.

62. What sound intensity levels must sounds of frequencies
60, 3000, and 8000 Hz have in order to have the same
loudness as a 40-dB sound of frequency 1000 Hz (that is, to
have a loudness of 40 phons)?

63. What is the approximate sound intensity level in decibels
of a 600-Hz tone if it has a loudness of 20 phons? If it has a
loudness of 70 phons?

64. (a) What are the loudnesses in phons of sounds having
frequencies of 200, 1000, 5000, and 10,000 Hz, if they are all
at the same 60.0-dB sound intensity level? (b) If they are all
at 110 dB? (c) If they are all at 20.0 dB?

65. Suppose a person has a 50-dB hearing loss at all
frequencies. By how many factors of 10 will low-intensity
sounds need to be amplified to seem normal to this person?
Note that smaller amplification is appropriate for more intense
sounds to avoid further hearing damage.

66. If a woman needs an amplification of 5.0×1012 times

the threshold intensity to enable her to hear at all frequencies,
what is her overall hearing loss in dB? Note that smaller
amplification is appropriate for more intense sounds to avoid
further damage to her hearing from levels above 90 dB.

67. (a) What is the intensity in watts per meter squared of a
just barely audible 200-Hz sound? (b) What is the intensity in
watts per meter squared of a barely audible 4000-Hz sound?

68. (a) Find the intensity in watts per meter squared of a
60.0-Hz sound having a loudness of 60 phons. (b) Find the
intensity in watts per meter squared of a 10,000-Hz sound
having a loudness of 60 phons.

69. A person has a hearing threshold 10 dB above normal at
100 Hz and 50 dB above normal at 4000 Hz. How much more
intense must a 100-Hz tone be than a 4000-Hz tone if they
are both barely audible to this person?

70. A child has a hearing loss of 60 dB near 5000 Hz, due to
noise exposure, and normal hearing elsewhere. How much
more intense is a 5000-Hz tone than a 400-Hz tone if they are
both barely audible to the child?

71. What is the ratio of intensities of two sounds of identical
frequency if the first is just barely discernible as louder to a
person than the second?

17.7 Ultrasound

Unless otherwise indicated, for problems in this section,
assume that the speed of sound through human tissues
is 1540 m/s.

72. What is the sound intensity level in decibels of ultrasound

of intensity 105 W/m2 , used to pulverize tissue during

surgery?

73. Is 155-dB ultrasound in the range of intensities used for
deep heating? Calculate the intensity of this ultrasound and
compare this intensity with values quoted in the text.

74. Find the sound intensity level in decibels of

2.00×10–2 W/m2 ultrasound used in medical diagnostics.

75. The time delay between transmission and the arrival of
the reflected wave of a signal using ultrasound traveling
through a piece of fat tissue was 0.13 ms. At what depth did
this reflection occur?

76. In the clinical use of ultrasound, transducers are always
coupled to the skin by a thin layer of gel or oil, replacing the
air that would otherwise exist between the transducer and the
skin. (a) Using the values of acoustic impedance given in
Table 17.5 calculate the intensity reflection coefficient
between transducer material and air. (b) Calculate the
intensity reflection coefficient between transducer material
and gel (assuming for this problem that its acoustic
impedance is identical to that of water). (c) Based on the
results of your calculations, explain why the gel is used.

77. (a) Calculate the minimum frequency of ultrasound that
will allow you to see details as small as 0.250 mm in human
tissue. (b) What is the effective depth to which this sound is
effective as a diagnostic probe?

78. (a) Find the size of the smallest detail observable in
human tissue with 20.0-MHz ultrasound. (b) Is its effective
penetration depth great enough to examine the entire eye
(about 3.00 cm is needed)? (c) What is the wavelength of
such ultrasound in 0ºC air?
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79. (a) Echo times are measured by diagnostic ultrasound
scanners to determine distances to reflecting surfaces in a
patient. What is the difference in echo times for tissues that
are 3.50 and 3.60 cm beneath the surface? (This difference is
the minimum resolving time for the scanner to see details as
small as 0.100 cm, or 1.00 mm. Discrimination of smaller time
differences is needed to see smaller details.) (b) Discuss
whether the period T of this ultrasound must be smaller than

the minimum time resolution. If so, what is the minimum
frequency of the ultrasound and is that out of the normal
range for diagnostic ultrasound?

80. (a) How far apart are two layers of tissue that produce
echoes having round-trip times (used to measure distances)
that differ by 0.750 μs ? (b) What minimum frequency must

the ultrasound have to see detail this small?

81. (a) A bat uses ultrasound to find its way among trees. If
this bat can detect echoes 1.00 ms apart, what minimum
distance between objects can it detect? (b) Could this
distance explain the difficulty that bats have finding an open
door when they accidentally get into a house?

82. A dolphin is able to tell in the dark that the ultrasound
echoes received from two sharks come from two different
objects only if the sharks are separated by 3.50 m, one being
that much farther away than the other. (a) If the ultrasound
has a frequency of 100 kHz, show this ability is not limited by
its wavelength. (b) If this ability is due to the dolphin’s ability
to detect the arrival times of echoes, what is the minimum
time difference the dolphin can perceive?

83. A diagnostic ultrasound echo is reflected from moving
blood and returns with a frequency 500 Hz higher than its
original 2.00 MHz. What is the velocity of the blood? (Assume
that the frequency of 2.00 MHz is accurate to seven
significant figures and 500 Hz is accurate to three significant
figures.)

84. Ultrasound reflected from an oncoming bloodstream that
is moving at 30.0 cm/s is mixed with the original frequency of
2.50 MHz to produce beats. What is the beat frequency?
(Assume that the frequency of 2.50 MHz is accurate to seven
significant figures.)
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18 ELECTRIC CHARGE AND ELECTRIC
FIELD

Figure 18.1 Static electricity from this plastic slide causes the child’s hair to stand on end. The sliding motion stripped electrons away from the child’s
body, leaving an excess of positive charges, which repel each other along each strand of hair. (credit: Ken Bosma/Wikimedia Commons)

Chapter Outline
18.1. Static Electricity and Charge: Conservation of Charge

• Define electric charge, and describe how the two types of charge interact.
• Describe three common situations that generate static electricity.
• State the law of conservation of charge.

18.2. Conductors and Insulators
• Define conductor and insulator, explain the difference, and give examples of each.
• Describe three methods for charging an object.
• Explain what happens to an electric force as you move farther from the source.
• Define polarization.

18.3. Coulomb’s Law
• State Coulomb’s law in terms of how the electrostatic force changes with the distance between two objects.
• Calculate the electrostatic force between two charged point forces, such as electrons or protons.
• Compare the electrostatic force to the gravitational attraction for a proton and an electron; for a human and the Earth.

18.4. Electric Field: Concept of a Field Revisited
• Describe a force field and calculate the strength of an electric field due to a point charge.
• Calculate the force exerted on a test charge by an electric field.
• Explain the relationship between electrical force (F) on a test charge and electrical field strength (E).

18.5. Electric Field Lines: Multiple Charges
• Calculate the total force (magnitude and direction) exerted on a test charge from more than one charge
• Describe an electric field diagram of a positive point charge; of a negative point charge with twice the magnitude of

positive charge
• Draw the electric field lines between two points of the same charge; between two points of opposite charge.

18.6. Electric Forces in Biology
• Describe how a water molecule is polar.
• Explain electrostatic screening by a water molecule within a living cell.

18.7. Conductors and Electric Fields in Static Equilibrium
• List the three properties of a conductor in electrostatic equilibrium.
• Explain the effect of an electric field on free charges in a conductor.
• Explain why no electric field may exist inside a conductor.
• Describe the electric field surrounding Earth.
• Explain what happens to an electric field applied to an irregular conductor.
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• Describe how a lightning rod works.
• Explain how a metal car may protect passengers inside from the dangerous electric fields caused by a downed line

touching the car.
18.8. Applications of Electrostatics

• Name several real-world applications of the study of electrostatics.

Introduction to Electric Charge and Electric Field

The image of American politician and scientist Benjamin Franklin (1706–1790) flying a kite in a thunderstorm is familiar to every
schoolchild. (See Figure 18.2.) In this experiment, Franklin demonstrated a connection between lightning and static electricity.
Sparks were drawn from a key hung on a kite string during an electrical storm. These sparks were like those produced by static
electricity, such as the spark that jumps from your finger to a metal doorknob after you walk across a wool carpet. What Franklin
demonstrated in his dangerous experiment was a connection between phenomena on two different scales: one the grand power
of an electrical storm, the other an effect of more human proportions. Connections like this one reveal the underlying unity of the
laws of nature, an aspect we humans find particularly appealing.

Figure 18.2 When Benjamin Franklin demonstrated that lightning was related to static electricity, he made a connection that is now part of the evidence
that all directly experienced forces except the gravitational force are manifestations of the electromagnetic force.

Much has been written about Franklin. His experiments were only part of the life of a man who was a scientist, inventor,
revolutionary, statesman, and writer. Franklin’s experiments were not performed in isolation, nor were they the only ones to
reveal connections.

For example, the Italian scientist Luigi Galvani (1737–1798) performed a series of experiments in which static electricity was
used to stimulate contractions of leg muscles of dead frogs, an effect already known in humans subjected to static discharges.
But Galvani also found that if he joined two metal wires (say copper and zinc) end to end and touched the other ends to muscles,
he produced the same effect in frogs as static discharge. Alessandro Volta (1745–1827), partly inspired by Galvani’s work,
experimented with various combinations of metals and developed the battery.

During the same era, other scientists made progress in discovering fundamental connections. The periodic table was developed
as the systematic properties of the elements were discovered. This influenced the development and refinement of the concept of
atoms as the basis of matter. Such submicroscopic descriptions of matter also help explain a great deal more.

Atomic and molecular interactions, such as the forces of friction, cohesion, and adhesion, are now known to be manifestations of
the electromagnetic force. Static electricity is just one aspect of the electromagnetic force, which also includes moving
electricity and magnetism.

All the macroscopic forces that we experience directly, such as the sensations of touch and the tension in a rope, are due to the
electromagnetic force, one of the four fundamental forces in nature. The gravitational force, another fundamental force, is
actually sensed through the electromagnetic interaction of molecules, such as between those in our feet and those on the top of
a bathroom scale. (The other two fundamental forces, the strong nuclear force and the weak nuclear force, cannot be sensed on
the human scale.)

This chapter begins the study of electromagnetic phenomena at a fundamental level. The next several chapters will cover static
electricity, moving electricity, and magnetism—collectively known as electromagnetism. In this chapter, we begin with the study of
electric phenomena due to charges that are at least temporarily stationary, called electrostatics, or static electricity.
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18.1 Static Electricity and Charge: Conservation of Charge

Figure 18.3 Borneo amber was mined in Sabah, Malaysia, from shale-sandstone-mudstone veins. When a piece of amber is rubbed with a piece of
silk, the amber gains more electrons, giving it a net negative charge. At the same time, the silk, having lost electrons, becomes positively charged.
(credit: Sebakoamber, Wikimedia Commons)

What makes plastic wrap cling? Static electricity. Not only are applications of static electricity common these days, its existence
has been known since ancient times. The first record of its effects dates to ancient Greeks who noted more than 500 years B.C.
that polishing amber temporarily enabled it to attract bits of straw (see Figure 18.3). The very word electric derives from the
Greek word for amber (electron).

Many of the characteristics of static electricity can be explored by rubbing things together. Rubbing creates the spark you get
from walking across a wool carpet, for example. Static cling generated in a clothes dryer and the attraction of straw to recently
polished amber also result from rubbing. Similarly, lightning results from air movements under certain weather conditions. You
can also rub a balloon on your hair, and the static electricity created can then make the balloon cling to a wall. We also have to
be cautious of static electricity, especially in dry climates. When we pump gasoline, we are warned to discharge ourselves (after
sliding across the seat) on a metal surface before grabbing the gas nozzle. Attendants in hospital operating rooms must wear
booties with aluminum foil on the bottoms to avoid creating sparks which may ignite the oxygen being used.

Some of the most basic characteristics of static electricity include:

• The effects of static electricity are explained by a physical quantity not previously introduced, called electric charge.
• There are only two types of charge, one called positive and the other called negative.
• Like charges repel, whereas unlike charges attract.
• The force between charges decreases with distance.

How do we know there are two types of electric charge? When various materials are rubbed together in controlled ways, certain
combinations of materials always produce one type of charge on one material and the opposite type on the other. By convention,
we call one type of charge “positive”, and the other type “negative.” For example, when glass is rubbed with silk, the glass
becomes positively charged and the silk negatively charged. Since the glass and silk have opposite charges, they attract one
another like clothes that have rubbed together in a dryer. Two glass rods rubbed with silk in this manner will repel one another,
since each rod has positive charge on it. Similarly, two silk cloths so rubbed will repel, since both cloths have negative charge.
Figure 18.4 shows how these simple materials can be used to explore the nature of the force between charges.

Figure 18.4 A glass rod becomes positively charged when rubbed with silk, while the silk becomes negatively charged. (a) The glass rod is attracted to
the silk because their charges are opposite. (b) Two similarly charged glass rods repel. (c) Two similarly charged silk cloths repel.

More sophisticated questions arise. Where do these charges come from? Can you create or destroy charge? Is there a smallest
unit of charge? Exactly how does the force depend on the amount of charge and the distance between charges? Such questions
obviously occurred to Benjamin Franklin and other early researchers, and they interest us even today.

Charge Carried by Electrons and Protons

Franklin wrote in his letters and books that he could see the effects of electric charge but did not understand what caused the
phenomenon. Today we have the advantage of knowing that normal matter is made of atoms, and that atoms contain positive
and negative charges, usually in equal amounts.

Figure 18.5 shows a simple model of an atom with negative electrons orbiting its positive nucleus. The nucleus is positive due
to the presence of positively charged protons. Nearly all charge in nature is due to electrons and protons, which are two of the
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three building blocks of most matter. (The third is the neutron, which is neutral, carrying no charge.) Other charge-carrying
particles are observed in cosmic rays and nuclear decay, and are created in particle accelerators. All but the electron and proton
survive only a short time and are quite rare by comparison.

Figure 18.5 This simplified (and not to scale) view of an atom is called the planetary model of the atom. Negative electrons orbit a much heavier
positive nucleus, as the planets orbit the much heavier sun. There the similarity ends, because forces in the atom are electromagnetic, whereas those
in the planetary system are gravitational. Normal macroscopic amounts of matter contain immense numbers of atoms and molecules and, hence, even
greater numbers of individual negative and positive charges.

The charges of electrons and protons are identical in magnitude but opposite in sign. Furthermore, all charged objects in nature
are integral multiples of this basic quantity of charge, meaning that all charges are made of combinations of a basic unit of
charge. Usually, charges are formed by combinations of electrons and protons. The magnitude of this basic charge is

(18.1)∣ qe ∣ = 1.60×10−19 C.

The symbol q is commonly used for charge and the subscript e indicates the charge of a single electron (or proton).

The SI unit of charge is the coulomb (C). The number of protons needed to make a charge of 1.00 C is

(18.2)
1.00 C× 1 proton

1.60×10−19 C
= 6.25×1018 protons.

Similarly, 6.25×1018 electrons have a combined charge of −1.00 coulomb. Just as there is a smallest bit of an element (an

atom), there is a smallest bit of charge. There is no directly observed charge smaller than ∣ qe ∣ (see Things Great and

Small: The Submicroscopic Origin of Charge), and all observed charges are integral multiples of ∣ qe ∣ .

Things Great and Small: The Submicroscopic Origin of Charge

With the exception of exotic, short-lived particles, all charge in nature is carried by electrons and protons. Electrons carry the
charge we have named negative. Protons carry an equal-magnitude charge that we call positive. (See Figure 18.6.)
Electron and proton charges are considered fundamental building blocks, since all other charges are integral multiples of
those carried by electrons and protons. Electrons and protons are also two of the three fundamental building blocks of
ordinary matter. The neutron is the third and has zero total charge.

Figure 18.6 shows a person touching a Van de Graaff generator and receiving excess positive charge. The expanded view of a
hair shows the existence of both types of charges but an excess of positive. The repulsion of these positive like charges causes
the strands of hair to repel other strands of hair and to stand up. The further blowup shows an artist’s conception of an electron
and a proton perhaps found in an atom in a strand of hair.
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Figure 18.6 When this person touches a Van de Graaff generator, she receives an excess of positive charge, causing her hair to stand on end. The
charges in one hair are shown. An artist’s conception of an electron and a proton illustrate the particles carrying the negative and positive charges. We
cannot really see these particles with visible light because they are so small (the electron seems to be an infinitesimal point), but we know a great deal
about their measurable properties, such as the charges they carry.

The electron seems to have no substructure; in contrast, when the substructure of protons is explored by scattering extremely
energetic electrons from them, it appears that there are point-like particles inside the proton. These sub-particles, named quarks,
have never been directly observed, but they are believed to carry fractional charges as seen in Figure 18.7. Charges on
electrons and protons and all other directly observable particles are unitary, but these quark substructures carry charges of either

−1
3 or +2

3 . There are continuing attempts to observe fractional charge directly and to learn of the properties of quarks, which

are perhaps the ultimate substructure of matter.

Figure 18.7 Artist’s conception of fractional quark charges inside a proton. A group of three quark charges add up to the single positive charge on the

proton: −1
3qe + 2

3qe + 2
3qe = +1qe .

Separation of Charge in Atoms

Charges in atoms and molecules can be separated—for example, by rubbing materials together. Some atoms and molecules
have a greater affinity for electrons than others and will become negatively charged by close contact in rubbing, leaving the other
material positively charged. (See Figure 18.8.) Positive charge can similarly be induced by rubbing. Methods other than rubbing
can also separate charges. Batteries, for example, use combinations of substances that interact in such a way as to separate
charges. Chemical interactions may transfer negative charge from one substance to the other, making one battery terminal
negative and leaving the first one positive.
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Figure 18.8 When materials are rubbed together, charges can be separated, particularly if one material has a greater affinity for electrons than another.
(a) Both the amber and cloth are originally neutral, with equal positive and negative charges. Only a tiny fraction of the charges are involved, and only a
few of them are shown here. (b) When rubbed together, some negative charge is transferred to the amber, leaving the cloth with a net positive charge.
(c) When separated, the amber and cloth now have net charges, but the absolute value of the net positive and negative charges will be equal.

No charge is actually created or destroyed when charges are separated as we have been discussing. Rather, existing charges
are moved about. In fact, in all situations the total amount of charge is always constant. This universally obeyed law of nature is
called the law of conservation of charge.

Law of Conservation of Charge

Total charge is constant in any process.

In more exotic situations, such as in particle accelerators, mass, Δm , can be created from energy in the amount Δm = E
c2 .

Sometimes, the created mass is charged, such as when an electron is created. Whenever a charged particle is created, another
having an opposite charge is always created along with it, so that the total charge created is zero. Usually, the two particles are
“matter-antimatter” counterparts. For example, an antielectron would usually be created at the same time as an electron. The
antielectron has a positive charge (it is called a positron), and so the total charge created is zero. (See Figure 18.9.) All particles
have antimatter counterparts with opposite signs. When matter and antimatter counterparts are brought together, they completely
annihilate one another. By annihilate, we mean that the mass of the two particles is converted to energy E, again obeying the

relationship Δm = E
c2 . Since the two particles have equal and opposite charge, the total charge is zero before and after the

annihilation; thus, total charge is conserved.

Making Connections: Conservation Laws

Only a limited number of physical quantities are universally conserved. Charge is one—energy, momentum, and angular
momentum are others. Because they are conserved, these physical quantities are used to explain more phenomena and
form more connections than other, less basic quantities. We find that conserved quantities give us great insight into the rules
followed by nature and hints to the organization of nature. Discoveries of conservation laws have led to further discoveries,
such as the weak nuclear force and the quark substructure of protons and other particles.
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Figure 18.9 (a) When enough energy is present, it can be converted into matter. Here the matter created is an electron–antielectron pair. ( me is the

electron’s mass.) The total charge before and after this event is zero. (b) When matter and antimatter collide, they annihilate each other; the total
charge is conserved at zero before and after the annihilation.

The law of conservation of charge is absolute—it has never been observed to be violated. Charge, then, is a special physical
quantity, joining a very short list of other quantities in nature that are always conserved. Other conserved quantities include
energy, momentum, and angular momentum.

PhET Explorations: Balloons and Static Electricity

Why does a balloon stick to your sweater? Rub a balloon on a sweater, then let go of the balloon and it flies over and sticks
to the sweater. View the charges in the sweater, balloons, and the wall.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42300/1.9/#eip-
idm1155953856)

Figure 18.10

18.2 Conductors and Insulators

Figure 18.11 This power adapter uses metal wires and connectors to conduct electricity from the wall socket to a laptop computer. The conducting
wires allow electrons to move freely through the cables, which are shielded by rubber and plastic. These materials act as insulators that don’t allow
electric charge to escape outward. (credit: Evan-Amos, Wikimedia Commons)

Some substances, such as metals and salty water, allow charges to move through them with relative ease. Some of the
electrons in metals and similar conductors are not bound to individual atoms or sites in the material. These free electrons can
move through the material much as air moves through loose sand. Any substance that has free electrons and allows charge to
move relatively freely through it is called a conductor. The moving electrons may collide with fixed atoms and molecules, losing
some energy, but they can move in a conductor. Superconductors allow the movement of charge without any loss of energy.
Salty water and other similar conducting materials contain free ions that can move through them. An ion is an atom or molecule
having a positive or negative (nonzero) total charge. In other words, the total number of electrons is not equal to the total number
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of protons.

Other substances, such as glass, do not allow charges to move through them. These are called insulators. Electrons and ions in

insulators are bound in the structure and cannot move easily—as much as 1023 times more slowly than in conductors. Pure

water and dry table salt are insulators, for example, whereas molten salt and salty water are conductors.

Figure 18.12 An electroscope is a favorite instrument in physics demonstrations and student laboratories. It is typically made with gold foil leaves hung
from a (conducting) metal stem and is insulated from the room air in a glass-walled container. (a) A positively charged glass rod is brought near the tip
of the electroscope, attracting electrons to the top and leaving a net positive charge on the leaves. Like charges in the light flexible gold leaves repel,
separating them. (b) When the rod is touched against the ball, electrons are attracted and transferred, reducing the net charge on the glass rod but
leaving the electroscope positively charged. (c) The excess charges are evenly distributed in the stem and leaves of the electroscope once the glass
rod is removed.

Charging by Contact

Figure 18.12 shows an electroscope being charged by touching it with a positively charged glass rod. Because the glass rod is
an insulator, it must actually touch the electroscope to transfer charge to or from it. (Note that the extra positive charges reside
on the surface of the glass rod as a result of rubbing it with silk before starting the experiment.) Since only electrons move in
metals, we see that they are attracted to the top of the electroscope. There, some are transferred to the positive rod by touch,
leaving the electroscope with a net positive charge.

Electrostatic repulsion in the leaves of the charged electroscope separates them. The electrostatic force has a horizontal
component that results in the leaves moving apart as well as a vertical component that is balanced by the gravitational force.
Similarly, the electroscope can be negatively charged by contact with a negatively charged object.

Charging by Induction

It is not necessary to transfer excess charge directly to an object in order to charge it. Figure 18.13 shows a method of
induction wherein a charge is created in a nearby object, without direct contact. Here we see two neutral metal spheres in
contact with one another but insulated from the rest of the world. A positively charged rod is brought near one of them, attracting
negative charge to that side, leaving the other sphere positively charged.

This is an example of induced polarization of neutral objects. Polarization is the separation of charges in an object that remains
neutral. If the spheres are now separated (before the rod is pulled away), each sphere will have a net charge. Note that the
object closest to the charged rod receives an opposite charge when charged by induction. Note also that no charge is removed
from the charged rod, so that this process can be repeated without depleting the supply of excess charge.

Another method of charging by induction is shown in Figure 18.14. The neutral metal sphere is polarized when a charged rod is
brought near it. The sphere is then grounded, meaning that a conducting wire is run from the sphere to the ground. Since the
earth is large and most ground is a good conductor, it can supply or accept excess charge easily. In this case, electrons are
attracted to the sphere through a wire called the ground wire, because it supplies a conducting path to the ground. The ground
connection is broken before the charged rod is removed, leaving the sphere with an excess charge opposite to that of the rod.
Again, an opposite charge is achieved when charging by induction and the charged rod loses none of its excess charge.
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Figure 18.13 Charging by induction. (a) Two uncharged or neutral metal spheres are in contact with each other but insulated from the rest of the world.
(b) A positively charged glass rod is brought near the sphere on the left, attracting negative charge and leaving the other sphere positively charged. (c)
The spheres are separated before the rod is removed, thus separating negative and positive charge. (d) The spheres retain net charges after the
inducing rod is removed—without ever having been touched by a charged object.

Figure 18.14 Charging by induction, using a ground connection. (a) A positively charged rod is brought near a neutral metal sphere, polarizing it. (b)
The sphere is grounded, allowing electrons to be attracted from the earth’s ample supply. (c) The ground connection is broken. (d) The positive rod is
removed, leaving the sphere with an induced negative charge.
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Figure 18.15 Both positive and negative objects attract a neutral object by polarizing its molecules. (a) A positive object brought near a neutral
insulator polarizes its molecules. There is a slight shift in the distribution of the electrons orbiting the molecule, with unlike charges being brought
nearer and like charges moved away. Since the electrostatic force decreases with distance, there is a net attraction. (b) A negative object produces the
opposite polarization, but again attracts the neutral object. (c) The same effect occurs for a conductor; since the unlike charges are closer, there is a
net attraction.

Neutral objects can be attracted to any charged object. The pieces of straw attracted to polished amber are neutral, for example.
If you run a plastic comb through your hair, the charged comb can pick up neutral pieces of paper. Figure 18.15 shows how the
polarization of atoms and molecules in neutral objects results in their attraction to a charged object.

When a charged rod is brought near a neutral substance, an insulator in this case, the distribution of charge in atoms and
molecules is shifted slightly. Opposite charge is attracted nearer the external charged rod, while like charge is repelled. Since the
electrostatic force decreases with distance, the repulsion of like charges is weaker than the attraction of unlike charges, and so
there is a net attraction. Thus a positively charged glass rod attracts neutral pieces of paper, as will a negatively charged rubber
rod. Some molecules, like water, are polar molecules. Polar molecules have a natural or inherent separation of charge, although
they are neutral overall. Polar molecules are particularly affected by other charged objects and show greater polarization effects
than molecules with naturally uniform charge distributions.

Check Your Understanding

Can you explain the attraction of water to the charged rod in the figure below?

Figure 18.16

Solution
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Water molecules are polarized, giving them slightly positive and slightly negative sides. This makes water even more
susceptible to a charged rod’s attraction. As the water flows downward, due to the force of gravity, the charged conductor
exerts a net attraction to the opposite charges in the stream of water, pulling it closer.

PhET Explorations: John Travoltage

Make sparks fly with John Travoltage. Wiggle Johnnie's foot and he picks up charges from the carpet. Bring his hand close
to the door knob and get rid of the excess charge.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42306/1.8/#eip-
idm388879792)

Figure 18.17

18.3 Coulomb’s Law

Figure 18.18 This NASA image of Arp 87 shows the result of a strong gravitational attraction between two galaxies. In contrast, at the subatomic level,
the electrostatic attraction between two objects, such as an electron and a proton, is far greater than their mutual attraction due to gravity. (credit:
NASA/HST)

Through the work of scientists in the late 18th century, the main features of the electrostatic force—the existence of two types
of charge, the observation that like charges repel, unlike charges attract, and the decrease of force with distance—were
eventually refined, and expressed as a mathematical formula. The mathematical formula for the electrostatic force is called
Coulomb’s law after the French physicist Charles Coulomb (1736–1806), who performed experiments and first proposed a
formula to calculate it.

Coulomb’s Law
(18.3)

F = k |q1 q2|
r2 .

Coulomb’s law calculates the magnitude of the force F between two point charges, q1 and q2 , separated by a distance

r . In SI units, the constant k is equal to

(18.4)
k = 8.988×109N ⋅ m2

C2 ≈ 8.99×109N ⋅ m2

C2 .

The electrostatic force is a vector quantity and is expressed in units of newtons. The force is understood to be along the line
joining the two charges. (See Figure 18.19.)

Although the formula for Coulomb’s law is simple, it was no mean task to prove it. The experiments Coulomb did, with the
primitive equipment then available, were difficult. Modern experiments have verified Coulomb’s law to great precision. For

example, it has been shown that the force is inversely proportional to distance between two objects squared
⎛
⎝F ∝ 1 / r2⎞⎠ to an

accuracy of 1 part in 1016 . No exceptions have ever been found, even at the small distances within the atom.
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Figure 18.19 The magnitude of the electrostatic force F between point charges q1 and q2 separated by a distance r is given by Coulomb’s law.

Note that Newton’s third law (every force exerted creates an equal and opposite force) applies as usual—the force on q1 is equal in magnitude and

opposite in direction to the force it exerts on q2 . (a) Like charges. (b) Unlike charges.

Example 18.1 How Strong is the Coulomb Force Relative to the Gravitational Force?

Compare the electrostatic force between an electron and proton separated by 0.530×10−10 m with the gravitational force

between them. This distance is their average separation in a hydrogen atom.

Strategy

To compare the two forces, we first compute the electrostatic force using Coulomb’s law, F = k |q1 q2|
r2 . We then calculate

the gravitational force using Newton’s universal law of gravitation. Finally, we take a ratio to see how the forces compare in
magnitude.

Solution

Entering the given and known information about the charges and separation of the electron and proton into the expression of
Coulomb’s law yields

(18.5)
F = k |q1 q2|

r2

(18.6)
= ⎛⎝8.99×109 N ⋅ m2 / C2⎞⎠×

(1.60×10–19 C)(1.60×10–19 C)
(0.530×10–10 m)2

Thus the Coulomb force is

(18.7)F = 8.19×10–8 N.
The charges are opposite in sign, so this is an attractive force. This is a very large force for an electron—it would cause an

acceleration of 8.99×1022 m / s2 (verification is left as an end-of-section problem).The gravitational force is given by

Newton’s law of gravitation as:

(18.8)FG = GmM
r2 ,

where G = 6.67×10−11 N ⋅ m2 / kg2 . Here m and M represent the electron and proton masses, which can be found

in the appendices. Entering values for the knowns yields

(18.9)
FG = (6.67×10 – 11 N ⋅ m2 / kg2)×(9.11×10–31 kg)(1.67×10–27 kg)

(0.530×10–10 m)2 = 3.61×10–47 N

This is also an attractive force, although it is traditionally shown as positive since gravitational force is always attractive. The
ratio of the magnitude of the electrostatic force to gravitational force in this case is, thus,

(18.10)F
FG

= 2.27×1039.

Discussion

This is a remarkably large ratio! Note that this will be the ratio of electrostatic force to gravitational force for an electron and a
proton at any distance (taking the ratio before entering numerical values shows that the distance cancels). This ratio gives
some indication of just how much larger the Coulomb force is than the gravitational force between two of the most common
particles in nature.

As the example implies, gravitational force is completely negligible on a small scale, where the interactions of individual charged
particles are important. On a large scale, such as between the Earth and a person, the reverse is true. Most objects are nearly
electrically neutral, and so attractive and repulsive Coulomb forces nearly cancel. Gravitational force on a large scale
dominates interactions between large objects because it is always attractive, while Coulomb forces tend to cancel.

702 Chapter 18 | Electric Charge and Electric Field

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



18.4 Electric Field: Concept of a Field Revisited

Contact forces, such as between a baseball and a bat, are explained on the small scale by the interaction of the charges in
atoms and molecules in close proximity. They interact through forces that include the Coulomb force. Action at a distance is a
force between objects that are not close enough for their atoms to “touch.” That is, they are separated by more than a few atomic
diameters.

For example, a charged rubber comb attracts neutral bits of paper from a distance via the Coulomb force. It is very useful to think
of an object being surrounded in space by a force field. The force field carries the force to another object (called a test object)
some distance away.

Concept of a Field

A field is a way of conceptualizing and mapping the force that surrounds any object and acts on another object at a distance
without apparent physical connection. For example, the gravitational field surrounding the earth (and all other masses)
represents the gravitational force that would be experienced if another mass were placed at a given point within the field.

In the same way, the Coulomb force field surrounding any charge extends throughout space. Using Coulomb’s law,

F = k|q1q2| / r2 , its magnitude is given by the equation F = k|qQ| / r2 , for a point charge (a particle having a charge Q )

acting on a test charge q at a distance r (see Figure 18.20). Both the magnitude and direction of the Coulomb force field

depend on Q and the test charge q .

Figure 18.20 The Coulomb force field due to a positive charge Q is shown acting on two different charges. Both charges are the same distance from

Q . (a) Since q1 is positive, the force F1 acting on it is repulsive. (b) The charge q2 is negative and greater in magnitude than q1 , and so the

force F2 acting on it is attractive and stronger than F1 . The Coulomb force field is thus not unique at any point in space, because it depends on the

test charges q1 and q2 as well as the charge Q .

To simplify things, we would prefer to have a field that depends only on Q and not on the test charge q . The electric field is

defined in such a manner that it represents only the charge creating it and is unique at every point in space. Specifically, the
electric field E is defined to be the ratio of the Coulomb force to the test charge:

(18.11)E = F
q ,

where F is the electrostatic force (or Coulomb force) exerted on a positive test charge q . It is understood that E is in the

same direction as F . It is also assumed that q is so small that it does not alter the charge distribution creating the electric field.

The units of electric field are newtons per coulomb (N/C). If the electric field is known, then the electrostatic force on any charge
q is simply obtained by multiplying charge times electric field, or F = qE . Consider the electric field due to a point charge Q .

According to Coulomb’s law, the force it exerts on a test charge q is F = k|qQ| / r2 . Thus the magnitude of the electric field,

E , for a point charge is

(18.12)
E = |Fq | = k| qQ

qr2 | = k |Q|
r2 .

Since the test charge cancels, we see that

(18.13)
E = k |Q|

r2 .
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The electric field is thus seen to depend only on the charge Q and the distance r ; it is completely independent of the test

charge q .

Example 18.2 Calculating the Electric Field of a Point Charge

Calculate the strength and direction of the electric field E due to a point charge of 2.00 nC (nano-Coulombs) at a distance

of 5.00 mm from the charge.

Strategy

We can find the electric field created by a point charge by using the equation E = kQ / r2 .

Solution

Here Q = 2.00×10−9 C and r = 5.00×10−3 m. Entering those values into the above equation gives

(18.14)E = k Q
r2

= (8.99×109 N ⋅ m2/C2 )× (2.00×10−9 C)
(5.00×10−3 m)2

= 7.19×105 N/C.
Discussion

This electric field strength is the same at any point 5.00 mm away from the charge Q that creates the field. It is positive,

meaning that it has a direction pointing away from the charge Q .

Example 18.3 Calculating the Force Exerted on a Point Charge by an Electric Field

What force does the electric field found in the previous example exert on a point charge of –0.250 μC ?

Strategy

Since we know the electric field strength and the charge in the field, the force on that charge can be calculated using the
definition of electric field E = F / q rearranged to F = qE .

Solution

The magnitude of the force on a charge q = −0.250 μC exerted by a field of strength E = 7.20×105 N/C is thus,

(18.15)F = −qE

= (0.250×10–6 C)(7.20×105 N/C)
= 0.180 N.

Because q is negative, the force is directed opposite to the direction of the field.

Discussion

The force is attractive, as expected for unlike charges. (The field was created by a positive charge and here acts on a
negative charge.) The charges in this example are typical of common static electricity, and the modest attractive force
obtained is similar to forces experienced in static cling and similar situations.

PhET Explorations: Electric Field of Dreams

Play ball! Add charges to the Field of Dreams and see how they react to the electric field. Turn on a background electric field
and adjust the direction and magnitude.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42310/1.10/#eip-
idm304222304)

Figure 18.21

18.5 Electric Field Lines: Multiple Charges

Drawings using lines to represent electric fields around charged objects are very useful in visualizing field strength and
direction. Since the electric field has both magnitude and direction, it is a vector. Like all vectors, the electric field can be
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represented by an arrow that has length proportional to its magnitude and that points in the correct direction. (We have used
arrows extensively to represent force vectors, for example.)

Figure 18.22 shows two pictorial representations of the same electric field created by a positive point charge Q . Figure 18.22

(b) shows the standard representation using continuous lines. Figure 18.22 (a) shows numerous individual arrows with each
arrow representing the force on a test charge q . Field lines are essentially a map of infinitesimal force vectors.

Figure 18.22 Two equivalent representations of the electric field due to a positive charge Q . (a) Arrows representing the electric field’s magnitude

and direction. (b) In the standard representation, the arrows are replaced by continuous field lines having the same direction at any point as the electric
field. The closeness of the lines is directly related to the strength of the electric field. A test charge placed anywhere will feel a force in the direction of
the field line; this force will have a strength proportional to the density of the lines (being greater near the charge, for example).

Note that the electric field is defined for a positive test charge q , so that the field lines point away from a positive charge and

toward a negative charge. (See Figure 18.23.) The electric field strength is exactly proportional to the number of field lines per

unit area, since the magnitude of the electric field for a point charge is E = k|Q| / r2 and area is proportional to r2 . This

pictorial representation, in which field lines represent the direction and their closeness (that is, their areal density or the number
of lines crossing a unit area) represents strength, is used for all fields: electrostatic, gravitational, magnetic, and others.

Figure 18.23 The electric field surrounding three different point charges. (a) A positive charge. (b) A negative charge of equal magnitude. (c) A larger
negative charge.

In many situations, there are multiple charges. The total electric field created by multiple charges is the vector sum of the
individual fields created by each charge. The following example shows how to add electric field vectors.

Example 18.4 Adding Electric Fields

Find the magnitude and direction of the total electric field due to the two point charges, q1 and q2 , at the origin of the

coordinate system as shown in Figure 18.24.

Figure 18.24 The electric fields E1 and E2 at the origin O add to Etot .
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Strategy

Since the electric field is a vector (having magnitude and direction), we add electric fields with the same vector techniques
used for other types of vectors. We first must find the electric field due to each charge at the point of interest, which is the
origin of the coordinate system (O) in this instance. We pretend that there is a positive test charge, q , at point O, which

allows us to determine the direction of the fields E1 and E2 . Once those fields are found, the total field can be determined

using vector addition.

Solution

The electric field strength at the origin due to q1 is labeled E1 and is calculated:

(18.16)

E1 = kq1
r1

2 = ⎛⎝8.99×109 N ⋅ m2/C2⎞⎠
⎛
⎝5.00×10−9 C⎞⎠
⎛
⎝2.00×10−2 m⎞⎠

2

E1 = 1.124×105 N/C.

Similarly, E2 is

(18.17)

E2 = kq2
r2

2 = ⎛⎝8.99×109 N ⋅ m2/C2⎞⎠
⎛
⎝10.0×10−9 C⎞⎠
⎛
⎝4.00×10−2 m⎞⎠

2

E2 = 0.5619×105 N/C.

Four digits have been retained in this solution to illustrate that E1 is exactly twice the magnitude of E2 . Now arrows are

drawn to represent the magnitudes and directions of E1 and E2 . (See Figure 18.24.) The direction of the electric field is

that of the force on a positive charge so both arrows point directly away from the positive charges that create them. The
arrow for E1 is exactly twice the length of that for E2 . The arrows form a right triangle in this case and can be added using

the Pythagorean theorem. The magnitude of the total field Etot is

(18.18)Etot = (E1
2 + E2

2 )1/2

= {(1.124×105 N/C)2 + (0.5619×105 N/C)2}1/2

= 1.26×105 N/C.
The direction is

(18.19)
θ = tan−1⎛⎝

E1
E2

⎞
⎠

= tan−1⎛⎝ 1.124×105 N/C
0.5619×105 N/C

⎞
⎠

= 63.4º,

or 63.4º above the x-axis.

Discussion

In cases where the electric field vectors to be added are not perpendicular, vector components or graphical techniques can
be used. The total electric field found in this example is the total electric field at only one point in space. To find the total
electric field due to these two charges over an entire region, the same technique must be repeated for each point in the
region. This impossibly lengthy task (there are an infinite number of points in space) can be avoided by calculating the total
field at representative points and using some of the unifying features noted next.

Figure 18.25 shows how the electric field from two point charges can be drawn by finding the total field at representative points
and drawing electric field lines consistent with those points. While the electric fields from multiple charges are more complex than
those of single charges, some simple features are easily noticed.

For example, the field is weaker between like charges, as shown by the lines being farther apart in that region. (This is because
the fields from each charge exert opposing forces on any charge placed between them.) (See Figure 18.25 and Figure
18.26(a).) Furthermore, at a great distance from two like charges, the field becomes identical to the field from a single, larger
charge.

Figure 18.26(b) shows the electric field of two unlike charges. The field is stronger between the charges. In that region, the fields
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from each charge are in the same direction, and so their strengths add. The field of two unlike charges is weak at large
distances, because the fields of the individual charges are in opposite directions and so their strengths subtract. At very large
distances, the field of two unlike charges looks like that of a smaller single charge.

Figure 18.25 Two positive point charges q1 and q2 produce the resultant electric field shown. The field is calculated at representative points and

then smooth field lines drawn following the rules outlined in the text.

Figure 18.26 (a) Two negative charges produce the fields shown. It is very similar to the field produced by two positive charges, except that the
directions are reversed. The field is clearly weaker between the charges. The individual forces on a test charge in that region are in opposite directions.
(b) Two opposite charges produce the field shown, which is stronger in the region between the charges.

We use electric field lines to visualize and analyze electric fields (the lines are a pictorial tool, not a physical entity in themselves).
The properties of electric field lines for any charge distribution can be summarized as follows:

1. Field lines must begin on positive charges and terminate on negative charges, or at infinity in the hypothetical case of
isolated charges.

2. The number of field lines leaving a positive charge or entering a negative charge is proportional to the magnitude of the
charge.

3. The strength of the field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of
lines per unit area perpendicular to the lines.

4. The direction of the electric field is tangent to the field line at any point in space.

5. Field lines can never cross.

The last property means that the field is unique at any point. The field line represents the direction of the field; so if they crossed,
the field would have two directions at that location (an impossibility if the field is unique).
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PhET Explorations: Charges and Fields

Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's
colorful, it's dynamic, it's free.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42312/1.12/#phet-18-5)
Figure 18.27

18.6 Electric Forces in Biology

Classical electrostatics has an important role to play in modern molecular biology. Large molecules such as proteins, nucleic
acids, and so on—so important to life—are usually electrically charged. DNA itself is highly charged; it is the electrostatic force
that not only holds the molecule together but gives the molecule structure and strength. Figure 18.28 is a schematic of the DNA
double helix.

Figure 18.28 DNA is a highly charged molecule. The DNA double helix shows the two coiled strands each containing a row of nitrogenous bases,
which “code” the genetic information needed by a living organism. The strands are connected by bonds between pairs of bases. While pairing
combinations between certain bases are fixed (C-G and A-T), the sequence of nucleotides in the strand varies. (credit: Jerome Walker)

The four nucleotide bases are given the symbols A (adenine), C (cytosine), G (guanine), and T (thymine). The order of the four
bases varies in each strand, but the pairing between bases is always the same. C and G are always paired and A and T are
always paired, which helps to preserve the order of bases in cell division (mitosis) so as to pass on the correct genetic

information. Since the Coulomb force drops with distance ( F ∝ 1 / r2 ), the distances between the base pairs must be small

enough that the electrostatic force is sufficient to hold them together.

DNA is a highly charged molecule, with about 2qe (fundamental charge) per 0.3×10−9 m. The distance separating the two

strands that make up the DNA structure is about 1 nm, while the distance separating the individual atoms within each base is
about 0.3 nm.

One might wonder why electrostatic forces do not play a larger role in biology than they do if we have so many charged
molecules. The reason is that the electrostatic force is “diluted” due to screening between molecules. This is due to the
presence of other charges in the cell.

Polarity of Water Molecules

The best example of this charge screening is the water molecule, represented as H2 O . Water is a strongly polar molecule. Its

10 electrons (8 from the oxygen atom and 2 from the two hydrogen atoms) tend to remain closer to the oxygen nucleus than the
hydrogen nuclei. This creates two centers of equal and opposite charges—what is called a dipole, as illustrated in Figure 18.29.
The magnitude of the dipole is called the dipole moment.

These two centers of charge will terminate some of the electric field lines coming from a free charge, as on a DNA molecule. This
results in a reduction in the strength of the Coulomb interaction. One might say that screening makes the Coulomb force a
short range force rather than long range.

Other ions of importance in biology that can reduce or screen Coulomb interactions are Na+ , and K+ , and Cl– . These ions

are located both inside and outside of living cells. The movement of these ions through cell membranes is crucial to the motion of
nerve impulses through nerve axons.

Recent studies of electrostatics in biology seem to show that electric fields in cells can be extended over larger distances, in
spite of screening, by “microtubules” within the cell. These microtubules are hollow tubes composed of proteins that guide the
movement of chromosomes when cells divide, the motion of other organisms within the cell, and provide mechanisms for motion
of some cells (as motors).
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Figure 18.29 This schematic shows water ( H2 O ) as a polar molecule. Unequal sharing of electrons between the oxygen (O) and hydrogen (H)

atoms leads to a net separation of positive and negative charge—forming a dipole. The symbols δ−
and δ+

indicate that the oxygen side of the

H2 O molecule tends to be more negative, while the hydrogen ends tend to be more positive. This leads to an attraction of opposite charges

between molecules.

18.7 Conductors and Electric Fields in Static Equilibrium

Conductors contain free charges that move easily. When excess charge is placed on a conductor or the conductor is put into a
static electric field, charges in the conductor quickly respond to reach a steady state called electrostatic equilibrium.

Figure 18.30 shows the effect of an electric field on free charges in a conductor. The free charges move until the field is
perpendicular to the conductor’s surface. There can be no component of the field parallel to the surface in electrostatic
equilibrium, since, if there were, it would produce further movement of charge. A positive free charge is shown, but free charges
can be either positive or negative and are, in fact, negative in metals. The motion of a positive charge is equivalent to the motion
of a negative charge in the opposite direction.

Figure 18.30 When an electric field E is applied to a conductor, free charges inside the conductor move until the field is perpendicular to the surface.

(a) The electric field is a vector quantity, with both parallel and perpendicular components. The parallel component ( E∥ ) exerts a force ( F∥ ) on

the free charge q , which moves the charge until F∥ = 0 . (b) The resulting field is perpendicular to the surface. The free charge has been brought

to the conductor’s surface, leaving electrostatic forces in equilibrium.

A conductor placed in an electric field will be polarized. Figure 18.31 shows the result of placing a neutral conductor in an
originally uniform electric field. The field becomes stronger near the conductor but entirely disappears inside it.

Figure 18.31 This illustration shows a spherical conductor in static equilibrium with an originally uniform electric field. Free charges move within the
conductor, polarizing it, until the electric field lines are perpendicular to the surface. The field lines end on excess negative charge on one section of the
surface and begin again on excess positive charge on the opposite side. No electric field exists inside the conductor, since free charges in the
conductor would continue moving in response to any field until it was neutralized.
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Misconception Alert: Electric Field inside a Conductor

Excess charges placed on a spherical conductor repel and move until they are evenly distributed, as shown in Figure 18.32.
Excess charge is forced to the surface until the field inside the conductor is zero. Outside the conductor, the field is exactly
the same as if the conductor were replaced by a point charge at its center equal to the excess charge.

Figure 18.32 The mutual repulsion of excess positive charges on a spherical conductor distributes them uniformly on its surface. The resulting
electric field is perpendicular to the surface and zero inside. Outside the conductor, the field is identical to that of a point charge at the center
equal to the excess charge.

Properties of a Conductor in Electrostatic Equilibrium
1. The electric field is zero inside a conductor.

2. Just outside a conductor, the electric field lines are perpendicular to its surface, ending or beginning on charges on the
surface.

3. Any excess charge resides entirely on the surface or surfaces of a conductor.

The properties of a conductor are consistent with the situations already discussed and can be used to analyze any conductor in
electrostatic equilibrium. This can lead to some interesting new insights, such as described below.

How can a very uniform electric field be created? Consider a system of two metal plates with opposite charges on them, as
shown in Figure 18.33. The properties of conductors in electrostatic equilibrium indicate that the electric field between the plates
will be uniform in strength and direction. Except near the edges, the excess charges distribute themselves uniformly, producing
field lines that are uniformly spaced (hence uniform in strength) and perpendicular to the surfaces (hence uniform in direction,
since the plates are flat). The edge effects are less important when the plates are close together.

Figure 18.33 Two metal plates with equal, but opposite, excess charges. The field between them is uniform in strength and direction except near the
edges. One use of such a field is to produce uniform acceleration of charges between the plates, such as in the electron gun of a TV tube.

Earth’s Electric Field

A near uniform electric field of approximately 150 N/C, directed downward, surrounds Earth, with the magnitude increasing
slightly as we get closer to the surface. What causes the electric field? At around 100 km above the surface of Earth we have a
layer of charged particles, called the ionosphere. The ionosphere is responsible for a range of phenomena including the electric
field surrounding Earth. In fair weather the ionosphere is positive and the Earth largely negative, maintaining the electric field
(Figure 18.34(a)).

In storm conditions clouds form and localized electric fields can be larger and reversed in direction (Figure 18.34(b)). The exact
charge distributions depend on the local conditions, and variations of Figure 18.34(b) are possible.

If the electric field is sufficiently large, the insulating properties of the surrounding material break down and it becomes

conducting. For air this occurs at around 3×106 N/C. Air ionizes ions and electrons recombine, and we get discharge in the

form of lightning sparks and corona discharge.
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Figure 18.34 Earth’s electric field. (a) Fair weather field. Earth and the ionosphere (a layer of charged particles) are both conductors. They produce a
uniform electric field of about 150 N/C. (credit: D. H. Parks) (b) Storm fields. In the presence of storm clouds, the local electric fields can be larger. At
very high fields, the insulating properties of the air break down and lightning can occur. (credit: Jan-Joost Verhoef)

Electric Fields on Uneven Surfaces

So far we have considered excess charges on a smooth, symmetrical conductor surface. What happens if a conductor has sharp
corners or is pointed? Excess charges on a nonuniform conductor become concentrated at the sharpest points. Additionally,
excess charge may move on or off the conductor at the sharpest points.

To see how and why this happens, consider the charged conductor in Figure 18.35. The electrostatic repulsion of like charges is
most effective in moving them apart on the flattest surface, and so they become least concentrated there. This is because the
forces between identical pairs of charges at either end of the conductor are identical, but the components of the forces parallel to
the surfaces are different. The component parallel to the surface is greatest on the flattest surface and, hence, more effective in
moving the charge.

The same effect is produced on a conductor by an externally applied electric field, as seen in Figure 18.35 (c). Since the field
lines must be perpendicular to the surface, more of them are concentrated on the most curved parts.

Figure 18.35 Excess charge on a nonuniform conductor becomes most concentrated at the location of greatest curvature. (a) The forces between

identical pairs of charges at either end of the conductor are identical, but the components of the forces parallel to the surface are different. It is F∥

that moves the charges apart once they have reached the surface. (b) F∥ is smallest at the more pointed end, the charges are left closer together,

producing the electric field shown. (c) An uncharged conductor in an originally uniform electric field is polarized, with the most concentrated charge at
its most pointed end.

Applications of Conductors

On a very sharply curved surface, such as shown in Figure 18.36, the charges are so concentrated at the point that the resulting
electric field can be great enough to remove them from the surface. This can be useful.

Lightning rods work best when they are most pointed. The large charges created in storm clouds induce an opposite charge on a
building that can result in a lightning bolt hitting the building. The induced charge is bled away continually by a lightning rod,
preventing the more dramatic lightning strike.

Of course, we sometimes wish to prevent the transfer of charge rather than to facilitate it. In that case, the conductor should be
very smooth and have as large a radius of curvature as possible. (See Figure 18.37.) Smooth surfaces are used on high-voltage
transmission lines, for example, to avoid leakage of charge into the air.

Another device that makes use of some of these principles is a Faraday cage. This is a metal shield that encloses a volume. All
electrical charges will reside on the outside surface of this shield, and there will be no electrical field inside. A Faraday cage is
used to prohibit stray electrical fields in the environment from interfering with sensitive measurements, such as the electrical
signals inside a nerve cell.

During electrical storms if you are driving a car, it is best to stay inside the car as its metal body acts as a Faraday cage with zero
electrical field inside. If in the vicinity of a lightning strike, its effect is felt on the outside of the car and the inside is unaffected,
provided you remain totally inside. This is also true if an active (“hot”) electrical wire was broken (in a storm or an accident) and
fell on your car.
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Figure 18.36 A very pointed conductor has a large charge concentration at the point. The electric field is very strong at the point and can exert a force
large enough to transfer charge on or off the conductor. Lightning rods are used to prevent the buildup of large excess charges on structures and, thus,
are pointed.

Figure 18.37 (a) A lightning rod is pointed to facilitate the transfer of charge. (credit: Romaine, Wikimedia Commons) (b) This Van de Graaff generator
has a smooth surface with a large radius of curvature to prevent the transfer of charge and allow a large voltage to be generated. The mutual repulsion
of like charges is evident in the person’s hair while touching the metal sphere. (credit: Jon ‘ShakataGaNai’ Davis/Wikimedia Commons).

18.8 Applications of Electrostatics

The study of electrostatics has proven useful in many areas. This module covers just a few of the many applications of
electrostatics.

The Van de Graaff Generator

Van de Graaff generators (or Van de Graaffs) are not only spectacular devices used to demonstrate high voltage due to static
electricity—they are also used for serious research. The first was built by Robert Van de Graaff in 1931 (based on original
suggestions by Lord Kelvin) for use in nuclear physics research. Figure 18.38 shows a schematic of a large research version.
Van de Graaffs utilize both smooth and pointed surfaces, and conductors and insulators to generate large static charges and,
hence, large voltages.

A very large excess charge can be deposited on the sphere, because it moves quickly to the outer surface. Practical limits arise
because the large electric fields polarize and eventually ionize surrounding materials, creating free charges that neutralize
excess charge or allow it to escape. Nevertheless, voltages of 15 million volts are well within practical limits.
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Figure 18.38 Schematic of Van de Graaff generator. A battery (A) supplies excess positive charge to a pointed conductor, the points of which spray the
charge onto a moving insulating belt near the bottom. The pointed conductor (B) on top in the large sphere picks up the charge. (The induced electric
field at the points is so large that it removes the charge from the belt.) This can be done because the charge does not remain inside the conducting
sphere but moves to its outside surface. An ion source inside the sphere produces positive ions, which are accelerated away from the positive sphere
to high velocities.

Take-Home Experiment: Electrostatics and Humidity

Rub a comb through your hair and use it to lift pieces of paper. It may help to tear the pieces of paper rather than cut them
neatly. Repeat the exercise in your bathroom after you have had a long shower and the air in the bathroom is moist. Is it
easier to get electrostatic effects in dry or moist air? Why would torn paper be more attractive to the comb than cut paper?
Explain your observations.

Xerography

Most copy machines use an electrostatic process called xerography—a word coined from the Greek words xeros for dry and
graphos for writing. The heart of the process is shown in simplified form in Figure 18.39.

A selenium-coated aluminum drum is sprayed with positive charge from points on a device called a corotron. Selenium is a
substance with an interesting property—it is a photoconductor. That is, selenium is an insulator when in the dark and a
conductor when exposed to light.

In the first stage of the xerography process, the conducting aluminum drum is grounded so that a negative charge is induced
under the thin layer of uniformly positively charged selenium. In the second stage, the surface of the drum is exposed to the
image of whatever is to be copied. Where the image is light, the selenium becomes conducting, and the positive charge is
neutralized. In dark areas, the positive charge remains, and so the image has been transferred to the drum.

The third stage takes a dry black powder, called toner, and sprays it with a negative charge so that it will be attracted to the
positive regions of the drum. Next, a blank piece of paper is given a greater positive charge than on the drum so that it will pull
the toner from the drum. Finally, the paper and electrostatically held toner are passed through heated pressure rollers, which melt
and permanently adhere the toner within the fibers of the paper.
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Figure 18.39 Xerography is a dry copying process based on electrostatics. The major steps in the process are the charging of the photoconducting
drum, transfer of an image creating a positive charge duplicate, attraction of toner to the charged parts of the drum, and transfer of toner to the paper.
Not shown are heat treatment of the paper and cleansing of the drum for the next copy.

Laser Printers

Laser printers use the xerographic process to make high-quality images on paper, employing a laser to produce an image on
the photoconducting drum as shown in Figure 18.40. In its most common application, the laser printer receives output from a
computer, and it can achieve high-quality output because of the precision with which laser light can be controlled. Many laser
printers do significant information processing, such as making sophisticated letters or fonts, and may contain a computer more
powerful than the one giving them the raw data to be printed.

Figure 18.40 In a laser printer, a laser beam is scanned across a photoconducting drum, leaving a positive charge image. The other steps for charging
the drum and transferring the image to paper are the same as in xerography. Laser light can be very precisely controlled, enabling laser printers to
produce high-quality images.

Ink Jet Printers and Electrostatic Painting

The ink jet printer, commonly used to print computer-generated text and graphics, also employs electrostatics. A nozzle makes
a fine spray of tiny ink droplets, which are then given an electrostatic charge. (See Figure 18.41.)

Once charged, the droplets can be directed, using pairs of charged plates, with great precision to form letters and images on
paper. Ink jet printers can produce color images by using a black jet and three other jets with primary colors, usually cyan,
magenta, and yellow, much as a color television produces color. (This is more difficult with xerography, requiring multiple drums
and toners.)

714 Chapter 18 | Electric Charge and Electric Field

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Figure 18.41 The nozzle of an ink-jet printer produces small ink droplets, which are sprayed with electrostatic charge. Various computer-driven devices
are then used to direct the droplets to the correct positions on a page.

Electrostatic painting employs electrostatic charge to spray paint onto odd-shaped surfaces. Mutual repulsion of like charges
causes the paint to fly away from its source. Surface tension forms drops, which are then attracted by unlike charges to the
surface to be painted. Electrostatic painting can reach those hard-to-get at places, applying an even coat in a controlled manner.
If the object is a conductor, the electric field is perpendicular to the surface, tending to bring the drops in perpendicularly. Corners
and points on conductors will receive extra paint. Felt can similarly be applied.

Smoke Precipitators and Electrostatic Air Cleaning

Another important application of electrostatics is found in air cleaners, both large and small. The electrostatic part of the process
places excess (usually positive) charge on smoke, dust, pollen, and other particles in the air and then passes the air through an
oppositely charged grid that attracts and retains the charged particles. (See Figure 18.42.)

Large electrostatic precipitators are used industrially to remove over 99% of the particles from stack gas emissions associated
with the burning of coal and oil. Home precipitators, often in conjunction with the home heating and air conditioning system, are
very effective in removing polluting particles, irritants, and allergens.

Figure 18.42 (a) Schematic of an electrostatic precipitator. Air is passed through grids of opposite charge. The first grid charges airborne particles,
while the second attracts and collects them. (b) The dramatic effect of electrostatic precipitators is seen by the absence of smoke from this power plant.
(credit: Cmdalgleish, Wikimedia Commons)

Problem-Solving Strategies for Electrostatics
1. Examine the situation to determine if static electricity is involved. This may concern separated stationary charges, the

forces among them, and the electric fields they create.

2. Identify the system of interest. This includes noting the number, locations, and types of charges involved.

3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful. Determine
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whether the Coulomb force is to be considered directly—if so, it may be useful to draw a free-body diagram, using
electric field lines.

4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). It is important to
distinguish the Coulomb force F from the electric field E , for example.

5. Solve the appropriate equation for the quantity to be determined (the unknown) or draw the field lines as requested.

6. Examine the answer to see if it is reasonable: Does it make sense? Are units correct and the numbers involved
reasonable?

Integrated Concepts

The Integrated Concepts exercises for this module involve concepts such as electric charges, electric fields, and several other
topics. Physics is most interesting when applied to general situations involving more than a narrow set of physical principles. The
electric field exerts force on charges, for example, and hence the relevance of Dynamics: Force and Newton’s Laws of
Motion. The following topics are involved in some or all of the problems labeled “Integrated Concepts”:

• Kinematics
• Two-Dimensional Kinematics
• Dynamics: Force and Newton’s Laws of Motion
• Uniform Circular Motion and Gravitation
• Statics and Torque
• Fluid Statics

The following worked example illustrates how this strategy is applied to an Integrated Concept problem:

Example 18.5 Acceleration of a Charged Drop of Gasoline

If steps are not taken to ground a gasoline pump, static electricity can be placed on gasoline when filling your car’s tank.

Suppose a tiny drop of gasoline has a mass of 4.00×10–15 kg and is given a positive charge of 3.20×10–19 C . (a)

Find the weight of the drop. (b) Calculate the electric force on the drop if there is an upward electric field of strength

3.00×105 N/C due to other static electricity in the vicinity. (c) Calculate the drop’s acceleration.

Strategy

To solve an integrated concept problem, we must first identify the physical principles involved and identify the chapters in
which they are found. Part (a) of this example asks for weight. This is a topic of dynamics and is defined in Dynamics:
Force and Newton’s Laws of Motion. Part (b) deals with electric force on a charge, a topic of Electric Charge and
Electric Field. Part (c) asks for acceleration, knowing forces and mass. These are part of Newton’s laws, also found in
Dynamics: Force and Newton’s Laws of Motion.

The following solutions to each part of the example illustrate how the specific problem-solving strategies are applied. These
involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so on.

Solution for (a)

Weight is mass times the acceleration due to gravity, as first expressed in

(18.20)w = mg.

Entering the given mass and the average acceleration due to gravity yields

(18.21)w = (4.00×10−15 kg)(9.80 m/s2 ) = 3.92×10−14 N.

Discussion for (a)

This is a small weight, consistent with the small mass of the drop.

Solution for (b)

The force an electric field exerts on a charge is given by rearranging the following equation:

(18.22)F = qE.

Here we are given the charge ( 3.20×10–19 C is twice the fundamental unit of charge) and the electric field strength, and

so the electric force is found to be

(18.23)F = (3.20×10−19 C)(3.00×105 N/C) = 9.60×10−14 N.

Discussion for (b)

While this is a small force, it is greater than the weight of the drop.

Solution for (c)
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conductor:

conductor:

Coulomb force:

Coulomb interaction:

Coulomb’s law:

dipole:

electric charge:

electric field:

The acceleration can be found using Newton’s second law, provided we can identify all of the external forces acting on the
drop. We assume only the drop’s weight and the electric force are significant. Since the drop has a positive charge and the
electric field is given to be upward, the electric force is upward. We thus have a one-dimensional (vertical direction) problem,
and we can state Newton’s second law as

(18.24)
a = Fnet

m .

where Fnet = F − w . Entering this and the known values into the expression for Newton’s second law yields

(18.25)a = F − w
m

= 9.60×10−14 N − 3.92×10−14 N
4.00×10−15 kg

= 14.2 m/s2.
Discussion for (c)

This is an upward acceleration great enough to carry the drop to places where you might not wish to have gasoline.

This worked example illustrates how to apply problem-solving strategies to situations that include topics in different chapters.
The first step is to identify the physical principles involved in the problem. The second step is to solve for the unknown using
familiar problem-solving strategies. These are found throughout the text, and many worked examples show how to use them
for single topics. In this integrated concepts example, you can see how to apply them across several topics. You will find
these techniques useful in applications of physics outside a physics course, such as in your profession, in other science
disciplines, and in everyday life. The following problems will build your skills in the broad application of physical principles.

Unreasonable Results

The Unreasonable Results exercises for this module have results that are unreasonable because some premise is
unreasonable or because certain of the premises are inconsistent with one another. Physical principles applied correctly
then produce unreasonable results. The purpose of these problems is to give practice in assessing whether nature is being
accurately described, and if it is not to trace the source of difficulty.

Problem-Solving Strategy

To determine if an answer is reasonable, and to determine the cause if it is not, do the following.

1. Solve the problem using strategies as outlined above. Use the format followed in the worked examples in the text
to solve the problem as usual.

2. Check to see if the answer is reasonable. Is it too large or too small, or does it have the wrong sign, improper
units, and so on?

3. If the answer is unreasonable, look for what specifically could cause the identified difficulty. Usually, the manner in
which the answer is unreasonable is an indication of the difficulty. For example, an extremely large Coulomb force
could be due to the assumption of an excessively large separated charge.

Glossary

a material that allows electrons to move separately from their atomic orbits

an object with properties that allow charges to move about freely within it

another term for the electrostatic force

the interaction between two charged particles generated by the Coulomb forces they exert on one
another

the mathematical equation calculating the electrostatic force vector between two charged particles

a molecule’s lack of symmetrical charge distribution, causing one side to be more positive and another to be more
negative

a physical property of an object that causes it to be attracted toward or repelled from another charged object;
each charged object generates and is influenced by a force called an electromagnetic force

a three-dimensional map of the electric force extended out into space from a point charge
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electric field lines:

electromagnetic force:

electron:

electrostatic equilibrium:

electrostatic force:

electrostatic precipitators:

electrostatic repulsion:

electrostatics:

Faraday cage:

field:

free charge:

free electron:

grounded:

grounded:

induction:

ink-jet printer:

insulator:

ionosphere:

laser printer:

law of conservation of charge:

photoconductor:

point charge:

polar molecule:

polarization:

polarized:

proton:

screening:

static electricity:

test charge:

Van de Graaff generator:

vector:

vector addition:

a series of lines drawn from a point charge representing the magnitude and direction of force exerted by
that charge

one of the four fundamental forces of nature; the electromagnetic force consists of static electricity,
moving electricity and magnetism

a particle orbiting the nucleus of an atom and carrying the smallest unit of negative charge

an electrostatically balanced state in which all free electrical charges have stopped moving about

the amount and direction of attraction or repulsion between two charged bodies

filters that apply charges to particles in the air, then attract those charges to a filter, removing
them from the airstream

the phenomenon of two objects with like charges repelling each other

the study of electric forces that are static or slow-moving

a metal shield which prevents electric charge from penetrating its surface

a map of the amount and direction of a force acting on other objects, extending out into space

an electrical charge (either positive or negative) which can move about separately from its base molecule

an electron that is free to move away from its atomic orbit

when a conductor is connected to the Earth, allowing charge to freely flow to and from Earth’s unlimited reservoir

connected to the ground with a conductor, so that charge flows freely to and from the Earth to the grounded object

the process by which an electrically charged object brought near a neutral object creates a charge in that object

small ink droplets sprayed with an electric charge are controlled by electrostatic plates to create images on
paper

a material that holds electrons securely within their atomic orbits

a layer of charged particles located around 100 km above the surface of Earth, which is responsible for a range
of phenomena including the electric field surrounding Earth

uses a laser to create a photoconductive image on a drum, which attracts dry ink particles that are then rolled
onto a sheet of paper to print a high-quality copy of the image

states that whenever a charge is created, an equal amount of charge with the opposite sign
is created simultaneously

a substance that is an insulator until it is exposed to light, when it becomes a conductor

A charged particle, designated Q , generating an electric field

a molecule with an asymmetrical distribution of positive and negative charge

slight shifting of positive and negative charges to opposite sides of an atom or molecule

a state in which the positive and negative charges within an object have collected in separate locations

a particle in the nucleus of an atom and carrying a positive charge equal in magnitude and opposite in sign to the
amount of negative charge carried by an electron

the dilution or blocking of an electrostatic force on a charged object by the presence of other charges nearby

a buildup of electric charge on the surface of an object

A particle (designated q ) with either a positive or negative charge set down within an electric field generated by

a point charge

a machine that produces a large amount of excess charge, used for experiments with high voltage

a quantity with both magnitude and direction

mathematical combination of two or more vectors, including their magnitudes, directions, and positions
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xerography: a dry copying process based on electrostatics

Section Summary

18.1 Static Electricity and Charge: Conservation of Charge
• There are only two types of charge, which we call positive and negative.
• Like charges repel, unlike charges attract, and the force between charges decreases with the square of the distance.
• The vast majority of positive charge in nature is carried by protons, while the vast majority of negative charge is carried by

electrons.
• The electric charge of one electron is equal in magnitude and opposite in sign to the charge of one proton.
• An ion is an atom or molecule that has nonzero total charge due to having unequal numbers of electrons and protons.
• The SI unit for charge is the coulomb (C), with protons and electrons having charges of opposite sign but equal magnitude;

the magnitude of this basic charge ∣ qe ∣ is

∣ qe ∣ = 1.60×10−19 C.
• Whenever charge is created or destroyed, equal amounts of positive and negative are involved.
• Most often, existing charges are separated from neutral objects to obtain some net charge.
• Both positive and negative charges exist in neutral objects and can be separated by rubbing one object with another. For

macroscopic objects, negatively charged means an excess of electrons and positively charged means a depletion of
electrons.

• The law of conservation of charge ensures that whenever a charge is created, an equal charge of the opposite sign is
created at the same time.

18.2 Conductors and Insulators
• Polarization is the separation of positive and negative charges in a neutral object.
• A conductor is a substance that allows charge to flow freely through its atomic structure.
• An insulator holds charge within its atomic structure.
• Objects with like charges repel each other, while those with unlike charges attract each other.
• A conducting object is said to be grounded if it is connected to the Earth through a conductor. Grounding allows transfer of

charge to and from the earth’s large reservoir.
• Objects can be charged by contact with another charged object and obtain the same sign charge.
• If an object is temporarily grounded, it can be charged by induction, and obtains the opposite sign charge.
• Polarized objects have their positive and negative charges concentrated in different areas, giving them a non-symmetrical

charge.
• Polar molecules have an inherent separation of charge.

18.3 Coulomb’s Law
• Frenchman Charles Coulomb was the first to publish the mathematical equation that describes the electrostatic force

between two objects.
• Coulomb’s law gives the magnitude of the force between point charges. It is

F = k |q1 q2|
r2 ,

where q1 and q2 are two point charges separated by a distance r , and k ≈ 8.99×109 N · m2 / C2

• This Coulomb force is extremely basic, since most charges are due to point-like particles. It is responsible for all
electrostatic effects and underlies most macroscopic forces.

• The Coulomb force is extraordinarily strong compared with the gravitational force, another basic force—but unlike
gravitational force it can cancel, since it can be either attractive or repulsive.

• The electrostatic force between two subatomic particles is far greater than the gravitational force between the same two
particles.

18.4 Electric Field: Concept of a Field Revisited
• The electrostatic force field surrounding a charged object extends out into space in all directions.
• The electrostatic force exerted by a point charge on a test charge at a distance r depends on the charge of both charges,

as well as the distance between the two.
• The electric field E is defined to be

E = F
q,

where F is the Coulomb or electrostatic force exerted on a small positive test charge q . E has units of N/C.

• The magnitude of the electric field E created by a point charge Q is
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E = k |Q|
r2 .

where r is the distance from Q . The electric field E is a vector and fields due to multiple charges add like vectors.

18.5 Electric Field Lines: Multiple Charges
• Drawings of electric field lines are useful visual tools. The properties of electric field lines for any charge distribution are

that:
• Field lines must begin on positive charges and terminate on negative charges, or at infinity in the hypothetical case of

isolated charges.
• The number of field lines leaving a positive charge or entering a negative charge is proportional to the magnitude of the

charge.
• The strength of the field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of

lines per unit area perpendicular to the lines.
• The direction of the electric field is tangent to the field line at any point in space.
• Field lines can never cross.

18.6 Electric Forces in Biology
• Many molecules in living organisms, such as DNA, carry a charge.
• An uneven distribution of the positive and negative charges within a polar molecule produces a dipole.
• The effect of a Coulomb field generated by a charged object may be reduced or blocked by other nearby charged objects.
• Biological systems contain water, and because water molecules are polar, they have a strong effect on other molecules in

living systems.

18.7 Conductors and Electric Fields in Static Equilibrium
• A conductor allows free charges to move about within it.
• The electrical forces around a conductor will cause free charges to move around inside the conductor until static equilibrium

is reached.
• Any excess charge will collect along the surface of a conductor.
• Conductors with sharp corners or points will collect more charge at those points.
• A lightning rod is a conductor with sharply pointed ends that collect excess charge on the building caused by an electrical

storm and allow it to dissipate back into the air.
• Electrical storms result when the electrical field of Earth’s surface in certain locations becomes more strongly charged, due

to changes in the insulating effect of the air.
• A Faraday cage acts like a shield around an object, preventing electric charge from penetrating inside.

18.8 Applications of Electrostatics
• Electrostatics is the study of electric fields in static equilibrium.
• In addition to research using equipment such as a Van de Graaff generator, many practical applications of electrostatics

exist, including photocopiers, laser printers, ink-jet printers and electrostatic air filters.

Conceptual Questions

18.1 Static Electricity and Charge: Conservation of Charge

1. There are very large numbers of charged particles in most objects. Why, then, don’t most objects exhibit static electricity?

2. Why do most objects tend to contain nearly equal numbers of positive and negative charges?

18.2 Conductors and Insulators

3. An eccentric inventor attempts to levitate by first placing a large negative charge on himself and then putting a large positive
charge on the ceiling of his workshop. Instead, while attempting to place a large negative charge on himself, his clothes fly off.
Explain.

4. If you have charged an electroscope by contact with a positively charged object, describe how you could use it to determine
the charge of other objects. Specifically, what would the leaves of the electroscope do if other charged objects were brought near
its knob?

5. When a glass rod is rubbed with silk, it becomes positive and the silk becomes negative—yet both attract dust. Does the dust
have a third type of charge that is attracted to both positive and negative? Explain.

6. Why does a car always attract dust right after it is polished? (Note that car wax and car tires are insulators.)

7. Describe how a positively charged object can be used to give another object a negative charge. What is the name of this
process?

8. What is grounding? What effect does it have on a charged conductor? On a charged insulator?
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18.3 Coulomb’s Law

9. Figure 18.43 shows the charge distribution in a water molecule, which is called a polar molecule because it has an inherent
separation of charge. Given water’s polar character, explain what effect humidity has on removing excess charge from objects.

Figure 18.43 Schematic representation of the outer electron cloud of a neutral water molecule. The electrons spend more time near the oxygen than

the hydrogens, giving a permanent charge separation as shown. Water is thus a polar molecule. It is more easily affected by electrostatic forces than

molecules with uniform charge distributions.

10. Using Figure 18.43, explain, in terms of Coulomb’s law, why a polar molecule (such as in Figure 18.43) is attracted by both
positive and negative charges.

11. Given the polar character of water molecules, explain how ions in the air form nucleation centers for rain droplets.

18.4 Electric Field: Concept of a Field Revisited

12. Why must the test charge q in the definition of the electric field be vanishingly small?

13. Are the direction and magnitude of the Coulomb force unique at a given point in space? What about the electric field?

18.5 Electric Field Lines: Multiple Charges

14. Compare and contrast the Coulomb force field and the electric field. To do this, make a list of five properties for the Coulomb
force field analogous to the five properties listed for electric field lines. Compare each item in your list of Coulomb force field
properties with those of the electric field—are they the same or different? (For example, electric field lines cannot cross. Is the
same true for Coulomb field lines?)

15. Figure 18.44 shows an electric field extending over three regions, labeled I, II, and III. Answer the following questions. (a)
Are there any isolated charges? If so, in what region and what are their signs? (b) Where is the field strongest? (c) Where is it
weakest? (d) Where is the field the most uniform?

Figure 18.44
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18.6 Electric Forces in Biology

16. A cell membrane is a thin layer enveloping a cell. The thickness of the membrane is much less than the size of the cell. In a

static situation the membrane has a charge distribution of −2.5×10−6 C/m 2 on its inner surface and +2.5×10−6 C/m2 on its

outer surface. Draw a diagram of the cell and the surrounding cell membrane. Include on this diagram the charge distribution and
the corresponding electric field. Is there any electric field inside the cell? Is there any electric field outside the cell?

18.7 Conductors and Electric Fields in Static Equilibrium

17. Is the object in Figure 18.45 a conductor or an insulator? Justify your answer.

Figure 18.45

18. If the electric field lines in the figure above were perpendicular to the object, would it necessarily be a conductor? Explain.

19. The discussion of the electric field between two parallel conducting plates, in this module states that edge effects are less
important if the plates are close together. What does close mean? That is, is the actual plate separation crucial, or is the ratio of
plate separation to plate area crucial?

20. Would the self-created electric field at the end of a pointed conductor, such as a lightning rod, remove positive or negative
charge from the conductor? Would the same sign charge be removed from a neutral pointed conductor by the application of a
similar externally created electric field? (The answers to both questions have implications for charge transfer utilizing points.)

21. Why is a golfer with a metal club over her shoulder vulnerable to lightning in an open fairway? Would she be any safer under
a tree?

22. Can the belt of a Van de Graaff accelerator be a conductor? Explain.

23. Are you relatively safe from lightning inside an automobile? Give two reasons.

24. Discuss pros and cons of a lightning rod being grounded versus simply being attached to a building.

25. Using the symmetry of the arrangement, show that the net Coulomb force on the charge q at the center of the square below

(Figure 18.46) is zero if the charges on the four corners are exactly equal.

Figure 18.46 Four point charges qa , qb , qc , and qd lie on the corners of a square and q is located at its center.

26. (a) Using the symmetry of the arrangement, show that the electric field at the center of the square in Figure 18.46 is zero if
the charges on the four corners are exactly equal. (b) Show that this is also true for any combination of charges in which
qa = qd and qb = qc

27. (a) What is the direction of the total Coulomb force on q in Figure 18.46 if q is negative, qa = qc and both are negative,

and qb = qc and both are positive? (b) What is the direction of the electric field at the center of the square in this situation?
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28. Considering Figure 18.46, suppose that qa = qd and qb = qc . First show that q is in static equilibrium. (You may neglect

the gravitational force.) Then discuss whether the equilibrium is stable or unstable, noting that this may depend on the signs of
the charges and the direction of displacement of q from the center of the square.

29. If qa = 0 in Figure 18.46, under what conditions will there be no net Coulomb force on q ?

30. In regions of low humidity, one develops a special “grip” when opening car doors, or touching metal door knobs. This involves
placing as much of the hand on the device as possible, not just the ends of one’s fingers. Discuss the induced charge and
explain why this is done.

31. Tollbooth stations on roadways and bridges usually have a piece of wire stuck in the pavement before them that will touch a
car as it approaches. Why is this done?

32. Suppose a woman carries an excess charge. To maintain her charged status can she be standing on ground wearing just
any pair of shoes? How would you discharge her? What are the consequences if she simply walks away?
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Problems & Exercises

18.1 Static Electricity and Charge:
Conservation of Charge

1. Common static electricity involves charges ranging from
nanocoulombs to microcoulombs. (a) How many electrons
are needed to form a charge of –2.00 nC (b) How many

electrons must be removed from a neutral object to leave a
net charge of 0.500 µC ?

2. If 1.80×1020 electrons move through a pocket calculator

during a full day’s operation, how many coulombs of charge
moved through it?

3. To start a car engine, the car battery moves 3.75×1021

electrons through the starter motor. How many coulombs of
charge were moved?

4. A certain lightning bolt moves 40.0 C of charge. How many
fundamental units of charge ∣ qe ∣ is this?

18.2 Conductors and Insulators

5. Suppose a speck of dust in an electrostatic precipitator has

1.0000×1012 protons in it and has a net charge of –5.00

nC (a very large charge for a small speck). How many
electrons does it have?

6. An amoeba has 1.00×1016 protons and a net charge of

0.300 pC. (a) How many fewer electrons are there than
protons? (b) If you paired them up, what fraction of the
protons would have no electrons?

7. A 50.0 g ball of copper has a net charge of 2.00 µC .

What fraction of the copper’s electrons has been removed?
(Each copper atom has 29 protons, and copper has an atomic
mass of 63.5.)

8. What net charge would you place on a 100 g piece of sulfur

if you put an extra electron on 1 in 1012 of its atoms? (Sulfur

has an atomic mass of 32.1.)

9. How many coulombs of positive charge are there in 4.00 kg
of plutonium, given its atomic mass is 244 and that each
plutonium atom has 94 protons?

18.3 Coulomb’s Law

10. What is the repulsive force between two pith balls that are
8.00 cm apart and have equal charges of – 30.0 nC?

11. (a) How strong is the attractive force between a glass rod
with a 0.700 μC charge and a silk cloth with a –0.600 μC
charge, which are 12.0 cm apart, using the approximation that
they act like point charges? (b) Discuss how the answer to
this problem might be affected if the charges are distributed
over some area and do not act like point charges.

12. Two point charges exert a 5.00 N force on each other.
What will the force become if the distance between them is
increased by a factor of three?

13. Two point charges are brought closer together, increasing
the force between them by a factor of 25. By what factor was
their separation decreased?

14. How far apart must two point charges of 75.0 nC (typical
of static electricity) be to have a force of 1.00 N between
them?

15. If two equal charges each of 1 C each are separated in air
by a distance of 1 km, what is the magnitude of the force
acting between them? You will see that even at a distance as
large as 1 km, the repulsive force is substantial because 1 C
is a very significant amount of charge.

16. A test charge of +2 μC is placed halfway between a

charge of +6 μC and another of +4 μC separated by 10

cm. (a) What is the magnitude of the force on the test
charge? (b) What is the direction of this force (away from or
toward the +6 μC charge)?

17. Bare free charges do not remain stationary when close
together. To illustrate this, calculate the acceleration of two
isolated protons separated by 2.00 nm (a typical distance
between gas atoms). Explicitly show how you follow the steps
in the Problem-Solving Strategy for electrostatics.

18. (a) By what factor must you change the distance between
two point charges to change the force between them by a
factor of 10? (b) Explain how the distance can either increase
or decrease by this factor and still cause a factor of 10
change in the force.

19. Suppose you have a total charge qtot that you can split

in any manner. Once split, the separation distance is fixed.
How do you split the charge to achieve the greatest force?

20. (a) Common transparent tape becomes charged when
pulled from a dispenser. If one piece is placed above another,
the repulsive force can be great enough to support the top
piece’s weight. Assuming equal point charges (only an
approximation), calculate the magnitude of the charge if
electrostatic force is great enough to support the weight of a
10.0 mg piece of tape held 1.00 cm above another. (b)
Discuss whether the magnitude of this charge is consistent
with what is typical of static electricity.

21. (a) Find the ratio of the electrostatic to gravitational force
between two electrons. (b) What is this ratio for two protons?
(c) Why is the ratio different for electrons and protons?

22. At what distance is the electrostatic force between two
protons equal to the weight of one proton?

23. A certain five cent coin contains 5.00 g of nickel. What
fraction of the nickel atoms’ electrons, removed and placed
1.00 m above it, would support the weight of this coin? The
atomic mass of nickel is 58.7, and each nickel atom contains
28 electrons and 28 protons.

24. (a) Two point charges totaling 8.00 µC exert a repulsive

force of 0.150 N on one another when separated by 0.500 m.
What is the charge on each? (b) What is the charge on each
if the force is attractive?

25. Point charges of 5.00 µC and –3.00 µC are placed

0.250 m apart. (a) Where can a third charge be placed so that
the net force on it is zero? (b) What if both charges are
positive?

724 Chapter 18 | Electric Charge and Electric Field

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



26. Two point charges q1 and q2 are 3.00 m apart, and

their total charge is 20 µC . (a) If the force of repulsion

between them is 0.075N, what are magnitudes of the two
charges? (b) If one charge attracts the other with a force of
0.525N, what are the magnitudes of the two charges? Note
that you may need to solve a quadratic equation to reach your
answer.

18.4 Electric Field: Concept of a Field Revisited

27. What is the magnitude and direction of an electric field

that exerts a 2.00×10-5 N upward force on a –1.75 μC
charge?

28. What is the magnitude and direction of the force exerted
on a 3.50 μC charge by a 250 N/C electric field that points

due east?

29. Calculate the magnitude of the electric field 2.00 m from a
point charge of 5.00 mC (such as found on the terminal of a
Van de Graaff).

30. (a) What magnitude point charge creates a 10,000 N/C
electric field at a distance of 0.250 m? (b) How large is the
field at 10.0 m?

31. Calculate the initial (from rest) acceleration of a proton in

a 5.00×106 N/C electric field (such as created by a

research Van de Graaff). Explicitly show how you follow the
steps in the Problem-Solving Strategy for electrostatics.

32. (a) Find the magnitude and direction of an electric field

that exerts a 4.80×10−17 N westward force on an electron.

(b) What magnitude and direction force does this field exert
on a proton?

18.5 Electric Field Lines: Multiple Charges

33. (a) Sketch the electric field lines near a point charge +q .

(b) Do the same for a point charge –3.00q .

34. Sketch the electric field lines a long distance from the
charge distributions shown in Figure 18.26 (a) and (b)

35. Figure 18.47 shows the electric field lines near two
charges q1 and q2 . What is the ratio of their magnitudes?

(b) Sketch the electric field lines a long distance from the
charges shown in the figure.

Figure 18.47 The electric field near two charges.

36. Sketch the electric field lines in the vicinity of two opposite
charges, where the negative charge is three times greater in
magnitude than the positive. (See Figure 18.47 for a similar
situation).

18.7 Conductors and Electric Fields in Static
Equilibrium

37. Sketch the electric field lines in the vicinity of the
conductor in Figure 18.48 given the field was originally
uniform and parallel to the object’s long axis. Is the resulting
field small near the long side of the object?

Figure 18.48

38. Sketch the electric field lines in the vicinity of the
conductor in Figure 18.49 given the field was originally
uniform and parallel to the object’s long axis. Is the resulting
field small near the long side of the object?

Figure 18.49
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39. Sketch the electric field between the two conducting
plates shown in Figure 18.50, given the top plate is positive
and an equal amount of negative charge is on the bottom
plate. Be certain to indicate the distribution of charge on the
plates.

Figure 18.50

40. Sketch the electric field lines in the vicinity of the charged
insulator in Figure 18.51 noting its nonuniform charge
distribution.

Figure 18.51 A charged insulating rod such as might be used in a

classroom demonstration.

41. What is the force on the charge located at x = 8.00 cm
in Figure 18.52(a) given that q = 1.00 μC ?

Figure 18.52 (a) Point charges located at 3.00, 8.00, and 11.0 cm along

the x-axis. (b) Point charges located at 1.00, 5.00, 8.00, and 14.0 cm

along the x-axis.

42. (a) Find the total electric field at x = 1.00 cm in Figure

18.52(b) given that q = 5.00 nC . (b) Find the total electric

field at x = 11.00 cm in Figure 18.52(b). (c) If the charges

are allowed to move and eventually be brought to rest by
friction, what will the final charge configuration be? (That is,
will there be a single charge, double charge, etc., and what
will its value(s) be?)

43. (a) Find the electric field at x = 5.00 cm in Figure

18.52(a), given that q = 1.00 μC . (b) At what position

between 3.00 and 8.00 cm is the total electric field the same
as that for –2q alone? (c) Can the electric field be zero

anywhere between 0.00 and 8.00 cm? (d) At very large
positive or negative values of x, the electric field approaches
zero in both (a) and (b). In which does it most rapidly
approach zero and why? (e) At what position to the right of
11.0 cm is the total electric field zero, other than at infinity?
(Hint: A graphing calculator can yield considerable insight in
this problem.)

44. (a) Find the total Coulomb force on a charge of 2.00 nC
located at x = 4.00 cm in Figure 18.52 (b), given that

q = 1.00 μC . (b) Find the x-position at which the electric

field is zero in Figure 18.52 (b).

45. Using the symmetry of the arrangement, determine the
direction of the force on q in the figure below, given that

qa = qb=+7.50 μC and qc = qd = −7.50 μC . (b)

Calculate the magnitude of the force on the charge q , given

that the square is 10.0 cm on a side and q = 2.00 μC .

Figure 18.53

46. (a) Using the symmetry of the arrangement, determine the
direction of the electric field at the center of the square in
Figure 18.53, given that qa = qb = −1.00 μC and

qc = qd=+1.00 μC . (b) Calculate the magnitude of the

electric field at the location of q , given that the square is 5.00

cm on a side.

47. Find the electric field at the location of qa in Figure

18.53 given that qb = qc = qd=+2.00 nC ,

q = −1.00 nC , and the square is 20.0 cm on a side.

48. Find the total Coulomb force on the charge q in Figure

18.53, given that q = 1.00 μC , qa = 2.00 μC ,

qb = −3.00 μC , qc = −4.00 μC , and qd =+1.00 μC .

The square is 50.0 cm on a side.
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49. (a) Find the electric field at the location of qa in Figure

18.54, given that qb = +10.00 μC and qc = –5.00 μC .

(b) What is the force on qa , given that qa = +1.50 nC ?

Figure 18.54 Point charges located at the corners of an equilateral

triangle 25.0 cm on a side.

50. (a) Find the electric field at the center of the triangular
configuration of charges in Figure 18.54, given that
qa =+2.50 nC , qb = −8.00 nC , and qc =+1.50 nC .

(b) Is there any combination of charges, other than
qa = qb = qc , that will produce a zero strength electric field

at the center of the triangular configuration?

18.8 Applications of Electrostatics

51. (a) What is the electric field 5.00 m from the center of the
terminal of a Van de Graaff with a 3.00 mC charge, noting that
the field is equivalent to that of a point charge at the center of
the terminal? (b) At this distance, what force does the field
exert on a 2.00 μC charge on the Van de Graaff’s belt?

52. (a) What is the direction and magnitude of an electric field
that supports the weight of a free electron near the surface of
Earth? (b) Discuss what the small value for this field implies
regarding the relative strength of the gravitational and
electrostatic forces.

53. A simple and common technique for accelerating
electrons is shown in Figure 18.55, where there is a uniform
electric field between two plates. Electrons are released,
usually from a hot filament, near the negative plate, and there
is a small hole in the positive plate that allows the electrons to
continue moving. (a) Calculate the acceleration of the

electron if the field strength is 2.50×104 N/C . (b) Explain

why the electron will not be pulled back to the positive plate
once it moves through the hole.

Figure 18.55 Parallel conducting plates with opposite charges on them

create a relatively uniform electric field used to accelerate electrons to

the right. Those that go through the hole can be used to make a TV or

computer screen glow or to produce X-rays.

54. Earth has a net charge that produces an electric field of
approximately 150 N/C downward at its surface. (a) What is
the magnitude and sign of the excess charge, noting the
electric field of a conducting sphere is equivalent to a point
charge at its center? (b) What acceleration will the field
produce on a free electron near Earth’s surface? (c) What
mass object with a single extra electron will have its weight
supported by this field?

55. Point charges of 25.0 μC and 45.0 μC are placed

0.500 m apart. (a) At what point along the line between them
is the electric field zero? (b) What is the electric field halfway
between them?

56. What can you say about two charges q1 and q2 , if the

electric field one-fourth of the way from q1 to q2 is zero?

57. Integrated Concepts

Calculate the angular velocity ω of an electron orbiting a

proton in the hydrogen atom, given the radius of the orbit is

0.530×10–10 m . You may assume that the proton is

stationary and the centripetal force is supplied by Coulomb
attraction.
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58. Integrated Concepts

An electron has an initial velocity of 5.00×106 m/s in a

uniform 2.00×105 N/C strength electric field. The field

accelerates the electron in the direction opposite to its initial
velocity. (a) What is the direction of the electric field? (b) How
far does the electron travel before coming to rest? (c) How
long does it take the electron to come to rest? (d) What is the
electron’s velocity when it returns to its starting point?

59. Integrated Concepts

The practical limit to an electric field in air is about

3.00×106 N/C . Above this strength, sparking takes place

because air begins to ionize and charges flow, reducing the
field. (a) Calculate the distance a free proton must travel in
this field to reach 3.00% of the speed of light, starting from

rest. (b) Is this practical in air, or must it occur in a vacuum?

60. Integrated Concepts

A 5.00 g charged insulating ball hangs on a 30.0 cm long
string in a uniform horizontal electric field as shown in Figure
18.56. Given the charge on the ball is 1.00 μC , find the

strength of the field.

Figure 18.56 A horizontal electric field causes the charged ball to hang

at an angle of 8.00º .

61. Integrated Concepts

Figure 18.57 shows an electron passing between two
charged metal plates that create an 100 N/C vertical electric
field perpendicular to the electron’s original horizontal velocity.
(These can be used to change the electron’s direction, such
as in an oscilloscope.) The initial speed of the electron is

3.00×106 m/s , and the horizontal distance it travels in the

uniform field is 4.00 cm. (a) What is its vertical deflection? (b)
What is the vertical component of its final velocity? (c) At what
angle does it exit? Neglect any edge effects.

Figure 18.57

62. Integrated Concepts

The classic Millikan oil drop experiment was the first to obtain
an accurate measurement of the charge on an electron. In it,
oil drops were suspended against the gravitational force by a
vertical electric field. (See Figure 18.58.) Given the oil drop to

be 1.00 μm in radius and have a density of 920 kg/m3 :

(a) Find the weight of the drop. (b) If the drop has a single
excess electron, find the electric field strength needed to
balance its weight.

Figure 18.58 In the Millikan oil drop experiment, small drops can be

suspended in an electric field by the force exerted on a single excess

electron. Classically, this experiment was used to determine the electron

charge qe by measuring the electric field and mass of the drop.
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63. Integrated Concepts

(a) In Figure 18.59, four equal charges q lie on the corners

of a square. A fifth charge Q is on a mass m directly above

the center of the square, at a height equal to the length d of

one side of the square. Determine the magnitude of q in

terms of Q , m , and d , if the Coulomb force is to equal the

weight of m . (b) Is this equilibrium stable or unstable?

Discuss.

Figure 18.59 Four equal charges on the corners of a horizontal square

support the weight of a fifth charge located directly above the center of

the square.

64. Unreasonable Results

(a) Calculate the electric field strength near a 10.0 cm
diameter conducting sphere that has 1.00 C of excess charge
on it. (b) What is unreasonable about this result? (c) Which
assumptions are responsible?

65. Unreasonable Results

(a) Two 0.500 g raindrops in a thunderhead are 1.00 cm apart
when they each acquire 1.00 mC charges. Find their
acceleration. (b) What is unreasonable about this result? (c)
Which premise or assumption is responsible?

66. Unreasonable Results

A wrecking yard inventor wants to pick up cars by charging a
0.400 m diameter ball and inducing an equal and opposite
charge on the car. If a car has a 1000 kg mass and the ball is
to be able to lift it from a distance of 1.00 m: (a) What
minimum charge must be used? (b) What is the electric field
near the surface of the ball? (c) Why are these results
unreasonable? (d) Which premise or assumption is
responsible?

67. Construct Your Own Problem

Consider two insulating balls with evenly distributed equal
and opposite charges on their surfaces, held with a certain
distance between the centers of the balls. Construct a
problem in which you calculate the electric field (magnitude
and direction) due to the balls at various points along a line
running through the centers of the balls and extending to
infinity on either side. Choose interesting points and comment
on the meaning of the field at those points. For example, at
what points might the field be just that due to one ball and
where does the field become negligibly small? Among the
things to be considered are the magnitudes of the charges
and the distance between the centers of the balls. Your
instructor may wish for you to consider the electric field off
axis or for a more complex array of charges, such as those in
a water molecule.

68. Construct Your Own Problem

Consider identical spherical conducting space ships in deep
space where gravitational fields from other bodies are
negligible compared to the gravitational attraction between
the ships. Construct a problem in which you place identical
excess charges on the space ships to exactly counter their
gravitational attraction. Calculate the amount of excess
charge needed. Examine whether that charge depends on the
distance between the centers of the ships, the masses of the
ships, or any other factors. Discuss whether this would be an
easy, difficult, or even impossible thing to do in practice.
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19 ELECTRIC POTENTIAL AND ELECTRIC
FIELD

Figure 19.1 Automated external defibrillator unit (AED) (credit: U.S. Defense Department photo/Tech. Sgt. Suzanne M. Day)

Chapter Outline
19.1. Electric Potential Energy: Potential Difference

• Define electric potential and electric potential energy.
• Describe the relationship between potential difference and electrical potential energy.
• Explain electron volt and its usage in submicroscopic process.
• Determine electric potential energy given potential difference and amount of charge.

19.2. Electric Potential in a Uniform Electric Field
• Describe the relationship between voltage and electric field.
• Derive an expression for the electric potential and electric field.
• Calculate electric field strength given distance and voltage.

19.3. Electrical Potential Due to a Point Charge
• Explain point charges and express the equation for electric potential of a point charge.
• Distinguish between electric potential and electric field.
• Determine the electric potential of a point charge given charge and distance.

19.4. Equipotential Lines
• Explain equipotential lines and equipotential surfaces.
• Describe the action of grounding an electrical appliance.
• Compare electric field and equipotential lines.

19.5. Capacitors and Dielectrics
• Describe the action of a capacitor and define capacitance.
• Explain parallel plate capacitors and their capacitances.
• Discuss the process of increasing the capacitance of a dielectric.
• Determine capacitance given charge and voltage.

19.6. Capacitors in Series and Parallel
• Derive expressions for total capacitance in series and in parallel.
• Identify series and parallel parts in the combination of connection of capacitors.
• Calculate the effective capacitance in series and parallel given individual capacitances.

19.7. Energy Stored in Capacitors
• List some uses of capacitors.
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• Express in equation form the energy stored in a capacitor.
• Explain the function of a defibrillator.

Introduction to Electric Potential and Electric Energy

In Electric Charge and Electric Field, we just scratched the surface (or at least rubbed it) of electrical phenomena. Two of the
most familiar aspects of electricity are its energy and voltage. We know, for example, that great amounts of electrical energy can
be stored in batteries, are transmitted cross-country through power lines, and may jump from clouds to explode the sap of trees.
In a similar manner, at molecular levels, ions cross cell membranes and transfer information. We also know about voltages
associated with electricity. Batteries are typically a few volts, the outlets in your home produce 120 volts, and power lines can be
as high as hundreds of thousands of volts. But energy and voltage are not the same thing. A motorcycle battery, for example, is
small and would not be very successful in replacing the much larger car battery, yet each has the same voltage. In this chapter,
we shall examine the relationship between voltage and electrical energy and begin to explore some of the many applications of
electricity.

19.1 Electric Potential Energy: Potential Difference

When a free positive charge q is accelerated by an electric field, such as shown in Figure 19.2, it is given kinetic energy. The

process is analogous to an object being accelerated by a gravitational field. It is as if the charge is going down an electrical hill
where its electric potential energy is converted to kinetic energy. Let us explore the work done on a charge q by the electric field

in this process, so that we may develop a definition of electric potential energy.

Figure 19.2 A charge accelerated by an electric field is analogous to a mass going down a hill. In both cases potential energy is converted to another

form. Work is done by a force, but since this force is conservative, we can write W = –ΔPE .

The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken. This

is exactly analogous to the gravitational force in the absence of dissipative forces such as friction. When a force is conservative,
it is possible to define a potential energy associated with the force, and it is usually easier to deal with the potential energy
(because it depends only on position) than to calculate the work directly.

We use the letters PE to denote electric potential energy, which has units of joules (J). The change in potential energy, ΔPE , is

crucial, since the work done by a conservative force is the negative of the change in potential energy; that is, W = –ΔPE . For

example, work W done to accelerate a positive charge from rest is positive and results from a loss in PE, or a negative ΔPE .

There must be a minus sign in front of ΔPE to make W positive. PE can be found at any point by taking one point as a

reference and calculating the work needed to move a charge to the other point.

Potential Energy

W = –ΔPE . For example, work W done to accelerate a positive charge from rest is positive and results from a loss in

PE, or a negative ΔPE. There must be a minus sign in front of ΔPE to make W positive. PE can be found at any point

by taking one point as a reference and calculating the work needed to move a charge to the other point.

Gravitational potential energy and electric potential energy are quite analogous. Potential energy accounts for work done by a
conservative force and gives added insight regarding energy and energy transformation without the necessity of dealing with the
force directly. It is much more common, for example, to use the concept of voltage (related to electric potential energy) than to
deal with the Coulomb force directly.

Calculating the work directly is generally difficult, since W = Fd cos θ and the direction and magnitude of F can be complex
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for multiple charges, for odd-shaped objects, and along arbitrary paths. But we do know that, since F = qE , the work, and

hence ΔPE , is proportional to the test charge q. To have a physical quantity that is independent of test charge, we define

electric potential V (or simply potential, since electric is understood) to be the potential energy per unit charge:

(19.1)V = PE
q .

Electric Potential

This is the electric potential energy per unit charge.

(19.2)V = PE
q

Since PE is proportional to q , the dependence on q cancels. Thus V does not depend on q . The change in potential energy

ΔPE is crucial, and so we are concerned with the difference in potential or potential difference ΔV between two points, where

(19.3)ΔV = VB − VA = ΔPE
q .

The potential difference between points A and B, VB – VA , is thus defined to be the change in potential energy of a charge

q moved from A to B, divided by the charge. Units of potential difference are joules per coulomb, given the name volt (V) after

Alessandro Volta.

(19.4)1 V = 1 J
C

Potential Difference

The potential difference between points A and B, VB - VA , is defined to be the change in potential energy of a charge q
moved from A to B, divided by the charge. Units of potential difference are joules per coulomb, given the name volt (V) after
Alessandro Volta.

(19.5)1 V = 1 J
C

The familiar term voltage is the common name for potential difference. Keep in mind that whenever a voltage is quoted, it is
understood to be the potential difference between two points. For example, every battery has two terminals, and its voltage is the
potential difference between them. More fundamentally, the point you choose to be zero volts is arbitrary. This is analogous to
the fact that gravitational potential energy has an arbitrary zero, such as sea level or perhaps a lecture hall floor.

In summary, the relationship between potential difference (or voltage) and electrical potential energy is given by

(19.6)ΔV = ΔPE
q and ΔPE = qΔV .

Potential Difference and Electrical Potential Energy

The relationship between potential difference (or voltage) and electrical potential energy is given by

(19.7)ΔV = ΔPE
q and ΔPE = qΔV .

The second equation is equivalent to the first.

Voltage is not the same as energy. Voltage is the energy per unit charge. Thus a motorcycle battery and a car battery can both
have the same voltage (more precisely, the same potential difference between battery terminals), yet one stores much more
energy than the other since ΔPE = qΔV . The car battery can move more charge than the motorcycle battery, although both

are 12 V batteries.

Example 19.1 Calculating Energy

Suppose you have a 12.0 V motorcycle battery that can move 5000 C of charge, and a 12.0 V car battery that can move
60,000 C of charge. How much energy does each deliver? (Assume that the numerical value of each charge is accurate to
three significant figures.)

Strategy

To say we have a 12.0 V battery means that its terminals have a 12.0 V potential difference. When such a battery moves
charge, it puts the charge through a potential difference of 12.0 V, and the charge is given a change in potential energy
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equal to ΔPE = qΔV .

So to find the energy output, we multiply the charge moved by the potential difference.

Solution

For the motorcycle battery, q = 5000 C and ΔV = 12.0 V . The total energy delivered by the motorcycle battery is

(19.8)ΔPEcycle = (5000 C)(12.0 V)
= (5000 C)(12.0 J/C)
= 6.00×104 J.

Similarly, for the car battery, q = 60,000 C and

(19.9)ΔPEcar = (60,000 C)(12.0 V)

= 7.20×105 J.
Discussion

While voltage and energy are related, they are not the same thing. The voltages of the batteries are identical, but the energy
supplied by each is quite different. Note also that as a battery is discharged, some of its energy is used internally and its
terminal voltage drops, such as when headlights dim because of a low car battery. The energy supplied by the battery is still
calculated as in this example, but not all of the energy is available for external use.

Note that the energies calculated in the previous example are absolute values. The change in potential energy for the battery is
negative, since it loses energy. These batteries, like many electrical systems, actually move negative charge—electrons in
particular. The batteries repel electrons from their negative terminals (A) through whatever circuitry is involved and attract them
to their positive terminals (B) as shown in Figure 19.3. The change in potential is ΔV = VB –VA = +12 V and the charge q
is negative, so that ΔPE = qΔV is negative, meaning the potential energy of the battery has decreased when q has moved

from A to B.

Figure 19.3 A battery moves negative charge from its negative terminal through a headlight to its positive terminal. Appropriate combinations of
chemicals in the battery separate charges so that the negative terminal has an excess of negative charge, which is repelled by it and attracted to the
excess positive charge on the other terminal. In terms of potential, the positive terminal is at a higher voltage than the negative. Inside the battery, both
positive and negative charges move.

Example 19.2 How Many Electrons Move through a Headlight Each Second?

When a 12.0 V car battery runs a single 30.0 W headlight, how many electrons pass through it each second?

Strategy

To find the number of electrons, we must first find the charge that moved in 1.00 s. The charge moved is related to voltage
and energy through the equation ΔPE = qΔV . A 30.0 W lamp uses 30.0 joules per second. Since the battery loses

energy, we have ΔPE = –30.0 J and, since the electrons are going from the negative terminal to the positive, we see that

ΔV = +12.0 V .

Solution

To find the charge q moved, we solve the equation ΔPE = qΔV :

734 Chapter 19 | Electric Potential and Electric Field

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



(19.10)q = ΔPE
ΔV .

Entering the values for ΔPE and ΔV , we get

(19.11)q = –30.0 J
+12.0 V = –30.0 J

+12.0 J/C = –2.50 C.

The number of electrons ne is the total charge divided by the charge per electron. That is,

(19.12)ne = –2.50 C
–1.60×10–19 C/e– = 1.56×1019 electrons.

Discussion

This is a very large number. It is no wonder that we do not ordinarily observe individual electrons with so many being present
in ordinary systems. In fact, electricity had been in use for many decades before it was determined that the moving charges
in many circumstances were negative. Positive charge moving in the opposite direction of negative charge often produces
identical effects; this makes it difficult to determine which is moving or whether both are moving.

The Electron Volt

The energy per electron is very small in macroscopic situations like that in the previous example—a tiny fraction of a joule. But
on a submicroscopic scale, such energy per particle (electron, proton, or ion) can be of great importance. For example, even a
tiny fraction of a joule can be great enough for these particles to destroy organic molecules and harm living tissue. The particle
may do its damage by direct collision, or it may create harmful x rays, which can also inflict damage. It is useful to have an
energy unit related to submicroscopic effects. Figure 19.4 shows a situation related to the definition of such an energy unit. An
electron is accelerated between two charged metal plates as it might be in an old-model television tube or oscilloscope. The
electron is given kinetic energy that is later converted to another form—light in the television tube, for example. (Note that
downhill for the electron is uphill for a positive charge.) Since energy is related to voltage by ΔPE = qΔV , we can think of the

joule as a coulomb-volt.

Figure 19.4 A typical electron gun accelerates electrons using a potential difference between two metal plates. The energy of the electron in electron
volts is numerically the same as the voltage between the plates. For example, a 5000 V potential difference produces 5000 eV electrons.

On the submicroscopic scale, it is more convenient to define an energy unit called the electron volt (eV), which is the energy
given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,

(19.13)1 eV = ⎛
⎝1.60×10–19 C⎞⎠(1 V) = ⎛⎝1.60×10–19 C⎞⎠(1 J/C)

= 1.60×10–19 J.
Electron Volt

On the submicroscopic scale, it is more convenient to define an energy unit called the electron volt (eV), which is the energy
given to a fundamental charge accelerated through a potential difference of 1 V. In equation form,
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(19.14)1 eV = ⎛
⎝1.60×10–19 C⎞⎠(1 V) = ⎛⎝1.60×10–19 C⎞⎠(1 J/C)

= 1.60×10–19 J.

An electron accelerated through a potential difference of 1 V is given an energy of 1 eV. It follows that an electron accelerated
through 50 V is given 50 eV. A potential difference of 100,000 V (100 kV) will give an electron an energy of 100,000 eV (100
keV), and so on. Similarly, an ion with a double positive charge accelerated through 100 V will be given 200 eV of energy. These
simple relationships between accelerating voltage and particle charges make the electron volt a simple and convenient energy
unit in such circumstances.

Connections: Energy Units

The electron volt (eV) is the most common energy unit for submicroscopic processes. This will be particularly noticeable in
the chapters on modern physics. Energy is so important to so many subjects that there is a tendency to define a special
energy unit for each major topic. There are, for example, calories for food energy, kilowatt-hours for electrical energy, and
therms for natural gas energy.

The electron volt is commonly employed in submicroscopic processes—chemical valence energies and molecular and nuclear
binding energies are among the quantities often expressed in electron volts. For example, about 5 eV of energy is required to
break up certain organic molecules. If a proton is accelerated from rest through a potential difference of 30 kV, it is given an
energy of 30 keV (30,000 eV) and it can break up as many as 6000 of these molecules (
30,000 eV ÷ 5 eV per molecule = 6000 molecules ). Nuclear decay energies are on the order of 1 MeV (1,000,000 eV) per

event and can, thus, produce significant biological damage.

Conservation of Energy

The total energy of a system is conserved if there is no net addition (or subtraction) of work or heat transfer. For conservative
forces, such as the electrostatic force, conservation of energy states that mechanical energy is a constant.

Mechanical energy is the sum of the kinetic energy and potential energy of a system; that is, KE + PE = constant . A loss of

PE of a charged particle becomes an increase in its KE. Here PE is the electric potential energy. Conservation of energy is stated
in equation form as

(19.15)KE + PE = constant
or

(19.16)KEi + PEi= KEf + PEf ,

where i and f stand for initial and final conditions. As we have found many times before, considering energy can give us insights
and facilitate problem solving.

Example 19.3 Electrical Potential Energy Converted to Kinetic Energy

Calculate the final speed of a free electron accelerated from rest through a potential difference of 100 V. (Assume that this
numerical value is accurate to three significant figures.)

Strategy

We have a system with only conservative forces. Assuming the electron is accelerated in a vacuum, and neglecting the
gravitational force (we will check on this assumption later), all of the electrical potential energy is converted into kinetic

energy. We can identify the initial and final forms of energy to be KEi = 0, KEf = ½mv2, PEi = qV , and PEf = 0.

Solution

Conservation of energy states that

(19.17)KEi + PEi= KEf + PEf.

Entering the forms identified above, we obtain

(19.18)
qV = mv2

2 .

We solve this for v :

(19.19)
v = 2qV

m .

Entering values for q, V , and m gives
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(19.20)

v =
2⎛⎝–1.60×10–19 C⎞⎠(–100 J/C)

9.11×10–31 kg

= 5.93×106 m/s.
Discussion

Note that both the charge and the initial voltage are negative, as in Figure 19.4. From the discussions in Electric Charge
and Electric Field, we know that electrostatic forces on small particles are generally very large compared with the
gravitational force. The large final speed confirms that the gravitational force is indeed negligible here. The large speed also
indicates how easy it is to accelerate electrons with small voltages because of their very small mass. Voltages much higher
than the 100 V in this problem are typically used in electron guns. Those higher voltages produce electron speeds so great
that relativistic effects must be taken into account. That is why a low voltage is considered (accurately) in this example.

19.2 Electric Potential in a Uniform Electric Field

In the previous section, we explored the relationship between voltage and energy. In this section, we will explore the relationship
between voltage and electric field. For example, a uniform electric field E is produced by placing a potential difference (or

voltage) ΔV across two parallel metal plates, labeled A and B. (See Figure 19.5.) Examining this will tell us what voltage is

needed to produce a certain electric field strength; it will also reveal a more fundamental relationship between electric potential
and electric field. From a physicist’s point of view, either ΔV or E can be used to describe any charge distribution. ΔV is

most closely tied to energy, whereas E is most closely related to force. ΔV is a scalar quantity and has no direction, while E
is a vector quantity, having both magnitude and direction. (Note that the magnitude of the electric field strength, a scalar quantity,
is represented by E below.) The relationship between ΔV and E is revealed by calculating the work done by the force in

moving a charge from point A to point B. But, as noted in Electric Potential Energy: Potential Difference, this is complex for
arbitrary charge distributions, requiring calculus. We therefore look at a uniform electric field as an interesting special case.

Figure 19.5 The relationship between V and E for parallel conducting plates is E = V / d . (Note that ΔV = VAB in magnitude. For a charge

that is moved from plate A at higher potential to plate B at lower potential, a minus sign needs to be included as follows:

–ΔV = VA – VB = VAB . See the text for details.)

The work done by the electric field in Figure 19.5 to move a positive charge q from A, the positive plate, higher potential, to B,

the negative plate, lower potential, is

(19.21)W = –ΔPE = – qΔV .

The potential difference between points A and B is

(19.22)–ΔV = – (VB – VA) = VA – VB = VAB.

Entering this into the expression for work yields
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(19.23)W = qVAB.

Work is W = Fd cos θ ; here cos θ = 1 , since the path is parallel to the field, and so W = Fd . Since F = qE , we see that

W = qEd . Substituting this expression for work into the previous equation gives

(19.24)qEd = qVAB.

The charge cancels, and so the voltage between points A and B is seen to be

(19.25)VAB = Ed

E = VAB
d

⎫
⎭
⎬(uniform E - field only),

where d is the distance from A to B, or the distance between the plates in Figure 19.5. Note that the above equation implies the

units for electric field are volts per meter. We already know the units for electric field are newtons per coulomb; thus the following
relation among units is valid:

(19.26)1 N / C = 1 V / m.
Voltage between Points A and B

(19.27)VAB = Ed

E = VAB
d

⎫
⎭
⎬(uniform E - field only),

where d is the distance from A to B, or the distance between the plates.

Example 19.4 What Is the Highest Voltage Possible between Two Plates?

Dry air will support a maximum electric field strength of about 3.0×106 V/m . Above that value, the field creates enough

ionization in the air to make the air a conductor. This allows a discharge or spark that reduces the field. What, then, is the
maximum voltage between two parallel conducting plates separated by 2.5 cm of dry air?

Strategy

We are given the maximum electric field E between the plates and the distance d between them. The equation

VAB = Ed can thus be used to calculate the maximum voltage.

Solution

The potential difference or voltage between the plates is

(19.28)VAB = Ed.

Entering the given values for E and d gives

(19.29)VAB = (3.0×106 V/m)(0.025 m) = 7.5×104 V

or

(19.30)VAB = 75 kV.

(The answer is quoted to only two digits, since the maximum field strength is approximate.)

Discussion

One of the implications of this result is that it takes about 75 kV to make a spark jump across a 2.5 cm (1 in.) gap, or 150 kV
for a 5 cm spark. This limits the voltages that can exist between conductors, perhaps on a power transmission line. A
smaller voltage will cause a spark if there are points on the surface, since points create greater fields than smooth surfaces.
Humid air breaks down at a lower field strength, meaning that a smaller voltage will make a spark jump through humid air.
The largest voltages can be built up, say with static electricity, on dry days.
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Figure 19.6 A spark chamber is used to trace the paths of high-energy particles. Ionization created by the particles as they pass through the gas
between the plates allows a spark to jump. The sparks are perpendicular to the plates, following electric field lines between them. The potential
difference between adjacent plates is not high enough to cause sparks without the ionization produced by particles from accelerator experiments (or
cosmic rays). (credit: Daderot, Wikimedia Commons)

Example 19.5 Field and Force inside an Electron Gun

(a) An electron gun has parallel plates separated by 4.00 cm and gives electrons 25.0 keV of energy. What is the electric
field strength between the plates? (b) What force would this field exert on a piece of plastic with a 0.500 μC charge that

gets between the plates?

Strategy

Since the voltage and plate separation are given, the electric field strength can be calculated directly from the expression

E = VAB
d . Once the electric field strength is known, the force on a charge is found using F = q E . Since the electric field

is in only one direction, we can write this equation in terms of the magnitudes, F = q E .

Solution for (a)

The expression for the magnitude of the electric field between two uniform metal plates is

(19.31)
E = VAB

d .

Since the electron is a single charge and is given 25.0 keV of energy, the potential difference must be 25.0 kV. Entering this
value for VAB and the plate separation of 0.0400 m, we obtain

(19.32)E = 25.0 kV
0.0400 m = 6.25×105 V/m.

Solution for (b)

The magnitude of the force on a charge in an electric field is obtained from the equation

(19.33)F = qE.

Substituting known values gives

(19.34)F = (0.500×10–6 C)(6.25×105 V/m) = 0.313 N.

Discussion

Note that the units are newtons, since 1 V/m = 1 N/C . The force on the charge is the same no matter where the charge

is located between the plates. This is because the electric field is uniform between the plates.

In more general situations, regardless of whether the electric field is uniform, it points in the direction of decreasing potential,
because the force on a positive charge is in the direction of E and also in the direction of lower potential V . Furthermore, the

magnitude of E equals the rate of decrease of V with distance. The faster V decreases over distance, the greater the electric

field. In equation form, the general relationship between voltage and electric field is
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(19.35)E = – ΔV
Δs ,

where Δs is the distance over which the change in potential, ΔV , takes place. The minus sign tells us that E points in the

direction of decreasing potential. The electric field is said to be the gradient (as in grade or slope) of the electric potential.

Relationship between Voltage and Electric Field

In equation form, the general relationship between voltage and electric field is

(19.36)E = – ΔV
Δs ,

where Δs is the distance over which the change in potential, ΔV , takes place. The minus sign tells us that E points in

the direction of decreasing potential. The electric field is said to be the gradient (as in grade or slope) of the electric
potential.

For continually changing potentials, ΔV and Δs become infinitesimals and differential calculus must be employed to determine

the electric field.

19.3 Electrical Potential Due to a Point Charge

Point charges, such as electrons, are among the fundamental building blocks of matter. Furthermore, spherical charge
distributions (like on a metal sphere) create external electric fields exactly like a point charge. The electric potential due to a point
charge is, thus, a case we need to consider. Using calculus to find the work needed to move a test charge q from a large

distance away to a distance of r from a point charge Q , and noting the connection between work and potential
⎛
⎝W = – qΔV ⎞⎠ , it can be shown that the electric potential V of a point charge is

(19.37)V = kQ
r (Point Charge),

where k is a constant equal to 9.0×109 N · m2 /C2 .

Electric Potential V of a Point Charge

The electric potential V of a point charge is given by

(19.38)V = kQ
r (Point Charge).

The potential at infinity is chosen to be zero. Thus V for a point charge decreases with distance, whereas E for a point charge

decreases with distance squared:

(19.39)E = F
q = kQ

r2 .

Recall that the electric potential V is a scalar and has no direction, whereas the electric field E is a vector. To find the voltage

due to a combination of point charges, you add the individual voltages as numbers. To find the total electric field, you must add
the individual fields as vectors, taking magnitude and direction into account. This is consistent with the fact that V is closely

associated with energy, a scalar, whereas E is closely associated with force, a vector.

Example 19.6 What Voltage Is Produced by a Small Charge on a Metal Sphere?

Charges in static electricity are typically in the nanocoulomb (nC) to microcoulomb ⎛
⎝µC⎞⎠ range. What is the voltage 5.00

cm away from the center of a 1-cm diameter metal sphere that has a −3.00 nC static charge?

Strategy

As we have discussed in Electric Charge and Electric Field, charge on a metal sphere spreads out uniformly and
produces a field like that of a point charge located at its center. Thus we can find the voltage using the equation V = kQ / r
.

Solution

Entering known values into the expression for the potential of a point charge, we obtain
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(19.40)V = kQ
r

= ⎛
⎝8.99×109 N · m2 / C2⎞⎠

⎛
⎝–3.00×10–9 C

5.00×10–2 m
⎞
⎠

= –539 V.
Discussion

The negative value for voltage means a positive charge would be attracted from a larger distance, since the potential is
lower (more negative) than at larger distances. Conversely, a negative charge would be repelled, as expected.

Example 19.7 What Is the Excess Charge on a Van de Graaff Generator

A demonstration Van de Graaff generator has a 25.0 cm diameter metal sphere that produces a voltage of 100 kV near its
surface. (See Figure 19.7.) What excess charge resides on the sphere? (Assume that each numerical value here is shown
with three significant figures.)

Figure 19.7 The voltage of this demonstration Van de Graaff generator is measured between the charged sphere and ground. Earth’s potential is
taken to be zero as a reference. The potential of the charged conducting sphere is the same as that of an equal point charge at its center.

Strategy

The potential on the surface will be the same as that of a point charge at the center of the sphere, 12.5 cm away. (The radius
of the sphere is 12.5 cm.) We can thus determine the excess charge using the equation

(19.41)V = kQ
r .

Solution

Solving for Q and entering known values gives

(19.42)Q = rV
k

=
(0.125 m)⎛⎝100×103 V⎞⎠
8.99×109 N · m2 / C2

= 1.39×10–6 C = 1.39 µC.

Discussion

This is a relatively small charge, but it produces a rather large voltage. We have another indication here that it is difficult to
store isolated charges.

The voltages in both of these examples could be measured with a meter that compares the measured potential with ground
potential. Ground potential is often taken to be zero (instead of taking the potential at infinity to be zero). It is the potential
difference between two points that is of importance, and very often there is a tacit assumption that some reference point, such as
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Earth or a very distant point, is at zero potential. As noted in Electric Potential Energy: Potential Difference, this is analogous
to taking sea level as h = 0 when considering gravitational potential energy, PEg = mgh .

19.4 Equipotential Lines

We can represent electric potentials (voltages) pictorially, just as we drew pictures to illustrate electric fields. Of course, the two
are related. Consider Figure 19.8, which shows an isolated positive point charge and its electric field lines. Electric field lines
radiate out from a positive charge and terminate on negative charges. While we use blue arrows to represent the magnitude and
direction of the electric field, we use green lines to represent places where the electric potential is constant. These are called
equipotential lines in two dimensions, or equipotential surfaces in three dimensions. The term equipotential is also used as a
noun, referring to an equipotential line or surface. The potential for a point charge is the same anywhere on an imaginary sphere
of radius r surrounding the charge. This is true since the potential for a point charge is given by V = kQ / r and, thus, has the

same value at any point that is a given distance r from the charge. An equipotential sphere is a circle in the two-dimensional

view of Figure 19.8. Since the electric field lines point radially away from the charge, they are perpendicular to the equipotential
lines.

Figure 19.8 An isolated point charge Q with its electric field lines in blue and equipotential lines in green. The potential is the same along each

equipotential line, meaning that no work is required to move a charge anywhere along one of those lines. Work is needed to move a charge from one
equipotential line to another. Equipotential lines are perpendicular to electric field lines in every case.

It is important to note that equipotential lines are always perpendicular to electric field lines. No work is required to move a
charge along an equipotential, since ΔV = 0 . Thus the work is

(19.43)W = –ΔPE = – qΔV = 0.

Work is zero if force is perpendicular to motion. Force is in the same direction as E , so that motion along an equipotential must

be perpendicular to E . More precisely, work is related to the electric field by

(19.44)W = Fd cos θ = qEd cos θ = 0.

Note that in the above equation, E and F symbolize the magnitudes of the electric field strength and force, respectively.

Neither q nor E nor d is zero, and so cos θ must be 0, meaning θ must be 90º . In other words, motion along an

equipotential is perpendicular to E .

One of the rules for static electric fields and conductors is that the electric field must be perpendicular to the surface of any
conductor. This implies that a conductor is an equipotential surface in static situations. There can be no voltage difference across
the surface of a conductor, or charges will flow. One of the uses of this fact is that a conductor can be fixed at zero volts by
connecting it to the earth with a good conductor—a process called grounding. Grounding can be a useful safety tool. For
example, grounding the metal case of an electrical appliance ensures that it is at zero volts relative to the earth.

Grounding

A conductor can be fixed at zero volts by connecting it to the earth with a good conductor—a process called grounding.

Because a conductor is an equipotential, it can replace any equipotential surface. For example, in Figure 19.8 a charged
spherical conductor can replace the point charge, and the electric field and potential surfaces outside of it will be unchanged,
confirming the contention that a spherical charge distribution is equivalent to a point charge at its center.

Figure 19.9 shows the electric field and equipotential lines for two equal and opposite charges. Given the electric field lines, the
equipotential lines can be drawn simply by making them perpendicular to the electric field lines. Conversely, given the
equipotential lines, as in Figure 19.10(a), the electric field lines can be drawn by making them perpendicular to the
equipotentials, as in Figure 19.10(b).
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Figure 19.9 The electric field lines and equipotential lines for two equal but opposite charges. The equipotential lines can be drawn by making them
perpendicular to the electric field lines, if those are known. Note that the potential is greatest (most positive) near the positive charge and least (most
negative) near the negative charge.

Figure 19.10 (a) These equipotential lines might be measured with a voltmeter in a laboratory experiment. (b) The corresponding electric field lines are
found by drawing them perpendicular to the equipotentials. Note that these fields are consistent with two equal negative charges.

One of the most important cases is that of the familiar parallel conducting plates shown in Figure 19.11. Between the plates, the
equipotentials are evenly spaced and parallel. The same field could be maintained by placing conducting plates at the
equipotential lines at the potentials shown.

Figure 19.11 The electric field and equipotential lines between two metal plates.

An important application of electric fields and equipotential lines involves the heart. The heart relies on electrical signals to
maintain its rhythm. The movement of electrical signals causes the chambers of the heart to contract and relax. When a person
has a heart attack, the movement of these electrical signals may be disturbed. An artificial pacemaker and a defibrillator can be
used to initiate the rhythm of electrical signals. The equipotential lines around the heart, the thoracic region, and the axis of the
heart are useful ways of monitoring the structure and functions of the heart. An electrocardiogram (ECG) measures the small
electric signals being generated during the activity of the heart. More about the relationship between electric fields and the heart
is discussed in Energy Stored in Capacitors.
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PhET Explorations: Charges and Fields

Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's
colorful, it's dynamic, it's free.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42331/1.7/#eip-
idm359563664)

Figure 19.12

19.5 Capacitors and Dielectrics

A capacitor is a device used to store electric charge. Capacitors have applications ranging from filtering static out of radio
reception to energy storage in heart defibrillators. Typically, commercial capacitors have two conducting parts close to one
another, but not touching, such as those in Figure 19.13. (Most of the time an insulator is used between the two plates to provide
separation—see the discussion on dielectrics below.) When battery terminals are connected to an initially uncharged capacitor,
equal amounts of positive and negative charge, +Q and – Q , are separated into its two plates. The capacitor remains neutral

overall, but we refer to it as storing a charge Q in this circumstance.

Capacitor

A capacitor is a device used to store electric charge.

Figure 19.13 Both capacitors shown here were initially uncharged before being connected to a battery. They now have separated charges of +Q
and – Q on their two halves. (a) A parallel plate capacitor. (b) A rolled capacitor with an insulating material between its two conducting sheets.

The amount of charge Q a capacitor can store depends on two major factors—the voltage applied and the capacitor’s physical

characteristics, such as its size.

The Amount of Charge Q a Capacitor Can Store

The amount of charge Q a capacitor can store depends on two major factors—the voltage applied and the capacitor’s

physical characteristics, such as its size.

A system composed of two identical, parallel conducting plates separated by a distance, as in Figure 19.14, is called a parallel
plate capacitor. It is easy to see the relationship between the voltage and the stored charge for a parallel plate capacitor, as
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shown in Figure 19.14. Each electric field line starts on an individual positive charge and ends on a negative one, so that there
will be more field lines if there is more charge. (Drawing a single field line per charge is a convenience, only. We can draw many
field lines for each charge, but the total number is proportional to the number of charges.) The electric field strength is, thus,
directly proportional to Q .

Figure 19.14 Electric field lines in this parallel plate capacitor, as always, start on positive charges and end on negative charges. Since the electric field
strength is proportional to the density of field lines, it is also proportional to the amount of charge on the capacitor.

The field is proportional to the charge:

(19.45)E ∝ Q,

where the symbol ∝ means “proportional to.” From the discussion in Electric Potential in a Uniform Electric Field, we know

that the voltage across parallel plates is V = Ed . Thus,

(19.46)V ∝ E.

It follows, then, that V ∝ Q , and conversely,

(19.47)Q ∝ V .

This is true in general: The greater the voltage applied to any capacitor, the greater the charge stored in it.

Different capacitors will store different amounts of charge for the same applied voltage, depending on their physical
characteristics. We define their capacitance C to be such that the charge Q stored in a capacitor is proportional to C . The

charge stored in a capacitor is given by

(19.48)Q = CV.

This equation expresses the two major factors affecting the amount of charge stored. Those factors are the physical
characteristics of the capacitor, C , and the voltage, V . Rearranging the equation, we see that capacitance C is the amount of

charge stored per volt, or

(19.49)C = Q
V .

Capacitance

Capacitance C is the amount of charge stored per volt, or

Chapter 19 | Electric Potential and Electric Field 745



(19.50)C = Q
V .

The unit of capacitance is the farad (F), named for Michael Faraday (1791–1867), an English scientist who contributed to the
fields of electromagnetism and electrochemistry. Since capacitance is charge per unit voltage, we see that a farad is a coulomb
per volt, or

(19.51)1 F = 1 C
1 V.

A 1-farad capacitor would be able to store 1 coulomb (a very large amount of charge) with the application of only 1 volt. One

farad is, thus, a very large capacitance. Typical capacitors range from fractions of a picofarad
⎛
⎝1 pF = 10–12 F⎞⎠ to millifarads

⎛
⎝1 mF = 10–3 F⎞⎠ .

Figure 19.15 shows some common capacitors. Capacitors are primarily made of ceramic, glass, or plastic, depending upon
purpose and size. Insulating materials, called dielectrics, are commonly used in their construction, as discussed below.

Figure 19.15 Some typical capacitors. Size and value of capacitance are not necessarily related. (credit: Windell Oskay)

Parallel Plate Capacitor

The parallel plate capacitor shown in Figure 19.16 has two identical conducting plates, each having a surface area A ,

separated by a distance d (with no material between the plates). When a voltage V is applied to the capacitor, it stores a

charge Q , as shown. We can see how its capacitance depends on A and d by considering the characteristics of the Coulomb

force. We know that like charges repel, unlike charges attract, and the force between charges decreases with distance. So it
seems quite reasonable that the bigger the plates are, the more charge they can store—because the charges can spread out
more. Thus C should be greater for larger A . Similarly, the closer the plates are together, the greater the attraction of the

opposite charges on them. So C should be greater for smaller d .

Figure 19.16 Parallel plate capacitor with plates separated by a distance d . Each plate has an area A .

It can be shown that for a parallel plate capacitor there are only two factors ( A and d ) that affect its capacitance C . The
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capacitance of a parallel plate capacitor in equation form is given by

(19.52)C = ε0
A
d .

Capacitance of a Parallel Plate Capacitor
(19.53)C = ε0

A
d

A is the area of one plate in square meters, and d is the distance between the plates in meters. The constant ε0 is the

permittivity of free space; its numerical value in SI units is ε0 = 8.85×10 – 12 F/m . The units of F/m are equivalent to

C2 /N · m2 . The small numerical value of ε0 is related to the large size of the farad. A parallel plate capacitor must have a

large area to have a capacitance approaching a farad. (Note that the above equation is valid when the parallel plates are
separated by air or free space. When another material is placed between the plates, the equation is modified, as discussed
below.)

Example 19.8 Capacitance and Charge Stored in a Parallel Plate Capacitor

(a) What is the capacitance of a parallel plate capacitor with metal plates, each of area 1.00 m2 , separated by 1.00 mm?

(b) What charge is stored in this capacitor if a voltage of 3.00×103 V is applied to it?

Strategy

Finding the capacitance C is a straightforward application of the equation C = ε0A / d . Once C is found, the charge

stored can be found using the equation Q = CV .

Solution for (a)

Entering the given values into the equation for the capacitance of a parallel plate capacitor yields

(19.54)
C = ε0

A
d = ⎛⎝8.85×10–12 F

m
⎞
⎠ 1.00 m2

1.00×10–3 m
= 8.85×10–9 F = 8.85 nF.

Discussion for (a)

This small value for the capacitance indicates how difficult it is to make a device with a large capacitance. Special
techniques help, such as using very large area thin foils placed close together.

Solution for (b)

The charge stored in any capacitor is given by the equation Q = CV . Entering the known values into this equation gives

(19.55)Q = CV = ⎛⎝8.85×10–9 F⎞⎠
⎛
⎝3.00×103 V⎞⎠

= 26.6 μC.

Discussion for (b)

This charge is only slightly greater than those found in typical static electricity. Since air breaks down at about

3.00×106 V/m , more charge cannot be stored on this capacitor by increasing the voltage.

Another interesting biological example dealing with electric potential is found in the cell’s plasma membrane. The membrane sets
a cell off from its surroundings and also allows ions to selectively pass in and out of the cell. There is a potential difference
across the membrane of about –70 mV . This is due to the mainly negatively charged ions in the cell and the predominance of

positively charged sodium ( Na+ ) ions outside. Things change when a nerve cell is stimulated. Na+ ions are allowed to pass

through the membrane into the cell, producing a positive membrane potential—the nerve signal. The cell membrane is about 7 to
10 nm thick. An approximate value of the electric field across it is given by

(19.56)
E = V

d = –70×10–3 V
8×10–9 m

= –9×106 V/m.

This electric field is enough to cause a breakdown in air.

Dielectric

The previous example highlights the difficulty of storing a large amount of charge in capacitors. If d is made smaller to produce
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a larger capacitance, then the maximum voltage must be reduced proportionally to avoid breakdown (since E = V / d ). An

important solution to this difficulty is to put an insulating material, called a dielectric, between the plates of a capacitor and allow
d to be as small as possible. Not only does the smaller d make the capacitance greater, but many insulators can withstand

greater electric fields than air before breaking down.

There is another benefit to using a dielectric in a capacitor. Depending on the material used, the capacitance is greater than that

given by the equation C = ε0
A
d by a factor κ , called the dielectric constant. A parallel plate capacitor with a dielectric between

its plates has a capacitance given by

(19.57)C = κε0
A
d (parallel plate capacitor with dielectric).

Values of the dielectric constant κ for various materials are given in Table 19.1. Note that κ for vacuum is exactly 1, and so the

above equation is valid in that case, too. If a dielectric is used, perhaps by placing Teflon between the plates of the capacitor in
Example 19.8, then the capacitance is greater by the factor κ , which for Teflon is 2.1.

Take-Home Experiment: Building a Capacitor

How large a capacitor can you make using a chewing gum wrapper? The plates will be the aluminum foil, and the separation
(dielectric) in between will be the paper.

Table 19.1 Dielectric Constants and Dielectric Strengths for Various Materials
at 20ºC

Material Dielectric constant κ Dielectric strength (V/m)

Vacuum 1.00000 —

Air 1.00059 3×106

Bakelite 4.9 24×106

Fused quartz 3.78 8×106

Neoprene rubber 6.7 12×106

Nylon 3.4 14×106

Paper 3.7 16×106

Polystyrene 2.56 24×106

Pyrex glass 5.6 14×106

Silicon oil 2.5 15×106

Strontium titanate 233 8×106

Teflon 2.1 60×106

Water 80 —

Note also that the dielectric constant for air is very close to 1, so that air-filled capacitors act much like those with vacuum
between their plates except that the air can become conductive if the electric field strength becomes too great. (Recall that
E = V / d for a parallel plate capacitor.) Also shown in Table 19.1 are maximum electric field strengths in V/m, called dielectric

strengths, for several materials. These are the fields above which the material begins to break down and conduct. The dielectric
strength imposes a limit on the voltage that can be applied for a given plate separation. For instance, in Example 19.8, the
separation is 1.00 mm, and so the voltage limit for air is

(19.58)V = E ⋅ d
= (3×106 V/m)(1.00×10−3 m)
= 3000 V.

However, the limit for a 1.00 mm separation filled with Teflon is 60,000 V, since the dielectric strength of Teflon is 60×106 V/m.

So the same capacitor filled with Teflon has a greater capacitance and can be subjected to a much greater voltage. Using the
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capacitance we calculated in the above example for the air-filled parallel plate capacitor, we find that the Teflon-filled capacitor
can store a maximum charge of

(19.59)Q = CV
= κCair V

= (2.1)(8.85 nF)(6.0×104 V)
= 1.1 mC.

This is 42 times the charge of the same air-filled capacitor.

Dielectric Strength

The maximum electric field strength above which an insulating material begins to break down and conduct is called its
dielectric strength.

Microscopically, how does a dielectric increase capacitance? Polarization of the insulator is responsible. The more easily it is
polarized, the greater its dielectric constant κ . Water, for example, is a polar molecule because one end of the molecule has a

slight positive charge and the other end has a slight negative charge. The polarity of water causes it to have a relatively large
dielectric constant of 80. The effect of polarization can be best explained in terms of the characteristics of the Coulomb force.
Figure 19.17 shows the separation of charge schematically in the molecules of a dielectric material placed between the charged
plates of a capacitor. The Coulomb force between the closest ends of the molecules and the charge on the plates is attractive
and very strong, since they are very close together. This attracts more charge onto the plates than if the space were empty and
the opposite charges were a distance d away.

Figure 19.17 (a) The molecules in the insulating material between the plates of a capacitor are polarized by the charged plates. This produces a layer
of opposite charge on the surface of the dielectric that attracts more charge onto the plate, increasing its capacitance. (b) The dielectric reduces the
electric field strength inside the capacitor, resulting in a smaller voltage between the plates for the same charge. The capacitor stores the same charge
for a smaller voltage, implying that it has a larger capacitance because of the dielectric.

Another way to understand how a dielectric increases capacitance is to consider its effect on the electric field inside the
capacitor. Figure 19.17(b) shows the electric field lines with a dielectric in place. Since the field lines end on charges in the
dielectric, there are fewer of them going from one side of the capacitor to the other. So the electric field strength is less than if
there were a vacuum between the plates, even though the same charge is on the plates. The voltage between the plates is
V = Ed , so it too is reduced by the dielectric. Thus there is a smaller voltage V for the same charge Q ; since C = Q / V ,

the capacitance C is greater.

The dielectric constant is generally defined to be κ = E0 / E , or the ratio of the electric field in a vacuum to that in the dielectric
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material, and is intimately related to the polarizability of the material.

Things Great and Small

The Submicroscopic Origin of Polarization

Polarization is a separation of charge within an atom or molecule. As has been noted, the planetary model of the atom
pictures it as having a positive nucleus orbited by negative electrons, analogous to the planets orbiting the Sun. Although
this model is not completely accurate, it is very helpful in explaining a vast range of phenomena and will be refined
elsewhere, such as in Atomic Physics. The submicroscopic origin of polarization can be modeled as shown in Figure
19.18.

Figure 19.18 Artist’s conception of a polarized atom. The orbits of electrons around the nucleus are shifted slightly by the external charges (shown
exaggerated). The resulting separation of charge within the atom means that it is polarized. Note that the unlike charge is now closer to the external
charges, causing the polarization.

We will find in Atomic Physics that the orbits of electrons are more properly viewed as electron clouds with the density of the
cloud related to the probability of finding an electron in that location (as opposed to the definite locations and paths of planets in
their orbits around the Sun). This cloud is shifted by the Coulomb force so that the atom on average has a separation of charge.
Although the atom remains neutral, it can now be the source of a Coulomb force, since a charge brought near the atom will be
closer to one type of charge than the other.

Some molecules, such as those of water, have an inherent separation of charge and are thus called polar molecules. Figure

19.19 illustrates the separation of charge in a water molecule, which has two hydrogen atoms and one oxygen atom ⎛
⎝H2 O⎞⎠ .

The water molecule is not symmetric—the hydrogen atoms are repelled to one side, giving the molecule a boomerang shape.
The electrons in a water molecule are more concentrated around the more highly charged oxygen nucleus than around the
hydrogen nuclei. This makes the oxygen end of the molecule slightly negative and leaves the hydrogen ends slightly positive.
The inherent separation of charge in polar molecules makes it easier to align them with external fields and charges. Polar
molecules therefore exhibit greater polarization effects and have greater dielectric constants. Those who study chemistry will find
that the polar nature of water has many effects. For example, water molecules gather ions much more effectively because they
have an electric field and a separation of charge to attract charges of both signs. Also, as brought out in the previous chapter,
polar water provides a shield or screening of the electric fields in the highly charged molecules of interest in biological systems.

Figure 19.19 Artist’s conception of a water molecule. There is an inherent separation of charge, and so water is a polar molecule. Electrons in the
molecule are attracted to the oxygen nucleus and leave an excess of positive charge near the two hydrogen nuclei. (Note that the schematic on the
right is a rough illustration of the distribution of electrons in the water molecule. It does not show the actual numbers of protons and electrons involved
in the structure.)

PhET Explorations: Capacitor Lab

Explore how a capacitor works! Change the size of the plates and add a dielectric to see the effect on capacitance. Change
the voltage and see charges built up on the plates. Observe the electric field in the capacitor. Measure the voltage and the
electric field. Click to open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/capacitor-lab)
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19.6 Capacitors in Series and Parallel

Several capacitors may be connected together in a variety of applications. Multiple connections of capacitors act like a single
equivalent capacitor. The total capacitance of this equivalent single capacitor depends both on the individual capacitors and how
they are connected. There are two simple and common types of connections, called series and parallel, for which we can easily
calculate the total capacitance. Certain more complicated connections can also be related to combinations of series and parallel.

Capacitance in Series

Figure 19.20(a) shows a series connection of three capacitors with a voltage applied. As for any capacitor, the capacitance of

the combination is related to charge and voltage by C = Q
V .

Note in Figure 19.20 that opposite charges of magnitude Q flow to either side of the originally uncharged combination of

capacitors when the voltage V is applied. Conservation of charge requires that equal-magnitude charges be created on the

plates of the individual capacitors, since charge is only being separated in these originally neutral devices. The end result is that
the combination resembles a single capacitor with an effective plate separation greater than that of the individual capacitors
alone. (See Figure 19.20(b).) Larger plate separation means smaller capacitance. It is a general feature of series connections of
capacitors that the total capacitance is less than any of the individual capacitances.

Figure 19.20 (a) Capacitors connected in series. The magnitude of the charge on each plate is Q . (b) An equivalent capacitor has a larger plate

separation d . Series connections produce a total capacitance that is less than that of any of the individual capacitors.

We can find an expression for the total capacitance by considering the voltage across the individual capacitors shown in Figure

19.20. Solving C = Q
V for V gives V = Q

C . The voltages across the individual capacitors are thus V1 = Q
C1

, V2 = Q
C2

,

and V3 = Q
C3

. The total voltage is the sum of the individual voltages:

(19.60)V = V1 + V2 + V3.
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Now, calling the total capacitance CS for series capacitance, consider that

(19.61)V = Q
CS

= V1 + V2 + V3 .

Entering the expressions for V1 , V2 , and V3 , we get

(19.62)Q
CS

= Q
C1

+ Q
C2

+ Q
C3

.

Canceling the Q s, we obtain the equation for the total capacitance in series CS to be

(19.63)1
CS

= 1
C1

+ 1
C2

+ 1
C3

+ ...,

where “...” indicates that the expression is valid for any number of capacitors connected in series. An expression of this form
always results in a total capacitance CS that is less than any of the individual capacitances C1 , C2 , ..., as the next example

illustrates.

Total Capacitance in Series, Cs

Total capacitance in series: 1
CS

= 1
C1

+ 1
C2

+ 1
C3

+ ...

Example 19.9 What Is the Series Capacitance?

Find the total capacitance for three capacitors connected in series, given their individual capacitances are 1.000, 5.000, and
8.000 µF .

Strategy

With the given information, the total capacitance can be found using the equation for capacitance in series.

Solution

Entering the given capacitances into the expression for 1
CS

gives 1
CS

= 1
C1

+ 1
C2

+ 1
C3

.

(19.64)1
CS

= 1
1.000 µF + 1

5.000 µF + 1
8.000 µF = 1.325

µF

Inverting to find CS yields CS = µF
1.325 = 0.755 µF .

Discussion

The total series capacitance Cs is less than the smallest individual capacitance, as promised. In series connections of

capacitors, the sum is less than the parts. In fact, it is less than any individual. Note that it is sometimes possible, and more
convenient, to solve an equation like the above by finding the least common denominator, which in this case (showing only
whole-number calculations) is 40. Thus,

(19.65)1
CS

= 40
40 µF + 8

40 µF + 5
40 µF = 53

40 µF,

so that

(19.66)
CS = 40 µF

53 = 0.755 µF.

Capacitors in Parallel

Figure 19.21(a) shows a parallel connection of three capacitors with a voltage applied. Here the total capacitance is easier to
find than in the series case. To find the equivalent total capacitance Cp , we first note that the voltage across each capacitor is

V , the same as that of the source, since they are connected directly to it through a conductor. (Conductors are equipotentials,

and so the voltage across the capacitors is the same as that across the voltage source.) Thus the capacitors have the same
charges on them as they would have if connected individually to the voltage source. The total charge Q is the sum of the

individual charges:
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(19.67)Q = Q1 + Q2 + Q3.

Figure 19.21 (a) Capacitors in parallel. Each is connected directly to the voltage source just as if it were all alone, and so the total capacitance in
parallel is just the sum of the individual capacitances. (b) The equivalent capacitor has a larger plate area and can therefore hold more charge than the
individual capacitors.

Using the relationship Q = CV , we see that the total charge is Q = CpV , and the individual charges are Q1 = C1V ,

Q2 = C2V , and Q3 = C3V . Entering these into the previous equation gives

(19.68)Cp V = C1V + C2V + C3V .

Canceling V from the equation, we obtain the equation for the total capacitance in parallel Cp :

(19.69)Cp = C1 + C2 + C3 + ....

Total capacitance in parallel is simply the sum of the individual capacitances. (Again the “...” indicates the expression is valid for
any number of capacitors connected in parallel.) So, for example, if the capacitors in the example above were connected in
parallel, their capacitance would be

(19.70)Cp = 1.000 µF+5.000 µF+8.000 µF = 14.000 µF.

The equivalent capacitor for a parallel connection has an effectively larger plate area and, thus, a larger capacitance, as
illustrated in Figure 19.21(b).

Total Capacitance in Parallel, Cp

Total capacitance in parallel Cp = C1 + C2 + C3 + ...

More complicated connections of capacitors can sometimes be combinations of series and parallel. (See Figure 19.22.) To find
the total capacitance of such combinations, we identify series and parallel parts, compute their capacitances, and then find the
total.

Figure 19.22 (a) This circuit contains both series and parallel connections of capacitors. See Example 19.10 for the calculation of the overall

capacitance of the circuit. (b) C1 and C2 are in series; their equivalent capacitance CS is less than either of them. (c) Note that CS is in parallel

with C3 . The total capacitance is, thus, the sum of CS and C3 .
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Example 19.10 A Mixture of Series and Parallel Capacitance

Find the total capacitance of the combination of capacitors shown in Figure 19.22. Assume the capacitances in Figure
19.22 are known to three decimal places ( C1 = 1.000 µF , C2 = 5.000 µF , and C3 = 8.000 µF ), and round your

answer to three decimal places.

Strategy

To find the total capacitance, we first identify which capacitors are in series and which are in parallel. Capacitors C1 and

C2 are in series. Their combination, labeled CS in the figure, is in parallel with C3 .

Solution

Since C1 and C2 are in series, their total capacitance is given by 1
CS

= 1
C1

+ 1
C2

+ 1
C3

. Entering their values into the

equation gives

(19.71)1
CS

= 1
C1

+ 1
C2

= 1
1.000 μF + 1

5.000 μF = 1.200
μF .

Inverting gives

(19.72)CS = 0.833 µF.

This equivalent series capacitance is in parallel with the third capacitor; thus, the total is the sum

(19.73)Ctot = CS + CS
= 0.833 μF + 8.000 μF
= 8.833 μF.

Discussion

This technique of analyzing the combinations of capacitors piece by piece until a total is obtained can be applied to larger
combinations of capacitors.

19.7 Energy Stored in Capacitors

Most of us have seen dramatizations in which medical personnel use a defibrillator to pass an electric current through a
patient’s heart to get it to beat normally. (Review Figure 19.23.) Often realistic in detail, the person applying the shock directs
another person to “make it 400 joules this time.” The energy delivered by the defibrillator is stored in a capacitor and can be
adjusted to fit the situation. SI units of joules are often employed. Less dramatic is the use of capacitors in microelectronics, such
as certain handheld calculators, to supply energy when batteries are charged. (See Figure 19.23.) Capacitors are also used to
supply energy for flash lamps on cameras.

Figure 19.23 Energy stored in the large capacitor is used to preserve the memory of an electronic calculator when its batteries are charged. (credit:
Kucharek, Wikimedia Commons)

Energy stored in a capacitor is electrical potential energy, and it is thus related to the charge Q and voltage V on the capacitor.

We must be careful when applying the equation for electrical potential energy ΔPE = qΔV to a capacitor. Remember that

ΔPE is the potential energy of a charge q going through a voltage ΔV . But the capacitor starts with zero voltage and

gradually comes up to its full voltage as it is charged. The first charge placed on a capacitor experiences a change in voltage
ΔV = 0 , since the capacitor has zero voltage when uncharged. The final charge placed on a capacitor experiences ΔV = V ,

since the capacitor now has its full voltage V on it. The average voltage on the capacitor during the charging process is V / 2 ,

and so the average voltage experienced by the full charge q is V / 2 . Thus the energy stored in a capacitor, Ecap , is

(19.74)Ecap = QV
2 ,
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where Q is the charge on a capacitor with a voltage V applied. (Note that the energy is not QV , but QV / 2 .) Charge and

voltage are related to the capacitance C of a capacitor by Q = CV , and so the expression for Ecap can be algebraically

manipulated into three equivalent expressions:

(19.75)
Ecap = QV

2 = CV 2

2 = Q2

2C ,

where Q is the charge and V the voltage on a capacitor C . The energy is in joules for a charge in coulombs, voltage in volts,

and capacitance in farads.

Energy Stored in Capacitors

The energy stored in a capacitor can be expressed in three ways:

(19.76)
Ecap = QV

2 = CV 2

2 = Q2

2C ,

where Q is the charge, V is the voltage, and C is the capacitance of the capacitor. The energy is in joules for a charge in

coulombs, voltage in volts, and capacitance in farads.

In a defibrillator, the delivery of a large charge in a short burst to a set of paddles across a person’s chest can be a lifesaver. The
person’s heart attack might have arisen from the onset of fast, irregular beating of the heart—cardiac or ventricular fibrillation.
The application of a large shock of electrical energy can terminate the arrhythmia and allow the body’s pacemaker to resume
normal patterns. Today it is common for ambulances to carry a defibrillator, which also uses an electrocardiogram to analyze the
patient’s heartbeat pattern. Automated external defibrillators (AED) are found in many public places (Figure 19.24). These are
designed to be used by lay persons. The device automatically diagnoses the patient’s heart condition and then applies the shock
with appropriate energy and waveform. CPR is recommended in many cases before use of an AED.

Figure 19.24 Automated external defibrillators are found in many public places. These portable units provide verbal instructions for use in the important
first few minutes for a person suffering a cardiac attack. (credit: Owain Davies, Wikimedia Commons)

Example 19.11 Capacitance in a Heart Defibrillator

A heart defibrillator delivers 4.00×102 J of energy by discharging a capacitor initially at 1.00×104 V . What is its

capacitance?

Strategy

We are given Ecap and V , and we are asked to find the capacitance C . Of the three expressions in the equation for

Ecap , the most convenient relationship is
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capacitance:

capacitor:

defibrillator:

dielectric:

dielectric strength:

electric potential:

electron volt:

equipotential line:

grounding:

mechanical energy:

parallel plate capacitor:

polar molecule:

potential difference (or voltage):

scalar:

vector:

(19.77)
Ecap = CV 2

2 .

Solution

Solving this expression for C and entering the given values yields

(19.78)
C =

2Ecap

V 2 = 2(4.00×102 J)
(1.00×104 V)2 = 8.00×10 – 6 F

= 8.00 µF.

Discussion

This is a fairly large, but manageable, capacitance at 1.00×104 V .

Glossary

amount of charge stored per unit volt

a device that stores electric charge

a machine used to provide an electrical shock to a heart attack victim's heart in order to restore the heart's
normal rhythmic pattern

an insulating material

the maximum electric field above which an insulating material begins to break down and conduct

potential energy per unit charge

the energy given to a fundamental charge accelerated through a potential difference of one volt

a line along which the electric potential is constant

fixing a conductor at zero volts by connecting it to the earth or ground

sum of the kinetic energy and potential energy of a system; this sum is a constant

two identical conducting plates separated by a distance

a molecule with inherent separation of charge

change in potential energy of a charge moved from one point to another, divided by the
charge; units of potential difference are joules per coulomb, known as volt

physical quantity with magnitude but no direction

physical quantity with both magnitude and direction

Section Summary

19.1 Electric Potential Energy: Potential Difference
• Electric potential is potential energy per unit charge.
• The potential difference between points A and B, VB – VA , defined to be the change in potential energy of a charge q

moved from A to B, is equal to the change in potential energy divided by the charge, Potential difference is commonly
called voltage, represented by the symbol ΔV .

ΔV = ΔPE
q and ΔPE = qΔV .

• An electron volt is the energy given to a fundamental charge accelerated through a potential difference of 1 V. In equation
form,

1 eV = ⎛
⎝1.60×10–19 C⎞⎠(1 V) = ⎛⎝1.60×10–19 C⎞⎠(1 J/C)

= 1.60×10–19 J.
• Mechanical energy is the sum of the kinetic energy and potential energy of a system, that is, KE + PE. This sum is a

constant.
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19.2 Electric Potential in a Uniform Electric Field
• The voltage between points A and B is

VAB = Ed

E = VAB
d

⎫
⎭
⎬(uniform E - field only),

where d is the distance from A to B, or the distance between the plates.

• In equation form, the general relationship between voltage and electric field is

E = – ΔV
Δs ,

where Δs is the distance over which the change in potential, ΔV , takes place. The minus sign tells us that E points in

the direction of decreasing potential.) The electric field is said to be the gradient (as in grade or slope) of the electric
potential.

19.3 Electrical Potential Due to a Point Charge
• Electric potential of a point charge is V = kQ / r .

• Electric potential is a scalar, and electric field is a vector. Addition of voltages as numbers gives the voltage due to a
combination of point charges, whereas addition of individual fields as vectors gives the total electric field.

19.4 Equipotential Lines
• An equipotential line is a line along which the electric potential is constant.
• An equipotential surface is a three-dimensional version of equipotential lines.
• Equipotential lines are always perpendicular to electric field lines.
• The process by which a conductor can be fixed at zero volts by connecting it to the earth with a good conductor is called

grounding.

19.5 Capacitors and Dielectrics
• A capacitor is a device used to store charge.
• The amount of charge Q a capacitor can store depends on two major factors—the voltage applied and the capacitor’s

physical characteristics, such as its size.
• The capacitance C is the amount of charge stored per volt, or

C = Q
V .

• The capacitance of a parallel plate capacitor is C = ε0
A
d , when the plates are separated by air or free space. ε0 is

called the permittivity of free space.
• A parallel plate capacitor with a dielectric between its plates has a capacitance given by

C = κε0
A
d ,

where κ is the dielectric constant of the material.

• The maximum electric field strength above which an insulating material begins to break down and conduct is called
dielectric strength.

19.6 Capacitors in Series and Parallel

• Total capacitance in series 1
CS

= 1
C1

+ 1
C2

+ 1
C3

+ ...

• Total capacitance in parallel Cp = C1 + C2 + C3 + ...
• If a circuit contains a combination of capacitors in series and parallel, identify series and parallel parts, compute their

capacitances, and then find the total.

19.7 Energy Stored in Capacitors
• Capacitors are used in a variety of devices, including defibrillators, microelectronics such as calculators, and flash lamps, to

supply energy.
• The energy stored in a capacitor can be expressed in three ways:

Ecap = QV
2 = CV 2

2 = Q2

2C ,

where Q is the charge, V is the voltage, and C is the capacitance of the capacitor. The energy is in joules when the
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charge is in coulombs, voltage is in volts, and capacitance is in farads.

Conceptual Questions

19.1 Electric Potential Energy: Potential Difference

1. Voltage is the common word for potential difference. Which term is more descriptive, voltage or potential difference?

2. If the voltage between two points is zero, can a test charge be moved between them with zero net work being done? Can this
necessarily be done without exerting a force? Explain.

3. What is the relationship between voltage and energy? More precisely, what is the relationship between potential difference and
electric potential energy?

4. Voltages are always measured between two points. Why?

5. How are units of volts and electron volts related? How do they differ?

19.2 Electric Potential in a Uniform Electric Field

6. Discuss how potential difference and electric field strength are related. Give an example.

7. What is the strength of the electric field in a region where the electric potential is constant?

8. Will a negative charge, initially at rest, move toward higher or lower potential? Explain why.

19.3 Electrical Potential Due to a Point Charge

9. In what region of space is the potential due to a uniformly charged sphere the same as that of a point charge? In what region
does it differ from that of a point charge?

10. Can the potential of a non-uniformly charged sphere be the same as that of a point charge? Explain.

19.4 Equipotential Lines

11. What is an equipotential line? What is an equipotential surface?

12. Explain in your own words why equipotential lines and surfaces must be perpendicular to electric field lines.

13. Can different equipotential lines cross? Explain.

19.5 Capacitors and Dielectrics

14. Does the capacitance of a device depend on the applied voltage? What about the charge stored in it?

15. Use the characteristics of the Coulomb force to explain why capacitance should be proportional to the plate area of a
capacitor. Similarly, explain why capacitance should be inversely proportional to the separation between plates.

16. Give the reason why a dielectric material increases capacitance compared with what it would be with air between the plates
of a capacitor. What is the independent reason that a dielectric material also allows a greater voltage to be applied to a
capacitor? (The dielectric thus increases C and permits a greater V .)

17. How does the polar character of water molecules help to explain water’s relatively large dielectric constant? (Figure 19.19)

18. Sparks will occur between the plates of an air-filled capacitor at lower voltage when the air is humid than when dry. Explain
why, considering the polar character of water molecules.

19. Water has a large dielectric constant, but it is rarely used in capacitors. Explain why.

20. Membranes in living cells, including those in humans, are characterized by a separation of charge across the membrane.
Effectively, the membranes are thus charged capacitors with important functions related to the potential difference across the
membrane. Is energy required to separate these charges in living membranes and, if so, is its source the metabolization of food
energy or some other source?
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Figure 19.25 The semipermeable membrane of a cell has different concentrations of ions inside and out. Diffusion moves the K+
(potassium) and

Cl–
(chloride) ions in the directions shown, until the Coulomb force halts further transfer. This results in a layer of positive charge on the outside, a

layer of negative charge on the inside, and thus a voltage across the cell membrane. The membrane is normally impermeable to Na+
(sodium ions).

19.6 Capacitors in Series and Parallel

21. If you wish to store a large amount of energy in a capacitor bank, would you connect capacitors in series or parallel?
Explain.

19.7 Energy Stored in Capacitors

22. How does the energy contained in a charged capacitor change when a dielectric is inserted, assuming the capacitor is
isolated and its charge is constant? Does this imply that work was done?

23. What happens to the energy stored in a capacitor connected to a battery when a dielectric is inserted? Was work done in the
process?
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Problems & Exercises

19.1 Electric Potential Energy: Potential
Difference

1. Find the ratio of speeds of an electron and a negative
hydrogen ion (one having an extra electron) accelerated
through the same voltage, assuming non-relativistic final
speeds. Take the mass of the hydrogen ion to be

1.67×10 – 27 kg.

2. An evacuated tube uses an accelerating voltage of 40 kV
to accelerate electrons to hit a copper plate and produce x
rays. Non-relativistically, what would be the maximum speed
of these electrons?

3. A bare helium nucleus has two positive charges and a

mass of 6.64×10–27 kg. (a) Calculate its kinetic energy in

joules at 2.00% of the speed of light. (b) What is this in
electron volts? (c) What voltage would be needed to obtain
this energy?

4. Integrated Concepts

Singly charged gas ions are accelerated from rest through a
voltage of 13.0 V. At what temperature will the average kinetic
energy of gas molecules be the same as that given these
ions?

5. Integrated Concepts

The temperature near the center of the Sun is thought to be

15 million degrees Celsius
⎛
⎝1.5×107 ºC⎞⎠ . Through what

voltage must a singly charged ion be accelerated to have the
same energy as the average kinetic energy of ions at this
temperature?

6. Integrated Concepts

(a) What is the average power output of a heart defibrillator
that dissipates 400 J of energy in 10.0 ms? (b) Considering
the high-power output, why doesn’t the defibrillator produce
serious burns?

7. Integrated Concepts

A lightning bolt strikes a tree, moving 20.0 C of charge

through a potential difference of 1.00×102 MV . (a) What

energy was dissipated? (b) What mass of water could be
raised from 15ºC to the boiling point and then boiled by this

energy? (c) Discuss the damage that could be caused to the
tree by the expansion of the boiling steam.

8. Integrated Concepts

A 12.0 V battery-operated bottle warmer heats 50.0 g of

glass, 2.50×102 g of baby formula, and 2.00×102 g of

aluminum from 20.0ºC to 90.0ºC . (a) How much charge is

moved by the battery? (b) How many electrons per second
flow if it takes 5.00 min to warm the formula? (Hint: Assume
that the specific heat of baby formula is about the same as
the specific heat of water.)

9. Integrated Concepts

A battery-operated car utilizes a 12.0 V system. Find the
charge the batteries must be able to move in order to
accelerate the 750 kg car from rest to 25.0 m/s, make it climb

a 2.00×102 m high hill, and then cause it to travel at a

constant 25.0 m/s by exerting a 5.00×102 N force for an

hour.

10. Integrated Concepts

Fusion probability is greatly enhanced when appropriate
nuclei are brought close together, but mutual Coulomb
repulsion must be overcome. This can be done using the
kinetic energy of high-temperature gas ions or by accelerating
the nuclei toward one another. (a) Calculate the potential
energy of two singly charged nuclei separated by

1.00×10–12 m by finding the voltage of one at that

distance and multiplying by the charge of the other. (b) At
what temperature will atoms of a gas have an average kinetic
energy equal to this needed electrical potential energy?

11. Unreasonable Results

(a) Find the voltage near a 10.0 cm diameter metal sphere
that has 8.00 C of excess positive charge on it. (b) What is
unreasonable about this result? (c) Which assumptions are
responsible?

12. Construct Your Own Problem

Consider a battery used to supply energy to a cellular phone.
Construct a problem in which you determine the energy that
must be supplied by the battery, and then calculate the
amount of charge it must be able to move in order to supply
this energy. Among the things to be considered are the
energy needs and battery voltage. You may need to look
ahead to interpret manufacturer’s battery ratings in ampere-
hours as energy in joules.

19.2 Electric Potential in a Uniform Electric
Field

13. Show that units of V/m and N/C for electric field strength
are indeed equivalent.

14. What is the strength of the electric field between two
parallel conducting plates separated by 1.00 cm and having a

potential difference (voltage) between them of 1.50×104 V
?

15. The electric field strength between two parallel conducting

plates separated by 4.00 cm is 7.50×104 V/m . (a) What is

the potential difference between the plates? (b) The plate with
the lowest potential is taken to be at zero volts. What is the
potential 1.00 cm from that plate (and 3.00 cm from the
other)?

16. How far apart are two conducting plates that have an

electric field strength of 4.50×103 V/m between them, if

their potential difference is 15.0 kV?

17. (a) Will the electric field strength between two parallel
conducting plates exceed the breakdown strength for air (

3.0×106 V/m ) if the plates are separated by 2.00 mm and

a potential difference of 5.0×103 V is applied? (b) How

close together can the plates be with this applied voltage?
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18. The voltage across a membrane forming a cell wall is
80.0 mV and the membrane is 9.00 nm thick. What is the
electric field strength? (The value is surprisingly large, but
correct. Membranes are discussed in Capacitors and
Dielectrics and Nerve Conduction—Electrocardiograms.)
You may assume a uniform electric field.

19. Membrane walls of living cells have surprisingly large
electric fields across them due to separation of ions.
(Membranes are discussed in some detail in Nerve
Conduction—Electrocardiograms.) What is the voltage
across an 8.00 nm–thick membrane if the electric field
strength across it is 5.50 MV/m? You may assume a uniform
electric field.

20. Two parallel conducting plates are separated by 10.0 cm,
and one of them is taken to be at zero volts. (a) What is the
electric field strength between them, if the potential 8.00 cm
from the zero volt plate (and 2.00 cm from the other) is 450
V? (b) What is the voltage between the plates?

21. Find the maximum potential difference between two
parallel conducting plates separated by 0.500 cm of air, given
the maximum sustainable electric field strength in air to be

3.0×106 V/m .

22. A doubly charged ion is accelerated to an energy of 32.0
keV by the electric field between two parallel conducting
plates separated by 2.00 cm. What is the electric field
strength between the plates?

23. An electron is to be accelerated in a uniform electric field

having a strength of 2.00×106 V/m . (a) What energy in

keV is given to the electron if it is accelerated through 0.400
m? (b) Over what distance would it have to be accelerated to
increase its energy by 50.0 GeV?

19.3 Electrical Potential Due to a Point Charge

24. A 0.500 cm diameter plastic sphere, used in a static
electricity demonstration, has a uniformly distributed 40.0 pC
charge on its surface. What is the potential near its surface?

25. What is the potential 0.530×10–10 m from a proton (the

average distance between the proton and electron in a
hydrogen atom)?

26. (a) A sphere has a surface uniformly charged with 1.00 C.
At what distance from its center is the potential 5.00 MV? (b)
What does your answer imply about the practical aspect of
isolating such a large charge?

27. How far from a 1.00 µC point charge will the potential be

100 V? At what distance will it be 2.00×102 V?
28. What are the sign and magnitude of a point charge that
produces a potential of –2.00 V at a distance of 1.00 mm?

29. If the potential due to a point charge is 5.00×102 V at a

distance of 15.0 m, what are the sign and magnitude of the
charge?

30. In nuclear fission, a nucleus splits roughly in half. (a)

What is the potential 2.00×10 – 14 m from a fragment that

has 46 protons in it? (b) What is the potential energy in MeV
of a similarly charged fragment at this distance?

31. A research Van de Graaff generator has a 2.00-m-
diameter metal sphere with a charge of 5.00 mC on it. (a)
What is the potential near its surface? (b) At what distance
from its center is the potential 1.00 MV? (c) An oxygen atom
with three missing electrons is released near the Van de
Graaff generator. What is its energy in MeV at this distance?

32. An electrostatic paint sprayer has a 0.200-m-diameter
metal sphere at a potential of 25.0 kV that repels paint
droplets onto a grounded object. (a) What charge is on the
sphere? (b) What charge must a 0.100-mg drop of paint have
to arrive at the object with a speed of 10.0 m/s?

33. In one of the classic nuclear physics experiments at the
beginning of the 20th century, an alpha particle was
accelerated toward a gold nucleus, and its path was
substantially deflected by the Coulomb interaction. If the
energy of the doubly charged alpha nucleus was 5.00 MeV,
how close to the gold nucleus (79 protons) could it come
before being deflected?

34. (a) What is the potential between two points situated 10
cm and 20 cm from a 3.0 µC point charge? (b) To what

location should the point at 20 cm be moved to increase this
potential difference by a factor of two?

35. Unreasonable Results

(a) What is the final speed of an electron accelerated from
rest through a voltage of 25.0 MV by a negatively charged
Van de Graaff terminal?

(b) What is unreasonable about this result?

(c) Which assumptions are responsible?

19.4 Equipotential Lines

36. (a) Sketch the equipotential lines near a point charge + q
. Indicate the direction of increasing potential. (b) Do the
same for a point charge – 3 q .

37. Sketch the equipotential lines for the two equal positive
charges shown in Figure 19.26. Indicate the direction of
increasing potential.

Figure 19.26 The electric field near two equal positive charges is

directed away from each of the charges.

38. Figure 19.27 shows the electric field lines near two
charges q1 and q2 , the first having a magnitude four times

that of the second. Sketch the equipotential lines for these
two charges, and indicate the direction of increasing
potential.
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39. Sketch the equipotential lines a long distance from the
charges shown in Figure 19.27. Indicate the direction of
increasing potential.

Figure 19.27 The electric field near two charges.

40. Sketch the equipotential lines in the vicinity of two
opposite charges, where the negative charge is three times
as great in magnitude as the positive. See Figure 19.27 for a
similar situation. Indicate the direction of increasing potential.

41. Sketch the equipotential lines in the vicinity of the
negatively charged conductor in Figure 19.28. How will these
equipotentials look a long distance from the object?

Figure 19.28 A negatively charged conductor.

42. Sketch the equipotential lines surrounding the two
conducting plates shown in Figure 19.29, given the top plate
is positive and the bottom plate has an equal amount of
negative charge. Be certain to indicate the distribution of
charge on the plates. Is the field strongest where the plates
are closest? Why should it be?

Figure 19.29

43. (a) Sketch the electric field lines in the vicinity of the
charged insulator in Figure 19.30. Note its non-uniform
charge distribution. (b) Sketch equipotential lines surrounding
the insulator. Indicate the direction of increasing potential.

Figure 19.30 A charged insulating rod such as might be used in a

classroom demonstration.

44. The naturally occurring charge on the ground on a fine

day out in the open country is –1.00 nC/m2 . (a) What is the

electric field relative to ground at a height of 3.00 m? (b)
Calculate the electric potential at this height. (c) Sketch
electric field and equipotential lines for this scenario.

45. The lesser electric ray (Narcine bancroftii) maintains an
incredible charge on its head and a charge equal in
magnitude but opposite in sign on its tail (Figure 19.31). (a)
Sketch the equipotential lines surrounding the ray. (b) Sketch
the equipotentials when the ray is near a ship with a
conducting surface. (c) How could this charge distribution be
of use to the ray?

Figure 19.31 Lesser electric ray (Narcine bancroftii) (credit: National

Oceanic and Atmospheric Administration, NOAA's Fisheries Collection).

19.5 Capacitors and Dielectrics

46. What charge is stored in a 180 µF capacitor when 120

V is applied to it?

47. Find the charge stored when 5.50 V is applied to an 8.00
pF capacitor.

48. What charge is stored in the capacitor in Example 19.8?

49. Calculate the voltage applied to a 2.00 µF capacitor

when it holds 3.10 µC of charge.

50. What voltage must be applied to an 8.00 nF capacitor to
store 0.160 mC of charge?
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51. What capacitance is needed to store 3.00 µC of charge

at a voltage of 120 V?

52. What is the capacitance of a large Van de Graaff
generator’s terminal, given that it stores 8.00 mC of charge at
a voltage of 12.0 MV?

53. Find the capacitance of a parallel plate capacitor having

plates of area 5.00 m2 that are separated by 0.100 mm of

Teflon.

54. (a)What is the capacitance of a parallel plate capacitor

having plates of area 1.50 m2 that are separated by 0.0200

mm of neoprene rubber? (b) What charge does it hold when
9.00 V is applied to it?

55. Integrated Concepts

A prankster applies 450 V to an 80.0 µF capacitor and then

tosses it to an unsuspecting victim. The victim’s finger is
burned by the discharge of the capacitor through 0.200 g of
flesh. What is the temperature increase of the flesh? Is it
reasonable to assume no phase change?

56. Unreasonable Results

(a) A certain parallel plate capacitor has plates of area

4.00 m2 , separated by 0.0100 mm of nylon, and stores

0.170 C of charge. What is the applied voltage? (b) What is
unreasonable about this result? (c) Which assumptions are
responsible or inconsistent?

19.6 Capacitors in Series and Parallel

57. Find the total capacitance of the combination of
capacitors in Figure 19.32.

Figure 19.32 A combination of series and parallel connections of

capacitors.

58. Suppose you want a capacitor bank with a total
capacitance of 0.750 F and you possess numerous 1.50 mF
capacitors. What is the smallest number you could hook
together to achieve your goal, and how would you connect
them?

59. What total capacitances can you make by connecting a
5.00 µF and an 8.00 µF capacitor together?

60. Find the total capacitance of the combination of
capacitors shown in Figure 19.33.

Figure 19.33 A combination of series and parallel connections of

capacitors.

61. Find the total capacitance of the combination of
capacitors shown in Figure 19.34.

Figure 19.34 A combination of series and parallel connections of

capacitors.

62. Unreasonable Results

(a) An 8.00 µF capacitor is connected in parallel to another

capacitor, producing a total capacitance of 5.00 µF . What is

the capacitance of the second capacitor? (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?

19.7 Energy Stored in Capacitors

63. (a) What is the energy stored in the 10.0 μF capacitor of

a heart defibrillator charged to 9.00×103 V ? (b) Find the

amount of stored charge.

64. In open heart surgery, a much smaller amount of energy
will defibrillate the heart. (a) What voltage is applied to the
8.00 μF capacitor of a heart defibrillator that stores 40.0 J of

energy? (b) Find the amount of stored charge.

65. A 165 µF capacitor is used in conjunction with a motor.

How much energy is stored in it when 119 V is applied?

66. Suppose you have a 9.00 V battery, a 2.00 μF capacitor,

and a 7.40 μF capacitor. (a) Find the charge and energy

stored if the capacitors are connected to the battery in series.
(b) Do the same for a parallel connection.
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67. A nervous physicist worries that the two metal shelves of
his wood frame bookcase might obtain a high voltage if
charged by static electricity, perhaps produced by friction. (a)
What is the capacitance of the empty shelves if they have

area 1.00×102 m2 and are 0.200 m apart? (b) What is the

voltage between them if opposite charges of magnitude 2.00
nC are placed on them? (c) To show that this voltage poses a
small hazard, calculate the energy stored.

68. Show that for a given dielectric material the maximum
energy a parallel plate capacitor can store is directly
proportional to the volume of dielectric ( Volume = A · d ).

Note that the applied voltage is limited by the dielectric
strength.

69. Construct Your Own Problem

Consider a heart defibrillator similar to that discussed in
Example 19.11. Construct a problem in which you examine
the charge stored in the capacitor of a defibrillator as a
function of stored energy. Among the things to be considered
are the applied voltage and whether it should vary with
energy to be delivered, the range of energies involved, and
the capacitance of the defibrillator. You may also wish to
consider the much smaller energy needed for defibrillation
during open-heart surgery as a variation on this problem.

70. Unreasonable Results

(a) On a particular day, it takes 9.60×103 J of electric

energy to start a truck’s engine. Calculate the capacitance of
a capacitor that could store that amount of energy at 12.0 V.
(b) What is unreasonable about this result? (c) Which
assumptions are responsible?
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20 ELECTRIC CURRENT, RESISTANCE,
AND OHM'S LAW

Figure 20.1 Electric energy in massive quantities is transmitted from this hydroelectric facility, the Srisailam power station located along the Krishna
River in India, by the movement of charge—that is, by electric current. (credit: Chintohere, Wikimedia Commons)

Chapter Outline
20.1. Current

• Define electric current, ampere, and drift velocity
• Describe the direction of charge flow in conventional current.
• Use drift velocity to calculate current and vice versa.

20.2. Ohm’s Law: Resistance and Simple Circuits
• Explain the origin of Ohm’s law.
• Calculate voltages, currents, or resistances with Ohm’s law.
• Explain what an ohmic material is.
• Describe a simple circuit.

20.3. Resistance and Resistivity
• Explain the concept of resistivity.
• Use resistivity to calculate the resistance of specified configurations of material.
• Use the thermal coefficient of resistivity to calculate the change of resistance with temperature.

20.4. Electric Power and Energy
• Calculate the power dissipated by a resistor and power supplied by a power supply.
• Calculate the cost of electricity under various circumstances.

20.5. Alternating Current versus Direct Current
• Explain the differences and similarities between AC and DC current.
• Calculate rms voltage, current, and average power.
• Explain why AC current is used for power transmission.

20.6. Electric Hazards and the Human Body
• Define thermal hazard, shock hazard, and short circuit.
• Explain what effects various levels of current have on the human body.

20.7. Nerve Conduction–Electrocardiograms
• Explain the process by which electric signals are transmitted along a neuron.
• Explain the effects myelin sheaths have on signal propagation.
• Explain what the features of an ECG signal indicate.
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Introduction to Electric Current, Resistance, and Ohm's Law

The flicker of numbers on a handheld calculator, nerve impulses carrying signals of vision to the brain, an ultrasound device
sending a signal to a computer screen, the brain sending a message for a baby to twitch its toes, an electric train pulling its load
over a mountain pass, a hydroelectric plant sending energy to metropolitan and rural users—these and many other examples of
electricity involve electric current, the movement of charge. Humankind has indeed harnessed electricity, the basis of technology,
to improve our quality of life. Whereas the previous two chapters concentrated on static electricity and the fundamental force
underlying its behavior, the next few chapters will be devoted to electric and magnetic phenomena involving current. In addition
to exploring applications of electricity, we shall gain new insights into nature—in particular, the fact that all magnetism results
from electric current.

20.1 Current

Electric Current

Electric current is defined to be the rate at which charge flows. A large current, such as that used to start a truck engine, moves a
large amount of charge in a small time, whereas a small current, such as that used to operate a hand-held calculator, moves a
small amount of charge over a long period of time. In equation form, electric current I is defined to be

(20.1)I = ΔQ
Δt ,

where ΔQ is the amount of charge passing through a given area in time Δt . (As in previous chapters, initial time is often taken

to be zero, in which case Δt = t .) (See Figure 20.2.) The SI unit for current is the ampere (A), named for the French physicist

André-Marie Ampère (1775–1836). Since I = ΔQ / Δt , we see that an ampere is one coulomb per second:

(20.2)1 A = 1 C/s
Not only are fuses and circuit breakers rated in amperes (or amps), so are many electrical appliances.

Figure 20.2 The rate of flow of charge is current. An ampere is the flow of one coulomb through an area in one second.

Example 20.1 Calculating Currents: Current in a Truck Battery and a Handheld Calculator

(a) What is the current involved when a truck battery sets in motion 720 C of charge in 4.00 s while starting an engine? (b)
How long does it take 1.00 C of charge to flow through a handheld calculator if a 0.300-mA current is flowing?

Strategy

We can use the definition of current in the equation I = ΔQ / Δt to find the current in part (a), since charge and time are

given. In part (b), we rearrange the definition of current and use the given values of charge and current to find the time
required.

Solution for (a)

Entering the given values for charge and time into the definition of current gives

(20.3)I = ΔQ
Δt = 720 C

4.00 s = 180 C/s

= 180 A.
Discussion for (a)

This large value for current illustrates the fact that a large charge is moved in a small amount of time. The currents in these
“starter motors” are fairly large because large frictional forces need to be overcome when setting something in motion.

Solution for (b)

Solving the relationship I = ΔQ / Δt for time Δt , and entering the known values for charge and current gives
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(20.4)Δt = ΔQ
I = 1.00 C

0.300×10-3 C/s
= 3.33×103 s.

Discussion for (b)

This time is slightly less than an hour. The small current used by the hand-held calculator takes a much longer time to move
a smaller charge than the large current of the truck starter. So why can we operate our calculators only seconds after turning
them on? It’s because calculators require very little energy. Such small current and energy demands allow handheld
calculators to operate from solar cells or to get many hours of use out of small batteries. Remember, calculators do not have
moving parts in the same way that a truck engine has with cylinders and pistons, so the technology requires smaller
currents.

Figure 20.3 shows a simple circuit and the standard schematic representation of a battery, conducting path, and load (a resistor).
Schematics are very useful in visualizing the main features of a circuit. A single schematic can represent a wide variety of
situations. The schematic in Figure 20.3 (b), for example, can represent anything from a truck battery connected to a headlight
lighting the street in front of the truck to a small battery connected to a penlight lighting a keyhole in a door. Such schematics are
useful because the analysis is the same for a wide variety of situations. We need to understand a few schematics to apply the
concepts and analysis to many more situations.

Figure 20.3 (a) A simple electric circuit. A closed path for current to flow through is supplied by conducting wires connecting a load to the terminals of a
battery. (b) In this schematic, the battery is represented by the two parallel red lines, conducting wires are shown as straight lines, and the zigzag
represents the load. The schematic represents a wide variety of similar circuits.

Note that the direction of current flow in Figure 20.3 is from positive to negative. The direction of conventional current is the
direction that positive charge would flow. Depending on the situation, positive charges, negative charges, or both may move. In
metal wires, for example, current is carried by electrons—that is, negative charges move. In ionic solutions, such as salt water,
both positive and negative charges move. This is also true in nerve cells. A Van de Graaff generator used for nuclear research
can produce a current of pure positive charges, such as protons. Figure 20.4 illustrates the movement of charged particles that
compose a current. The fact that conventional current is taken to be in the direction that positive charge would flow can be traced
back to American politician and scientist Benjamin Franklin in the 1700s. He named the type of charge associated with electrons
negative, long before they were known to carry current in so many situations. Franklin, in fact, was totally unaware of the small-
scale structure of electricity.

It is important to realize that there is an electric field in conductors responsible for producing the current, as illustrated in Figure
20.4. Unlike static electricity, where a conductor in equilibrium cannot have an electric field in it, conductors carrying a current
have an electric field and are not in static equilibrium. An electric field is needed to supply energy to move the charges.

Making Connections: Take-Home Investigation—Electric Current Illustration

Find a straw and little peas that can move freely in the straw. Place the straw flat on a table and fill the straw with peas.
When you pop one pea in at one end, a different pea should pop out the other end. This demonstration is an analogy for an
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electric current. Identify what compares to the electrons and what compares to the supply of energy. What other analogies
can you find for an electric current?

Note that the flow of peas is based on the peas physically bumping into each other; electrons flow due to mutually repulsive
electrostatic forces.

Figure 20.4 Current I is the rate at which charge moves through an area A , such as the cross-section of a wire. Conventional current is defined to

move in the direction of the electric field. (a) Positive charges move in the direction of the electric field and the same direction as conventional current.
(b) Negative charges move in the direction opposite to the electric field. Conventional current is in the direction opposite to the movement of negative
charge. The flow of electrons is sometimes referred to as electronic flow.

Example 20.2 Calculating the Number of Electrons that Move through a Calculator

If the 0.300-mA current through the calculator mentioned in the Example 20.1 example is carried by electrons, how many
electrons per second pass through it?

Strategy

The current calculated in the previous example was defined for the flow of positive charge. For electrons, the magnitude is

the same, but the sign is opposite, Ielectrons = −0.300×10−3 C/s .Since each electron (e−) has a charge of

–1.60×10−19 C , we can convert the current in coulombs per second to electrons per second.

Solution

Starting with the definition of current, we have

(20.5)
Ielectrons = ΔQelectrons

Δt = –0.300×10−3 C
s .

We divide this by the charge per electron, so that

(20.6)e–
s = –0.300×10 – 3 C

s × 1 e–

–1.60×10−19 C
= 1.88×1015 e–

s .

Discussion

There are so many charged particles moving, even in small currents, that individual charges are not noticed, just as
individual water molecules are not noticed in water flow. Even more amazing is that they do not always keep moving forward
like soldiers in a parade. Rather they are like a crowd of people with movement in different directions but a general trend to
move forward. There are lots of collisions with atoms in the metal wire and, of course, with other electrons.

Drift Velocity

Electrical signals are known to move very rapidly. Telephone conversations carried by currents in wires cover large distances
without noticeable delays. Lights come on as soon as a switch is flicked. Most electrical signals carried by currents travel at

speeds on the order of 108 m/s , a significant fraction of the speed of light. Interestingly, the individual charges that make up the
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current move much more slowly on average, typically drifting at speeds on the order of 10−4 m/s . How do we reconcile these

two speeds, and what does it tell us about standard conductors?

The high speed of electrical signals results from the fact that the force between charges acts rapidly at a distance. Thus, when a
free charge is forced into a wire, as in Figure 20.5, the incoming charge pushes other charges ahead of it, which in turn push on
charges farther down the line. The density of charge in a system cannot easily be increased, and so the signal is passed on
rapidly. The resulting electrical shock wave moves through the system at nearly the speed of light. To be precise, this rapidly
moving signal or shock wave is a rapidly propagating change in electric field.

Figure 20.5 When charged particles are forced into this volume of a conductor, an equal number are quickly forced to leave. The repulsion between
like charges makes it difficult to increase the number of charges in a volume. Thus, as one charge enters, another leaves almost immediately, carrying
the signal rapidly forward.

Good conductors have large numbers of free charges in them. In metals, the free charges are free electrons. Figure 20.6 shows
how free electrons move through an ordinary conductor. The distance that an individual electron can move between collisions
with atoms or other electrons is quite small. The electron paths thus appear nearly random, like the motion of atoms in a gas. But
there is an electric field in the conductor that causes the electrons to drift in the direction shown (opposite to the field, since they
are negative). The drift velocity vd is the average velocity of the free charges. Drift velocity is quite small, since there are so

many free charges. If we have an estimate of the density of free electrons in a conductor, we can calculate the drift velocity for a
given current. The larger the density, the lower the velocity required for a given current.

Figure 20.6 Free electrons moving in a conductor make many collisions with other electrons and atoms. The path of one electron is shown. The
average velocity of the free charges is called the drift velocity, vd , and it is in the direction opposite to the electric field for electrons. The collisions

normally transfer energy to the conductor, requiring a constant supply of energy to maintain a steady current.

Conduction of Electricity and Heat

Good electrical conductors are often good heat conductors, too. This is because large numbers of free electrons can carry
electrical current and can transport thermal energy.

The free-electron collisions transfer energy to the atoms of the conductor. The electric field does work in moving the electrons
through a distance, but that work does not increase the kinetic energy (nor speed, therefore) of the electrons. The work is
transferred to the conductor’s atoms, possibly increasing temperature. Thus a continuous power input is required to keep a
current flowing. An exception, of course, is found in superconductors, for reasons we shall explore in a later chapter.
Superconductors can have a steady current without a continual supply of energy—a great energy savings. In contrast, the supply
of energy can be useful, such as in a lightbulb filament. The supply of energy is necessary to increase the temperature of the
tungsten filament, so that the filament glows.

Making Connections: Take-Home Investigation—Filament Observations

Find a lightbulb with a filament. Look carefully at the filament and describe its structure. To what points is the filament
connected?

We can obtain an expression for the relationship between current and drift velocity by considering the number of free charges in
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a segment of wire, as illustrated in Figure 20.7. The number of free charges per unit volume is given the symbol n and depends

on the material. The shaded segment has a volume Ax , so that the number of free charges in it is nAx . The charge ΔQ in

this segment is thus qnAx , where q is the amount of charge on each carrier. (Recall that for electrons, q is

−1.60×10−19 C .) Current is charge moved per unit time; thus, if all the original charges move out of this segment in time Δt ,

the current is

(20.7)
I = ΔQ

Δt = qnAx
Δt .

Note that x / Δt is the magnitude of the drift velocity, vd , since the charges move an average distance x in a time Δt .

Rearranging terms gives

(20.8)I = nqAv d,

where I is the current through a wire of cross-sectional area A made of a material with a free charge density n . The carriers

of the current each have charge q and move with a drift velocity of magnitude vd .

Figure 20.7 All the charges in the shaded volume of this wire move out in a time t , having a drift velocity of magnitude vd = x / t . See text for

further discussion.

Note that simple drift velocity is not the entire story. The speed of an electron is much greater than its drift velocity. In addition,
not all of the electrons in a conductor can move freely, and those that do might move somewhat faster or slower than the drift
velocity. So what do we mean by free electrons? Atoms in a metallic conductor are packed in the form of a lattice structure.
Some electrons are far enough away from the atomic nuclei that they do not experience the attraction of the nuclei as much as
the inner electrons do. These are the free electrons. They are not bound to a single atom but can instead move freely among the
atoms in a “sea” of electrons. These free electrons respond by accelerating when an electric field is applied. Of course as they
move they collide with the atoms in the lattice and other electrons, generating thermal energy, and the conductor gets warmer. In
an insulator, the organization of the atoms and the structure do not allow for such free electrons.

Example 20.3 Calculating Drift Velocity in a Common Wire

Calculate the drift velocity of electrons in a 12-gauge copper wire (which has a diameter of 2.053 mm) carrying a 20.0-A
current, given that there is one free electron per copper atom. (Household wiring often contains 12-gauge copper wire, and

the maximum current allowed in such wire is usually 20 A.) The density of copper is 8.80×103 kg/m3 .

Strategy

We can calculate the drift velocity using the equation I = nqAvd . The current I = 20.0 A is given, and

q = – 1.60×10 – 19 C is the charge of an electron. We can calculate the area of a cross-section of the wire using the

formula A = πr2, where r is one-half the given diameter, 2.053 mm. We are given the density of copper,

8.80×103 kg/m3, and the periodic table shows that the atomic mass of copper is 63.54 g/mol. We can use these two

quantities along with Avogadro’s number, 6.02×1023 atoms/mol, to determine n, the number of free electrons per

cubic meter.

Solution

First, calculate the density of free electrons in copper. There is one free electron per copper atom. Therefore, is the same as

the number of copper atoms per m3 . We can now find n as follows:

(20.9)
n = 1 e−

atom×6.02×1023 atoms
mol × 1 mol

63.54 g×1000 g
kg ×8.80×103 kg

1 m3

= 8.342×1028 e− /m3 .
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The cross-sectional area of the wire is

(20.10)A = πr2

= π⎛⎝2.053×10−3 m
2

⎞
⎠

2

= 3.310×10–6 m2 .

Rearranging I = nqAvd to isolate drift velocity gives

(20.11)vd = I
nqA

= 20.0 A
(8.342×1028/m3)(–1.60×10–19 C)(3.310×10–6 m2)

= –4.53×10–4 m/s.
Discussion

The minus sign indicates that the negative charges are moving in the direction opposite to conventional current. The small

value for drift velocity (on the order of 10−4 m/s ) confirms that the signal moves on the order of 1012 times faster (about

108 m/s ) than the charges that carry it.

20.2 Ohm’s Law: Resistance and Simple Circuits

What drives current? We can think of various devices—such as batteries, generators, wall outlets, and so on—which are
necessary to maintain a current. All such devices create a potential difference and are loosely referred to as voltage sources.
When a voltage source is connected to a conductor, it applies a potential difference V that creates an electric field. The electric

field in turn exerts force on charges, causing current.

Ohm’s Law

The current that flows through most substances is directly proportional to the voltage V applied to it. The German physicist

Georg Simon Ohm (1787–1854) was the first to demonstrate experimentally that the current in a metal wire is directly
proportional to the voltage applied:

(20.12)I ∝ V .
This important relationship is known as Ohm’s law. It can be viewed as a cause-and-effect relationship, with voltage the cause
and current the effect. This is an empirical law like that for friction—an experimentally observed phenomenon. Such a linear
relationship doesn’t always occur.

Resistance and Simple Circuits

If voltage drives current, what impedes it? The electric property that impedes current (crudely similar to friction and air
resistance) is called resistance R . Collisions of moving charges with atoms and molecules in a substance transfer energy to

the substance and limit current. Resistance is defined as inversely proportional to current, or

(20.13)I ∝ 1
R.

Thus, for example, current is cut in half if resistance doubles. Combining the relationships of current to voltage and current to
resistance gives

(20.14)I = V
R .

This relationship is also called Ohm’s law. Ohm’s law in this form really defines resistance for certain materials. Ohm’s law (like
Hooke’s law) is not universally valid. The many substances for which Ohm’s law holds are called ohmic. These include good
conductors like copper and aluminum, and some poor conductors under certain circumstances. Ohmic materials have a
resistance R that is independent of voltage V and current I . An object that has simple resistance is called a resistor, even if

its resistance is small. The unit for resistance is an ohm and is given the symbol Ω (upper case Greek omega). Rearranging

I = V/R gives R = V/I , and so the units of resistance are 1 ohm = 1 volt per ampere:

(20.15)1 Ω = 1V
A .

Figure 20.8 shows the schematic for a simple circuit. A simple circuit has a single voltage source and a single resistor. The
wires connecting the voltage source to the resistor can be assumed to have negligible resistance, or their resistance can be
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included in R .

Figure 20.8 A simple electric circuit in which a closed path for current to flow is supplied by conductors (usually metal wires) connecting a load to the
terminals of a battery, represented by the red parallel lines. The zigzag symbol represents the single resistor and includes any resistance in the
connections to the voltage source.

Example 20.4 Calculating Resistance: An Automobile Headlight

What is the resistance of an automobile headlight through which 2.50 A flows when 12.0 V is applied to it?

Strategy

We can rearrange Ohm’s law as stated by I = V/R and use it to find the resistance.

Solution

Rearranging I = V/R and substituting known values gives

(20.16)R = V
I = 12.0 V

2.50 A = 4.80 Ω.

Discussion

This is a relatively small resistance, but it is larger than the cold resistance of the headlight. As we shall see in Resistance
and Resistivity, resistance usually increases with temperature, and so the bulb has a lower resistance when it is first
switched on and will draw considerably more current during its brief warm-up period.

Resistances range over many orders of magnitude. Some ceramic insulators, such as those used to support power lines, have

resistances of 1012 Ω or more. A dry person may have a hand-to-foot resistance of 105 Ω , whereas the resistance of the

human heart is about 103 Ω . A meter-long piece of large-diameter copper wire may have a resistance of 10−5 Ω , and

superconductors have no resistance at all (they are non-ohmic). Resistance is related to the shape of an object and the material
of which it is composed, as will be seen in Resistance and Resistivity.

Additional insight is gained by solving I = V/R for V , yielding

(20.17)V = IR.

This expression for V can be interpreted as the voltage drop across a resistor produced by the flow of current I . The phrase

IR drop is often used for this voltage. For instance, the headlight in Example 20.4 has an IR drop of 12.0 V. If voltage is

measured at various points in a circuit, it will be seen to increase at the voltage source and decrease at the resistor. Voltage is
similar to fluid pressure. The voltage source is like a pump, creating a pressure difference, causing current—the flow of charge.
The resistor is like a pipe that reduces pressure and limits flow because of its resistance. Conservation of energy has important
consequences here. The voltage source supplies energy (causing an electric field and a current), and the resistor converts it to
another form (such as thermal energy). In a simple circuit (one with a single simple resistor), the voltage supplied by the source
equals the voltage drop across the resistor, since PE = qΔV , and the same q flows through each. Thus the energy supplied

by the voltage source and the energy converted by the resistor are equal. (See Figure 20.9.)
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Figure 20.9 The voltage drop across a resistor in a simple circuit equals the voltage output of the battery.

Making Connections: Conservation of Energy

In a simple electrical circuit, the sole resistor converts energy supplied by the source into another form. Conservation of
energy is evidenced here by the fact that all of the energy supplied by the source is converted to another form by the resistor
alone. We will find that conservation of energy has other important applications in circuits and is a powerful tool in circuit
analysis.

PhET Explorations: Ohm's Law

See how the equation form of Ohm's law relates to a simple circuit. Adjust the voltage and resistance, and see the current
change according to Ohm's law. The sizes of the symbols in the equation change to match the circuit diagram.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42344/1.8/#eip-
idm317697664)

Figure 20.10

20.3 Resistance and Resistivity

Material and Shape Dependence of Resistance

The resistance of an object depends on its shape and the material of which it is composed. The cylindrical resistor in Figure
20.11 is easy to analyze, and, by so doing, we can gain insight into the resistance of more complicated shapes. As you might
expect, the cylinder’s electric resistance R is directly proportional to its length L , similar to the resistance of a pipe to fluid flow.

The longer the cylinder, the more collisions charges will make with its atoms. The greater the diameter of the cylinder, the more
current it can carry (again similar to the flow of fluid through a pipe). In fact, R is inversely proportional to the cylinder’s cross-

sectional area A .

Figure 20.11 A uniform cylinder of length L and cross-sectional area A . Its resistance to the flow of current is similar to the resistance posed by a

pipe to fluid flow. The longer the cylinder, the greater its resistance. The larger its cross-sectional area A , the smaller its resistance.

For a given shape, the resistance depends on the material of which the object is composed. Different materials offer different
resistance to the flow of charge. We define the resistivity ρ of a substance so that the resistance R of an object is directly

proportional to ρ . Resistivity ρ is an intrinsic property of a material, independent of its shape or size. The resistance R of a

uniform cylinder of length L , of cross-sectional area A , and made of a material with resistivity ρ , is

(20.18)R = ρL
A .

Table 20.1 gives representative values of ρ . The materials listed in the table are separated into categories of conductors,

semiconductors, and insulators, based on broad groupings of resistivities. Conductors have the smallest resistivities, and
insulators have the largest; semiconductors have intermediate resistivities. Conductors have varying but large free charge
densities, whereas most charges in insulators are bound to atoms and are not free to move. Semiconductors are intermediate,
having far fewer free charges than conductors, but having properties that make the number of free charges depend strongly on
the type and amount of impurities in the semiconductor. These unique properties of semiconductors are put to use in modern

Chapter 20 | Electric Current, Resistance, and Ohm's Law 773

http://cnx.org/content/m42344/1.8/#eip-idm317697664
http://cnx.org/content/m42344/1.8/#eip-idm317697664


electronics, as will be explored in later chapters.
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Table 20.1 Resistivities ρ of Various materials at 20ºC

Material Resistivity ρ ( Ω ⋅m )

Conductors

Silver 1.59×10−8

Copper 1.72×10−8

Gold 2.44×10−8

Aluminum 2.65×10−8

Tungsten 5.6×10−8

Iron 9.71×10−8

Platinum 10.6×10−8

Steel 20×10−8

Lead 22×10−8

Manganin (Cu, Mn, Ni alloy) 44×10−8

Constantan (Cu, Ni alloy) 49×10−8

Mercury 96×10−8

Nichrome (Ni, Fe, Cr alloy) 100×10−8

Semiconductors[1]

Carbon (pure) 3.5×10–5

Carbon (3.5 − 60)×10–5

Germanium (pure) 600×10−3

Germanium (1 − 600)×10−3

Silicon (pure) 2300

Silicon 0.1–2300

Insulators

Amber 5×1014

Glass 109 − 1014

Lucite >1013

Mica 1011 − 1015

Quartz (fused) 75×1016

Rubber (hard) 1013 − 1016

Sulfur 1015

Teflon >1013

Wood 108 − 1011
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Example 20.5 Calculating Resistor Diameter: A Headlight Filament

A car headlight filament is made of tungsten and has a cold resistance of 0.350 Ω . If the filament is a cylinder 4.00 cm

long (it may be coiled to save space), what is its diameter?

Strategy

We can rearrange the equation R = ρL
A to find the cross-sectional area A of the filament from the given information. Then

its diameter can be found by assuming it has a circular cross-section.

Solution

The cross-sectional area, found by rearranging the expression for the resistance of a cylinder given in R = ρL
A , is

(20.19)A = ρL
R .

Substituting the given values, and taking ρ from Table 20.1, yields

(20.20)
A = (5.6×10–8 Ω ⋅ m)(4.00×10–2 m)

0.350 Ω
= 6.40×10–9 m2 .

The area of a circle is related to its diameter D by

(20.21)
A = πD2

4 .

Solving for the diameter D , and substituting the value found for A , gives

(20.22)

D = 2⎛⎝Ap
⎞
⎠

1
2

= 2⎛⎝6.40×10–9 m2

3.14
⎞
⎠

1
2

= 9.0×10–5 m.
Discussion

The diameter is just under a tenth of a millimeter. It is quoted to only two digits, because ρ is known to only two digits.

Temperature Variation of Resistance

The resistivity of all materials depends on temperature. Some even become superconductors (zero resistivity) at very low
temperatures. (See Figure 20.12.) Conversely, the resistivity of conductors increases with increasing temperature. Since the
atoms vibrate more rapidly and over larger distances at higher temperatures, the electrons moving through a metal make more
collisions, effectively making the resistivity higher. Over relatively small temperature changes (about 100ºC or less), resistivity

ρ varies with temperature change ΔT as expressed in the following equation

(20.23)ρ = ρ0(1 + αΔT),

where ρ0 is the original resistivity and α is the temperature coefficient of resistivity. (See the values of α in Table 20.2

below.) For larger temperature changes, α may vary or a nonlinear equation may be needed to find ρ . Note that α is positive

for metals, meaning their resistivity increases with temperature. Some alloys have been developed specifically to have a small
temperature dependence. Manganin (which is made of copper, manganese and nickel), for example, has α close to zero (to

three digits on the scale in Table 20.2), and so its resistivity varies only slightly with temperature. This is useful for making a
temperature-independent resistance standard, for example.

1. Values depend strongly on amounts and types of impurities
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Figure 20.12 The resistance of a sample of mercury is zero at very low temperatures—it is a superconductor up to about 4.2 K. Above that critical
temperature, its resistance makes a sudden jump and then increases nearly linearly with temperature.

Table 20.2 Tempature Coefficients of Resistivity α

Material Coefficient α (1/°C)[2]

Conductors

Silver 3.8×10−3

Copper 3.9×10−3

Gold 3.4×10−3

Aluminum 3.9×10−3

Tungsten 4.5×10−3

Iron 5.0×10−3

Platinum 3.93×10−3

Lead 3.9×10−3

Manganin (Cu, Mn, Ni alloy) 0.000×10−3

Constantan (Cu, Ni alloy) 0.002×10−3

Mercury 0.89×10−3

Nichrome (Ni, Fe, Cr alloy) 0.4×10−3

Semiconductors

Carbon (pure) −0.5×10−3

Germanium (pure) −50×10−3

Silicon (pure) −70×10−3

Note also that α is negative for the semiconductors listed in Table 20.2, meaning that their resistivity decreases with increasing

temperature. They become better conductors at higher temperature, because increased thermal agitation increases the number
of free charges available to carry current. This property of decreasing ρ with temperature is also related to the type and amount

of impurities present in the semiconductors.

The resistance of an object also depends on temperature, since R0 is directly proportional to ρ . For a cylinder we know

2. Values at 20°C.
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R = ρL / A , and so, if L and A do not change greatly with temperature, R will have the same temperature dependence as

ρ . (Examination of the coefficients of linear expansion shows them to be about two orders of magnitude less than typical

temperature coefficients of resistivity, and so the effect of temperature on L and A is about two orders of magnitude less than

on ρ .) Thus,

(20.24)R = R0(1 + αΔT)

is the temperature dependence of the resistance of an object, where R0 is the original resistance and R is the resistance after

a temperature change ΔT . Numerous thermometers are based on the effect of temperature on resistance. (See Figure 20.13.)

One of the most common is the thermistor, a semiconductor crystal with a strong temperature dependence, the resistance of
which is measured to obtain its temperature. The device is small, so that it quickly comes into thermal equilibrium with the part of
a person it touches.

Figure 20.13 These familiar thermometers are based on the automated measurement of a thermistor’s temperature-dependent resistance. (credit: Biol,
Wikimedia Commons)

Example 20.6 Calculating Resistance: Hot-Filament Resistance

Although caution must be used in applying ρ = ρ0(1 + αΔT) and R = R0(1 + αΔT) for temperature changes greater

than 100ºC , for tungsten the equations work reasonably well for very large temperature changes. What, then, is the

resistance of the tungsten filament in the previous example if its temperature is increased from room temperature ( 20ºC ) to

a typical operating temperature of 2850ºC ?

Strategy

This is a straightforward application of R = R0(1 + αΔT) , since the original resistance of the filament was given to be

R0 = 0.350 Ω , and the temperature change is ΔT = 2830ºC .

Solution

The hot resistance R is obtained by entering known values into the above equation:

(20.25)R = R0(1 + αΔT)

= (0.350 Ω)[1 + (4.5×10–3 / ºC)(2830ºC)]
= 4.8 Ω.

Discussion

This value is consistent with the headlight resistance example in Ohm’s Law: Resistance and Simple Circuits.

PhET Explorations: Resistance in a Wire

Learn about the physics of resistance in a wire. Change its resistivity, length, and area to see how they affect the wire's
resistance. The sizes of the symbols in the equation change along with the diagram of a wire.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42346/1.12/#eip-
idm669429680)

Figure 20.14

20.4 Electric Power and Energy

Power in Electric Circuits

Power is associated by many people with electricity. Knowing that power is the rate of energy use or energy conversion, what is
the expression for electric power? Power transmission lines might come to mind. We also think of lightbulbs in terms of their
power ratings in watts. Let us compare a 25-W bulb with a 60-W bulb. (See Figure 20.15(a).) Since both operate on the same
voltage, the 60-W bulb must draw more current to have a greater power rating. Thus the 60-W bulb’s resistance must be lower
than that of a 25-W bulb. If we increase voltage, we also increase power. For example, when a 25-W bulb that is designed to
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operate on 120 V is connected to 240 V, it briefly glows very brightly and then burns out. Precisely how are voltage, current, and
resistance related to electric power?

Figure 20.15 (a) Which of these lightbulbs, the 25-W bulb (upper left) or the 60-W bulb (upper right), has the higher resistance? Which draws more
current? Which uses the most energy? Can you tell from the color that the 25-W filament is cooler? Is the brighter bulb a different color and if so why?
(credits: Dickbauch, Wikimedia Commons; Greg Westfall, Flickr) (b) This compact fluorescent light (CFL) puts out the same intensity of light as the
60-W bulb, but at 1/4 to 1/10 the input power. (credit: dbgg1979, Flickr)

Electric energy depends on both the voltage involved and the charge moved. This is expressed most simply as PE = qV ,

where q is the charge moved and V is the voltage (or more precisely, the potential difference the charge moves through).

Power is the rate at which energy is moved, and so electric power is

(20.26)P = PE
t = qV

t .

Recognizing that current is I = q / t (note that Δt = t here), the expression for power becomes

(20.27)P = IV.

Electric power ( P ) is simply the product of current times voltage. Power has familiar units of watts. Since the SI unit for potential

energy (PE) is the joule, power has units of joules per second, or watts. Thus, 1 A ⋅ V = 1 W . For example, cars often have

one or more auxiliary power outlets with which you can charge a cell phone or other electronic devices. These outlets may be
rated at 20 A, so that the circuit can deliver a maximum power P = IV = (20 A)(12 V) = 240 W . In some applications,

electric power may be expressed as volt-amperes or even kilovolt-amperes ( 1 kA ⋅ V = 1 kW ).

To see the relationship of power to resistance, we combine Ohm’s law with P = IV . Substituting I = V/R gives

P = (V / R)V = V 2 /R . Similarly, substituting V = IR gives P = I(IR) = I 2R . Three expressions for electric power are

listed together here for convenience:

(20.28)P = IV
(20.29)

P = V 2

R
(20.30)P = I 2R.

Note that the first equation is always valid, whereas the other two can be used only for resistors. In a simple circuit, with one
voltage source and a single resistor, the power supplied by the voltage source and that dissipated by the resistor are identical. (In
more complicated circuits, P can be the power dissipated by a single device and not the total power in the circuit.)

Different insights can be gained from the three different expressions for electric power. For example, P = V 2 / R implies that

the lower the resistance connected to a given voltage source, the greater the power delivered. Furthermore, since voltage is

squared in P = V 2 / R , the effect of applying a higher voltage is perhaps greater than expected. Thus, when the voltage is

doubled to a 25-W bulb, its power nearly quadruples to about 100 W, burning it out. If the bulb’s resistance remained constant, its
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power would be exactly 100 W, but at the higher temperature its resistance is higher, too.

Example 20.7 Calculating Power Dissipation and Current: Hot and Cold Power

(a) Consider the examples given in Ohm’s Law: Resistance and Simple Circuits and Resistance and Resistivity. Then
find the power dissipated by the car headlight in these examples, both when it is hot and when it is cold. (b) What current
does it draw when cold?

Strategy for (a)

For the hot headlight, we know voltage and current, so we can use P = IV to find the power. For the cold headlight, we

know the voltage and resistance, so we can use P = V 2 / R to find the power.

Solution for (a)

Entering the known values of current and voltage for the hot headlight, we obtain

(20.31)P = IV = (2.50 A)(12.0 V) = 30.0 W.

The cold resistance was 0.350 Ω , and so the power it uses when first switched on is

(20.32)
P = V 2

R = (12.0 V)2

0.350 Ω = 411 W.

Discussion for (a)

The 30 W dissipated by the hot headlight is typical. But the 411 W when cold is surprisingly higher. The initial power quickly
decreases as the bulb’s temperature increases and its resistance increases.

Strategy and Solution for (b)

The current when the bulb is cold can be found several different ways. We rearrange one of the power equations, P = I 2R
, and enter known values, obtaining

(20.33)I = P
R = 411 W

0.350 Ω = 34.3 A.

Discussion for (b)

The cold current is remarkably higher than the steady-state value of 2.50 A, but the current will quickly decline to that value
as the bulb’s temperature increases. Most fuses and circuit breakers (used to limit the current in a circuit) are designed to
tolerate very high currents briefly as a device comes on. In some cases, such as with electric motors, the current remains
high for several seconds, necessitating special “slow blow” fuses.

The Cost of Electricity

The more electric appliances you use and the longer they are left on, the higher your electric bill. This familiar fact is based on
the relationship between energy and power. You pay for the energy used. Since P = E / t , we see that

(20.34)E = Pt

is the energy used by a device using power P for a time interval t . For example, the more lightbulbs burning, the greater P
used; the longer they are on, the greater t is. The energy unit on electric bills is the kilowatt-hour ( kW ⋅ h ), consistent with the

relationship E = Pt . It is easy to estimate the cost of operating electric appliances if you have some idea of their power

consumption rate in watts or kilowatts, the time they are on in hours, and the cost per kilowatt-hour for your electric utility.
Kilowatt-hours, like all other specialized energy units such as food calories, can be converted to joules. You can prove to yourself

that 1 kW ⋅ h = 3.6×106 J .

The electrical energy ( E ) used can be reduced either by reducing the time of use or by reducing the power consumption of that

appliance or fixture. This will not only reduce the cost, but it will also result in a reduced impact on the environment.
Improvements to lighting are some of the fastest ways to reduce the electrical energy used in a home or business. About 20% of
a home’s use of energy goes to lighting, while the number for commercial establishments is closer to 40%. Fluorescent lights are
about four times more efficient than incandescent lights—this is true for both the long tubes and the compact fluorescent lights
(CFL). (See Figure 20.15(b).) Thus, a 60-W incandescent bulb can be replaced by a 15-W CFL, which has the same brightness
and color. CFLs have a bent tube inside a globe or a spiral-shaped tube, all connected to a standard screw-in base that fits
standard incandescent light sockets. (Original problems with color, flicker, shape, and high initial investment for CFLs have been
addressed in recent years.) The heat transfer from these CFLs is less, and they last up to 10 times longer. The significance of an
investment in such bulbs is addressed in the next example. New white LED lights (which are clusters of small LED bulbs) are
even more efficient (twice that of CFLs) and last 5 times longer than CFLs. However, their cost is still high.
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Making Connections: Energy, Power, and Time

The relationship E = Pt is one that you will find useful in many different contexts. The energy your body uses in exercise is

related to the power level and duration of your activity, for example. The amount of heating by a power source is related to
the power level and time it is applied. Even the radiation dose of an X-ray image is related to the power and time of
exposure.

Example 20.8 Calculating the Cost Effectiveness of Compact Fluorescent Lights (CFL)

If the cost of electricity in your area is 12 cents per kWh, what is the total cost (capital plus operation) of using a 60-W
incandescent bulb for 1000 hours (the lifetime of that bulb) if the bulb cost 25 cents? (b) If we replace this bulb with a
compact fluorescent light that provides the same light output, but at one-quarter the wattage, and which costs $1.50 but lasts
10 times longer (10,000 hours), what will that total cost be?

Strategy

To find the operating cost, we first find the energy used in kilowatt-hours and then multiply by the cost per kilowatt-hour.

Solution for (a)

The energy used in kilowatt-hours is found by entering the power and time into the expression for energy:

(20.35)E = Pt = (60 W)(1000 h) = 60,000 W ⋅ h.

In kilowatt-hours, this is

(20.36)E = 60.0 kW ⋅ h.
Now the electricity cost is

(20.37)cost = (60.0 kW ⋅ h)($0.12/kW ⋅ h) = $7.20.

The total cost will be $7.20 for 1000 hours (about one-half year at 5 hours per day).

Solution for (b)

Since the CFL uses only 15 W and not 60 W, the electricity cost will be $7.20/4 = $1.80. The CFL will last 10 times longer
than the incandescent, so that the investment cost will be 1/10 of the bulb cost for that time period of use, or 0.1($1.50) =
$0.15. Therefore, the total cost will be $1.95 for 1000 hours.

Discussion

Therefore, it is much cheaper to use the CFLs, even though the initial investment is higher. The increased cost of labor that
a business must include for replacing the incandescent bulbs more often has not been figured in here.

Making Connections: Take-Home Experiment—Electrical Energy Use Inventory

1) Make a list of the power ratings on a range of appliances in your home or room. Explain why something like a toaster has
a higher rating than a digital clock. Estimate the energy consumed by these appliances in an average day (by estimating
their time of use). Some appliances might only state the operating current. If the household voltage is 120 V, then use
P = IV . 2) Check out the total wattage used in the rest rooms of your school’s floor or building. (You might need to assume

the long fluorescent lights in use are rated at 32 W.) Suppose that the building was closed all weekend and that these lights
were left on from 6 p.m. Friday until 8 a.m. Monday. What would this oversight cost? How about for an entire year of
weekends?

20.5 Alternating Current versus Direct Current

Alternating Current

Most of the examples dealt with so far, and particularly those utilizing batteries, have constant voltage sources. Once the current
is established, it is thus also a constant. Direct current (DC) is the flow of electric charge in only one direction. It is the steady
state of a constant-voltage circuit. Most well-known applications, however, use a time-varying voltage source. Alternating
current (AC) is the flow of electric charge that periodically reverses direction. If the source varies periodically, particularly
sinusoidally, the circuit is known as an alternating current circuit. Examples include the commercial and residential power that
serves so many of our needs. Figure 20.16 shows graphs of voltage and current versus time for typical DC and AC power. The
AC voltages and frequencies commonly used in homes and businesses vary around the world.
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Figure 20.16 (a) DC voltage and current are constant in time, once the current is established. (b) A graph of voltage and current versus time for 60-Hz
AC power. The voltage and current are sinusoidal and are in phase for a simple resistance circuit. The frequencies and peak voltages of AC sources
differ greatly.

Figure 20.17 The potential difference V between the terminals of an AC voltage source fluctuates as shown. The mathematical expression for V is

given by V = V0 sin 2π ft .

Figure 20.17 shows a schematic of a simple circuit with an AC voltage source. The voltage between the terminals fluctuates as
shown, with the AC voltage given by

(20.38)V = V0 sin 2π ft,

where V is the voltage at time t , V0 is the peak voltage, and f is the frequency in hertz. For this simple resistance circuit,

I = V/R , and so the AC current is

(20.39)I = I0 sin 2π ft,

where I is the current at time t , and I0 = V0/R is the peak current. For this example, the voltage and current are said to be in

phase, as seen in Figure 20.16(b).

Current in the resistor alternates back and forth just like the driving voltage, since I = V/R . If the resistor is a fluorescent light

bulb, for example, it brightens and dims 120 times per second as the current repeatedly goes through zero. A 120-Hz flicker is
too rapid for your eyes to detect, but if you wave your hand back and forth between your face and a fluorescent light, you will see
a stroboscopic effect evidencing AC. The fact that the light output fluctuates means that the power is fluctuating. The power
supplied is P = IV . Using the expressions for I and V above, we see that the time dependence of power is

P = I0V0 sin2 2π ft , as shown in Figure 20.18.

Making Connections: Take-Home Experiment—AC/DC Lights

Wave your hand back and forth between your face and a fluorescent light bulb. Do you observe the same thing with the
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headlights on your car? Explain what you observe. Warning: Do not look directly at very bright light.

Figure 20.18 AC power as a function of time. Since the voltage and current are in phase here, their product is non-negative and fluctuates between

zero and I0 V0 . Average power is (1 / 2)I0 V0 .

We are most often concerned with average power rather than its fluctuations—that 60-W light bulb in your desk lamp has an
average power consumption of 60 W, for example. As illustrated in Figure 20.18, the average power Pave is

(20.40)Pave = 1
2I0 V0.

This is evident from the graph, since the areas above and below the (1 / 2)I0 V0 line are equal, but it can also be proven using

trigonometric identities. Similarly, we define an average or rms current Irms and average or rms voltage Vrms to be,

respectively,

(20.41)
Irms = I0

2
and

(20.42)
Vrms = V0

2
.

where rms stands for root mean square, a particular kind of average. In general, to obtain a root mean square, the particular
quantity is squared, its mean (or average) is found, and the square root is taken. This is useful for AC, since the average value is
zero. Now,

(20.43)Pave = IrmsVrms,

which gives

(20.44)
Pave = I0

2
⋅ V0

2
= 1

2I0 V0,

as stated above. It is standard practice to quote Irms , Vrms , and Pave rather than the peak values. For example, most

household electricity is 120 V AC, which means that Vrms is 120 V. The common 10-A circuit breaker will interrupt a sustained

Irms greater than 10 A. Your 1.0-kW microwave oven consumes Pave = 1.0 kW , and so on. You can think of these rms and

average values as the equivalent DC values for a simple resistive circuit.

To summarize, when dealing with AC, Ohm’s law and the equations for power are completely analogous to those for DC, but rms
and average values are used for AC. Thus, for AC, Ohm’s law is written

(20.45)Irms = Vrms
R .

The various expressions for AC power Pave are

(20.46)Pave = IrmsVrms,
(20.47)

Pave = Vrms
2

R ,

and

(20.48)Pave = Irms
2 R.
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Example 20.9 Peak Voltage and Power for AC

(a) What is the value of the peak voltage for 120-V AC power? (b) What is the peak power consumption rate of a 60.0-W AC
light bulb?

Strategy

We are told that Vrms is 120 V and Pave is 60.0 W. We can use Vrms = V0
2

to find the peak voltage, and we can

manipulate the definition of power to find the peak power from the given average power.

Solution for (a)

Solving the equation Vrms = V0
2

for the peak voltage V0 and substituting the known value for Vrms gives

(20.49)V0 = 2Vrms = 1.414(120 V) = 170 V.

Discussion for (a)

This means that the AC voltage swings from 170 V to –170 V and back 60 times every second. An equivalent DC voltage

is a constant 120 V.

Solution for (b)

Peak power is peak current times peak voltage. Thus,

(20.50)P0 = I0V0 = 2⎛⎝12I0 V0
⎞
⎠ = 2Pave.

We know the average power is 60.0 W, and so

(20.51)P0 = 2(60.0 W) = 120 W.

Discussion

So the power swings from zero to 120 W one hundred twenty times per second (twice each cycle), and the power averages
60 W.

Why Use AC for Power Distribution?

Most large power-distribution systems are AC. Moreover, the power is transmitted at much higher voltages than the 120-V AC
(240 V in most parts of the world) we use in homes and on the job. Economies of scale make it cheaper to build a few very large
electric power-generation plants than to build numerous small ones. This necessitates sending power long distances, and it is
obviously important that energy losses en route be minimized. High voltages can be transmitted with much smaller power losses
than low voltages, as we shall see. (See Figure 20.19.) For safety reasons, the voltage at the user is reduced to familiar values.
The crucial factor is that it is much easier to increase and decrease AC voltages than DC, so AC is used in most large power
distribution systems.

Figure 20.19 Power is distributed over large distances at high voltage to reduce power loss in the transmission lines. The voltages generated at the
power plant are stepped up by passive devices called transformers (see Transformers) to 330,000 volts (or more in some places worldwide). At the
point of use, the transformers reduce the voltage transmitted for safe residential and commercial use. (Credit: GeorgHH, Wikimedia Commons)

Example 20.10 Power Losses Are Less for High-Voltage Transmission

(a) What current is needed to transmit 100 MW of power at 200 kV? (b) What is the power dissipated by the transmission
lines if they have a resistance of 1.00 Ω ? (c) What percentage of the power is lost in the transmission lines?

Strategy
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We are given Pave = 100 MW , Vrms = 200 kV , and the resistance of the lines is R = 1.00 Ω . Using these givens,

we can find the current flowing (from P = IV ) and then the power dissipated in the lines ( P = I 2R ), and we take the ratio

to the total power transmitted.

Solution

To find the current, we rearrange the relationship Pave = IrmsVrms and substitute known values. This gives

(20.52)
Irms = Pave

Vrms
= 100×106 W

200×103 V
= 500 A.

Solution

Knowing the current and given the resistance of the lines, the power dissipated in them is found from Pave = Irms
2 R .

Substituting the known values gives

(20.53)Pave = Irms
2 R = (500 A)2(1.00 Ω ) = 250 kW.

Solution

The percent loss is the ratio of this lost power to the total or input power, multiplied by 100:

(20.54)% loss= 250 kW
100 MW×100 = 0.250 %.

Discussion

One-fourth of a percent is an acceptable loss. Note that if 100 MW of power had been transmitted at 25 kV, then a current of
4000 A would have been needed. This would result in a power loss in the lines of 16.0 MW, or 16.0% rather than 0.250%.
The lower the voltage, the more current is needed, and the greater the power loss in the fixed-resistance transmission lines.
Of course, lower-resistance lines can be built, but this requires larger and more expensive wires. If superconducting lines
could be economically produced, there would be no loss in the transmission lines at all. But, as we shall see in a later
chapter, there is a limit to current in superconductors, too. In short, high voltages are more economical for transmitting
power, and AC voltage is much easier to raise and lower, so that AC is used in most large-scale power distribution systems.

It is widely recognized that high voltages pose greater hazards than low voltages. But, in fact, some high voltages, such as those
associated with common static electricity, can be harmless. So it is not voltage alone that determines a hazard. It is not so widely
recognized that AC shocks are often more harmful than similar DC shocks. Thomas Edison thought that AC shocks were more
harmful and set up a DC power-distribution system in New York City in the late 1800s. There were bitter fights, in particular
between Edison and George Westinghouse and Nikola Tesla, who were advocating the use of AC in early power-distribution
systems. AC has prevailed largely due to transformers and lower power losses with high-voltage transmission.

PhET Explorations: Generator

Generate electricity with a bar magnet! Discover the physics behind the phenomena by exploring magnets and how you can
use them to make a bulb light.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42348/
1.9/#Phet_module_20.5)

Figure 20.20

20.6 Electric Hazards and the Human Body

There are two known hazards of electricity—thermal and shock. A thermal hazard is one where excessive electric power causes
undesired thermal effects, such as starting a fire in the wall of a house. A shock hazard occurs when electric current passes
through a person. Shocks range in severity from painful, but otherwise harmless, to heart-stopping lethality. This section
considers these hazards and the various factors affecting them in a quantitative manner. Electrical Safety: Systems and
Devices will consider systems and devices for preventing electrical hazards.

Thermal Hazards

Electric power causes undesired heating effects whenever electric energy is converted to thermal energy at a rate faster than it
can be safely dissipated. A classic example of this is the short circuit, a low-resistance path between terminals of a voltage
source. An example of a short circuit is shown in Figure 20.21. Insulation on wires leading to an appliance has worn through,
allowing the two wires to come into contact. Such an undesired contact with a high voltage is called a short. Since the resistance

of the short, r , is very small, the power dissipated in the short, P = V 2 / r , is very large. For example, if V is 120 V and r is

0.100 Ω , then the power is 144 kW, much greater than that used by a typical household appliance. Thermal energy delivered

at this rate will very quickly raise the temperature of surrounding materials, melting or perhaps igniting them.
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Figure 20.21 A short circuit is an undesired low-resistance path across a voltage source. (a) Worn insulation on the wires of a toaster allow them to

come into contact with a low resistance r . Since P = V 2 / r , thermal power is created so rapidly that the cord melts or burns. (b) A schematic of

the short circuit.

One particularly insidious aspect of a short circuit is that its resistance may actually be decreased due to the increase in
temperature. This can happen if the short creates ionization. These charged atoms and molecules are free to move and, thus,

lower the resistance r . Since P = V 2 / r , the power dissipated in the short rises, possibly causing more ionization, more

power, and so on. High voltages, such as the 480-V AC used in some industrial applications, lend themselves to this hazard,
because higher voltages create higher initial power production in a short.

Another serious, but less dramatic, thermal hazard occurs when wires supplying power to a user are overloaded with too great a

current. As discussed in the previous section, the power dissipated in the supply wires is P = I 2Rw , where Rw is the

resistance of the wires and I the current flowing through them. If either I or Rw is too large, the wires overheat. For example,

a worn appliance cord (with some of its braided wires broken) may have Rw = 2.00 Ω rather than the 0.100 Ω it should

be. If 10.0 A of current passes through the cord, then P = I 2Rw = 200 W is dissipated in the cord—much more than is safe.

Similarly, if a wire with a 0.100 - Ω resistance is meant to carry a few amps, but is instead carrying 100 A, it will severely

overheat. The power dissipated in the wire will in that case be P = 1000 W . Fuses and circuit breakers are used to limit

excessive currents. (See Figure 20.22 and Figure 20.23.) Each device opens the circuit automatically when a sustained current
exceeds safe limits.
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Figure 20.22 (a) A fuse has a metal strip with a low melting point that, when overheated by an excessive current, permanently breaks the connection
of a circuit to a voltage source. (b) A circuit breaker is an automatic but restorable electric switch. The one shown here has a bimetallic strip that bends
to the right and into the notch if overheated. The spring then forces the metal strip downward, breaking the electrical connection at the points.

Figure 20.23 Schematic of a circuit with a fuse or circuit breaker in it. Fuses and circuit breakers act like automatic switches that open when sustained
current exceeds desired limits.

Fuses and circuit breakers for typical household voltages and currents are relatively simple to produce, but those for large
voltages and currents experience special problems. For example, when a circuit breaker tries to interrupt the flow of high-voltage
electricity, a spark can jump across its points that ionizes the air in the gap and allows the current to continue flowing. Large
circuit breakers found in power-distribution systems employ insulating gas and even use jets of gas to blow out such sparks.
Here AC is safer than DC, since AC current goes through zero 120 times per second, giving a quick opportunity to extinguish
these arcs.

Shock Hazards

Electrical currents through people produce tremendously varied effects. An electrical current can be used to block back pain. The
possibility of using electrical current to stimulate muscle action in paralyzed limbs, perhaps allowing paraplegics to walk, is under
study. TV dramatizations in which electrical shocks are used to bring a heart attack victim out of ventricular fibrillation (a
massively irregular, often fatal, beating of the heart) are more than common. Yet most electrical shock fatalities occur because a
current put the heart into fibrillation. A pacemaker uses electrical shocks to stimulate the heart to beat properly. Some fatal
shocks do not produce burns, but warts can be safely burned off with electric current (though freezing using liquid nitrogen is now
more common). Of course, there are consistent explanations for these disparate effects. The major factors upon which the
effects of electrical shock depend are

1. The amount of current I
2. The path taken by the current
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3. The duration of the shock

4. The frequency f of the current ( f = 0 for DC)

Table 20.3 gives the effects of electrical shocks as a function of current for a typical accidental shock. The effects are for a shock
that passes through the trunk of the body, has a duration of 1 s, and is caused by 60-Hz power.

Figure 20.24 An electric current can cause muscular contractions with varying effects. (a) The victim is “thrown” backward by involuntary muscle
contractions that extend the legs and torso. (b) The victim can’t let go of the wire that is stimulating all the muscles in the hand. Those that close the
fingers are stronger than those that open them.

Table 20.3 Effects of Electrical Shock as a Function of Current[3]

Current
(mA)

Effect

1 Threshold of sensation

5 Maximum harmless current

10–20
Onset of sustained muscular contraction; cannot let go for duration of shock; contraction of chest muscles may
stop breathing during shock

50 Onset of pain

100–300+ Ventricular fibrillation possible; often fatal

300 Onset of burns depending on concentration of current

6000 (6 A)
Onset of sustained ventricular contraction and respiratory paralysis; both cease when shock ends; heartbeat may
return to normal; used to defibrillate the heart

Our bodies are relatively good conductors due to the water in our bodies. Given that larger currents will flow through sections
with lower resistance (to be further discussed in the next chapter), electric currents preferentially flow through paths in the human
body that have a minimum resistance in a direct path to earth. The earth is a natural electron sink. Wearing insulating shoes, a
requirement in many professions, prohibits a pathway for electrons by providing a large resistance in that path. Whenever
working with high-power tools (drills), or in risky situations, ensure that you do not provide a pathway for current flow (especially
through the heart).

Very small currents pass harmlessly and unfelt through the body. This happens to you regularly without your knowledge. The
threshold of sensation is only 1 mA and, although unpleasant, shocks are apparently harmless for currents less than 5 mA. A
great number of safety rules take the 5-mA value for the maximum allowed shock. At 10 to 20 mA and above, the current can
stimulate sustained muscular contractions much as regular nerve impulses do. People sometimes say they were knocked across
the room by a shock, but what really happened was that certain muscles contracted, propelling them in a manner not of their own
choosing. (See Figure 20.24(a).) More frightening, and potentially more dangerous, is the “can’t let go” effect illustrated in Figure
20.24(b). The muscles that close the fingers are stronger than those that open them, so the hand closes involuntarily on the wire
shocking it. This can prolong the shock indefinitely. It can also be a danger to a person trying to rescue the victim, because the
rescuer’s hand may close about the victim’s wrist. Usually the best way to help the victim is to give the fist a hard knock/blow/jar
with an insulator or to throw an insulator at the fist. Modern electric fences, used in animal enclosures, are now pulsed on and off
to allow people who touch them to get free, rendering them less lethal than in the past.

Greater currents may affect the heart. Its electrical patterns can be disrupted, so that it beats irregularly and ineffectively in a
condition called “ventricular fibrillation.” This condition often lingers after the shock and is fatal due to a lack of blood circulation.
The threshold for ventricular fibrillation is between 100 and 300 mA. At about 300 mA and above, the shock can cause burns,
depending on the concentration of current—the more concentrated, the greater the likelihood of burns.

Very large currents cause the heart and diaphragm to contract for the duration of the shock. Both the heart and breathing stop.
Interestingly, both often return to normal following the shock. The electrical patterns on the heart are completely erased in a

3. For an average male shocked through trunk of body for 1 s by 60-Hz AC. Values for females are 60–80% of those listed.
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manner that the heart can start afresh with normal beating, as opposed to the permanent disruption caused by smaller currents
that can put the heart into ventricular fibrillation. The latter is something like scribbling on a blackboard, whereas the former
completely erases it. TV dramatizations of electric shock used to bring a heart attack victim out of ventricular fibrillation also show
large paddles. These are used to spread out current passed through the victim to reduce the likelihood of burns.

Current is the major factor determining shock severity (given that other conditions such as path, duration, and frequency are
fixed, such as in the table and preceding discussion). A larger voltage is more hazardous, but since I = V/R , the severity of the

shock depends on the combination of voltage and resistance. For example, a person with dry skin has a resistance of about
200 k Ω . If he comes into contact with 120-V AC, a current I = (120 V) / (200 k Ω )= 0.6 mA passes harmlessly through

him. The same person soaking wet may have a resistance of 10.0 k Ω and the same 120 V will produce a current of 12

mA—above the “can’t let go” threshold and potentially dangerous.

Most of the body’s resistance is in its dry skin. When wet, salts go into ion form, lowering the resistance significantly. The interior
of the body has a much lower resistance than dry skin because of all the ionic solutions and fluids it contains. If skin resistance is
bypassed, such as by an intravenous infusion, a catheter, or exposed pacemaker leads, a person is rendered microshock
sensitive. In this condition, currents about 1/1000 those listed in Table 20.3 produce similar effects. During open-heart surgery,
currents as small as 20 μA can be used to still the heart. Stringent electrical safety requirements in hospitals, particularly in

surgery and intensive care, are related to the doubly disadvantaged microshock-sensitive patient. The break in the skin has
reduced his resistance, and so the same voltage causes a greater current, and a much smaller current has a greater effect.

Figure 20.25 Graph of average values for the threshold of sensation and the “can’t let go” current as a function of frequency. The lower the value, the
more sensitive the body is at that frequency.

Factors other than current that affect the severity of a shock are its path, duration, and AC frequency. Path has obvious
consequences. For example, the heart is unaffected by an electric shock through the brain, such as may be used to treat manic
depression. And it is a general truth that the longer the duration of a shock, the greater its effects. Figure 20.25 presents a graph
that illustrates the effects of frequency on a shock. The curves show the minimum current for two different effects, as a function
of frequency. The lower the current needed, the more sensitive the body is at that frequency. Ironically, the body is most sensitive
to frequencies near the 50- or 60-Hz frequencies in common use. The body is slightly less sensitive for DC ( f = 0 ), mildly

confirming Edison’s claims that AC presents a greater hazard. At higher and higher frequencies, the body becomes progressively
less sensitive to any effects that involve nerves. This is related to the maximum rates at which nerves can fire or be stimulated.
At very high frequencies, electrical current travels only on the surface of a person. Thus a wart can be burned off with very high
frequency current without causing the heart to stop. (Do not try this at home with 60-Hz AC!) Some of the spectacular
demonstrations of electricity, in which high-voltage arcs are passed through the air and over people’s bodies, employ high
frequencies and low currents. (See Figure 20.26.) Electrical safety devices and techniques are discussed in detail in Electrical
Safety: Systems and Devices.

Figure 20.26 Is this electric arc dangerous? The answer depends on the AC frequency and the power involved. (credit: Khimich Alex, Wikimedia
Commons)
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20.7 Nerve Conduction–Electrocardiograms

Nerve Conduction

Electric currents in the vastly complex system of billions of nerves in our body allow us to sense the world, control parts of our
body, and think. These are representative of the three major functions of nerves. First, nerves carry messages from our sensory
organs and others to the central nervous system, consisting of the brain and spinal cord. Second, nerves carry messages from
the central nervous system to muscles and other organs. Third, nerves transmit and process signals within the central nervous
system. The sheer number of nerve cells and the incredibly greater number of connections between them makes this system the
subtle wonder that it is. Nerve conduction is a general term for electrical signals carried by nerve cells. It is one aspect of
bioelectricity, or electrical effects in and created by biological systems.

Nerve cells, properly called neurons, look different from other cells—they have tendrils, some of them many centimeters long,
connecting them with other cells. (See Figure 20.27.) Signals arrive at the cell body across synapses or through dendrites,
stimulating the neuron to generate its own signal, sent along its long axon to other nerve or muscle cells. Signals may arrive from
many other locations and be transmitted to yet others, conditioning the synapses by use, giving the system its complexity and its
ability to learn.

Figure 20.27 A neuron with its dendrites and long axon. Signals in the form of electric currents reach the cell body through dendrites and across
synapses, stimulating the neuron to generate its own signal sent down the axon. The number of interconnections can be far greater than shown here.

The method by which these electric currents are generated and transmitted is more complex than the simple movement of free
charges in a conductor, but it can be understood with principles already discussed in this text. The most important of these are
the Coulomb force and diffusion.

Figure 20.28 illustrates how a voltage (potential difference) is created across the cell membrane of a neuron in its resting state.
This thin membrane separates electrically neutral fluids having differing concentrations of ions, the most important varieties being

Na+ , K+ , and Cl- (these are sodium, potassium, and chlorine ions with single plus or minus charges as indicated). As

discussed in Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes, free ions will diffuse from a
region of high concentration to one of low concentration. But the cell membrane is semipermeable, meaning that some ions may

cross it while others cannot. In its resting state, the cell membrane is permeable to K+ and Cl- , and impermeable to Na+ .

Diffusion of K+ and Cl- thus creates the layers of positive and negative charge on the outside and inside of the membrane.

The Coulomb force prevents the ions from diffusing across in their entirety. Once the charge layer has built up, the repulsion of
like charges prevents more from moving across, and the attraction of unlike charges prevents more from leaving either side. The
result is two layers of charge right on the membrane, with diffusion being balanced by the Coulomb force. A tiny fraction of the
charges move across and the fluids remain neutral (other ions are present), while a separation of charge and a voltage have
been created across the membrane.
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Figure 20.28 The semipermeable membrane of a cell has different concentrations of ions inside and out. Diffusion moves the K+
and Cl-

ions in

the direction shown, until the Coulomb force halts further transfer. This results in a layer of positive charge on the outside, a layer of negative charge on

the inside, and thus a voltage across the cell membrane. The membrane is normally impermeable to Na+
.

Figure 20.29 An action potential is the pulse of voltage inside a nerve cell graphed here. It is caused by movements of ions across the cell membrane

as shown. Depolarization occurs when a stimulus makes the membrane permeable to Na+
ions. Repolarization follows as the membrane again

becomes impermeable to Na+, and K+
moves from high to low concentration. In the long term, active transport slowly maintains the

concentration differences, but the cell may fire hundreds of times in rapid succession without seriously depleting them.

The separation of charge creates a potential difference of 70 to 90 mV across the cell membrane. While this is a small voltage,
the resulting electric field ( E = V / d ) across the only 8-nm-thick membrane is immense (on the order of 11 MV/m!) and has

fundamental effects on its structure and permeability. Now, if the exterior of a neuron is taken to be at 0 V, then the interior has a
resting potential of about –90 mV. Such voltages are created across the membranes of almost all types of animal cells but are
largest in nerve and muscle cells. In fact, fully 25% of the energy used by cells goes toward creating and maintaining these
potentials.

Electric currents along the cell membrane are created by any stimulus that changes the membrane’s permeability. The

membrane thus temporarily becomes permeable to Na+ , which then rushes in, driven both by diffusion and the Coulomb force.

This inrush of Na+ first neutralizes the inside membrane, or depolarizes it, and then makes it slightly positive. The

depolarization causes the membrane to again become impermeable to Na+ , and the movement of K+ quickly returns the cell
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to its resting potential, or repolarizes it. This sequence of events results in a voltage pulse, called the action potential. (See
Figure 20.29.) Only small fractions of the ions move, so that the cell can fire many hundreds of times without depleting the

excess concentrations of Na+ and K+ . Eventually, the cell must replenish these ions to maintain the concentration

differences that create bioelectricity. This sodium-potassium pump is an example of active transport, wherein cell energy is used
to move ions across membranes against diffusion gradients and the Coulomb force.

The action potential is a voltage pulse at one location on a cell membrane. How does it get transmitted along the cell membrane,
and in particular down an axon, as a nerve impulse? The answer is that the changing voltage and electric fields affect the
permeability of the adjacent cell membrane, so that the same process takes place there. The adjacent membrane depolarizes,
affecting the membrane further down, and so on, as illustrated in Figure 20.30. Thus the action potential stimulated at one
location triggers a nerve impulse that moves slowly (about 1 m/s) along the cell membrane.

Figure 20.30 A nerve impulse is the propagation of an action potential along a cell membrane. A stimulus causes an action potential at one location,
which changes the permeability of the adjacent membrane, causing an action potential there. This in turn affects the membrane further down, so that

the action potential moves slowly (in electrical terms) along the cell membrane. Although the impulse is due to Na+
and K+

going across the

membrane, it is equivalent to a wave of charge moving along the outside and inside of the membrane.
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Some axons, like that in Figure 20.27, are sheathed with myelin, consisting of fat-containing cells. Figure 20.31 shows an
enlarged view of an axon having myelin sheaths characteristically separated by unmyelinated gaps (called nodes of Ranvier).
This arrangement gives the axon a number of interesting properties. Since myelin is an insulator, it prevents signals from jumping
between adjacent nerves (cross talk). Additionally, the myelinated regions transmit electrical signals at a very high speed, as an
ordinary conductor or resistor would. There is no action potential in the myelinated regions, so that no cell energy is used in
them. There is an IR signal loss in the myelin, but the signal is regenerated in the gaps, where the voltage pulse triggers the

action potential at full voltage. So a myelinated axon transmits a nerve impulse faster, with less energy consumption, and is
better protected from cross talk than an unmyelinated one. Not all axons are myelinated, so that cross talk and slow signal
transmission are a characteristic of the normal operation of these axons, another variable in the nervous system.

The degeneration or destruction of the myelin sheaths that surround the nerve fibers impairs signal transmission and can lead to
numerous neurological effects. One of the most prominent of these diseases comes from the body’s own immune system
attacking the myelin in the central nervous system—multiple sclerosis. MS symptoms include fatigue, vision problems, weakness
of arms and legs, loss of balance, and tingling or numbness in one’s extremities (neuropathy). It is more apt to strike younger
adults, especially females. Causes might come from infection, environmental or geographic affects, or genetics. At the moment
there is no known cure for MS.

Most animal cells can fire or create their own action potential. Muscle cells contract when they fire and are often induced to do so
by a nerve impulse. In fact, nerve and muscle cells are physiologically similar, and there are even hybrid cells, such as in the
heart, that have characteristics of both nerves and muscles. Some animals, like the infamous electric eel (see Figure 20.32), use
muscles ganged so that their voltages add in order to create a shock great enough to stun prey.

Figure 20.31 Propagation of a nerve impulse down a myelinated axon, from left to right. The signal travels very fast and without energy input in the
myelinated regions, but it loses voltage. It is regenerated in the gaps. The signal moves faster than in unmyelinated axons and is insulated from signals
in other nerves, limiting cross talk.

Figure 20.32 An electric eel flexes its muscles to create a voltage that stuns prey. (credit: chrisbb, Flickr)

Electrocardiograms

Just as nerve impulses are transmitted by depolarization and repolarization of adjacent membrane, the depolarization that
causes muscle contraction can also stimulate adjacent muscle cells to depolarize (fire) and contract. Thus, a depolarization wave
can be sent across the heart, coordinating its rhythmic contractions and enabling it to perform its vital function of propelling blood
through the circulatory system. Figure 20.33 is a simplified graphic of a depolarization wave spreading across the heart from the
sinoarterial (SA) node, the heart’s natural pacemaker.
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Figure 20.33 The outer surface of the heart changes from positive to negative during depolarization. This wave of depolarization is spreading from the
top of the heart and is represented by a vector pointing in the direction of the wave. This vector is a voltage (potential difference) vector. Three
electrodes, labeled RA, LA, and LL, are placed on the patient. Each pair (called leads I, II, and III) measures a component of the depolarization vector
and is graphed in an ECG.

An electrocardiogram (ECG) is a record of the voltages created by the wave of depolarization and subsequent repolarization in
the heart. Voltages between pairs of electrodes placed on the chest are vector components of the voltage wave on the heart.
Standard ECGs have 12 or more electrodes, but only three are shown in Figure 20.33 for clarity. Decades ago, three-electrode
ECGs were performed by placing electrodes on the left and right arms and the left leg. The voltage between the right arm and
the left leg is called the lead II potential and is the most often graphed. We shall examine the lead II potential as an indicator of
heart-muscle function and see that it is coordinated with arterial blood pressure as well.

Heart function and its four-chamber action are explored in Viscosity and Laminar Flow; Poiseuille’s Law. Basically, the right
and left atria receive blood from the body and lungs, respectively, and pump the blood into the ventricles. The right and left
ventricles, in turn, pump blood through the lungs and the rest of the body, respectively. Depolarization of the heart muscle causes
it to contract. After contraction it is repolarized to ready it for the next beat. The ECG measures components of depolarization
and repolarization of the heart muscle and can yield significant information on the functioning and malfunctioning of the heart.

Figure 20.34 shows an ECG of the lead II potential and a graph of the corresponding arterial blood pressure. The major features
are labeled P, Q, R, S, and T. The P wave is generated by the depolarization and contraction of the atria as they pump blood into
the ventricles. The QRS complex is created by the depolarization of the ventricles as they pump blood to the lungs and body.
Since the shape of the heart and the path of the depolarization wave are not simple, the QRS complex has this typical shape and
time span. The lead II QRS signal also masks the repolarization of the atria, which occur at the same time. Finally, the T wave is
generated by the repolarization of the ventricles and is followed by the next P wave in the next heartbeat. Arterial blood pressure
varies with each part of the heartbeat, with systolic (maximum) pressure occurring closely after the QRS complex, which signals
contraction of the ventricles.

Figure 20.34 A lead II ECG with corresponding arterial blood pressure. The QRS complex is created by the depolarization and contraction of the
ventricles and is followed shortly by the maximum or systolic blood pressure. See text for further description.

Taken together, the 12 leads of a state-of-the-art ECG can yield a wealth of information about the heart. For example, regions of
damaged heart tissue, called infarcts, reflect electrical waves and are apparent in one or more lead potentials. Subtle changes
due to slight or gradual damage to the heart are most readily detected by comparing a recent ECG to an older one. This is
particularly the case since individual heart shape, size, and orientation can cause variations in ECGs from one individual to
another. ECG technology has advanced to the point where a portable ECG monitor with a liquid crystal instant display and a
printer can be carried to patients' homes or used in emergency vehicles. See Figure 20.35.
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AC current:

AC voltage:

alternating current:

ampere:

bioelectricity:

direct current:

drift velocity:

electric current:

electric power:

electrocardiogram (ECG):

microshock sensitive:

nerve conduction:

ohm:

ohmic:

Ohm’s law:

resistance:

resistivity:

rms current:

rms voltage:

Figure 20.35 This NASA scientist and NEEMO 5 aquanaut’s heart rate and other vital signs are being recorded by a portable device while living in an
underwater habitat. (credit: NASA, Life Sciences Data Archive at Johnson Space Center, Houston, Texas)

PhET Explorations: Neuron

Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they
move across the neuron membrane.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42352/1.7/#eip-
idm947537328)

Figure 20.36

Glossary

current that fluctuates sinusoidally with time, expressed as I = I0 sin 2πft, where I is the current at time t, I0 is the
peak current, and f is the frequency in hertz

voltage that fluctuates sinusoidally with time, expressed as V = V0 sin 2πft, where V is the voltage at time t, V0 is
the peak voltage, and f is the frequency in hertz

(AC) the flow of electric charge that periodically reverses direction

(amp) the SI unit for current; 1 A = 1 C/s

electrical effects in and created by biological systems

(DC) the flow of electric charge in only one direction

the average velocity at which free charges flow in response to an electric field

the rate at which charge flows, I = ΔQ/Δt

the rate at which electrical energy is supplied by a source or dissipated by a device; it is the product of current
times voltage

usually abbreviated ECG, a record of voltages created by depolarization and repolarization,
especially in the heart

a condition in which a person’s skin resistance is bypassed, possibly by a medical procedure,
rendering the person vulnerable to electrical shock at currents about 1/1000 the normally required level

the transport of electrical signals by nerve cells

the unit of resistance, given by 1Ω = 1 V/A

a type of a material for which Ohm's law is valid

an empirical relation stating that the current I is proportional to the potential difference V, ∝ V; it is often written as
I = V/R, where R is the resistance

the electric property that impedes current; for ohmic materials, it is the ratio of voltage to current, R = V/I

an intrinsic property of a material, independent of its shape or size, directly proportional to the resistance, denoted
by ρ

the root mean square of the current, Irms = I0 / 2 , where I0 is the peak current, in an AC system

the root mean square of the voltage, Vrms = V0 / 2 , where V0 is the peak voltage, in an AC system

Chapter 20 | Electric Current, Resistance, and Ohm's Law 795

http://cnx.org/content/m42352/1.7/#eip-idm947537328
http://cnx.org/content/m42352/1.7/#eip-idm947537328


semipermeable:

shock hazard:

short circuit:

simple circuit:

temperature coefficient of resistivity:

thermal hazard:

property of a membrane that allows only certain types of ions to cross it

when electric current passes through a person

also known as a “short,” a low-resistance path between terminals of a voltage source

a circuit with a single voltage source and a single resistor

an empirical quantity, denoted by α, which describes the change in resistance or
resistivity of a material with temperature

a hazard in which electric current causes undesired thermal effects

Section Summary

20.1 Current
• Electric current I is the rate at which charge flows, given by

I = ΔQ
Δt ,

where ΔQ is the amount of charge passing through an area in time Δt .

• The direction of conventional current is taken as the direction in which positive charge moves.
• The SI unit for current is the ampere (A), where 1 A = 1 C/s.
• Current is the flow of free charges, such as electrons and ions.
• Drift velocity vd is the average speed at which these charges move.

• Current I is proportional to drift velocity vd , as expressed in the relationship I = nqAvd . Here, I is the current through

a wire of cross-sectional area A . The wire’s material has a free-charge density n , and each carrier has charge q and a

drift velocity vd .

• Electrical signals travel at speeds about 1012 times greater than the drift velocity of free electrons.

20.2 Ohm’s Law: Resistance and Simple Circuits
• A simple circuit is one in which there is a single voltage source and a single resistance.
• One statement of Ohm’s law gives the relationship between current I , voltage V , and resistance R in a simple circuit to

be I = V
R .

• Resistance has units of ohms ( Ω ), related to volts and amperes by 1 Ω = 1 V/A .

• There is a voltage or IR drop across a resistor, caused by the current flowing through it, given by V = IR .

20.3 Resistance and Resistivity

• The resistance R of a cylinder of length L and cross-sectional area A is R = ρL
A , where ρ is the resistivity of the

material.
• Values of ρ in Table 20.1 show that materials fall into three groups—conductors, semiconductors, and insulators.

• Temperature affects resistivity; for relatively small temperature changes ΔT , resistivity is ρ = ρ0(1 + αΔT) , where ρ0
is the original resistivity and α is the temperature coefficient of resistivity.

• Table 20.2 gives values for α , the temperature coefficient of resistivity.

• The resistance R of an object also varies with temperature: R = R0(1 + αΔT) , where R0 is the original resistance,

and R is the resistance after the temperature change.

20.4 Electric Power and Energy
• Electric power P is the rate (in watts) that energy is supplied by a source or dissipated by a device.

• Three expressions for electrical power are
P = IV,

P = V 2

R ,

and
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P = I 2R.
• The energy used by a device with a power P over a time t is E = Pt .

20.5 Alternating Current versus Direct Current
• Direct current (DC) is the flow of electric current in only one direction. It refers to systems where the source voltage is

constant.
• The voltage source of an alternating current (AC) system puts out V = V0 sin 2π ft , where V is the voltage at time t ,

V0 is the peak voltage, and f is the frequency in hertz.

• In a simple circuit, I = V/R and AC current is I = I0 sin 2π ft , where I is the current at time t , and I0 = V0/R is the

peak current.

• The average AC power is Pave = 1
2I0 V0 .

• Average (rms) current Irms and average (rms) voltage Vrms are Irms = I0
2

and Vrms = V0
2

, where rms stands for

root mean square.
• Thus, Pave = IrmsVrms .

• Ohm’s law for AC is Irms = Vrms
R .

• Expressions for the average power of an AC circuit are Pave = IrmsVrms , Pave = Vrms
2

R , and Pave = Irms
2 R ,

analogous to the expressions for DC circuits.

20.6 Electric Hazards and the Human Body
• The two types of electric hazards are thermal (excessive power) and shock (current through a person).
• Shock severity is determined by current, path, duration, and AC frequency.
• Table 20.3 lists shock hazards as a function of current.
• Figure 20.25 graphs the threshold current for two hazards as a function of frequency.

20.7 Nerve Conduction–Electrocardiograms
• Electric potentials in neurons and other cells are created by ionic concentration differences across semipermeable

membranes.
• Stimuli change the permeability and create action potentials that propagate along neurons.
• Myelin sheaths speed this process and reduce the needed energy input.
• This process in the heart can be measured with an electrocardiogram (ECG).

Conceptual Questions

20.1 Current

1. Can a wire carry a current and still be neutral—that is, have a total charge of zero? Explain.

2. Car batteries are rated in ampere-hours ( A ⋅ h ). To what physical quantity do ampere-hours correspond (voltage, charge, . .

.), and what relationship do ampere-hours have to energy content?

3. If two different wires having identical cross-sectional areas carry the same current, will the drift velocity be higher or lower in

the better conductor? Explain in terms of the equation vd = I
nqA , by considering how the density of charge carriers n relates

to whether or not a material is a good conductor.

4. Why are two conducting paths from a voltage source to an electrical device needed to operate the device?

5. In cars, one battery terminal is connected to the metal body. How does this allow a single wire to supply current to electrical
devices rather than two wires?

6. Why isn’t a bird sitting on a high-voltage power line electrocuted? Contrast this with the situation in which a large bird hits two
wires simultaneously with its wings.

20.2 Ohm’s Law: Resistance and Simple Circuits

7. The IR drop across a resistor means that there is a change in potential or voltage across the resistor. Is there any change in

current as it passes through a resistor? Explain.

8. How is the IR drop in a resistor similar to the pressure drop in a fluid flowing through a pipe?
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20.3 Resistance and Resistivity

9. In which of the three semiconducting materials listed in Table 20.1 do impurities supply free charges? (Hint: Examine the
range of resistivity for each and determine whether the pure semiconductor has the higher or lower conductivity.)

10. Does the resistance of an object depend on the path current takes through it? Consider, for example, a rectangular bar—is its
resistance the same along its length as across its width? (See Figure 20.37.)

Figure 20.37 Does current taking two different paths through the same object encounter different resistance?

11. If aluminum and copper wires of the same length have the same resistance, which has the larger diameter? Why?

12. Explain why R = R0(1 + αΔT) for the temperature variation of the resistance R of an object is not as accurate as

ρ = ρ0(1 + αΔT) , which gives the temperature variation of resistivity ρ .

20.4 Electric Power and Energy

13. Why do incandescent lightbulbs grow dim late in their lives, particularly just before their filaments break?

14. The power dissipated in a resistor is given by P = V 2 / R , which means power decreases if resistance increases. Yet this

power is also given by P = I 2R , which means power increases if resistance increases. Explain why there is no contradiction

here.

20.5 Alternating Current versus Direct Current

15. Give an example of a use of AC power other than in the household. Similarly, give an example of a use of DC power other
than that supplied by batteries.

16. Why do voltage, current, and power go through zero 120 times per second for 60-Hz AC electricity?

17. You are riding in a train, gazing into the distance through its window. As close objects streak by, you notice that the nearby
fluorescent lights make dashed streaks. Explain.

20.6 Electric Hazards and the Human Body

18. Using an ohmmeter, a student measures the resistance between various points on his body. He finds that the resistance
between two points on the same finger is about the same as the resistance between two points on opposite hands—both are
several hundred thousand ohms. Furthermore, the resistance decreases when more skin is brought into contact with the probes
of the ohmmeter. Finally, there is a dramatic drop in resistance (to a few thousand ohms) when the skin is wet. Explain these
observations and their implications regarding skin and internal resistance of the human body.

19. What are the two major hazards of electricity?

20. Why isn’t a short circuit a shock hazard?

21. What determines the severity of a shock? Can you say that a certain voltage is hazardous without further information?

22. An electrified needle is used to burn off warts, with the circuit being completed by having the patient sit on a large butt plate.
Why is this plate large?

23. Some surgery is performed with high-voltage electricity passing from a metal scalpel through the tissue being cut.
Considering the nature of electric fields at the surface of conductors, why would you expect most of the current to flow from the
sharp edge of the scalpel? Do you think high- or low-frequency AC is used?

24. Some devices often used in bathrooms, such as hairdryers, often have safety messages saying “Do not use when the
bathtub or basin is full of water.” Why is this so?

25. We are often advised to not flick electric switches with wet hands, dry your hand first. We are also advised to never throw
water on an electric fire. Why is this so?

26. Before working on a power transmission line, linemen will touch the line with the back of the hand as a final check that the
voltage is zero. Why the back of the hand?

27. Why is the resistance of wet skin so much smaller than dry, and why do blood and other bodily fluids have low resistances?

28. Could a person on intravenous infusion (an IV) be microshock sensitive?
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29. In view of the small currents that cause shock hazards and the larger currents that circuit breakers and fuses interrupt, how
do they play a role in preventing shock hazards?

20.7 Nerve Conduction–Electrocardiograms

30. Note that in Figure 20.28, both the concentration gradient and the Coulomb force tend to move Na+ ions into the cell. What

prevents this?

31. Define depolarization, repolarization, and the action potential.

32. Explain the properties of myelinated nerves in terms of the insulating properties of myelin.
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Problems & Exercises

20.1 Current

1. What is the current in milliamperes produced by the solar
cells of a pocket calculator through which 4.00 C of charge
passes in 4.00 h?

2. A total of 600 C of charge passes through a flashlight in
0.500 h. What is the average current?

3. What is the current when a typical static charge of
0.250 μC moves from your finger to a metal doorknob in

1.00 μs ?

4. Find the current when 2.00 nC jumps between your comb
and hair over a 0.500 - μs time interval.

5. A large lightning bolt had a 20,000-A current and moved
30.0 C of charge. What was its duration?

6. The 200-A current through a spark plug moves 0.300 mC
of charge. How long does the spark last?

7. (a) A defibrillator sends a 6.00-A current through the chest
of a patient by applying a 10,000-V potential as in the figure
below. What is the resistance of the path? (b) The defibrillator
paddles make contact with the patient through a conducting
gel that greatly reduces the path resistance. Discuss the
difficulties that would ensue if a larger voltage were used to
produce the same current through the patient, but with the
path having perhaps 50 times the resistance. (Hint: The
current must be about the same, so a higher voltage would

imply greater power. Use this equation for power: P = I 2R
.)

Figure 20.38 The capacitor in a defibrillation unit drives a current

through the heart of a patient.

8. During open-heart surgery, a defibrillator can be used to
bring a patient out of cardiac arrest. The resistance of the
path is 500 Ω and a 10.0-mA current is needed. What

voltage should be applied?

9. (a) A defibrillator passes 12.0 A of current through the torso
of a person for 0.0100 s. How much charge moves? (b) How
many electrons pass through the wires connected to the
patient? (See figure two problems earlier.)

10. A clock battery wears out after moving 10,000 C of charge
through the clock at a rate of 0.500 mA. (a) How long did the
clock run? (b) How many electrons per second flowed?

11. The batteries of a submerged non-nuclear submarine
supply 1000 A at full speed ahead. How long does it take to

move Avogadro’s number ( 6.02×1023 ) of electrons at this

rate?

12. Electron guns are used in X-ray tubes. The electrons are
accelerated through a relatively large voltage and directed
onto a metal target, producing X-rays. (a) How many
electrons per second strike the target if the current is 0.500
mA? (b) What charge strikes the target in 0.750 s?

13. A large cyclotron directs a beam of He++ nuclei onto a

target with a beam current of 0.250 mA. (a) How many

He++ nuclei per second is this? (b) How long does it take

for 1.00 C to strike the target? (c) How long before 1.00 mol

of He++ nuclei strike the target?

14. Repeat the above example on Example 20.3, but for a
wire made of silver and given there is one free electron per
silver atom.

15. Using the results of the above example on Example 20.3,
find the drift velocity in a copper wire of twice the diameter
and carrying 20.0 A.

16. A 14-gauge copper wire has a diameter of 1.628 mm.
What magnitude current flows when the drift velocity is 1.00
mm/s? (See above example on Example 20.3 for useful
information.)

17. SPEAR, a storage ring about 72.0 m in diameter at the
Stanford Linear Accelerator (closed in 2009), has a 20.0-A
circulating beam of electrons that are moving at nearly the
speed of light. (See Figure 20.39.) How many electrons are
in the beam?

Figure 20.39 Electrons circulating in the storage ring called SPEAR

constitute a 20.0-A current. Because they travel close to the speed of

light, each electron completes many orbits in each second.

20.2 Ohm’s Law: Resistance and Simple
Circuits

18. What current flows through the bulb of a 3.00-V flashlight
when its hot resistance is 3.60 Ω ?

19. Calculate the effective resistance of a pocket calculator
that has a 1.35-V battery and through which 0.200 mA flows.

20. What is the effective resistance of a car’s starter motor
when 150 A flows through it as the car battery applies 11.0 V
to the motor?

21. How many volts are supplied to operate an indicator light
on a DVD player that has a resistance of 140 Ω , given that

25.0 mA passes through it?
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22. (a) Find the voltage drop in an extension cord having a
0.0600- Ω resistance and through which 5.00 A is flowing.

(b) A cheaper cord utilizes thinner wire and has a resistance
of 0.300 Ω . What is the voltage drop in it when 5.00 A

flows? (c) Why is the voltage to whatever appliance is being
used reduced by this amount? What is the effect on the
appliance?

23. A power transmission line is hung from metal towers with

glass insulators having a resistance of 1.00×109 Ω . What

current flows through the insulator if the voltage is 200 kV?
(Some high-voltage lines are DC.)

20.3 Resistance and Resistivity

24. What is the resistance of a 20.0-m-long piece of 12-gauge
copper wire having a 2.053-mm diameter?

25. The diameter of 0-gauge copper wire is 8.252 mm. Find
the resistance of a 1.00-km length of such wire used for
power transmission.

26. If the 0.100-mm diameter tungsten filament in a light bulb
is to have a resistance of 0.200 Ω at 20.0ºC , how long

should it be?

27. Find the ratio of the diameter of aluminum to copper wire,
if they have the same resistance per unit length (as they
might in household wiring).

28. What current flows through a 2.54-cm-diameter rod of

pure silicon that is 20.0 cm long, when 1.00 × 103 V is

applied to it? (Such a rod may be used to make nuclear-
particle detectors, for example.)

29. (a) To what temperature must you raise a copper wire,
originally at 20.0ºC , to double its resistance, neglecting any

changes in dimensions? (b) Does this happen in household
wiring under ordinary circumstances?

30. A resistor made of Nichrome wire is used in an application
where its resistance cannot change more than 1.00% from its
value at 20.0ºC . Over what temperature range can it be

used?

31. Of what material is a resistor made if its resistance is
40.0% greater at 100ºC than at 20.0ºC ?

32. An electronic device designed to operate at any
temperature in the range from –10.0ºC to 55.0ºC contains

pure carbon resistors. By what factor does their resistance
increase over this range?

33. (a) Of what material is a wire made, if it is 25.0 m long
with a 0.100 mm diameter and has a resistance of 77.7 Ω
at 20.0ºC ? (b) What is its resistance at 150ºC ?

34. Assuming a constant temperature coefficient of resistivity,
what is the maximum percent decrease in the resistance of a
constantan wire starting at 20.0ºC ?

35. A wire is drawn through a die, stretching it to four times its
original length. By what factor does its resistance increase?

36. A copper wire has a resistance of 0.500 Ω at 20.0ºC ,

and an iron wire has a resistance of 0.525 Ω at the same

temperature. At what temperature are their resistances
equal?

37. (a) Digital medical thermometers determine temperature
by measuring the resistance of a semiconductor device called
a thermistor (which has α = – 0.0600 / ºC ) when it is at

the same temperature as the patient. What is a patient’s
temperature if the thermistor’s resistance at that temperature
is 82.0% of its value at 37.0ºC (normal body temperature)?

(b) The negative value for α may not be maintained for very

low temperatures. Discuss why and whether this is the case
here. (Hint: Resistance can’t become negative.)

38. Integrated Concepts

(a) Redo Exercise 20.25 taking into account the thermal
expansion of the tungsten filament. You may assume a

thermal expansion coefficient of 12×10−6 / ºC . (b) By what

percentage does your answer differ from that in the example?

39. Unreasonable Results

(a) To what temperature must you raise a resistor made of
constantan to double its resistance, assuming a constant
temperature coefficient of resistivity? (b) To cut it in half? (c)
What is unreasonable about these results? (d) Which
assumptions are unreasonable, or which premises are
inconsistent?

20.4 Electric Power and Energy

40. What is the power of a 1.00×102 MV lightning bolt

having a current of 2.00 × 104 A ?

41. What power is supplied to the starter motor of a large
truck that draws 250 A of current from a 24.0-V battery
hookup?

42. A charge of 4.00 C of charge passes through a pocket
calculator’s solar cells in 4.00 h. What is the power output,
given the calculator’s voltage output is 3.00 V? (See Figure
20.40.)

Figure 20.40 The strip of solar cells just above the keys of this
calculator convert light to electricity to supply its energy needs. (credit:
Evan-Amos, Wikimedia Commons)

43. How many watts does a flashlight that has 6.00×102 C
pass through it in 0.500 h use if its voltage is 3.00 V?

44. Find the power dissipated in each of these extension
cords: (a) an extension cord having a 0.0600 - Ω
resistance and through which 5.00 A is flowing; (b) a cheaper
cord utilizing thinner wire and with a resistance of
0.300 Ω .
45. Verify that the units of a volt-ampere are watts, as implied
by the equation P = IV .
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46. Show that the units 1 V2 / Ω = 1W , as implied by the

equation P = V 2 / R .

47. Show that the units 1 A2 ⋅ Ω = 1 W , as implied by

the equation P = I 2R .

48. Verify the energy unit equivalence that

1 kW ⋅ h = 3.60×106 J .

49. Electrons in an X-ray tube are accelerated through

1.00×102 kV and directed toward a target to produce X-

rays. Calculate the power of the electron beam in this tube if it
has a current of 15.0 mA.

50. An electric water heater consumes 5.00 kW for 2.00 h per
day. What is the cost of running it for one year if electricity
costs 12.0 cents/kW ⋅ h ? See Figure 20.41.

Figure 20.41 On-demand electric hot water heater. Heat is supplied to

water only when needed. (credit: aviddavid, Flickr)

51. With a 1200-W toaster, how much electrical energy is
needed to make a slice of toast (cooking time = 1 minute)? At
9.0 cents/kW · h , how much does this cost?

52. What would be the maximum cost of a CFL such that the
total cost (investment plus operating) would be the same for
both CFL and incandescent 60-W bulbs? Assume the cost of
the incandescent bulb is 25 cents and that electricity costs
10 cents/kWh . Calculate the cost for 1000 hours, as in the

cost effectiveness of CFL example.

53. Some makes of older cars have 6.00-V electrical systems.
(a) What is the hot resistance of a 30.0-W headlight in such a
car? (b) What current flows through it?

54. Alkaline batteries have the advantage of putting out
constant voltage until very nearly the end of their life. How
long will an alkaline battery rated at 1.00 A ⋅ h and 1.58 V

keep a 1.00-W flashlight bulb burning?

55. A cauterizer, used to stop bleeding in surgery, puts out
2.00 mA at 15.0 kV. (a) What is its power output? (b) What is
the resistance of the path?

56. The average television is said to be on 6 hours per day.
Estimate the yearly cost of electricity to operate 100 million
TVs, assuming their power consumption averages 150 W and
the cost of electricity averages 12.0 cents/kW ⋅ h .

57. An old lightbulb draws only 50.0 W, rather than its original
60.0 W, due to evaporative thinning of its filament. By what
factor is its diameter reduced, assuming uniform thinning
along its length? Neglect any effects caused by temperature
differences.

58. 00-gauge copper wire has a diameter of 9.266 mm.
Calculate the power loss in a kilometer of such wire when it

carries 1.00×102 A .

59. Integrated Concepts

Cold vaporizers pass a current through water, evaporating it
with only a small increase in temperature. One such home
device is rated at 3.50 A and utilizes 120 V AC with 95.0%
efficiency. (a) What is the vaporization rate in grams per
minute? (b) How much water must you put into the vaporizer
for 8.00 h of overnight operation? (See Figure 20.42.)

Figure 20.42 This cold vaporizer passes current directly through water,

vaporizing it directly with relatively little temperature increase.

60. Integrated Concepts

(a) What energy is dissipated by a lightning bolt having a

20,000-A current, a voltage of 1.00×102 MV , and a length

of 1.00 ms? (b) What mass of tree sap could be raised from
18.0ºC to its boiling point and then evaporated by this

energy, assuming sap has the same thermal characteristics
as water?

61. Integrated Concepts

What current must be produced by a 12.0-V battery-operated
bottle warmer in order to heat 75.0 g of glass, 250 g of baby

formula, and 3.00×102 g of aluminum from 20.0ºC to

90.0ºC in 5.00 min?

62. Integrated Concepts

How much time is needed for a surgical cauterizer to raise the
temperature of 1.00 g of tissue from 37.0ºC to 100ºC and

then boil away 0.500 g of water, if it puts out 2.00 mA at 15.0
kV? Ignore heat transfer to the surroundings.
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63. Integrated Concepts

Hydroelectric generators (see Figure 20.43) at Hoover Dam

produce a maximum current of 8.00×103 A at 250 kV. (a)

What is the power output? (b) The water that powers the
generators enters and leaves the system at low speed (thus
its kinetic energy does not change) but loses 160 m in
altitude. How many cubic meters per second are needed,
assuming 85.0% efficiency?

Figure 20.43 Hydroelectric generators at the Hoover dam. (credit: Jon

Sullivan)

64. Integrated Concepts

(a) Assuming 95.0% efficiency for the conversion of electrical
power by the motor, what current must the 12.0-V batteries of
a 750-kg electric car be able to supply: (a) To accelerate from

rest to 25.0 m/s in 1.00 min? (b) To climb a 2.00×102 -m
-high hill in 2.00 min at a constant 25.0-m/s speed while

exerting 5.00×102 N of force to overcome air resistance

and friction? (c) To travel at a constant 25.0-m/s speed,

exerting a 5.00×102 N force to overcome air resistance

and friction? See Figure 20.44.

Figure 20.44 This REVAi, an electric car, gets recharged on a street in

London. (credit: Frank Hebbert)

65. Integrated Concepts

A light-rail commuter train draws 630 A of 650-V DC
electricity when accelerating. (a) What is its power
consumption rate in kilowatts? (b) How long does it take to
reach 20.0 m/s starting from rest if its loaded mass is

5.30×104 kg , assuming 95.0% efficiency and constant

power? (c) Find its average acceleration. (d) Discuss how the
acceleration you found for the light-rail train compares to what
might be typical for an automobile.

66. Integrated Concepts

(a) An aluminum power transmission line has a resistance of
0.0580 Ω / km . What is its mass per kilometer? (b) What

is the mass per kilometer of a copper line having the same
resistance? A lower resistance would shorten the heating
time. Discuss the practical limits to speeding the heating by
lowering the resistance.

67. Integrated Concepts

(a) An immersion heater utilizing 120 V can raise the

temperature of a 1.00×102 -g aluminum cup containing 350

g of water from 20.0ºC to 95.0ºC in 2.00 min. Find its

resistance, assuming it is constant during the process. (b) A
lower resistance would shorten the heating time. Discuss the
practical limits to speeding the heating by lowering the
resistance.

68. Integrated Concepts

(a) What is the cost of heating a hot tub containing 1500 kg of
water from 10.0ºC to 40.0ºC , assuming 75.0% efficiency

to account for heat transfer to the surroundings? The cost of
electricity is 9 cents/kW ⋅ h . (b) What current was used by

the 220-V AC electric heater, if this took 4.00 h?

69. Unreasonable Results

(a) What current is needed to transmit 1.00×102 MW of

power at 480 V? (b) What power is dissipated by the
transmission lines if they have a 1.00 - Ω resistance? (c)

What is unreasonable about this result? (d) Which
assumptions are unreasonable, or which premises are
inconsistent?

70. Unreasonable Results

(a) What current is needed to transmit 1.00×102 MW of

power at 10.0 kV? (b) Find the resistance of 1.00 km of wire
that would cause a 0.0100% power loss. (c) What is the
diameter of a 1.00-km-long copper wire having this
resistance? (d) What is unreasonable about these results? (e)
Which assumptions are unreasonable, or which premises are
inconsistent?
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71. Construct Your Own Problem

Consider an electric immersion heater used to heat a cup of
water to make tea. Construct a problem in which you
calculate the needed resistance of the heater so that it
increases the temperature of the water and cup in a
reasonable amount of time. Also calculate the cost of the
electrical energy used in your process. Among the things to
be considered are the voltage used, the masses and heat
capacities involved, heat losses, and the time over which the
heating takes place. Your instructor may wish for you to
consider a thermal safety switch (perhaps bimetallic) that will
halt the process before damaging temperatures are reached
in the immersion unit.

20.5 Alternating Current versus Direct Current

72. (a) What is the hot resistance of a 25-W light bulb that
runs on 120-V AC? (b) If the bulb’s operating temperature is
2700ºC , what is its resistance at 2600ºC ?

73. Certain heavy industrial equipment uses AC power that
has a peak voltage of 679 V. What is the rms voltage?

74. A certain circuit breaker trips when the rms current is 15.0
A. What is the corresponding peak current?

75. Military aircraft use 400-Hz AC power, because it is
possible to design lighter-weight equipment at this higher
frequency. What is the time for one complete cycle of this
power?

76. A North American tourist takes his 25.0-W, 120-V AC
razor to Europe, finds a special adapter, and plugs it into 240
V AC. Assuming constant resistance, what power does the
razor consume as it is ruined?

77. In this problem, you will verify statements made at the end
of the power losses for Example 20.10. (a) What current is
needed to transmit 100 MW of power at a voltage of 25.0 kV?
(b) Find the power loss in a 1.00 - Ω transmission line. (c)

What percent loss does this represent?

78. A small office-building air conditioner operates on 408-V
AC and consumes 50.0 kW. (a) What is its effective
resistance? (b) What is the cost of running the air conditioner
during a hot summer month when it is on 8.00 h per day for
30 days and electricity costs 9.00 cents/kW ⋅ h ?

79. What is the peak power consumption of a 120-V AC
microwave oven that draws 10.0 A?

80. What is the peak current through a 500-W room heater
that operates on 120-V AC power?

81. Two different electrical devices have the same power
consumption, but one is meant to be operated on 120-V AC
and the other on 240-V AC. (a) What is the ratio of their
resistances? (b) What is the ratio of their currents? (c)
Assuming its resistance is unaffected, by what factor will the
power increase if a 120-V AC device is connected to 240-V
AC?

82. Nichrome wire is used in some radiative heaters. (a) Find
the resistance needed if the average power output is to be
1.00 kW utilizing 120-V AC. (b) What length of Nichrome wire,

having a cross-sectional area of 5.00mm2 , is needed if the

operating temperature is 500º C ? (c) What power will it draw

when first switched on?

83. Find the time after t = 0 when the instantaneous voltage

of 60-Hz AC first reaches the following values: (a) V0 / 2 (b)

V0 (c) 0.

84. (a) At what two times in the first period following t = 0
does the instantaneous voltage in 60-Hz AC equal Vrms ? (b)

−Vrms ?

20.6 Electric Hazards and the Human Body

85. (a) How much power is dissipated in a short circuit of
240-V AC through a resistance of 0.250 Ω ? (b) What

current flows?

86. What voltage is involved in a 1.44-kW short circuit through
a 0.100 - Ω resistance?

87. Find the current through a person and identify the likely
effect on her if she touches a 120-V AC source: (a) if she is
standing on a rubber mat and offers a total resistance of
300 k Ω ; (b) if she is standing barefoot on wet grass and

has a resistance of only 4000 k Ω .

88. While taking a bath, a person touches the metal case of a
radio. The path through the person to the drainpipe and
ground has a resistance of 4000 Ω . What is the smallest

voltage on the case of the radio that could cause ventricular
fibrillation?

89. Foolishly trying to fish a burning piece of bread from a
toaster with a metal butter knife, a man comes into contact
with 120-V AC. He does not even feel it since, luckily, he is
wearing rubber-soled shoes. What is the minimum resistance
of the path the current follows through the person?

90. (a) During surgery, a current as small as 20.0 μA
applied directly to the heart may cause ventricular fibrillation.
If the resistance of the exposed heart is 300 Ω , what is the

smallest voltage that poses this danger? (b) Does your
answer imply that special electrical safety precautions are
needed?

91. (a) What is the resistance of a 220-V AC short circuit that
generates a peak power of 96.8 kW? (b) What would the
average power be if the voltage was 120 V AC?

92. A heart defibrillator passes 10.0 A through a patient’s
torso for 5.00 ms in an attempt to restore normal beating. (a)
How much charge passed? (b) What voltage was applied if
500 J of energy was dissipated? (c) What was the path’s
resistance? (d) Find the temperature increase caused in the
8.00 kg of affected tissue.

93. Integrated Concepts

A short circuit in a 120-V appliance cord has a 0.500- Ω
resistance. Calculate the temperature rise of the 2.00 g of
surrounding materials, assuming their specific heat capacity
is 0.200 cal/g⋅ºC and that it takes 0.0500 s for a circuit

breaker to interrupt the current. Is this likely to be damaging?
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94. Construct Your Own Problem

Consider a person working in an environment where electric
currents might pass through her body. Construct a problem in
which you calculate the resistance of insulation needed to
protect the person from harm. Among the things to be
considered are the voltage to which the person might be
exposed, likely body resistance (dry, wet, …), and acceptable
currents (safe but sensed, safe and unfelt, …).

20.7 Nerve Conduction–Electrocardiograms

95. Integrated Concepts

Use the ECG in Figure 20.34 to determine the heart rate in
beats per minute assuming a constant time between beats.

96. Integrated Concepts

(a) Referring to Figure 20.34, find the time systolic pressure
lags behind the middle of the QRS complex. (b) Discuss the
reasons for the time lag.
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21 CIRCUITS AND DC INSTRUMENTS

Figure 21.1 Electric circuits in a computer allow large amounts of data to be quickly and accurately analyzed.. (credit: Airman 1st Class Mike Meares,
United States Air Force)

Chapter Outline
21.1. Resistors in Series and Parallel

• Draw a circuit with resistors in parallel and in series.
• Calculate the voltage drop of a current across a resistor using Ohm’s law.
• Contrast the way total resistance is calculated for resistors in series and in parallel.
• Explain why total resistance of a parallel circuit is less than the smallest resistance of any of the resistors in that

circuit.
• Calculate total resistance of a circuit that contains a mixture of resistors connected in series and in parallel.

21.2. Electromotive Force: Terminal Voltage
• Compare and contrast the voltage and the electromagnetic force of an electric power source.
• Describe what happens to the terminal voltage, current, and power delivered to a load as internal resistance of the

voltage source increases (due to aging of batteries, for example).
• Explain why it is beneficial to use more than one voltage source connected in parallel.

21.3. Kirchhoff’s Rules
• Analyze a complex circuit using Kirchhoff’s rules, using the conventions for determining the correct signs of various

terms.
21.4. DC Voltmeters and Ammeters

• Explain why a voltmeter must be connected in parallel with the circuit.
• Draw a diagram showing an ammeter correctly connected in a circuit.
• Describe how a galvanometer can be used as either a voltmeter or an ammeter.
• Find the resistance that must be placed in series with a galvanometer to allow it to be used as a voltmeter with a

given reading.
• Explain why measuring the voltage or current in a circuit can never be exact.

21.5. Null Measurements
• Explain why a null measurement device is more accurate than a standard voltmeter or ammeter.
• Demonstrate how a Wheatstone bridge can be used to accurately calculate the resistance in a circuit.

21.6. DC Circuits Containing Resistors and Capacitors
• Explain the importance of the time constant, τ , and calculate the time constant for a given resistance and

capacitance.
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• Explain why batteries in a flashlight gradually lose power and the light dims over time.
• Describe what happens to a graph of the voltage across a capacitor over time as it charges.
• Explain how a timing circuit works and list some applications.
• Calculate the necessary speed of a strobe flash needed to “stop” the movement of an object over a particular length.

Introduction to Circuits and DC Instruments

Electric circuits are commonplace. Some are simple, such as those in flashlights. Others, such as those used in supercomputers,
are extremely complex.

This collection of modules takes the topic of electric circuits a step beyond simple circuits. When the circuit is purely resistive,
everything in this module applies to both DC and AC. Matters become more complex when capacitance is involved. We do
consider what happens when capacitors are connected to DC voltage sources, but the interaction of capacitors and other
nonresistive devices with AC is left for a later chapter. Finally, a number of important DC instruments, such as meters that
measure voltage and current, are covered in this chapter.

21.1 Resistors in Series and Parallel

Most circuits have more than one component, called a resistor that limits the flow of charge in the circuit. A measure of this limit
on charge flow is called resistance. The simplest combinations of resistors are the series and parallel connections illustrated in
Figure 21.2. The total resistance of a combination of resistors depends on both their individual values and how they are
connected.

Figure 21.2 (a) A series connection of resistors. (b) A parallel connection of resistors.

Resistors in Series

When are resistors in series? Resistors are in series whenever the flow of charge, called the current, must flow through devices
sequentially. For example, if current flows through a person holding a screwdriver and into the Earth, then R1 in Figure 21.2(a)

could be the resistance of the screwdriver’s shaft, R2 the resistance of its handle, R3 the person’s body resistance, and R4
the resistance of her shoes.

Figure 21.3 shows resistors in series connected to a voltage source. It seems reasonable that the total resistance is the sum of
the individual resistances, considering that the current has to pass through each resistor in sequence. (This fact would be an
advantage to a person wishing to avoid an electrical shock, who could reduce the current by wearing high-resistance rubber-
soled shoes. It could be a disadvantage if one of the resistances were a faulty high-resistance cord to an appliance that would
reduce the operating current.)

Figure 21.3 Three resistors connected in series to a battery (left) and the equivalent single or series resistance (right).

To verify that resistances in series do indeed add, let us consider the loss of electrical power, called a voltage drop, in each
resistor in Figure 21.3.

According to Ohm’s law, the voltage drop, V , across a resistor when a current flows through it is calculated using the equation

V = IR , where I equals the current in amps (A) and R is the resistance in ohms ( Ω ) . Another way to think of this is that
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V is the voltage necessary to make a current I flow through a resistance R .

So the voltage drop across R1 is V1 = IR1 , that across R2 is V2 = IR2 , and that across R3 is V3 = IR3 . The sum of

these voltages equals the voltage output of the source; that is,

(21.1)V = V1 + V2 + V3.

This equation is based on the conservation of energy and conservation of charge. Electrical potential energy can be described by
the equation PE = qV , where q is the electric charge and V is the voltage. Thus the energy supplied by the source is qV ,

while that dissipated by the resistors is

(21.2)qV1 + qV2 + qV3.
Connections: Conservation Laws

The derivations of the expressions for series and parallel resistance are based on the laws of conservation of energy and
conservation of charge, which state that total charge and total energy are constant in any process. These two laws are
directly involved in all electrical phenomena and will be invoked repeatedly to explain both specific effects and the general
behavior of electricity.

These energies must be equal, because there is no other source and no other destination for energy in the circuit. Thus,
qV = qV1 + qV2 + qV3 . The charge q cancels, yielding V = V1 + V2 + V3 , as stated. (Note that the same amount of

charge passes through the battery and each resistor in a given amount of time, since there is no capacitance to store charge,
there is no place for charge to leak, and charge is conserved.)

Now substituting the values for the individual voltages gives

(21.3)V = IR1 + IR2 + IR3 = I(R1 + R2 + R3).

Note that for the equivalent single series resistance Rs , we have

(21.4)V = IRs.

This implies that the total or equivalent series resistance Rs of three resistors is Rs = R1 + R2 + R3 .

This logic is valid in general for any number of resistors in series; thus, the total resistance Rs of a series connection is

(21.5)Rs = R1 + R2 + R3 + ...,

as proposed. Since all of the current must pass through each resistor, it experiences the resistance of each, and resistances in
series simply add up.

Example 21.1 Calculating Resistance, Current, Voltage Drop, and Power Dissipation: Analysis of
a Series Circuit

Suppose the voltage output of the battery in Figure 21.3 is 12.0 V , and the resistances are R1 = 1.00 Ω ,

R2 = 6.00 Ω , and R3 = 13.0 Ω . (a) What is the total resistance? (b) Find the current. (c) Calculate the voltage drop

in each resistor, and show these add to equal the voltage output of the source. (d) Calculate the power dissipated by each
resistor. (e) Find the power output of the source, and show that it equals the total power dissipated by the resistors.

Strategy and Solution for (a)

The total resistance is simply the sum of the individual resistances, as given by this equation:

(21.6)Rs = R1 + R2 + R3
= 1.00 Ω + 6.00 Ω + 13.0 Ω
= 20.0 Ω.

Strategy and Solution for (b)

The current is found using Ohm’s law, V = IR . Entering the value of the applied voltage and the total resistance yields the

current for the circuit:

(21.7)I = V
Rs

= 12.0 V
20.0 Ω = 0.600 A.

Strategy and Solution for (c)

The voltage—or IR drop—in a resistor is given by Ohm’s law. Entering the current and the value of the first resistance

yields
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(21.8)V1 = IR1 = (0.600 A)(1.0 Ω ) = 0.600 V.

Similarly,

(21.9)V2 = IR2 = (0.600 A)(6.0 Ω ) = 3.60 V

and

(21.10)V3 = IR3 = (0.600 A)(13.0 Ω ) = 7.80 V.

Discussion for (c)

The three IR drops add to 12.0 V , as predicted:

(21.11)V1 + V2 + V3 = (0.600 + 3.60 + 7.80) V = 12.0 V.

Strategy and Solution for (d)

The easiest way to calculate power in watts (W) dissipated by a resistor in a DC circuit is to use Joule’s law, P = IV ,

where P is electric power. In this case, each resistor has the same full current flowing through it. By substituting Ohm’s law

V = IR into Joule’s law, we get the power dissipated by the first resistor as

(21.12)P1 = I 2R1 = (0.600 A)2(1.00 Ω ) = 0.360 W.

Similarly,

(21.13)P2 = I 2R2 = (0.600 A)2(6.00 Ω ) = 2.16 W

and

(21.14)P3 = I 2R3 = (0.600 A)2(13.0 Ω ) = 4.68 W.

Discussion for (d)

Power can also be calculated using either P = IV or P = V 2

R , where V is the voltage drop across the resistor (not the

full voltage of the source). The same values will be obtained.

Strategy and Solution for (e)

The easiest way to calculate power output of the source is to use P = IV , where V is the source voltage. This gives

(21.15)P = (0.600 A)(12.0 V) = 7.20 W.

Discussion for (e)

Note, coincidentally, that the total power dissipated by the resistors is also 7.20 W, the same as the power put out by the
source. That is,

(21.16)P1 + P2 + P3 = (0.360 + 2.16 + 4.68) W = 7.20 W.

Power is energy per unit time (watts), and so conservation of energy requires the power output of the source to be equal to
the total power dissipated by the resistors.

Major Features of Resistors in Series
1. Series resistances add: Rs = R1 + R2 + R3 + ....

2. The same current flows through each resistor in series.

3. Individual resistors in series do not get the total source voltage, but divide it.

Resistors in Parallel

Figure 21.4 shows resistors in parallel, wired to a voltage source. Resistors are in parallel when each resistor is connected
directly to the voltage source by connecting wires having negligible resistance. Each resistor thus has the full voltage of the
source applied to it.

Each resistor draws the same current it would if it alone were connected to the voltage source (provided the voltage source is not
overloaded). For example, an automobile’s headlights, radio, and so on, are wired in parallel, so that they utilize the full voltage
of the source and can operate completely independently. The same is true in your house, or any building. (See Figure 21.4(b).)
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Figure 21.4 (a) Three resistors connected in parallel to a battery and the equivalent single or parallel resistance. (b) Electrical power setup in a house.
(credit: Dmitry G, Wikimedia Commons)

To find an expression for the equivalent parallel resistance Rp , let us consider the currents that flow and how they are related to

resistance. Since each resistor in the circuit has the full voltage, the currents flowing through the individual resistors are

I1 = V
R1

, I2 = V
R2

, and I3 = V
R3

. Conservation of charge implies that the total current I produced by the source is the sum

of these currents:

(21.17)I = I1 + I2 + I3.

Substituting the expressions for the individual currents gives

(21.18)
I = V

R1
+ V

R2
+ V

R3
= V⎛⎝ 1

R1
+ 1

R2
+ 1

R3

⎞
⎠.

Note that Ohm’s law for the equivalent single resistance gives

(21.19)
I = V

Rp
= V⎛⎝ 1

Rp

⎞
⎠.

The terms inside the parentheses in the last two equations must be equal. Generalizing to any number of resistors, the total
resistance Rp of a parallel connection is related to the individual resistances by

(21.20)1
Rp

= 1
R1

+ 1
R2

+ 1
R .3

+ ....

This relationship results in a total resistance Rp that is less than the smallest of the individual resistances. (This is seen in the

next example.) When resistors are connected in parallel, more current flows from the source than would flow for any of them
individually, and so the total resistance is lower.

Chapter 21 | Circuits and DC Instruments 811



Example 21.2 Calculating Resistance, Current, Power Dissipation, and Power Output: Analysis
of a Parallel Circuit

Let the voltage output of the battery and resistances in the parallel connection in Figure 21.4 be the same as the previously
considered series connection: V = 12.0 V , R1 = 1.00 Ω , R2 = 6.00 Ω , and R3 = 13.0 Ω . (a) What is the total

resistance? (b) Find the total current. (c) Calculate the currents in each resistor, and show these add to equal the total
current output of the source. (d) Calculate the power dissipated by each resistor. (e) Find the power output of the source,
and show that it equals the total power dissipated by the resistors.

Strategy and Solution for (a)

The total resistance for a parallel combination of resistors is found using the equation below. Entering known values gives

(21.21)1
Rp

= 1
R1

+ 1
R2

+ 1
R3

= 1
1.00 Ω + 1

6.00 Ω + 1
13.0 Ω .

Thus,

(21.22)1
Rp

= 1.00
Ω + 0.1667

Ω + 0.07692
Ω = 1.2436

Ω .

(Note that in these calculations, each intermediate answer is shown with an extra digit.)

We must invert this to find the total resistance Rp . This yields

(21.23)Rp = 1
1.2436 Ω = 0.8041 Ω .

The total resistance with the correct number of significant digits is Rp = 0.804 Ω .

Discussion for (a)

Rp is, as predicted, less than the smallest individual resistance.

Strategy and Solution for (b)

The total current can be found from Ohm’s law, substituting Rp for the total resistance. This gives

(21.24)I = V
Rp

= 12.0 V
0.8041 Ω = 14.92 A.

Discussion for (b)

Current I for each device is much larger than for the same devices connected in series (see the previous example). A

circuit with parallel connections has a smaller total resistance than the resistors connected in series.

Strategy and Solution for (c)

The individual currents are easily calculated from Ohm’s law, since each resistor gets the full voltage. Thus,

(21.25)I1 = V
R1

= 12.0 V
1.00 Ω = 12.0 A.

Similarly,

(21.26)I2 = V
R2

= 12.0 V
6.00 Ω = 2.00 A

and

(21.27)I3 = V
R3

= 12.0 V
13.0 Ω = 0.92 A.

Discussion for (c)

The total current is the sum of the individual currents:

(21.28)I1 + I2 + I3 = 14.92 A.

This is consistent with conservation of charge.

Strategy and Solution for (d)

The power dissipated by each resistor can be found using any of the equations relating power to current, voltage, and

resistance, since all three are known. Let us use P = V 2

R , since each resistor gets full voltage. Thus,
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(21.29)
P1 = V 2

R1
= (12.0 V)2

1.00 Ω = 144 W.

Similarly,

(21.30)
P2 = V 2

R2
= (12.0 V)2

6.00 Ω = 24.0 W

and

(21.31)
P3 = V 2

R3
= (12.0 V)2

13.0 Ω = 11.1 W.

Discussion for (d)

The power dissipated by each resistor is considerably higher in parallel than when connected in series to the same voltage
source.

Strategy and Solution for (e)

The total power can also be calculated in several ways. Choosing P = IV , and entering the total current, yields

(21.32)P = IV = (14.92 A)(12.0 V) = 179 W.

Discussion for (e)

Total power dissipated by the resistors is also 179 W:

(21.33)P1 + P2 + P3 = 144 W + 24.0 W + 11.1 W = 179 W.

This is consistent with the law of conservation of energy.

Overall Discussion

Note that both the currents and powers in parallel connections are greater than for the same devices in series.

Major Features of Resistors in Parallel

1. Parallel resistance is found from 1
Rp

= 1
R1

+ 1
R2

+ 1
R3

+ ... , and it is smaller than any individual resistance in the

combination.

2. Each resistor in parallel has the same full voltage of the source applied to it. (Power distribution systems most often
use parallel connections to supply the myriad devices served with the same voltage and to allow them to operate
independently.)

3. Parallel resistors do not each get the total current; they divide it.

Combinations of Series and Parallel

More complex connections of resistors are sometimes just combinations of series and parallel. These are commonly
encountered, especially when wire resistance is considered. In that case, wire resistance is in series with other resistances that
are in parallel.

Combinations of series and parallel can be reduced to a single equivalent resistance using the technique illustrated in Figure
21.5. Various parts are identified as either series or parallel, reduced to their equivalents, and further reduced until a single
resistance is left. The process is more time consuming than difficult.
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Figure 21.5 This combination of seven resistors has both series and parallel parts. Each is identified and reduced to an equivalent resistance, and
these are further reduced until a single equivalent resistance is reached.

The simplest combination of series and parallel resistance, shown in Figure 21.6, is also the most instructive, since it is found in
many applications. For example, R1 could be the resistance of wires from a car battery to its electrical devices, which are in

parallel. R2 and R3 could be the starter motor and a passenger compartment light. We have previously assumed that wire

resistance is negligible, but, when it is not, it has important effects, as the next example indicates.

Example 21.3 Calculating Resistance, IR Drop, Current, and Power Dissipation: Combining

Series and Parallel Circuits

Figure 21.6 shows the resistors from the previous two examples wired in a different way—a combination of series and
parallel. We can consider R1 to be the resistance of wires leading to R2 and R3 . (a) Find the total resistance. (b) What is

the IR drop in R1 ? (c) Find the current I2 through R2 . (d) What power is dissipated by R2 ?

Figure 21.6 These three resistors are connected to a voltage source so that R2 and R3 are in parallel with one another and that combination

is in series with R1 .

Strategy and Solution for (a)

To find the total resistance, we note that R2 and R3 are in parallel and their combination Rp is in series with R1 . Thus

the total (equivalent) resistance of this combination is

(21.34)Rtot = R1 + Rp.

First, we find Rp using the equation for resistors in parallel and entering known values:

(21.35)1
Rp

= 1
R2

+ 1
R3

= 1
6.00 Ω + 1

13.0 Ω = 0.2436
Ω .
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Inverting gives

(21.36)Rp = 1
0.2436 Ω = 4.11 Ω .

So the total resistance is

(21.37)Rtot = R1 + Rp = 1.00 Ω + 4.11 Ω = 5.11 Ω .

Discussion for (a)

The total resistance of this combination is intermediate between the pure series and pure parallel values ( 20.0 Ω and

0.804 Ω , respectively) found for the same resistors in the two previous examples.

Strategy and Solution for (b)

To find the IR drop in R1 , we note that the full current I flows through R1 . Thus its IR drop is

(21.38)V1 = IR1.

We must find I before we can calculate V1 . The total current I is found using Ohm’s law for the circuit. That is,

(21.39)I = V
Rtot

= 12.0 V
5.11 Ω = 2.35 A.

Entering this into the expression above, we get

(21.40)V1 = IR1 = (2.35 A)(1.00 Ω ) = 2.35 V.

Discussion for (b)

The voltage applied to R2 and R3 is less than the total voltage by an amount V1 . When wire resistance is large, it can

significantly affect the operation of the devices represented by R2 and R3 .

Strategy and Solution for (c)

To find the current through R2 , we must first find the voltage applied to it. We call this voltage Vp , because it is applied to

a parallel combination of resistors. The voltage applied to both R2 and R3 is reduced by the amount V1 , and so it is

(21.41)Vp = V − V1 = 12.0 V − 2.35 V = 9.65 V.

Now the current I2 through resistance R2 is found using Ohm’s law:

(21.42)
I2 =

Vp
R2

= 9.65 V
6.00 Ω = 1.61 A.

Discussion for (c)

The current is less than the 2.00 A that flowed through R2 when it was connected in parallel to the battery in the previous

parallel circuit example.

Strategy and Solution for (d)

The power dissipated by R2 is given by

(21.43)P2 = (I2 )2R2 = (1.61 A)2(6.00 Ω ) = 15.5 W.

Discussion for (d)

The power is less than the 24.0 W this resistor dissipated when connected in parallel to the 12.0-V source.

Practical Implications

One implication of this last example is that resistance in wires reduces the current and power delivered to a resistor. If wire
resistance is relatively large, as in a worn (or a very long) extension cord, then this loss can be significant. If a large current is
drawn, the IR drop in the wires can also be significant.

For example, when you are rummaging in the refrigerator and the motor comes on, the refrigerator light dims momentarily.
Similarly, you can see the passenger compartment light dim when you start the engine of your car (although this may be due to
resistance inside the battery itself).
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What is happening in these high-current situations is illustrated in Figure 21.7. The device represented by R3 has a very low

resistance, and so when it is switched on, a large current flows. This increased current causes a larger IR drop in the wires

represented by R1 , reducing the voltage across the light bulb (which is R2 ), which then dims noticeably.

Figure 21.7 Why do lights dim when a large appliance is switched on? The answer is that the large current the appliance motor draws causes a

significant IR drop in the wires and reduces the voltage across the light.

Check Your Understanding

Can any arbitrary combination of resistors be broken down into series and parallel combinations? See if you can draw a
circuit diagram of resistors that cannot be broken down into combinations of series and parallel.

Solution
No, there are many ways to connect resistors that are not combinations of series and parallel, including loops and junctions.
In such cases Kirchhoff’s rules, to be introduced in Kirchhoff’s Rules, will allow you to analyze the circuit.

Problem-Solving Strategies for Series and Parallel Resistors
1. Draw a clear circuit diagram, labeling all resistors and voltage sources. This step includes a list of the knowns for the

problem, since they are labeled in your circuit diagram.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.

3. Determine whether resistors are in series, parallel, or a combination of both series and parallel. Examine the circuit
diagram to make this assessment. Resistors are in series if the same current must pass sequentially through them.

4. Use the appropriate list of major features for series or parallel connections to solve for the unknowns. There is one list
for series and another for parallel. If your problem has a combination of series and parallel, reduce it in steps by
considering individual groups of series or parallel connections, as done in this module and the examples. Special note:
When finding R , the reciprocal must be taken with care.

5. Check to see whether the answers are reasonable and consistent. Units and numerical results must be reasonable.
Total series resistance should be greater, whereas total parallel resistance should be smaller, for example. Power
should be greater for the same devices in parallel compared with series, and so on.

21.2 Electromotive Force: Terminal Voltage

When you forget to turn off your car lights, they slowly dim as the battery runs down. Why don’t they simply blink off when the
battery’s energy is gone? Their gradual dimming implies that battery output voltage decreases as the battery is depleted.

Furthermore, if you connect an excessive number of 12-V lights in parallel to a car battery, they will be dim even when the battery
is fresh and even if the wires to the lights have very low resistance. This implies that the battery’s output voltage is reduced by
the overload.

The reason for the decrease in output voltage for depleted or overloaded batteries is that all voltage sources have two
fundamental parts—a source of electrical energy and an internal resistance. Let us examine both.

Electromotive Force

You can think of many different types of voltage sources. Batteries themselves come in many varieties. There are many types of
mechanical/electrical generators, driven by many different energy sources, ranging from nuclear to wind. Solar cells create
voltages directly from light, while thermoelectric devices create voltage from temperature differences.
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A few voltage sources are shown in Figure 21.8. All such devices create a potential difference and can supply current if
connected to a resistance. On the small scale, the potential difference creates an electric field that exerts force on charges,
causing current. We thus use the name electromotive force, abbreviated emf.

Emf is not a force at all; it is a special type of potential difference. To be precise, the electromotive force (emf) is the potential
difference of a source when no current is flowing. Units of emf are volts.

Figure 21.8 A variety of voltage sources (clockwise from top left): the Brazos Wind Farm in Fluvanna, Texas (credit: Leaflet, Wikimedia Commons); the
Krasnoyarsk Dam in Russia (credit: Alex Polezhaev); a solar farm (credit: U.S. Department of Energy); and a group of nickel metal hydride batteries
(credit: Tiaa Monto). The voltage output of each depends on its construction and load, and equals emf only if there is no load.

Electromotive force is directly related to the source of potential difference, such as the particular combination of chemicals in a
battery. However, emf differs from the voltage output of the device when current flows. The voltage across the terminals of a
battery, for example, is less than the emf when the battery supplies current, and it declines further as the battery is depleted or
loaded down. However, if the device’s output voltage can be measured without drawing current, then output voltage will equal
emf (even for a very depleted battery).

Internal Resistance

As noted before, a 12-V truck battery is physically larger, contains more charge and energy, and can deliver a larger current than
a 12-V motorcycle battery. Both are lead-acid batteries with identical emf, but, because of its size, the truck battery has a smaller
internal resistance r . Internal resistance is the inherent resistance to the flow of current within the source itself.

Figure 21.9 is a schematic representation of the two fundamental parts of any voltage source. The emf (represented by a script
E in the figure) and internal resistance r are in series. The smaller the internal resistance for a given emf, the more current and

the more power the source can supply.

Figure 21.9 Any voltage source (in this case, a carbon-zinc dry cell) has an emf related to its source of potential difference, and an internal resistance

r related to its construction. (Note that the script E stands for emf.). Also shown are the output terminals across which the terminal voltage V is

measured. Since V = emf − Ir , terminal voltage equals emf only if there is no current flowing.

The internal resistance r can behave in complex ways. As noted, r increases as a battery is depleted. But internal resistance

may also depend on the magnitude and direction of the current through a voltage source, its temperature, and even its history.
The internal resistance of rechargeable nickel-cadmium cells, for example, depends on how many times and how deeply they
have been depleted.
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Things Great and Small: The Submicroscopic Origin of Battery Potential

Various types of batteries are available, with emfs determined by the combination of chemicals involved. We can view this as
a molecular reaction (what much of chemistry is about) that separates charge.

The lead-acid battery used in cars and other vehicles is one of the most common types. A single cell (one of six) of this
battery is seen in Figure 21.10. The cathode (positive) terminal of the cell is connected to a lead oxide plate, while the
anode (negative) terminal is connected to a lead plate. Both plates are immersed in sulfuric acid, the electrolyte for the
system.

Figure 21.10 Artist’s conception of a lead-acid cell. Chemical reactions in a lead-acid cell separate charge, sending negative charge to the anode,
which is connected to the lead plates. The lead oxide plates are connected to the positive or cathode terminal of the cell. Sulfuric acid conducts
the charge as well as participating in the chemical reaction.

The details of the chemical reaction are left to the reader to pursue in a chemistry text, but their results at the molecular level
help explain the potential created by the battery. Figure 21.11 shows the result of a single chemical reaction. Two electrons
are placed on the anode, making it negative, provided that the cathode supplied two electrons. This leaves the cathode
positively charged, because it has lost two electrons. In short, a separation of charge has been driven by a chemical
reaction.

Note that the reaction will not take place unless there is a complete circuit to allow two electrons to be supplied to the
cathode. Under many circumstances, these electrons come from the anode, flow through a resistance, and return to the
cathode. Note also that since the chemical reactions involve substances with resistance, it is not possible to create the emf
without an internal resistance.

Figure 21.11 Artist’s conception of two electrons being forced onto the anode of a cell and two electrons being removed from the cathode of the
cell. The chemical reaction in a lead-acid battery places two electrons on the anode and removes two from the cathode. It requires a closed circuit
to proceed, since the two electrons must be supplied to the cathode.

Why are the chemicals able to produce a unique potential difference? Quantum mechanical descriptions of molecules, which
take into account the types of atoms and numbers of electrons in them, are able to predict the energy states they can have and
the energies of reactions between them.

In the case of a lead-acid battery, an energy of 2 eV is given to each electron sent to the anode. Voltage is defined as the

electrical potential energy divided by charge: V = PE
q . An electron volt is the energy given to a single electron by a voltage of 1

V. So the voltage here is 2 V, since 2 eV is given to each electron. It is the energy produced in each molecular reaction that
produces the voltage. A different reaction produces a different energy and, hence, a different voltage.

Terminal Voltage

The voltage output of a device is measured across its terminals and, thus, is called its terminal voltage V . Terminal voltage is

given by

(21.44)V = emf − Ir,

where r is the internal resistance and I is the current flowing at the time of the measurement.

I is positive if current flows away from the positive terminal, as shown in Figure 21.9. You can see that the larger the current,
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the smaller the terminal voltage. And it is likewise true that the larger the internal resistance, the smaller the terminal voltage.

Suppose a load resistance Rload is connected to a voltage source, as in Figure 21.12. Since the resistances are in series, the

total resistance in the circuit is Rload + r . Thus the current is given by Ohm’s law to be

(21.45)I = emf
Rload + r .

Figure 21.12 Schematic of a voltage source and its load Rload . Since the internal resistance r is in series with the load, it can significantly affect

the terminal voltage and current delivered to the load. (Note that the script E stands for emf.)

We see from this expression that the smaller the internal resistance r , the greater the current the voltage source supplies to its

load Rload . As batteries are depleted, r increases. If r becomes a significant fraction of the load resistance, then the current

is significantly reduced, as the following example illustrates.

Example 21.4 Calculating Terminal Voltage, Power Dissipation, Current, and Resistance:
Terminal Voltage and Load

A certain battery has a 12.0-V emf and an internal resistance of 0.100 Ω . (a) Calculate its terminal voltage when

connected to a 10.0- Ω load. (b) What is the terminal voltage when connected to a 0.500- Ω load? (c) What power

does the 0.500- Ω load dissipate? (d) If the internal resistance grows to 0.500 Ω , find the current, terminal voltage,

and power dissipated by a 0.500- Ω load.

Strategy

The analysis above gave an expression for current when internal resistance is taken into account. Once the current is found,
the terminal voltage can be calculated using the equation V = emf − Ir . Once current is found, the power dissipated by a

resistor can also be found.

Solution for (a)

Entering the given values for the emf, load resistance, and internal resistance into the expression above yields

(21.46)I = emf
Rload + r = 12.0 V

10.1 Ω = 1.188 A.

Enter the known values into the equation V = emf − Ir to get the terminal voltage:

(21.47)V = emf − Ir = 12.0 V − (1.188 A)(0.100 Ω)
= 11.9 V.

Discussion for (a)

The terminal voltage here is only slightly lower than the emf, implying that 10.0 Ω is a light load for this particular battery.

Solution for (b)

Similarly, with Rload = 0.500 Ω , the current is

(21.48)I = emf
Rload + r = 12.0 V

0.600 Ω = 20.0 A.

The terminal voltage is now

(21.49)V = emf − Ir = 12.0 V − (20.0 A)(0.100 Ω)
= 10.0 V.

Discussion for (b)
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This terminal voltage exhibits a more significant reduction compared with emf, implying 0.500 Ω is a heavy load for this

battery.

Solution for (c)

The power dissipated by the 0.500 - Ω load can be found using the formula P = I 2R . Entering the known values gives

(21.50)Pload = I 2Rload = (20.0 A)2(0.500 Ω) = 2.00×102 W.

Discussion for (c)

Note that this power can also be obtained using the expressions V 2

R or IV , where V is the terminal voltage (10.0 V in

this case).

Solution for (d)

Here the internal resistance has increased, perhaps due to the depletion of the battery, to the point where it is as great as
the load resistance. As before, we first find the current by entering the known values into the expression, yielding

(21.51)I = emf
Rload + r = 12.0 V

1.00 Ω = 12.0 A.

Now the terminal voltage is

(21.52)V = emf − Ir = 12.0 V − (12.0 A)(0.500 Ω)
= 6.00 V,

and the power dissipated by the load is

(21.53)Pload = I 2Rload = (12.0 A)2(0.500 Ω ) = 72.0 W.

Discussion for (d)

We see that the increased internal resistance has significantly decreased terminal voltage, current, and power delivered to a
load.

Battery testers, such as those in Figure 21.13, use small load resistors to intentionally draw current to determine whether the
terminal voltage drops below an acceptable level. They really test the internal resistance of the battery. If internal resistance is
high, the battery is weak, as evidenced by its low terminal voltage.

Figure 21.13 These two battery testers measure terminal voltage under a load to determine the condition of a battery. The large device is being used
by a U.S. Navy electronics technician to test large batteries aboard the aircraft carrier USS Nimitz and has a small resistance that can dissipate large
amounts of power. (credit: U.S. Navy photo by Photographer’s Mate Airman Jason A. Johnston) The small device is used on small batteries and has a
digital display to indicate the acceptability of their terminal voltage. (credit: Keith Williamson)

Some batteries can be recharged by passing a current through them in the direction opposite to the current they supply to a
resistance. This is done routinely in cars and batteries for small electrical appliances and electronic devices, and is represented
pictorially in Figure 21.14. The voltage output of the battery charger must be greater than the emf of the battery to reverse
current through it. This will cause the terminal voltage of the battery to be greater than the emf, since V = emf − Ir , and I is

now negative.
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Figure 21.14 A car battery charger reverses the normal direction of current through a battery, reversing its chemical reaction and replenishing its
chemical potential.

Multiple Voltage Sources

There are two voltage sources when a battery charger is used. Voltage sources connected in series are relatively simple. When
voltage sources are in series, their internal resistances add and their emfs add algebraically. (See Figure 21.15.) Series
connections of voltage sources are common—for example, in flashlights, toys, and other appliances. Usually, the cells are in
series in order to produce a larger total emf.

But if the cells oppose one another, such as when one is put into an appliance backward, the total emf is less, since it is the
algebraic sum of the individual emfs.

A battery is a multiple connection of voltaic cells, as shown in Figure 21.16. The disadvantage of series connections of cells is
that their internal resistances add. One of the authors once owned a 1957 MGA that had two 6-V batteries in series, rather than a
single 12-V battery. This arrangement produced a large internal resistance that caused him many problems in starting the
engine.

Figure 21.15 A series connection of two voltage sources. The emfs (each labeled with a script E) and internal resistances add, giving a total emf of

emf1 + emf2 and a total internal resistance of r1 + r2 .

Figure 21.16 Batteries are multiple connections of individual cells, as shown in this modern rendition of an old print. Single cells, such as AA or C cells,
are commonly called batteries, although this is technically incorrect.

If the series connection of two voltage sources is made into a complete circuit with the emfs in opposition, then a current of

magnitude I =
⎛
⎝emf1 – emf2

⎞
⎠

r1 + r2
flows. See Figure 21.17, for example, which shows a circuit exactly analogous to the battery

charger discussed above. If two voltage sources in series with emfs in the same sense are connected to a load Rload , as in

Figure 21.18, then I =
⎛
⎝emf1 + emf2

⎞
⎠

r1 + r2 + Rload
flows.
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Figure 21.17 These two voltage sources are connected in series with their emfs in opposition. Current flows in the direction of the greater emf and is

limited to I =
⎛
⎝emf1 − emf2

⎞
⎠

r1 + r2
by the sum of the internal resistances. (Note that each emf is represented by script E in the figure.) A battery

charger connected to a battery is an example of such a connection. The charger must have a larger emf than the battery to reverse current through it.

Figure 21.18 This schematic represents a flashlight with two cells (voltage sources) and a single bulb (load resistance) in series. The current that flows

is I =
⎛
⎝emf1 + emf2

⎞
⎠

r1 + r2 + Rload
. (Note that each emf is represented by script E in the figure.)

Take-Home Experiment: Flashlight Batteries

Find a flashlight that uses several batteries and find new and old batteries. Based on the discussions in this module, predict
the brightness of the flashlight when different combinations of batteries are used. Do your predictions match what you
observe? Now place new batteries in the flashlight and leave the flashlight switched on for several hours. Is the flashlight still
quite bright? Do the same with the old batteries. Is the flashlight as bright when left on for the same length of time with old
and new batteries? What does this say for the case when you are limited in the number of available new batteries?

Figure 21.19 shows two voltage sources with identical emfs in parallel and connected to a load resistance. In this simple case,
the total emf is the same as the individual emfs. But the total internal resistance is reduced, since the internal resistances are in
parallel. The parallel connection thus can produce a larger current.

Here, I = emf
⎛
⎝rtot + Rload

⎞
⎠

flows through the load, and rtot is less than those of the individual batteries. For example, some

diesel-powered cars use two 12-V batteries in parallel; they produce a total emf of 12 V but can deliver the larger current needed
to start a diesel engine.

822 Chapter 21 | Circuits and DC Instruments

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Figure 21.19 Two voltage sources with identical emfs (each labeled by script E) connected in parallel produce the same emf but have a smaller total

internal resistance than the individual sources. Parallel combinations are often used to deliver more current. Here I = emf
⎛
⎝rtot + Rload

⎞
⎠

flows

through the load.

Animals as Electrical Detectors

A number of animals both produce and detect electrical signals. Fish, sharks, platypuses, and echidnas (spiny anteaters) all
detect electric fields generated by nerve activity in prey. Electric eels produce their own emf through biological cells (electric
organs) called electroplaques, which are arranged in both series and parallel as a set of batteries.

Electroplaques are flat, disk-like cells; those of the electric eel have a voltage of 0.15 V across each one. These cells are usually
located toward the head or tail of the animal, although in the case of the electric eel, they are found along the entire body. The
electroplaques in the South American eel are arranged in 140 rows, with each row stretching horizontally along the body and
containing 5,000 electroplaques. This can yield an emf of approximately 600 V, and a current of 1 A—deadly.

The mechanism for detection of external electric fields is similar to that for producing nerve signals in the cell through
depolarization and repolarization—the movement of ions across the cell membrane. Within the fish, weak electric fields in the
water produce a current in a gel-filled canal that runs from the skin to sensing cells, producing a nerve signal. The Australian

platypus, one of the very few mammals that lay eggs, can detect fields of 30 mV
m , while sharks have been found to be able to

sense a field in their snouts as small as 100 mV
m (Figure 21.20). Electric eels use their own electric fields produced by the

electroplaques to stun their prey or enemies.

Figure 21.20 Sand tiger sharks (Carcharias taurus), like this one at the Minnesota Zoo, use electroreceptors in their snouts to locate prey. (credit: Jim
Winstead, Flickr)

Solar Cell Arrays

Another example dealing with multiple voltage sources is that of combinations of solar cells—wired in both series and parallel
combinations to yield a desired voltage and current. Photovoltaic generation (PV), the conversion of sunlight directly into
electricity, is based upon the photoelectric effect, in which photons hitting the surface of a solar cell create an electric current in
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the cell.

Most solar cells are made from pure silicon—either as single-crystal silicon, or as a thin film of silicon deposited upon a glass or
metal backing. Most single cells have a voltage output of about 0.5 V, while the current output is a function of the amount of

sunlight upon the cell (the incident solar radiation—the insolation). Under bright noon sunlight, a current of about 100 mA/cm2

of cell surface area is produced by typical single-crystal cells.

Individual solar cells are connected electrically in modules to meet electrical-energy needs. They can be wired together in series
or in parallel—connected like the batteries discussed earlier. A solar-cell array or module usually consists of between 36 and 72
cells, with a power output of 50 W to 140 W.

The output of the solar cells is direct current. For most uses in a home, AC is required, so a device called an inverter must be
used to convert the DC to AC. Any extra output can then be passed on to the outside electrical grid for sale to the utility.

Take-Home Experiment: Virtual Solar Cells

One can assemble a “virtual” solar cell array by using playing cards, or business or index cards, to represent a solar cell.
Combinations of these cards in series and/or parallel can model the required array output. Assume each card has an output
of 0.5 V and a current (under bright light) of 2 A. Using your cards, how would you arrange them to produce an output of 6 A
at 3 V (18 W)?

Suppose you were told that you needed only 18 W (but no required voltage). Would you need more cards to make this
arrangement?

21.3 Kirchhoff’s Rules

Many complex circuits, such as the one in Figure 21.21, cannot be analyzed with the series-parallel techniques developed in
Resistors in Series and Parallel and Electromotive Force: Terminal Voltage. There are, however, two circuit analysis rules
that can be used to analyze any circuit, simple or complex. These rules are special cases of the laws of conservation of charge
and conservation of energy. The rules are known as Kirchhoff’s rules, after their inventor Gustav Kirchhoff (1824–1887).

Figure 21.21 This circuit cannot be reduced to a combination of series and parallel connections. Kirchhoff’s rules, special applications of the laws of
conservation of charge and energy, can be used to analyze it. (Note: The script E in the figure represents electromotive force, emf.)

Kirchhoff’s Rules
• Kirchhoff’s first rule—the junction rule. The sum of all currents entering a junction must equal the sum of all currents

leaving the junction.
• Kirchhoff’s second rule—the loop rule. The algebraic sum of changes in potential around any closed circuit path (loop)

must be zero.

Explanations of the two rules will now be given, followed by problem-solving hints for applying Kirchhoff’s rules, and a worked
example that uses them.

Kirchhoff’s First Rule

Kirchhoff’s first rule (the junction rule) is an application of the conservation of charge to a junction; it is illustrated in Figure
21.22. Current is the flow of charge, and charge is conserved; thus, whatever charge flows into the junction must flow out.
Kirchhoff’s first rule requires that I1 = I2 + I3 (see figure). Equations like this can and will be used to analyze circuits and to

solve circuit problems.
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Making Connections: Conservation Laws

Kirchhoff’s rules for circuit analysis are applications of conservation laws to circuits. The first rule is the application of
conservation of charge, while the second rule is the application of conservation of energy. Conservation laws, even used in a
specific application, such as circuit analysis, are so basic as to form the foundation of that application.

Figure 21.22 The junction rule. The diagram shows an example of Kirchhoff’s first rule where the sum of the currents into a junction equals the sum of

the currents out of a junction. In this case, the current going into the junction splits and comes out as two currents, so that I1 = I2 + I3 . Here I1
must be 11 A, since I2 is 7 A and I3 is 4 A.

Kirchhoff’s Second Rule

Kirchhoff’s second rule (the loop rule) is an application of conservation of energy. The loop rule is stated in terms of potential,
V , rather than potential energy, but the two are related since PEelec = qV . Recall that emf is the potential difference of a

source when no current is flowing. In a closed loop, whatever energy is supplied by emf must be transferred into other forms by
devices in the loop, since there are no other ways in which energy can be transferred into or out of the circuit. Figure 21.23
illustrates the changes in potential in a simple series circuit loop.

Kirchhoff’s second rule requires emf − Ir − IR1 − IR2 = 0 . Rearranged, this is emf = Ir + IR1 + IR2 , which means the

emf equals the sum of the IR (voltage) drops in the loop.

Figure 21.23 The loop rule. An example of Kirchhoff’s second rule where the sum of the changes in potential around a closed loop must be zero. (a) In
this standard schematic of a simple series circuit, the emf supplies 18 V, which is reduced to zero by the resistances, with 1 V across the internal
resistance, and 12 V and 5 V across the two load resistances, for a total of 18 V. (b) This perspective view represents the potential as something like a
roller coaster, where charge is raised in potential by the emf and lowered by the resistances. (Note that the script E stands for emf.)
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Applying Kirchhoff’s Rules

By applying Kirchhoff’s rules, we generate equations that allow us to find the unknowns in circuits. The unknowns may be
currents, emfs, or resistances. Each time a rule is applied, an equation is produced. If there are as many independent equations
as unknowns, then the problem can be solved. There are two decisions you must make when applying Kirchhoff’s rules. These
decisions determine the signs of various quantities in the equations you obtain from applying the rules.

1. When applying Kirchhoff’s first rule, the junction rule, you must label the current in each branch and decide in what direction
it is going. For example, in Figure 21.21, Figure 21.22, and Figure 21.23, currents are labeled I1 , I2 , I3 , and I , and

arrows indicate their directions. There is no risk here, for if you choose the wrong direction, the current will be of the correct
magnitude but negative.

2. When applying Kirchhoff’s second rule, the loop rule, you must identify a closed loop and decide in which direction to go
around it, clockwise or counterclockwise. For example, in Figure 21.23 the loop was traversed in the same direction as the
current (clockwise). Again, there is no risk; going around the circuit in the opposite direction reverses the sign of every term
in the equation, which is like multiplying both sides of the equation by –1.

Figure 21.24 and the following points will help you get the plus or minus signs right when applying the loop rule. Note that the
resistors and emfs are traversed by going from a to b. In many circuits, it will be necessary to construct more than one loop. In
traversing each loop, one needs to be consistent for the sign of the change in potential. (See Example 21.5.)

Figure 21.24 Each of these resistors and voltage sources is traversed from a to b. The potential changes are shown beneath each element and are
explained in the text. (Note that the script E stands for emf.)

• When a resistor is traversed in the same direction as the current, the change in potential is −IR . (See Figure 21.24.)

• When a resistor is traversed in the direction opposite to the current, the change in potential is +IR . (See Figure 21.24.)

• When an emf is traversed from – to + (the same direction it moves positive charge), the change in potential is +emf. (See

Figure 21.24.)
• When an emf is traversed from + to – (opposite to the direction it moves positive charge), the change in potential is −

emf. (See Figure 21.24.)

Example 21.5 Calculating Current: Using Kirchhoff’s Rules

Find the currents flowing in the circuit in Figure 21.25.
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Figure 21.25 This circuit is similar to that in Figure 21.21, but the resistances and emfs are specified. (Each emf is denoted by script E.) The
currents in each branch are labeled and assumed to move in the directions shown. This example uses Kirchhoff’s rules to find the currents.

Strategy

This circuit is sufficiently complex that the currents cannot be found using Ohm’s law and the series-parallel techniques—it is
necessary to use Kirchhoff’s rules. Currents have been labeled I1 , I2 , and I3 in the figure and assumptions have been

made about their directions. Locations on the diagram have been labeled with letters a through h. In the solution we will
apply the junction and loop rules, seeking three independent equations to allow us to solve for the three unknown currents.

Solution

We begin by applying Kirchhoff’s first or junction rule at point a. This gives

(21.54)I1 = I2 + I3,

since I1 flows into the junction, while I2 and I3 flow out. Applying the junction rule at e produces exactly the same

equation, so that no new information is obtained. This is a single equation with three unknowns—three independent
equations are needed, and so the loop rule must be applied.

Now we consider the loop abcdea. Going from a to b, we traverse R2 in the same (assumed) direction of the current I2 ,

and so the change in potential is −I2R2 . Then going from b to c, we go from – to +, so that the change in potential is

+emf1 . Traversing the internal resistance r1 from c to d gives −I2r1 . Completing the loop by going from d to a again

traverses a resistor in the same direction as its current, giving a change in potential of −I1R1 .

The loop rule states that the changes in potential sum to zero. Thus,

(21.55)−I2R2 + emf1 − I2r1 − I1R1 = −I2(R2 + r1) + emf1 − I1R1 = 0.

Substituting values from the circuit diagram for the resistances and emf, and canceling the ampere unit gives

(21.56)−3I 2 + 18 − 6I 1 = 0.

Now applying the loop rule to aefgha (we could have chosen abcdefgha as well) similarly gives

(21.57)+ I1R1 + I3R3 + I3r2 − emf2= +I1 R1 + I3
⎛
⎝R3 + r2

⎞
⎠− emf2 = 0.

Note that the signs are reversed compared with the other loop, because elements are traversed in the opposite direction.
With values entered, this becomes

(21.58)+ 6I 1 + 2I 3 − 45 = 0.

These three equations are sufficient to solve for the three unknown currents. First, solve the second equation for I2 :

(21.59)I2 = 6 − 2I 1.

Now solve the third equation for I3 :
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(21.60)I3 = 22.5 − 3I 1.

Substituting these two new equations into the first one allows us to find a value for I1 :

(21.61)I1 = I2 + I3 = (6 − 2I 1) + (22.5 − 3I 1) = 28.5 − 5I 1.

Combining terms gives

(21.62)6I 1 = 28.5, and
(21.63)I1 = 4.75 A.

Substituting this value for I1 back into the fourth equation gives

(21.64)I2 = 6 − 2I 1 = 6 − 9.50
(21.65)I2 = −3.50 A.

The minus sign means I2 flows in the direction opposite to that assumed in Figure 21.25.

Finally, substituting the value for I1 into the fifth equation gives

(21.66)I3 = 22.5−3I 1 = 22.5 − 14.25
(21.67)I3 = 8.25 A.

Discussion

Just as a check, we note that indeed I1 = I2 + I3 . The results could also have been checked by entering all of the values

into the equation for the abcdefgha loop.

Problem-Solving Strategies for Kirchhoff’s Rules
1. Make certain there is a clear circuit diagram on which you can label all known and unknown resistances, emfs, and

currents. If a current is unknown, you must assign it a direction. This is necessary for determining the signs of potential
changes. If you assign the direction incorrectly, the current will be found to have a negative value—no harm done.

2. Apply the junction rule to any junction in the circuit. Each time the junction rule is applied, you should get an equation
with a current that does not appear in a previous application—if not, then the equation is redundant.

3. Apply the loop rule to as many loops as needed to solve for the unknowns in the problem. (There must be as many
independent equations as unknowns.) To apply the loop rule, you must choose a direction to go around the loop. Then
carefully and consistently determine the signs of the potential changes for each element using the four bulleted points
discussed above in conjunction with Figure 21.24.

4. Solve the simultaneous equations for the unknowns. This may involve many algebraic steps, requiring careful checking
and rechecking.

5. Check to see whether the answers are reasonable and consistent. The numbers should be of the correct order of
magnitude, neither exceedingly large nor vanishingly small. The signs should be reasonable—for example, no
resistance should be negative. Check to see that the values obtained satisfy the various equations obtained from
applying the rules. The currents should satisfy the junction rule, for example.

The material in this section is correct in theory. We should be able to verify it by making measurements of current and voltage. In
fact, some of the devices used to make such measurements are straightforward applications of the principles covered so far and
are explored in the next modules. As we shall see, a very basic, even profound, fact results—making a measurement alters the
quantity being measured.

Check Your Understanding

Can Kirchhoff’s rules be applied to simple series and parallel circuits or are they restricted for use in more complicated
circuits that are not combinations of series and parallel?

Solution
Kirchhoff's rules can be applied to any circuit since they are applications to circuits of two conservation laws. Conservation
laws are the most broadly applicable principles in physics. It is usually mathematically simpler to use the rules for series and
parallel in simpler circuits so we emphasize Kirchhoff’s rules for use in more complicated situations. But the rules for series
and parallel can be derived from Kirchhoff’s rules. Moreover, Kirchhoff’s rules can be expanded to devices other than
resistors and emfs, such as capacitors, and are one of the basic analysis devices in circuit analysis.
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21.4 DC Voltmeters and Ammeters

Voltmeters measure voltage, whereas ammeters measure current. Some of the meters in automobile dashboards, digital
cameras, cell phones, and tuner-amplifiers are voltmeters or ammeters. (See Figure 21.26.) The internal construction of the
simplest of these meters and how they are connected to the system they monitor give further insight into applications of series
and parallel connections.

Figure 21.26 The fuel and temperature gauges (far right and far left, respectively) in this 1996 Volkswagen are voltmeters that register the voltage
output of “sender” units, which are hopefully proportional to the amount of gasoline in the tank and the engine temperature. (credit: Christian Giersing)

Voltmeters are connected in parallel with whatever device’s voltage is to be measured. A parallel connection is used because
objects in parallel experience the same potential difference. (See Figure 21.27, where the voltmeter is represented by the
symbol V.)

Ammeters are connected in series with whatever device’s current is to be measured. A series connection is used because
objects in series have the same current passing through them. (See Figure 21.28, where the ammeter is represented by the
symbol A.)

Figure 21.27 (a) To measure potential differences in this series circuit, the voltmeter (V) is placed in parallel with the voltage source or either of the
resistors. Note that terminal voltage is measured between points a and b. It is not possible to connect the voltmeter directly across the emf without
including its internal resistance, r . (b) A digital voltmeter in use. (credit: Messtechniker, Wikimedia Commons)
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Figure 21.28 An ammeter (A) is placed in series to measure current. All of the current in this circuit flows through the meter. The ammeter would have
the same reading if located between points d and e or between points f and a as it does in the position shown. (Note that the script capital E stands for
emf, and r stands for the internal resistance of the source of potential difference.)

Analog Meters: Galvanometers

Analog meters have a needle that swivels to point at numbers on a scale, as opposed to digital meters, which have numerical
readouts similar to a hand-held calculator. The heart of most analog meters is a device called a galvanometer, denoted by G.
Current flow through a galvanometer, IG , produces a proportional needle deflection. (This deflection is due to the force of a

magnetic field upon a current-carrying wire.)

The two crucial characteristics of a given galvanometer are its resistance and current sensitivity. Current sensitivity is the
current that gives a full-scale deflection of the galvanometer’s needle, the maximum current that the instrument can measure.
For example, a galvanometer with a current sensitivity of 50 μA has a maximum deflection of its needle when 50 μA flows

through it, reads half-scale when 25 μA flows through it, and so on.

If such a galvanometer has a 25- Ω resistance, then a voltage of only V = IR = ⎛
⎝50 μA⎞⎠(25 Ω) = 1.25 mV produces a

full-scale reading. By connecting resistors to this galvanometer in different ways, you can use it as either a voltmeter or ammeter
that can measure a broad range of voltages or currents.

Galvanometer as Voltmeter

Figure 21.29 shows how a galvanometer can be used as a voltmeter by connecting it in series with a large resistance, R . The

value of the resistance R is determined by the maximum voltage to be measured. Suppose you want 10 V to produce a full-

scale deflection of a voltmeter containing a 25-Ω galvanometer with a 50-μA sensitivity. Then 10 V applied to the meter must

produce a current of 50 μA . The total resistance must be

(21.68)Rtot = R + r = V
I = 10 V

50 μA = 200 kΩ, or

(21.69)R = Rtot − r = 200 kΩ − 25 Ω ≈ 200 k Ω .

( R is so large that the galvanometer resistance, r , is nearly negligible.) Note that 5 V applied to this voltmeter produces a half-

scale deflection by producing a 25-μA current through the meter, and so the voltmeter’s reading is proportional to voltage as

desired.

This voltmeter would not be useful for voltages less than about half a volt, because the meter deflection would be small and
difficult to read accurately. For other voltage ranges, other resistances are placed in series with the galvanometer. Many meters
have a choice of scales. That choice involves switching an appropriate resistance into series with the galvanometer.

Figure 21.29 A large resistance R placed in series with a galvanometer G produces a voltmeter, the full-scale deflection of which depends on the

choice of R . The larger the voltage to be measured, the larger R must be. (Note that r represents the internal resistance of the galvanometer.)

Galvanometer as Ammeter

The same galvanometer can also be made into an ammeter by placing it in parallel with a small resistance R , often called the

shunt resistance, as shown in Figure 21.30. Since the shunt resistance is small, most of the current passes through it, allowing
an ammeter to measure currents much greater than those producing a full-scale deflection of the galvanometer.

Suppose, for example, an ammeter is needed that gives a full-scale deflection for 1.0 A, and contains the same 25- Ω
galvanometer with its 50-μA sensitivity. Since R and r are in parallel, the voltage across them is the same.
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These IR drops are IR = IGr so that IR = IG
I = R

r . Solving for R , and noting that IG is 50 μA and I is 0.999950 A, we

have

(21.70)
R = rIG

I = (25 Ω ) 50 μA
0.999950 A = 1.25×10−3 Ω .

Figure 21.30 A small shunt resistance R placed in parallel with a galvanometer G produces an ammeter, the full-scale deflection of which depends

on the choice of R . The larger the current to be measured, the smaller R must be. Most of the current ( I ) flowing through the meter is shunted

through R to protect the galvanometer. (Note that r represents the internal resistance of the galvanometer.) Ammeters may also have multiple

scales for greater flexibility in application. The various scales are achieved by switching various shunt resistances in parallel with the
galvanometer—the greater the maximum current to be measured, the smaller the shunt resistance must be.

Taking Measurements Alters the Circuit

When you use a voltmeter or ammeter, you are connecting another resistor to an existing circuit and, thus, altering the circuit.
Ideally, voltmeters and ammeters do not appreciably affect the circuit, but it is instructive to examine the circumstances under
which they do or do not interfere.

First, consider the voltmeter, which is always placed in parallel with the device being measured. Very little current flows through
the voltmeter if its resistance is a few orders of magnitude greater than the device, and so the circuit is not appreciably affected.
(See Figure 21.31(a).) (A large resistance in parallel with a small one has a combined resistance essentially equal to the small
one.) If, however, the voltmeter’s resistance is comparable to that of the device being measured, then the two in parallel have a
smaller resistance, appreciably affecting the circuit. (See Figure 21.31(b).) The voltage across the device is not the same as
when the voltmeter is out of the circuit.

Figure 21.31 (a) A voltmeter having a resistance much larger than the device ( RVoltmeter >>R ) with which it is in parallel produces a parallel

resistance essentially the same as the device and does not appreciably affect the circuit being measured. (b) Here the voltmeter has the same

resistance as the device ( RVoltmeter ≅ R ), so that the parallel resistance is half of what it is when the voltmeter is not connected. This is an

example of a significant alteration of the circuit and is to be avoided.

An ammeter is placed in series in the branch of the circuit being measured, so that its resistance adds to that branch. Normally,
the ammeter’s resistance is very small compared with the resistances of the devices in the circuit, and so the extra resistance is
negligible. (See Figure 21.32(a).) However, if very small load resistances are involved, or if the ammeter is not as low in
resistance as it should be, then the total series resistance is significantly greater, and the current in the branch being measured is
reduced. (See Figure 21.32(b).)

A practical problem can occur if the ammeter is connected incorrectly. If it was put in parallel with the resistor to measure the
current in it, you could possibly damage the meter; the low resistance of the ammeter would allow most of the current in the
circuit to go through the galvanometer, and this current would be larger since the effective resistance is smaller.
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Figure 21.32 (a) An ammeter normally has such a small resistance that the total series resistance in the branch being measured is not appreciably
increased. The circuit is essentially unaltered compared with when the ammeter is absent. (b) Here the ammeter’s resistance is the same as that of the
branch, so that the total resistance is doubled and the current is half what it is without the ammeter. This significant alteration of the circuit is to be
avoided.

One solution to the problem of voltmeters and ammeters interfering with the circuits being measured is to use galvanometers
with greater sensitivity. This allows construction of voltmeters with greater resistance and ammeters with smaller resistance than
when less sensitive galvanometers are used.

There are practical limits to galvanometer sensitivity, but it is possible to get analog meters that make measurements accurate to
a few percent. Note that the inaccuracy comes from altering the circuit, not from a fault in the meter.

Connections: Limits to Knowledge

Making a measurement alters the system being measured in a manner that produces uncertainty in the measurement. For
macroscopic systems, such as the circuits discussed in this module, the alteration can usually be made negligibly small, but
it cannot be eliminated entirely. For submicroscopic systems, such as atoms, nuclei, and smaller particles, measurement
alters the system in a manner that cannot be made arbitrarily small. This actually limits knowledge of the system—even
limiting what nature can know about itself. We shall see profound implications of this when the Heisenberg uncertainty
principle is discussed in the modules on quantum mechanics.

There is another measurement technique based on drawing no current at all and, hence, not altering the circuit at all. These
are called null measurements and are the topic of Null Measurements. Digital meters that employ solid-state electronics

and null measurements can attain accuracies of one part in 106 .

Check Your Understanding

Digital meters are able to detect smaller currents than analog meters employing galvanometers. How does this explain their
ability to measure voltage and current more accurately than analog meters?

Solution
Since digital meters require less current than analog meters, they alter the circuit less than analog meters. Their resistance
as a voltmeter can be far greater than an analog meter, and their resistance as an ammeter can be far less than an analog
meter. Consult Figure 21.27 and Figure 21.28 and their discussion in the text.

PhET Explorations: Circuit Construction Kit (DC Only), Virtual Lab

Stimulate a neuron and monitor what happens. Pause, rewind, and move forward in time in order to observe the ions as they
move across the neuron membrane.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42360/1.9/#phet_21.4)
Figure 21.33

21.5 Null Measurements

Standard measurements of voltage and current alter the circuit being measured, introducing uncertainties in the measurements.
Voltmeters draw some extra current, whereas ammeters reduce current flow. Null measurements balance voltages so that there
is no current flowing through the measuring device and, therefore, no alteration of the circuit being measured.

Null measurements are generally more accurate but are also more complex than the use of standard voltmeters and ammeters,
and they still have limits to their precision. In this module, we shall consider a few specific types of null measurements, because
they are common and interesting, and they further illuminate principles of electric circuits.

The Potentiometer

Suppose you wish to measure the emf of a battery. Consider what happens if you connect the battery directly to a standard
voltmeter as shown in Figure 21.34. (Once we note the problems with this measurement, we will examine a null measurement
that improves accuracy.) As discussed before, the actual quantity measured is the terminal voltage V , which is related to the

emf of the battery by V = emf − Ir , where I is the current that flows and r is the internal resistance of the battery.

The emf could be accurately calculated if r were very accurately known, but it is usually not. If the current I could be made

zero, then V = emf , and so emf could be directly measured. However, standard voltmeters need a current to operate; thus,
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another technique is needed.

Figure 21.34 An analog voltmeter attached to a battery draws a small but nonzero current and measures a terminal voltage that differs from the emf of
the battery. (Note that the script capital E symbolizes electromotive force, or emf.) Since the internal resistance of the battery is not known precisely, it
is not possible to calculate the emf precisely.

A potentiometer is a null measurement device for measuring potentials (voltages). (See Figure 21.35.) A voltage source is
connected to a resistor R, say, a long wire, and passes a constant current through it. There is a steady drop in potential (an IR
drop) along the wire, so that a variable potential can be obtained by making contact at varying locations along the wire.

Figure 21.35(b) shows an unknown emfx (represented by script Ex in the figure) connected in series with a galvanometer.

Note that emfx opposes the other voltage source. The location of the contact point (see the arrow on the drawing) is adjusted

until the galvanometer reads zero. When the galvanometer reads zero, emfx = IRx , where Rx is the resistance of the section

of wire up to the contact point. Since no current flows through the galvanometer, none flows through the unknown emf, and so
emfx is directly sensed.

Now, a very precisely known standard emfs is substituted for emfx , and the contact point is adjusted until the galvanometer

again reads zero, so that emfs = IRs . In both cases, no current passes through the galvanometer, and so the current I

through the long wire is the same. Upon taking the ratio
emfx
emfs

, I cancels, giving

(21.71)emfx
emfs

= IRx
IRs

= Rx
Rs

.

Solving for emfx gives

(21.72)emfx = emfs
Rx
Rs

.

Figure 21.35 The potentiometer, a null measurement device. (a) A voltage source connected to a long wire resistor passes a constant current I
through it. (b) An unknown emf (labeled script Ex in the figure) is connected as shown, and the point of contact along R is adjusted until the

galvanometer reads zero. The segment of wire has a resistance Rx and script Ex = IRx , where I is unaffected by the connection since no

current flows through the galvanometer. The unknown emf is thus proportional to the resistance of the wire segment.
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Because a long uniform wire is used for R , the ratio of resistances Rx / Rs is the same as the ratio of the lengths of wire that

zero the galvanometer for each emf. The three quantities on the right-hand side of the equation are now known or measured,
and emfx can be calculated. The uncertainty in this calculation can be considerably smaller than when using a voltmeter

directly, but it is not zero. There is always some uncertainty in the ratio of resistances Rx / Rs and in the standard emfs .

Furthermore, it is not possible to tell when the galvanometer reads exactly zero, which introduces error into both Rx and Rs ,

and may also affect the current I .

Resistance Measurements and the Wheatstone Bridge

There is a variety of so-called ohmmeters that purport to measure resistance. What the most common ohmmeters actually do is
to apply a voltage to a resistance, measure the current, and calculate the resistance using Ohm’s law. Their readout is this
calculated resistance. Two configurations for ohmmeters using standard voltmeters and ammeters are shown in Figure 21.36.
Such configurations are limited in accuracy, because the meters alter both the voltage applied to the resistor and the current that
flows through it.

Figure 21.36 Two methods for measuring resistance with standard meters. (a) Assuming a known voltage for the source, an ammeter measures

current, and resistance is calculated as R = V
I . (b) Since the terminal voltage V varies with current, it is better to measure it. V is most

accurately known when I is small, but I itself is most accurately known when it is large.

The Wheatstone bridge is a null measurement device for calculating resistance by balancing potential drops in a circuit. (See
Figure 21.37.) The device is called a bridge because the galvanometer forms a bridge between two branches. A variety of
bridge devices are used to make null measurements in circuits.

Resistors R1 and R2 are precisely known, while the arrow through R3 indicates that it is a variable resistance. The value of

R3 can be precisely read. With the unknown resistance Rx in the circuit, R3 is adjusted until the galvanometer reads zero.

The potential difference between points b and d is then zero, meaning that b and d are at the same potential. With no current
running through the galvanometer, it has no effect on the rest of the circuit. So the branches abc and adc are in parallel, and
each branch has the full voltage of the source. That is, the IR drops along abc and adc are the same. Since b and d are at the

same potential, the IR drop along ad must equal the IR drop along ab. Thus,

(21.73)I1 R1 = I2R3.

Again, since b and d are at the same potential, the IR drop along dc must equal the IR drop along bc. Thus,

(21.74)I1 R2 = I2Rx.

Taking the ratio of these last two expressions gives

(21.75)I1 R1
I1 R2

= I2 R3
I2 Rx

.

Canceling the currents and solving for Rx yields

(21.76)
Rx = R3

R2
R1

.
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Figure 21.37 The Wheatstone bridge is used to calculate unknown resistances. The variable resistance R3 is adjusted until the galvanometer reads

zero with the switch closed. This simplifies the circuit, allowing Rx to be calculated based on the IR drops as discussed in the text.

This equation is used to calculate the unknown resistance when current through the galvanometer is zero. This method can be
very accurate (often to four significant digits), but it is limited by two factors. First, it is not possible to get the current through the
galvanometer to be exactly zero. Second, there are always uncertainties in R1 , R2 , and R3 , which contribute to the

uncertainty in Rx .

Check Your Understanding

Identify other factors that might limit the accuracy of null measurements. Would the use of a digital device that is more
sensitive than a galvanometer improve the accuracy of null measurements?

Solution
One factor would be resistance in the wires and connections in a null measurement. These are impossible to make zero,
and they can change over time. Another factor would be temperature variations in resistance, which can be reduced but not
completely eliminated by choice of material. Digital devices sensitive to smaller currents than analog devices do improve the
accuracy of null measurements because they allow you to get the current closer to zero.

21.6 DC Circuits Containing Resistors and Capacitors

When you use a flash camera, it takes a few seconds to charge the capacitor that powers the flash. The light flash discharges
the capacitor in a tiny fraction of a second. Why does charging take longer than discharging? This question and a number of
other phenomena that involve charging and discharging capacitors are discussed in this module.

RC Circuits

An RC circuit is one containing a resistor R and a capacitor C . The capacitor is an electrical component that stores

electric charge.

Figure 21.38 shows a simple RC circuit that employs a DC (direct current) voltage source. The capacitor is initially uncharged.

As soon as the switch is closed, current flows to and from the initially uncharged capacitor. As charge increases on the capacitor
plates, there is increasing opposition to the flow of charge by the repulsion of like charges on each plate.

In terms of voltage, this is because voltage across the capacitor is given by Vc = Q / C , where Q is the amount of charge

stored on each plate and C is the capacitance. This voltage opposes the battery, growing from zero to the maximum emf when

fully charged. The current thus decreases from its initial value of I0 = emf
R to zero as the voltage on the capacitor reaches the

same value as the emf. When there is no current, there is no IR drop, and so the voltage on the capacitor must then equal the

emf of the voltage source. This can also be explained with Kirchhoff’s second rule (the loop rule), discussed in Kirchhoff’s
Rules, which says that the algebraic sum of changes in potential around any closed loop must be zero.

The initial current is I0 = emf
R , because all of the IR drop is in the resistance. Therefore, the smaller the resistance, the faster

a given capacitor will be charged. Note that the internal resistance of the voltage source is included in R , as are the resistances

of the capacitor and the connecting wires. In the flash camera scenario above, when the batteries powering the camera begin to
wear out, their internal resistance rises, reducing the current and lengthening the time it takes to get ready for the next flash.
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Figure 21.38 (a) An RC circuit with an initially uncharged capacitor. Current flows in the direction shown (opposite of electron flow) as soon as the

switch is closed. Mutual repulsion of like charges in the capacitor progressively slows the flow as the capacitor is charged, stopping the current when

the capacitor is fully charged and Q = C ⋅ emf . (b) A graph of voltage across the capacitor versus time, with the switch closing at time t = 0 .

(Note that in the two parts of the figure, the capital script E stands for emf, q stands for the charge stored on the capacitor, and τ is the RC time

constant.)

Voltage on the capacitor is initially zero and rises rapidly at first, since the initial current is a maximum. Figure 21.38(b) shows a
graph of capacitor voltage versus time ( t ) starting when the switch is closed at t = 0 . The voltage approaches emf

asymptotically, since the closer it gets to emf the less current flows. The equation for voltage versus time when charging a
capacitor C through a resistor R , derived using calculus, is

(21.77)V = emf(1 − e−t / RC) (charging),

where V is the voltage across the capacitor, emf is equal to the emf of the DC voltage source, and the exponential e = 2.718 …

is the base of the natural logarithm. Note that the units of RC are seconds. We define

(21.78)τ = RC,

where τ (the Greek letter tau) is called the time constant for an RC circuit. As noted before, a small resistance R allows the

capacitor to charge faster. This is reasonable, since a larger current flows through a smaller resistance. It is also reasonable that
the smaller the capacitor C , the less time needed to charge it. Both factors are contained in τ = RC .

More quantitatively, consider what happens when t = τ = RC . Then the voltage on the capacitor is

(21.79)V = emf⎛⎝1 − e−1⎞⎠ = emf(1 − 0.368) = 0.632 ⋅ emf.

This means that in the time τ = RC , the voltage rises to 0.632 of its final value. The voltage will rise 0.632 of the remainder in

the next time τ . It is a characteristic of the exponential function that the final value is never reached, but 0.632 of the remainder

to that value is achieved in every time, τ . In just a few multiples of the time constant τ , then, the final value is very nearly

achieved, as the graph in Figure 21.38(b) illustrates.

Discharging a Capacitor

Discharging a capacitor through a resistor proceeds in a similar fashion, as Figure 21.39 illustrates. Initially, the current is

I0 = V0
R , driven by the initial voltage V0 on the capacitor. As the voltage decreases, the current and hence the rate of

discharge decreases, implying another exponential formula for V . Using calculus, the voltage V on a capacitor C being

discharged through a resistor R is found to be

(21.80)V = V e−t / RC(discharging).
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Figure 21.39 (a) Closing the switch discharges the capacitor C through the resistor R . Mutual repulsion of like charges on each plate drives the

current. (b) A graph of voltage across the capacitor versus time, with V = V0 at t = 0 . The voltage decreases exponentially, falling a fixed

fraction of the way to zero in each subsequent time constant τ .

The graph in Figure 21.39(b) is an example of this exponential decay. Again, the time constant is τ = RC . A small resistance

R allows the capacitor to discharge in a small time, since the current is larger. Similarly, a small capacitance requires less time

to discharge, since less charge is stored. In the first time interval τ = RC after the switch is closed, the voltage falls to 0.368 of

its initial value, since V = V0 ⋅ e−1 = 0.368V0 .

During each successive time τ , the voltage falls to 0.368 of its preceding value. In a few multiples of τ , the voltage becomes

very close to zero, as indicated by the graph in Figure 21.39(b).

Now we can explain why the flash camera in our scenario takes so much longer to charge than discharge; the resistance while
charging is significantly greater than while discharging. The internal resistance of the battery accounts for most of the resistance
while charging. As the battery ages, the increasing internal resistance makes the charging process even slower. (You may have
noticed this.)

The flash discharge is through a low-resistance ionized gas in the flash tube and proceeds very rapidly. Flash photographs, such
as in Figure 21.40, can capture a brief instant of a rapid motion because the flash can be less than a microsecond in duration.
Such flashes can be made extremely intense.

During World War II, nighttime reconnaissance photographs were made from the air with a single flash illuminating more than a
square kilometer of enemy territory. The brevity of the flash eliminated blurring due to the surveillance aircraft’s motion. Today, an
important use of intense flash lamps is to pump energy into a laser. The short intense flash can rapidly energize a laser and allow
it to reemit the energy in another form.

Figure 21.40 This stop-motion photograph of a rufous hummingbird (Selasphorus rufus) feeding on a flower was obtained with an extremely brief and
intense flash of light powered by the discharge of a capacitor through a gas. (credit: Dean E. Biggins, U.S. Fish and Wildlife Service)

Example 21.6 Integrated Concept Problem: Calculating Capacitor Size—Strobe Lights

High-speed flash photography was pioneered by Doc Edgerton in the 1930s, while he was a professor of electrical
engineering at MIT. You might have seen examples of his work in the amazing shots of hummingbirds in motion, a drop of
milk splattering on a table, or a bullet penetrating an apple (see Figure 21.40). To stop the motion and capture these
pictures, one needs a high-intensity, very short pulsed flash, as mentioned earlier in this module.

Suppose one wished to capture the picture of a bullet (moving at 5.0×102 m/s ) that was passing through an apple. The

duration of the flash is related to the RC time constant, τ . What size capacitor would one need in the RC circuit to

succeed, if the resistance of the flash tube was 10.0 Ω ? Assume the apple is a sphere with a diameter of 8.0×10–2 m.
Strategy

We begin by identifying the physical principles involved. This example deals with the strobe light, as discussed above.
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Figure 21.39 shows the circuit for this probe. The characteristic time τ of the strobe is given as τ = RC .

Solution

We wish to find C , but we don’t know τ . We want the flash to be on only while the bullet traverses the apple. So we need

to use the kinematic equations that describe the relationship between distance x , velocity v , and time t :

(21.81)x = vt or t = x
v .

The bullet’s velocity is given as 5.0×102 m/s , and the distance x is 8.0×10–2 m. The traverse time, then, is

(21.82)
t = x

v = 8.0×10–2 m
5.0×102 m/s

= 1.6×10−4 s.

We set this value for the crossing time t equal to τ . Therefore,

(21.83)
C = t

R = 1.6×10−4 s
10.0 Ω = 16 μF.

(Note: Capacitance C is typically measured in farads, F , defined as Coulombs per volt. From the equation, we see that

C can also be stated in units of seconds per ohm.)

Discussion

The flash interval of 160 μs (the traverse time of the bullet) is relatively easy to obtain today. Strobe lights have opened up

new worlds from science to entertainment. The information from the picture of the apple and bullet was used in the Warren
Commission Report on the assassination of President John F. Kennedy in 1963 to confirm that only one bullet was fired.

RC Circuits for Timing

RC circuits are commonly used for timing purposes. A mundane example of this is found in the ubiquitous intermittent wiper

systems of modern cars. The time between wipes is varied by adjusting the resistance in an RC circuit. Another example of an

RC circuit is found in novelty jewelry, Halloween costumes, and various toys that have battery-powered flashing lights. (See

Figure 21.41 for a timing circuit.)

A more crucial use of RC circuits for timing purposes is in the artificial pacemaker, used to control heart rate. The heart rate is

normally controlled by electrical signals generated by the sino-atrial (SA) node, which is on the wall of the right atrium chamber.
This causes the muscles to contract and pump blood. Sometimes the heart rhythm is abnormal and the heartbeat is too high or
too low.

The artificial pacemaker is inserted near the heart to provide electrical signals to the heart when needed with the appropriate
time constant. Pacemakers have sensors that detect body motion and breathing to increase the heart rate during exercise to
meet the body’s increased needs for blood and oxygen.

Figure 21.41 (a) The lamp in this RC circuit ordinarily has a very high resistance, so that the battery charges the capacitor as if the lamp were not

there. When the voltage reaches a threshold value, a current flows through the lamp that dramatically reduces its resistance, and the capacitor
discharges through the lamp as if the battery and charging resistor were not there. Once discharged, the process starts again, with the flash period

determined by the RC constant τ . (b) A graph of voltage versus time for this circuit.
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ammeter:

analog meter:

Example 21.7 Calculating Time: RC Circuit in a Heart Defibrillator

A heart defibrillator is used to resuscitate an accident victim by discharging a capacitor through the trunk of her body. A
simplified version of the circuit is seen in Figure 21.39. (a) What is the time constant if an 8.00-μF capacitor is used and

the path resistance through her body is 1.00×103 Ω ? (b) If the initial voltage is 10.0 kV, how long does it take to decline

to 5.00×102 V ?

Strategy

Since the resistance and capacitance are given, it is straightforward to multiply them to give the time constant asked for in

part (a). To find the time for the voltage to decline to 5.00×102 V , we repeatedly multiply the initial voltage by 0.368 until a

voltage less than or equal to 5.00×102 V is obtained. Each multiplication corresponds to a time of τ seconds.

Solution for (a)

The time constant τ is given by the equation τ = RC . Entering the given values for resistance and capacitance (and

remembering that units for a farad can be expressed as s / Ω ) gives

(21.84)τ = RC = (1.00×103 Ω )(8.00 μF) = 8.00 ms.

Solution for (b)

In the first 8.00 ms, the voltage (10.0 kV) declines to 0.368 of its initial value. That is:

(21.85)V = 0.368V0 = 3.680×103 V at t = 8.00 ms.

(Notice that we carry an extra digit for each intermediate calculation.) After another 8.00 ms, we multiply by 0.368 again, and
the voltage is

(21.86)V′ = 0.368V
= (0.368)⎛⎝3.680×103 V⎞⎠
= 1.354×103 V at t = 16.0 ms.

Similarly, after another 8.00 ms, the voltage is

(21.87)V′′ = 0.368V′ = (0.368)(1.354×103 V)
= 498 V at t = 24.0 ms.

Discussion

So after only 24.0 ms, the voltage is down to 498 V, or 4.98% of its original value.Such brief times are useful in heart
defibrillation, because the brief but intense current causes a brief but effective contraction of the heart. The actual circuit in a
heart defibrillator is slightly more complex than the one in Figure 21.39, to compensate for magnetic and AC effects that will
be covered in Magnetism.

Check Your Understanding

When is the potential difference across a capacitor an emf?

Solution
Only when the current being drawn from or put into the capacitor is zero. Capacitors, like batteries, have internal resistance,
so their output voltage is not an emf unless current is zero. This is difficult to measure in practice so we refer to a capacitor’s
voltage rather than its emf. But the source of potential difference in a capacitor is fundamental and it is an emf.

PhET Explorations: Circuit Construction Kit (DC only)

An electronics kit in your computer! Build circuits with resistors, light bulbs, batteries, and switches. Take measurements with
the realistic ammeter and voltmeter. View the circuit as a schematic diagram, or switch to a life-like view.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42363/1.9/#eip-
idm415114672)

Figure 21.42

Glossary

an instrument that measures current

a measuring instrument that gives a readout in the form of a needle movement over a marked gauge
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bridge device:

capacitance:

capacitor:

conservation laws:

current:

current sensitivity:

digital meter:

electromotive force (emf):

full-scale deflection:

galvanometer:

internal resistance:

Joule’s law:

junction rule:

Kirchhoff’s rules:

loop rule:

null measurements:

ohmmeter:

Ohm’s law:

parallel:

potential difference:

potentiometer:

RC circuit:

resistance:

resistor:

series:

shunt resistance:

terminal voltage:

voltage:

a device that forms a bridge between two branches of a circuit; some bridge devices are used to make null
measurements in circuits

the maximum amount of electric potential energy that can be stored (or separated) for a given electric potential

an electrical component used to store energy by separating electric charge on two opposing plates

require that energy and charge be conserved in a system

the flow of charge through an electric circuit past a given point of measurement

the maximum current that a galvanometer can read

a measuring instrument that gives a readout in a digital form

the potential difference of a source of electricity when no current is flowing; measured in volts

the maximum deflection of a galvanometer needle, also known as current sensitivity; a galvanometer
with a full-scale deflection of 50 μA has a maximum deflection of its needle when 50 μA flows through it

an analog measuring device, denoted by G, that measures current flow using a needle deflection caused by a
magnetic field force acting upon a current-carrying wire

the amount of resistance within the voltage source

the relationship between potential electrical power, voltage, and resistance in an electrical circuit, given by:
Pe = IV

Kirchhoff’s first rule, which applies the conservation of charge to a junction; current is the flow of charge; thus,
whatever charge flows into the junction must flow out; the rule can be stated I1 = I2 + I3

a set of two rules, based on conservation of charge and energy, governing current and changes in potential
in an electric circuit

Kirchhoff’s second rule, which states that in a closed loop, whatever energy is supplied by emf must be transferred
into other forms by devices in the loop, since there are no other ways in which energy can be transferred into or out of
the circuit. Thus, the emf equals the sum of the IR (voltage) drops in the loop and can be stated:

emf = Ir + IR1 + IR2

methods of measuring current and voltage more accurately by balancing the circuit so that no current
flows through the measurement device

an instrument that applies a voltage to a resistance, measures the current, calculates the resistance using Ohm’s
law, and provides a readout of this calculated resistance

the relationship between current, voltage, and resistance within an electrical circuit: V = IR

the wiring of resistors or other components in an electrical circuit such that each component receives an equal
voltage from the power source; often pictured in a ladder-shaped diagram, with each component on a rung of the ladder

the difference in electric potential between two points in an electric circuit, measured in volts

a null measurement device for measuring potentials (voltages)

a circuit that contains both a resistor and a capacitor

causing a loss of electrical power in a circuit

a component that provides resistance to the current flowing through an electrical circuit

a sequence of resistors or other components wired into a circuit one after the other

a small resistance R placed in parallel with a galvanometer G to produce an ammeter; the larger the

current to be measured, the smaller R must be; most of the current flowing through the meter is shunted through R to

protect the galvanometer

the voltage measured across the terminals of a source of potential difference

the electrical potential energy per unit charge; electric pressure created by a power source, such as a battery
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voltage drop:

voltmeter:

Wheatstone bridge:

the loss of electrical power as a current travels through a resistor, wire or other component

an instrument that measures voltage

a null measurement device for calculating resistance by balancing potential drops in a circuit

Section Summary

21.1 Resistors in Series and Parallel
• The total resistance of an electrical circuit with resistors wired in a series is the sum of the individual resistances:

Rs = R1 + R2 + R3 + ....
• Each resistor in a series circuit has the same amount of current flowing through it.
• The voltage drop, or power dissipation, across each individual resistor in a series is different, and their combined total adds

up to the power source input.
• The total resistance of an electrical circuit with resistors wired in parallel is less than the lowest resistance of any of the

components and can be determined using the formula:

1
Rp

= 1
R1

+ 1
R2

+ 1
R3

+ ....

• Each resistor in a parallel circuit has the same full voltage of the source applied to it.
• The current flowing through each resistor in a parallel circuit is different, depending on the resistance.
• If a more complex connection of resistors is a combination of series and parallel, it can be reduced to a single equivalent

resistance by identifying its various parts as series or parallel, reducing each to its equivalent, and continuing until a single
resistance is eventually reached.

21.2 Electromotive Force: Terminal Voltage
• All voltage sources have two fundamental parts—a source of electrical energy that has a characteristic electromotive force

(emf), and an internal resistance r .

• The emf is the potential difference of a source when no current is flowing.
• The numerical value of the emf depends on the source of potential difference.
• The internal resistance r of a voltage source affects the output voltage when a current flows.

• The voltage output of a device is called its terminal voltage V and is given by V = emf − Ir , where I is the electric

current and is positive when flowing away from the positive terminal of the voltage source.
• When multiple voltage sources are in series, their internal resistances add and their emfs add algebraically.
• Solar cells can be wired in series or parallel to provide increased voltage or current, respectively.

21.3 Kirchhoff’s Rules
• Kirchhoff’s rules can be used to analyze any circuit, simple or complex.
• Kirchhoff’s first rule—the junction rule: The sum of all currents entering a junction must equal the sum of all currents leaving

the junction.
• Kirchhoff’s second rule—the loop rule: The algebraic sum of changes in potential around any closed circuit path (loop) must

be zero.
• The two rules are based, respectively, on the laws of conservation of charge and energy.
• When calculating potential and current using Kirchhoff’s rules, a set of conventions must be followed for determining the

correct signs of various terms.
• The simpler series and parallel rules are special cases of Kirchhoff’s rules.

21.4 DC Voltmeters and Ammeters
• Voltmeters measure voltage, and ammeters measure current.
• A voltmeter is placed in parallel with the voltage source to receive full voltage and must have a large resistance to limit its

effect on the circuit.
• An ammeter is placed in series to get the full current flowing through a branch and must have a small resistance to limit its

effect on the circuit.
• Both can be based on the combination of a resistor and a galvanometer, a device that gives an analog reading of current.
• Standard voltmeters and ammeters alter the circuit being measured and are thus limited in accuracy.

21.5 Null Measurements
• Null measurement techniques achieve greater accuracy by balancing a circuit so that no current flows through the

measuring device.
• One such device, for determining voltage, is a potentiometer.
• Another null measurement device, for determining resistance, is the Wheatstone bridge.
• Other physical quantities can also be measured with null measurement techniques.
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21.6 DC Circuits Containing Resistors and Capacitors
• An RC circuit is one that has both a resistor and a capacitor.

• The time constant τ for an RC circuit is τ = RC .

• When an initially uncharged ( V0 = 0 at t = 0 ) capacitor in series with a resistor is charged by a DC voltage source, the

voltage rises, asymptotically approaching the emf of the voltage source; as a function of time,

V = emf(1 − e−t / RC)(charging).
• Within the span of each time constant τ , the voltage rises by 0.632 of the remaining value, approaching the final voltage

asymptotically.
• If a capacitor with an initial voltage V0 is discharged through a resistor starting at t = 0 , then its voltage decreases

exponentially as given by

V = V0e−t / RC (discharging).
• In each time constant τ , the voltage falls by 0.368 of its remaining initial value, approaching zero asymptotically.

Conceptual Questions

21.1 Resistors in Series and Parallel

1. A switch has a variable resistance that is nearly zero when closed and extremely large when open, and it is placed in series
with the device it controls. Explain the effect the switch in Figure 21.43 has on current when open and when closed.

Figure 21.43 A switch is ordinarily in series with a resistance and voltage source. Ideally, the switch has nearly zero resistance when closed but has an

extremely large resistance when open. (Note that in this diagram, the script E represents the voltage (or electromotive force) of the battery.)

2. What is the voltage across the open switch in Figure 21.43?

3. There is a voltage across an open switch, such as in Figure 21.43. Why, then, is the power dissipated by the open switch
small?

4. Why is the power dissipated by a closed switch, such as in Figure 21.43, small?

5. A student in a physics lab mistakenly wired a light bulb, battery, and switch as shown in Figure 21.44. Explain why the bulb is
on when the switch is open, and off when the switch is closed. (Do not try this—it is hard on the battery!)

Figure 21.44 A wiring mistake put this switch in parallel with the device represented by R . (Note that in this diagram, the script E represents the

voltage (or electromotive force) of the battery.)

6. Knowing that the severity of a shock depends on the magnitude of the current through your body, would you prefer to be in
series or parallel with a resistance, such as the heating element of a toaster, if shocked by it? Explain.

7. Would your headlights dim when you start your car’s engine if the wires in your automobile were superconductors? (Do not
neglect the battery’s internal resistance.) Explain.
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8. Some strings of holiday lights are wired in series to save wiring costs. An old version utilized bulbs that break the electrical
connection, like an open switch, when they burn out. If one such bulb burns out, what happens to the others? If such a string
operates on 120 V and has 40 identical bulbs, what is the normal operating voltage of each? Newer versions use bulbs that short
circuit, like a closed switch, when they burn out. If one such bulb burns out, what happens to the others? If such a string operates
on 120 V and has 39 remaining identical bulbs, what is then the operating voltage of each?

9. If two household lightbulbs rated 60 W and 100 W are connected in series to household power, which will be brighter?
Explain.

10. Suppose you are doing a physics lab that asks you to put a resistor into a circuit, but all the resistors supplied have a larger
resistance than the requested value. How would you connect the available resistances to attempt to get the smaller value asked
for?

11. Before World War II, some radios got power through a “resistance cord” that had a significant resistance. Such a resistance
cord reduces the voltage to a desired level for the radio’s tubes and the like, and it saves the expense of a transformer. Explain
why resistance cords become warm and waste energy when the radio is on.

12. Some light bulbs have three power settings (not including zero), obtained from multiple filaments that are individually
switched and wired in parallel. What is the minimum number of filaments needed for three power settings?

21.2 Electromotive Force: Terminal Voltage

13. Is every emf a potential difference? Is every potential difference an emf? Explain.

14. Explain which battery is doing the charging and which is being charged in Figure 21.45.

Figure 21.45

15. Given a battery, an assortment of resistors, and a variety of voltage and current measuring devices, describe how you would
determine the internal resistance of the battery.

16. Two different 12-V automobile batteries on a store shelf are rated at 600 and 850 “cold cranking amps.” Which has the
smallest internal resistance?

17. What are the advantages and disadvantages of connecting batteries in series? In parallel?

18. Semitractor trucks use four large 12-V batteries. The starter system requires 24 V, while normal operation of the truck’s other
electrical components utilizes 12 V. How could the four batteries be connected to produce 24 V? To produce 12 V? Why is 24 V
better than 12 V for starting the truck’s engine (a very heavy load)?

21.3 Kirchhoff’s Rules

19. Can all of the currents going into the junction in Figure 21.46 be positive? Explain.

Figure 21.46

20. Apply the junction rule to junction b in Figure 21.47. Is any new information gained by applying the junction rule at e? (In the
figure, each emf is represented by script E.)
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Figure 21.47

21. (a) What is the potential difference going from point a to point b in Figure 21.47? (b) What is the potential difference going
from c to b? (c) From e to g? (d) From e to d?

22. Apply the loop rule to loop afedcba in Figure 21.47.

23. Apply the loop rule to loops abgefa and cbgedc in Figure 21.47.

21.4 DC Voltmeters and Ammeters

24. Why should you not connect an ammeter directly across a voltage source as shown in Figure 21.48? (Note that script E in
the figure stands for emf.)

Figure 21.48

25. Suppose you are using a multimeter (one designed to measure a range of voltages, currents, and resistances) to measure
current in a circuit and you inadvertently leave it in a voltmeter mode. What effect will the meter have on the circuit? What would
happen if you were measuring voltage but accidentally put the meter in the ammeter mode?

26. Specify the points to which you could connect a voltmeter to measure the following potential differences in Figure 21.49: (a)
the potential difference of the voltage source; (b) the potential difference across R1 ; (c) across R2 ; (d) across R3 ; (e) across

R2 and R3 . Note that there may be more than one answer to each part.

Figure 21.49
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27. To measure currents in Figure 21.49, you would replace a wire between two points with an ammeter. Specify the points
between which you would place an ammeter to measure the following: (a) the total current; (b) the current flowing through R1 ;

(c) through R2 ; (d) through R3 . Note that there may be more than one answer to each part.

21.5 Null Measurements

28. Why can a null measurement be more accurate than one using standard voltmeters and ammeters? What factors limit the
accuracy of null measurements?

29. If a potentiometer is used to measure cell emfs on the order of a few volts, why is it most accurate for the standard emfs to

be the same order of magnitude and the resistances to be in the range of a few ohms?

21.6 DC Circuits Containing Resistors and Capacitors

30. Regarding the units involved in the relationship τ = RC , verify that the units of resistance times capacitance are time, that

is, Ω ⋅ F = s .

31. The RC time constant in heart defibrillation is crucial to limiting the time the current flows. If the capacitance in the

defibrillation unit is fixed, how would you manipulate resistance in the circuit to adjust the RC constant τ ? Would an adjustment

of the applied voltage also be needed to ensure that the current delivered has an appropriate value?

32. When making an ECG measurement, it is important to measure voltage variations over small time intervals. The time is
limited by the RC constant of the circuit—it is not possible to measure time variations shorter than RC . How would you

manipulate R and C in the circuit to allow the necessary measurements?

33. Draw two graphs of charge versus time on a capacitor. Draw one for charging an initially uncharged capacitor in series with a
resistor, as in the circuit in Figure 21.38, starting from t = 0 . Draw the other for discharging a capacitor through a resistor, as in

the circuit in Figure 21.39, starting at t = 0 , with an initial charge Q0 . Show at least two intervals of τ .

34. When charging a capacitor, as discussed in conjunction with Figure 21.38, how long does it take for the voltage on the
capacitor to reach emf? Is this a problem?

35. When discharging a capacitor, as discussed in conjunction with Figure 21.39, how long does it take for the voltage on the
capacitor to reach zero? Is this a problem?

36. Referring to Figure 21.38, draw a graph of potential difference across the resistor versus time, showing at least two intervals
of τ . Also draw a graph of current versus time for this situation.

37. A long, inexpensive extension cord is connected from inside the house to a refrigerator outside. The refrigerator doesn’t run
as it should. What might be the problem?

38. In Figure 21.41, does the graph indicate the time constant is shorter for discharging than for charging? Would you expect
ionized gas to have low resistance? How would you adjust R to get a longer time between flashes? Would adjusting R affect

the discharge time?

39. An electronic apparatus may have large capacitors at high voltage in the power supply section, presenting a shock hazard
even when the apparatus is switched off. A “bleeder resistor” is therefore placed across such a capacitor, as shown
schematically in Figure 21.50, to bleed the charge from it after the apparatus is off. Why must the bleeder resistance be much
greater than the effective resistance of the rest of the circuit? How does this affect the time constant for discharging the
capacitor?

Figure 21.50 A bleeder resistor Rbl discharges the capacitor in this electronic device once it is switched off.
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Problems & Exercises

21.1 Resistors in Series and Parallel

Note: Data taken from figures can be assumed to be
accurate to three significant digits.

1. (a) What is the resistance of ten 275-Ω resistors

connected in series? (b) In parallel?

2. (a) What is the resistance of a 1.00×102 -Ω , a 2.50-kΩ
, and a 4.00-k Ω resistor connected in series? (b) In

parallel?

3. What are the largest and smallest resistances you can
obtain by connecting a 36.0-Ω , a 50.0-Ω , and a 700-Ω
resistor together?

4. An 1800-W toaster, a 1400-W electric frying pan, and a
75-W lamp are plugged into the same outlet in a 15-A, 120-V
circuit. (The three devices are in parallel when plugged into
the same socket.). (a) What current is drawn by each device?
(b) Will this combination blow the 15-A fuse?

5. Your car’s 30.0-W headlight and 2.40-kW starter are
ordinarily connected in parallel in a 12.0-V system. What
power would one headlight and the starter consume if
connected in series to a 12.0-V battery? (Neglect any other
resistance in the circuit and any change in resistance in the
two devices.)

6. (a) Given a 48.0-V battery and 24.0-Ω and 96.0-Ω
resistors, find the current and power for each when connected
in series. (b) Repeat when the resistances are in parallel.

7. Referring to the example combining series and parallel
circuits and Figure 21.6, calculate I3 in the following two

different ways: (a) from the known values of I and I2 ; (b)

using Ohm’s law for R3 . In both parts explicitly show how

you follow the steps in the Problem-Solving Strategies for
Series and Parallel Resistors.

8. Referring to Figure 21.6: (a) Calculate P3 and note how it

compares with P3 found in the first two example problems in

this module. (b) Find the total power supplied by the source
and compare it with the sum of the powers dissipated by the
resistors.

9. Refer to Figure 21.7 and the discussion of lights dimming
when a heavy appliance comes on. (a) Given the voltage
source is 120 V, the wire resistance is 0.400 Ω , and the

bulb is nominally 75.0 W, what power will the bulb dissipate if
a total of 15.0 A passes through the wires when the motor
comes on? Assume negligible change in bulb resistance. (b)
What power is consumed by the motor?

10. A 240-kV power transmission line carrying 5.00×102 A
is hung from grounded metal towers by ceramic insulators,

each having a 1.00×109 -Ω resistance. Figure 21.51. (a)

What is the resistance to ground of 100 of these insulators?
(b) Calculate the power dissipated by 100 of them. (c) What
fraction of the power carried by the line is this? Explicitly show
how you follow the steps in the Problem-Solving Strategies
for Series and Parallel Resistors.

Figure 21.51 High-voltage (240-kV) transmission line carrying

5.00×102 A is hung from a grounded metal transmission tower.

The row of ceramic insulators provide 1.00×109 Ω of resistance

each.

11. Show that if two resistors R1 and R2 are combined and

one is much greater than the other ( R1 >>R2 ): (a) Their

series resistance is very nearly equal to the greater
resistance R1 . (b) Their parallel resistance is very nearly

equal to smaller resistance R2 .

12. Unreasonable Results

Two resistors, one having a resistance of 145 Ω , are

connected in parallel to produce a total resistance of
150 Ω . (a) What is the value of the second resistance? (b)

What is unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

13. Unreasonable Results

Two resistors, one having a resistance of 900 kΩ , are

connected in series to produce a total resistance of
0.500 MΩ . (a) What is the value of the second resistance?

(b) What is unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

21.2 Electromotive Force: Terminal Voltage

14. Standard automobile batteries have six lead-acid cells in
series, creating a total emf of 12.0 V. What is the emf of an
individual lead-acid cell?
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15. Carbon-zinc dry cells (sometimes referred to as non-
alkaline cells) have an emf of 1.54 V, and they are produced
as single cells or in various combinations to form other
voltages. (a) How many 1.54-V cells are needed to make the
common 9-V battery used in many small electronic devices?
(b) What is the actual emf of the approximately 9-V battery?
(c) Discuss how internal resistance in the series connection of
cells will affect the terminal voltage of this approximately 9-V
battery.

16. What is the output voltage of a 3.0000-V lithium cell in a
digital wristwatch that draws 0.300 mA, if the cell’s internal
resistance is 2.00 Ω ?

17. (a) What is the terminal voltage of a large 1.54-V carbon-
zinc dry cell used in a physics lab to supply 2.00 A to a circuit,
if the cell’s internal resistance is 0.100 Ω ? (b) How much

electrical power does the cell produce? (c) What power goes
to its load?

18. What is the internal resistance of an automobile battery
that has an emf of 12.0 V and a terminal voltage of 15.0 V
while a current of 8.00 A is charging it?

19. (a) Find the terminal voltage of a 12.0-V motorcycle
battery having a 0.600-Ω internal resistance, if it is being

charged by a current of 10.0 A. (b) What is the output voltage
of the battery charger?

20. A car battery with a 12-V emf and an internal resistance of
0.050 Ω is being charged with a current of 60 A. Note that

in this process the battery is being charged. (a) What is the
potential difference across its terminals? (b) At what rate is
thermal energy being dissipated in the battery? (c) At what
rate is electric energy being converted to chemical energy?
(d) What are the answers to (a) and (b) when the battery is
used to supply 60 A to the starter motor?

21. The hot resistance of a flashlight bulb is 2.30 Ω , and it

is run by a 1.58-V alkaline cell having a 0.100-Ω internal

resistance. (a) What current flows? (b) Calculate the power

supplied to the bulb using I 2 Rbulb . (c) Is this power the

same as calculated using V 2

Rbulb
?

22. The label on a portable radio recommends the use of
rechargeable nickel-cadmium cells (nicads), although they
have a 1.25-V emf while alkaline cells have a 1.58-V emf. The
radio has a 3.20-Ω resistance. (a) Draw a circuit diagram of

the radio and its batteries. Now, calculate the power delivered
to the radio. (b) When using Nicad cells each having an
internal resistance of 0.0400 Ω . (c) When using alkaline

cells each having an internal resistance of 0.200 Ω . (d)

Does this difference seem significant, considering that the
radio’s effective resistance is lowered when its volume is
turned up?

23. An automobile starter motor has an equivalent resistance
of 0.0500 Ω and is supplied by a 12.0-V battery with a

0.0100-Ω internal resistance. (a) What is the current to the

motor? (b) What voltage is applied to it? (c) What power is
supplied to the motor? (d) Repeat these calculations for when
the battery connections are corroded and add 0.0900 Ω to

the circuit. (Significant problems are caused by even small
amounts of unwanted resistance in low-voltage, high-current
applications.)

24. A child’s electronic toy is supplied by three 1.58-V alkaline
cells having internal resistances of 0.0200 Ω in series with

a 1.53-V carbon-zinc dry cell having a 0.100-Ω internal

resistance. The load resistance is 10.0 Ω . (a) Draw a

circuit diagram of the toy and its batteries. (b) What current
flows? (c) How much power is supplied to the load? (d) What
is the internal resistance of the dry cell if it goes bad, resulting
in only 0.500 W being supplied to the load?

25. (a) What is the internal resistance of a voltage source if its
terminal voltage drops by 2.00 V when the current supplied
increases by 5.00 A? (b) Can the emf of the voltage source
be found with the information supplied?

26. A person with body resistance between his hands of
10.0 k Ω accidentally grasps the terminals of a 20.0-kV

power supply. (Do NOT do this!) (a) Draw a circuit diagram to
represent the situation. (b) If the internal resistance of the
power supply is 2000 Ω , what is the current through his

body? (c) What is the power dissipated in his body? (d) If the
power supply is to be made safe by increasing its internal
resistance, what should the internal resistance be for the
maximum current in this situation to be 1.00 mA or less? (e)
Will this modification compromise the effectiveness of the
power supply for driving low-resistance devices? Explain your
reasoning.

27. Electric fish generate current with biological cells called
electroplaques, which are physiological emf devices. The
electroplaques in the South American eel are arranged in 140
rows, each row stretching horizontally along the body and
each containing 5000 electroplaques. Each electroplaque has
an emf of 0.15 V and internal resistance of 0.25 Ω . If the

water surrounding the fish has resistance of 800 Ω , how

much current can the eel produce in water from near its head
to near its tail?

28. Integrated Concepts

A 12.0-V emf automobile battery has a terminal voltage of
16.0 V when being charged by a current of 10.0 A. (a) What is
the battery’s internal resistance? (b) What power is dissipated
inside the battery? (c) At what rate (in ºC/min ) will its

temperature increase if its mass is 20.0 kg and it has a
specific heat of 0.300 kcal/kg ⋅ ºC , assuming no heat

escapes?

29. Unreasonable Results

A 1.58-V alkaline cell with a 0.200-Ω internal resistance is

supplying 8.50 A to a load. (a) What is its terminal voltage?
(b) What is the value of the load resistance? (c) What is
unreasonable about these results? (d) Which assumptions
are unreasonable or inconsistent?

30. Unreasonable Results

(a) What is the internal resistance of a 1.54-V dry cell that
supplies 1.00 W of power to a 15.0-Ω bulb? (b) What is

unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?

21.3 Kirchhoff’s Rules

31. Apply the loop rule to loop abcdefgha in Figure 21.25.

32. Apply the loop rule to loop aedcba in Figure 21.25.

33. Verify the second equation in Example 21.5 by
substituting the values found for the currents I1 and I2 .
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34. Verify the third equation in Example 21.5 by substituting
the values found for the currents I1 and I3 .

35. Apply the junction rule at point a in Figure 21.52.

Figure 21.52

36. Apply the loop rule to loop abcdefghija in Figure 21.52.

37. Apply the loop rule to loop akledcba in Figure 21.52.

38. Find the currents flowing in the circuit in Figure 21.52.
Explicitly show how you follow the steps in the Problem-
Solving Strategies for Series and Parallel Resistors.

39. Solve Example 21.5, but use loop abcdefgha instead of
loop akledcba. Explicitly show how you follow the steps in the
Problem-Solving Strategies for Series and Parallel
Resistors.

40. Find the currents flowing in the circuit in Figure 21.47.

41. Unreasonable Results

Consider the circuit in Figure 21.53, and suppose that the
emfs are unknown and the currents are given to be
I1 = 5.00 A , I2 = 3.0 A , and I3 = –2.00 A . (a) Could

you find the emfs? (b) What is wrong with the assumptions?

Figure 21.53

21.4 DC Voltmeters and Ammeters

42. What is the sensitivity of the galvanometer (that is, what
current gives a full-scale deflection) inside a voltmeter that
has a 1.00-M Ω resistance on its 30.0-V scale?

43. What is the sensitivity of the galvanometer (that is, what
current gives a full-scale deflection) inside a voltmeter that
has a 25.0-k Ω resistance on its 100-V scale?

44. Find the resistance that must be placed in series with a
25.0-Ω galvanometer having a 50.0-μA sensitivity (the

same as the one discussed in the text) to allow it to be used
as a voltmeter with a 0.100-V full-scale reading.

45. Find the resistance that must be placed in series with a
25.0-Ω galvanometer having a 50.0-μA sensitivity (the

same as the one discussed in the text) to allow it to be used
as a voltmeter with a 3000-V full-scale reading. Include a
circuit diagram with your solution.

46. Find the resistance that must be placed in parallel with a
25.0-Ω galvanometer having a 50.0-μA sensitivity (the

same as the one discussed in the text) to allow it to be used
as an ammeter with a 10.0-A full-scale reading. Include a
circuit diagram with your solution.

47. Find the resistance that must be placed in parallel with a
25.0-Ω galvanometer having a 50.0-μA sensitivity (the

same as the one discussed in the text) to allow it to be used
as an ammeter with a 300-mA full-scale reading.

48. Find the resistance that must be placed in series with a
10.0-Ω galvanometer having a 100-μA sensitivity to allow

it to be used as a voltmeter with: (a) a 300-V full-scale
reading, and (b) a 0.300-V full-scale reading.

49. Find the resistance that must be placed in parallel with a
10.0-Ω galvanometer having a 100-μA sensitivity to allow

it to be used as an ammeter with: (a) a 20.0-A full-scale
reading, and (b) a 100-mA full-scale reading.

50. Suppose you measure the terminal voltage of a 1.585-V
alkaline cell having an internal resistance of 0.100 Ω by

placing a 1.00-k Ω voltmeter across its terminals. (See

Figure 21.54.) (a) What current flows? (b) Find the terminal
voltage. (c) To see how close the measured terminal voltage
is to the emf, calculate their ratio.

Figure 21.54

51. Suppose you measure the terminal voltage of a 3.200-V
lithium cell having an internal resistance of 5.00 Ω by

placing a 1.00-k Ω voltmeter across its terminals. (a) What

current flows? (b) Find the terminal voltage. (c) To see how
close the measured terminal voltage is to the emf, calculate
their ratio.

52. A certain ammeter has a resistance of 5.00×10−5 Ω
on its 3.00-A scale and contains a 10.0-Ω galvanometer.

What is the sensitivity of the galvanometer?
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53. A 1.00-MΩ voltmeter is placed in parallel with a

75.0-k Ω resistor in a circuit. (a) Draw a circuit diagram of

the connection. (b) What is the resistance of the combination?
(c) If the voltage across the combination is kept the same as it
was across the 75.0-k Ω resistor alone, what is the percent

increase in current? (d) If the current through the combination
is kept the same as it was through the 75.0-k Ω resistor

alone, what is the percentage decrease in voltage? (e) Are
the changes found in parts (c) and (d) significant? Discuss.

54. A 0.0200-Ω ammeter is placed in series with a

10.00-Ω resistor in a circuit. (a) Draw a circuit diagram of

the connection. (b) Calculate the resistance of the
combination. (c) If the voltage is kept the same across the
combination as it was through the 10.00-Ω resistor alone,

what is the percent decrease in current? (d) If the current is
kept the same through the combination as it was through the
10.00-Ω resistor alone, what is the percent increase in

voltage? (e) Are the changes found in parts (c) and (d)
significant? Discuss.

55. Unreasonable Results

Suppose you have a 40.0-Ω galvanometer with a 25.0-μA
sensitivity. (a) What resistance would you put in series with it
to allow it to be used as a voltmeter that has a full-scale
deflection for 0.500 mV? (b) What is unreasonable about this
result? (c) Which assumptions are responsible?

56. Unreasonable Results

(a) What resistance would you put in parallel with a 40.0-Ω
galvanometer having a 25.0-μA sensitivity to allow it to be

used as an ammeter that has a full-scale deflection for
10.0-μA ? (b) What is unreasonable about this result? (c)

Which assumptions are responsible?

21.5 Null Measurements

57. What is the emfx of a cell being measured in a

potentiometer, if the standard cell’s emf is 12.0 V and the
potentiometer balances for Rx = 5.000 Ω and

Rs = 2.500 Ω ?

58. Calculate the emfx of a dry cell for which a

potentiometer is balanced when Rx = 1.200 Ω , while an

alkaline standard cell with an emf of 1.600 V requires
Rs = 1.247 Ω to balance the potentiometer.

59. When an unknown resistance Rx is placed in a

Wheatstone bridge, it is possible to balance the bridge by

adjusting R3 to be 2500 Ω . What is Rx if
R2
R1

= 0.625

?

60. To what value must you adjust R3 to balance a

Wheatstone bridge, if the unknown resistance Rx is

100 Ω , R1 is 50.0 Ω , and R2 is 175 Ω ?

61. (a) What is the unknown emfx in a potentiometer that

balances when Rx is 10.0 Ω , and balances when Rs is

15.0 Ω for a standard 3.000-V emf? (b) The same emfx
is placed in the same potentiometer, which now balances
when Rs is 15.0 Ω for a standard emf of 3.100 V. At what

resistance Rx will the potentiometer balance?

62. Suppose you want to measure resistances in the range
from 10.0 Ω to 10.0 kΩ using a Wheatstone bridge that

has
R2
R1

= 2.000 . Over what range should R3 be

adjustable?

21.6 DC Circuits Containing Resistors and
Capacitors

63. The timing device in an automobile’s intermittent wiper
system is based on an RC time constant and utilizes a

0.500-μF capacitor and a variable resistor. Over what range

must R be made to vary to achieve time constants from 2.00

to 15.0 s?

64. A heart pacemaker fires 72 times a minute, each time a
25.0-nF capacitor is charged (by a battery in series with a
resistor) to 0.632 of its full voltage. What is the value of the
resistance?

65. The duration of a photographic flash is related to an RC
time constant, which is 0.100 μs for a certain camera. (a) If

the resistance of the flash lamp is 0.0400 Ω during

discharge, what is the size of the capacitor supplying its
energy? (b) What is the time constant for charging the
capacitor, if the charging resistance is 800 kΩ ?

66. A 2.00- and a 7.50-μF capacitor can be connected in

series or parallel, as can a 25.0- and a 100-kΩ resistor.

Calculate the four RC time constants possible from

connecting the resulting capacitance and resistance in series.

67. After two time constants, what percentage of the final
voltage, emf, is on an initially uncharged capacitor C ,

charged through a resistance R ?

68. A 500-Ω resistor, an uncharged 1.50-μF capacitor,

and a 6.16-V emf are connected in series. (a) What is the
initial current? (b) What is the RC time constant? (c) What is

the current after one time constant? (d) What is the voltage
on the capacitor after one time constant?

69. A heart defibrillator being used on a patient has an RC
time constant of 10.0 ms due to the resistance of the patient
and the capacitance of the defibrillator. (a) If the defibrillator
has an 8.00-μF capacitance, what is the resistance of the

path through the patient? (You may neglect the capacitance
of the patient and the resistance of the defibrillator.) (b) If the
initial voltage is 12.0 kV, how long does it take to decline to

6.00×102 V ?
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70. An ECG monitor must have an RC time constant less

than 1.00×102 μs to be able to measure variations in

voltage over small time intervals. (a) If the resistance of the
circuit (due mostly to that of the patient’s chest) is 1.00 kΩ ,

what is the maximum capacitance of the circuit? (b) Would it
be difficult in practice to limit the capacitance to less than the
value found in (a)?

71. Figure 21.55 shows how a bleeder resistor is used to
discharge a capacitor after an electronic device is shut off,
allowing a person to work on the electronics with less risk of
shock. (a) What is the time constant? (b) How long will it take
to reduce the voltage on the capacitor to 0.250% (5% of 5%)
of its full value once discharge begins? (c) If the capacitor is
charged to a voltage V0 through a 100-Ω resistance,

calculate the time it takes to rise to 0.865V0 (This is about

two time constants.)

Figure 21.55

72. Using the exact exponential treatment, find how much
time is required to discharge a 250-μF capacitor through a

500-Ω resistor down to 1.00% of its original voltage.

73. Using the exact exponential treatment, find how much
time is required to charge an initially uncharged 100-pF
capacitor through a 75.0-M Ω resistor to 90.0% of its final

voltage.

74. Integrated Concepts

If you wish to take a picture of a bullet traveling at 500 m/s,
then a very brief flash of light produced by an RC discharge

through a flash tube can limit blurring. Assuming 1.00 mm of
motion during one RC constant is acceptable, and given that

the flash is driven by a 600-μF capacitor, what is the

resistance in the flash tube?

75. Integrated Concepts

A flashing lamp in a Christmas earring is based on an RC
discharge of a capacitor through its resistance. The effective
duration of the flash is 0.250 s, during which it produces an
average 0.500 W from an average 3.00 V. (a) What energy
does it dissipate? (b) How much charge moves through the
lamp? (c) Find the capacitance. (d) What is the resistance of
the lamp?

76. Integrated Concepts

A 160-μF capacitor charged to 450 V is discharged through

a 31.2-k Ω resistor. (a) Find the time constant. (b)

Calculate the temperature increase of the resistor, given that

its mass is 2.50 g and its specific heat is 1.67 kJ
kg ⋅ ºC ,

noting that most of the thermal energy is retained in the short
time of the discharge. (c) Calculate the new resistance,
assuming it is pure carbon. (d) Does this change in resistance
seem significant?

77. Unreasonable Results

(a) Calculate the capacitance needed to get an RC time

constant of 1.00×103 s with a 0.100-Ω resistor. (b) What

is unreasonable about this result? (c) Which assumptions are
responsible?

78. Construct Your Own Problem

Consider a camera’s flash unit. Construct a problem in which
you calculate the size of the capacitor that stores energy for
the flash lamp. Among the things to be considered are the
voltage applied to the capacitor, the energy needed in the
flash and the associated charge needed on the capacitor, the
resistance of the flash lamp during discharge, and the desired
RC time constant.

79. Construct Your Own Problem

Consider a rechargeable lithium cell that is to be used to
power a camcorder. Construct a problem in which you
calculate the internal resistance of the cell during normal
operation. Also, calculate the minimum voltage output of a
battery charger to be used to recharge your lithium cell.
Among the things to be considered are the emf and useful
terminal voltage of a lithium cell and the current it should be
able to supply to a camcorder.
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22 MAGNETISM

Figure 22.1 The magnificent spectacle of the Aurora Borealis, or northern lights, glows in the northern sky above Bear Lake near Eielson Air Force
Base, Alaska. Shaped by the Earth’s magnetic field, this light is produced by radiation spewed from solar storms. (credit: Senior Airman Joshua Strang,
via Flickr)

Chapter Outline
22.1. Magnets

• Describe the difference between the north and south poles of a magnet.
• Describe how magnetic poles interact with each other.

22.2. Ferromagnets and Electromagnets
• Define ferromagnet.
• Describe the role of magnetic domains in magnetization.
• Explain the significance of the Curie temperature.
• Describe the relationship between electricity and magnetism.

22.3. Magnetic Fields and Magnetic Field Lines
• Define magnetic field and describe the magnetic field lines of various magnetic fields.

22.4. Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
• Describe the effects of magnetic fields on moving charges.
• Use the right hand rule 1 to determine the velocity of a charge, the direction of the magnetic field, and the direction of

the magnetic force on a moving charge.
• Calculate the magnetic force on a moving charge.

22.5. Force on a Moving Charge in a Magnetic Field: Examples and Applications
• Describe the effects of a magnetic field on a moving charge.
• Calculate the radius of curvature of the path of a charge that is moving in a magnetic field.

22.6. The Hall Effect
• Describe the Hall effect.
• Calculate the Hall emf across a current-carrying conductor.

22.7. Magnetic Force on a Current-Carrying Conductor
• Describe the effects of a magnetic force on a current-carrying conductor.
• Calculate the magnetic force on a current-carrying conductor.

22.8. Torque on a Current Loop: Motors and Meters
• Describe how motors and meters work in terms of torque on a current loop.
• Calculate the torque on a current-carrying loop in a magnetic field.

22.9. Magnetic Fields Produced by Currents: Ampere’s Law
• Calculate current that produces a magnetic field.
• Use the right hand rule 2 to determine the direction of current or the direction of magnetic field loops.

22.10. Magnetic Force between Two Parallel Conductors
• Describe the effects of the magnetic force between two conductors.
• Calculate the force between two parallel conductors.
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22.11. More Applications of Magnetism
• Describe some applications of magnetism.

Introduction to Magnetism

One evening, an Alaskan sticks a note to his refrigerator with a small magnet. Through the kitchen window, the Aurora Borealis
glows in the night sky. This grand spectacle is shaped by the same force that holds the note to the refrigerator.

People have been aware of magnets and magnetism for thousands of years. The earliest records date to well before the time of
Christ, particularly in a region of Asia Minor called Magnesia (the name of this region is the source of words like magnetic).
Magnetic rocks found in Magnesia, which is now part of western Turkey, stimulated interest during ancient times. A practical
application for magnets was found later, when they were employed as navigational compasses. The use of magnets in
compasses resulted not only in improved long-distance sailing, but also in the names of “north” and “south” being given to the
two types of magnetic poles.

Today magnetism plays many important roles in our lives. Physicists’ understanding of magnetism has enabled the development
of technologies that affect our everyday lives. The iPod in your purse or backpack, for example, wouldn’t have been possible
without the applications of magnetism and electricity on a small scale.

The discovery that weak changes in a magnetic field in a thin film of iron and chromium could bring about much larger changes
in electrical resistance was one of the first large successes of nanotechnology. The 2007 Nobel Prize in Physics went to Albert
Fert from France and Peter Grunberg from Germany for this discovery of giant magnetoresistance and its applications to
computer memory.

All electric motors, with uses as diverse as powering refrigerators, starting cars, and moving elevators, contain magnets.
Generators, whether producing hydroelectric power or running bicycle lights, use magnetic fields. Recycling facilities employ
magnets to separate iron from other refuse. Hundreds of millions of dollars are spent annually on magnetic containment of fusion
as a future energy source. Magnetic resonance imaging (MRI) has become an important diagnostic tool in the field of medicine,
and the use of magnetism to explore brain activity is a subject of contemporary research and development. The list of
applications also includes computer hard drives, tape recording, detection of inhaled asbestos, and levitation of high-speed
trains. Magnetism is used to explain atomic energy levels, cosmic rays, and charged particles trapped in the Van Allen belts.
Once again, we will find all these disparate phenomena are linked by a small number of underlying physical principles.

Figure 22.2 Engineering of technology like iPods would not be possible without a deep understanding magnetism. (credit: Jesse! S?, Flickr)

22.1 Magnets

Figure 22.3 Magnets come in various shapes, sizes, and strengths. All have both a north pole and a south pole. There is never an isolated pole (a
monopole).

All magnets attract iron, such as that in a refrigerator door. However, magnets may attract or repel other magnets.
Experimentation shows that all magnets have two poles. If freely suspended, one pole will point toward the north. The two poles
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are thus named the north magnetic pole and the south magnetic pole (or more properly, north-seeking and south-seeking
poles, for the attractions in those directions).

Universal Characteristics of Magnets and Magnetic Poles

It is a universal characteristic of all magnets that like poles repel and unlike poles attract. (Note the similarity with
electrostatics: unlike charges attract and like charges repel.)

Further experimentation shows that it is impossible to separate north and south poles in the manner that + and − charges
can be separated.

Figure 22.4 One end of a bar magnet is suspended from a thread that points toward north. The magnet’s two poles are labeled N and S for north-
seeking and south-seeking poles, respectively.

Misconception Alert: Earth’s Geographic North Pole Hides an S

The Earth acts like a very large bar magnet with its south-seeking pole near the geographic North Pole. That is why the
north pole of your compass is attracted toward the geographic north pole of the Earth—because the magnetic pole that is
near the geographic North Pole is actually a south magnetic pole! Confusion arises because the geographic term “North
Pole” has come to be used (incorrectly) for the magnetic pole that is near the North Pole. Thus, “North magnetic pole” is
actually a misnomer—it should be called the South magnetic pole.

Figure 22.5 Unlike poles attract, whereas like poles repel.
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Figure 22.6 North and south poles always occur in pairs. Attempts to separate them result in more pairs of poles. If we continue to split the magnet, we
will eventually get down to an iron atom with a north pole and a south pole—these, too, cannot be separated.

The fact that magnetic poles always occur in pairs of north and south is true from the very large scale—for example, sunspots
always occur in pairs that are north and south magnetic poles—all the way down to the very small scale. Magnetic atoms have
both a north pole and a south pole, as do many types of subatomic particles, such as electrons, protons, and neutrons.

Making Connections: Take-Home Experiment—Refrigerator Magnets

We know that like magnetic poles repel and unlike poles attract. See if you can show this for two refrigerator magnets. Will
the magnets stick if you turn them over? Why do they stick to the door anyway? What can you say about the magnetic
properties of the door next to the magnet? Do refrigerator magnets stick to metal or plastic spoons? Do they stick to all types
of metal?

22.2 Ferromagnets and Electromagnets

Ferromagnets

Only certain materials, such as iron, cobalt, nickel, and gadolinium, exhibit strong magnetic effects. Such materials are called
ferromagnetic, after the Latin word for iron, ferrum. A group of materials made from the alloys of the rare earth elements are
also used as strong and permanent magnets; a popular one is neodymium. Other materials exhibit weak magnetic effects, which
are detectable only with sensitive instruments. Not only do ferromagnetic materials respond strongly to magnets (the way iron is
attracted to magnets), they can also be magnetized themselves—that is, they can be induced to be magnetic or made into
permanent magnets.

Figure 22.7 An unmagnetized piece of iron is placed between two magnets, heated, and then cooled, or simply tapped when cold. The iron becomes a
permanent magnet with the poles aligned as shown: its south pole is adjacent to the north pole of the original magnet, and its north pole is adjacent to
the south pole of the original magnet. Note that there are attractive forces between the magnets.

When a magnet is brought near a previously unmagnetized ferromagnetic material, it causes local magnetization of the material
with unlike poles closest, as in Figure 22.7. (This results in the attraction of the previously unmagnetized material to the magnet.)
What happens on a microscopic scale is illustrated in Figure 22.8. The regions within the material called domains act like small
bar magnets. Within domains, the poles of individual atoms are aligned. Each atom acts like a tiny bar magnet. Domains are
small and randomly oriented in an unmagnetized ferromagnetic object. In response to an external magnetic field, the domains
may grow to millimeter size, aligning themselves as shown in Figure 22.8(b). This induced magnetization can be made
permanent if the material is heated and then cooled, or simply tapped in the presence of other magnets.
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Figure 22.8 (a) An unmagnetized piece of iron (or other ferromagnetic material) has randomly oriented domains. (b) When magnetized by an external
field, the domains show greater alignment, and some grow at the expense of others. Individual atoms are aligned within domains; each atom acts like a
tiny bar magnet.

Conversely, a permanent magnet can be demagnetized by hard blows or by heating it in the absence of another magnet.
Increased thermal motion at higher temperature can disrupt and randomize the orientation and the size of the domains. There is
a well-defined temperature for ferromagnetic materials, which is called the Curie temperature, above which they cannot be
magnetized. The Curie temperature for iron is 1043 K (770ºC) , which is well above room temperature. There are several

elements and alloys that have Curie temperatures much lower than room temperature and are ferromagnetic only below those
temperatures.

Electromagnets

Early in the 19th century, it was discovered that electrical currents cause magnetic effects. The first significant observation was
by the Danish scientist Hans Christian Oersted (1777–1851), who found that a compass needle was deflected by a current-
carrying wire. This was the first significant evidence that the movement of charges had any connection with magnets.
Electromagnetism is the use of electric current to make magnets. These temporarily induced magnets are called
electromagnets. Electromagnets are employed for everything from a wrecking yard crane that lifts scrapped cars to controlling
the beam of a 90-km-circumference particle accelerator to the magnets in medical imaging machines (See Figure 22.9).

Figure 22.9 Instrument for magnetic resonance imaging (MRI). The device uses a superconducting cylindrical coil for the main magnetic field. The
patient goes into this “tunnel” on the gurney. (credit: Bill McChesney, Flickr)

Figure 22.10 shows that the response of iron filings to a current-carrying coil and to a permanent bar magnet. The patterns are
similar. In fact, electromagnets and ferromagnets have the same basic characteristics—for example, they have north and south
poles that cannot be separated and for which like poles repel and unlike poles attract.
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Figure 22.10 Iron filings near (a) a current-carrying coil and (b) a magnet act like tiny compass needles, showing the shape of their fields. Their
response to a current-carrying coil and a permanent magnet is seen to be very similar, especially near the ends of the coil and the magnet.

Combining a ferromagnet with an electromagnet can produce particularly strong magnetic effects. (See Figure 22.11.) Whenever
strong magnetic effects are needed, such as lifting scrap metal, or in particle accelerators, electromagnets are enhanced by
ferromagnetic materials. Limits to how strong the magnets can be made are imposed by coil resistance (it will overheat and melt
at sufficiently high current), and so superconducting magnets may be employed. These are still limited, because superconducting
properties are destroyed by too great a magnetic field.

Figure 22.11 An electromagnet with a ferromagnetic core can produce very strong magnetic effects. Alignment of domains in the core produces a
magnet, the poles of which are aligned with the electromagnet.

Figure 22.12 shows a few uses of combinations of electromagnets and ferromagnets. Ferromagnetic materials can act as
memory devices, because the orientation of the magnetic fields of small domains can be reversed or erased. Magnetic
information storage on videotapes and computer hard drives are among the most common applications. This property is vital in
our digital world.
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Figure 22.12 An electromagnet induces regions of permanent magnetism on a floppy disk coated with a ferromagnetic material. The information stored
here is digital (a region is either magnetic or not); in other applications, it can be analog (with a varying strength), such as on audiotapes.

Current: The Source of All Magnetism

An electromagnet creates magnetism with an electric current. In later sections we explore this more quantitatively, finding the
strength and direction of magnetic fields created by various currents. But what about ferromagnets? Figure 22.13 shows models
of how electric currents create magnetism at the submicroscopic level. (Note that we cannot directly observe the paths of
individual electrons about atoms, and so a model or visual image, consistent with all direct observations, is made. We can
directly observe the electron’s orbital angular momentum, its spin momentum, and subsequent magnetic moments, all of which
are explained with electric-current-creating subatomic magnetism.) Currents, including those associated with other
submicroscopic particles like protons, allow us to explain ferromagnetism and all other magnetic effects. Ferromagnetism, for
example, results from an internal cooperative alignment of electron spins, possible in some materials but not in others.

Crucial to the statement that electric current is the source of all magnetism is the fact that it is impossible to separate north and
south magnetic poles. (This is far different from the case of positive and negative charges, which are easily separated.) A current
loop always produces a magnetic dipole—that is, a magnetic field that acts like a north pole and south pole pair. Since isolated
north and south magnetic poles, called magnetic monopoles, are not observed, currents are used to explain all magnetic
effects. If magnetic monopoles did exist, then we would have to modify this underlying connection that all magnetism is due to
electrical current. There is no known reason that magnetic monopoles should not exist—they are simply never observed—and so
searches at the subnuclear level continue. If they do not exist, we would like to find out why not. If they do exist, we would like to
see evidence of them.

Electric Currents and Magnetism

Electric current is the source of all magnetism.
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Figure 22.13 (a) In the planetary model of the atom, an electron orbits a nucleus, forming a closed-current loop and producing a magnetic field with a
north pole and a south pole. (b) Electrons have spin and can be crudely pictured as rotating charge, forming a current that produces a magnetic field
with a north pole and a south pole. Neither the planetary model nor the image of a spinning electron is completely consistent with modern physics.
However, they do provide a useful way of understanding phenomena.

PhET Explorations: Magnets and Electromagnets

Explore the interactions between a compass and bar magnet. Discover how you can use a battery and wire to make a
magnet! Can you make it a stronger magnet? Can you make the magnetic field reverse?

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42368/1.8/#eip-
idm356229472)

Figure 22.14

22.3 Magnetic Fields and Magnetic Field Lines

Einstein is said to have been fascinated by a compass as a child, perhaps musing on how the needle felt a force without direct
physical contact. His ability to think deeply and clearly about action at a distance, particularly for gravitational, electric, and
magnetic forces, later enabled him to create his revolutionary theory of relativity. Since magnetic forces act at a distance, we
define a magnetic field to represent magnetic forces. The pictorial representation of magnetic field lines is very useful in
visualizing the strength and direction of the magnetic field. As shown in Figure 22.15, the direction of magnetic field lines is
defined to be the direction in which the north end of a compass needle points. The magnetic field is traditionally called the
B-field.

Figure 22.15 Magnetic field lines are defined to have the direction that a small compass points when placed at a location. (a) If small compasses are
used to map the magnetic field around a bar magnet, they will point in the directions shown: away from the north pole of the magnet, toward the south
pole of the magnet. (Recall that the Earth’s north magnetic pole is really a south pole in terms of definitions of poles on a bar magnet.) (b) Connecting
the arrows gives continuous magnetic field lines. The strength of the field is proportional to the closeness (or density) of the lines. (c) If the interior of
the magnet could be probed, the field lines would be found to form continuous closed loops.

Small compasses used to test a magnetic field will not disturb it. (This is analogous to the way we tested electric fields with a
small test charge. In both cases, the fields represent only the object creating them and not the probe testing them.) Figure 22.16
shows how the magnetic field appears for a current loop and a long straight wire, as could be explored with small compasses. A
small compass placed in these fields will align itself parallel to the field line at its location, with its north pole pointing in the
direction of B. Note the symbols used for field into and out of the paper.
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Figure 22.16 Small compasses could be used to map the fields shown here. (a) The magnetic field of a circular current loop is similar to that of a bar
magnet. (b) A long and straight wire creates a field with magnetic field lines forming circular loops. (c) When the wire is in the plane of the paper, the
field is perpendicular to the paper. Note that the symbols used for the field pointing inward (like the tail of an arrow) and the field pointing outward (like
the tip of an arrow).

Making Connections: Concept of a Field

A field is a way of mapping forces surrounding any object that can act on another object at a distance without apparent
physical connection. The field represents the object generating it. Gravitational fields map gravitational forces, electric fields
map electrical forces, and magnetic fields map magnetic forces.

Extensive exploration of magnetic fields has revealed a number of hard-and-fast rules. We use magnetic field lines to represent
the field (the lines are a pictorial tool, not a physical entity in and of themselves). The properties of magnetic field lines can be
summarized by these rules:

1. The direction of the magnetic field is tangent to the field line at any point in space. A small compass will point in the
direction of the field line.

2. The strength of the field is proportional to the closeness of the lines. It is exactly proportional to the number of lines per unit
area perpendicular to the lines (called the areal density).

3. Magnetic field lines can never cross, meaning that the field is unique at any point in space.

4. Magnetic field lines are continuous, forming closed loops without beginning or end. They go from the north pole to the south
pole.

The last property is related to the fact that the north and south poles cannot be separated. It is a distinct difference from electric
field lines, which begin and end on the positive and negative charges. If magnetic monopoles existed, then magnetic field lines
would begin and end on them.

22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field

What is the mechanism by which one magnet exerts a force on another? The answer is related to the fact that all magnetism is
caused by current, the flow of charge. Magnetic fields exert forces on moving charges, and so they exert forces on other
magnets, all of which have moving charges.

Right Hand Rule 1

The magnetic force on a moving charge is one of the most fundamental known. Magnetic force is as important as the
electrostatic or Coulomb force. Yet the magnetic force is more complex, in both the number of factors that affects it and in its
direction, than the relatively simple Coulomb force. The magnitude of the magnetic force F on a charge q moving at a speed

v in a magnetic field of strength B is given by

(22.1)F = qvB sin θ,

where θ is the angle between the directions of v and B. This force is often called the Lorentz force. In fact, this is how we

define the magnetic field strength B —in terms of the force on a charged particle moving in a magnetic field. The SI unit for

magnetic field strength B is called the tesla (T) after the eccentric but brilliant inventor Nikola Tesla (1856–1943). To determine

how the tesla relates to other SI units, we solve F = qvB sin θ for B .

(22.2)B = F
qv sin θ

Because sin θ is unitless, the tesla is

(22.3)1 T = 1 N
C ⋅ m/s = 1 N

A ⋅ m
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(note that C/s = A).

Another smaller unit, called the gauss (G), where 1 G = 10−4 T , is sometimes used. The strongest permanent magnets have

fields near 2 T; superconducting electromagnets may attain 10 T or more. The Earth’s magnetic field on its surface is only about

5×10−5 T , or 0.5 G.

The direction of the magnetic force F is perpendicular to the plane formed by v and B , as determined by the right hand rule

1 (or RHR-1), which is illustrated in Figure 22.17. RHR-1 states that, to determine the direction of the magnetic force on a
positive moving charge, you point the thumb of the right hand in the direction of v , the fingers in the direction of B , and a

perpendicular to the palm points in the direction of F . One way to remember this is that there is one velocity, and so the thumb

represents it. There are many field lines, and so the fingers represent them. The force is in the direction you would push with
your palm. The force on a negative charge is in exactly the opposite direction to that on a positive charge.

Figure 22.17 Magnetic fields exert forces on moving charges. This force is one of the most basic known. The direction of the magnetic force on a

moving charge is perpendicular to the plane formed by v and B and follows right hand rule–1 (RHR-1) as shown. The magnitude of the force is

proportional to q , v , B , and the sine of the angle between v and B .

Making Connections: Charges and Magnets

There is no magnetic force on static charges. However, there is a magnetic force on moving charges. When charges are
stationary, their electric fields do not affect magnets. But, when charges move, they produce magnetic fields that exert forces
on other magnets. When there is relative motion, a connection between electric and magnetic fields emerges—each affects
the other.

Example 22.1 Calculating Magnetic Force: Earth’s Magnetic Field on a Charged Glass Rod

With the exception of compasses, you seldom see or personally experience forces due to the Earth’s small magnetic field.
To illustrate this, suppose that in a physics lab you rub a glass rod with silk, placing a 20-nC positive charge on it. Calculate
the force on the rod due to the Earth’s magnetic field, if you throw it with a horizontal velocity of 10 m/s due west in a place
where the Earth’s field is due north parallel to the ground. (The direction of the force is determined with right hand rule 1 as
shown in Figure 22.18.)
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Figure 22.18 A positively charged object moving due west in a region where the Earth’s magnetic field is due north experiences a force that is
straight down as shown. A negative charge moving in the same direction would feel a force straight up.

Strategy

We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation
F = qvB sin θ to find the force.

Solution

The magnetic force is

(22.4)F = qvb sin θ.

We see that sin θ = 1 , since the angle between the velocity and the direction of the field is 90º . Entering the other given

quantities yields

(22.5)F = ⎛
⎝20×10–9 C⎞⎠(10 m/s)⎛⎝5×10–5 T⎞⎠

= 1×10–11 (C ⋅ m/s)⎛⎝ N
C ⋅ m/s

⎞
⎠ = 1×10–11 N.

Discussion

This force is completely negligible on any macroscopic object, consistent with experience. (It is calculated to only one digit,
since the Earth’s field varies with location and is given to only one digit.) The Earth’s magnetic field, however, does produce
very important effects, particularly on submicroscopic particles. Some of these are explored in Force on a Moving Charge
in a Magnetic Field: Examples and Applications.

22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications

Magnetic force can cause a charged particle to move in a circular or spiral path. Cosmic rays are energetic charged particles in
outer space, some of which approach the Earth. They can be forced into spiral paths by the Earth’s magnetic field. Protons in
giant accelerators are kept in a circular path by magnetic force. The bubble chamber photograph in Figure 22.19 shows charged
particles moving in such curved paths. The curved paths of charged particles in magnetic fields are the basis of a number of
phenomena and can even be used analytically, such as in a mass spectrometer.
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Figure 22.19 Trails of bubbles are produced by high-energy charged particles moving through the superheated liquid hydrogen in this artist’s rendition
of a bubble chamber. There is a strong magnetic field perpendicular to the page that causes the curved paths of the particles. The radius of the path
can be used to find the mass, charge, and energy of the particle.

So does the magnetic force cause circular motion? Magnetic force is always perpendicular to velocity, so that it does no work on
the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected, but not the
speed. This is typical of uniform circular motion. The simplest case occurs when a charged particle moves perpendicular to a
uniform B -field, such as shown in Figure 22.20. (If this takes place in a vacuum, the magnetic field is the dominant factor

determining the motion.) Here, the magnetic force supplies the centripetal force Fc = mv2 / r . Noting that sin θ = 1 , we see

that F = qvB .

Figure 22.20 A negatively charged particle moves in the plane of the page in a region where the magnetic field is perpendicular into the page
(represented by the small circles with x’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, and so velocity changes in
direction but not magnitude. Uniform circular motion results.

Because the magnetic force F supplies the centripetal force Fc , we have

(22.6)
qvB = mv2

r .

Solving for r yields

(22.7)r = mv
qB .

Here, r is the radius of curvature of the path of a charged particle with mass m and charge q , moving at a speed v
perpendicular to a magnetic field of strength B . If the velocity is not perpendicular to the magnetic field, then v is the

component of the velocity perpendicular to the field. The component of the velocity parallel to the field is unaffected, since the
magnetic force is zero for motion parallel to the field. This produces a spiral motion rather than a circular one.
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Example 22.2 Calculating the Curvature of the Path of an Electron Moving in a Magnetic Field: A
Magnet on a TV Screen

A magnet brought near an old-fashioned TV screen such as in Figure 22.21 (TV sets with cathode ray tubes instead of LCD
screens) severely distorts its picture by altering the path of the electrons that make its phosphors glow. (Don’t try this at
home, as it will permanently magnetize and ruin the TV.) To illustrate this, calculate the radius of curvature of the path of

an electron having a velocity of 6.00×107 m/s (corresponding to the accelerating voltage of about 10.0 kV used in some

TVs) perpendicular to a magnetic field of strength B = 0.500 T (obtainable with permanent magnets).

Figure 22.21 Side view showing what happens when a magnet comes in contact with a computer monitor or TV screen. Electrons moving toward
the screen spiral about magnetic field lines, maintaining the component of their velocity parallel to the field lines. This distorts the image on the
screen.

Strategy

We can find the radius of curvature r directly from the equation r = mv
qB , since all other quantities in it are given or known.

Solution

Using known values for the mass and charge of an electron, along with the given values of v and B gives us

(22.8)

r = mv
qB =

⎛
⎝9.11×10−31 kg⎞⎠

⎛
⎝6.00×107 m/s⎞⎠

⎛
⎝1.60×10−19 C⎞⎠(0.500 T)

= 6.83×10−4 m
or

(22.9)r = 0.683 mm.
Discussion

The small radius indicates a large effect. The electrons in the TV picture tube are made to move in very tight circles, greatly
altering their paths and distorting the image.

Figure 22.22 shows how electrons not moving perpendicular to magnetic field lines follow the field lines. The component of
velocity parallel to the lines is unaffected, and so the charges spiral along the field lines. If field strength increases in the direction
of motion, the field will exert a force to slow the charges, forming a kind of magnetic mirror, as shown below.
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Figure 22.22 When a charged particle moves along a magnetic field line into a region where the field becomes stronger, the particle experiences a
force that reduces the component of velocity parallel to the field. This force slows the motion along the field line and here reverses it, forming a
“magnetic mirror.”

The properties of charged particles in magnetic fields are related to such different things as the Aurora Australis or Aurora
Borealis and particle accelerators. Charged particles approaching magnetic field lines may get trapped in spiral orbits about the
lines rather than crossing them, as seen above. Some cosmic rays, for example, follow the Earth’s magnetic field lines, entering
the atmosphere near the magnetic poles and causing the southern or northern lights through their ionization of molecules in the
atmosphere. This glow of energized atoms and molecules is seen in Figure 22.1. Those particles that approach middle latitudes
must cross magnetic field lines, and many are prevented from penetrating the atmosphere. Cosmic rays are a component of
background radiation; consequently, they give a higher radiation dose at the poles than at the equator.

Figure 22.23 Energetic electrons and protons, components of cosmic rays, from the Sun and deep outer space often follow the Earth’s magnetic field
lines rather than cross them. (Recall that the Earth’s north magnetic pole is really a south pole in terms of a bar magnet.)

Some incoming charged particles become trapped in the Earth’s magnetic field, forming two belts above the atmosphere known
as the Van Allen radiation belts after the discoverer James A. Van Allen, an American astrophysicist. (See Figure 22.24.)
Particles trapped in these belts form radiation fields (similar to nuclear radiation) so intense that piloted space flights avoid them
and satellites with sensitive electronics are kept out of them. In the few minutes it took lunar missions to cross the Van Allen
radiation belts, astronauts received radiation doses more than twice the allowed annual exposure for radiation workers. Other
planets have similar belts, especially those having strong magnetic fields like Jupiter.
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Figure 22.24 The Van Allen radiation belts are two regions in which energetic charged particles are trapped in the Earth’s magnetic field. One belt lies
about 300 km above the Earth’s surface, the other about 16,000 km. Charged particles in these belts migrate along magnetic field lines and are
partially reflected away from the poles by the stronger fields there. The charged particles that enter the atmosphere are replenished by the Sun and
sources in deep outer space.

Back on Earth, we have devices that employ magnetic fields to contain charged particles. Among them are the giant particle
accelerators that have been used to explore the substructure of matter. (See Figure 22.25.) Magnetic fields not only control the
direction of the charged particles, they also are used to focus particles into beams and overcome the repulsion of like charges in
these beams.

Figure 22.25 The Fermilab facility in Illinois has a large particle accelerator (the most powerful in the world until 2008) that employs magnetic fields
(magnets seen here in orange) to contain and direct its beam. This and other accelerators have been in use for several decades and have allowed us
to discover some of the laws underlying all matter. (credit: ammcrim, Flickr)

Thermonuclear fusion (like that occurring in the Sun) is a hope for a future clean energy source. One of the most promising
devices is the tokamak, which uses magnetic fields to contain (or trap) and direct the reactive charged particles. (See Figure
22.26.) Less exotic, but more immediately practical, amplifiers in microwave ovens use a magnetic field to contain oscillating
electrons. These oscillating electrons generate the microwaves sent into the oven.
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Figure 22.26 Tokamaks such as the one shown in the figure are being studied with the goal of economical production of energy by nuclear fusion.
Magnetic fields in the doughnut-shaped device contain and direct the reactive charged particles. (credit: David Mellis, Flickr)

Mass spectrometers have a variety of designs, and many use magnetic fields to measure mass. The curvature of a charged
particle’s path in the field is related to its mass and is measured to obtain mass information. (See More Applications of
Magnetism.) Historically, such techniques were employed in the first direct observations of electron charge and mass. Today,
mass spectrometers (sometimes coupled with gas chromatographs) are used to determine the make-up and sequencing of large
biological molecules.

22.6 The Hall Effect

We have seen effects of a magnetic field on free-moving charges. The magnetic field also affects charges moving in a conductor.
One result is the Hall effect, which has important implications and applications.

Figure 22.27 shows what happens to charges moving through a conductor in a magnetic field. The field is perpendicular to the
electron drift velocity and to the width of the conductor. Note that conventional current is to the right in both parts of the figure. In
part (a), electrons carry the current and move to the left. In part (b), positive charges carry the current and move to the right.
Moving electrons feel a magnetic force toward one side of the conductor, leaving a net positive charge on the other side. This
separation of charge creates a voltage ε , known as the Hall emf, across the conductor. The creation of a voltage across a

current-carrying conductor by a magnetic field is known as the Hall effect, after Edwin Hall, the American physicist who
discovered it in 1879.

Figure 22.27 The Hall effect. (a) Electrons move to the left in this flat conductor (conventional current to the right). The magnetic field is directly out of
the page, represented by circled dots; it exerts a force on the moving charges, causing a voltage ε , the Hall emf, across the conductor. (b) Positive

charges moving to the right (conventional current also to the right) are moved to the side, producing a Hall emf of the opposite sign, –ε . Thus, if the

direction of the field and current are known, the sign of the charge carriers can be determined from the Hall effect.

One very important use of the Hall effect is to determine whether positive or negative charges carries the current. Note that in
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Figure 22.27(b), where positive charges carry the current, the Hall emf has the sign opposite to when negative charges carry the
current. Historically, the Hall effect was used to show that electrons carry current in metals and it also shows that positive
charges carry current in some semiconductors. The Hall effect is used today as a research tool to probe the movement of
charges, their drift velocities and densities, and so on, in materials. In 1980, it was discovered that the Hall effect is quantized, an
example of quantum behavior in a macroscopic object.

The Hall effect has other uses that range from the determination of blood flow rate to precision measurement of magnetic field
strength. To examine these quantitatively, we need an expression for the Hall emf, ε , across a conductor. Consider the balance

of forces on a moving charge in a situation where B , v , and l are mutually perpendicular, such as shown in Figure 22.28.

Although the magnetic force moves negative charges to one side, they cannot build up without limit. The electric field caused by
their separation opposes the magnetic force, F = qvB , and the electric force, Fe = qE , eventually grows to equal it. That is,

(22.10)qE = qvB

or

(22.11)E = vB.

Note that the electric field E is uniform across the conductor because the magnetic field B is uniform, as is the conductor. For

a uniform electric field, the relationship between electric field and voltage is E = ε / l , where l is the width of the conductor and

ε is the Hall emf. Entering this into the last expression gives

(22.12)ε
l = vB.

Solving this for the Hall emf yields

(22.13)ε = Blv (B, v, and l, mutually perpendicular),

where ε is the Hall effect voltage across a conductor of width l through which charges move at a speed v .

Figure 22.28 The Hall emf ε produces an electric force that balances the magnetic force on the moving charges. The magnetic force produces

charge separation, which builds up until it is balanced by the electric force, an equilibrium that is quickly reached.

One of the most common uses of the Hall effect is in the measurement of magnetic field strength B . Such devices, called Hall

probes, can be made very small, allowing fine position mapping. Hall probes can also be made very accurate, usually
accomplished by careful calibration. Another application of the Hall effect is to measure fluid flow in any fluid that has free
charges (most do). (See Figure 22.29.) A magnetic field applied perpendicular to the flow direction produces a Hall emf ε as

shown. Note that the sign of ε depends not on the sign of the charges, but only on the directions of B and v . The magnitude

of the Hall emf is ε = Blv , where l is the pipe diameter, so that the average velocity v can be determined from ε providing

the other factors are known.
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Figure 22.29 The Hall effect can be used to measure fluid flow in any fluid having free charges, such as blood. The Hall emf ε is measured across

the tube perpendicular to the applied magnetic field and is proportional to the average velocity v .

Example 22.3 Calculating the Hall emf: Hall Effect for Blood Flow

A Hall effect flow probe is placed on an artery, applying a 0.100-T magnetic field across it, in a setup similar to that in Figure
22.29. What is the Hall emf, given the vessel’s inside diameter is 4.00 mm and the average blood velocity is 20.0 cm/s?

Strategy

Because B , v , and l are mutually perpendicular, the equation ε = Blv can be used to find ε .

Solution

Entering the given values for B , v , and l gives

(22.14)ε = Blv = (0.100 T)⎛⎝4.00×10−3 m⎞⎠(0.200 m/s)
= 80.0 μV

Discussion

This is the average voltage output. Instantaneous voltage varies with pulsating blood flow. The voltage is small in this type of
measurement. ε is particularly difficult to measure, because there are voltages associated with heart action (ECG voltages)

that are on the order of millivolts. In practice, this difficulty is overcome by applying an AC magnetic field, so that the Hall emf
is AC with the same frequency. An amplifier can be very selective in picking out only the appropriate frequency, eliminating
signals and noise at other frequencies.

22.7 Magnetic Force on a Current-Carrying Conductor

Because charges ordinarily cannot escape a conductor, the magnetic force on charges moving in a conductor is transmitted to
the conductor itself.

Figure 22.30 The magnetic field exerts a force on a current-carrying wire in a direction given by the right hand rule 1 (the same direction as that on the
individual moving charges). This force can easily be large enough to move the wire, since typical currents consist of very large numbers of moving
charges.

We can derive an expression for the magnetic force on a current by taking a sum of the magnetic forces on individual charges.
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(The forces add because they are in the same direction.) The force on an individual charge moving at the drift velocity vd is

given by F = qvdB sin θ . Taking B to be uniform over a length of wire l and zero elsewhere, the total magnetic force on the

wire is then F = (qvdB sin θ)(N) , where N is the number of charge carriers in the section of wire of length l . Now,

N = nV , where n is the number of charge carriers per unit volume and V is the volume of wire in the field. Noting that

V = Al , where A is the cross-sectional area of the wire, then the force on the wire is F = (qvdB sin θ)(nAl) . Gathering

terms,

(22.15)F = (nqAvd)lB sin θ.

Because nqAvd = I (see Current),

(22.16)F = IlB sin θ

is the equation for magnetic force on a length l of wire carrying a current I in a uniform magnetic field B , as shown in Figure

22.31. If we divide both sides of this expression by l , we find that the magnetic force per unit length of wire in a uniform field is

F
l = IB sin θ . The direction of this force is given by RHR-1, with the thumb in the direction of the current I . Then, with the

fingers in the direction of B , a perpendicular to the palm points in the direction of F , as in Figure 22.31.

Figure 22.31 The force on a current-carrying wire in a magnetic field is F = IlB sin θ . Its direction is given by RHR-1.

Example 22.4 Calculating Magnetic Force on a Current-Carrying Wire: A Strong Magnetic Field

Calculate the force on the wire shown in Figure 22.30, given B = 1.50 T , l = 5.00 cm , and I = 20.0 A .

Strategy

The force can be found with the given information by using F = IlB sin θ and noting that the angle θ between I and B
is 90º , so that sin θ = 1 .

Solution

Entering the given values into F = IlB sin θ yields

(22.17)F = IlB sin θ = (20.0 A)(0.0500 m)(1.50 T)(1).

The units for tesla are 1 T = N
A ⋅ m ; thus,

(22.18)F = 1.50 N.
Discussion

This large magnetic field creates a significant force on a small length of wire.

Magnetic force on current-carrying conductors is used to convert electric energy to work. (Motors are a prime example—they
employ loops of wire and are considered in the next section.) Magnetohydrodynamics (MHD) is the technical name given to a
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clever application where magnetic force pumps fluids without moving mechanical parts. (See Figure 22.32.)

Figure 22.32 Magnetohydrodynamics. The magnetic force on the current passed through this fluid can be used as a nonmechanical pump.

A strong magnetic field is applied across a tube and a current is passed through the fluid at right angles to the field, resulting in a
force on the fluid parallel to the tube axis as shown. The absence of moving parts makes this attractive for moving a hot,
chemically active substance, such as the liquid sodium employed in some nuclear reactors. Experimental artificial hearts are
testing with this technique for pumping blood, perhaps circumventing the adverse effects of mechanical pumps. (Cell
membranes, however, are affected by the large fields needed in MHD, delaying its practical application in humans.) MHD
propulsion for nuclear submarines has been proposed, because it could be considerably quieter than conventional propeller
drives. The deterrent value of nuclear submarines is based on their ability to hide and survive a first or second nuclear strike. As
we slowly disassemble our nuclear weapons arsenals, the submarine branch will be the last to be decommissioned because of
this ability (See Figure 22.33.) Existing MHD drives are heavy and inefficient—much development work is needed.

Figure 22.33 An MHD propulsion system in a nuclear submarine could produce significantly less turbulence than propellers and allow it to run more
silently. The development of a silent drive submarine was dramatized in the book and the film The Hunt for Red October.

22.8 Torque on a Current Loop: Motors and Meters

Motors are the most common application of magnetic force on current-carrying wires. Motors have loops of wire in a magnetic
field. When current is passed through the loops, the magnetic field exerts torque on the loops, which rotates a shaft. Electrical
energy is converted to mechanical work in the process. (See Figure 22.34.)
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Figure 22.34 Torque on a current loop. A current-carrying loop of wire attached to a vertically rotating shaft feels magnetic forces that produce a
clockwise torque as viewed from above.

Let us examine the force on each segment of the loop in Figure 22.34 to find the torques produced about the axis of the vertical
shaft. (This will lead to a useful equation for the torque on the loop.) We take the magnetic field to be uniform over the
rectangular loop, which has width w and height l . First, we note that the forces on the top and bottom segments are vertical

and, therefore, parallel to the shaft, producing no torque. Those vertical forces are equal in magnitude and opposite in direction,
so that they also produce no net force on the loop. Figure 22.35 shows views of the loop from above. Torque is defined as
τ = rF sin θ , where F is the force, r is the distance from the pivot that the force is applied, and θ is the angle between r
and F . As seen in Figure 22.35(a), right hand rule 1 gives the forces on the sides to be equal in magnitude and opposite in

direction, so that the net force is again zero. However, each force produces a clockwise torque. Since r = w / 2 , the torque on

each vertical segment is (w / 2)F sin θ , and the two add to give a total torque.

(22.19)τ = w
2 F sin θ + w

2 F sin θ = wF sin θ
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Figure 22.35 Top views of a current-carrying loop in a magnetic field. (a) The equation for torque is derived using this view. Note that the perpendicular

to the loop makes an angle θ with the field that is the same as the angle between w / 2 and F . (b) The maximum torque occurs when θ is a right

angle and sin θ = 1 . (c) Zero (minimum) torque occurs when θ is zero and sin θ = 0 . (d) The torque reverses once the loop rotates past

θ = 0 .

Now, each vertical segment has a length l that is perpendicular to B , so that the force on each is F = IlB . Entering F into

the expression for torque yields

(22.20)τ = wIlB sin θ.

If we have a multiple loop of N turns, we get N times the torque of one loop. Finally, note that the area of the loop is A = wl ;

the expression for the torque becomes

(22.21)τ = NIAB sin θ.
This is the torque on a current-carrying loop in a uniform magnetic field. This equation can be shown to be valid for a loop of any
shape. The loop carries a current I , has N turns, each of area A , and the perpendicular to the loop makes an angle θ with

the field B . The net force on the loop is zero.

Example 22.5 Calculating Torque on a Current-Carrying Loop in a Strong Magnetic Field

Find the maximum torque on a 100-turn square loop of a wire of 10.0 cm on a side that carries 15.0 A of current in a 2.00-T
field.

Strategy

Torque on the loop can be found using τ = NIAB sin θ . Maximum torque occurs when θ = 90º and sin θ = 1 .

Solution
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For sin θ = 1 , the maximum torque is

(22.22)τmax = NIAB.

Entering known values yields

(22.23)τmax = (100)(15.0 A)⎛⎝0.100 m2⎞⎠(2.00 T)
= 30.0 N ⋅ m.

Discussion

This torque is large enough to be useful in a motor.

The torque found in the preceding example is the maximum. As the coil rotates, the torque decreases to zero at θ = 0 . The

torque then reverses its direction once the coil rotates past θ = 0 . (See Figure 22.35(d).) This means that, unless we do

something, the coil will oscillate back and forth about equilibrium at θ = 0 . To get the coil to continue rotating in the same

direction, we can reverse the current as it passes through θ = 0 with automatic switches called brushes. (See Figure 22.36.)

Figure 22.36 (a) As the angular momentum of the coil carries it through θ = 0 , the brushes reverse the current to keep the torque clockwise. (b) The

coil will rotate continuously in the clockwise direction, with the current reversing each half revolution to maintain the clockwise torque.

Meters, such as those in analog fuel gauges on a car, are another common application of magnetic torque on a current-carrying
loop. Figure 22.37 shows that a meter is very similar in construction to a motor. The meter in the figure has its magnets shaped
to limit the effect of θ by making B perpendicular to the loop over a large angular range. Thus the torque is proportional to I
and not θ . A linear spring exerts a counter-torque that balances the current-produced torque. This makes the needle deflection

proportional to I . If an exact proportionality cannot be achieved, the gauge reading can be calibrated. To produce a

galvanometer for use in analog voltmeters and ammeters that have a low resistance and respond to small currents, we use a
large loop area A , high magnetic field B , and low-resistance coils.
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Figure 22.37 Meters are very similar to motors but only rotate through a part of a revolution. The magnetic poles of this meter are shaped to keep the

component of B perpendicular to the loop constant, so that the torque does not depend on θ and the deflection against the return spring is

proportional only to the current I .

22.9 Magnetic Fields Produced by Currents: Ampere’s Law

How much current is needed to produce a significant magnetic field, perhaps as strong as the Earth’s field? Surveyors will tell
you that overhead electric power lines create magnetic fields that interfere with their compass readings. Indeed, when Oersted
discovered in 1820 that a current in a wire affected a compass needle, he was not dealing with extremely large currents. How
does the shape of wires carrying current affect the shape of the magnetic field created? We noted earlier that a current loop
created a magnetic field similar to that of a bar magnet, but what about a straight wire or a toroid (doughnut)? How is the
direction of a current-created field related to the direction of the current? Answers to these questions are explored in this section,
together with a brief discussion of the law governing the fields created by currents.

Magnetic Field Created by a Long Straight Current-Carrying Wire: Right Hand Rule 2

Magnetic fields have both direction and magnitude. As noted before, one way to explore the direction of a magnetic field is with
compasses, as shown for a long straight current-carrying wire in Figure 22.38. Hall probes can determine the magnitude of the
field. The field around a long straight wire is found to be in circular loops. The right hand rule 2 (RHR-2) emerges from this
exploration and is valid for any current segment—point the thumb in the direction of the current, and the fingers curl in the
direction of the magnetic field loops created by it.
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Figure 22.38 (a) Compasses placed near a long straight current-carrying wire indicate that field lines form circular loops centered on the wire. (b) Right
hand rule 2 states that, if the right hand thumb points in the direction of the current, the fingers curl in the direction of the field. This rule is consistent
with the field mapped for the long straight wire and is valid for any current segment.

The magnetic field strength (magnitude) produced by a long straight current-carrying wire is found by experiment to be

(22.24)
B = μ0 I

2πr (long straight wire),

where I is the current, r is the shortest distance to the wire, and the constant μ0 = 4π × 10−7 T ⋅ m/A is the permeability

of free space. (μ0 is one of the basic constants in nature. We will see later that μ0 is related to the speed of light.) Since the

wire is very long, the magnitude of the field depends only on distance from the wire r , not on position along the wire.

Example 22.6 Calculating Current that Produces a Magnetic Field

Find the current in a long straight wire that would produce a magnetic field twice the strength of the Earth’s at a distance of
5.0 cm from the wire.

Strategy

The Earth’s field is about 5.0×10−5 T , and so here B due to the wire is taken to be 1.0×10−4 T . The equation

B = μ0 I
2πr can be used to find I , since all other quantities are known.

Solution

Solving for I and entering known values gives

(22.25)

I = 2πrB
μ0

=
2π⎛⎝5.0×10−2 m⎞⎠

⎛
⎝1.0×10−4 T⎞⎠

4π×10−7 T ⋅ m/A
= 25 A.

Discussion

So a moderately large current produces a significant magnetic field at a distance of 5.0 cm from a long straight wire. Note
that the answer is stated to only two digits, since the Earth’s field is specified to only two digits in this example.
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Ampere’s Law and Others

The magnetic field of a long straight wire has more implications than you might at first suspect. Each segment of current
produces a magnetic field like that of a long straight wire, and the total field of any shape current is the vector sum of the fields
due to each segment. The formal statement of the direction and magnitude of the field due to each segment is called the Biot-
Savart law. Integral calculus is needed to sum the field for an arbitrary shape current. This results in a more complete law, called
Ampere’s law, which relates magnetic field and current in a general way. Ampere’s law in turn is a part of Maxwell’s equations,
which give a complete theory of all electromagnetic phenomena. Considerations of how Maxwell’s equations appear to different
observers led to the modern theory of relativity, and the realization that electric and magnetic fields are different manifestations of
the same thing. Most of this is beyond the scope of this text in both mathematical level, requiring calculus, and in the amount of
space that can be devoted to it. But for the interested student, and particularly for those who continue in physics, engineering, or
similar pursuits, delving into these matters further will reveal descriptions of nature that are elegant as well as profound. In this
text, we shall keep the general features in mind, such as RHR-2 and the rules for magnetic field lines listed in Magnetic Fields
and Magnetic Field Lines, while concentrating on the fields created in certain important situations.

Making Connections: Relativity

Hearing all we do about Einstein, we sometimes get the impression that he invented relativity out of nothing. On the contrary,
one of Einstein’s motivations was to solve difficulties in knowing how different observers see magnetic and electric fields.

Magnetic Field Produced by a Current-Carrying Circular Loop

The magnetic field near a current-carrying loop of wire is shown in Figure 22.39. Both the direction and the magnitude of the
magnetic field produced by a current-carrying loop are complex. RHR-2 can be used to give the direction of the field near the
loop, but mapping with compasses and the rules about field lines given in Magnetic Fields and Magnetic Field Lines are
needed for more detail. There is a simple formula for the magnetic field strength at the center of a circular loop. It is

(22.26)
B = μ0 I

2R (at center of loop),

where R is the radius of the loop. This equation is very similar to that for a straight wire, but it is valid only at the center of a

circular loop of wire. The similarity of the equations does indicate that similar field strength can be obtained at the center of a
loop. One way to get a larger field is to have N loops; then, the field is B = Nμ0I / (2R) . Note that the larger the loop, the

smaller the field at its center, because the current is farther away.

Figure 22.39 (a) RHR-2 gives the direction of the magnetic field inside and outside a current-carrying loop. (b) More detailed mapping with compasses
or with a Hall probe completes the picture. The field is similar to that of a bar magnet.

Magnetic Field Produced by a Current-Carrying Solenoid

A solenoid is a long coil of wire (with many turns or loops, as opposed to a flat loop). Because of its shape, the field inside a
solenoid can be very uniform, and also very strong. The field just outside the coils is nearly zero. Figure 22.40 shows how the
field looks and how its direction is given by RHR-2.
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Figure 22.40 (a) Because of its shape, the field inside a solenoid of length l is remarkably uniform in magnitude and direction, as indicated by the

straight and uniformly spaced field lines. The field outside the coils is nearly zero. (b) This cutaway shows the magnetic field generated by the current
in the solenoid.

The magnetic field inside of a current-carrying solenoid is very uniform in direction and magnitude. Only near the ends does it
begin to weaken and change direction. The field outside has similar complexities to flat loops and bar magnets, but the magnetic
field strength inside a solenoid is simply

(22.27)B = μ0nI (inside a solenoid),

where n is the number of loops per unit length of the solenoid (n = N / l , with N being the number of loops and l the

length). Note that B is the field strength anywhere in the uniform region of the interior and not just at the center. Large uniform

fields spread over a large volume are possible with solenoids, as Example 22.7 implies.

Example 22.7 Calculating Field Strength inside a Solenoid

What is the field inside a 2.00-m-long solenoid that has 2000 loops and carries a 1600-A current?

Strategy

To find the field strength inside a solenoid, we use B = μ0nI . First, we note the number of loops per unit length is

(22.28)n = N
l = 2000

2.00 m = 1000 m−1 = 10 cm−1 .

Solution

Substituting known values gives

(22.29)B = μ0nI = ⎛⎝4π×10−7 T ⋅ m/A⎞⎠
⎛
⎝1000 m−1⎞⎠(1600 A)

= 2.01 T.
Discussion

This is a large field strength that could be established over a large-diameter solenoid, such as in medical uses of magnetic
resonance imaging (MRI). The very large current is an indication that the fields of this strength are not easily achieved,
however. Such a large current through 1000 loops squeezed into a meter’s length would produce significant heating. Higher
currents can be achieved by using superconducting wires, although this is expensive. There is an upper limit to the current,
since the superconducting state is disrupted by very large magnetic fields.

There are interesting variations of the flat coil and solenoid. For example, the toroidal coil used to confine the reactive particles in
tokamaks is much like a solenoid bent into a circle. The field inside a toroid is very strong but circular. Charged particles travel in
circles, following the field lines, and collide with one another, perhaps inducing fusion. But the charged particles do not cross field
lines and escape the toroid. A whole range of coil shapes are used to produce all sorts of magnetic field shapes. Adding
ferromagnetic materials produces greater field strengths and can have a significant effect on the shape of the field.
Ferromagnetic materials tend to trap magnetic fields (the field lines bend into the ferromagnetic material, leaving weaker fields
outside it) and are used as shields for devices that are adversely affected by magnetic fields, including the Earth’s magnetic field.
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PhET Explorations: Generator

Generate electricity with a bar magnet! Discover the physics behind the phenomena by exploring magnets and how you can
use them to make a bulb light.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42382/
1.7/#Phet_module_22.9)

Figure 22.41

22.10 Magnetic Force between Two Parallel Conductors

You might expect that there are significant forces between current-carrying wires, since ordinary currents produce significant
magnetic fields and these fields exert significant forces on ordinary currents. But you might not expect that the force between
wires is used to define the ampere. It might also surprise you to learn that this force has something to do with why large circuit
breakers burn up when they attempt to interrupt large currents.

The force between two long straight and parallel conductors separated by a distance r can be found by applying what we have

developed in preceding sections. Figure 22.42 shows the wires, their currents, the fields they create, and the subsequent forces
they exert on one another. Let us consider the field produced by wire 1 and the force it exerts on wire 2 (call the force F2 ). The

field due to I1 at a distance r is given to be

(22.30)
B1 = μ0 I1

2πr .

Figure 22.42 (a) The magnetic field produced by a long straight conductor is perpendicular to a parallel conductor, as indicated by RHR-2. (b) A view
from above of the two wires shown in (a), with one magnetic field line shown for each wire. RHR-1 shows that the force between the parallel
conductors is attractive when the currents are in the same direction. A similar analysis shows that the force is repulsive between currents in opposite
directions.

This field is uniform along wire 2 and perpendicular to it, and so the force F2 it exerts on wire 2 is given by F = IlB sin θ with

sin θ = 1 :

(22.31)F2 = I2lB1.

By Newton’s third law, the forces on the wires are equal in magnitude, and so we just write F for the magnitude of F2 . (Note

that F1 = −F2 .) Since the wires are very long, it is convenient to think in terms of F / l , the force per unit length. Substituting

the expression for B1 into the last equation and rearranging terms gives

(22.32)F
l = μ0 I1 I2

2πr .

F / l is the force per unit length between two parallel currents I1 and I2 separated by a distance r . The force is attractive if

the currents are in the same direction and repulsive if they are in opposite directions.

This force is responsible for the pinch effect in electric arcs and plasmas. The force exists whether the currents are in wires or
not. In an electric arc, where currents are moving parallel to one another, there is an attraction that squeezes currents into a
smaller tube. In large circuit breakers, like those used in neighborhood power distribution systems, the pinch effect can
concentrate an arc between plates of a switch trying to break a large current, burn holes, and even ignite the equipment. Another
example of the pinch effect is found in the solar plasma, where jets of ionized material, such as solar flares, are shaped by
magnetic forces.

The operational definition of the ampere is based on the force between current-carrying wires. Note that for parallel wires
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separated by 1 meter with each carrying 1 ampere, the force per meter is

(22.33)
F
l =

⎛
⎝4π×10−7 T ⋅ m/A⎞⎠(1 A)2

(2π)(1 m) = 2×10−7 N/m.

Since μ0 is exactly 4π×10−7 T ⋅ m/A by definition, and because 1 T = 1 N/(A ⋅ m) , the force per meter is exactly

2×10−7 N/m . This is the basis of the operational definition of the ampere.

The Ampere

The official definition of the ampere is:

One ampere of current through each of two parallel conductors of infinite length, separated by one meter in empty space

free of other magnetic fields, causes a force of exactly 2×10−7 N/m on each conductor.

Infinite-length straight wires are impractical and so, in practice, a current balance is constructed with coils of wire separated by a
few centimeters. Force is measured to determine current. This also provides us with a method for measuring the coulomb. We
measure the charge that flows for a current of one ampere in one second. That is, 1 C = 1 A ⋅ s . For both the ampere and the

coulomb, the method of measuring force between conductors is the most accurate in practice.

22.11 More Applications of Magnetism

Mass Spectrometry

The curved paths followed by charged particles in magnetic fields can be put to use. A charged particle moving perpendicular to
a magnetic field travels in a circular path having a radius r .

(22.34)r = mv
qB

It was noted that this relationship could be used to measure the mass of charged particles such as ions. A mass spectrometer is
a device that measures such masses. Most mass spectrometers use magnetic fields for this purpose, although some of them
have extremely sophisticated designs. Since there are five variables in the relationship, there are many possibilities. However, if
v , q , and B can be fixed, then the radius of the path r is simply proportional to the mass m of the charged particle. Let us

examine one such mass spectrometer that has a relatively simple design. (See Figure 22.43.) The process begins with an ion
source, a device like an electron gun. The ion source gives ions their charge, accelerates them to some velocity v , and directs a

beam of them into the next stage of the spectrometer. This next region is a velocity selector that only allows particles with a
particular value of v to get through.
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Figure 22.43 This mass spectrometer uses a velocity selector to fix v so that the radius of the path is proportional to mass.

The velocity selector has both an electric field and a magnetic field, perpendicular to one another, producing forces in opposite
directions on the ions. Only those ions for which the forces balance travel in a straight line into the next region. If the forces
balance, then the electric force F = qE equals the magnetic force F = qvB , so that qE = qvB . Noting that q cancels, we

see that

(22.35)v = E
B

is the velocity particles must have to make it through the velocity selector, and further, that v can be selected by varying E and

B . In the final region, there is only a uniform magnetic field, and so the charged particles move in circular arcs with radii

proportional to particle mass. The paths also depend on charge q , but since q is in multiples of electron charges, it is easy to

determine and to discriminate between ions in different charge states.

Mass spectrometry today is used extensively in chemistry and biology laboratories to identify chemical and biological substances
according to their mass-to-charge ratios. In medicine, mass spectrometers are used to measure the concentration of isotopes
used as tracers. Usually, biological molecules such as proteins are very large, so they are broken down into smaller fragments
before analyzing. Recently, large virus particles have been analyzed as a whole on mass spectrometers. Sometimes a gas
chromatograph or high-performance liquid chromatograph provides an initial separation of the large molecules, which are then
input into the mass spectrometer.

Cathode Ray Tubes—CRTs—and the Like

What do non-flat-screen TVs, old computer monitors, x-ray machines, and the 2-mile-long Stanford Linear Accelerator have in
common? All of them accelerate electrons, making them different versions of the electron gun. Many of these devices use
magnetic fields to steer the accelerated electrons. Figure 22.44 shows the construction of the type of cathode ray tube (CRT)
found in some TVs, oscilloscopes, and old computer monitors. Two pairs of coils are used to steer the electrons, one vertically
and the other horizontally, to their desired destination.
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Figure 22.44 The cathode ray tube (CRT) is so named because rays of electrons originate at the cathode in the electron gun. Magnetic coils are used
to steer the beam in many CRTs. In this case, the beam is moved down. Another pair of horizontal coils would steer the beam horizontally.

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the most useful and rapidly growing medical imaging tools. It non-invasively
produces two-dimensional and three-dimensional images of the body that provide important medical information with none of the
hazards of x-rays. MRI is based on an effect called nuclear magnetic resonance (NMR) in which an externally applied
magnetic field interacts with the nuclei of certain atoms, particularly those of hydrogen (protons). These nuclei possess their own
small magnetic fields, similar to those of electrons and the current loops discussed earlier in this chapter.

When placed in an external magnetic field, such nuclei experience a torque that pushes or aligns the nuclei into one of two new
energy states—depending on the orientation of its spin (analogous to the N pole and S pole in a bar magnet). Transitions from
the lower to higher energy state can be achieved by using an external radio frequency signal to “flip” the orientation of the small
magnets. (This is actually a quantum mechanical process. The direction of the nuclear magnetic field is quantized as is energy in
the radio waves. We will return to these topics in later chapters.) The specific frequency of the radio waves that are absorbed and
reemitted depends sensitively on the type of nucleus, the chemical environment, and the external magnetic field strength.
Therefore, this is a resonance phenomenon in which nuclei in a magnetic field act like resonators (analogous to those discussed
in the treatment of sound in Oscillatory Motion and Waves) that absorb and reemit only certain frequencies. Hence, the
phenomenon is named nuclear magnetic resonance (NMR).

NMR has been used for more than 50 years as an analytical tool. It was formulated in 1946 by F. Bloch and E. Purcell, with the
1952 Nobel Prize in Physics going to them for their work. Over the past two decades, NMR has been developed to produce
detailed images in a process now called magnetic resonance imaging (MRI), a name coined to avoid the use of the word
“nuclear” and the concomitant implication that nuclear radiation is involved. (It is not.) The 2003 Nobel Prize in Medicine went to
P. Lauterbur and P. Mansfield for their work with MRI applications.

The largest part of the MRI unit is a superconducting magnet that creates a magnetic field, typically between 1 and 2 T in
strength, over a relatively large volume. MRI images can be both highly detailed and informative about structures and organ
functions. It is helpful that normal and non-normal tissues respond differently for slight changes in the magnetic field. In most
medical images, the protons that are hydrogen nuclei are imaged. (About 2/3 of the atoms in the body are hydrogen.) Their
location and density give a variety of medically useful information, such as organ function, the condition of tissue (as in the
brain), and the shape of structures, such as vertebral disks and knee-joint surfaces. MRI can also be used to follow the
movement of certain ions across membranes, yielding information on active transport, osmosis, dialysis, and other phenomena.
With excellent spatial resolution, MRI can provide information about tumors, strokes, shoulder injuries, infections, etc.

An image requires position information as well as the density of a nuclear type (usually protons). By varying the magnetic field
slightly over the volume to be imaged, the resonant frequency of the protons is made to vary with position. Broadcast radio
frequencies are swept over an appropriate range and nuclei absorb and reemit them only if the nuclei are in a magnetic field with
the correct strength. The imaging receiver gathers information through the body almost point by point, building up a tissue map.
The reception of reemitted radio waves as a function of frequency thus gives position information. These “slices” or cross
sections through the body are only several mm thick. The intensity of the reemitted radio waves is proportional to the
concentration of the nuclear type being flipped, as well as information on the chemical environment in that area of the body.
Various techniques are available for enhancing contrast in images and for obtaining more information. Scans called T1, T2, or
proton density scans rely on different relaxation mechanisms of nuclei. Relaxation refers to the time it takes for the protons to
return to equilibrium after the external field is turned off. This time depends upon tissue type and status (such as inflammation).

While MRI images are superior to x rays for certain types of tissue and have none of the hazards of x rays, they do not
completely supplant x-ray images. MRI is less effective than x rays for detecting breaks in bone, for example, and in imaging
breast tissue, so the two diagnostic tools complement each other. MRI images are also expensive compared to simple x-ray
images and tend to be used most often where they supply information not readily obtained from x rays. Another disadvantage of
MRI is that the patient is totally enclosed with detectors close to the body for about 30 minutes or more, leading to
claustrophobia. It is also difficult for the obese patient to be in the magnet tunnel. New “open-MRI” machines are now available in
which the magnet does not completely surround the patient.

Over the last decade, the development of much faster scans, called “functional MRI” (fMRI), has allowed us to map the
functioning of various regions in the brain responsible for thought and motor control. This technique measures the change in
blood flow for activities (thought, experiences, action) in the brain. The nerve cells increase their consumption of oxygen when
active. Blood hemoglobin releases oxygen to active nerve cells and has somewhat different magnetic properties when
oxygenated than when deoxygenated. With MRI, we can measure this and detect a blood oxygen-dependent signal. Most of the
brain scans today use fMRI.
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Ampere’s law:

B-field:

Biot-Savart law:

Curie temperature:

direction of magnetic field lines:

domains:

electromagnet:

electromagnetism:

ferromagnetic:

gauss:

Hall effect:

Hall emf:

Lorentz force:

magnetic field:

magnetic field lines:

Other Medical Uses of Magnetic Fields

Currents in nerve cells and the heart create magnetic fields like any other currents. These can be measured but with some

difficulty since their strengths are about 10−6 to 10−8 less than the Earth’s magnetic field. Recording of the heart’s magnetic

field as it beats is called a magnetocardiogram (MCG), while measurements of the brain’s magnetic field is called a
magnetoencephalogram (MEG). Both give information that differs from that obtained by measuring the electric fields of these
organs (ECGs and EEGs), but they are not yet of sufficient importance to make these difficult measurements common.

In both of these techniques, the sensors do not touch the body. MCG can be used in fetal studies, and is probably more sensitive
than echocardiography. MCG also looks at the heart’s electrical activity whose voltage output is too small to be recorded by
surface electrodes as in EKG. It has the potential of being a rapid scan for early diagnosis of cardiac ischemia (obstruction of
blood flow to the heart) or problems with the fetus.

MEG can be used to identify abnormal electrical discharges in the brain that produce weak magnetic signals. Therefore, it looks
at brain activity, not just brain structure. It has been used for studies of Alzheimer’s disease and epilepsy. Advances in
instrumentation to measure very small magnetic fields have allowed these two techniques to be used more in recent years. What
is used is a sensor called a SQUID, for superconducting quantum interference device. This operates at liquid helium
temperatures and can measure magnetic fields thousands of times smaller than the Earth’s.

Finally, there is a burgeoning market for magnetic cures in which magnets are applied in a variety of ways to the body, from
magnetic bracelets to magnetic mattresses. The best that can be said for such practices is that they are apparently harmless,
unless the magnets get close to the patient’s computer or magnetic storage disks. Claims are made for a broad spectrum of
benefits from cleansing the blood to giving the patient more energy, but clinical studies have not verified these claims, nor is
there an identifiable mechanism by which such benefits might occur.

PhET Explorations: Magnet and Compass

Ever wonder how a compass worked to point you to the Arctic? Explore the interactions between a compass and bar
magnet, and then add the Earth and find the surprising answer! Vary the magnet's strength, and see how things change both
inside and outside. Use the field meter to measure how the magnetic field changes.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42388/1.8/#eip-
idm1340308352)

Figure 22.45

Glossary

the physical law that states that the magnetic field around an electric current is proportional to the current;
each segment of current produces a magnetic field like that of a long straight wire, and the total field of any shape
current is the vector sum of the fields due to each segment

another term for magnetic field

a physical law that describes the magnetic field generated by an electric current in terms of a specific
equation

the temperature above which a ferromagnetic material cannot be magnetized

the direction that the north end of a compass needle points

regions within a material that behave like small bar magnets

an object that is temporarily magnetic when an electrical current is passed through it

the use of electrical currents to induce magnetism

materials, such as iron, cobalt, nickel, and gadolinium, that exhibit strong magnetic effects

G, the unit of the magnetic field strength; 1 G = 10–4 T

the creation of voltage across a current-carrying conductor by a magnetic field

the electromotive force created by a current-carrying conductor by a magnetic field, ε = Blv

the force on a charge moving in a magnetic field

the representation of magnetic forces

the pictorial representation of the strength and the direction of a magnetic field
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magnetic field strength (magnitude) produced by a long straight current-carrying wire:

magnetic field strength at the center of a circular loop:

magnetic field strength inside a solenoid:

magnetic force:

magnetic monopoles:

magnetic resonance imaging (MRI):

magnetized:

magnetocardiogram (MCG):

magnetoencephalogram (MEG):

Maxwell’s equations:

meter:

motor:

north magnetic pole:

nuclear magnetic resonance (NMR):

permeability of free space:

right hand rule 1 (RHR-1):

right hand rule 2 (RHR-2):

solenoid:

south magnetic pole:

tesla:

defined as B = μ0 I
2πr , where I

is the current, r is the shortest distance to the wire, and μ0 is the permeability of free space

defined as B = μ0 I
2R where R is the radius of the loop

defined as B = μ0nI where n is the number of loops per unit length of the

solenoid (n = N / l , with N being the number of loops and l the length)

the force on a charge produced by its motion through a magnetic field; the Lorentz force

an isolated magnetic pole; a south pole without a north pole, or vice versa (no magnetic monopole has
ever been observed)

a medical imaging technique that uses magnetic fields create detailed images of
internal tissues and organs

to be turned into a magnet; to be induced to be magnetic

a recording of the heart’s magnetic field as it beats

a measurement of the brain’s magnetic field

a set of four equations that describe electromagnetic phenomena

common application of magnetic torque on a current-carrying loop that is very similar in construction to a motor; by
design, the torque is proportional to I and not θ , so the needle deflection is proportional to the current

loop of wire in a magnetic field; when current is passed through the loops, the magnetic field exerts torque on the
loops, which rotates a shaft; electrical energy is converted to mechanical work in the process

the end or the side of a magnet that is attracted toward Earth’s geographic north pole

a phenomenon in which an externally applied magnetic field interacts with the nuclei of
certain atoms

the measure of the ability of a material, in this case free space, to support a magnetic field; the

constant μ0 = 4π×10−7 T ⋅ m/A

the rule to determine the direction of the magnetic force on a positive moving charge: when the
thumb of the right hand points in the direction of the charge’s velocity v and the fingers point in the direction of the

magnetic field B , then the force on the charge is perpendicular and away from the palm; the force on a negative charge

is perpendicular and into the palm

a rule to determine the direction of the magnetic field induced by a current-carrying wire: Point the
thumb of the right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops

a thin wire wound into a coil that produces a magnetic field when an electric current is passed through it

the end or the side of a magnet that is attracted toward Earth’s geographic south pole

T, the SI unit of the magnetic field strength; 1 T = 1 N
A ⋅ m

Section Summary

22.1 Magnets
• Magnetism is a subject that includes the properties of magnets, the effect of the magnetic force on moving charges and

currents, and the creation of magnetic fields by currents.
• There are two types of magnetic poles, called the north magnetic pole and south magnetic pole.
• North magnetic poles are those that are attracted toward the Earth’s geographic north pole.
• Like poles repel and unlike poles attract.
• Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.
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22.2 Ferromagnets and Electromagnets
• Magnetic poles always occur in pairs of north and south—it is not possible to isolate north and south poles.
• All magnetism is created by electric current.
• Ferromagnetic materials, such as iron, are those that exhibit strong magnetic effects.
• The atoms in ferromagnetic materials act like small magnets (due to currents within the atoms) and can be aligned, usually

in millimeter-sized regions called domains.
• Domains can grow and align on a larger scale, producing permanent magnets. Such a material is magnetized, or induced

to be magnetic.
• Above a material’s Curie temperature, thermal agitation destroys the alignment of atoms, and ferromagnetism disappears.
• Electromagnets employ electric currents to make magnetic fields, often aided by induced fields in ferromagnetic materials.

22.3 Magnetic Fields and Magnetic Field Lines
• Magnetic fields can be pictorially represented by magnetic field lines, the properties of which are as follows:

1. The field is tangent to the magnetic field line.

2. Field strength is proportional to the line density.

3. Field lines cannot cross.

4. Field lines are continuous loops.

22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
• Magnetic fields exert a force on a moving charge q, the magnitude of which is

F = qvB sin θ,
where θ is the angle between the directions of v and B .

• The SI unit for magnetic field strength B is the tesla (T), which is related to other units by

1 T = 1 N
C ⋅ m/s = 1 N

A ⋅ m.

• The direction of the force on a moving charge is given by right hand rule 1 (RHR-1): Point the thumb of the right hand in the
direction of v , the fingers in the direction of B , and a perpendicular to the palm points in the direction of F .

• The force is perpendicular to the plane formed by v and B . Since the force is zero if v is parallel to B , charged

particles often follow magnetic field lines rather than cross them.

22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
• Magnetic force can supply centripetal force and cause a charged particle to move in a circular path of radius

r = mv
qB,

where v is the component of the velocity perpendicular to B for a charged particle with mass m and charge q .

22.6 The Hall Effect
• The Hall effect is the creation of voltage ε , known as the Hall emf, across a current-carrying conductor by a magnetic field.

• The Hall emf is given by

ε = Blv (B, v, and l, mutually perpendicular)
for a conductor of width l through which charges move at a speed v .

22.7 Magnetic Force on a Current-Carrying Conductor
• The magnetic force on current-carrying conductors is given by

F = IlB sin θ,
where I is the current, l is the length of a straight conductor in a uniform magnetic field B , and θ is the angle between

I and B . The force follows RHR-1 with the thumb in the direction of I .

22.8 Torque on a Current Loop: Motors and Meters
• The torque τ on a current-carrying loop of any shape in a uniform magnetic field. is

τ = NIAB sin θ,
where N is the number of turns, I is the current, A is the area of the loop, B is the magnetic field strength, and θ is

the angle between the perpendicular to the loop and the magnetic field.
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22.9 Magnetic Fields Produced by Currents: Ampere’s Law
• The strength of the magnetic field created by current in a long straight wire is given by

B = μ0 I
2πr (long straight wire),

where I is the current, r is the shortest distance to the wire, and the constant μ0 = 4π × 10−7 T ⋅ m/A is the

permeability of free space.
• The direction of the magnetic field created by a long straight wire is given by right hand rule 2 (RHR-2): Point the thumb of

the right hand in the direction of current, and the fingers curl in the direction of the magnetic field loops created by it.
• The magnetic field created by current following any path is the sum (or integral) of the fields due to segments along the

path (magnitude and direction as for a straight wire), resulting in a general relationship between current and field known as
Ampere’s law.

• The magnetic field strength at the center of a circular loop is given by

B = μ0 I
2R (at center of loop),

where R is the radius of the loop. This equation becomes B = μ0nI / (2R) for a flat coil of N loops. RHR-2 gives the

direction of the field about the loop. A long coil is called a solenoid.
• The magnetic field strength inside a solenoid is

B = μ0nI (inside a solenoid),
where n is the number of loops per unit length of the solenoid. The field inside is very uniform in magnitude and direction.

22.10 Magnetic Force between Two Parallel Conductors
• The force between two parallel currents I1 and I2 , separated by a distance r , has a magnitude per unit length given by

F
l = μ0 I1 I2

2πr .
• The force is attractive if the currents are in the same direction, repulsive if they are in opposite directions.

22.11 More Applications of Magnetism
• Crossed (perpendicular) electric and magnetic fields act as a velocity filter, giving equal and opposite forces on any charge

with velocity perpendicular to the fields and of magnitude

v = E
B.

Conceptual Questions

22.1 Magnets

1. Volcanic and other such activity at the mid-Atlantic ridge extrudes material to fill the gap between separating tectonic plates
associated with continental drift. The magnetization of rocks is found to reverse in a coordinated manner with distance from the
ridge. What does this imply about the Earth’s magnetic field and how could the knowledge of the spreading rate be used to give
its historical record?

22.3 Magnetic Fields and Magnetic Field Lines

2. Explain why the magnetic field would not be unique (that is, not have a single value) at a point in space where magnetic field
lines might cross. (Consider the direction of the field at such a point.)

3. List the ways in which magnetic field lines and electric field lines are similar. For example, the field direction is tangent to the
line at any point in space. Also list the ways in which they differ. For example, electric force is parallel to electric field lines,
whereas magnetic force on moving charges is perpendicular to magnetic field lines.

4. Noting that the magnetic field lines of a bar magnet resemble the electric field lines of a pair of equal and opposite charges, do
you expect the magnetic field to rapidly decrease in strength with distance from the magnet? Is this consistent with your
experience with magnets?

5. Is the Earth’s magnetic field parallel to the ground at all locations? If not, where is it parallel to the surface? Is its strength the
same at all locations? If not, where is it greatest?

22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field

6. If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in that region is
necessarily zero?
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22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications

7. How can the motion of a charged particle be used to distinguish between a magnetic and an electric field?

8. High-velocity charged particles can damage biological cells and are a component of radiation exposure in a variety of locations
ranging from research facilities to natural background. Describe how you could use a magnetic field to shield yourself.

9. If a cosmic ray proton approaches the Earth from outer space along a line toward the center of the Earth that lies in the plane
of the equator, in what direction will it be deflected by the Earth’s magnetic field? What about an electron? A neutron?

10. What are the signs of the charges on the particles in Figure 22.46?

Figure 22.46

11. Which of the particles in Figure 22.47 has the greatest velocity, assuming they have identical charges and masses?

Figure 22.47

12. Which of the particles in Figure 22.47 has the greatest mass, assuming all have identical charges and velocities?

13. While operating, a high-precision TV monitor is placed on its side during maintenance. The image on the monitor changes
color and blurs slightly. Discuss the possible relation of these effects to the Earth’s magnetic field.

22.6 The Hall Effect

14. Discuss how the Hall effect could be used to obtain information on free charge density in a conductor. (Hint: Consider how
drift velocity and current are related.)

22.7 Magnetic Force on a Current-Carrying Conductor

15. Draw a sketch of the situation in Figure 22.30 showing the direction of electrons carrying the current, and use RHR-1 to
verify the direction of the force on the wire.

16. Verify that the direction of the force in an MHD drive, such as that in Figure 22.32, does not depend on the sign of the
charges carrying the current across the fluid.

17. Why would a magnetohydrodynamic drive work better in ocean water than in fresh water? Also, why would superconducting
magnets be desirable?

18. Which is more likely to interfere with compass readings, AC current in your refrigerator or DC current when you start your
car? Explain.

22.8 Torque on a Current Loop: Motors and Meters

19. Draw a diagram and use RHR-1 to show that the forces on the top and bottom segments of the motor’s current loop in
Figure 22.34 are vertical and produce no torque about the axis of rotation.

22.9 Magnetic Fields Produced by Currents: Ampere’s Law

20. Make a drawing and use RHR-2 to find the direction of the magnetic field of a current loop in a motor (such as in Figure
22.34). Then show that the direction of the torque on the loop is the same as produced by like poles repelling and unlike poles
attracting.
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22.10 Magnetic Force between Two Parallel Conductors

21. Is the force attractive or repulsive between the hot and neutral lines hung from power poles? Why?

22. If you have three parallel wires in the same plane, as in Figure 22.48, with currents in the outer two running in opposite
directions, is it possible for the middle wire to be repelled by both? Attracted by both? Explain.

Figure 22.48 Three parallel coplanar wires with currents in the outer two in opposite directions.

23. Suppose two long straight wires run perpendicular to one another without touching. Does one exert a net force on the other?
If so, what is its direction? Does one exert a net torque on the other? If so, what is its direction? Justify your responses by using
the right hand rules.

24. Use the right hand rules to show that the force between the two loops in Figure 22.49 is attractive if the currents are in the
same direction and repulsive if they are in opposite directions. Is this consistent with like poles of the loops repelling and unlike
poles of the loops attracting? Draw sketches to justify your answers.

Figure 22.49 Two loops of wire carrying currents can exert forces and torques on one another.

25. If one of the loops in Figure 22.49 is tilted slightly relative to the other and their currents are in the same direction, what are
the directions of the torques they exert on each other? Does this imply that the poles of the bar magnet-like fields they create will
line up with each other if the loops are allowed to rotate?

26. Electric field lines can be shielded by the Faraday cage effect. Can we have magnetic shielding? Can we have gravitational
shielding?

22.11 More Applications of Magnetism

27. Measurements of the weak and fluctuating magnetic fields associated with brain activity are called magnetoencephalograms
(MEGs). Do the brain’s magnetic fields imply coordinated or uncoordinated nerve impulses? Explain.

28. Discuss the possibility that a Hall voltage would be generated on the moving heart of a patient during MRI imaging. Also
discuss the same effect on the wires of a pacemaker. (The fact that patients with pacemakers are not given MRIs is significant.)

29. A patient in an MRI unit turns his head quickly to one side and experiences momentary dizziness and a strange taste in his
mouth. Discuss the possible causes.
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30. You are told that in a certain region there is either a uniform electric or magnetic field. What measurement or observation
could you make to determine the type? (Ignore the Earth’s magnetic field.)

31. An example of magnetohydrodynamics (MHD) comes from the flow of a river (salty water). This fluid interacts with the Earth’s
magnetic field to produce a potential difference between the two river banks. How would you go about calculating the potential
difference?

32. Draw gravitational field lines between 2 masses, electric field lines between a positive and a negative charge, electric field
lines between 2 positive charges and magnetic field lines around a magnet. Qualitatively describe the differences between the
fields and the entities responsible for the field lines.
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Problems & Exercises

22.4 Magnetic Field Strength: Force on a
Moving Charge in a Magnetic Field

1. What is the direction of the magnetic force on a positive
charge that moves as shown in each of the six cases shown
in Figure 22.50?

Figure 22.50

2. Repeat Exercise 22.1 for a negative charge.

3. What is the direction of the velocity of a negative charge
that experiences the magnetic force shown in each of the
three cases in Figure 22.51, assuming it moves
perpendicular to B?

Figure 22.51

4. Repeat Exercise 22.3 for a positive charge.

5. What is the direction of the magnetic field that produces the
magnetic force on a positive charge as shown in each of the
three cases in the figure below, assuming B is perpendicular

to v ?

Figure 22.52

6. Repeat Exercise 22.5 for a negative charge.

7. What is the maximum magnitude of the force on an
aluminum rod with a 0.100-μC charge that you pass

between the poles of a 1.50-T permanent magnet at a speed
of 5.00 m/s? In what direction is the force?

8. (a) Aircraft sometimes acquire small static charges.
Suppose a supersonic jet has a 0.500-μC charge and flies

due west at a speed of 660 m/s over the Earth’s magnetic
south pole (near Earth's geographic north pole), where the

8.00×10−5-T magnetic field points straight down. What are

the direction and the magnitude of the magnetic force on the
plane? (b) Discuss whether the value obtained in part (a)
implies this is a significant or negligible effect.

9. (a) A cosmic ray proton moving toward the Earth at

5.00×107 m/s experiences a magnetic force of

1.70×10−16 N . What is the strength of the magnetic field if

there is a 45º angle between it and the proton’s velocity? (b)

Is the value obtained in part (a) consistent with the known
strength of the Earth’s magnetic field on its surface? Discuss.

10. An electron moving at 4.00×103 m/s in a 1.25-T

magnetic field experiences a magnetic force of

1.40×10−16 N . What angle does the velocity of the

electron make with the magnetic field? There are two
answers.

11. (a) A physicist performing a sensitive measurement wants
to limit the magnetic force on a moving charge in her

equipment to less than 1.00×10−12 N . What is the

greatest the charge can be if it moves at a maximum speed of
30.0 m/s in the Earth’s field? (b) Discuss whether it would be
difficult to limit the charge to less than the value found in (a)
by comparing it with typical static electricity and noting that
static is often absent.

22.5 Force on a Moving Charge in a Magnetic
Field: Examples and Applications

If you need additional support for these problems, see More
Applications of Magnetism.
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12. A cosmic ray electron moves at 7.50×106 m/s
perpendicular to the Earth’s magnetic field at an altitude

where field strength is 1.00×10−5 T . What is the radius of

the circular path the electron follows?

13. A proton moves at 7.50×107 m/s perpendicular to a

magnetic field. The field causes the proton to travel in a
circular path of radius 0.800 m. What is the field strength?

14. (a) Viewers of Star Trek hear of an antimatter drive on the
Starship Enterprise. One possibility for such a futuristic
energy source is to store antimatter charged particles in a
vacuum chamber, circulating in a magnetic field, and then
extract them as needed. Antimatter annihilates with normal
matter, producing pure energy. What strength magnetic field

is needed to hold antiprotons, moving at 5.00×107 m/s in a

circular path 2.00 m in radius? Antiprotons have the same
mass as protons but the opposite (negative) charge. (b) Is
this field strength obtainable with today’s technology or is it a
futuristic possibility?

15. (a) An oxygen-16 ion with a mass of 2.66×10−26 kg

travels at 5.00×106 m/s perpendicular to a 1.20-T

magnetic field, which makes it move in a circular arc with a
0.231-m radius. What positive charge is on the ion? (b) What
is the ratio of this charge to the charge of an electron? (c)
Discuss why the ratio found in (b) should be an integer.

16. What radius circular path does an electron travel if it
moves at the same speed and in the same magnetic field as
the proton in Exercise 22.13?

17. A velocity selector in a mass spectrometer uses a 0.100-T
magnetic field. (a) What electric field strength is needed to

select a speed of 4.00×106 m/s ? (b) What is the voltage

between the plates if they are separated by 1.00 cm?

18. An electron in a TV CRT moves with a speed of

6.00×107 m/s , in a direction perpendicular to the Earth’s

field, which has a strength of 5.00×10−5 T . (a) What

strength electric field must be applied perpendicular to the
Earth’s field to make the electron moves in a straight line? (b)
If this is done between plates separated by 1.00 cm, what is
the voltage applied? (Note that TVs are usually surrounded
by a ferromagnetic material to shield against external
magnetic fields and avoid the need for such a correction.)

19. (a) At what speed will a proton move in a circular path of
the same radius as the electron in Exercise 22.12? (b) What
would the radius of the path be if the proton had the same
speed as the electron? (c) What would the radius be if the
proton had the same kinetic energy as the electron? (d) The
same momentum?

20. A mass spectrometer is being used to separate common
oxygen-16 from the much rarer oxygen-18, taken from a
sample of old glacial ice. (The relative abundance of these
oxygen isotopes is related to climatic temperature at the time
the ice was deposited.) The ratio of the masses of these two

ions is 16 to 18, the mass of oxygen-16 is 2.66×10−26 kg,

and they are singly charged and travel at 5.00×106 m/s in

a 1.20-T magnetic field. What is the separation between their
paths when they hit a target after traversing a semicircle?

21. (a) Triply charged uranium-235 and uranium-238 ions are
being separated in a mass spectrometer. (The much rarer
uranium-235 is used as reactor fuel.) The masses of the ions

are 3.90×10−25 kg and 3.95×10−25 kg , respectively,

and they travel at 3.00×105 m/s in a 0.250-T field. What is

the separation between their paths when they hit a target
after traversing a semicircle? (b) Discuss whether this
distance between their paths seems to be big enough to be
practical in the separation of uranium-235 from uranium-238.

22.6 The Hall Effect

22. A large water main is 2.50 m in diameter and the average
water velocity is 6.00 m/s. Find the Hall voltage produced if

the pipe runs perpendicular to the Earth’s 5.00×10−5-T
field.

23. What Hall voltage is produced by a 0.200-T field applied
across a 2.60-cm-diameter aorta when blood velocity is 60.0
cm/s?

24. (a) What is the speed of a supersonic aircraft with a
17.0-m wingspan, if it experiences a 1.60-V Hall voltage
between its wing tips when in level flight over the north
magnetic pole, where the Earth’s field strength is

8.00×10−5 T? (b) Explain why very little current flows as a

result of this Hall voltage.

25. A nonmechanical water meter could utilize the Hall effect
by applying a magnetic field across a metal pipe and
measuring the Hall voltage produced. What is the average
fluid velocity in a 3.00-cm-diameter pipe, if a 0.500-T field
across it creates a 60.0-mV Hall voltage?

26. Calculate the Hall voltage induced on a patient’s heart
while being scanned by an MRI unit. Approximate the
conducting path on the heart wall by a wire 7.50 cm long that
moves at 10.0 cm/s perpendicular to a 1.50-T magnetic field.

27. A Hall probe calibrated to read 1.00 μV when placed in

a 2.00-T field is placed in a 0.150-T field. What is its output
voltage?

28. Using information in Example 20.6, what would the Hall
voltage be if a 2.00-T field is applied across a 10-gauge
copper wire (2.588 mm in diameter) carrying a 20.0-A
current?

29. Show that the Hall voltage across wires made of the same
material, carrying identical currents, and subjected to the
same magnetic field is inversely proportional to their
diameters. (Hint: Consider how drift velocity depends on wire
diameter.)

30. A patient with a pacemaker is mistakenly being scanned
for an MRI image. A 10.0-cm-long section of pacemaker wire
moves at a speed of 10.0 cm/s perpendicular to the MRI
unit’s magnetic field and a 20.0-mV Hall voltage is induced.
What is the magnetic field strength?
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22.7 Magnetic Force on a Current-Carrying
Conductor

31. What is the direction of the magnetic force on the current
in each of the six cases in Figure 22.53?

Figure 22.53

32. What is the direction of a current that experiences the
magnetic force shown in each of the three cases in Figure
22.54, assuming the current runs perpendicular to B ?

Figure 22.54

33. What is the direction of the magnetic field that produces
the magnetic force shown on the currents in each of the three
cases in Figure 22.55, assuming B is perpendicular to I ?

Figure 22.55

34. (a) What is the force per meter on a lightning bolt at the
equator that carries 20,000 A perpendicular to the Earth’s

3.00×10−5-T field? (b) What is the direction of the force if

the current is straight up and the Earth’s field direction is due
north, parallel to the ground?

35. (a) A DC power line for a light-rail system carries 1000 A

at an angle of 30.0º to the Earth’s 5.00×10−5 -T field.

What is the force on a 100-m section of this line? (b) Discuss
practical concerns this presents, if any.

36. What force is exerted on the water in an MHD drive
utilizing a 25.0-cm-diameter tube, if 100-A current is passed
across the tube that is perpendicular to a 2.00-T magnetic
field? (The relatively small size of this force indicates the
need for very large currents and magnetic fields to make
practical MHD drives.)

37. A wire carrying a 30.0-A current passes between the
poles of a strong magnet that is perpendicular to its field and
experiences a 2.16-N force on the 4.00 cm of wire in the field.
What is the average field strength?

38. (a) A 0.750-m-long section of cable carrying current to a
car starter motor makes an angle of 60º with the Earth’s

5.50×10−5 T field. What is the current when the wire

experiences a force of 7.00×10−3 N ? (b) If you run the

wire between the poles of a strong horseshoe magnet,
subjecting 5.00 cm of it to a 1.75-T field, what force is exerted
on this segment of wire?

39. (a) What is the angle between a wire carrying an 8.00-A
current and the 1.20-T field it is in if 50.0 cm of the wire
experiences a magnetic force of 2.40 N? (b) What is the force
on the wire if it is rotated to make an angle of 90º with the

field?

40. The force on the rectangular loop of wire in the magnetic
field in Figure 22.56 can be used to measure field strength.
The field is uniform, and the plane of the loop is perpendicular
to the field. (a) What is the direction of the magnetic force on
the loop? Justify the claim that the forces on the sides of the
loop are equal and opposite, independent of how much of the
loop is in the field and do not affect the net force on the loop.
(b) If a current of 5.00 A is used, what is the force per tesla on
the 20.0-cm-wide loop?

Figure 22.56 A rectangular loop of wire carrying a current is

perpendicular to a magnetic field. The field is uniform in the region

shown and is zero outside that region.

22.8 Torque on a Current Loop: Motors and
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Meters

41. (a) By how many percent is the torque of a motor
decreased if its permanent magnets lose 5.0% of their
strength? (b) How many percent would the current need to be
increased to return the torque to original values?

42. (a) What is the maximum torque on a 150-turn square
loop of wire 18.0 cm on a side that carries a 50.0-A current in
a 1.60-T field? (b) What is the torque when θ is 10.9º?
43. Find the current through a loop needed to create a
maximum torque of 9.00 N ⋅ m. The loop has 50 square

turns that are 15.0 cm on a side and is in a uniform 0.800-T
magnetic field.

44. Calculate the magnetic field strength needed on a
200-turn square loop 20.0 cm on a side to create a maximum
torque of 300 N ⋅ m if the loop is carrying 25.0 A.

45. Since the equation for torque on a current-carrying loop is
τ = NIAB sin θ , the units of N ⋅ m must equal units of

A ⋅ m2 T . Verify this.

46. (a) At what angle θ is the torque on a current loop 90.0%

of maximum? (b) 50.0% of maximum? (c) 10.0% of
maximum?

47. A proton has a magnetic field due to its spin on its axis.
The field is similar to that created by a circular current loop

0.650×10−15 m in radius with a current of 1.05×104 A
(no kidding). Find the maximum torque on a proton in a
2.50-T field. (This is a significant torque on a small particle.)

48. (a) A 200-turn circular loop of radius 50.0 cm is vertical,
with its axis on an east-west line. A current of 100 A circulates
clockwise in the loop when viewed from the east. The Earth’s
field here is due north, parallel to the ground, with a strength

of 3.00×10−5 T . What are the direction and magnitude of

the torque on the loop? (b) Does this device have any
practical applications as a motor?

49. Repeat Exercise 22.41, but with the loop lying flat on the
ground with its current circulating counterclockwise (when
viewed from above) in a location where the Earth’s field is
north, but at an angle 45.0º below the horizontal and with a

strength of 6.00×10−5 T .

22.10 Magnetic Force between Two Parallel
Conductors

50. (a) The hot and neutral wires supplying DC power to a
light-rail commuter train carry 800 A and are separated by
75.0 cm. What is the magnitude and direction of the force
between 50.0 m of these wires? (b) Discuss the practical
consequences of this force, if any.

51. The force per meter between the two wires of a jumper
cable being used to start a stalled car is 0.225 N/m. (a) What
is the current in the wires, given they are separated by 2.00
cm? (b) Is the force attractive or repulsive?

52. A 2.50-m segment of wire supplying current to the motor
of a submerged submarine carries 1000 A and feels a 4.00-N
repulsive force from a parallel wire 5.00 cm away. What is the
direction and magnitude of the current in the other wire?

53. The wire carrying 400 A to the motor of a commuter train

feels an attractive force of 4.00×10−3 N/m due to a

parallel wire carrying 5.00 A to a headlight. (a) How far apart
are the wires? (b) Are the currents in the same direction?

54. An AC appliance cord has its hot and neutral wires
separated by 3.00 mm and carries a 5.00-A current. (a) What
is the average force per meter between the wires in the cord?
(b) What is the maximum force per meter between the wires?
(c) Are the forces attractive or repulsive? (d) Do appliance
cords need any special design features to compensate for
these forces?

55. Figure 22.57 shows a long straight wire near a
rectangular current loop. What is the direction and magnitude
of the total force on the loop?

Figure 22.57

56. Find the direction and magnitude of the force that each
wire experiences in Figure 22.58(a) by, using vector addition.

Figure 22.58

57. Find the direction and magnitude of the force that each
wire experiences in Figure 22.58(b), using vector addition.

22.11 More Applications of Magnetism

58. Indicate whether the magnetic field created in each of the
three situations shown in Figure 22.59 is into or out of the
page on the left and right of the current.

Figure 22.59
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59. What are the directions of the fields in the center of the
loop and coils shown in Figure 22.60?

Figure 22.60

60. What are the directions of the currents in the loop and
coils shown in Figure 22.61?

Figure 22.61

61. To see why an MRI utilizes iron to increase the magnetic
field created by a coil, calculate the current needed in a
400-loop-per-meter circular coil 0.660 m in radius to create a
1.20-T field (typical of an MRI instrument) at its center with no
iron present. The magnetic field of a proton is approximately

like that of a circular current loop 0.650×10−15 m in radius

carrying 1.05×104 A . What is the field at the center of such

a loop?

62. Inside a motor, 30.0 A passes through a 250-turn circular
loop that is 10.0 cm in radius. What is the magnetic field
strength created at its center?

63. Nonnuclear submarines use batteries for power when
submerged. (a) Find the magnetic field 50.0 cm from a
straight wire carrying 1200 A from the batteries to the drive
mechanism of a submarine. (b) What is the field if the wires to
and from the drive mechanism are side by side? (c) Discuss
the effects this could have for a compass on the submarine
that is not shielded.

64. How strong is the magnetic field inside a solenoid with
10,000 turns per meter that carries 20.0 A?

65. What current is needed in the solenoid described in

Exercise 22.58 to produce a magnetic field 104 times the

Earth’s magnetic field of 5.00×10−5 T ?

66. How far from the starter cable of a car, carrying 150 A,
must you be to experience a field less than the Earth’s

(5.00×10−5 T)? Assume a long straight wire carries the

current. (In practice, the body of your car shields the
dashboard compass.)

67. Measurements affect the system being measured, such
as the current loop in Figure 22.56. (a) Estimate the field the
loop creates by calculating the field at the center of a circular
loop 20.0 cm in diameter carrying 5.00 A. (b) What is the
smallest field strength this loop can be used to measure, if its
field must alter the measured field by less than 0.0100%?

68. Figure 22.62 shows a long straight wire just touching a
loop carrying a current I1 . Both lie in the same plane. (a)

What direction must the current I2 in the straight wire have

to create a field at the center of the loop in the direction
opposite to that created by the loop? (b) What is the ratio of
I1 / I2 that gives zero field strength at the center of the loop?

(c) What is the direction of the field directly above the loop
under this circumstance?

Figure 22.62

69. Find the magnitude and direction of the magnetic field at
the point equidistant from the wires in Figure 22.58(a), using
the rules of vector addition to sum the contributions from each
wire.

70. Find the magnitude and direction of the magnetic field at
the point equidistant from the wires in Figure 22.58(b), using
the rules of vector addition to sum the contributions from each
wire.

71. What current is needed in the top wire in Figure 22.58(a)
to produce a field of zero at the point equidistant from the
wires, if the currents in the bottom two wires are both 10.0 A
into the page?

72. Calculate the size of the magnetic field 20 m below a high
voltage power line. The line carries 450 MW at a voltage of
300,000 V.

Chapter 22 | Magnetism 893



73. Integrated Concepts

(a) A pendulum is set up so that its bob (a thin copper disk)
swings between the poles of a permanent magnet as shown
in Figure 22.63. What is the magnitude and direction of the
magnetic force on the bob at the lowest point in its path, if it
has a positive 0.250 μC charge and is released from a

height of 30.0 cm above its lowest point? The magnetic field
strength is 1.50 T. (b) What is the acceleration of the bob at
the bottom of its swing if its mass is 30.0 grams and it is hung
from a flexible string? Be certain to include a free-body
diagram as part of your analysis.

Figure 22.63

74. Integrated Concepts

(a) What voltage will accelerate electrons to a speed of

6.00×10−7 m/s ? (b) Find the radius of curvature of the

path of a proton accelerated through this potential in a
0.500-T field and compare this with the radius of curvature of
an electron accelerated through the same potential.

75. Integrated Concepts

Find the radius of curvature of the path of a 25.0-MeV proton
moving perpendicularly to the 1.20-T field of a cyclotron.

76. Integrated Concepts

To construct a nonmechanical water meter, a 0.500-T
magnetic field is placed across the supply water pipe to a
home and the Hall voltage is recorded. (a) Find the flow rate
in liters per second through a 3.00-cm-diameter pipe if the
Hall voltage is 60.0 mV. (b) What would the Hall voltage be for
the same flow rate through a 10.0-cm-diameter pipe with the
same field applied?

77. Integrated Concepts

(a) Using the values given for an MHD drive in Exercise
22.59, and assuming the force is uniformly applied to the

fluid, calculate the pressure created in N/m2 . (b) Is this a

significant fraction of an atmosphere?

78. Integrated Concepts

(a) Calculate the maximum torque on a 50-turn, 1.50 cm
radius circular current loop carrying 50 μA in a 0.500-T field.

(b) If this coil is to be used in a galvanometer that reads
50 μA full scale, what force constant spring must be used, if

it is attached 1.00 cm from the axis of rotation and is
stretched by the 60º arc moved?

79. Integrated Concepts

A current balance used to define the ampere is designed so
that the current through it is constant, as is the distance
between wires. Even so, if the wires change length with
temperature, the force between them will change. What
percent change in force per degree will occur if the wires are
copper?

80. Integrated Concepts

(a) Show that the period of the circular orbit of a charged
particle moving perpendicularly to a uniform magnetic field is
T = 2πm / (qB) . (b) What is the frequency f ? (c) What is

the angular velocity ω ? Note that these results are

independent of the velocity and radius of the orbit and, hence,
of the energy of the particle. (Figure 22.64.)

Figure 22.64 Cyclotrons accelerate charged particles orbiting in a

magnetic field by placing an AC voltage on the metal Dees, between

which the particles move, so that energy is added twice each orbit. The

frequency is constant, since it is independent of the particle energy—the

radius of the orbit simply increases with energy until the particles

approach the edge and are extracted for various experiments and

applications.

81. Integrated Concepts

A cyclotron accelerates charged particles as shown in Figure
22.64. Using the results of the previous problem, calculate the
frequency of the accelerating voltage needed for a proton in a
1.20-T field.

82. Integrated Concepts

(a) A 0.140-kg baseball, pitched at 40.0 m/s horizontally and

perpendicular to the Earth’s horizontal 5.00×10−5 T field,

has a 100-nC charge on it. What distance is it deflected from
its path by the magnetic force, after traveling 30.0 m
horizontally? (b) Would you suggest this as a secret
technique for a pitcher to throw curve balls?
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83. Integrated Concepts

(a) What is the direction of the force on a wire carrying a
current due east in a location where the Earth’s field is due
north? Both are parallel to the ground. (b) Calculate the force
per meter if the wire carries 20.0 A and the field strength is

3.00×10−5 T . (c) What diameter copper wire would have

its weight supported by this force? (d) Calculate the
resistance per meter and the voltage per meter needed.

84. Integrated Concepts

One long straight wire is to be held directly above another by
repulsion between their currents. The lower wire carries 100
A and the wire 7.50 cm above it is 10-gauge (2.588 mm
diameter) copper wire. (a) What current must flow in the
upper wire, neglecting the Earth’s field? (b) What is the

smallest current if the Earth’s 3.00×10−5 T field is parallel

to the ground and is not neglected? (c) Is the supported wire
in a stable or unstable equilibrium if displaced vertically? If
displaced horizontally?

85. Unreasonable Results

(a) Find the charge on a baseball, thrown at 35.0 m/s

perpendicular to the Earth’s 5.00×10−5 T field, that

experiences a 1.00-N magnetic force. (b) What is
unreasonable about this result? (c) Which assumption or
premise is responsible?

86. Unreasonable Results

A charged particle having mass 6.64×10−27 kg (that of a

helium atom) moving at 8.70×105 m/s perpendicular to a

1.50-T magnetic field travels in a circular path of radius 16.0
mm. (a) What is the charge of the particle? (b) What is
unreasonable about this result? (c) Which assumptions are
responsible?

87. Unreasonable Results

An inventor wants to generate 120-V power by moving a

1.00-m-long wire perpendicular to the Earth’s 5.00×10−5 T
field. (a) Find the speed with which the wire must move. (b)
What is unreasonable about this result? (c) Which
assumption is responsible?

88. Unreasonable Results

Frustrated by the small Hall voltage obtained in blood flow
measurements, a medical physicist decides to increase the
applied magnetic field strength to get a 0.500-V output for
blood moving at 30.0 cm/s in a 1.50-cm-diameter vessel. (a)
What magnetic field strength is needed? (b) What is
unreasonable about this result? (c) Which premise is
responsible?

89. Unreasonable Results

A surveyor 100 m from a long straight 200-kV DC power line
suspects that its magnetic field may equal that of the Earth
and affect compass readings. (a) Calculate the current in the

wire needed to create a 5.00×10−5 T field at this distance.

(b) What is unreasonable about this result? (c) Which
assumption or premise is responsible?

90. Construct Your Own Problem

Consider a mass separator that applies a magnetic field
perpendicular to the velocity of ions and separates the ions
based on the radius of curvature of their paths in the field.
Construct a problem in which you calculate the magnetic field
strength needed to separate two ions that differ in mass, but
not charge, and have the same initial velocity. Among the
things to consider are the types of ions, the velocities they
can be given before entering the magnetic field, and a
reasonable value for the radius of curvature of the paths they
follow. In addition, calculate the separation distance between
the ions at the point where they are detected.

91. Construct Your Own Problem

Consider using the torque on a current-carrying coil in a
magnetic field to detect relatively small magnetic fields (less
than the field of the Earth, for example). Construct a problem
in which you calculate the maximum torque on a current-
carrying loop in a magnetic field. Among the things to be
considered are the size of the coil, the number of loops it has,
the current you pass through the coil, and the size of the field
you wish to detect. Discuss whether the torque produced is
large enough to be effectively measured. Your instructor may
also wish for you to consider the effects, if any, of the field
produced by the coil on the surroundings that could affect
detection of the small field.
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23 ELECTROMAGNETIC INDUCTION, AC
CIRCUITS, AND ELECTRICAL
TECHNOLOGIES

Figure 23.1 These wind turbines in the Thames Estuary in the UK are an example of induction at work. Wind pushes the blades of the turbine,
spinning a shaft attached to magnets. The magnets spin around a conductive coil, inducing an electric current in the coil, and eventually feeding the
electrical grid. (credit: modification of work by Petr Kratochvil)

Chapter Outline
23.1. Induced Emf and Magnetic Flux

• Calculate the flux of a uniform magnetic field through a loop of arbitrary orientation.
• Describe methods to produce an electromotive force (emf) with a magnetic field or magnet and a loop of wire.

23.2. Faraday’s Law of Induction: Lenz’s Law
• Calculate emf, current, and magnetic fields using Faraday’s Law.
• Explain the physical results of Lenz’s Law

23.3. Motional Emf
• Calculate emf, force, magnetic field, and work due to the motion of an object in a magnetic field.

23.4. Eddy Currents and Magnetic Damping
• Explain the magnitude and direction of an induced eddy current, and the effect this will have on the object it is

induced in.
• Describe several applications of magnetic damping.

23.5. Electric Generators
• Calculate the emf induced in a generator.
• Calculate the peak emf which can be induced in a particular generator system.

23.6. Back Emf
• Explain what back emf is and how it is induced.

23.7. Transformers
• Explain how a transformer works.
• Calculate voltage, current, and/or number of turns given the other quantities.

23.8. Electrical Safety: Systems and Devices
• Explain how various modern safety features in electric circuits work, with an emphasis on how induction is employed.

23.9. Inductance
• Calculate the inductance of an inductor.
• Calculate the energy stored in an inductor.
• Calculate the emf generated in an inductor.

23.10. RL Circuits
• Calculate the current in an RL circuit after a specified number of characteristic time steps.
• Calculate the characteristic time of an RL circuit.
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• Sketch the current in an RL circuit over time.
23.11. Reactance, Inductive and Capacitive

• Sketch voltage and current versus time in simple inductive, capacitive, and resistive circuits.
• Calculate inductive and capacitive reactance.
• Calculate current and/or voltage in simple inductive, capacitive, and resistive circuits.

23.12. RLC Series AC Circuits
• Calculate the impedance, phase angle, resonant frequency, power, power factor, voltage, and/or current in a RLC

series circuit.
• Draw the circuit diagram for an RLC series circuit.
• Explain the significance of the resonant frequency.

Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies

Nature’s displays of symmetry are beautiful and alluring. A butterfly’s wings exhibit an appealing symmetry in a complex system.
(See Figure 23.2.) The laws of physics display symmetries at the most basic level—these symmetries are a source of wonder
and imply deeper meaning. Since we place a high value on symmetry, we look for it when we explore nature. The remarkable
thing is that we find it.

Figure 23.2 Physics, like this butterfly, has inherent symmetries. (credit: Thomas Bresson)

The hint of symmetry between electricity and magnetism found in the preceding chapter will be elaborated upon in this chapter.
Specifically, we know that a current creates a magnetic field. If nature is symmetric here, then perhaps a magnetic field can
create a current. The Hall effect is a voltage caused by a magnetic force. That voltage could drive a current. Historically, it was
very shortly after Oersted discovered currents cause magnetic fields that other scientists asked the following question: Can
magnetic fields cause currents? The answer was soon found by experiment to be yes. In 1831, some 12 years after Oersted’s
discovery, the English scientist Michael Faraday (1791–1862) and the American scientist Joseph Henry (1797–1878)
independently demonstrated that magnetic fields can produce currents. The basic process of generating emfs (electromotive
force) and, hence, currents with magnetic fields is known as induction; this process is also called magnetic induction to
distinguish it from charging by induction, which utilizes the Coulomb force.

Today, currents induced by magnetic fields are essential to our technological society. The ubiquitous generator—found in
automobiles, on bicycles, in nuclear power plants, and so on—uses magnetism to generate current. Other devices that use
magnetism to induce currents include pickup coils in electric guitars, transformers of every size, certain microphones, airport
security gates, and damping mechanisms on sensitive chemical balances. Not so familiar perhaps, but important nevertheless, is
that the behavior of AC circuits depends strongly on the effect of magnetic fields on currents.

23.1 Induced Emf and Magnetic Flux

The apparatus used by Faraday to demonstrate that magnetic fields can create currents is illustrated in Figure 23.3. When the
switch is closed, a magnetic field is produced in the coil on the top part of the iron ring and transmitted to the coil on the bottom
part of the ring. The galvanometer is used to detect any current induced in the coil on the bottom. It was found that each time the
switch is closed, the galvanometer detects a current in one direction in the coil on the bottom. (You can also observe this in a
physics lab.) Each time the switch is opened, the galvanometer detects a current in the opposite direction. Interestingly, if the
switch remains closed or open for any length of time, there is no current through the galvanometer. Closing and opening the
switch induces the current. It is the change in magnetic field that creates the current. More basic than the current that flows is the
emfthat causes it. The current is a result of an emf induced by a changing magnetic field, whether or not there is a path for
current to flow.

898 Chapter 23 | Electromagnetic Induction, AC Circuits, and Electrical Technologies

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Figure 23.3 Faraday’s apparatus for demonstrating that a magnetic field can produce a current. A change in the field produced by the top coil induces
an emf and, hence, a current in the bottom coil. When the switch is opened and closed, the galvanometer registers currents in opposite directions. No
current flows through the galvanometer when the switch remains closed or open.

An experiment easily performed and often done in physics labs is illustrated in Figure 23.4. An emf is induced in the coil when a
bar magnet is pushed in and out of it. Emfs of opposite signs are produced by motion in opposite directions, and the emfs are
also reversed by reversing poles. The same results are produced if the coil is moved rather than the magnet—it is the relative
motion that is important. The faster the motion, the greater the emf, and there is no emf when the magnet is stationary relative to
the coil.

Figure 23.4 Movement of a magnet relative to a coil produces emfs as shown. The same emfs are produced if the coil is moved relative to the magnet.
The greater the speed, the greater the magnitude of the emf, and the emf is zero when there is no motion.

The method of inducing an emf used in most electric generators is shown in Figure 23.5. A coil is rotated in a magnetic field,
producing an alternating current emf, which depends on rotation rate and other factors that will be explored in later sections.
Note that the generator is remarkably similar in construction to a motor (another symmetry).
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Figure 23.5 Rotation of a coil in a magnetic field produces an emf. This is the basic construction of a generator, where work done to turn the coil is
converted to electric energy. Note the generator is very similar in construction to a motor.

So we see that changing the magnitude or direction of a magnetic field produces an emf. Experiments revealed that there is a
crucial quantity called the magnetic flux, Φ , given by

(23.1)Φ = BA cos θ,

where B is the magnetic field strength over an area A , at an angle θ with the perpendicular to the area as shown in Figure

23.6. Any change in magnetic flux Φ induces an emf. This process is defined to be electromagnetic induction. Units of

magnetic flux Φ are T ⋅ m2 . As seen in Figure 23.6, B cos θ = B ⊥, which is the component of B perpendicular to the area

A . Thus magnetic flux is Φ = B⊥A , the product of the area and the component of the magnetic field perpendicular to it.

Figure 23.6 Magnetic flux Φ is related to the magnetic field and the area over which it exists. The flux Φ = BA cos θ is related to induction; any

change in Φ induces an emf.

All induction, including the examples given so far, arises from some change in magnetic flux Φ . For example, Faraday changed

B and hence Φ when opening and closing the switch in his apparatus (shown in Figure 23.3). This is also true for the bar

magnet and coil shown in Figure 23.4. When rotating the coil of a generator, the angle θ and, hence, Φ is changed. Just how

great an emf and what direction it takes depend on the change in Φ and how rapidly the change is made, as examined in the

next section.
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23.2 Faraday’s Law of Induction: Lenz’s Law

Faraday’s and Lenz’s Law

Faraday’s experiments showed that the emf induced by a change in magnetic flux depends on only a few factors. First, emf is
directly proportional to the change in flux ΔΦ . Second, emf is greatest when the change in time Δt is smallest—that is, emf is

inversely proportional to Δt . Finally, if a coil has N turns, an emf will be produced that is N times greater than for a single coil,

so that emf is directly proportional to N . The equation for the emf induced by a change in magnetic flux is

(23.2)emf = −N ΔΦ
Δt .

This relationship is known as Faraday’s law of induction. The units for emf are volts, as is usual.

The minus sign in Faraday’s law of induction is very important. The minus means that the emf creates a current I and magnetic
field B that oppose the change in flux ΔΦ —this is known as Lenz’s law. The direction (given by the minus sign) of the emfis so

important that it is called Lenz’s law after the Russian Heinrich Lenz (1804–1865), who, like Faraday and Henry,independently
investigated aspects of induction. Faraday was aware of the direction, but Lenz stated it so clearly that he is credited for its
discovery. (See Figure 23.7.)

Figure 23.7 (a) When this bar magnet is thrust into the coil, the strength of the magnetic field increases in the coil. The current induced in the coil
creates another field, in the opposite direction of the bar magnet’s to oppose the increase. This is one aspect of Lenz’s law—induction opposes any

change in flux. (b) and (c) are two other situations. Verify for yourself that the direction of the induced Bcoil shown indeed opposes the change in flux

and that the current direction shown is consistent with RHR-2.

Problem-Solving Strategy for Lenz’s Law

To use Lenz’s law to determine the directions of the induced magnetic fields, currents, and emfs:

1. Make a sketch of the situation for use in visualizing and recording directions.

2. Determine the direction of the magnetic field B.

3. Determine whether the flux is increasing or decreasing.

4. Now determine the direction of the induced magnetic field B. It opposes the change in flux by adding or subtracting
from the original field.

5. Use RHR-2 to determine the direction of the induced current I that is responsible for the induced magnetic field B.

6. The direction (or polarity) of the induced emf will now drive a current in this direction and can be represented as current
emerging from the positive terminal of the emf and returning to its negative terminal.

For practice, apply these steps to the situations shown in Figure 23.7 and to others that are part of the following text material.

Applications of Electromagnetic Induction

There are many applications of Faraday’s Law of induction, as we will explore in this chapter and others. At this juncture, let us
mention several that have to do with data storage and magnetic fields. A very important application has to do with audio and
video recording tapes. A plastic tape, coated with iron oxide, moves past a recording head. This recording head is basically a
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round iron ring about which is wrapped a coil of wire—an electromagnet (Figure 23.8). A signal in the form of a varying input
current from a microphone or camera goes to the recording head. These signals (which are a function of the signal amplitude
and frequency) produce varying magnetic fields at the recording head. As the tape moves past the recording head, the magnetic
field orientations of the iron oxide molecules on the tape are changed thus recording the signal. In the playback mode, the
magnetized tape is run past another head, similar in structure to the recording head. The different magnetic field orientations of
the iron oxide molecules on the tape induces an emf in the coil of wire in the playback head. This signal then is sent to a
loudspeaker or video player.

Figure 23.8 Recording and playback heads used with audio and video magnetic tapes. (credit: Steve Jurvetson)

Similar principles apply to computer hard drives, except at a much faster rate. Here recordings are on a coated, spinning disk.
Read heads historically were made to work on the principle of induction. However, the input information is carried in digital rather
than analog form – a series of 0’s or 1’s are written upon the spinning hard drive. Today, most hard drive readout devices do not
work on the principle of induction, but use a technique known as giant magnetoresistance. (The discovery that weak changes in
a magnetic field in a thin film of iron and chromium could bring about much larger changes in electrical resistance was one of the
first large successes of nanotechnology.) Another application of induction is found on the magnetic stripe on the back of your
personal credit card as used at the grocery store or the ATM machine. This works on the same principle as the audio or video
tape mentioned in the last paragraph in which a head reads personal information from your card.

Another application of electromagnetic induction is when electrical signals need to be transmitted across a barrier. Consider the
cochlear implant shown below. Sound is picked up by a microphone on the outside of the skull and is used to set up a varying
magnetic field. A current is induced in a receiver secured in the bone beneath the skin and transmitted to electrodes in the inner
ear. Electromagnetic induction can be used in other instances where electric signals need to be conveyed across various media.

Figure 23.9 Electromagnetic induction used in transmitting electric currents across mediums. The device on the baby’s head induces an electrical
current in a receiver secured in the bone beneath the skin. (credit: Bjorn Knetsch)

Another contemporary area of research in which electromagnetic induction is being successfully implemented (and with
substantial potential) is transcranial magnetic simulation. A host of disorders, including depression and hallucinations can be
traced to irregular localized electrical activity in the brain. In transcranial magnetic stimulation, a rapidly varying and very
localized magnetic field is placed close to certain sites identified in the brain. Weak electric currents are induced in the identified
sites and can result in recovery of electrical functioning in the brain tissue.

Sleep apnea (“the cessation of breath”) affects both adults and infants (especially premature babies and it may be a cause of
sudden infant deaths [SID]). In such individuals, breath can stop repeatedly during their sleep. A cessation of more than 20
seconds can be very dangerous. Stroke, heart failure, and tiredness are just some of the possible consequences for a person
having sleep apnea. The concern in infants is the stopping of breath for these longer times. One type of monitor to alert parents
when a child is not breathing uses electromagnetic induction. A wire wrapped around the infant’s chest has an alternating current
running through it. The expansion and contraction of the infant’s chest as the infant breathes changes the area through the coil.
A pickup coil located nearby has an alternating current induced in it due to the changing magnetic field of the initial wire. If the
child stops breathing, there will be a change in the induced current, and so a parent can be alerted.

Making Connections: Conservation of Energy

Lenz’s law is a manifestation of the conservation of energy. The induced emf produces a current that opposes the change in
flux, because a change in flux means a change in energy. Energy can enter or leave, but not instantaneously. Lenz’s law is a
consequence. As the change begins, the law says induction opposes and, thus, slows the change. In fact, if the induced emf
were in the same direction as the change in flux, there would be a positive feedback that would give us free energy from no
apparent source—conservation of energy would be violated.
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Example 23.1 Calculating Emf: How Great Is the Induced Emf?

Calculate the magnitude of the induced emf when the magnet in Figure 23.7(a) is thrust into the coil, given the following
information: the single loop coil has a radius of 6.00 cm and the average value of B cos θ (this is given, since the bar

magnet’s field is complex) increases from 0.0500 T to 0.250 T in 0.100 s.

Strategy

To find the magnitude of emf, we use Faraday’s law of induction as stated by emf = −N ΔΦ
Δt , but without the minus sign

that indicates direction:

(23.3)emf = N ΔΦ
Δt .

Solution

We are given that N = 1 and Δt = 0.100 s , but we must determine the change in flux ΔΦ before we can find emf.

Since the area of the loop is fixed, we see that

(23.4)ΔΦ = Δ(BA cos θ) = AΔ(B cos θ).

Now Δ(B cos θ) = 0.200 T , since it was given that B cos θ changes from 0.0500 to 0.250 T. The area of the loop is

A = πr2 = (3.14...)(0.060 m)2 = 1.13×10−2 m2 . Thus,

(23.5)ΔΦ = (1.13×10−2 m2)(0.200 T).

Entering the determined values into the expression for emf gives

(23.6)
Emf = N ΔΦ

Δt = (1.13×10−2 m2)(0.200 T)
0.100 s = 22.6 mV.

Discussion

While this is an easily measured voltage, it is certainly not large enough for most practical applications. More loops in the
coil, a stronger magnet, and faster movement make induction the practical source of voltages that it is.

PhET Explorations: Faraday's Electromagnetic Lab

Play with a bar magnet and coils to learn about Faraday's law. Move a bar magnet near one or two coils to make a light bulb
glow. View the magnetic field lines. A meter shows the direction and magnitude of the current. View the magnetic field lines
or use a meter to show the direction and magnitude of the current. You can also play with electromagnets, generators and
transformers!

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42392/1.10/#fs-
idm420000608)

Figure 23.10

23.3 Motional Emf

As we have seen, any change in magnetic flux induces an emf opposing that change—a process known as induction. Motion is
one of the major causes of induction. For example, a magnet moved toward a coil induces an emf, and a coil moved toward a
magnet produces a similar emf. In this section, we concentrate on motion in a magnetic field that is stationary relative to the
Earth, producing what is loosely called motional emf.

One situation where motional emf occurs is known as the Hall effect and has already been examined. Charges moving in a
magnetic field experience the magnetic force F = qvB sin θ , which moves opposite charges in opposite directions and

produces an emf = Bℓv . We saw that the Hall effect has applications, including measurements of B and v . We will now see

that the Hall effect is one aspect of the broader phenomenon of induction, and we will find that motional emf can be used as a
power source.

Consider the situation shown in Figure 23.11. A rod is moved at a speed v along a pair of conducting rails separated by a

distance ℓ in a uniform magnetic field B . The rails are stationary relative to B and are connected to a stationary resistor R .

The resistor could be anything from a light bulb to a voltmeter. Consider the area enclosed by the moving rod, rails, and resistor.
B is perpendicular to this area, and the area is increasing as the rod moves. Thus the magnetic flux enclosed by the rails, rod,

and resistor is increasing. When flux changes, an emf is induced according to Faraday’s law of induction.
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Figure 23.11 (a) A motional emf = Bℓv is induced between the rails when this rod moves to the right in the uniform magnetic field. The magnetic

field B is into the page, perpendicular to the moving rod and rails and, hence, to the area enclosed by them. (b) Lenz’s law gives the directions of the

induced field and current, and the polarity of the induced emf. Since the flux is increasing, the induced field is in the opposite direction, or out of the
page. RHR-2 gives the current direction shown, and the polarity of the rod will drive such a current. RHR-1 also indicates the same polarity for the rod.
(Note that the script E symbol used in the equivalent circuit at the bottom of part (b) represents emf.)

To find the magnitude of emf induced along the moving rod, we use Faraday’s law of induction without the sign:

(23.7)emf = N ΔΦ
Δt .

Here and below, “emf” implies the magnitude of the emf. In this equation, N = 1 and the flux Φ = BA cos θ . We have

θ = 0º and cos θ = 1 , since B is perpendicular to A . Now ΔΦ = Δ(BA) = BΔA , since B is uniform. Note that the area

swept out by the rod is ΔA = ℓ Δ x . Entering these quantities into the expression for emf yields

(23.8)emf = BΔA
Δt = BℓΔx

Δt .

Finally, note that Δx / Δt = v , the velocity of the rod. Entering this into the last expression shows that

(23.9)emf = Bℓv (B, ℓ, and v perpendicular)

is the motional emf. This is the same expression given for the Hall effect previously.

Making Connections: Unification of Forces

There are many connections between the electric force and the magnetic force. The fact that a moving electric field
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produces a magnetic field and, conversely, a moving magnetic field produces an electric field is part of why electric and
magnetic forces are now considered to be different manifestations of the same force. This classic unification of electric and
magnetic forces into what is called the electromagnetic force is the inspiration for contemporary efforts to unify other basic
forces.

To find the direction of the induced field, the direction of the current, and the polarity of the induced emf, we apply Lenz’s law as
explained in Faraday's Law of Induction: Lenz's Law. (See Figure 23.11(b).) Flux is increasing, since the area enclosed is
increasing. Thus the induced field must oppose the existing one and be out of the page. And so the RHR-2 requires that I be
counterclockwise, which in turn means the top of the rod is positive as shown.

Motional emf also occurs if the magnetic field moves and the rod (or other object) is stationary relative to the Earth (or some
observer). We have seen an example of this in the situation where a moving magnet induces an emf in a stationary coil. It is the
relative motion that is important. What is emerging in these observations is a connection between magnetic and electric fields. A
moving magnetic field produces an electric field through its induced emf. We already have seen that a moving electric field
produces a magnetic field—moving charge implies moving electric field and moving charge produces a magnetic field.

Motional emfs in the Earth’s weak magnetic field are not ordinarily very large, or we would notice voltage along metal rods, such
as a screwdriver, during ordinary motions. For example, a simple calculation of the motional emf of a 1 m rod moving at 3.0 m/s

perpendicular to the Earth’s field gives emf = Bℓv = (5.0×10−5 T)(1.0 m)(3.0 m/s) = 150 μV . This small value is

consistent with experience. There is a spectacular exception, however. In 1992 and 1996, attempts were made with the space
shuttle to create large motional emfs. The Tethered Satellite was to be let out on a 20 km length of wire as shown in Figure
23.12, to create a 5 kV emf by moving at orbital speed through the Earth’s field. This emf could be used to convert some of the
shuttle’s kinetic and potential energy into electrical energy if a complete circuit could be made. To complete the circuit, the
stationary ionosphere was to supply a return path for the current to flow. (The ionosphere is the rarefied and partially ionized
atmosphere at orbital altitudes. It conducts because of the ionization. The ionosphere serves the same function as the stationary
rails and connecting resistor in Figure 23.11, without which there would not be a complete circuit.) Drag on the current in the
cable due to the magnetic force F = IℓB sin θ does the work that reduces the shuttle’s kinetic and potential energy and allows

it to be converted to electrical energy. The tests were both unsuccessful. In the first, the cable hung up and could only be
extended a couple of hundred meters; in the second, the cable broke when almost fully extended. Example 23.2 indicates
feasibility in principle.

Example 23.2 Calculating the Large Motional Emf of an Object in Orbit

Figure 23.12 Motional emf as electrical power conversion for the space shuttle is the motivation for the Tethered Satellite experiment. A 5 kV emf
was predicted to be induced in the 20 km long tether while moving at orbital speed in the Earth’s magnetic field. The circuit is completed by a
return path through the stationary ionosphere.

Calculate the motional emf induced along a 20.0 km long conductor moving at an orbital speed of 7.80 km/s perpendicular to

the Earth’s 5.00×10−5 T magnetic field.

Strategy

This is a straightforward application of the expression for motional emf— emf = Bℓv .

Solution
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Entering the given values into emf = Bℓv gives

(23.10)emf = Bℓv
= (5.00×10−5 T)(2.0×104 m)(7.80×103 m/s)
= 7.80×103 V.

Discussion

The value obtained is greater than the 5 kV measured voltage for the shuttle experiment, since the actual orbital motion of
the tether is not perpendicular to the Earth’s field. The 7.80 kV value is the maximum emf obtained when θ = 90º and

sin θ = 1 .

23.4 Eddy Currents and Magnetic Damping

Eddy Currents and Magnetic Damping

As discussed in Motional Emf, motional emf is induced when a conductor moves in a magnetic field or when a magnetic field
moves relative to a conductor. If motional emf can cause a current loop in the conductor, we refer to that current as an eddy
current. Eddy currents can produce significant drag, called magnetic damping, on the motion involved. Consider the apparatus
shown in Figure 23.13, which swings a pendulum bob between the poles of a strong magnet. (This is another favorite physics
lab activity.) If the bob is metal, there is significant drag on the bob as it enters and leaves the field, quickly damping the motion.
If, however, the bob is a slotted metal plate, as shown in Figure 23.13(b), there is a much smaller effect due to the magnet.
There is no discernible effect on a bob made of an insulator. Why is there drag in both directions, and are there any uses for
magnetic drag?

Figure 23.13 A common physics demonstration device for exploring eddy currents and magnetic damping. (a) The motion of a metal pendulum bob
swinging between the poles of a magnet is quickly damped by the action of eddy currents. (b) There is little effect on the motion of a slotted metal bob,
implying that eddy currents are made less effective. (c) There is also no magnetic damping on a nonconducting bob, since the eddy currents are
extremely small.

Figure 23.14 shows what happens to the metal plate as it enters and leaves the magnetic field. In both cases, it experiences a
force opposing its motion. As it enters from the left, flux increases, and so an eddy current is set up (Faraday’s law) in the
counterclockwise direction (Lenz’s law), as shown. Only the right-hand side of the current loop is in the field, so that there is an
unopposed force on it to the left (RHR-1). When the metal plate is completely inside the field, there is no eddy current if the field
is uniform, since the flux remains constant in this region. But when the plate leaves the field on the right, flux decreases, causing
an eddy current in the clockwise direction that, again, experiences a force to the left, further slowing the motion. A similar
analysis of what happens when the plate swings from the right toward the left shows that its motion is also damped when
entering and leaving the field.
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Figure 23.14 A more detailed look at the conducting plate passing between the poles of a magnet. As it enters and leaves the field, the change in flux
produces an eddy current. Magnetic force on the current loop opposes the motion. There is no current and no magnetic drag when the plate is
completely inside the uniform field.

When a slotted metal plate enters the field, as shown in Figure 23.15, an emf is induced by the change in flux, but it is less
effective because the slots limit the size of the current loops. Moreover, adjacent loops have currents in opposite directions, and
their effects cancel. When an insulating material is used, the eddy current is extremely small, and so magnetic damping on
insulators is negligible. If eddy currents are to be avoided in conductors, then they can be slotted or constructed of thin layers of
conducting material separated by insulating sheets.

Figure 23.15 Eddy currents induced in a slotted metal plate entering a magnetic field form small loops, and the forces on them tend to cancel, thereby
making magnetic drag almost zero.

Applications of Magnetic Damping

One use of magnetic damping is found in sensitive laboratory balances. To have maximum sensitivity and accuracy, the balance
must be as friction-free as possible. But if it is friction-free, then it will oscillate for a very long time. Magnetic damping is a simple
and ideal solution. With magnetic damping, drag is proportional to speed and becomes zero at zero velocity. Thus the oscillations
are quickly damped, after which the damping force disappears, allowing the balance to be very sensitive. (See Figure 23.16.) In
most balances, magnetic damping is accomplished with a conducting disc that rotates in a fixed field.
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Figure 23.16 Magnetic damping of this sensitive balance slows its oscillations. Since Faraday’s law of induction gives the greatest effect for the most
rapid change, damping is greatest for large oscillations and goes to zero as the motion stops.

Since eddy currents and magnetic damping occur only in conductors, recycling centers can use magnets to separate metals from
other materials. Trash is dumped in batches down a ramp, beneath which lies a powerful magnet. Conductors in the trash are
slowed by magnetic damping while nonmetals in the trash move on, separating from the metals. (See Figure 23.17.) This works
for all metals, not just ferromagnetic ones. A magnet can separate out the ferromagnetic materials alone by acting on stationary
trash.

Figure 23.17 Metals can be separated from other trash by magnetic drag. Eddy currents and magnetic drag are created in the metals sent down this
ramp by the powerful magnet beneath it. Nonmetals move on.

Other major applications of eddy currents are in metal detectors and braking systems in trains and roller coasters. Portable metal
detectors (Figure 23.18) consist of a primary coil carrying an alternating current and a secondary coil in which a current is
induced. An eddy current will be induced in a piece of metal close to the detector which will cause a change in the induced
current within the secondary coil, leading to some sort of signal like a shrill noise. Braking using eddy currents is safer because
factors such as rain do not affect the braking and the braking is smoother. However, eddy currents cannot bring the motion to a
complete stop, since the force produced decreases with speed. Thus, speed can be reduced from say 20 m/s to 5 m/s, but
another form of braking is needed to completely stop the vehicle. Generally, powerful rare earth magnets such as neodymium
magnets are used in roller coasters. Figure 23.19 shows rows of magnets in such an application. The vehicle has metal fins
(normally containing copper) which pass through the magnetic field slowing the vehicle down in much the same way as with the
pendulum bob shown in Figure 23.13.
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Figure 23.18 A soldier in Iraq uses a metal detector to search for explosives and weapons. (credit: U.S. Army)

Figure 23.19 The rows of rare earth magnets (protruding horizontally) are used for magnetic braking in roller coasters. (credit: Stefan Scheer,
Wikimedia Commons)

Induction cooktops have electromagnets under their surface. The magnetic field is varied rapidly producing eddy currents in the
base of the pot, causing the pot and its contents to increase in temperature. Induction cooktops have high efficiencies and good
response times but the base of the pot needs to be ferromagnetic, iron or steel for induction to work.

23.5 Electric Generators

Electric generators induce an emf by rotating a coil in a magnetic field, as briefly discussed in Induced Emf and Magnetic
Flux. We will now explore generators in more detail. Consider the following example.

Example 23.3 Calculating the Emf Induced in a Generator Coil

The generator coil shown in Figure 23.20 is rotated through one-fourth of a revolution (from θ = 0º to θ = 90º ) in 15.0

ms. The 200-turn circular coil has a 5.00 cm radius and is in a uniform 1.25 T magnetic field. What is the average emf
induced?
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Figure 23.20 When this generator coil is rotated through one-fourth of a revolution, the magnetic flux Φ changes from its maximum to zero,

inducing an emf.

Strategy

We use Faraday’s law of induction to find the average emf induced over a time Δt :

(23.11)emf = −N ΔΦ
Δt .

We know that N = 200 and Δt = 15.0 ms , and so we must determine the change in flux ΔΦ to find emf.

Solution

Since the area of the loop and the magnetic field strength are constant, we see that

(23.12)ΔΦ = Δ(BA cos θ) = ABΔ(cos θ).

Now, Δ(cos θ) = −1.0 , since it was given that θ goes from 0º to 90º . Thus ΔΦ = −AB , and

(23.13)emf = N AB
Δt .

The area of the loop is A = πr2 = (3.14...)(0.0500 m)2 = 7.85×10−3 m2 . Entering this value gives

(23.14)
emf = 200(7.85×10−3 m2)(1.25 T)

15.0×10−3 s
= 131 V.

Discussion

This is a practical average value, similar to the 120 V used in household power.

The emf calculated in Example 23.3 is the average over one-fourth of a revolution. What is the emf at any given instant? It varies
with the angle between the magnetic field and a perpendicular to the coil. We can get an expression for emf as a function of time
by considering the motional emf on a rotating rectangular coil of width w and height ℓ in a uniform magnetic field, as illustrated

in Figure 23.21.
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Figure 23.21 A generator with a single rectangular coil rotated at constant angular velocity in a uniform magnetic field produces an emf that varies
sinusoidally in time. Note the generator is similar to a motor, except the shaft is rotated to produce a current rather than the other way around.

Charges in the wires of the loop experience the magnetic force, because they are moving in a magnetic field. Charges in the
vertical wires experience forces parallel to the wire, causing currents. But those in the top and bottom segments feel a force
perpendicular to the wire, which does not cause a current. We can thus find the induced emf by considering only the side wires.
Motional emf is given to be emf = Bℓv , where the velocity v is perpendicular to the magnetic field B . Here the velocity is at an

angle θ with B , so that its component perpendicular to B is v sin θ (see Figure 23.21). Thus in this case the emf induced on

each side is emf = Bℓv sin θ , and they are in the same direction. The total emf around the loop is then

(23.15)emf = 2Bℓv sin θ.
This expression is valid, but it does not give emf as a function of time. To find the time dependence of emf, we assume the coil
rotates at a constant angular velocity ω . The angle θ is related to angular velocity by θ = ωt , so that

(23.16)emf = 2Bℓv sin ωt.

Now, linear velocity v is related to angular velocity ω by v = rω . Here r = w / 2 , so that v = (w / 2)ω , and

(23.17)emf = 2Bℓw
2 ω sin ωt = (ℓw)Bω sin ωt.

Noting that the area of the loop is A = ℓw , and allowing for N loops, we find that

(23.18)emf = NABω sin ωt

is the emf induced in a generator coil of N turns and area A rotating at a constant angular velocity ω in a uniform magnetic

field B . This can also be expressed as

(23.19)emf = emf0 sin ωt,

where

(23.20)emf0 = NABω

is the maximum (peak) emf. Note that the frequency of the oscillation is f = ω / 2π , and the period is T = 1 / f = 2π / ω .

Figure 23.22 shows a graph of emf as a function of time, and it now seems reasonable that AC voltage is sinusoidal.

Figure 23.22 The emf of a generator is sent to a light bulb with the system of rings and brushes shown. The graph gives the emf of the generator as a

function of time. emf0 is the peak emf. The period is T = 1 / f = 2π / ω , where f is the frequency. Note that the script E stands for emf.
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The fact that the peak emf, emf0 = NABω , makes good sense. The greater the number of coils, the larger their area, and the

stronger the field, the greater the output voltage. It is interesting that the faster the generator is spun (greater ω ), the greater the

emf. This is noticeable on bicycle generators—at least the cheaper varieties. One of the authors as a juvenile found it amusing to
ride his bicycle fast enough to burn out his lights, until he had to ride home lightless one dark night.

Figure 23.23 shows a scheme by which a generator can be made to produce pulsed DC. More elaborate arrangements of
multiple coils and split rings can produce smoother DC, although electronic rather than mechanical means are usually used to
make ripple-free DC.

Figure 23.23 Split rings, called commutators, produce a pulsed DC emf output in this configuration.

Example 23.4 Calculating the Maximum Emf of a Generator

Calculate the maximum emf, emf0 , of the generator that was the subject of Example 23.3.

Strategy

Once ω , the angular velocity, is determined, emf0 = NABω can be used to find emf0 . All other quantities are known.

Solution

Angular velocity is defined to be the change in angle per unit time:

(23.21)ω = Δθ
Δt .

One-fourth of a revolution is π/2 radians, and the time is 0.0150 s; thus,

(23.22)ω = π / 2 rad
0.0150 s

= 104.7 rad/s.
104.7 rad/s is exactly 1000 rpm. We substitute this value for ω and the information from the previous example into

emf0 = NABω , yielding

(23.23)emf0 = NABω

= 200(7.85×10−3 m2)(1.25 T)(104.7 rad/s)
= 206 V

.

Discussion

The maximum emf is greater than the average emf of 131 V found in the previous example, as it should be.

In real life, electric generators look a lot different than the figures in this section, but the principles are the same. The source of

912 Chapter 23 | Electromagnetic Induction, AC Circuits, and Electrical Technologies

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



mechanical energy that turns the coil can be falling water (hydropower), steam produced by the burning of fossil fuels, or the
kinetic energy of wind. Figure 23.24 shows a cutaway view of a steam turbine; steam moves over the blades connected to the
shaft, which rotates the coil within the generator.

Figure 23.24 Steam turbine/generator. The steam produced by burning coal impacts the turbine blades, turning the shaft which is connected to the
generator. (credit: Nabonaco, Wikimedia Commons)

Generators illustrated in this section look very much like the motors illustrated previously. This is not coincidental. In fact, a motor
becomes a generator when its shaft rotates. Certain early automobiles used their starter motor as a generator. In Back Emf, we
shall further explore the action of a motor as a generator.

23.6 Back Emf

It has been noted that motors and generators are very similar. Generators convert mechanical energy into electrical energy,
whereas motors convert electrical energy into mechanical energy. Furthermore, motors and generators have the same
construction. When the coil of a motor is turned, magnetic flux changes, and an emf (consistent with Faraday’s law of induction)
is induced. The motor thus acts as a generator whenever its coil rotates. This will happen whether the shaft is turned by an
external input, like a belt drive, or by the action of the motor itself. That is, when a motor is doing work and its shaft is turning, an
emf is generated. Lenz’s law tells us the emf opposes any change, so that the input emf that powers the motor will be opposed
by the motor’s self-generated emf, called the back emf of the motor. (See Figure 23.25.)

Figure 23.25 The coil of a DC motor is represented as a resistor in this schematic. The back emf is represented as a variable emf that opposes the
one driving the motor. Back emf is zero when the motor is not turning, and it increases proportionally to the motor’s angular velocity.

Back emf is the generator output of a motor, and so it is proportional to the motor’s angular velocity ω . It is zero when the motor

is first turned on, meaning that the coil receives the full driving voltage and the motor draws maximum current when it is on but
not turning. As the motor turns faster and faster, the back emf grows, always opposing the driving emf, and reduces the voltage
across the coil and the amount of current it draws. This effect is noticeable in a number of situations. When a vacuum cleaner,
refrigerator, or washing machine is first turned on, lights in the same circuit dim briefly due to the IR drop produced in feeder

lines by the large current drawn by the motor. When a motor first comes on, it draws more current than when it runs at its normal
operating speed. When a mechanical load is placed on the motor, like an electric wheelchair going up a hill, the motor slows, the
back emf drops, more current flows, and more work can be done. If the motor runs at too low a speed, the larger current can

overheat it (via resistive power in the coil, P = I 2R ), perhaps even burning it out. On the other hand, if there is no mechanical

load on the motor, it will increase its angular velocity ω until the back emf is nearly equal to the driving emf. Then the motor

uses only enough energy to overcome friction.

Consider, for example, the motor coils represented in Figure 23.25. The coils have a 0.400 Ω equivalent resistance and are

driven by a 48.0 V emf. Shortly after being turned on, they draw a current I = V/R = (48.0 V)/(0.400 Ω ) = 120 A and,

thus, dissipate P = I 2R = 5.76 kW of energy as heat transfer. Under normal operating conditions for this motor, suppose the
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back emf is 40.0 V. Then at operating speed, the total voltage across the coils is 8.0 V (48.0 V minus the 40.0 V back emf), and
the current drawn is I = V/R = (8.0 V)/(0.400 Ω ) = 20 A . Under normal load, then, the power dissipated is

P = IV = (20 A) / (8.0 V) = 160 W . The latter will not cause a problem for this motor, whereas the former 5.76 kW would

burn out the coils if sustained.

23.7 Transformers

Transformers do what their name implies—they transform voltages from one value to another (The term voltage is used rather
than emf, because transformers have internal resistance). For example, many cell phones, laptops, video games, and power
tools and small appliances have a transformer built into their plug-in unit (like that in Figure 23.26) that changes 120 V or 240 V
AC into whatever voltage the device uses. Transformers are also used at several points in the power distribution systems, such
as illustrated in Figure 23.27. Power is sent long distances at high voltages, because less current is required for a given amount
of power, and this means less line loss, as was discussed previously. But high voltages pose greater hazards, so that
transformers are employed to produce lower voltage at the user’s location.

Figure 23.26 The plug-in transformer has become increasingly familiar with the proliferation of electronic devices that operate on voltages other than
common 120 V AC. Most are in the 3 to 12 V range. (credit: Shop Xtreme)

Figure 23.27 Transformers change voltages at several points in a power distribution system. Electric power is usually generated at greater than 10 kV,
and transmitted long distances at voltages over 200 kV—sometimes as great as 700 kV—to limit energy losses. Local power distribution to
neighborhoods or industries goes through a substation and is sent short distances at voltages ranging from 5 to 13 kV. This is reduced to 120, 240, or
480 V for safety at the individual user site.

The type of transformer considered in this text—see Figure 23.28—is based on Faraday’s law of induction and is very similar in
construction to the apparatus Faraday used to demonstrate magnetic fields could cause currents. The two coils are called the
primary and secondary coils. In normal use, the input voltage is placed on the primary, and the secondary produces the
transformed output voltage. Not only does the iron core trap the magnetic field created by the primary coil, its magnetization
increases the field strength. Since the input voltage is AC, a time-varying magnetic flux is sent to the secondary, inducing its AC
output voltage.

914 Chapter 23 | Electromagnetic Induction, AC Circuits, and Electrical Technologies

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Figure 23.28 A typical construction of a simple transformer has two coils wound on a ferromagnetic core that is laminated to minimize eddy currents.
The magnetic field created by the primary is mostly confined to and increased by the core, which transmits it to the secondary coil. Any change in
current in the primary induces a current in the secondary.

For the simple transformer shown in Figure 23.28, the output voltage Vs depends almost entirely on the input voltage Vp and

the ratio of the number of loops in the primary and secondary coils. Faraday’s law of induction for the secondary coil gives its
induced output voltage Vs to be

(23.24)Vs = −Ns
ΔΦ
Δt ,

where Ns is the number of loops in the secondary coil and ΔΦ / Δt is the rate of change of magnetic flux. Note that the output

voltage equals the induced emf ( Vs = emfs ), provided coil resistance is small (a reasonable assumption for transformers). The

cross-sectional area of the coils is the same on either side, as is the magnetic field strength, and so ΔΦ / Δt is the same on

either side. The input primary voltage Vp is also related to changing flux by

(23.25)V p = −Np
ΔΦ
Δt .

The reason for this is a little more subtle. Lenz’s law tells us that the primary coil opposes the change in flux caused by the input
voltage Vp , hence the minus sign (This is an example of self-inductance, a topic to be explored in some detail in later sections).

Assuming negligible coil resistance, Kirchhoff’s loop rule tells us that the induced emf exactly equals the input voltage. Taking the
ratio of these last two equations yields a useful relationship:

(23.26)Vs
Vp

= Ns
Np

.

This is known as the transformer equation, and it simply states that the ratio of the secondary to primary voltages in a
transformer equals the ratio of the number of loops in their coils.

The output voltage of a transformer can be less than, greater than, or equal to the input voltage, depending on the ratio of the
number of loops in their coils. Some transformers even provide a variable output by allowing connection to be made at different
points on the secondary coil. A step-up transformer is one that increases voltage, whereas a step-down transformer
decreases voltage. Assuming, as we have, that resistance is negligible, the electrical power output of a transformer equals its
input. This is nearly true in practice—transformer efficiency often exceeds 99%. Equating the power input and output,

(23.27)Pp = IpVp = IsVs = Ps.

Rearranging terms gives

(23.28)Vs
Vp

=
Ip
Is

.

Combining this with
Vs
Vp

= Ns
Np

, we find that
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(23.29)Is
Ip

=
Np
Ns

is the relationship between the output and input currents of a transformer. So if voltage increases, current decreases. Conversely,
if voltage decreases, current increases.

Example 23.5 Calculating Characteristics of a Step-Up Transformer

A portable x-ray unit has a step-up transformer, the 120 V input of which is transformed to the 100 kV output needed by the
x-ray tube. The primary has 50 loops and draws a current of 10.00 A when in use. (a) What is the number of loops in the
secondary? (b) Find the current output of the secondary.

Strategy and Solution for (a)

We solve
Vs
Vp

= Ns
Np

for Ns , the number of loops in the secondary, and enter the known values. This gives

(23.30)Ns = Np
Vs
Vp

= (50)100,000 V
120 V = 4.17×104 .

Discussion for (a)

A large number of loops in the secondary (compared with the primary) is required to produce such a large voltage. This
would be true for neon sign transformers and those supplying high voltage inside TVs and CRTs.

Strategy and Solution for (b)

We can similarly find the output current of the secondary by solving
Is
Ip

=
Np
Ns

for Is and entering known values. This gives

(23.31)
Is = Ip

Np
Ns

= (10.00 A) 50
4.17×104 = 12.0 mA.

Discussion for (b)

As expected, the current output is significantly less than the input. In certain spectacular demonstrations, very large voltages
are used to produce long arcs, but they are relatively safe because the transformer output does not supply a large current.
Note that the power input here is Pp = IpVp = (10.00 A)(120 V) = 1.20 kW . This equals the power output

Pp = IsVs = (12.0 mA)(100 kV) = 1.20 kW , as we assumed in the derivation of the equations used.

The fact that transformers are based on Faraday’s law of induction makes it clear why we cannot use transformers to change DC
voltages. If there is no change in primary voltage, there is no voltage induced in the secondary. One possibility is to connect DC
to the primary coil through a switch. As the switch is opened and closed, the secondary produces a voltage like that in Figure
23.29. This is not really a practical alternative, and AC is in common use wherever it is necessary to increase or decrease
voltages.
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Figure 23.29 Transformers do not work for pure DC voltage input, but if it is switched on and off as on the top graph, the output will look something like
that on the bottom graph. This is not the sinusoidal AC most AC appliances need.

Example 23.6 Calculating Characteristics of a Step-Down Transformer

A battery charger meant for a series connection of ten nickel-cadmium batteries (total emf of 12.5 V DC) needs to have a
15.0 V output to charge the batteries. It uses a step-down transformer with a 200-loop primary and a 120 V input. (a) How
many loops should there be in the secondary coil? (b) If the charging current is 16.0 A, what is the input current?

Strategy and Solution for (a)

You would expect the secondary to have a small number of loops. Solving
Vs
Vp

= Ns
Np

for Ns and entering known values

gives

(23.32)Ns = Np
Vs
Vp

= (200)15.0 V
120 V = 25.

Strategy and Solution for (b)

The current input can be obtained by solving
Is
Ip

=
Np
Ns

for Ip and entering known values. This gives

(23.33)Ip = Is
Ns
Np

= (16.0 A) 25
200 = 2.00 A.

Discussion

The number of loops in the secondary is small, as expected for a step-down transformer. We also see that a small input
current produces a larger output current in a step-down transformer. When transformers are used to operate large magnets,
they sometimes have a small number of very heavy loops in the secondary. This allows the secondary to have low internal
resistance and produce large currents. Note again that this solution is based on the assumption of 100% efficiency—or
power out equals power in ( Pp = Ps )—reasonable for good transformers. In this case the primary and secondary power is

240 W. (Verify this for yourself as a consistency check.) Note that the Ni-Cd batteries need to be charged from a DC power
source (as would a 12 V battery). So the AC output of the secondary coil needs to be converted into DC. This is done using
something called a rectifier, which uses devices called diodes that allow only a one-way flow of current.

Transformers have many applications in electrical safety systems, which are discussed in Electrical Safety: Systems and
Devices.
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PhET Explorations: Generator

Generate electricity with a bar magnet! Discover the physics behind the phenomena by exploring magnets and how you can
use them to make a bulb light.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42414/
1.9/#Phet_module_24.7)

Figure 23.30

23.8 Electrical Safety: Systems and Devices

Electricity has two hazards. A thermal hazard occurs when there is electrical overheating. A shock hazard occurs when electric
current passes through a person. Both hazards have already been discussed. Here we will concentrate on systems and devices
that prevent electrical hazards.

Figure 23.31 shows the schematic for a simple AC circuit with no safety features. This is not how power is distributed in practice.
Modern household and industrial wiring requires the three-wire system, shown schematically in Figure 23.32, which has
several safety features. First is the familiar circuit breaker (or fuse) to prevent thermal overload. Second, there is a protective
case around the appliance, such as a toaster or refrigerator. The case’s safety feature is that it prevents a person from touching
exposed wires and coming into electrical contact with the circuit, helping prevent shocks.

Figure 23.31 Schematic of a simple AC circuit with a voltage source and a single appliance represented by the resistance R . There are no safety

features in this circuit.

Figure 23.32 The three-wire system connects the neutral wire to the earth at the voltage source and user location, forcing it to be at zero volts and
supplying an alternative return path for the current through the earth. Also grounded to zero volts is the case of the appliance. A circuit breaker or fuse
protects against thermal overload and is in series on the active (live/hot) wire. Note that wire insulation colors vary with region and it is essential to
check locally to determine which color codes are in use (and even if they were followed in the particular installation).

There are three connections to earth or ground (hereafter referred to as “earth/ground”) shown in Figure 23.32. Recall that an
earth/ground connection is a low-resistance path directly to the earth. The two earth/ground connections on the neutral wire force
it to be at zero volts relative to the earth, giving the wire its name. This wire is therefore safe to touch even if its insulation, usually
white, is missing. The neutral wire is the return path for the current to follow to complete the circuit. Furthermore, the two earth/
ground connections supply an alternative path through the earth, a good conductor, to complete the circuit. The earth/ground
connection closest to the power source could be at the generating plant, while the other is at the user’s location. The third earth/
ground is to the case of the appliance, through the green earth/ground wire, forcing the case, too, to be at zero volts. The live or
hot wire (hereafter referred to as “live/hot”) supplies voltage and current to operate the appliance. Figure 23.33 shows a more
pictorial version of how the three-wire system is connected through a three-prong plug to an appliance.
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Figure 23.33 The standard three-prong plug can only be inserted in one way, to assure proper function of the three-wire system.

A note on insulation color-coding: Insulating plastic is color-coded to identify live/hot, neutral and ground wires but these codes
vary around the world. Live/hot wires may be brown, red, black, blue or grey. Neutral wire may be blue, black or white. Since the
same color may be used for live/hot or neutral in different parts of the world, it is essential to determine the color code in your
region. The only exception is the earth/ground wire which is often green but may be yellow or just bare wire. Striped coatings are
sometimes used for the benefit of those who are colorblind.

The three-wire system replaced the older two-wire system, which lacks an earth/ground wire. Under ordinary circumstances,
insulation on the live/hot and neutral wires prevents the case from being directly in the circuit, so that the earth/ground wire may
seem like double protection. Grounding the case solves more than one problem, however. The simplest problem is worn
insulation on the live/hot wire that allows it to contact the case, as shown in Figure 23.34. Lacking an earth/ground connection
(some people cut the third prong off the plug because they only have outdated two hole receptacles), a severe shock is possible.
This is particularly dangerous in the kitchen, where a good connection to earth/ground is available through water on the floor or a
water faucet. With the earth/ground connection intact, the circuit breaker will trip, forcing repair of the appliance. Why are some
appliances still sold with two-prong plugs? These have nonconducting cases, such as power tools with impact resistant plastic
cases, and are called doubly insulated. Modern two-prong plugs can be inserted into the asymmetric standard outlet in only one
way, to ensure proper connection of live/hot and neutral wires.
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Figure 23.34 Worn insulation allows the live/hot wire to come into direct contact with the metal case of this appliance. (a) The earth/ground connection
being broken, the person is severely shocked. The appliance may operate normally in this situation. (b) With a proper earth/ground, the circuit breaker
trips, forcing repair of the appliance.

Electromagnetic induction causes a more subtle problem that is solved by grounding the case. The AC current in appliances can
induce an emf on the case. If grounded, the case voltage is kept near zero, but if the case is not grounded, a shock can occur as
pictured in Figure 23.35. Current driven by the induced case emf is called a leakage current, although current does not
necessarily pass from the resistor to the case.
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Figure 23.35 AC currents can induce an emf on the case of an appliance. The voltage can be large enough to cause a shock. If the case is grounded,
the induced emf is kept near zero.

A ground fault interrupter (GFI) is a safety device found in updated kitchen and bathroom wiring that works based on
electromagnetic induction. GFIs compare the currents in the live/hot and neutral wires. When live/hot and neutral currents are not
equal, it is almost always because current in the neutral is less than in the live/hot wire. Then some of the current, again called a
leakage current, is returning to the voltage source by a path other than through the neutral wire. It is assumed that this path
presents a hazard, such as shown in Figure 23.36. GFIs are usually set to interrupt the circuit if the leakage current is greater
than 5 mA, the accepted maximum harmless shock. Even if the leakage current goes safely to earth/ground through an intact
earth/ground wire, the GFI will trip, forcing repair of the leakage.

Figure 23.36 A ground fault interrupter (GFI) compares the currents in the live/hot and neutral wires and will trip if their difference exceeds a safe
value. The leakage current here follows a hazardous path that could have been prevented by an intact earth/ground wire.

Figure 23.37 shows how a GFI works. If the currents in the live/hot and neutral wires are equal, then they induce equal and
opposite emfs in the coil. If not, then the circuit breaker will trip.

Figure 23.37 A GFI compares currents by using both to induce an emf in the same coil. If the currents are equal, they will induce equal but opposite
emfs.
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Another induction-based safety device is the isolation transformer, shown in Figure 23.38. Most isolation transformers have
equal input and output voltages. Their function is to put a large resistance between the original voltage source and the device
being operated. This prevents a complete circuit between them, even in the circumstance shown. There is a complete circuit
through the appliance. But there is not a complete circuit for current to flow through the person in the figure, who is touching only
one of the transformer’s output wires, and neither output wire is grounded. The appliance is isolated from the original voltage
source by the high resistance of the material between the transformer coils, hence the name isolation transformer. For current to
flow through the person, it must pass through the high-resistance material between the coils, through the wire, the person, and
back through the earth—a path with such a large resistance that the current is negligible.

Figure 23.38 An isolation transformer puts a large resistance between the original voltage source and the device, preventing a complete circuit
between them.

The basics of electrical safety presented here help prevent many electrical hazards. Electrical safety can be pursued to greater
depths. There are, for example, problems related to different earth/ground connections for appliances in close proximity. Many
other examples are found in hospitals. Microshock-sensitive patients, for instance, require special protection. For these people,
currents as low as 0.1 mA may cause ventricular fibrillation. The interested reader can use the material presented here as a
basis for further study.

23.9 Inductance

Inductors

Induction is the process in which an emf is induced by changing magnetic flux. Many examples have been discussed so far,
some more effective than others. Transformers, for example, are designed to be particularly effective at inducing a desired
voltage and current with very little loss of energy to other forms. Is there a useful physical quantity related to how “effective” a
given device is? The answer is yes, and that physical quantity is called inductance.

Mutual inductance is the effect of Faraday’s law of induction for one device upon another, such as the primary coil in
transmitting energy to the secondary in a transformer. See Figure 23.39, where simple coils induce emfs in one another.

Figure 23.39 These coils can induce emfs in one another like an inefficient transformer. Their mutual inductance M indicates the effectiveness of the

coupling between them. Here a change in current in coil 1 is seen to induce an emf in coil 2. (Note that " E2 induced" represents the induced emf in

coil 2.)

In the many cases where the geometry of the devices is fixed, flux is changed by varying current. We therefore concentrate on
the rate of change of current, ΔI/Δt , as the cause of induction. A change in the current I1 in one device, coil 1 in the figure,
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induces an emf2 in the other. We express this in equation form as

(23.34)
emf2 = −MΔI1

Δt ,

where M is defined to be the mutual inductance between the two devices. The minus sign is an expression of Lenz’s law. The

larger the mutual inductance M , the more effective the coupling. For example, the coils in Figure 23.39 have a small M
compared with the transformer coils in Figure 23.28. Units for M are (V ⋅ s)/A = Ω ⋅ s , which is named a henry (H), after

Joseph Henry. That is, 1 H = 1 Ω ⋅ s .

Nature is symmetric here. If we change the current I2 in coil 2, we induce an emf1 in coil 1, which is given by

(23.35)
emf1 = −MΔI2

Δt ,

where M is the same as for the reverse process. Transformers run backward with the same effectiveness, or mutual inductance

M .

A large mutual inductance M may or may not be desirable. We want a transformer to have a large mutual inductance. But an

appliance, such as an electric clothes dryer, can induce a dangerous emf on its case if the mutual inductance between its coils
and the case is large. One way to reduce mutual inductance M is to counterwind coils to cancel the magnetic field produced.

(See Figure 23.40.)

Figure 23.40 The heating coils of an electric clothes dryer can be counter-wound so that their magnetic fields cancel one another, greatly reducing the
mutual inductance with the case of the dryer.

Self-inductance, the effect of Faraday’s law of induction of a device on itself, also exists. When, for example, current through a
coil is increased, the magnetic field and flux also increase, inducing a counter emf, as required by Lenz’s law. Conversely, if the
current is decreased, an emf is induced that opposes the decrease. Most devices have a fixed geometry, and so the change in
flux is due entirely to the change in current ΔI through the device. The induced emf is related to the physical geometry of the

device and the rate of change of current. It is given by

(23.36)emf = −LΔI
Δt ,

where L is the self-inductance of the device. A device that exhibits significant self-inductance is called an inductor, and given

the symbol in Figure 23.41.

Figure 23.41

The minus sign is an expression of Lenz’s law, indicating that emf opposes the change in current. Units of self-inductance are
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henries (H) just as for mutual inductance. The larger the self-inductance L of a device, the greater its opposition to any change

in current through it. For example, a large coil with many turns and an iron core has a large L and will not allow current to

change quickly. To avoid this effect, a small L must be achieved, such as by counterwinding coils as in Figure 23.40.

A 1 H inductor is a large inductor. To illustrate this, consider a device with L = 1.0 H that has a 10 A current flowing through it.

What happens if we try to shut off the current rapidly, perhaps in only 1.0 ms? An emf, given by emf = −L(ΔI / Δt) , will

oppose the change. Thus an emf will be induced given by emf = −L(ΔI / Δt) = (1.0 H)[(10 A) / (1.0 ms)] = 10,000 V .

The positive sign means this large voltage is in the same direction as the current, opposing its decrease. Such large emfs can
cause arcs, damaging switching equipment, and so it may be necessary to change current more slowly.

There are uses for such a large induced voltage. Camera flashes use a battery, two inductors that function as a transformer, and
a switching system or oscillator to induce large voltages. (Remember that we need a changing magnetic field, brought about by a
changing current, to induce a voltage in another coil.) The oscillator system will do this many times as the battery voltage is
boosted to over one thousand volts. (You may hear the high pitched whine from the transformer as the capacitor is being
charged.) A capacitor stores the high voltage for later use in powering the flash. (See Figure 23.42.)

Figure 23.42 Through rapid switching of an inductor, 1.5 V batteries can be used to induce emfs of several thousand volts. This voltage can be used to
store charge in a capacitor for later use, such as in a camera flash attachment.

It is possible to calculate L for an inductor given its geometry (size and shape) and knowing the magnetic field that it produces.

This is difficult in most cases, because of the complexity of the field created. So in this text the inductance L is usually a given

quantity. One exception is the solenoid, because it has a very uniform field inside, a nearly zero field outside, and a simple
shape. It is instructive to derive an equation for its inductance. We start by noting that the induced emf is given by Faraday’s law
of induction as emf = −N(ΔΦ / Δt) and, by the definition of self-inductance, as emf = −L(ΔI / Δt) . Equating these yields

(23.37)emf = −N ΔΦ
Δt = −LΔI

Δt .

Solving for L gives

(23.38)L = N ΔΦ
ΔI .

This equation for the self-inductance L of a device is always valid. It means that self-inductance L depends on how effective

the current is in creating flux; the more effective, the greater ΔΦ / ΔI is.

Let us use this last equation to find an expression for the inductance of a solenoid. Since the area A of a solenoid is fixed, the

change in flux is ΔΦ = Δ(BA) = AΔB . To find ΔB , we note that the magnetic field of a solenoid is given by

B = μ0nI = μ0
NI
ℓ . (Here n = N / ℓ , where N is the number of coils and ℓ is the solenoid’s length.) Only the current

changes, so that ΔΦ = AΔB = μ0NAΔI
ℓ . Substituting ΔΦ into L = N ΔΦ

ΔI gives

(23.39)
L = N ΔΦ

ΔI = N
μ0 NAΔI

ℓ
ΔI .

This simplifies to

(23.40)
L = μ0 N 2 A

ℓ (solenoid).

This is the self-inductance of a solenoid of cross-sectional area A and length ℓ . Note that the inductance depends only on the

physical characteristics of the solenoid, consistent with its definition.
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Example 23.7 Calculating the Self-inductance of a Moderate Size Solenoid

Calculate the self-inductance of a 10.0 cm long, 4.00 cm diameter solenoid that has 200 coils.

Strategy

This is a straightforward application of L = μ0 N 2 A
ℓ , since all quantities in the equation except L are known.

Solution

Use the following expression for the self-inductance of a solenoid:

(23.41)
L = μ0 N 2 A

ℓ .

The cross-sectional area in this example is A = πr2 = (3.14...)(0.0200 m)2 = 1.26×10−3 m2 , N is given to be 200,

and the length ℓ is 0.100 m. We know the permeability of free space is μ0 = 4π×10−7 T ⋅ m/A . Substituting these into

the expression for L gives

(23.42)
L = (4π×10−7 T ⋅ m/A)(200)2(1.26×10−3 m2)

0.100 m
= 0.632 mH.

Discussion

This solenoid is moderate in size. Its inductance of nearly a millihenry is also considered moderate.

One common application of inductance is used in traffic lights that can tell when vehicles are waiting at the intersection. An
electrical circuit with an inductor is placed in the road under the place a waiting car will stop over. The body of the car increases
the inductance and the circuit changes sending a signal to the traffic lights to change colors. Similarly, metal detectors used for
airport security employ the same technique. A coil or inductor in the metal detector frame acts as both a transmitter and a
receiver. The pulsed signal in the transmitter coil induces a signal in the receiver. The self-inductance of the circuit is affected by
any metal object in the path. Such detectors can be adjusted for sensitivity and also can indicate the approximate location of
metal found on a person. (But they will not be able to detect any plastic explosive such as that found on the “underwear
bomber.”) See Figure 23.43.

Figure 23.43 The familiar security gate at an airport can not only detect metals but also indicate their approximate height above the floor. (credit:
Alexbuirds, Wikimedia Commons)

Energy Stored in an Inductor

We know from Lenz’s law that inductances oppose changes in current. There is an alternative way to look at this opposition that
is based on energy. Energy is stored in a magnetic field. It takes time to build up energy, and it also takes time to deplete energy;
hence, there is an opposition to rapid change. In an inductor, the magnetic field is directly proportional to current and to the
inductance of the device. It can be shown that the energy stored in an inductor Eind is given by

(23.43)Eind = 1
2LI 2.

This expression is similar to that for the energy stored in a capacitor.
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Example 23.8 Calculating the Energy Stored in the Field of a Solenoid

How much energy is stored in the 0.632 mH inductor of the preceding example when a 30.0 A current flows through it?

Strategy

The energy is given by the equation Eind = 1
2LI 2 , and all quantities except Eind are known.

Solution

Substituting the value for L found in the previous example and the given current into Eind = 1
2LI 2 gives

(23.44)Eind = 1
2LI 2

= 0.5(0.632×10−3 H)(30.0 A)2 = 0.284 J.

Discussion

This amount of energy is certainly enough to cause a spark if the current is suddenly switched off. It cannot be built up
instantaneously unless the power input is infinite.

23.10 RL Circuits

We know that the current through an inductor L cannot be turned on or off instantaneously. The change in current changes flux,

inducing an emf opposing the change (Lenz’s law). How long does the opposition last? Current will flow and can be turned off,
but how long does it take? Figure 23.44 shows a switching circuit that can be used to examine current through an inductor as a
function of time.

Figure 23.44 (a) An RL circuit with a switch to turn current on and off. When in position 1, the battery, resistor, and inductor are in series and a current
is established. In position 2, the battery is removed and the current eventually stops because of energy loss in the resistor. (b) A graph of current
growth versus time when the switch is moved to position 1. (c) A graph of current decay when the switch is moved to position 2.

When the switch is first moved to position 1 (at t = 0 ), the current is zero and it eventually rises to I0 = V/R , where R is the

total resistance of the circuit. The opposition of the inductor L is greatest at the beginning, because the amount of change is

greatest. The opposition it poses is in the form of an induced emf, which decreases to zero as the current approaches its final
value. The opposing emf is proportional to the amount of change left. This is the hallmark of an exponential behavior, and it can
be shown with calculus that

(23.45)I = I0(1 − e−t / τ)    (turning on),

is the current in an RL circuit when switched on (Note the similarity to the exponential behavior of the voltage on a charging
capacitor). The initial current is zero and approaches I0 = V/R with a characteristic time constant τ for an RL circuit, given

by

(23.46)τ = L
R,

where τ has units of seconds, since 1 H=1 Ω·s . In the first period of time τ , the current rises from zero to 0.632I0 , since

I = I0(1 − e−1) = I0(1 − 0.368) = 0.632I0 . The current will go 0.632 of the remainder in the next time τ . A well-known

property of the exponential is that the final value is never exactly reached, but 0.632 of the remainder to that value is achieved in
every characteristic time τ . In just a few multiples of the time τ , the final value is very nearly achieved, as the graph in Figure

23.44(b) illustrates.

The characteristic time τ depends on only two factors, the inductance L and the resistance R . The greater the inductance L ,
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the greater τ is, which makes sense since a large inductance is very effective in opposing change. The smaller the resistance

R , the greater τ is. Again this makes sense, since a small resistance means a large final current and a greater change to get

there. In both cases—large L and small R —more energy is stored in the inductor and more time is required to get it in and

out.

When the switch in Figure 23.44(a) is moved to position 2 and cuts the battery out of the circuit, the current drops because of
energy dissipation by the resistor. But this is also not instantaneous, since the inductor opposes the decrease in current by
inducing an emf in the same direction as the battery that drove the current. Furthermore, there is a certain amount of energy,

(1/2)LI0
2 , stored in the inductor, and it is dissipated at a finite rate. As the current approaches zero, the rate of decrease slows,

since the energy dissipation rate is I 2 R . Once again the behavior is exponential, and I is found to be

(23.47)I = I0e−t / τ    (turning off).

(See Figure 23.44(c).) In the first period of time τ = L / R after the switch is closed, the current falls to 0.368 of its initial value,

since I = I0e−1 = 0.368I0 . In each successive time τ , the current falls to 0.368 of the preceding value, and in a few

multiples of τ , the current becomes very close to zero, as seen in the graph in Figure 23.44(c).

Example 23.9 Calculating Characteristic Time and Current in an RL Circuit

(a) What is the characteristic time constant for a 7.50 mH inductor in series with a 3.00 Ω resistor? (b) Find the current

5.00 ms after the switch is moved to position 2 to disconnect the battery, if it is initially 10.0 A.

Strategy for (a)

The time constant for an RL circuit is defined by τ = L / R .

Solution for (a)

Entering known values into the expression for τ given in τ = L / R yields

(23.48)τ = L
R = 7.50 mH

3.00 Ω = 2.50 ms.

Discussion for (a)

This is a small but definitely finite time. The coil will be very close to its full current in about ten time constants, or about 25
ms.

Strategy for (b)

We can find the current by using I = I0e−t / τ , or by considering the decline in steps. Since the time is twice the

characteristic time, we consider the process in steps.

Solution for (b)

In the first 2.50 ms, the current declines to 0.368 of its initial value, which is

(23.49)I = 0.368I0 = (0.368)(10.0 A)
= 3.68 A at t = 2.50 ms.

After another 2.50 ms, or a total of 5.00 ms, the current declines to 0.368 of the value just found. That is,

(23.50)I′ = 0.368I = (0.368)(3.68 A)
= 1.35 A at t = 5.00 ms.

Discussion for (b)

After another 5.00 ms has passed, the current will be 0.183 A (see Exercise 23.69); so, although it does die out, the current
certainly does not go to zero instantaneously.

In summary, when the voltage applied to an inductor is changed, the current also changes, but the change in current lags the
change in voltage in an RL circuit. In Reactance, Inductive and Capacitive, we explore how an RL circuit behaves when a
sinusoidal AC voltage is applied.

23.11 Reactance, Inductive and Capacitive

Many circuits also contain capacitors and inductors, in addition to resistors and an AC voltage source. We have seen how
capacitors and inductors respond to DC voltage when it is switched on and off. We will now explore how inductors and capacitors
react to sinusoidal AC voltage.
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Inductors and Inductive Reactance

Suppose an inductor is connected directly to an AC voltage source, as shown in Figure 23.45. It is reasonable to assume
negligible resistance, since in practice we can make the resistance of an inductor so small that it has a negligible effect on the
circuit. Also shown is a graph of voltage and current as functions of time.

Figure 23.45 (a) An AC voltage source in series with an inductor having negligible resistance. (b) Graph of current and voltage across the inductor as
functions of time.

The graph in Figure 23.45(b) starts with voltage at a maximum. Note that the current starts at zero and rises to its peak after the
voltage that drives it, just as was the case when DC voltage was switched on in the preceding section. When the voltage
becomes negative at point a, the current begins to decrease; it becomes zero at point b, where voltage is its most negative. The
current then becomes negative, again following the voltage. The voltage becomes positive at point c and begins to make the
current less negative. At point d, the current goes through zero just as the voltage reaches its positive peak to start another
cycle. This behavior is summarized as follows:

AC Voltage in an Inductor

When a sinusoidal voltage is applied to an inductor, the voltage leads the current by one-fourth of a cycle, or by a 90º
phase angle.

Current lags behind voltage, since inductors oppose change in current. Changing current induces a back emf V = −L(ΔI / Δt)
. This is considered to be an effective resistance of the inductor to AC. The rms current I through an inductor L is given by a

version of Ohm’s law:

(23.51)I = V
XL

,

where V is the rms voltage across the inductor and XL is defined to be

(23.52)XL = 2π fL,

with f the frequency of the AC voltage source in hertz (An analysis of the circuit using Kirchhoff’s loop rule and calculus actually

produces this expression). XL is called the inductive reactance, because the inductor reacts to impede the current. XL has

units of ohms ( 1 H = 1 Ω ⋅ s , so that frequency times inductance has units of (cycles/s)( Ω ⋅ s) = Ω ), consistent with its

role as an effective resistance. It makes sense that XL is proportional to L , since the greater the induction the greater its

resistance to change. It is also reasonable that XL is proportional to frequency f , since greater frequency means greater

change in current. That is, ΔI/Δt is large for large frequencies (large f , small Δt ). The greater the change, the greater the

opposition of an inductor.

Example 23.10 Calculating Inductive Reactance and then Current

(a) Calculate the inductive reactance of a 3.00 mH inductor when 60.0 Hz and 10.0 kHz AC voltages are applied. (b) What is
the rms current at each frequency if the applied rms voltage is 120 V?

Strategy

The inductive reactance is found directly from the expression XL = 2π fL . Once XL has been found at each frequency,

Ohm’s law as stated in the Equation I = V / XL can be used to find the current at each frequency.

Solution for (a)
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Entering the frequency and inductance into Equation XL = 2π fL gives

(23.53)XL = 2π fL = 6.28(60.0 / s)(3.00 mH) = 1.13 Ω at 60 Hz.

Similarly, at 10 kHz,

(23.54)XL = 2π fL = 6.28(1.00×104 /s)(3.00 mH) = 188 Ω at 10 kHz.

Solution for (b)

The rms current is now found using the version of Ohm’s law in Equation I = V / XL , given the applied rms voltage is 120

V. For the first frequency, this yields

(23.55)I = V
XL

= 120 V
1.13 Ω = 106 A at 60 Hz.

Similarly, at 10 kHz,

(23.56)I = V
XL

= 120 V
188 Ω = 0.637 A at 10 kHz.

Discussion

The inductor reacts very differently at the two different frequencies. At the higher frequency, its reactance is large and the
current is small, consistent with how an inductor impedes rapid change. Thus high frequencies are impeded the most.
Inductors can be used to filter out high frequencies; for example, a large inductor can be put in series with a sound
reproduction system or in series with your home computer to reduce high-frequency sound output from your speakers or
high-frequency power spikes into your computer.

Note that although the resistance in the circuit considered is negligible, the AC current is not extremely large because inductive
reactance impedes its flow. With AC, there is no time for the current to become extremely large.

Capacitors and Capacitive Reactance

Consider the capacitor connected directly to an AC voltage source as shown in Figure 23.46. The resistance of a circuit like this
can be made so small that it has a negligible effect compared with the capacitor, and so we can assume negligible resistance.
Voltage across the capacitor and current are graphed as functions of time in the figure.

Figure 23.46 (a) An AC voltage source in series with a capacitor C having negligible resistance. (b) Graph of current and voltage across the capacitor
as functions of time.

The graph in Figure 23.46 starts with voltage across the capacitor at a maximum. The current is zero at this point, because the
capacitor is fully charged and halts the flow. Then voltage drops and the current becomes negative as the capacitor discharges.
At point a, the capacitor has fully discharged ( Q = 0 on it) and the voltage across it is zero. The current remains negative

between points a and b, causing the voltage on the capacitor to reverse. This is complete at point b, where the current is zero
and the voltage has its most negative value. The current becomes positive after point b, neutralizing the charge on the capacitor
and bringing the voltage to zero at point c, which allows the current to reach its maximum. Between points c and d, the current
drops to zero as the voltage rises to its peak, and the process starts to repeat. Throughout the cycle, the voltage follows what the
current is doing by one-fourth of a cycle:

AC Voltage in a Capacitor

When a sinusoidal voltage is applied to a capacitor, the voltage follows the current by one-fourth of a cycle, or by a 90º
phase angle.

The capacitor is affecting the current, having the ability to stop it altogether when fully charged. Since an AC voltage is applied,
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there is an rms current, but it is limited by the capacitor. This is considered to be an effective resistance of the capacitor to AC,
and so the rms current I in the circuit containing only a capacitor C is given by another version of Ohm’s law to be

(23.57)I = V
XC

,

where V is the rms voltage and XC is defined (As with XL , this expression for XC results from an analysis of the circuit

using Kirchhoff’s rules and calculus) to be

(23.58)XC = 1
2π fC ,

where XC is called the capacitive reactance, because the capacitor reacts to impede the current. XC has units of ohms

(verification left as an exercise for the reader). XC is inversely proportional to the capacitance C ; the larger the capacitor, the

greater the charge it can store and the greater the current that can flow. It is also inversely proportional to the frequency f ; the

greater the frequency, the less time there is to fully charge the capacitor, and so it impedes current less.

Example 23.11 Calculating Capacitive Reactance and then Current

(a) Calculate the capacitive reactance of a 5.00 mF capacitor when 60.0 Hz and 10.0 kHz AC voltages are applied. (b) What
is the rms current if the applied rms voltage is 120 V?

Strategy

The capacitive reactance is found directly from the expression in XC = 1
2π fC . Once XC has been found at each

frequency, Ohm’s law stated as I = V / XC can be used to find the current at each frequency.

Solution for (a)

Entering the frequency and capacitance into XC = 1
2π fC gives

(23.59)XC = 1
2π fC

= 1
6.28(60.0 / s)(5.00 μF) = 531 Ω at 60 Hz.

Similarly, at 10 kHz,

(23.60)XC = 1
2π fC = 1

6.28(1.00×104 / s)(5.00 μF)
= 3.18 Ω at 10 kHz

.

Solution for (b)

The rms current is now found using the version of Ohm’s law in I = V / XC , given the applied rms voltage is 120 V. For the

first frequency, this yields

(23.61)I = V
XC

= 120 V
531 Ω = 0.226 A at 60 Hz.

Similarly, at 10 kHz,

(23.62)I = V
XC

= 120 V
3.18 Ω = 37.7 A at 10 kHz.

Discussion

The capacitor reacts very differently at the two different frequencies, and in exactly the opposite way an inductor reacts. At
the higher frequency, its reactance is small and the current is large. Capacitors favor change, whereas inductors oppose
change. Capacitors impede low frequencies the most, since low frequency allows them time to become charged and stop
the current. Capacitors can be used to filter out low frequencies. For example, a capacitor in series with a sound
reproduction system rids it of the 60 Hz hum.

Although a capacitor is basically an open circuit, there is an rms current in a circuit with an AC voltage applied to a capacitor.
This is because the voltage is continually reversing, charging and discharging the capacitor. If the frequency goes to zero (DC),
XC tends to infinity, and the current is zero once the capacitor is charged. At very high frequencies, the capacitor’s reactance
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tends to zero—it has a negligible reactance and does not impede the current (it acts like a simple wire). Capacitors have the
opposite effect on AC circuits that inductors have.

Resistors in an AC Circuit

Just as a reminder, consider Figure 23.47, which shows an AC voltage applied to a resistor and a graph of voltage and current
versus time. The voltage and current are exactly in phase in a resistor. There is no frequency dependence to the behavior of
plain resistance in a circuit:

Figure 23.47 (a) An AC voltage source in series with a resistor. (b) Graph of current and voltage across the resistor as functions of time, showing them
to be exactly in phase.

AC Voltage in a Resistor

When a sinusoidal voltage is applied to a resistor, the voltage is exactly in phase with the current—they have a 0º phase

angle.

23.12 RLC Series AC Circuits

Impedance

When alone in an AC circuit, inductors, capacitors, and resistors all impede current. How do they behave when all three occur
together? Interestingly, their individual resistances in ohms do not simply add. Because inductors and capacitors behave in
opposite ways, they partially to totally cancel each other’s effect. Figure 23.48 shows an RLC series circuit with an AC voltage
source, the behavior of which is the subject of this section. The crux of the analysis of an RLC circuit is the frequency
dependence of XL and XC , and the effect they have on the phase of voltage versus current (established in the preceding

section). These give rise to the frequency dependence of the circuit, with important “resonance” features that are the basis of
many applications, such as radio tuners.

Figure 23.48 An RLC series circuit with an AC voltage source.

The combined effect of resistance R , inductive reactance XL , and capacitive reactance XC is defined to be impedance, an

AC analogue to resistance in a DC circuit. Current, voltage, and impedance in an RLC circuit are related by an AC version of
Ohm’s law:

(23.63)
I0 = V0

Z or Irms = Vrms
Z .

Here I0 is the peak current, V0 the peak source voltage, and Z is the impedance of the circuit. The units of impedance are

ohms, and its effect on the circuit is as you might expect: the greater the impedance, the smaller the current. To get an
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expression for Z in terms of R , XL , and XC , we will now examine how the voltages across the various components are

related to the source voltage. Those voltages are labeled VR , VL , and VC in Figure 23.48.

Conservation of charge requires current to be the same in each part of the circuit at all times, so that we can say the currents in
R , L , and C are equal and in phase. But we know from the preceding section that the voltage across the inductor VL leads

the current by one-fourth of a cycle, the voltage across the capacitor VC follows the current by one-fourth of a cycle, and the

voltage across the resistor VR is exactly in phase with the current. Figure 23.49 shows these relationships in one graph, as well

as showing the total voltage around the circuit V = VR + VL + VC , where all four voltages are the instantaneous values.

According to Kirchhoff’s loop rule, the total voltage around the circuit V is also the voltage of the source.

You can see from Figure 23.49 that while VR is in phase with the current, VL leads by 90º , and VC follows by 90º . Thus

VL and VC are 180º out of phase (crest to trough) and tend to cancel, although not completely unless they have the same

magnitude. Since the peak voltages are not aligned (not in phase), the peak voltage V0 of the source does not equal the sum of

the peak voltages across R , L , and C . The actual relationship is

(23.64)V0 = V0R
2 +(V0L − V0C)2,

where V0R , V0L , and V0C are the peak voltages across R , L , and C , respectively. Now, using Ohm’s law and definitions

from Reactance, Inductive and Capacitive, we substitute V0 = I0Z into the above, as well as V0R = I0R , V0L = I0XL ,

and V0C = I0XC , yielding

(23.65)I0 Z = I0
2 R2 + (I0 XL − I0XC )2 = I0 R2 + (XL − XC)2.

I0 cancels to yield an expression for Z :

(23.66)Z = R2 + (XL − XC)2,

which is the impedance of an RLC series AC circuit. For circuits without a resistor, take R = 0 ; for those without an inductor,

take XL = 0 ; and for those without a capacitor, take XC = 0 .

Figure 23.49 This graph shows the relationships of the voltages in an RLC circuit to the current. The voltages across the circuit elements add to equal
the voltage of the source, which is seen to be out of phase with the current.

Example 23.12 Calculating Impedance and Current

An RLC series circuit has a 40.0 Ω resistor, a 3.00 mH inductor, and a 5.00 μF capacitor. (a) Find the circuit’s impedance

at 60.0 Hz and 10.0 kHz, noting that these frequencies and the values for L and C are the same as in Example 23.10 and

Example 23.11. (b) If the voltage source has Vrms = 120 V , what is Irms at each frequency?

Strategy
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For each frequency, we use Z = R2 + (XL − XC)2 to find the impedance and then Ohm’s law to find current. We can

take advantage of the results of the previous two examples rather than calculate the reactances again.

Solution for (a)

At 60.0 Hz, the values of the reactances were found in Example 23.10 to be XL = 1.13 Ω and in Example 23.11 to be

XC = 531 Ω . Entering these and the given 40.0 Ω for resistance into Z = R2 + (XL − XC)2 yields

(23.67)Z = R2 + (XL − XC)2

= (40.0 Ω )2 + (1.13 Ω − 531 Ω )2

= 531 Ω  at 60.0 Hz.

Similarly, at 10.0 kHz, XL = 188 Ω and XC = 3.18 Ω , so that

(23.68)Z = (40.0 Ω )2 + (188 Ω − 3.18 Ω )2

= 190 Ω  at 10.0 kHz.
Discussion for (a)

In both cases, the result is nearly the same as the largest value, and the impedance is definitely not the sum of the individual
values. It is clear that XL dominates at high frequency and XC dominates at low frequency.

Solution for (b)

The current Irms can be found using the AC version of Ohm’s law in Equation Irms = Vrms / Z :

Irms = Vrms
Z = 120 V

531 Ω = 0.226 A at 60.0 Hz

Finally, at 10.0 kHz, we find

Irms = Vrms
Z = 120 V

190 Ω = 0.633 A at 10.0 kHz

Discussion for (a)

The current at 60.0 Hz is the same (to three digits) as found for the capacitor alone in Example 23.11. The capacitor
dominates at low frequency. The current at 10.0 kHz is only slightly different from that found for the inductor alone in
Example 23.10. The inductor dominates at high frequency.

Resonance in RLC Series AC Circuits

How does an RLC circuit behave as a function of the frequency of the driving voltage source? Combining Ohm’s law,

Irms = Vrms / Z , and the expression for impedance Z from Z = R2 + (XL − XC)2 gives

(23.69)Irms = Vrms

R2 + (XL − XC)2
.

The reactances vary with frequency, with XL large at high frequencies and XC large at low frequencies, as we have seen in

three previous examples. At some intermediate frequency f0 , the reactances will be equal and cancel, giving Z = R —this is a

minimum value for impedance, and a maximum value for Irms results. We can get an expression for f0 by taking

(23.70)XL = XC.

Substituting the definitions of XL and XC ,

(23.71)2πf0 L = 1
2πf0 C .

Solving this expression for f0 yields

(23.72)f0 = 1
2π LC

,
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where f0 is the resonant frequency of an RLC series circuit. This is also the natural frequency at which the circuit would

oscillate if not driven by the voltage source. At f0 , the effects of the inductor and capacitor cancel, so that Z = R , and Irms is

a maximum.

Resonance in AC circuits is analogous to mechanical resonance, where resonance is defined to be a forced oscillation—in this
case, forced by the voltage source—at the natural frequency of the system. The receiver in a radio is an RLC circuit that
oscillates best at its f0 . A variable capacitor is often used to adjust f0 to receive a desired frequency and to reject others.

Figure 23.50 is a graph of current as a function of frequency, illustrating a resonant peak in Irms at f0 . The two curves are for

two different circuits, which differ only in the amount of resistance in them. The peak is lower and broader for the higher-
resistance circuit. Thus the higher-resistance circuit does not resonate as strongly and would not be as selective in a radio
receiver, for example.

Figure 23.50 A graph of current versus frequency for two RLC series circuits differing only in the amount of resistance. Both have a resonance at f0 ,

but that for the higher resistance is lower and broader. The driving AC voltage source has a fixed amplitude V0 .

Example 23.13 Calculating Resonant Frequency and Current

For the same RLC series circuit having a 40.0 Ω resistor, a 3.00 mH inductor, and a 5.00 μF capacitor: (a) Find the

resonant frequency. (b) Calculate Irms at resonance if Vrms is 120 V.

Strategy

The resonant frequency is found by using the expression in f0 = 1
2π LC

. The current at that frequency is the same as if

the resistor alone were in the circuit.

Solution for (a)

Entering the given values for L and C into the expression given for f0 in f0 = 1
2π LC

yields

(23.73)f0 = 1
2π LC

= 1
2π (3.00×10−3 H)(5.00×10−6 F)

= 1.30 kHz.

Discussion for (a)

We see that the resonant frequency is between 60.0 Hz and 10.0 kHz, the two frequencies chosen in earlier examples. This
was to be expected, since the capacitor dominated at the low frequency and the inductor dominated at the high frequency.
Their effects are the same at this intermediate frequency.

Solution for (b)

The current is given by Ohm’s law. At resonance, the two reactances are equal and cancel, so that the impedance equals
the resistance alone. Thus,

(23.74)Irms = Vrms
Z = 120 V

40.0 Ω = 3.00 A.

Discussion for (b)

At resonance, the current is greater than at the higher and lower frequencies considered for the same circuit in the
preceding example.

Power in RLC Series AC Circuits

If current varies with frequency in an RLC circuit, then the power delivered to it also varies with frequency. But the average power
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is not simply current times voltage, as it is in purely resistive circuits. As was seen in Figure 23.49, voltage and current are out of
phase in an RLC circuit. There is a phase angle ϕ between the source voltage V and the current I , which can be found from

(23.75)cos ϕ = R
Z .

For example, at the resonant frequency or in a purely resistive circuit Z = R , so that cos ϕ = 1 . This implies that ϕ = 0 º
and that voltage and current are in phase, as expected for resistors. At other frequencies, average power is less than at
resonance. This is both because voltage and current are out of phase and because Irms is lower. The fact that source voltage

and current are out of phase affects the power delivered to the circuit. It can be shown that the average power is

(23.76)Pave = IrmsVrms cos ϕ,

Thus cos ϕ is called the power factor, which can range from 0 to 1. Power factors near 1 are desirable when designing an

efficient motor, for example. At the resonant frequency, cos ϕ = 1 .

Example 23.14 Calculating the Power Factor and Power

For the same RLC series circuit having a 40.0 Ω resistor, a 3.00 mH inductor, a 5.00 μF capacitor, and a voltage source

with a Vrms of 120 V: (a) Calculate the power factor and phase angle for f = 60.0Hz . (b) What is the average power at

50.0 Hz? (c) Find the average power at the circuit’s resonant frequency.

Strategy and Solution for (a)

The power factor at 60.0 Hz is found from

(23.77)cos ϕ = R
Z .

We know Z= 531 Ω from Example 23.12, so that

(23.78)cos ϕ = 40.0 Ω
531 Ω = 0.0753 at 60.0 Hz.

This small value indicates the voltage and current are significantly out of phase. In fact, the phase angle is

(23.79)ϕ = cos−1 0.0753 = 85.7º at 60.0 Hz.

Discussion for (a)

The phase angle is close to 90º , consistent with the fact that the capacitor dominates the circuit at this low frequency (a

pure RC circuit has its voltage and current 90º out of phase).

Strategy and Solution for (b)

The average power at 60.0 Hz is

(23.80)Pave = IrmsVrms cos ϕ.

Irms was found to be 0.226 A in Example 23.12. Entering the known values gives

(23.81)Pave = (0.226 A)(120 V)(0.0753) = 2.04 W at 60.0 Hz.

Strategy and Solution for (c)

At the resonant frequency, we know cos ϕ = 1 , and Irms was found to be 6.00 A in Example 23.13. Thus,

Pave = (3.00 A)(120 V)(1) = 360 W at resonance (1.30 kHz)

Discussion

Both the current and the power factor are greater at resonance, producing significantly greater power than at higher and
lower frequencies.

Power delivered to an RLC series AC circuit is dissipated by the resistance alone. The inductor and capacitor have energy input
and output but do not dissipate it out of the circuit. Rather they transfer energy back and forth to one another, with the resistor
dissipating exactly what the voltage source puts into the circuit. This assumes no significant electromagnetic radiation from the
inductor and capacitor, such as radio waves. Such radiation can happen and may even be desired, as we will see in the next
chapter on electromagnetic radiation, but it can also be suppressed as is the case in this chapter. The circuit is analogous to the
wheel of a car driven over a corrugated road as shown in Figure 23.51. The regularly spaced bumps in the road are analogous
to the voltage source, driving the wheel up and down. The shock absorber is analogous to the resistance damping and limiting
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the amplitude of the oscillation. Energy within the system goes back and forth between kinetic (analogous to maximum current,
and energy stored in an inductor) and potential energy stored in the car spring (analogous to no current, and energy stored in the
electric field of a capacitor). The amplitude of the wheels’ motion is a maximum if the bumps in the road are hit at the resonant
frequency.

Figure 23.51 The forced but damped motion of the wheel on the car spring is analogous to an RLC series AC circuit. The shock absorber damps the
motion and dissipates energy, analogous to the resistance in an RLC circuit. The mass and spring determine the resonant frequency.

A pure LC circuit with negligible resistance oscillates at f0 , the same resonant frequency as an RLC circuit. It can serve as a

frequency standard or clock circuit—for example, in a digital wristwatch. With a very small resistance, only a very small energy
input is necessary to maintain the oscillations. The circuit is analogous to a car with no shock absorbers. Once it starts
oscillating, it continues at its natural frequency for some time. Figure 23.52 shows the analogy between an LC circuit and a mass
on a spring.
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back emf:

capacitive reactance:

characteristic time constant:

eddy current:

electric generator:

Figure 23.52 An LC circuit is analogous to a mass oscillating on a spring with no friction and no driving force. Energy moves back and forth between
the inductor and capacitor, just as it moves from kinetic to potential in the mass-spring system.

PhET Explorations: Circuit Construction Kit (AC+DC), Virtual Lab

Build circuits with capacitors, inductors, resistors and AC or DC voltage sources, and inspect them using lab instruments
such as voltmeters and ammeters.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42431/
1.9/#Phet_module_24.12)

Figure 23.53

Glossary

the emf generated by a running motor, because it consists of a coil turning in a magnetic field; it opposes the
voltage powering the motor

the opposition of a capacitor to a change in current; calculated by XC = 1
2π fC

denoted by τ , of a particular series RL circuit is calculated by τ = L
R , where L is the

inductance and R is the resistance

a current loop in a conductor caused by motional emf

a device for converting mechanical work into electric energy; it induces an emf by rotating a coil in a
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electromagnetic induction:

emf induced in a generator coil:

energy stored in an inductor:

Faraday’s law of induction:

henry:

impedance:

inductance:

induction:

inductive reactance:

inductor:

Lenz’s law:

magnetic damping:

magnetic flux:

mutual inductance:

peak emf:

phase angle:

power factor:

resonant frequency:

self-inductance:

shock hazard:

step-down transformer:

step-up transformer:

thermal hazard:

three-wire system:

transformer:

transformer equation:

magnetic field

the process of inducing an emf (voltage) with a change in magnetic flux

emf = NABω sin ωt , where A is the area of an N -turn coil rotated at a constant

angular velocity ω in a uniform magnetic field B , over a period of time t

self-explanatory; calculated by Eind = 1
2LI 2

the means of calculating the emf in a coil due to changing magnetic flux, given by

emf = −N ΔΦ
Δt

the unit of inductance; 1 H = 1 Ω ⋅ s

the AC analogue to resistance in a DC circuit; it is the combined effect of resistance, inductive reactance, and

capacitive reactance in the form Z = R2 + (XL − XC)2

a property of a device describing how efficient it is at inducing emf in another device

(magnetic induction) the creation of emfs and hence currents by magnetic fields

the opposition of an inductor to a change in current; calculated by XL = 2π fL

a device that exhibits significant self-inductance

the minus sign in Faraday’s law, signifying that the emf induced in a coil opposes the change in magnetic flux

the drag produced by eddy currents

the amount of magnetic field going through a particular area, calculated with Φ = BA cos θ where B is the

magnetic field strength over an area A at an angle θ with the perpendicular to the area

how effective a pair of devices are at inducing emfs in each other

emf0 = NABω

denoted by ϕ , the amount by which the voltage and current are out of phase with each other in a circuit

the amount by which the power delivered in the circuit is less than the theoretical maximum of the circuit due to
voltage and current being out of phase; calculated by cos ϕ

the frequency at which the impedance in a circuit is at a minimum, and also the frequency at which the

circuit would oscillate if not driven by a voltage source; calculated by f0 = 1
2π LC

how effective a device is at inducing emf in itself

the term for electrical hazards due to current passing through a human

a transformer that decreases voltage

a transformer that increases voltage

the term for electrical hazards due to overheating

the wiring system used at present for safety reasons, with live, neutral, and ground wires

a device that transforms voltages from one value to another using induction

the equation showing that the ratio of the secondary to primary voltages in a transformer equals the

ratio of the number of loops in their coils;
Vs
Vp

= Ns
Np
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Section Summary

23.1 Induced Emf and Magnetic Flux
• The crucial quantity in induction is magnetic flux Φ , defined to be Φ = BA cos θ , where B is the magnetic field strength

over an area A at an angle θ with the perpendicular to the area.

• Units of magnetic flux Φ are T ⋅ m2 .

• Any change in magnetic flux Φ induces an emf—the process is defined to be electromagnetic induction.

23.2 Faraday’s Law of Induction: Lenz’s Law
• Faraday’s law of induction states that the emfinduced by a change in magnetic flux is

emf = −N ΔΦ
Δt

when flux changes by ΔΦ in a time Δt .

• If emf is induced in a coil, N is its number of turns.

• The minus sign means that the emf creates a current I and magnetic field B that oppose the change in flux ΔΦ —this

opposition is known as Lenz’s law.

23.3 Motional Emf
• An emf induced by motion relative to a magnetic field B is called a motional emf and is given by

emf = Bℓv (B, ℓ, and v perpendicular),
where ℓ is the length of the object moving at speed v relative to the field.

23.4 Eddy Currents and Magnetic Damping
• Current loops induced in moving conductors are called eddy currents.
• They can create significant drag, called magnetic damping.

23.5 Electric Generators
• An electric generator rotates a coil in a magnetic field, inducing an emfgiven as a function of time by

emf = NABω sin ωt,
where A is the area of an N -turn coil rotated at a constant angular velocity ω in a uniform magnetic field B .

• The peak emf emf0 of a generator is

emf0 = NABω.

23.6 Back Emf
• Any rotating coil will have an induced emf—in motors, this is called back emf, since it opposes the emf input to the motor.

23.7 Transformers
• Transformers use induction to transform voltages from one value to another.
• For a transformer, the voltages across the primary and secondary coils are related by

Vs
Vp

= Ns
Np

,

where Vp and Vs are the voltages across primary and secondary coils having Np and Ns turns.

• The currents Ip and Is in the primary and secondary coils are related by
Is
Ip

=
Np
Ns

.

• A step-up transformer increases voltage and decreases current, whereas a step-down transformer decreases voltage and
increases current.

23.8 Electrical Safety: Systems and Devices
• Electrical safety systems and devices are employed to prevent thermal and shock hazards.
• Circuit breakers and fuses interrupt excessive currents to prevent thermal hazards.
• The three-wire system guards against thermal and shock hazards, utilizing live/hot, neutral, and earth/ground wires, and

grounding the neutral wire and case of the appliance.
• A ground fault interrupter (GFI) prevents shock by detecting the loss of current to unintentional paths.
• An isolation transformer insulates the device being powered from the original source, also to prevent shock.
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• Many of these devices use induction to perform their basic function.

23.9 Inductance
• Inductance is the property of a device that tells how effectively it induces an emf in another device.
• Mutual inductance is the effect of two devices in inducing emfs in each other.
• A change in current ΔI1 / Δt in one induces an emf emf2 in the second:

emf2 = −MΔI1
Δt ,

where M is defined to be the mutual inductance between the two devices, and the minus sign is due to Lenz’s law.

• Symmetrically, a change in current ΔI2 / Δt through the second device induces an emf emf1 in the first:

emf1 = −MΔI2
Δt ,

where M is the same mutual inductance as in the reverse process.

• Current changes in a device induce an emf in the device itself.
• Self-inductance is the effect of the device inducing emf in itself.
• The device is called an inductor, and the emf induced in it by a change in current through it is

emf = −LΔI
Δt ,

where L is the self-inductance of the inductor, and ΔI / Δt is the rate of change of current through it. The minus sign

indicates that emf opposes the change in current, as required by Lenz’s law.
• The unit of self- and mutual inductance is the henry (H), where 1 H = 1 Ω ⋅ s .

• The self-inductance L of an inductor is proportional to how much flux changes with current. For an N -turn inductor,

L = N ΔΦ
ΔI .

• The self-inductance of a solenoid is

L = μ0 N 2 A
ℓ (solenoid),

where N is its number of turns in the solenoid, A is its cross-sectional area, ℓ is its length, and

μ0 = 4π×10−7 T ⋅ m/A is the permeability of free space.

• The energy stored in an inductor Eind is

Eind = 1
2LI 2.

23.10 RL Circuits
• When a series connection of a resistor and an inductor—an RL circuit—is connected to a voltage source, the time variation

of the current is

I = I0(1 − e−t / τ)    (turning on).
where I0 = V / R is the final current.

• The characteristic time constant τ is τ = L
R , where L is the inductance and R is the resistance.

• In the first time constant τ , the current rises from zero to 0.632I0 , and 0.632 of the remainder in every subsequent time

interval τ .

• When the inductor is shorted through a resistor, current decreases as

I = I0e−t / τ    (turning off).
Here I0 is the initial current.

• Current falls to 0.368I0 in the first time interval τ , and 0.368 of the remainder toward zero in each subsequent time τ .

23.11 Reactance, Inductive and Capacitive
• For inductors in AC circuits, we find that when a sinusoidal voltage is applied to an inductor, the voltage leads the current

by one-fourth of a cycle, or by a 90º phase angle.
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• The opposition of an inductor to a change in current is expressed as a type of AC resistance.
• Ohm’s law for an inductor is

I = V
XL

,

where V is the rms voltage across the inductor.

• XL is defined to be the inductive reactance, given by

XL = 2π fL,
with f the frequency of the AC voltage source in hertz.

• Inductive reactance XL has units of ohms and is greatest at high frequencies.

• For capacitors, we find that when a sinusoidal voltage is applied to a capacitor, the voltage follows the current by one-fourth
of a cycle, or by a 90º phase angle.

• Since a capacitor can stop current when fully charged, it limits current and offers another form of AC resistance; Ohm’s law
for a capacitor is

I = V
XC

,

where V is the rms voltage across the capacitor.

• XC is defined to be the capacitive reactance, given by

XC = 1
2π fC .

• XC has units of ohms and is greatest at low frequencies.

23.12 RLC Series AC Circuits
• The AC analogy to resistance is impedance Z , the combined effect of resistors, inductors, and capacitors, defined by the

AC version of Ohm’s law:

I0 = V0
Z or Irms = Vrms

Z ,

where I0 is the peak current and V0 is the peak source voltage.

• Impedance has units of ohms and is given by Z = R2 + (XL − XC)2 .

• The resonant frequency f0 , at which XL = XC , is

f0 = 1
2π LC

.

• In an AC circuit, there is a phase angle ϕ between source voltage V and the current I , which can be found from

cos ϕ = R
Z ,

• ϕ = 0º for a purely resistive circuit or an RLC circuit at resonance.

• The average power delivered to an RLC circuit is affected by the phase angle and is given by

Pave = IrmsVrms cos ϕ,
cos ϕ is called the power factor, which ranges from 0 to 1.

Conceptual Questions

23.1 Induced Emf and Magnetic Flux

1. How do the multiple-loop coils and iron ring in the version of Faraday’s apparatus shown in Figure 23.3 enhance the
observation of induced emf?

2. When a magnet is thrust into a coil as in Figure 23.4(a), what is the direction of the force exerted by the coil on the magnet?
Draw a diagram showing the direction of the current induced in the coil and the magnetic field it produces, to justify your
response. How does the magnitude of the force depend on the resistance of the galvanometer?

3. Explain how magnetic flux can be zero when the magnetic field is not zero.
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4. Is an emf induced in the coil in Figure 23.54 when it is stretched? If so, state why and give the direction of the induced
current.

Figure 23.54 A circular coil of wire is stretched in a magnetic field.

23.2 Faraday’s Law of Induction: Lenz’s Law

5. A person who works with large magnets sometimes places her head inside a strong field. She reports feeling dizzy as she
quickly turns her head. How might this be associated with induction?

6. A particle accelerator sends high-velocity charged particles down an evacuated pipe. Explain how a coil of wire wrapped
around the pipe could detect the passage of individual particles. Sketch a graph of the voltage output of the coil as a single
particle passes through it.

23.3 Motional Emf

7. Why must part of the circuit be moving relative to other parts, to have usable motional emf? Consider, for example, that the
rails in Figure 23.11 are stationary relative to the magnetic field, while the rod moves.

8. A powerful induction cannon can be made by placing a metal cylinder inside a solenoid coil. The cylinder is forcefully expelled
when solenoid current is turned on rapidly. Use Faraday’s and Lenz’s laws to explain how this works. Why might the cylinder get
live/hot when the cannon is fired?

9. An induction stove heats a pot with a coil carrying an alternating current located beneath the pot (and without a hot surface).
Can the stove surface be a conductor? Why won’t a coil carrying a direct current work?

10. Explain how you could thaw out a frozen water pipe by wrapping a coil carrying an alternating current around it. Does it
matter whether or not the pipe is a conductor? Explain.

23.4 Eddy Currents and Magnetic Damping

11. Explain why magnetic damping might not be effective on an object made of several thin conducting layers separated by
insulation.

12. Explain how electromagnetic induction can be used to detect metals? This technique is particularly important in detecting
buried landmines for disposal, geophysical prospecting and at airports.

23.5 Electric Generators

13. Using RHR-1, show that the emfs in the sides of the generator loop in Figure 23.23 are in the same sense and thus add.

14. The source of a generator’s electrical energy output is the work done to turn its coils. How is the work needed to turn the
generator related to Lenz’s law?

23.6 Back Emf

15. Suppose you find that the belt drive connecting a powerful motor to an air conditioning unit is broken and the motor is running
freely. Should you be worried that the motor is consuming a great deal of energy for no useful purpose? Explain why or why not.

23.7 Transformers

16. Explain what causes physical vibrations in transformers at twice the frequency of the AC power involved.

23.8 Electrical Safety: Systems and Devices

17. Does plastic insulation on live/hot wires prevent shock hazards, thermal hazards, or both?

18. Why are ordinary circuit breakers and fuses ineffective in preventing shocks?

19. A GFI may trip just because the live/hot and neutral wires connected to it are significantly different in length. Explain why.

23.9 Inductance

20. How would you place two identical flat coils in contact so that they had the greatest mutual inductance? The least?

21. How would you shape a given length of wire to give it the greatest self-inductance? The least?
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22. Verify, as was concluded without proof in Example 23.7, that units of T ⋅ m2 / A = Ω ⋅ s = H .

23.11 Reactance, Inductive and Capacitive

23. Presbycusis is a hearing loss due to age that progressively affects higher frequencies. A hearing aid amplifier is designed to
amplify all frequencies equally. To adjust its output for presbycusis, would you put a capacitor in series or parallel with the hearing
aid’s speaker? Explain.

24. Would you use a large inductance or a large capacitance in series with a system to filter out low frequencies, such as the 100
Hz hum in a sound system? Explain.

25. High-frequency noise in AC power can damage computers. Does the plug-in unit designed to prevent this damage use a
large inductance or a large capacitance (in series with the computer) to filter out such high frequencies? Explain.

26. Does inductance depend on current, frequency, or both? What about inductive reactance?

27. Explain why the capacitor in Figure 23.55(a) acts as a low-frequency filter between the two circuits, whereas that in Figure
23.55(b) acts as a high-frequency filter.

Figure 23.55 Capacitors and inductors. Capacitor with high frequency and low frequency.

28. If the capacitors in Figure 23.55 are replaced by inductors, which acts as a low-frequency filter and which as a high-
frequency filter?

23.12 RLC Series AC Circuits

29. Does the resonant frequency of an AC circuit depend on the peak voltage of the AC source? Explain why or why not.

30. Suppose you have a motor with a power factor significantly less than 1. Explain why it would be better to improve the power
factor as a method of improving the motor’s output, rather than to increase the voltage input.
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Problems & Exercises

23.1 Induced Emf and Magnetic Flux

1. What is the value of the magnetic flux at coil 2 in Figure
23.56 due to coil 1?

Figure 23.56 (a) The planes of the two coils are perpendicular. (b) The

wire is perpendicular to the plane of the coil.

2. What is the value of the magnetic flux through the coil in
Figure 23.56(b) due to the wire?

23.2 Faraday’s Law of Induction: Lenz’s Law

3. Referring to Figure 23.57(a), what is the direction of the
current induced in coil 2: (a) If the current in coil 1 increases?
(b) If the current in coil 1 decreases? (c) If the current in coil 1
is constant? Explicitly show how you follow the steps in the
Problem-Solving Strategy for Lenz's Law.

Figure 23.57 (a) The coils lie in the same plane. (b) The wire is in the

plane of the coil

4. Referring to Figure 23.57(b), what is the direction of the
current induced in the coil: (a) If the current in the wire
increases? (b) If the current in the wire decreases? (c) If the
current in the wire suddenly changes direction? Explicitly
show how you follow the steps in the Problem-Solving
Strategy for Lenz’s Law.

5. Referring to Figure 23.58, what are the directions of the
currents in coils 1, 2, and 3 (assume that the coils are lying in
the plane of the circuit): (a) When the switch is first closed?
(b) When the switch has been closed for a long time? (c) Just
after the switch is opened?

Figure 23.58

6. Repeat the previous problem with the battery reversed.

7. Verify that the units of ΔΦ / Δt are volts. That is, show

that 1 T ⋅ m2 / s = 1 V .

8. Suppose a 50-turn coil lies in the plane of the page in a
uniform magnetic field that is directed into the page. The coil

originally has an area of 0.250 m2 . It is stretched to have no

area in 0.100 s. What is the direction and magnitude of the
induced emf if the uniform magnetic field has a strength of
1.50 T?

9. (a) An MRI technician moves his hand from a region of
very low magnetic field strength into an MRI scanner’s 2.00 T
field with his fingers pointing in the direction of the field. Find
the average emf induced in his wedding ring, given its
diameter is 2.20 cm and assuming it takes 0.250 s to move it
into the field. (b) Discuss whether this current would
significantly change the temperature of the ring.

10. Integrated Concepts

Referring to the situation in the previous problem: (a) What
current is induced in the ring if its resistance is 0.0100 Ω ?

(b) What average power is dissipated? (c) What magnetic
field is induced at the center of the ring? (d) What is the
direction of the induced magnetic field relative to the MRI’s
field?

11. An emf is induced by rotating a 1000-turn, 20.0 cm

diameter coil in the Earth’s 5.00×10−5 T magnetic field.

What average emf is induced, given the plane of the coil is
originally perpendicular to the Earth’s field and is rotated to be
parallel to the field in 10.0 ms?

12. A 0.250 m radius, 500-turn coil is rotated one-fourth of a
revolution in 4.17 ms, originally having its plane perpendicular
to a uniform magnetic field. (This is 60 rev/s.) Find the
magnetic field strength needed to induce an average emf of
10,000 V.

13. Integrated Concepts

Approximately how does the emf induced in the loop in
Figure 23.57(b) depend on the distance of the center of the
loop from the wire?
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14. Integrated Concepts

(a) A lightning bolt produces a rapidly varying magnetic field.
If the bolt strikes the earth vertically and acts like a current in
a long straight wire, it will induce a voltage in a loop aligned
like that in Figure 23.57(b). What voltage is induced in a 1.00

m diameter loop 50.0 m from a 2.00×106 A lightning strike,

if the current falls to zero in 25.0 μs ? (b) Discuss

circumstances under which such a voltage would produce
noticeable consequences.

23.3 Motional Emf

15. Use Faraday’s law, Lenz’s law, and RHR-1 to show that
the magnetic force on the current in the moving rod in Figure
23.11 is in the opposite direction of its velocity.

16. If a current flows in the Satellite Tether shown in Figure
23.12, use Faraday’s law, Lenz’s law, and RHR-1 to show that
there is a magnetic force on the tether in the direction
opposite to its velocity.

17. (a) A jet airplane with a 75.0 m wingspan is flying at 280
m/s. What emf is induced between wing tips if the vertical

component of the Earth’s field is 3.00×10−5 T ? (b) Is an

emf of this magnitude likely to have any consequences?
Explain.

18. (a) A nonferrous screwdriver is being used in a 2.00 T
magnetic field. What maximum emf can be induced along its
12.0 cm length when it moves at 6.00 m/s? (b) Is it likely that
this emf will have any consequences or even be noticed?

19. At what speed must the sliding rod in Figure 23.11 move
to produce an emf of 1.00 V in a 1.50 T field, given the rod’s
length is 30.0 cm?

20. The 12.0 cm long rod in Figure 23.11 moves at 4.00 m/s.
What is the strength of the magnetic field if a 95.0 V emf is
induced?

21. Prove that when B , ℓ , and v are not mutually

perpendicular, motional emf is given by emf = Bℓvsin θ . If

v is perpendicular to B , then θ is the angle between ℓ
and B . If ℓ is perpendicular to B , then θ is the angle

between v and B .

22. In the August 1992 space shuttle flight, only 250 m of the
conducting tether considered in Example 23.2 could be let
out. A 40.0 V motional emf was generated in the Earth’s

5.00×10−5 T field, while moving at 7.80×103 m/s . What

was the angle between the shuttle’s velocity and the Earth’s
field, assuming the conductor was perpendicular to the field?

23. Integrated Concepts

Derive an expression for the current in a system like that in
Figure 23.11, under the following conditions. The resistance
between the rails is R , the rails and the moving rod are

identical in cross section A and have the same resistivity ρ .

The distance between the rails is l, and the rod moves at
constant speed v perpendicular to the uniform field B . At

time zero, the moving rod is next to the resistance R .

24. Integrated Concepts

The Tethered Satellite in Figure 23.12 has a mass of 525 kg
and is at the end of a 20.0 km long, 2.50 mm diameter cable
with the tensile strength of steel. (a) How much does the
cable stretch if a 100 N force is exerted to pull the satellite in?
(Assume the satellite and shuttle are at the same altitude
above the Earth.) (b) What is the effective force constant of
the cable? (c) How much energy is stored in it when stretched
by the 100 N force?

25. Integrated Concepts

The Tethered Satellite discussed in this module is producing
5.00 kV, and a current of 10.0 A flows. (a) What magnetic
drag force does this produce if the system is moving at 7.80
km/s? (b) How much kinetic energy is removed from the
system in 1.00 h, neglecting any change in altitude or velocity
during that time? (c) What is the change in velocity if the
mass of the system is 100,000 kg? (d) Discuss the long term
consequences (say, a week-long mission) on the space
shuttle’s orbit, noting what effect a decrease in velocity has
and assessing the magnitude of the effect.

23.4 Eddy Currents and Magnetic Damping

26. Make a drawing similar to Figure 23.14, but with the
pendulum moving in the opposite direction. Then use
Faraday’s law, Lenz’s law, and RHR-1 to show that magnetic
force opposes motion.

27.

Figure 23.59 A coil is moved into and out of a region of uniform

magnetic field. A coil is moved through a magnetic field as
shown in Figure 23.59. The field is uniform inside the
rectangle and zero outside. What is the direction of the
induced current and what is the direction of the magnetic
force on the coil at each position shown?

23.5 Electric Generators

28. Calculate the peak voltage of a generator that rotates its
200-turn, 0.100 m diameter coil at 3600 rpm in a 0.800 T
field.

29. At what angular velocity in rpm will the peak voltage of a
generator be 480 V, if its 500-turn, 8.00 cm diameter coil
rotates in a 0.250 T field?

30. What is the peak emf generated by rotating a 1000-turn,

20.0 cm diameter coil in the Earth’s 5.00×10−5 T magnetic

field, given the plane of the coil is originally perpendicular to
the Earth’s field and is rotated to be parallel to the field in 10.0
ms?

31. What is the peak emf generated by a 0.250 m radius,
500-turn coil is rotated one-fourth of a revolution in 4.17 ms,
originally having its plane perpendicular to a uniform magnetic
field. (This is 60 rev/s.)

32. (a) A bicycle generator rotates at 1875 rad/s, producing
an 18.0 V peak emf. It has a 1.00 by 3.00 cm rectangular coil
in a 0.640 T field. How many turns are in the coil? (b) Is this
number of turns of wire practical for a 1.00 by 3.00 cm coil?
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33. Integrated Concepts

This problem refers to the bicycle generator considered in the
previous problem. It is driven by a 1.60 cm diameter wheel
that rolls on the outside rim of the bicycle tire. (a) What is the
velocity of the bicycle if the generator’s angular velocity is
1875 rad/s? (b) What is the maximum emf of the generator
when the bicycle moves at 10.0 m/s, noting that it was 18.0 V
under the original conditions? (c) If the sophisticated
generator can vary its own magnetic field, what field strength
will it need at 5.00 m/s to produce a 9.00 V maximum emf?

34. (a) A car generator turns at 400 rpm when the engine is
idling. Its 300-turn, 5.00 by 8.00 cm rectangular coil rotates in
an adjustable magnetic field so that it can produce sufficient
voltage even at low rpms. What is the field strength needed to
produce a 24.0 V peak emf? (b) Discuss how this required
field strength compares to those available in permanent and
electromagnets.

35. Show that if a coil rotates at an angular velocity ω , the

period of its AC output is 2π/ω .

36. A 75-turn, 10.0 cm diameter coil rotates at an angular
velocity of 8.00 rad/s in a 1.25 T field, starting with the plane
of the coil parallel to the field. (a) What is the peak emf? (b) At
what time is the peak emf first reached? (c) At what time is
the emf first at its most negative? (d) What is the period of the
AC voltage output?

37. (a) If the emf of a coil rotating in a magnetic field is zero at
t = 0 , and increases to its first peak at t = 0.100 ms , what

is the angular velocity of the coil? (b) At what time will its next
maximum occur? (c) What is the period of the output? (d)
When is the output first one-fourth of its maximum? (e) When
is it next one-fourth of its maximum?

38. Unreasonable Results

A 500-turn coil with a 0.250 m2 area is spun in the Earth’s

5.00×10−5 T field, producing a 12.0 kV maximum emf. (a)

At what angular velocity must the coil be spun? (b) What is
unreasonable about this result? (c) Which assumption or
premise is responsible?

23.6 Back Emf

39. Suppose a motor connected to a 120 V source draws
10.0 A when it first starts. (a) What is its resistance? (b) What
current does it draw at its normal operating speed when it
develops a 100 V back emf?

40. A motor operating on 240 V electricity has a 180 V back
emf at operating speed and draws a 12.0 A current. (a) What
is its resistance? (b) What current does it draw when it is first
started?

41. What is the back emf of a 120 V motor that draws 8.00 A
at its normal speed and 20.0 A when first starting?

42. The motor in a toy car operates on 6.00 V, developing a
4.50 V back emf at normal speed. If it draws 3.00 A at normal
speed, what current does it draw when starting?

43. Integrated Concepts

The motor in a toy car is powered by four batteries in series,
which produce a total emf of 6.00 V. The motor draws 3.00 A
and develops a 4.50 V back emf at normal speed. Each
battery has a 0.100 Ω internal resistance. What is the

resistance of the motor?

23.7 Transformers

44. A plug-in transformer, like that in Figure 23.29, supplies
9.00 V to a video game system. (a) How many turns are in its
secondary coil, if its input voltage is 120 V and the primary
coil has 400 turns? (b) What is its input current when its
output is 1.30 A?

45. An American traveler in New Zealand carries a
transformer to convert New Zealand’s standard 240 V to 120
V so that she can use some small appliances on her trip. (a)
What is the ratio of turns in the primary and secondary coils of
her transformer? (b) What is the ratio of input to output
current? (c) How could a New Zealander traveling in the
United States use this same transformer to power her 240 V
appliances from 120 V?

46. A cassette recorder uses a plug-in transformer to convert
120 V to 12.0 V, with a maximum current output of 200 mA.
(a) What is the current input? (b) What is the power input? (c)
Is this amount of power reasonable for a small appliance?

47. (a) What is the voltage output of a transformer used for
rechargeable flashlight batteries, if its primary has 500 turns,
its secondary 4 turns, and the input voltage is 120 V? (b)
What input current is required to produce a 4.00 A output? (c)
What is the power input?

48. (a) The plug-in transformer for a laptop computer puts out
7.50 V and can supply a maximum current of 2.00 A. What is
the maximum input current if the input voltage is 240 V?
Assume 100% efficiency. (b) If the actual efficiency is less
than 100%, would the input current need to be greater or
smaller? Explain.

49. A multipurpose transformer has a secondary coil with
several points at which a voltage can be extracted, giving
outputs of 5.60, 12.0, and 480 V. (a) The input voltage is 240
V to a primary coil of 280 turns. What are the numbers of
turns in the parts of the secondary used to produce the output
voltages? (b) If the maximum input current is 5.00 A, what are
the maximum output currents (each used alone)?

50. A large power plant generates electricity at 12.0 kV. Its old
transformer once converted the voltage to 335 kV. The
secondary of this transformer is being replaced so that its
output can be 750 kV for more efficient cross-country
transmission on upgraded transmission lines. (a) What is the
ratio of turns in the new secondary compared with the old
secondary? (b) What is the ratio of new current output to old
output (at 335 kV) for the same power? (c) If the upgraded
transmission lines have the same resistance, what is the ratio
of new line power loss to old?

51. If the power output in the previous problem is 1000 MW
and line resistance is 2.00 Ω , what were the old and new

line losses?

52. Unreasonable Results

The 335 kV AC electricity from a power transmission line is
fed into the primary coil of a transformer. The ratio of the
number of turns in the secondary to the number in the primary
is Ns / Np = 1000 . (a) What voltage is induced in the

secondary? (b) What is unreasonable about this result? (c)
Which assumption or premise is responsible?
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53. Construct Your Own Problem

Consider a double transformer to be used to create very large
voltages. The device consists of two stages. The first is a
transformer that produces a much larger output voltage than
its input. The output of the first transformer is used as input to
a second transformer that further increases the voltage.
Construct a problem in which you calculate the output voltage
of the final stage based on the input voltage of the first stage
and the number of turns or loops in both parts of both
transformers (four coils in all). Also calculate the maximum
output current of the final stage based on the input current.
Discuss the possibility of power losses in the devices and the
effect on the output current and power.

23.8 Electrical Safety: Systems and Devices

54. Integrated Concepts

A short circuit to the grounded metal case of an appliance
occurs as shown in Figure 23.60. The person touching the
case is wet and only has a 3.00 kΩ resistance to earth/

ground. (a) What is the voltage on the case if 5.00 mA flows
through the person? (b) What is the current in the short circuit
if the resistance of the earth/ground wire is 0.200 Ω ? (c)

Will this trigger the 20.0 A circuit breaker supplying the
appliance?

Figure 23.60 A person can be shocked even when the case of an

appliance is grounded. The large short circuit current produces a voltage

on the case of the appliance, since the resistance of the earth/ground

wire is not zero.

23.9 Inductance

55. Two coils are placed close together in a physics lab to
demonstrate Faraday’s law of induction. A current of 5.00 A in
one is switched off in 1.00 ms, inducing a 9.00 V emf in the
other. What is their mutual inductance?

56. If two coils placed next to one another have a mutual
inductance of 5.00 mH, what voltage is induced in one when
the 2.00 A current in the other is switched off in 30.0 ms?

57. The 4.00 A current through a 7.50 mH inductor is
switched off in 8.33 ms. What is the emf induced opposing
this?

58. A device is turned on and 3.00 A flows through it 0.100
ms later. What is the self-inductance of the device if an
induced 150 V emf opposes this?

59. Starting with emf2 = −MΔI1
Δt , show that the units of

inductance are (V ⋅ s)/A = Ω ⋅ s .

60. Camera flashes charge a capacitor to high voltage by
switching the current through an inductor on and off rapidly. In
what time must the 0.100 A current through a 2.00 mH
inductor be switched on or off to induce a 500 V emf?

61. A large research solenoid has a self-inductance of 25.0 H.
(a) What induced emf opposes shutting it off when 100 A of
current through it is switched off in 80.0 ms? (b) How much
energy is stored in the inductor at full current? (c) At what rate
in watts must energy be dissipated to switch the current off in
80.0 ms? (d) In view of the answer to the last part, is it
surprising that shutting it down this quickly is difficult?

62. (a) Calculate the self-inductance of a 50.0 cm long, 10.0
cm diameter solenoid having 1000 loops. (b) How much
energy is stored in this inductor when 20.0 A of current flows
through it? (c) How fast can it be turned off if the induced emf
cannot exceed 3.00 V?

63. A precision laboratory resistor is made of a coil of wire
1.50 cm in diameter and 4.00 cm long, and it has 500 turns.
(a) What is its self-inductance? (b) What average emf is
induced if the 12.0 A current through it is turned on in 5.00 ms
(one-fourth of a cycle for 50 Hz AC)? (c) What is its
inductance if it is shortened to half its length and counter-
wound (two layers of 250 turns in opposite directions)?

64. The heating coils in a hair dryer are 0.800 cm in diameter,
have a combined length of 1.00 m, and a total of 400 turns.
(a) What is their total self-inductance assuming they act like a
single solenoid? (b) How much energy is stored in them when
6.00 A flows? (c) What average emf opposes shutting them
off if this is done in 5.00 ms (one-fourth of a cycle for 50 Hz
AC)?

65. When the 20.0 A current through an inductor is turned off
in 1.50 ms, an 800 V emf is induced, opposing the change.
What is the value of the self-inductance?

66. How fast can the 150 A current through a 0.250 H
inductor be shut off if the induced emf cannot exceed 75.0
V?

67. Integrated Concepts

A very large, superconducting solenoid such as one used in
MRI scans, stores 1.00 MJ of energy in its magnetic field
when 100 A flows. (a) Find its self-inductance. (b) If the coils
“go normal,” they gain resistance and start to dissipate
thermal energy. What temperature increase is produced if all
the stored energy goes into heating the 1000 kg magnet,
given its average specific heat is 200 J/kg·ºC ?

68. Unreasonable Results

A 25.0 H inductor has 100 A of current turned off in 1.00 ms.
(a) What voltage is induced to oppose this? (b) What is
unreasonable about this result? (c) Which assumption or
premise is responsible?

23.10 RL Circuits

69. If you want a characteristic RL time constant of 1.00 s,
and you have a 500 Ω resistor, what value of self-

inductance is needed?
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70. Your RL circuit has a characteristic time constant of 20.0
ns, and a resistance of 5.00 MΩ . (a) What is the inductance

of the circuit? (b) What resistance would give you a 1.00 ns
time constant, perhaps needed for quick response in an
oscilloscope?

71. A large superconducting magnet, used for magnetic
resonance imaging, has a 50.0 H inductance. If you want
current through it to be adjustable with a 1.00 s characteristic
time constant, what is the minimum resistance of system?

72. Verify that after a time of 10.0 ms, the current for the
situation considered in Example 23.9 will be 0.183 A as
stated.

73. Suppose you have a supply of inductors ranging from
1.00 nH to 10.0 H, and resistors ranging from 0.100 Ω to

1.00 MΩ . What is the range of characteristic RL time

constants you can produce by connecting a single resistor to
a single inductor?

74. (a) What is the characteristic time constant of a 25.0 mH
inductor that has a resistance of 4.00 Ω ? (b) If it is

connected to a 12.0 V battery, what is the current after 12.5
ms?

75. What percentage of the final current I0 flows through an

inductor L in series with a resistor R , three time constants

after the circuit is completed?

76. The 5.00 A current through a 1.50 H inductor is dissipated
by a 2.00 Ω resistor in a circuit like that in Figure 23.44 with

the switch in position 2. (a) What is the initial energy in the
inductor? (b) How long will it take the current to decline to
5.00% of its initial value? (c) Calculate the average power
dissipated, and compare it with the initial power dissipated by
the resistor.

77. (a) Use the exact exponential treatment to find how much
time is required to bring the current through an 80.0 mH
inductor in series with a 15.0 Ω resistor to 99.0% of its final

value, starting from zero. (b) Compare your answer to the
approximate treatment using integral numbers of τ . (c)

Discuss how significant the difference is.

78. (a) Using the exact exponential treatment, find the time
required for the current through a 2.00 H inductor in series
with a 0.500 Ω resistor to be reduced to 0.100% of its

original value. (b) Compare your answer to the approximate
treatment using integral numbers of τ . (c) Discuss how

significant the difference is.

23.11 Reactance, Inductive and Capacitive

79. At what frequency will a 30.0 mH inductor have a
reactance of 100 Ω ?

80. What value of inductance should be used if a 20.0 kΩ
reactance is needed at a frequency of 500 Hz?

81. What capacitance should be used to produce a
2.00 MΩ reactance at 60.0 Hz?

82. At what frequency will an 80.0 mF capacitor have a
reactance of 0.250 Ω ?

83. (a) Find the current through a 0.500 H inductor connected
to a 60.0 Hz, 480 V AC source. (b) What would the current be
at 100 kHz?

84. (a) What current flows when a 60.0 Hz, 480 V AC source
is connected to a 0.250 μF capacitor? (b) What would the

current be at 25.0 kHz?

85. A 20.0 kHz, 16.0 V source connected to an inductor
produces a 2.00 A current. What is the inductance?

86. A 20.0 Hz, 16.0 V source produces a 2.00 mA current
when connected to a capacitor. What is the capacitance?

87. (a) An inductor designed to filter high-frequency noise
from power supplied to a personal computer is placed in
series with the computer. What minimum inductance should it
have to produce a 2.00 kΩ reactance for 15.0 kHz noise?

(b) What is its reactance at 60.0 Hz?

88. The capacitor in Figure 23.55(a) is designed to filter low-
frequency signals, impeding their transmission between
circuits. (a) What capacitance is needed to produce a
100 kΩ reactance at a frequency of 120 Hz? (b) What

would its reactance be at 1.00 MHz? (c) Discuss the
implications of your answers to (a) and (b).

89. The capacitor in Figure 23.55(b) will filter high-frequency
signals by shorting them to earth/ground. (a) What
capacitance is needed to produce a reactance of 10.0 mΩ
for a 5.00 kHz signal? (b) What would its reactance be at 3.00
Hz? (c) Discuss the implications of your answers to (a) and
(b).

90. Unreasonable Results

In a recording of voltages due to brain activity (an EEG), a
10.0 mV signal with a 0.500 Hz frequency is applied to a
capacitor, producing a current of 100 mA. Resistance is
negligible. (a) What is the capacitance? (b) What is
unreasonable about this result? (c) Which assumption or
premise is responsible?

91. Construct Your Own Problem

Consider the use of an inductor in series with a computer
operating on 60 Hz electricity. Construct a problem in which
you calculate the relative reduction in voltage of incoming
high frequency noise compared to 60 Hz voltage. Among the
things to consider are the acceptable series reactance of the
inductor for 60 Hz power and the likely frequencies of noise
coming through the power lines.

23.12 RLC Series AC Circuits

92. An RL circuit consists of a 40.0 Ω resistor and a 3.00

mH inductor. (a) Find its impedance Z at 60.0 Hz and 10.0

kHz. (b) Compare these values of Z with those found in

Example 23.12 in which there was also a capacitor.

93. An RC circuit consists of a 40.0 Ω resistor and a

5.00 μF capacitor. (a) Find its impedance at 60.0 Hz and

10.0 kHz. (b) Compare these values of Z with those found in

Example 23.12, in which there was also an inductor.

94. An LC circuit consists of a 3.00 mH inductor and a

5.00 μF capacitor. (a) Find its impedance at 60.0 Hz and

10.0 kHz. (b) Compare these values of Z with those found in

Example 23.12 in which there was also a resistor.

95. What is the resonant frequency of a 0.500 mH inductor
connected to a 40.0 μF capacitor?
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96. To receive AM radio, you want an RLC circuit that can be
made to resonate at any frequency between 500 and 1650
kHz. This is accomplished with a fixed 1.00 μH inductor

connected to a variable capacitor. What range of capacitance
is needed?

97. Suppose you have a supply of inductors ranging from
1.00 nH to 10.0 H, and capacitors ranging from 1.00 pF to
0.100 F. What is the range of resonant frequencies that can
be achieved from combinations of a single inductor and a
single capacitor?

98. What capacitance do you need to produce a resonant
frequency of 1.00 GHz, when using an 8.00 nH inductor?

99. What inductance do you need to produce a resonant
frequency of 60.0 Hz, when using a 2.00 μF capacitor?

100. The lowest frequency in the FM radio band is 88.0 MHz.
(a) What inductance is needed to produce this resonant
frequency if it is connected to a 2.50 pF capacitor? (b) The
capacitor is variable, to allow the resonant frequency to be
adjusted to as high as 108 MHz. What must the capacitance
be at this frequency?

101. An RLC series circuit has a 2.50 Ω resistor, a 100 μH
inductor, and an 80.0 μF capacitor.(a) Find the circuit’s

impedance at 120 Hz. (b) Find the circuit’s impedance at 5.00
kHz. (c) If the voltage source has Vrms = 5.60 V , what is

Irms at each frequency? (d) What is the resonant frequency

of the circuit? (e) What is Irms at resonance?

102. An RLC series circuit has a 1.00 kΩ resistor, a

150 μH inductor, and a 25.0 nF capacitor. (a) Find the

circuit’s impedance at 500 Hz. (b) Find the circuit’s
impedance at 7.50 kHz. (c) If the voltage source has
Vrms = 408 V , what is Irms at each frequency? (d) What

is the resonant frequency of the circuit? (e) What is Irms at

resonance?

103. An RLC series circuit has a 2.50 Ω resistor, a 100 μH
inductor, and an 80.0 μF capacitor. (a) Find the power factor

at f = 120 Hz . (b) What is the phase angle at 120 Hz? (c)

What is the average power at 120 Hz? (d) Find the average
power at the circuit’s resonant frequency.

104. An RLC series circuit has a 1.00 kΩ resistor, a

150 μH inductor, and a 25.0 nF capacitor. (a) Find the

power factor at f = 7.50 Hz . (b) What is the phase angle at

this frequency? (c) What is the average power at this
frequency? (d) Find the average power at the circuit’s
resonant frequency.

105. An RLC series circuit has a 200 Ω resistor and a 25.0

mH inductor. At 8000 Hz, the phase angle is 45.0º . (a) What

is the impedance? (b) Find the circuit’s capacitance. (c) If
Vrms = 408 V is applied, what is the average power

supplied?

106. Referring to Example 23.14, find the average power at
10.0 kHz.

Chapter 23 | Electromagnetic Induction, AC Circuits, and Electrical Technologies 949



950 Chapter 23 | Electromagnetic Induction, AC Circuits, and Electrical Technologies

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



24 ELECTROMAGNETIC WAVES

Figure 24.1 Human eyes detect these orange “sea goldie” fish swimming over a coral reef in the blue waters of the Gulf of Eilat (Red Sea) using visible
light. (credit: Daviddarom, Wikimedia Commons)

Chapter Outline
24.1. Maxwell’s Equations: Electromagnetic Waves Predicted and Observed

• Restate Maxwell’s equations.
24.2. Production of Electromagnetic Waves

• Describe the electric and magnetic waves as they move out from a source, such as an AC generator.
• Explain the mathematical relationship between the magnetic field strength and the electrical field strength.
• Calculate the maximum strength of the magnetic field in an electromagnetic wave, given the maximum electric field

strength.
24.3. The Electromagnetic Spectrum

• List three “rules of thumb” that apply to the different frequencies along the electromagnetic spectrum.
• Explain why the higher the frequency, the shorter the wavelength of an electromagnetic wave.
• Draw a simplified electromagnetic spectrum, indicating the relative positions, frequencies, and spacing of the different

types of radiation bands.
• List and explain the different methods by which electromagnetic waves are produced across the spectrum.

24.4. Energy in Electromagnetic Waves
• Explain how the energy and amplitude of an electromagnetic wave are related.
• Given its power output and the heating area, calculate the intensity of a microwave oven’s electromagnetic field, as

well as its peak electric and magnetic field strengths

Introduction to Electromagnetic Waves

The beauty of a coral reef, the warm radiance of sunshine, the sting of sunburn, the X-ray revealing a broken bone, even
microwave popcorn—all are brought to us by electromagnetic waves. The list of the various types of electromagnetic waves,
ranging from radio transmission waves to nuclear gamma-ray ( γ -ray) emissions, is interesting in itself.

Even more intriguing is that all of these widely varied phenomena are different manifestations of the same
thing—electromagnetic waves. (See Figure 24.2.) What are electromagnetic waves? How are they created, and how do they
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travel? How can we understand and organize their widely varying properties? What is their relationship to electric and magnetic
effects? These and other questions will be explored.

Misconception Alert: Sound Waves vs. Radio Waves

Many people confuse sound waves with radio waves, one type of electromagnetic (EM) wave. However, sound and radio
waves are completely different phenomena. Sound creates pressure variations (waves) in matter, such as air or water, or
your eardrum. Conversely, radio waves are electromagnetic waves, like visible light, infrared, ultraviolet, X-rays, and gamma
rays. EM waves don’t need a medium in which to propagate; they can travel through a vacuum, such as outer space.

A radio works because sound waves played by the D.J. at the radio station are converted into electromagnetic waves, then
encoded and transmitted in the radio-frequency range. The radio in your car receives the radio waves, decodes the
information, and uses a speaker to change it back into a sound wave, bringing sweet music to your ears.

Discovering a New Phenomenon

It is worth noting at the outset that the general phenomenon of electromagnetic waves was predicted by theory before it was
realized that light is a form of electromagnetic wave. The prediction was made by James Clerk Maxwell in the mid-19th century
when he formulated a single theory combining all the electric and magnetic effects known by scientists at that time.
“Electromagnetic waves” was the name he gave to the phenomena his theory predicted.

Such a theoretical prediction followed by experimental verification is an indication of the power of science in general, and physics
in particular. The underlying connections and unity of physics allow certain great minds to solve puzzles without having all the
pieces. The prediction of electromagnetic waves is one of the most spectacular examples of this power. Certain others, such as
the prediction of antimatter, will be discussed in later modules.

Figure 24.2 The electromagnetic waves sent and received by this 50-foot radar dish antenna at Kennedy Space Center in Florida are not visible, but
help track expendable launch vehicles with high-definition imagery. The first use of this C-band radar dish was for the launch of the Atlas V rocket
sending the New Horizons probe toward Pluto. (credit: NASA)

24.1 Maxwell’s Equations: Electromagnetic Waves Predicted and Observed

The Scotsman James Clerk Maxwell (1831–1879) is regarded as the greatest theoretical physicist of the 19th century. (See
Figure 24.3.) Although he died young, Maxwell not only formulated a complete electromagnetic theory, represented by
Maxwell’s equations, he also developed the kinetic theory of gases and made significant contributions to the understanding of
color vision and the nature of Saturn’s rings.
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Figure 24.3 James Clerk Maxwell, a 19th-century physicist, developed a theory that explained the relationship between electricity and magnetism and
correctly predicted that visible light is caused by electromagnetic waves. (credit: G. J. Stodart)

Maxwell brought together all the work that had been done by brilliant physicists such as Oersted, Coulomb, Gauss, and Faraday,
and added his own insights to develop the overarching theory of electromagnetism. Maxwell’s equations are paraphrased here in
words because their mathematical statement is beyond the level of this text. However, the equations illustrate how apparently
simple mathematical statements can elegantly unite and express a multitude of concepts—why mathematics is the language of
science.

Maxwell’s Equations
1. Electric field lines originate on positive charges and terminate on negative charges. The electric field is defined as the

force per unit charge on a test charge, and the strength of the force is related to the electric constant ε0 , also known

as the permittivity of free space. From Maxwell’s first equation we obtain a special form of Coulomb’s law known as
Gauss’s law for electricity.

2. Magnetic field lines are continuous, having no beginning or end. No magnetic monopoles are known to exist. The
strength of the magnetic force is related to the magnetic constant μ0 , also known as the permeability of free space.

This second of Maxwell’s equations is known as Gauss’s law for magnetism.

3. A changing magnetic field induces an electromotive force (emf) and, hence, an electric field. The direction of the emf
opposes the change. This third of Maxwell’s equations is Faraday’s law of induction, and includes Lenz’s law.

4. Magnetic fields are generated by moving charges or by changing electric fields. This fourth of Maxwell’s equations
encompasses Ampere’s law and adds another source of magnetism—changing electric fields.

Maxwell’s equations encompass the major laws of electricity and magnetism. What is not so apparent is the symmetry that
Maxwell introduced in his mathematical framework. Especially important is his addition of the hypothesis that changing electric
fields create magnetic fields. This is exactly analogous (and symmetric) to Faraday’s law of induction and had been suspected
for some time, but fits beautifully into Maxwell’s equations.

Symmetry is apparent in nature in a wide range of situations. In contemporary research, symmetry plays a major part in the
search for sub-atomic particles using massive multinational particle accelerators such as the new Large Hadron Collider at
CERN.

Making Connections: Unification of Forces

Maxwell’s complete and symmetric theory showed that electric and magnetic forces are not separate, but different
manifestations of the same thing—the electromagnetic force. This classical unification of forces is one motivation for current
attempts to unify the four basic forces in nature—the gravitational, electrical, strong, and weak nuclear forces.

Since changing electric fields create relatively weak magnetic fields, they could not be easily detected at the time of Maxwell’s
hypothesis. Maxwell realized, however, that oscillating charges, like those in AC circuits, produce changing electric fields. He
predicted that these changing fields would propagate from the source like waves generated on a lake by a jumping fish.

The waves predicted by Maxwell would consist of oscillating electric and magnetic fields—defined to be an electromagnetic wave
(EM wave). Electromagnetic waves would be capable of exerting forces on charges great distances from their source, and they
might thus be detectable. Maxwell calculated that electromagnetic waves would propagate at a speed given by the equation

(24.1)c = 1
μ0 ε0

.

When the values for μ0 and ε0 are entered into the equation for c , we find that
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(24.2)c = 1

(8.85×10−12 C2

N ⋅ m2)(4π×10−7 T ⋅ m
A )

= 3.00×108 m/s,

which is the speed of light. In fact, Maxwell concluded that light is an electromagnetic wave having such wavelengths that it can
be detected by the eye.

Other wavelengths should exist—it remained to be seen if they did. If so, Maxwell’s theory and remarkable predictions would be
verified, the greatest triumph of physics since Newton. Experimental verification came within a few years, but not before
Maxwell’s death.

Hertz’s Observations

The German physicist Heinrich Hertz (1857–1894) was the first to generate and detect certain types of electromagnetic waves in
the laboratory. Starting in 1887, he performed a series of experiments that not only confirmed the existence of electromagnetic
waves, but also verified that they travel at the speed of light.

Hertz used an AC RLC (resistor-inductor-capacitor) circuit that resonates at a known frequency f0 = 1
2π LC

and connected

it to a loop of wire as shown in Figure 24.4. High voltages induced across the gap in the loop produced sparks that were visible
evidence of the current in the circuit and that helped generate electromagnetic waves.

Across the laboratory, Hertz had another loop attached to another RLC circuit, which could be tuned (as the dial on a radio) to

the same resonant frequency as the first and could, thus, be made to receive electromagnetic waves. This loop also had a gap
across which sparks were generated, giving solid evidence that electromagnetic waves had been received.

Figure 24.4 The apparatus used by Hertz in 1887 to generate and detect electromagnetic waves. An RLC circuit connected to the first loop caused

sparks across a gap in the wire loop and generated electromagnetic waves. Sparks across a gap in the second loop located across the laboratory gave
evidence that the waves had been received.

Hertz also studied the reflection, refraction, and interference patterns of the electromagnetic waves he generated, verifying their
wave character. He was able to determine wavelength from the interference patterns, and knowing their frequency, he could
calculate the propagation speed using the equation υ = fλ (velocity—or speed—equals frequency times wavelength). Hertz

was thus able to prove that electromagnetic waves travel at the speed of light. The SI unit for frequency, the hertz (
1 Hz = 1 cycle/s ), is named in his honor.

24.2 Production of Electromagnetic Waves

We can get a good understanding of electromagnetic waves (EM) by considering how they are produced. Whenever a current
varies, associated electric and magnetic fields vary, moving out from the source like waves. Perhaps the easiest situation to
visualize is a varying current in a long straight wire, produced by an AC generator at its center, as illustrated in Figure 24.5.
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Figure 24.5 This long straight gray wire with an AC generator at its center becomes a broadcast antenna for electromagnetic waves. Shown here are

the charge distributions at four different times. The electric field ( E ) propagates away from the antenna at the speed of light, forming part of an

electromagnetic wave.

The electric field ( E ) shown surrounding the wire is produced by the charge distribution on the wire. Both the E and the

charge distribution vary as the current changes. The changing field propagates outward at the speed of light.

There is an associated magnetic field ( B ) which propagates outward as well (see Figure 24.6). The electric and magnetic

fields are closely related and propagate as an electromagnetic wave. This is what happens in broadcast antennae such as those
in radio and TV stations.

Closer examination of the one complete cycle shown in Figure 24.5 reveals the periodic nature of the generator-driven charges
oscillating up and down in the antenna and the electric field produced. At time t = 0 , there is the maximum separation of

charge, with negative charges at the top and positive charges at the bottom, producing the maximum magnitude of the electric
field (or E -field) in the upward direction. One-fourth of a cycle later, there is no charge separation and the field next to the

antenna is zero, while the maximum E -field has moved away at speed c .

As the process continues, the charge separation reverses and the field reaches its maximum downward value, returns to zero,
and rises to its maximum upward value at the end of one complete cycle. The outgoing wave has an amplitude proportional to
the maximum separation of charge. Its wavelength (λ) is proportional to the period of the oscillation and, hence, is smaller for

short periods or high frequencies. (As usual, wavelength and frequency ⎛⎝ f ⎞⎠ are inversely proportional.)

Electric and Magnetic Waves: Moving Together

Following Ampere’s law, current in the antenna produces a magnetic field, as shown in Figure 24.6. The relationship between
E and B is shown at one instant in Figure 24.6 (a). As the current varies, the magnetic field varies in magnitude and direction.

Figure 24.6 (a) The current in the antenna produces the circular magnetic field lines. The current ( I ) produces the separation of charge along the

wire, which in turn creates the electric field as shown. (b) The electric and magnetic fields ( E and B ) near the wire are perpendicular; they are

shown here for one point in space. (c) The magnetic field varies with current and propagates away from the antenna at the speed of light.

The magnetic field lines also propagate away from the antenna at the speed of light, forming the other part of the
electromagnetic wave, as seen in Figure 24.6 (b). The magnetic part of the wave has the same period and wavelength as the
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electric part, since they are both produced by the same movement and separation of charges in the antenna.

The electric and magnetic waves are shown together at one instant in time in Figure 24.7. The electric and magnetic fields
produced by a long straight wire antenna are exactly in phase. Note that they are perpendicular to one another and to the
direction of propagation, making this a transverse wave.

Figure 24.7 A part of the electromagnetic wave sent out from the antenna at one instant in time. The electric and magnetic fields ( E and B ) are in

phase, and they are perpendicular to one another and the direction of propagation. For clarity, the waves are shown only along one direction, but they
propagate out in other directions too.

Electromagnetic waves generally propagate out from a source in all directions, sometimes forming a complex radiation pattern. A
linear antenna like this one will not radiate parallel to its length, for example. The wave is shown in one direction from the
antenna in Figure 24.7 to illustrate its basic characteristics.

Instead of the AC generator, the antenna can also be driven by an AC circuit. In fact, charges radiate whenever they are
accelerated. But while a current in a circuit needs a complete path, an antenna has a varying charge distribution forming a
standing wave, driven by the AC. The dimensions of the antenna are critical for determining the frequency of the radiated
electromagnetic waves. This is a resonant phenomenon and when we tune radios or TV, we vary electrical properties to achieve
appropriate resonant conditions in the antenna.

Receiving Electromagnetic Waves

Electromagnetic waves carry energy away from their source, similar to a sound wave carrying energy away from a standing
wave on a guitar string. An antenna for receiving EM signals works in reverse. And like antennas that produce EM waves,
receiver antennas are specially designed to resonate at particular frequencies.

An incoming electromagnetic wave accelerates electrons in the antenna, setting up a standing wave. If the radio or TV is
switched on, electrical components pick up and amplify the signal formed by the accelerating electrons. The signal is then
converted to audio and/or video format. Sometimes big receiver dishes are used to focus the signal onto an antenna.

In fact, charges radiate whenever they are accelerated. When designing circuits, we often assume that energy does not quickly
escape AC circuits, and mostly this is true. A broadcast antenna is specially designed to enhance the rate of electromagnetic
radiation, and shielding is necessary to keep the radiation close to zero. Some familiar phenomena are based on the production
of electromagnetic waves by varying currents. Your microwave oven, for example, sends electromagnetic waves, called
microwaves, from a concealed antenna that has an oscillating current imposed on it.

Relating E -Field and B -Field Strengths

There is a relationship between the E - and B -field strengths in an electromagnetic wave. This can be understood by again

considering the antenna just described. The stronger the E -field created by a separation of charge, the greater the current and,

hence, the greater the B -field created.

Since current is directly proportional to voltage (Ohm’s law) and voltage is directly proportional to E -field strength, the two

should be directly proportional. It can be shown that the magnitudes of the fields do have a constant ratio, equal to the speed of
light. That is,

(24.3)E
B = c

is the ratio of E -field strength to B -field strength in any electromagnetic wave. This is true at all times and at all locations in

space. A simple and elegant result.

Example 24.1 Calculating B -Field Strength in an Electromagnetic Wave

What is the maximum strength of the B -field in an electromagnetic wave that has a maximum E -field strength of
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1000 V/m ?

Strategy

To find the B -field strength, we rearrange the above equation to solve for B , yielding

(24.4)B = E
c .

Solution

We are given E , and c is the speed of light. Entering these into the expression for B yields

(24.5)B = 1000 V/m
3.00×108 m/s

= 3.33×10-6 T,

Where T stands for Tesla, a measure of magnetic field strength.

Discussion

The B -field strength is less than a tenth of the Earth’s admittedly weak magnetic field. This means that a relatively strong

electric field of 1000 V/m is accompanied by a relatively weak magnetic field. Note that as this wave spreads out, say with
distance from an antenna, its field strengths become progressively weaker.

The result of this example is consistent with the statement made in the module Maxwell’s Equations: Electromagnetic Waves
Predicted and Observed that changing electric fields create relatively weak magnetic fields. They can be detected in
electromagnetic waves, however, by taking advantage of the phenomenon of resonance, as Hertz did. A system with the same
natural frequency as the electromagnetic wave can be made to oscillate. All radio and TV receivers use this principle to pick up
and then amplify weak electromagnetic waves, while rejecting all others not at their resonant frequency.

Take-Home Experiment: Antennas

For your TV or radio at home, identify the antenna, and sketch its shape. If you don’t have cable, you might have an outdoor
or indoor TV antenna. Estimate its size. If the TV signal is between 60 and 216 MHz for basic channels, then what is the
wavelength of those EM waves?

Try tuning the radio and note the small range of frequencies at which a reasonable signal for that station is received. (This is
easier with digital readout.) If you have a car with a radio and extendable antenna, note the quality of reception as the length
of the antenna is changed.

PhET Explorations: Radio Waves and Electromagnetic Fields

Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have it oscillate automatically. Display the
field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42440/
1.9/#Phet_module_25.2)

Figure 24.8

24.3 The Electromagnetic Spectrum

In this module we examine how electromagnetic waves are classified into categories such as radio, infrared, ultraviolet, and so
on, so that we can understand some of their similarities as well as some of their differences. We will also find that there are many
connections with previously discussed topics, such as wavelength and resonance. A brief overview of the production and
utilization of electromagnetic waves is found in Table 24.1.
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Table 24.1 Electromagnetic Waves

Type of EM
wave

Production Applications
Life sciences

aspect
Issues

Radio & TV Accelerating charges
Communications
Remote controls

MRI
Requires controls for
band use

Microwaves
Accelerating charges & thermal
agitation

Communications Ovens
Radar

Deep heating Cell phone use

Infrared
Thermal agitations & electronic
transitions

Thermal imaging
Heating

Absorbed by
atmosphere

Greenhouse effect

Visible light
Thermal agitations & electronic
transitions

All pervasive
Photosynthesis Human
vision

Ultraviolet
Thermal agitations & electronic
transitions

Sterilization Cancer
control

Vitamin D production
Ozone depletion Cancer
causing

X-rays
Inner electronic transitions and
fast collisions

Medical Security
Medical diagnosis
Cancer therapy

Cancer causing

Gamma rays Nuclear decay
Nuclear
medicineSecurity

Medical diagnosis
Cancer therapy

Cancer causing
Radiation damage

Connections: Waves

There are many types of waves, such as water waves and even earthquakes. Among the many shared attributes of waves
are propagation speed, frequency, and wavelength. These are always related by the expression vW = fλ . This module

concentrates on EM waves, but other modules contain examples of all of these characteristics for sound waves and
submicroscopic particles.

As noted before, an electromagnetic wave has a frequency and a wavelength associated with it and travels at the speed of light,
or c . The relationship among these wave characteristics can be described by vW = fλ , where vW is the propagation speed

of the wave, f is the frequency, and λ is the wavelength. Here vW = c , so that for all electromagnetic waves,

(24.6)c = fλ.

Thus, for all electromagnetic waves, the greater the frequency, the smaller the wavelength.

Figure 24.9 shows how the various types of electromagnetic waves are categorized according to their wavelengths and
frequencies—that is, it shows the electromagnetic spectrum. Many of the characteristics of the various types of electromagnetic
waves are related to their frequencies and wavelengths, as we shall see.

Figure 24.9 The electromagnetic spectrum, showing the major categories of electromagnetic waves. The range of frequencies and wavelengths is
remarkable. The dividing line between some categories is distinct, whereas other categories overlap.

Electromagnetic Spectrum: Rules of Thumb

Three rules that apply to electromagnetic waves in general are as follows:

• High-frequency electromagnetic waves are more energetic and are more able to penetrate than low-frequency waves.
• High-frequency electromagnetic waves can carry more information per unit time than low-frequency waves.
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• The shorter the wavelength of any electromagnetic wave probing a material, the smaller the detail it is possible to
resolve.

Note that there are exceptions to these rules of thumb.

Transmission, Reflection, and Absorption

What happens when an electromagnetic wave impinges on a material? If the material is transparent to the particular frequency,
then the wave can largely be transmitted. If the material is opaque to the frequency, then the wave can be totally reflected. The
wave can also be absorbed by the material, indicating that there is some interaction between the wave and the material, such as
the thermal agitation of molecules.

Of course it is possible to have partial transmission, reflection, and absorption. We normally associate these properties with
visible light, but they do apply to all electromagnetic waves. What is not obvious is that something that is transparent to light may
be opaque at other frequencies. For example, ordinary glass is transparent to visible light but largely opaque to ultraviolet
radiation. Human skin is opaque to visible light—we cannot see through people—but transparent to X-rays.

Radio and TV Waves

The broad category of radio waves is defined to contain any electromagnetic wave produced by currents in wires and circuits.
Its name derives from their most common use as a carrier of audio information (i.e., radio). The name is applied to
electromagnetic waves of similar frequencies regardless of source. Radio waves from outer space, for example, do not come
from alien radio stations. They are created by many astronomical phenomena, and their study has revealed much about nature
on the largest scales.

There are many uses for radio waves, and so the category is divided into many subcategories, including microwaves and those
electromagnetic waves used for AM and FM radio, cellular telephones, and TV.

The lowest commonly encountered radio frequencies are produced by high-voltage AC power transmission lines at frequencies
of 50 or 60 Hz. (See Figure 24.10.) These extremely long wavelength electromagnetic waves (about 6000 km!) are one means
of energy loss in long-distance power transmission.

Figure 24.10 This high-voltage traction power line running to Eutingen Railway Substation in Germany radiates electromagnetic waves with very long
wavelengths. (credit: Zonk43, Wikimedia Commons)

There is an ongoing controversy regarding potential health hazards associated with exposure to these electromagnetic fields ( E
-fields). Some people suspect that living near such transmission lines may cause a variety of illnesses, including cancer. But
demographic data are either inconclusive or simply do not support the hazard theory. Recent reports that have looked at many
European and American epidemiological studies have found no increase in risk for cancer due to exposure to E -fields.

Extremely low frequency (ELF) radio waves of about 1 kHz are used to communicate with submerged submarines. The ability
of radio waves to penetrate salt water is related to their wavelength (much like ultrasound penetrating tissue)—the longer the
wavelength, the farther they penetrate. Since salt water is a good conductor, radio waves are strongly absorbed by it, and very
long wavelengths are needed to reach a submarine under the surface. (See Figure 24.11.)
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Figure 24.11 Very long wavelength radio waves are needed to reach this submarine, requiring extremely low frequency signals (ELF). Shorter
wavelengths do not penetrate to any significant depth.

AM radio waves are used to carry commercial radio signals in the frequency range from 540 to 1600 kHz. The abbreviation AM
stands for amplitude modulation, which is the method for placing information on these waves. (See Figure 24.12.) A carrier
wave having the basic frequency of the radio station, say 1530 kHz, is varied or modulated in amplitude by an audio signal. The
resulting wave has a constant frequency, but a varying amplitude.

A radio receiver tuned to have the same resonant frequency as the carrier wave can pick up the signal, while rejecting the many
other frequencies impinging on its antenna. The receiver’s circuitry is designed to respond to variations in amplitude of the carrier
wave to replicate the original audio signal. That audio signal is amplified to drive a speaker or perhaps to be recorded.

Figure 24.12 Amplitude modulation for AM radio. (a) A carrier wave at the station’s basic frequency. (b) An audio signal at much lower audible
frequencies. (c) The amplitude of the carrier is modulated by the audio signal without changing its basic frequency.

FM Radio Waves

FM radio waves are also used for commercial radio transmission, but in the frequency range of 88 to 108 MHz. FM stands for
frequency modulation, another method of carrying information. (See Figure 24.13.) Here a carrier wave having the basic
frequency of the radio station, perhaps 105.1 MHz, is modulated in frequency by the audio signal, producing a wave of constant
amplitude but varying frequency.

Figure 24.13 Frequency modulation for FM radio. (a) A carrier wave at the station’s basic frequency. (b) An audio signal at much lower audible
frequencies. (c) The frequency of the carrier is modulated by the audio signal without changing its amplitude.

Since audible frequencies range up to 20 kHz (or 0.020 MHz) at most, the frequency of the FM radio wave can vary from the
carrier by as much as 0.020 MHz. Thus the carrier frequencies of two different radio stations cannot be closer than 0.020 MHz.
An FM receiver is tuned to resonate at the carrier frequency and has circuitry that responds to variations in frequency,
reproducing the audio information.
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FM radio is inherently less subject to noise from stray radio sources than AM radio. The reason is that amplitudes of waves add.
So an AM receiver would interpret noise added onto the amplitude of its carrier wave as part of the information. An FM receiver
can be made to reject amplitudes other than that of the basic carrier wave and only look for variations in frequency. It is thus
easier to reject noise from FM, since noise produces a variation in amplitude.

Television is also broadcast on electromagnetic waves. Since the waves must carry a great deal of visual as well as audio
information, each channel requires a larger range of frequencies than simple radio transmission. TV channels utilize frequencies
in the range of 54 to 88 MHz and 174 to 222 MHz. (The entire FM radio band lies between channels 88 MHz and 174 MHz.)
These TV channels are called VHF (for very high frequency). Other channels called UHF (for ultra high frequency) utilize an
even higher frequency range of 470 to 1000 MHz.

The TV video signal is AM, while the TV audio is FM. Note that these frequencies are those of free transmission with the user
utilizing an old-fashioned roof antenna. Satellite dishes and cable transmission of TV occurs at significantly higher frequencies
and is rapidly evolving with the use of the high-definition or HD format.

Example 24.2 Calculating Wavelengths of Radio Waves

Calculate the wavelengths of a 1530-kHz AM radio signal, a 105.1-MHz FM radio signal, and a 1.90-GHz cell phone signal.

Strategy

The relationship between wavelength and frequency is c = fλ , where c = 3.00×108 m / s is the speed of light (the

speed of light is only very slightly smaller in air than it is in a vacuum). We can rearrange this equation to find the wavelength
for all three frequencies.

Solution

Rearranging gives

(24.7)λ = c
f .

(a) For the f = 1530 kHz AM radio signal, then,

(24.8)
λ = 3.00×108 m/s

1530×103 cycles/s
= 196 m.

(b) For the f = 105.1 MHz FM radio signal,

(24.9)
λ = 3.00×108 m/s

105.1×106 cycles/s
= 2.85 m.

(c) And for the f = 1.90 GHz cell phone,

(24.10)
λ = 3.00×108 m/s

1.90×109 cycles/s
= 0.158 m.

Discussion

These wavelengths are consistent with the spectrum in Figure 24.9. The wavelengths are also related to other properties of
these electromagnetic waves, as we shall see.

The wavelengths found in the preceding example are representative of AM, FM, and cell phones, and account for some of the
differences in how they are broadcast and how well they travel. The most efficient length for a linear antenna, such as discussed
in Production of Electromagnetic Waves, is λ / 2 , half the wavelength of the electromagnetic wave. Thus a very large

antenna is needed to efficiently broadcast typical AM radio with its carrier wavelengths on the order of hundreds of meters.

One benefit to these long AM wavelengths is that they can go over and around rather large obstacles (like buildings and hills),
just as ocean waves can go around large rocks. FM and TV are best received when there is a line of sight between the
broadcast antenna and receiver, and they are often sent from very tall structures. FM, TV, and mobile phone antennas
themselves are much smaller than those used for AM, but they are elevated to achieve an unobstructed line of sight. (See
Figure 24.14.)
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Figure 24.14 (a) A large tower is used to broadcast TV signals. The actual antennas are small structures on top of the tower—they are placed at great
heights to have a clear line of sight over a large broadcast area. (credit: Ozizo, Wikimedia Commons) (b) The NTT Dokomo mobile phone tower at
Tokorozawa City, Japan. (credit: tokoroten, Wikimedia Commons)

Radio Wave Interference

Astronomers and astrophysicists collect signals from outer space using electromagnetic waves. A common problem for
astrophysicists is the “pollution” from electromagnetic radiation pervading our surroundings from communication systems in
general. Even everyday gadgets like our car keys having the facility to lock car doors remotely and being able to turn TVs on and
off using remotes involve radio-wave frequencies. In order to prevent interference between all these electromagnetic signals,
strict regulations are drawn up for different organizations to utilize different radio frequency bands.

One reason why we are sometimes asked to switch off our mobile phones (operating in the range of 1.9 GHz) on airplanes and
in hospitals is that important communications or medical equipment often uses similar radio frequencies and their operation can
be affected by frequencies used in the communication devices.

For example, radio waves used in magnetic resonance imaging (MRI) have frequencies on the order of 100 MHz, although this
varies significantly depending on the strength of the magnetic field used and the nuclear type being scanned. MRI is an important
medical imaging and research tool, producing highly detailed two- and three-dimensional images. Radio waves are broadcast,
absorbed, and reemitted in a resonance process that is sensitive to the density of nuclei (usually protons or hydrogen nuclei).

The wavelength of 100-MHz radio waves is 3 m, yet using the sensitivity of the resonant frequency to the magnetic field strength,
details smaller than a millimeter can be imaged. This is a good example of an exception to a rule of thumb (in this case, the
rubric that details much smaller than the probe’s wavelength cannot be detected). The intensity of the radio waves used in MRI
presents little or no hazard to human health.

Microwaves

Microwaves are the highest-frequency electromagnetic waves that can be produced by currents in macroscopic circuits and

devices. Microwave frequencies range from about 109 Hz to the highest practical LC resonance at nearly 1012 Hz . Since

they have high frequencies, their wavelengths are short compared with those of other radio waves—hence the name
“microwave.”

Microwaves can also be produced by atoms and molecules. They are, for example, a component of electromagnetic radiation
generated by thermal agitation. The thermal motion of atoms and molecules in any object at a temperature above absolute zero
causes them to emit and absorb radiation.

Since it is possible to carry more information per unit time on high frequencies, microwaves are quite suitable for
communications. Most satellite-transmitted information is carried on microwaves, as are land-based long-distance transmissions.
A clear line of sight between transmitter and receiver is needed because of the short wavelengths involved.

Radar is a common application of microwaves that was first developed in World War II. By detecting and timing microwave
echoes, radar systems can determine the distance to objects as diverse as clouds and aircraft. A Doppler shift in the radar echo
can be used to determine the speed of a car or the intensity of a rainstorm. Sophisticated radar systems are used to map the
Earth and other planets, with a resolution limited by wavelength. (See Figure 24.15.) The shorter the wavelength of any probe,
the smaller the detail it is possible to observe.
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Figure 24.15 An image of Sif Mons with lava flows on Venus, based on Magellan synthetic aperture radar data combined with radar altimetry to
produce a three-dimensional map of the surface. The Venusian atmosphere is opaque to visible light, but not to the microwaves that were used to
create this image. (credit: NSSDC, NASA/JPL)

Heating with Microwaves

How does the ubiquitous microwave oven produce microwaves electronically, and why does food absorb them preferentially?
Microwaves at a frequency of 2.45 GHz are produced by accelerating electrons. The microwaves are then used to induce an
alternating electric field in the oven.

Water and some other constituents of food have a slightly negative charge at one end and a slightly positive charge at one end
(called polar molecules). The range of microwave frequencies is specially selected so that the polar molecules, in trying to keep
orienting themselves with the electric field, absorb these energies and increase their temperatures—called dielectric heating.

The energy thereby absorbed results in thermal agitation heating food and not the plate, which does not contain water. Hot spots
in the food are related to constructive and destructive interference patterns. Rotating antennas and food turntables help spread
out the hot spots.

Another use of microwaves for heating is within the human body. Microwaves will penetrate more than shorter wavelengths into
tissue and so can accomplish “deep heating” (called microwave diathermy). This is used for treating muscular pains, spasms,
tendonitis, and rheumatoid arthritis.

Making Connections: Take-Home Experiment—Microwave Ovens
1. Look at the door of a microwave oven. Describe the structure of the door. Why is there a metal grid on the door? How

does the size of the holes in the grid compare with the wavelengths of microwaves used in microwave ovens? What is
this wavelength?

2. Place a glass of water (about 250 ml) in the microwave and heat it for 30 seconds. Measure the temperature gain (the
ΔT ). Assuming that the power output of the oven is 1000 W, calculate the efficiency of the heat-transfer process.

3. Remove the rotating turntable or moving plate and place a cup of water in several places along a line parallel with the
opening. Heat for 30 seconds and measure the ΔT for each position. Do you see cases of destructive interference?

Microwaves generated by atoms and molecules far away in time and space can be received and detected by electronic circuits.
Deep space acts like a blackbody with a 2.7 K temperature, radiating most of its energy in the microwave frequency range. In
1964, Penzias and Wilson detected this radiation and eventually recognized that it was the radiation of the Big Bang’s cooled
remnants.

Infrared Radiation

The microwave and infrared regions of the electromagnetic spectrum overlap (see Figure 24.9). Infrared radiation is generally
produced by thermal motion and the vibration and rotation of atoms and molecules. Electronic transitions in atoms and molecules
can also produce infrared radiation.

The range of infrared frequencies extends up to the lower limit of visible light, just below red. In fact, infrared means “below red.”
Frequencies at its upper limit are too high to be produced by accelerating electrons in circuits, but small systems, such as atoms
and molecules, can vibrate fast enough to produce these waves.

Water molecules rotate and vibrate particularly well at infrared frequencies, emitting and absorbing them so efficiently that the
emissivity for skin is e = 0.97 in the infrared. Night-vision scopes can detect the infrared emitted by various warm objects,

including humans, and convert it to visible light.

We can examine radiant heat transfer from a house by using a camera capable of detecting infrared radiation. Reconnaissance
satellites can detect buildings, vehicles, and even individual humans by their infrared emissions, whose power radiation is
proportional to the fourth power of the absolute temperature. More mundanely, we use infrared lamps, some of which are called
quartz heaters, to preferentially warm us because we absorb infrared better than our surroundings.

The Sun radiates like a nearly perfect blackbody (that is, it has e = 1 ), with a 6000 K surface temperature. About half of the
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solar energy arriving at the Earth is in the infrared region, with most of the rest in the visible part of the spectrum, and a relatively
small amount in the ultraviolet. On average, 50 percent of the incident solar energy is absorbed by the Earth.

The relatively constant temperature of the Earth is a result of the energy balance between the incoming solar radiation and the
energy radiated from the Earth. Most of the infrared radiation emitted from the Earth is absorbed by CO2 and H2 O in the

atmosphere and then radiated back to Earth or into outer space. This radiation back to Earth is known as the greenhouse effect,
and it maintains the surface temperature of the Earth about 40ºC higher than it would be if there is no absorption. Some

scientists think that the increased concentration of CO2 and other greenhouse gases in the atmosphere, resulting from

increases in fossil fuel burning, has increased global average temperatures.

Visible Light

Visible light is the narrow segment of the electromagnetic spectrum to which the normal human eye responds. Visible light is
produced by vibrations and rotations of atoms and molecules, as well as by electronic transitions within atoms and molecules.
The receivers or detectors of light largely utilize electronic transitions. We say the atoms and molecules are excited when they
absorb and relax when they emit through electronic transitions.

Figure 24.16 shows this part of the spectrum, together with the colors associated with particular pure wavelengths. We usually
refer to visible light as having wavelengths of between 400 nm and 750 nm. (The retina of the eye actually responds to the
lowest ultraviolet frequencies, but these do not normally reach the retina because they are absorbed by the cornea and lens of
the eye.)

Red light has the lowest frequencies and longest wavelengths, while violet has the highest frequencies and shortest
wavelengths. Blackbody radiation from the Sun peaks in the visible part of the spectrum but is more intense in the red than in the
violet, making the Sun yellowish in appearance.

Figure 24.16 A small part of the electromagnetic spectrum that includes its visible components. The divisions between infrared, visible, and ultraviolet
are not perfectly distinct, nor are those between the seven rainbow colors.

Living things—plants and animals—have evolved to utilize and respond to parts of the electromagnetic spectrum they are
embedded in. Visible light is the most predominant and we enjoy the beauty of nature through visible light. Plants are more
selective. Photosynthesis makes use of parts of the visible spectrum to make sugars.

Example 24.3 Integrated Concept Problem: Correcting Vision with Lasers

During laser vision correction, a brief burst of 193-nm ultraviolet light is projected onto the cornea of a patient. It makes a
spot 0.80 mm in diameter and evaporates a layer of cornea 0.30 μm thick. Calculate the energy absorbed, assuming the

corneal tissue has the same properties as water; it is initially at 34ºC . Assume the evaporated tissue leaves at a

temperature of 100ºC .

Strategy

The energy from the laser light goes toward raising the temperature of the tissue and also toward evaporating it. Thus we
have two amounts of heat to add together. Also, we need to find the mass of corneal tissue involved.

Solution

To figure out the heat required to raise the temperature of the tissue to 100ºC , we can apply concepts of thermal energy.

We know that

(24.11)Q = mcΔT ,

where Q is the heat required to raise the temperature, ΔT is the desired change in temperature, m is the mass of tissue

to be heated, and c is the specific heat of water equal to 4186 J/kg/K.

Without knowing the mass m at this point, we have

(24.12)Q = m(4186 J/kg/K)(100ºC – 34ºC) = m(276,276 J/kg) = m(276 kJ/kg).

The latent heat of vaporization of water is 2256 kJ/kg, so that the energy needed to evaporate mass m is

(24.13)Qv = mLv = m(2256 kJ/kg).

To find the mass m , we use the equation ρ = m / V , where ρ is the density of the tissue and V is its volume. For this
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case,

(24.14)m = ρV

= (1000 kg/m3)(area×thickness(m3 ))

= (1000 kg/m3)(π(0.80×10 – 3 m)2 / 4)(0.30×10 – 6 m)

= 0.151×10 – 9 kg.

Therefore, the total energy absorbed by the tissue in the eye is the sum of Q and Qv :

(24.15)Qtot = m(cΔT + Lv) = (0.151×10−9 kg)(276 kJ/kg + 2256 kJ/kg) = 382×10−9 kJ.

Discussion

The lasers used for this eye surgery are excimer lasers, whose light is well absorbed by biological tissue. They evaporate
rather than burn the tissue, and can be used for precision work. Most lasers used for this type of eye surgery have an
average power rating of about one watt. For our example, if we assume that each laser burst from this pulsed laser lasts for
10 ns, and there are 400 bursts per second, then the average power is Qtot ×400 = 150 mW .

Optics is the study of the behavior of visible light and other forms of electromagnetic waves. Optics falls into two distinct
categories. When electromagnetic radiation, such as visible light, interacts with objects that are large compared with its
wavelength, its motion can be represented by straight lines like rays. Ray optics is the study of such situations and includes
lenses and mirrors.

When electromagnetic radiation interacts with objects about the same size as the wavelength or smaller, its wave nature
becomes apparent. For example, observable detail is limited by the wavelength, and so visible light can never detect individual
atoms, because they are so much smaller than its wavelength. Physical or wave optics is the study of such situations and
includes all wave characteristics.

Take-Home Experiment: Colors That Match

When you light a match you see largely orange light; when you light a gas stove you see blue light. Why are the colors
different? What other colors are present in these?

Ultraviolet Radiation

Ultraviolet means “above violet.” The electromagnetic frequencies of ultraviolet radiation (UV) extend upward from violet, the
highest-frequency visible light. Ultraviolet is also produced by atomic and molecular motions and electronic transitions. The
wavelengths of ultraviolet extend from 400 nm down to about 10 nm at its highest frequencies, which overlap with the lowest X-
ray frequencies. It was recognized as early as 1801 by Johann Ritter that the solar spectrum had an invisible component beyond
the violet range.

Solar UV radiation is broadly subdivided into three regions: UV-A (320–400 nm), UV-B (290–320 nm), and UV-C (220–290 nm),
ranked from long to shorter wavelengths (from smaller to larger energies). Most UV-B and all UV-C is absorbed by ozone ( O3 )

molecules in the upper atmosphere. Consequently, 99% of the solar UV radiation reaching the Earth’s surface is UV-A.

Human Exposure to UV Radiation

It is largely exposure to UV-B that causes skin cancer. It is estimated that as many as 20% of adults will develop skin cancer over
the course of their lifetime. Again, treatment is often successful if caught early. Despite very little UV-B reaching the Earth’s
surface, there are substantial increases in skin-cancer rates in countries such as Australia, indicating how important it is that UV-
B and UV-C continue to be absorbed by the upper atmosphere.

All UV radiation can damage collagen fibers, resulting in an acceleration of the aging process of skin and the formation of
wrinkles. Because there is so little UV-B and UV-C reaching the Earth’s surface, sunburn is caused by large exposures, and skin
cancer from repeated exposure. Some studies indicate a link between overexposure to the Sun when young and melanoma later
in life.

The tanning response is a defense mechanism in which the body produces pigments to absorb future exposures in inert skin
layers above living cells. Basically UV-B radiation excites DNA molecules, distorting the DNA helix, leading to mutations and the
possible formation of cancerous cells.

Repeated exposure to UV-B may also lead to the formation of cataracts in the eyes—a cause of blindness among people living in
the equatorial belt where medical treatment is limited. Cataracts, clouding in the eye’s lens and a loss of vision, are age related;
60% of those between the ages of 65 and 74 will develop cataracts. However, treatment is easy and successful, as one replaces
the lens of the eye with a plastic lens. Prevention is important. Eye protection from UV is more effective with plastic sunglasses
than those made of glass.

A major acute effect of extreme UV exposure is the suppression of the immune system, both locally and throughout the body.
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Low-intensity ultraviolet is used to sterilize haircutting implements, implying that the energy associated with ultraviolet is
deposited in a manner different from lower-frequency electromagnetic waves. (Actually this is true for all electromagnetic waves
with frequencies greater than visible light.)

Flash photography is generally not allowed of precious artworks and colored prints because the UV radiation from the flash can
cause photo-degradation in the artworks. Often artworks will have an extra-thick layer of glass in front of them, which is
especially designed to absorb UV radiation.

UV Light and the Ozone Layer

If all of the Sun’s ultraviolet radiation reached the Earth’s surface, there would be extremely grave effects on the biosphere from
the severe cell damage it causes. However, the layer of ozone ( O3 ) in our upper atmosphere (10 to 50 km above the Earth)

protects life by absorbing most of the dangerous UV radiation.

Unfortunately, today we are observing a depletion in ozone concentrations in the upper atmosphere. This depletion has led to the
formation of an “ozone hole” in the upper atmosphere. The hole is more centered over the southern hemisphere, and changes
with the seasons, being largest in the spring. This depletion is attributed to the breakdown of ozone molecules by refrigerant
gases called chlorofluorocarbons (CFCs).

The UV radiation helps dissociate the CFC’s, releasing highly reactive chlorine (Cl) atoms, which catalyze the destruction of the
ozone layer. For example, the reaction of CFCl3 with a photon of light (hv) can be written as:

(24.16)CFCl3 + hv → CFCl2 + Cl.

The Cl atom then catalyzes the breakdown of ozone as follows:

(24.17)Cl + O3 → ClO + O2 and ClO + O3 → Cl + 2O2.

A single chlorine atom could destroy ozone molecules for up to two years before being transported down to the surface. The
CFCs are relatively stable and will contribute to ozone depletion for years to come. CFCs are found in refrigerants, air
conditioning systems, foams, and aerosols.

International concern over this problem led to the establishment of the “Montreal Protocol” agreement (1987) to phase out CFC
production in most countries. However, developing-country participation is needed if worldwide production and elimination of
CFCs is to be achieved. Probably the largest contributor to CFC emissions today is India. But the protocol seems to be working,
as there are signs of an ozone recovery. (See Figure 24.17.)

Figure 24.17 This map of ozone concentration over Antarctica in October 2011 shows severe depletion suspected to be caused by CFCs. Less
dramatic but more general depletion has been observed over northern latitudes, suggesting the effect is global. With less ozone, more ultraviolet
radiation from the Sun reaches the surface, causing more damage. (credit: NASA Ozone Watch)

Benefits of UV Light

Besides the adverse effects of ultraviolet radiation, there are also benefits of exposure in nature and uses in technology. Vitamin
D production in the skin (epidermis) results from exposure to UVB radiation, generally from sunlight. A number of studies indicate
lack of vitamin D can result in the development of a range of cancers (prostate, breast, colon), so a certain amount of UV
exposure is helpful. Lack of vitamin D is also linked to osteoporosis. Exposures (with no sunscreen) of 10 minutes a day to arms,
face, and legs might be sufficient to provide the accepted dietary level. However, in the winter time north of about 37º latitude,

most UVB gets blocked by the atmosphere.

UV radiation is used in the treatment of infantile jaundice and in some skin conditions. It is also used in sterilizing workspaces
and tools, and killing germs in a wide range of applications. It is also used as an analytical tool to identify substances.

When exposed to ultraviolet, some substances, such as minerals, glow in characteristic visible wavelengths, a process called
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fluorescence. So-called black lights emit ultraviolet to cause posters and clothing to fluoresce in the visible. Ultraviolet is also
used in special microscopes to detect details smaller than those observable with longer-wavelength visible-light microscopes.

Things Great and Small: A Submicroscopic View of X-Ray Production

X-rays can be created in a high-voltage discharge. They are emitted in the material struck by electrons in the discharge
current. There are two mechanisms by which the electrons create X-rays.

The first method is illustrated in Figure 24.18. An electron is accelerated in an evacuated tube by a high positive voltage.
The electron strikes a metal plate (e.g., copper) and produces X-rays. Since this is a high-voltage discharge, the electron
gains sufficient energy to ionize the atom.

Figure 24.18 Artist’s conception of an electron ionizing an atom followed by the recapture of an electron and emission of an X-ray. An energetic
electron strikes an atom and knocks an electron out of one of the orbits closest to the nucleus. Later, the atom captures another electron, and the
energy released by its fall into a low orbit generates a high-energy EM wave called an X-ray.

In the case shown, an inner-shell electron (one in an orbit relatively close to and tightly bound to the nucleus) is ejected. A
short time later, another electron is captured and falls into the orbit in a single great plunge. The energy released by this fall
is given to an EM wave known as an X-ray. Since the orbits of the atom are unique to the type of atom, the energy of the X-
ray is characteristic of the atom, hence the name characteristic X-ray.

The second method by which an energetic electron creates an X-ray when it strikes a material is illustrated in Figure 24.19.
The electron interacts with charges in the material as it penetrates. These collisions transfer kinetic energy from the electron
to the electrons and atoms in the material.

Figure 24.19 Artist’s conception of an electron being slowed by collisions in a material and emitting X-ray radiation. This energetic electron makes
numerous collisions with electrons and atoms in a material it penetrates. An accelerated charge radiates EM waves, a second method by which
X-rays are created.

A loss of kinetic energy implies an acceleration, in this case decreasing the electron’s velocity. Whenever a charge is
accelerated, it radiates EM waves. Given the high energy of the electron, these EM waves can have high energy. We call
them X-rays. Since the process is random, a broad spectrum of X-ray energy is emitted that is more characteristic of the
electron energy than the type of material the electron encounters. Such EM radiation is called “bremsstrahlung” (German for
“braking radiation”).
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X-Rays

In the 1850s, scientists (such as Faraday) began experimenting with high-voltage electrical discharges in tubes filled with
rarefied gases. It was later found that these discharges created an invisible, penetrating form of very high frequency
electromagnetic radiation. This radiation was called an X-ray, because its identity and nature were unknown.

As described in Things Great and Small, there are two methods by which X-rays are created—both are submicroscopic
processes and can be caused by high-voltage discharges. While the low-frequency end of the X-ray range overlaps with the
ultraviolet, X-rays extend to much higher frequencies (and energies).

X-rays have adverse effects on living cells similar to those of ultraviolet radiation, and they have the additional liability of being
more penetrating, affecting more than the surface layers of cells. Cancer and genetic defects can be induced by exposure to X-
rays. Because of their effect on rapidly dividing cells, X-rays can also be used to treat and even cure cancer.

The widest use of X-rays is for imaging objects that are opaque to visible light, such as the human body or aircraft parts. In
humans, the risk of cell damage is weighed carefully against the benefit of the diagnostic information obtained. However,
questions have risen in recent years as to accidental overexposure of some people during CT scans—a mistake at least in part
due to poor monitoring of radiation dose.

The ability of X-rays to penetrate matter depends on density, and so an X-ray image can reveal very detailed density information.
Figure 24.20 shows an example of the simplest type of X-ray image, an X-ray shadow on film. The amount of information in a
simple X-ray image is impressive, but more sophisticated techniques, such as CT scans, can reveal three-dimensional
information with details smaller than a millimeter.

Figure 24.20 This shadow X-ray image shows many interesting features, such as artificial heart valves, a pacemaker, and the wires used to close the
sternum. (credit: P. P. Urone)

The use of X-ray technology in medicine is called radiology—an established and relatively cheap tool in comparison to more
sophisticated technologies. Consequently, X-rays are widely available and used extensively in medical diagnostics. During World
War I, mobile X-ray units, advocated by Madame Marie Curie, were used to diagnose soldiers.

Because they can have wavelengths less than 0.01 nm, X-rays can be scattered (a process called X-ray diffraction) to detect the
shape of molecules and the structure of crystals. X-ray diffraction was crucial to Crick, Watson, and Wilkins in the determination
of the shape of the double-helix DNA molecule.

X-rays are also used as a precise tool for trace-metal analysis in X-ray induced fluorescence, in which the energy of the X-ray
emissions are related to the specific types of elements and amounts of materials present.

Gamma Rays

Soon after nuclear radioactivity was first detected in 1896, it was found that at least three distinct types of radiation were being
emitted. The most penetrating nuclear radiation was called a gamma ray ( γ ray) (again a name given because its identity and

character were unknown), and it was later found to be an extremely high frequency electromagnetic wave.

In fact, γ rays are any electromagnetic radiation emitted by a nucleus. This can be from natural nuclear decay or induced

nuclear processes in nuclear reactors and weapons. The lower end of the γ-ray frequency range overlaps the upper end of the

X-ray range, but γ rays can have the highest frequency of any electromagnetic radiation.

Gamma rays have characteristics identical to X-rays of the same frequency—they differ only in source. At higher frequencies, γ
rays are more penetrating and more damaging to living tissue. They have many of the same uses as X-rays, including cancer
therapy. Gamma radiation from radioactive materials is used in nuclear medicine.

Figure 24.21 shows a medical image based on γ rays. Food spoilage can be greatly inhibited by exposing it to large doses of

γ radiation, thereby obliterating responsible microorganisms. Damage to food cells through irradiation occurs as well, and the

long-term hazards of consuming radiation-preserved food are unknown and controversial for some groups. Both X-ray and
γ-ray technologies are also used in scanning luggage at airports.
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Figure 24.21 This is an image of the γ rays emitted by nuclei in a compound that is concentrated in the bones and eliminated through the kidneys.

Bone cancer is evidenced by nonuniform concentration in similar structures. For example, some ribs are darker than others. (credit: P. P. Urone)

Detecting Electromagnetic Waves from Space

A final note on star gazing. The entire electromagnetic spectrum is used by researchers for investigating stars, space, and time.
As noted earlier, Penzias and Wilson detected microwaves to identify the background radiation originating from the Big Bang.
Radio telescopes such as the Arecibo Radio Telescope in Puerto Rico and Parkes Observatory in Australia were designed to
detect radio waves.

Infrared telescopes need to have their detectors cooled by liquid nitrogen to be able to gather useful signals. Since infrared
radiation is predominantly from thermal agitation, if the detectors were not cooled, the vibrations of the molecules in the antenna
would be stronger than the signal being collected.

The most famous of these infrared sensitive telescopes is the James Clerk Maxwell Telescope in Hawaii. The earliest
telescopes, developed in the seventeenth century, were optical telescopes, collecting visible light. Telescopes in the ultraviolet,
X-ray, and γ -ray regions are placed outside the atmosphere on satellites orbiting the Earth.

The Hubble Space Telescope (launched in 1990) gathers ultraviolet radiation as well as visible light. In the X-ray region, there is
the Chandra X-ray Observatory (launched in 1999), and in the γ -ray region, there is the new Fermi Gamma-ray Space

Telescope (launched in 2008—taking the place of the Compton Gamma Ray Observatory, 1991–2000.).

PhET Explorations: Color Vision

Make a whole rainbow by mixing red, green, and blue light. Change the wavelength of a monochromatic beam or filter white
light. View the light as a solid beam, or see the individual photons.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42444/
1.9/#Phet_module_25.3)

Figure 24.22
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24.4 Energy in Electromagnetic Waves

Anyone who has used a microwave oven knows there is energy in electromagnetic waves. Sometimes this energy is obvious,
such as in the warmth of the summer sun. Other times it is subtle, such as the unfelt energy of gamma rays, which can destroy
living cells.

Electromagnetic waves can bring energy into a system by virtue of their electric and magnetic fields. These fields can exert
forces and move charges in the system and, thus, do work on them. If the frequency of the electromagnetic wave is the same as
the natural frequencies of the system (such as microwaves at the resonant frequency of water molecules), the transfer of energy
is much more efficient.

Connections: Waves and Particles

The behavior of electromagnetic radiation clearly exhibits wave characteristics. But we shall find in later modules that at high
frequencies, electromagnetic radiation also exhibits particle characteristics. These particle characteristics will be used to
explain more of the properties of the electromagnetic spectrum and to introduce the formal study of modern physics.

Another startling discovery of modern physics is that particles, such as electrons and protons, exhibit wave characteristics.
This simultaneous sharing of wave and particle properties for all submicroscopic entities is one of the great symmetries in
nature.

Figure 24.23 Energy carried by a wave is proportional to its amplitude squared. With electromagnetic waves, larger E -fields and B -fields exert

larger forces and can do more work.

But there is energy in an electromagnetic wave, whether it is absorbed or not. Once created, the fields carry energy away from a
source. If absorbed, the field strengths are diminished and anything left travels on. Clearly, the larger the strength of the electric
and magnetic fields, the more work they can do and the greater the energy the electromagnetic wave carries.

A wave’s energy is proportional to its amplitude squared ( E2 or B2 ). This is true for waves on guitar strings, for water waves,

and for sound waves, where amplitude is proportional to pressure. In electromagnetic waves, the amplitude is the maximum
field strength of the electric and magnetic fields. (See Figure 24.23.)

Thus the energy carried and the intensity I of an electromagnetic wave is proportional to E2 and B2 . In fact, for a continuous

sinusoidal electromagnetic wave, the average intensity Iave is given by

(24.18)
Iave =

cε0 E0
2

2 ,

where c is the speed of light, ε0 is the permittivity of free space, and E0 is the maximum electric field strength; intensity, as

always, is power per unit area (here in W/m2 ).

The average intensity of an electromagnetic wave Iave can also be expressed in terms of the magnetic field strength by using

the relationship B = E / c , and the fact that ε0 = 1 / μ0c2 , where μ0 is the permeability of free space. Algebraic

manipulation produces the relationship

(24.19)
Iave =

cB0
2

2μ0
,

where B0 is the maximum magnetic field strength.

One more expression for Iave in terms of both electric and magnetic field strengths is useful. Substituting the fact that

c ⋅ B0 = E0 , the previous expression becomes
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amplitude:

(24.20)
Iave = E0 B0

2μ0
.

Whichever of the three preceding equations is most convenient can be used, since they are really just different versions of the
same principle: Energy in a wave is related to amplitude squared. Furthermore, since these equations are based on the
assumption that the electromagnetic waves are sinusoidal, peak intensity is twice the average; that is, I0 = 2Iave .

Example 24.4 Calculate Microwave Intensities and Fields

On its highest power setting, a certain microwave oven projects 1.00 kW of microwaves onto a 30.0 by 40.0 cm area. (a)

What is the intensity in W/m2 ? (b) Calculate the peak electric field strength E0 in these waves. (c) What is the peak

magnetic field strength B0 ?

Strategy

In part (a), we can find intensity from its definition as power per unit area. Once the intensity is known, we can use the
equations below to find the field strengths asked for in parts (b) and (c).

Solution for (a)

Entering the given power into the definition of intensity, and noting the area is 0.300 by 0.400 m, yields

(24.21)I = P
A = 1.00 kW

0.300 m × 0.400 m.

Here I = Iave , so that

(24.22)Iave = 1000 W
0.120 m2 = 8.33×103 W/m2.

Note that the peak intensity is twice the average:

(24.23)I0 = 2Iave = 1.67×104 W / m2.

Solution for (b)

To find E0 , we can rearrange the first equation given above for Iave to give

(24.24)

E0 = ⎛⎝
2Iave
cε0
⎞
⎠

1/2
.

Entering known values gives

(24.25)
E0 = 2(8.33×103 W/m2)

(3.00×108 m/s)(8.85×10 – 12 C2 / N ⋅ m2)
= 2.51×103 V/m.

Solution for (c)

Perhaps the easiest way to find magnetic field strength, now that the electric field strength is known, is to use the
relationship given by

(24.26)
B0 = E0

c .

Entering known values gives

(24.27)
B0 = 2.51×103 V/m

3.0×108 m/s
= 8.35×10−6 T.

Discussion

As before, a relatively strong electric field is accompanied by a relatively weak magnetic field in an electromagnetic wave,
since B = E / c , and c is a large number.

Glossary

the height, or magnitude, of an electromagnetic wave
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amplitude modulation (AM):

carrier wave:

electric field:

electric field lines:

electric field strength:

electromagnetic spectrum:

electromagnetic waves:

electromotive force (emf):

extremely low frequency (ELF):

frequency:

frequency modulation (FM):

gamma ray:

hertz:

infrared radiation (IR):

intensity:

magnetic field:

magnetic field lines:

magnetic field strength:

maximum field strength:

Maxwell’s equations:

microwaves:

oscillate:

radar:

radio waves:

resonant:

RLC circuit:

speed of light:

standing wave:

a method for placing information on electromagnetic waves by modulating the amplitude of a
carrier wave with an audio signal, resulting in a wave with constant frequency but varying amplitude

an electromagnetic wave that carries a signal by modulation of its amplitude or frequency

a vector quantity (E); the lines of electric force per unit charge, moving radially outward from a positive charge
and in toward a negative charge

a pattern of imaginary lines that extend between an electric source and charged objects in the
surrounding area, with arrows pointed away from positively charged objects and toward negatively charged objects. The
more lines in the pattern, the stronger the electric field in that region

the magnitude of the electric field, denoted E-field

the full range of wavelengths or frequencies of electromagnetic radiation

radiation in the form of waves of electric and magnetic energy

energy produced per unit charge, drawn from a source that produces an electrical current

electromagnetic radiation with wavelengths usually in the range of 0 to 300 Hz, but also
about 1kHz

the number of complete wave cycles (up-down-up) passing a given point within one second (cycles/second)

a method of placing information on electromagnetic waves by modulating the frequency of a
carrier wave with an audio signal, producing a wave of constant amplitude but varying frequency

( γ ray); extremely high frequency electromagnetic radiation emitted by the nucleus of an atom, either from

natural nuclear decay or induced nuclear processes in nuclear reactors and weapons. The lower end of the γ -ray

frequency range overlaps the upper end of the X-ray range, but γ rays can have the highest frequency of any

electromagnetic radiation

an SI unit denoting the frequency of an electromagnetic wave, in cycles per second

a region of the electromagnetic spectrum with a frequency range that extends from just below the red
region of the visible light spectrum up to the microwave region, or from 0.74 μm to 300 μm

the power of an electric or magnetic field per unit area, for example, Watts per square meter

a vector quantity (B); can be used to determine the magnetic force on a moving charged particle

a pattern of continuous, imaginary lines that emerge from and enter into opposite magnetic poles. The
density of the lines indicates the magnitude of the magnetic field

the magnitude of the magnetic field, denoted B-field

the maximum amplitude an electromagnetic wave can reach, representing the maximum amount of
electric force and/or magnetic flux that the wave can exert

a set of four equations that comprise a complete, overarching theory of electromagnetism

electromagnetic waves with wavelengths in the range from 1 mm to 1 m; they can be produced by currents in
macroscopic circuits and devices

to fluctuate back and forth in a steady beat

a common application of microwaves. Radar can determine the distance to objects as diverse as clouds and aircraft,
as well as determine the speed of a car or the intensity of a rainstorm

electromagnetic waves with wavelengths in the range from 1 mm to 100 km; they are produced by currents in
wires and circuits and by astronomical phenomena

a system that displays enhanced oscillation when subjected to a periodic disturbance of the same frequency as its
natural frequency

an electric circuit that includes a resistor, capacitor and inductor

in a vacuum, such as space, the speed of light is a constant 3 x 108 m/s

a wave that oscillates in place, with nodes where no motion happens

972 Chapter 24 | Electromagnetic Waves

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



thermal agitation:

transverse wave:

TV:

ultra-high frequency (UHF):

ultraviolet radiation (UV):

very high frequency (VHF):

visible light:

wavelength:

X-ray:

the thermal motion of atoms and molecules in any object at a temperature above absolute zero, which
causes them to emit and absorb radiation

a wave, such as an electromagnetic wave, which oscillates perpendicular to the axis along the line of travel

video and audio signals broadcast on electromagnetic waves

TV channels in an even higher frequency range than VHF, of 470 to 1000 MHz

electromagnetic radiation in the range extending upward in frequency from violet light and
overlapping with the lowest X-ray frequencies, with wavelengths from 400 nm down to about 10 nm

TV channels utilizing frequencies in the two ranges of 54 to 88 MHz and 174 to 222 MHz

the narrow segment of the electromagnetic spectrum to which the normal human eye responds

the distance from one peak to the next in a wave

invisible, penetrating form of very high frequency electromagnetic radiation, overlapping both the ultraviolet range and
the γ -ray range

Section Summary

24.1 Maxwell’s Equations: Electromagnetic Waves Predicted and Observed
• Electromagnetic waves consist of oscillating electric and magnetic fields and propagate at the speed of light c . They were

predicted by Maxwell, who also showed that

c = 1
μ0 ε0

,

where μ0 is the permeability of free space and ε0 is the permittivity of free space.

• Maxwell’s prediction of electromagnetic waves resulted from his formulation of a complete and symmetric theory of
electricity and magnetism, known as Maxwell’s equations.

• These four equations are paraphrased in this text, rather than presented numerically, and encompass the major laws of
electricity and magnetism. First is Gauss’s law for electricity, second is Gauss’s law for magnetism, third is Faraday’s law of
induction, including Lenz’s law, and fourth is Ampere’s law in a symmetric formulation that adds another source of
magnetism—changing electric fields.

24.2 Production of Electromagnetic Waves
• Electromagnetic waves are created by oscillating charges (which radiate whenever accelerated) and have the same

frequency as the oscillation.
• Since the electric and magnetic fields in most electromagnetic waves are perpendicular to the direction in which the wave

moves, it is ordinarily a transverse wave.
• The strengths of the electric and magnetic parts of the wave are related by

E
B = c,

which implies that the magnetic field B is very weak relative to the electric field E .

24.3 The Electromagnetic Spectrum
• The relationship among the speed of propagation, wavelength, and frequency for any wave is given by vW = fλ , so that

for electromagnetic waves,

c = fλ,
where f is the frequency, λ is the wavelength, and c is the speed of light.

• The electromagnetic spectrum is separated into many categories and subcategories, based on the frequency and
wavelength, source, and uses of the electromagnetic waves.

• Any electromagnetic wave produced by currents in wires is classified as a radio wave, the lowest frequency
electromagnetic waves. Radio waves are divided into many types, depending on their applications, ranging up to
microwaves at their highest frequencies.

• Infrared radiation lies below visible light in frequency and is produced by thermal motion and the vibration and rotation of
atoms and molecules. Infrared’s lower frequencies overlap with the highest-frequency microwaves.

• Visible light is largely produced by electronic transitions in atoms and molecules, and is defined as being detectable by the
human eye. Its colors vary with frequency, from red at the lowest to violet at the highest.

• Ultraviolet radiation starts with frequencies just above violet in the visible range and is produced primarily by electronic
transitions in atoms and molecules.

• X-rays are created in high-voltage discharges and by electron bombardment of metal targets. Their lowest frequencies

Chapter 24 | Electromagnetic Waves 973



overlap the ultraviolet range but extend to much higher values, overlapping at the high end with gamma rays.
• Gamma rays are nuclear in origin and are defined to include the highest-frequency electromagnetic radiation of any type.

24.4 Energy in Electromagnetic Waves
• The energy carried by any wave is proportional to its amplitude squared. For electromagnetic waves, this means intensity

can be expressed as

Iave =
cε0 E0

2

2 ,

where Iave is the average intensity in W/m2 , and E0 is the maximum electric field strength of a continuous sinusoidal

wave.
• This can also be expressed in terms of the maximum magnetic field strength B0 as

Iave =
cB0

2

2μ0
and in terms of both electric and magnetic fields as

Iave = E0 B0
2μ0

.

• The three expressions for Iave are all equivalent.

Conceptual Questions

24.2 Production of Electromagnetic Waves

1. The direction of the electric field shown in each part of Figure 24.5 is that produced by the charge distribution in the wire.
Justify the direction shown in each part, using the Coulomb force law and the definition of E = F / q , where q is a positive test

charge.

2. Is the direction of the magnetic field shown in Figure 24.6 (a) consistent with the right-hand rule for current (RHR-2) in the
direction shown in the figure?

3. Why is the direction of the current shown in each part of Figure 24.6 opposite to the electric field produced by the wire’s
charge separation?

4. In which situation shown in Figure 24.24 will the electromagnetic wave be more successful in inducing a current in the wire?
Explain.

Figure 24.24 Electromagnetic waves approaching long straight wires.

5. In which situation shown in Figure 24.25 will the electromagnetic wave be more successful in inducing a current in the loop?
Explain.

Figure 24.25 Electromagnetic waves approaching a wire loop.
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6. Should the straight wire antenna of a radio be vertical or horizontal to best receive radio waves broadcast by a vertical
transmitter antenna? How should a loop antenna be aligned to best receive the signals? (Note that the direction of the loop that
produces the best reception can be used to determine the location of the source. It is used for that purpose in tracking tagged
animals in nature studies, for example.)

7. Under what conditions might wires in a DC circuit emit electromagnetic waves?

8. Give an example of interference of electromagnetic waves.

9. Figure 24.26 shows the interference pattern of two radio antennas broadcasting the same signal. Explain how this is
analogous to the interference pattern for sound produced by two speakers. Could this be used to make a directional antenna
system that broadcasts preferentially in certain directions? Explain.

Figure 24.26 An overhead view of two radio broadcast antennas sending the same signal, and the interference pattern they produce.

10. Can an antenna be any length? Explain your answer.

24.3 The Electromagnetic Spectrum

11. If you live in a region that has a particular TV station, you can sometimes pick up some of its audio portion on your FM radio
receiver. Explain how this is possible. Does it imply that TV audio is broadcast as FM?

12. Explain why people who have the lens of their eye removed because of cataracts are able to see low-frequency ultraviolet.

13. How do fluorescent soap residues make clothing look “brighter and whiter” in outdoor light? Would this be effective in
candlelight?

14. Give an example of resonance in the reception of electromagnetic waves.

15. Illustrate that the size of details of an object that can be detected with electromagnetic waves is related to their wavelength,
by comparing details observable with two different types (for example, radar and visible light or infrared and X-rays).

16. Why don’t buildings block radio waves as completely as they do visible light?

17. Make a list of some everyday objects and decide whether they are transparent or opaque to each of the types of
electromagnetic waves.

18. Your friend says that more patterns and colors can be seen on the wings of birds if viewed in ultraviolet light. Would you
agree with your friend? Explain your answer.

19. The rate at which information can be transmitted on an electromagnetic wave is proportional to the frequency of the wave. Is
this consistent with the fact that laser telephone transmission at visible frequencies carries far more conversations per optical
fiber than conventional electronic transmission in a wire? What is the implication for ELF radio communication with submarines?

20. Give an example of energy carried by an electromagnetic wave.

21. In an MRI scan, a higher magnetic field requires higher frequency radio waves to resonate with the nuclear type whose
density and location is being imaged. What effect does going to a larger magnetic field have on the most efficient antenna to
broadcast those radio waves? Does it favor a smaller or larger antenna?

22. Laser vision correction often uses an excimer laser that produces 193-nm electromagnetic radiation. This wavelength is
extremely strongly absorbed by the cornea and ablates it in a manner that reshapes the cornea to correct vision defects. Explain
how the strong absorption helps concentrate the energy in a thin layer and thus give greater accuracy in shaping the cornea.
Also explain how this strong absorption limits damage to the lens and retina of the eye.
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Problems & Exercises

24.1 Maxwell’s Equations: Electromagnetic
Waves Predicted and Observed

1. Verify that the correct value for the speed of light c is

obtained when numerical values for the permeability and
permittivity of free space ( μ0 and ε0 ) are entered into the

equation c = 1
μ0 ε0

.

2. Show that, when SI units for μ0 and ε0 are entered, the

units given by the right-hand side of the equation in the
problem above are m/s.

24.2 Production of Electromagnetic Waves

3. What is the maximum electric field strength in an
electromagnetic wave that has a maximum magnetic field

strength of 5.00×10−4 T (about 10 times the Earth’s)?

4. The maximum magnetic field strength of an

electromagnetic field is 5×10−6 T . Calculate the maximum

electric field strength if the wave is traveling in a medium in
which the speed of the wave is 0.75c .

5. Verify the units obtained for magnetic field strength B in

Example 24.1 (using the equation B = E
c ) are in fact teslas

(T).

24.3 The Electromagnetic Spectrum

6. (a) Two microwave frequencies are authorized for use in
microwave ovens: 900 and 2560 MHz. Calculate the
wavelength of each. (b) Which frequency would produce
smaller hot spots in foods due to interference effects?

7. (a) Calculate the range of wavelengths for AM radio given
its frequency range is 540 to 1600 kHz. (b) Do the same for
the FM frequency range of 88.0 to 108 MHz.

8. A radio station utilizes frequencies between commercial
AM and FM. What is the frequency of a 11.12-m-wavelength
channel?

9. Find the frequency range of visible light, given that it
encompasses wavelengths from 380 to 760 nm.

10. Combing your hair leads to excess electrons on the comb.
How fast would you have to move the comb up and down to
produce red light?

11. Electromagnetic radiation having a 15.0 − μm
wavelength is classified as infrared radiation. What is its
frequency?

12. Approximately what is the smallest detail observable with
a microscope that uses ultraviolet light of frequency

1.20×1015 Hz ?

13. A radar used to detect the presence of aircraft receives a

pulse that has reflected off an object 6×10−5 s after it was

transmitted. What is the distance from the radar station to the
reflecting object?

14. Some radar systems detect the size and shape of objects
such as aircraft and geological terrain. Approximately what is
the smallest observable detail utilizing 500-MHz radar?

15. Determine the amount of time it takes for X-rays of

frequency 3×1018 Hz to travel (a) 1 mm and (b) 1 cm.

16. If you wish to detect details of the size of atoms (about

1×10−10 m ) with electromagnetic radiation, it must have a

wavelength of about this size. (a) What is its frequency? (b)
What type of electromagnetic radiation might this be?

17. If the Sun suddenly turned off, we would not know it until
its light stopped coming. How long would that be, given that

the Sun is 1.50×1011 m away?

18. Distances in space are often quoted in units of light years,
the distance light travels in one year. (a) How many meters is
a light year? (b) How many meters is it to Andromeda, the

nearest large galaxy, given that it is 2.00×106 light years

away? (c) The most distant galaxy yet discovered is

12.0×109 light years away. How far is this in meters?

19. A certain 50.0-Hz AC power line radiates an
electromagnetic wave having a maximum electric field
strength of 13.0 kV/m. (a) What is the wavelength of this very
low frequency electromagnetic wave? (b) What is its
maximum magnetic field strength?

20. During normal beating, the heart creates a maximum
4.00-mV potential across 0.300 m of a person’s chest,
creating a 1.00-Hz electromagnetic wave. (a) What is the
maximum electric field strength created? (b) What is the
corresponding maximum magnetic field strength in the
electromagnetic wave? (c) What is the wavelength of the
electromagnetic wave?

21. (a) The ideal size (most efficient) for a broadcast antenna
with one end on the ground is one-fourth the wavelength (
λ / 4 ) of the electromagnetic radiation being sent out. If a

new radio station has such an antenna that is 50.0 m high,
what frequency does it broadcast most efficiently? Is this in
the AM or FM band? (b) Discuss the analogy of the
fundamental resonant mode of an air column closed at one
end to the resonance of currents on an antenna that is one-
fourth their wavelength.

22. (a) What is the wavelength of 100-MHz radio waves used
in an MRI unit? (b) If the frequencies are swept over a
±1.00 range centered on 100 MHz, what is the range of

wavelengths broadcast?

23. (a) What is the frequency of the 193-nm ultraviolet
radiation used in laser eye surgery? (b) Assuming the
accuracy with which this EM radiation can ablate the cornea
is directly proportional to wavelength, how much more
accurate can this UV be than the shortest visible wavelength
of light?
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24. TV-reception antennas for VHF are constructed with cross
wires supported at their centers, as shown in Figure 24.27.
The ideal length for the cross wires is one-half the wavelength
to be received, with the more expensive antennas having one
for each channel. Suppose you measure the lengths of the
wires for particular channels and find them to be 1.94 and
0.753 m long, respectively. What are the frequencies for
these channels?

Figure 24.27 A television reception antenna has cross wires of various

lengths to most efficiently receive different wavelengths.

25. Conversations with astronauts on lunar walks had an
echo that was used to estimate the distance to the Moon. The
sound spoken by the person on Earth was transformed into a
radio signal sent to the Moon, and transformed back into
sound on a speaker inside the astronaut’s space suit. This
sound was picked up by the microphone in the space suit
(intended for the astronaut’s voice) and sent back to Earth as
a radio echo of sorts. If the round-trip time was 2.60 s, what
was the approximate distance to the Moon, neglecting any
delays in the electronics?

26. Lunar astronauts placed a reflector on the Moon’s
surface, off which a laser beam is periodically reflected. The
distance to the Moon is calculated from the round-trip time.
(a) To what accuracy in meters can the distance to the Moon
be determined, if this time can be measured to 0.100 ns? (b)
What percent accuracy is this, given the average distance to

the Moon is 3.84×108 m ?

27. Radar is used to determine distances to various objects
by measuring the round-trip time for an echo from the object.
(a) How far away is the planet Venus if the echo time is 1000
s? (b) What is the echo time for a car 75.0 m from a Highway
Police radar unit? (c) How accurately (in nanoseconds) must
you be able to measure the echo time to an airplane 12.0 km
away to determine its distance within 10.0 m?

28. Integrated Concepts

(a) Calculate the ratio of the highest to lowest frequencies of
electromagnetic waves the eye can see, given the
wavelength range of visible light is from 380 to 760 nm. (b)
Compare this with the ratio of highest to lowest frequencies
the ear can hear.

29. Integrated Concepts

(a) Calculate the rate in watts at which heat transfer through

radiation occurs (almost entirely in the infrared) from 1.0 m2

of the Earth’s surface at night. Assume the emissivity is 0.90,
the temperature of the Earth is 15ºC , and that of outer

space is 2.7 K. (b) Compare the intensity of this radiation with
that coming to the Earth from the Sun during the day, which

averages about 800 W/m2 , only half of which is absorbed.

(c) What is the maximum magnetic field strength in the
outgoing radiation, assuming it is a continuous wave?

24.4 Energy in Electromagnetic Waves

30. What is the intensity of an electromagnetic wave with a
peak electric field strength of 125 V/m?

31. Find the intensity of an electromagnetic wave having a

peak magnetic field strength of 4.00×10−9 T .

32. Assume the helium-neon lasers commonly used in
student physics laboratories have power outputs of 0.250
mW. (a) If such a laser beam is projected onto a circular spot
1.00 mm in diameter, what is its intensity? (b) Find the peak
magnetic field strength. (c) Find the peak electric field
strength.

33. An AM radio transmitter broadcasts 50.0 kW of power
uniformly in all directions. (a) Assuming all of the radio waves
that strike the ground are completely absorbed, and that there
is no absorption by the atmosphere or other objects, what is
the intensity 30.0 km away? (Hint: Half the power will be
spread over the area of a hemisphere.) (b) What is the
maximum electric field strength at this distance?

34. Suppose the maximum safe intensity of microwaves for

human exposure is taken to be 1.00 W/m2 . (a) If a radar

unit leaks 10.0 W of microwaves (other than those sent by its
antenna) uniformly in all directions, how far away must you be
to be exposed to an intensity considered to be safe? Assume
that the power spreads uniformly over the area of a sphere
with no complications from absorption or reflection. (b) What
is the maximum electric field strength at the safe intensity?
(Note that early radar units leaked more than modern ones
do. This caused identifiable health problems, such as
cataracts, for people who worked near them.)
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35. A 2.50-m-diameter university communications satellite
dish receives TV signals that have a maximum electric field
strength (for one channel) of 7.50 μV/m . (See Figure

24.28.) (a) What is the intensity of this wave? (b) What is the
power received by the antenna? (c) If the orbiting satellite

broadcasts uniformly over an area of 1.50×1013 m2 (a

large fraction of North America), how much power does it
radiate?

Figure 24.28 Satellite dishes receive TV signals sent from orbit.

Although the signals are quite weak, the receiver can detect them by

being tuned to resonate at their frequency.

36. Lasers can be constructed that produce an extremely high
intensity electromagnetic wave for a brief time—called pulsed
lasers. They are used to ignite nuclear fusion, for example.
Such a laser may produce an electromagnetic wave with a

maximum electric field strength of 1.00×1011 V / m for a

time of 1.00 ns. (a) What is the maximum magnetic field
strength in the wave? (b) What is the intensity of the beam?

(c) What energy does it deliver on a 1.00-mm2 area?

37. Show that for a continuous sinusoidal electromagnetic
wave, the peak intensity is twice the average intensity (

I0 = 2I ave ), using either the fact that E0 = 2Erms , or

B0 = 2Brms , where rms means average (actually root

mean square, a type of average).

38. Suppose a source of electromagnetic waves radiates
uniformly in all directions in empty space where there are no
absorption or interference effects. (a) Show that the intensity

is inversely proportional to r2 , the distance from the source

squared. (b) Show that the magnitudes of the electric and
magnetic fields are inversely proportional to r .

39. Integrated Concepts

An LC circuit with a 5.00-pF capacitor oscillates in such a

manner as to radiate at a wavelength of 3.30 m. (a) What is
the resonant frequency? (b) What inductance is in series with
the capacitor?

40. Integrated Concepts

What capacitance is needed in series with an 800 − μH
inductor to form a circuit that radiates a wavelength of 196 m?

41. Integrated Concepts

Police radar determines the speed of motor vehicles using the
same Doppler-shift technique employed for ultrasound in
medical diagnostics. Beats are produced by mixing the
double Doppler-shifted echo with the original frequency. If

1.50×109 -Hz microwaves are used and a beat frequency

of 150 Hz is produced, what is the speed of the vehicle?
(Assume the same Doppler-shift formulas are valid with the
speed of sound replaced by the speed of light.)

42. Integrated Concepts

Assume the mostly infrared radiation from a heat lamp acts
like a continuous wave with wavelength 1.50 μm . (a) If the

lamp’s 200-W output is focused on a person’s shoulder, over
a circular area 25.0 cm in diameter, what is the intensity in

W/m2 ? (b) What is the peak electric field strength? (c) Find

the peak magnetic field strength. (d) How long will it take to
increase the temperature of the 4.00-kg shoulder by 2.00º C
, assuming no other heat transfer and given that its specific

heat is 3.47×103 J/kg ⋅ ºC ?

43. Integrated Concepts

On its highest power setting, a microwave oven increases the
temperature of 0.400 kg of spaghetti by 45.0ºC in 120 s. (a)

What was the rate of power absorption by the spaghetti, given

that its specific heat is 3.76×103 J/kg ⋅ ºC ? (b) Find the

average intensity of the microwaves, given that they are
absorbed over a circular area 20.0 cm in diameter. (c) What is
the peak electric field strength of the microwave? (d) What is
its peak magnetic field strength?

44. Integrated Concepts

Electromagnetic radiation from a 5.00-mW laser is

concentrated on a 1.00-mm2 area. (a) What is the intensity

in W/m2 ? (b) Suppose a 2.00-nC static charge is in the

beam. What is the maximum electric force it experiences? (c)
If the static charge moves at 400 m/s, what maximum
magnetic force can it feel?

45. Integrated Concepts

A 200-turn flat coil of wire 30.0 cm in diameter acts as an
antenna for FM radio at a frequency of 100 MHz. The
magnetic field of the incoming electromagnetic wave is
perpendicular to the coil and has a maximum strength of

1.00×10−12 T . (a) What power is incident on the coil? (b)

What average emf is induced in the coil over one-fourth of a
cycle? (c) If the radio receiver has an inductance of 2.50 μH
, what capacitance must it have to resonate at 100 MHz?

46. Integrated Concepts

If electric and magnetic field strengths vary sinusoidally in
time, being zero at t = 0 , then E = E0 sin 2π ft and

B = B0 sin 2π ft . Let f = 1.00 GHz here. (a) When are

the field strengths first zero? (b) When do they reach their
most negative value? (c) How much time is needed for them
to complete one cycle?
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47. Unreasonable Results

A researcher measures the wavelength of a 1.20-GHz
electromagnetic wave to be 0.500 m. (a) Calculate the speed
at which this wave propagates. (b) What is unreasonable
about this result? (c) Which assumptions are unreasonable or
inconsistent?

48. Unreasonable Results

The peak magnetic field strength in a residential microwave

oven is 9.20×10−5 T . (a) What is the intensity of the

microwave? (b) What is unreasonable about this result? (c)
What is wrong about the premise?

49. Unreasonable Results

An LC circuit containing a 2.00-H inductor oscillates at such

a frequency that it radiates at a 1.00-m wavelength. (a) What
is the capacitance of the circuit? (b) What is unreasonable
about this result? (c) Which assumptions are unreasonable or
inconsistent?

50. Unreasonable Results

An LC circuit containing a 1.00-pF capacitor oscillates at

such a frequency that it radiates at a 300-nm wavelength. (a)
What is the inductance of the circuit? (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?

51. Create Your Own Problem

Consider electromagnetic fields produced by high voltage
power lines. Construct a problem in which you calculate the

intensity of this electromagnetic radiation in W/m2 based on

the measured magnetic field strength of the radiation in a
home near the power lines. Assume these magnetic field
strengths are known to average less than a μT . The

intensity is small enough that it is difficult to imagine
mechanisms for biological damage due to it. Discuss how
much energy may be radiating from a section of power line
several hundred meters long and compare this to the power
likely to be carried by the lines. An idea of how much power
this is can be obtained by calculating the approximate current
responsible for μT fields at distances of tens of meters.

52. Create Your Own Problem

Consider the most recent generation of residential satellite
dishes that are a little less than half a meter in diameter.
Construct a problem in which you calculate the power
received by the dish and the maximum electric field strength
of the microwave signals for a single channel received by the
dish. Among the things to be considered are the power
broadcast by the satellite and the area over which the power
is spread, as well as the area of the receiving dish.
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25 GEOMETRIC OPTICS

Figure 25.1 Image seen as a result of reflection of light on a plane smooth surface. (credit: NASA Goddard Photo and Video, via Flickr)

Chapter Outline
25.1. The Ray Aspect of Light

• List the ways by which light travels from a source to another location.
25.2. The Law of Reflection

• Explain reflection of light from polished and rough surfaces.
25.3. The Law of Refraction

• Determine the index of refraction, given the speed of light in a medium.
25.4. Total Internal Reflection

• Explain the phenomenon of total internal reflection.
• Describe the workings and uses of fiber optics.
• Analyze the reason for the sparkle of diamonds.

25.5. Dispersion: The Rainbow and Prisms
• Explain the phenomenon of dispersion and discuss its advantages and disadvantages.

25.6. Image Formation by Lenses
• List the rules for ray tracking for thin lenses.
• Illustrate the formation of images using the technique of ray tracking.
• Determine power of a lens given the focal length.

25.7. Image Formation by Mirrors
• Illustrate image formation in a flat mirror.
• Explain with ray diagrams the formation of an image using spherical mirrors.
• Determine focal length and magnification given radius of curvature, distance of object and image.

Introduction to Geometric Optics
Geometric Optics

Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this
photograph. Mirrors, like lenses, can also form images that in turn are captured by your eye.
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Our lives are filled with light. Through vision, the most valued of our senses, light can evoke spiritual emotions, such as when we
view a magnificent sunset or glimpse a rainbow breaking through the clouds. Light can also simply amuse us in a theater, or
warn us to stop at an intersection. It has innumerable uses beyond vision. Light can carry telephone signals through glass fibers
or cook a meal in a solar oven. Life itself could not exist without light’s energy. From photosynthesis in plants to the sun warming
a cold-blooded animal, its supply of energy is vital.

Figure 25.2 Double Rainbow over the bay of Pocitos in Montevideo, Uruguay. (credit: Madrax, Wikimedia Commons)

We already know that visible light is the type of electromagnetic waves to which our eyes respond. That knowledge still leaves
many questions regarding the nature of light and vision. What is color, and how do our eyes detect it? Why do diamonds
sparkle? How does light travel? How do lenses and mirrors form images? These are but a few of the questions that are
answered by the study of optics. Optics is the branch of physics that deals with the behavior of visible light and other
electromagnetic waves. In particular, optics is concerned with the generation and propagation of light and its interaction with
matter. What we have already learned about the generation of light in our study of heat transfer by radiation will be expanded
upon in later topics, especially those on atomic physics. Now, we will concentrate on the propagation of light and its interaction
with matter.

It is convenient to divide optics into two major parts based on the size of objects that light encounters. When light interacts with
an object that is several times as large as the light’s wavelength, its observable behavior is like that of a ray; it does not
prominently display its wave characteristics. We call this part of optics “geometric optics.” This chapter will concentrate on such
situations. When light interacts with smaller objects, it has very prominent wave characteristics, such as constructive and
destructive interference. Wave Optics will concentrate on such situations.

25.1 The Ray Aspect of Light

There are three ways in which light can travel from a source to another location. (See Figure 25.3.) It can come directly from the
source through empty space, such as from the Sun to Earth. Or light can travel through various media, such as air and glass, to
the person. Light can also arrive after being reflected, such as by a mirror. In all of these cases, light is modeled as traveling in
straight lines called rays. Light may change direction when it encounters objects (such as a mirror) or in passing from one
material to another (such as in passing from air to glass), but it then continues in a straight line or as a ray. The word ray comes
from mathematics and here means a straight line that originates at some point. It is acceptable to visualize light rays as laser
rays (or even science fiction depictions of ray guns).

Ray

The word “ray” comes from mathematics and here means a straight line that originates at some point.

982 Chapter 25 | Geometric Optics

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Figure 25.3 Three methods for light to travel from a source to another location. (a) Light reaches the upper atmosphere of Earth traveling through
empty space directly from the source. (b) Light can reach a person in one of two ways. It can travel through media like air and glass. It can also reflect
from an object like a mirror. In the situations shown here, light interacts with objects large enough that it travels in straight lines, like a ray.

Experiments, as well as our own experiences, show that when light interacts with objects several times as large as its
wavelength, it travels in straight lines and acts like a ray. Its wave characteristics are not pronounced in such situations. Since the
wavelength of light is less than a micron (a thousandth of a millimeter), it acts like a ray in the many common situations in which
it encounters objects larger than a micron. For example, when light encounters anything we can observe with unaided eyes, such
as a mirror, it acts like a ray, with only subtle wave characteristics. We will concentrate on the ray characteristics in this chapter.

Since light moves in straight lines, changing directions when it interacts with materials, it is described by geometry and simple
trigonometry. This part of optics, where the ray aspect of light dominates, is therefore called geometric optics. There are two
laws that govern how light changes direction when it interacts with matter. These are the law of reflection, for situations in which
light bounces off matter, and the law of refraction, for situations in which light passes through matter.

Geometric Optics

The part of optics dealing with the ray aspect of light is called geometric optics.

25.2 The Law of Reflection

Whenever we look into a mirror, or squint at sunlight glinting from a lake, we are seeing a reflection. When you look at this page,
too, you are seeing light reflected from it. Large telescopes use reflection to form an image of stars and other astronomical
objects.

The law of reflection is illustrated in Figure 25.4, which also shows how the angles are measured relative to the perpendicular to
the surface at the point where the light ray strikes. We expect to see reflections from smooth surfaces, but Figure 25.5 illustrates
how a rough surface reflects light. Since the light strikes different parts of the surface at different angles, it is reflected in many
different directions, or diffused. Diffused light is what allows us to see a sheet of paper from any angle, as illustrated in Figure
25.6. Many objects, such as people, clothing, leaves, and walls, have rough surfaces and can be seen from all sides. A mirror, on
the other hand, has a smooth surface (compared with the wavelength of light) and reflects light at specific angles, as illustrated in
Figure 25.7. When the moon reflects from a lake, as shown in Figure 25.8, a combination of these effects takes place.
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Figure 25.4 The law of reflection states that the angle of reflection equals the angle of incidence— θr = θi . The angles are measured relative to the

perpendicular to the surface at the point where the ray strikes the surface.

Figure 25.5 Light is diffused when it reflects from a rough surface. Here many parallel rays are incident, but they are reflected at many different angles
since the surface is rough.

Figure 25.6 When a sheet of paper is illuminated with many parallel incident rays, it can be seen at many different angles, because its surface is rough
and diffuses the light.

Figure 25.7 A mirror illuminated by many parallel rays reflects them in only one direction, since its surface is very smooth. Only the observer at a
particular angle will see the reflected light.
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Figure 25.8 Moonlight is spread out when it is reflected by the lake, since the surface is shiny but uneven. (credit: Diego Torres Silvestre, Flickr)

The law of reflection is very simple: The angle of reflection equals the angle of incidence.

The Law of Reflection

The angle of reflection equals the angle of incidence.

When we see ourselves in a mirror, it appears that our image is actually behind the mirror. This is illustrated in Figure 25.9. We
see the light coming from a direction determined by the law of reflection. The angles are such that our image is exactly the same
distance behind the mirror as we stand away from the mirror. If the mirror is on the wall of a room, the images in it are all behind
the mirror, which can make the room seem bigger. Although these mirror images make objects appear to be where they cannot
be (like behind a solid wall), the images are not figments of our imagination. Mirror images can be photographed and videotaped
by instruments and look just as they do with our eyes (optical instruments themselves). The precise manner in which images are
formed by mirrors and lenses will be treated in later sections of this chapter.

Figure 25.9 Our image in a mirror is behind the mirror. The two rays shown are those that strike the mirror at just the correct angles to be reflected into
the eyes of the person. The image appears to be in the direction the rays are coming from when they enter the eyes.

Take-Home Experiment: Law of Reflection

Take a piece of paper and shine a flashlight at an angle at the paper, as shown in Figure 25.6. Now shine the flashlight at a
mirror at an angle. Do your observations confirm the predictions in Figure 25.6 and Figure 25.7? Shine the flashlight on
various surfaces and determine whether the reflected light is diffuse or not. You can choose a shiny metallic lid of a pot or
your skin. Using the mirror and flashlight, can you confirm the law of reflection? You will need to draw lines on a piece of
paper showing the incident and reflected rays. (This part works even better if you use a laser pencil.)

25.3 The Law of Refraction

It is easy to notice some odd things when looking into a fish tank. For example, you may see the same fish appearing to be in
two different places. (See Figure 25.10.) This is because light coming from the fish to us changes direction when it leaves the
tank, and in this case, it can travel two different paths to get to our eyes. The changing of a light ray’s direction (loosely called
bending) when it passes through variations in matter is called refraction. Refraction is responsible for a tremendous range of
optical phenomena, from the action of lenses to voice transmission through optical fibers.
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Refraction

The changing of a light ray’s direction (loosely called bending) when it passes through variations in matter is called
refraction.

Speed of Light

The speed of light c not only affects refraction, it is one of the central concepts of Einstein’s theory of relativity. As the

accuracy of the measurements of the speed of light were improved, c was found not to depend on the velocity of the source

or the observer. However, the speed of light does vary in a precise manner with the material it traverses. These facts have
far-reaching implications, as we will see in Special Relativity. It makes connections between space and time and alters our
expectations that all observers measure the same time for the same event, for example. The speed of light is so important
that its value in a vacuum is one of the most fundamental constants in nature as well as being one of the four fundamental
SI units.

Figure 25.10 Looking at the fish tank as shown, we can see the same fish in two different locations, because light changes directions when it passes
from water to air. In this case, the light can reach the observer by two different paths, and so the fish seems to be in two different places. This bending
of light is called refraction and is responsible for many optical phenomena.

Why does light change direction when passing from one material (medium) to another? It is because light changes speed when
going from one material to another. So before we study the law of refraction, it is useful to discuss the speed of light and how it
varies in different media.

The Speed of Light

Early attempts to measure the speed of light, such as those made by Galileo, determined that light moved extremely fast,
perhaps instantaneously. The first real evidence that light traveled at a finite speed came from the Danish astronomer Ole
Roemer in the late 17th century. Roemer had noted that the average orbital period of one of Jupiter’s moons, as measured from
Earth, varied depending on whether Earth was moving toward or away from Jupiter. He correctly concluded that the apparent
change in period was due to the change in distance between Earth and Jupiter and the time it took light to travel this distance.

From his 1676 data, a value of the speed of light was calculated to be 2.26×108 m/s (only 25% different from today’s

accepted value). In more recent times, physicists have measured the speed of light in numerous ways and with increasing
accuracy. One particularly direct method, used in 1887 by the American physicist Albert Michelson (1852–1931), is illustrated in
Figure 25.11. Light reflected from a rotating set of mirrors was reflected from a stationary mirror 35 km away and returned to the
rotating mirrors. The time for the light to travel can be determined by how fast the mirrors must rotate for the light to be returned
to the observer’s eye.
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Figure 25.11 A schematic of early apparatus used by Michelson and others to determine the speed of light. As the mirrors rotate, the reflected ray is
only briefly directed at the stationary mirror. The returning ray will be reflected into the observer's eye only if the next mirror has rotated into the correct
position just as the ray returns. By measuring the correct rotation rate, the time for the round trip can be measured and the speed of light calculated.
Michelson’s calculated value of the speed of light was only 0.04% different from the value used today.

The speed of light is now known to great precision. In fact, the speed of light in a vacuum c is so important that it is accepted as

one of the basic physical quantities and has the fixed value

(25.1)c = 2.99792458×108 m/s ≈ 3.00×108 m/s,

where the approximate value of 3.00×108 m/s is used whenever three-digit accuracy is sufficient. The speed of light through

matter is less than it is in a vacuum, because light interacts with atoms in a material. The speed of light depends strongly on the
type of material, since its interaction with different atoms, crystal lattices, and other substructures varies. We define the index of
refraction n of a material to be

(25.2)n = c
v,

where v is the observed speed of light in the material. Since the speed of light is always less than c in matter and equals c
only in a vacuum, the index of refraction is always greater than or equal to one.

Value of the Speed of Light
(25.3)c = 2.99792458×108 m/s ≈ 3.00×108 m/s

Index of Refraction
(25.4)n = c

v

That is, n ≥ 1 . Table 25.1 gives the indices of refraction for some representative substances. The values are listed for a

particular wavelength of light, because they vary slightly with wavelength. (This can have important effects, such as colors
produced by a prism.) Note that for gases, n is close to 1.0. This seems reasonable, since atoms in gases are widely separated

and light travels at c in the vacuum between atoms. It is common to take n = 1 for gases unless great precision is needed.

Although the speed of light v in a medium varies considerably from its value c in a vacuum, it is still a large speed.
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Table 25.1 Index of Refraction in
Various Media

Medium n

Gases at 0ºC , 1 atm

Air 1.000293

Carbon dioxide 1.00045

Hydrogen 1.000139

Oxygen 1.000271

Liquids at 20ºC

Benzene 1.501

Carbon disulfide 1.628

Carbon tetrachloride 1.461

Ethanol 1.361

Glycerine 1.473

Water, fresh 1.333

Solids at 20ºC

Diamond 2.419

Fluorite 1.434

Glass, crown 1.52

Glass, flint 1.66

Ice at 20ºC 1.309

Polystyrene 1.49

Plexiglas 1.51

Quartz, crystalline 1.544

Quartz, fused 1.458

Sodium chloride 1.544

Zircon 1.923

Example 25.1 Speed of Light in Matter

Calculate the speed of light in zircon, a material used in jewelry to imitate diamond.

Strategy

The speed of light in a material, v , can be calculated from the index of refraction n of the material using the equation

n = c / v .

Solution

The equation for index of refraction states that n = c / v . Rearranging this to determine v gives

(25.5)v = c
n.

The index of refraction for zircon is given as 1.923 in Table 25.1, and c is given in the equation for speed of light. Entering

these values in the last expression gives

(25.6)
v = 3.00×108 m/s

1.923
= 1.56×108 m/s.

Discussion

This speed is slightly larger than half the speed of light in a vacuum and is still high compared with speeds we normally
experience. The only substance listed in Table 25.1 that has a greater index of refraction than zircon is diamond. We shall
see later that the large index of refraction for zircon makes it sparkle more than glass, but less than diamond.
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Law of Refraction

Figure 25.12 shows how a ray of light changes direction when it passes from one medium to another. As before, the angles are
measured relative to a perpendicular to the surface at the point where the light ray crosses it. (Some of the incident light will be
reflected from the surface, but for now we will concentrate on the light that is transmitted.) The change in direction of the light ray
depends on how the speed of light changes. The change in the speed of light is related to the indices of refraction of the media
involved. In the situations shown in Figure 25.12, medium 2 has a greater index of refraction than medium 1. This means that
the speed of light is less in medium 2 than in medium 1. Note that as shown in Figure 25.12(a), the direction of the ray moves
closer to the perpendicular when it slows down. Conversely, as shown in Figure 25.12(b), the direction of the ray moves away
from the perpendicular when it speeds up. The path is exactly reversible. In both cases, you can imagine what happens by
thinking about pushing a lawn mower from a footpath onto grass, and vice versa. Going from the footpath to grass, the front
wheels are slowed and pulled to the side as shown. This is the same change in direction as for light when it goes from a fast
medium to a slow one. When going from the grass to the footpath, the front wheels can move faster and the mower changes
direction as shown. This, too, is the same change in direction as for light going from slow to fast.

Figure 25.12 The change in direction of a light ray depends on how the speed of light changes when it crosses from one medium to another. The
speed of light is greater in medium 1 than in medium 2 in the situations shown here. (a) A ray of light moves closer to the perpendicular when it slows
down. This is analogous to what happens when a lawn mower goes from a footpath to grass. (b) A ray of light moves away from the perpendicular
when it speeds up. This is analogous to what happens when a lawn mower goes from grass to footpath. The paths are exactly reversible.

The amount that a light ray changes its direction depends both on the incident angle and the amount that the speed changes.
For a ray at a given incident angle, a large change in speed causes a large change in direction, and thus a large change in
angle. The exact mathematical relationship is the law of refraction, or “Snell’s Law,” which is stated in equation form as

(25.7)n1 sin θ1 = n2 sin θ2.

Here n1 and n2 are the indices of refraction for medium 1 and 2, and θ1 and θ2 are the angles between the rays and the

perpendicular in medium 1 and 2, as shown in Figure 25.12. The incoming ray is called the incident ray and the outgoing ray the
refracted ray, and the associated angles the incident angle and the refracted angle. The law of refraction is also called Snell’s law
after the Dutch mathematician Willebrord Snell (1591–1626), who discovered it in 1621. Snell’s experiments showed that the law
of refraction was obeyed and that a characteristic index of refraction n could be assigned to a given medium. Snell was not

aware that the speed of light varied in different media, but through experiments he was able to determine indices of refraction
from the way light rays changed direction.

The Law of Refraction
(25.8)n1 sin θ1 = n2 sin θ2

Take-Home Experiment: A Broken Pencil

A classic observation of refraction occurs when a pencil is placed in a glass half filled with water. Do this and observe the
shape of the pencil when you look at the pencil sideways, that is, through air, glass, water. Explain your observations. Draw
ray diagrams for the situation.

Example 25.2 Determine the Index of Refraction from Refraction Data

Find the index of refraction for medium 2 in Figure 25.12(a), assuming medium 1 is air and given the incident angle is
30.0º and the angle of refraction is 22.0º .

Strategy
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The index of refraction for air is taken to be 1 in most cases (and up to four significant figures, it is 1.000). Thus n1 = 1.00
here. From the given information, θ1 = 30.0º and θ2 = 22.0º . With this information, the only unknown in Snell’s law is

n2 , so that it can be used to find this unknown.

Solution

Snell’s law is

(25.9)n1 sin θ1 = n2 sin θ2.

Rearranging to isolate n2 gives

(25.10)
n2 = n1

sin θ1
sin θ2

.

Entering known values,

(25.11)n2 = 1.00sin 30.0º
sin 22.0º = 0.500

0.375
= 1.33.

Discussion

This is the index of refraction for water, and Snell could have determined it by measuring the angles and performing this
calculation. He would then have found 1.33 to be the appropriate index of refraction for water in all other situations, such as
when a ray passes from water to glass. Today we can verify that the index of refraction is related to the speed of light in a
medium by measuring that speed directly.

Example 25.3 A Larger Change in Direction

Suppose that in a situation like that in Example 25.2, light goes from air to diamond and that the incident angle is 30.0º .

Calculate the angle of refraction θ2 in the diamond.

Strategy

Again the index of refraction for air is taken to be n1 = 1.00 , and we are given θ1 = 30.0º . We can look up the index of

refraction for diamond in Table 25.1, finding n2 = 2.419 . The only unknown in Snell’s law is θ2 , which we wish to

determine.

Solution

Solving Snell’s law for sin θ2 yields

(25.12)sin θ2 = n1
n2

sin θ1.

Entering known values,

(25.13)sin θ2 = 1.00
2.419sin 30.0º=⎛⎝0.413⎞⎠(0.500) = 0.207.

The angle is thus

(25.14)θ2 = sin−10.207 = 11.9º.

Discussion

For the same 30º angle of incidence, the angle of refraction in diamond is significantly smaller than in water ( 11.9º rather

than 22º —see the preceding example). This means there is a larger change in direction in diamond. The cause of a large

change in direction is a large change in the index of refraction (or speed). In general, the larger the change in speed, the
greater the effect on the direction of the ray.

25.4 Total Internal Reflection

A good-quality mirror may reflect more than 90% of the light that falls on it, absorbing the rest. But it would be useful to have a
mirror that reflects all of the light that falls on it. Interestingly, we can produce total reflection using an aspect of refraction.

Consider what happens when a ray of light strikes the surface between two materials, such as is shown in Figure 25.13(a). Part
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of the light crosses the boundary and is refracted; the rest is reflected. If, as shown in the figure, the index of refraction for the
second medium is less than for the first, the ray bends away from the perpendicular. (Since n1 > n2 , the angle of refraction is

greater than the angle of incidence—that is, θ2 > θ1 .) Now imagine what happens as the incident angle is increased. This

causes θ2 to increase also. The largest the angle of refraction θ2 can be is 90º , as shown in Figure 25.13(b).The critical

angle θc for a combination of materials is defined to be the incident angle θ1 that produces an angle of refraction of 90º . That

is, θc is the incident angle for which θ2 = 90º . If the incident angle θ1 is greater than the critical angle, as shown in Figure

25.13(c), then all of the light is reflected back into medium 1, a condition called total internal reflection.

Critical Angle

The incident angle θ1 that produces an angle of refraction of 90º is called the critical angle, θc .

Figure 25.13 (a) A ray of light crosses a boundary where the speed of light increases and the index of refraction decreases. That is, n2 < n1 . The

ray bends away from the perpendicular. (b) The critical angle θc is the one for which the angle of refraction is . (c) Total internal reflection occurs

when the incident angle is greater than the critical angle.

Snell’s law states the relationship between angles and indices of refraction. It is given by

(25.15)n1 sin θ1 = n2 sin θ2.
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When the incident angle equals the critical angle ( θ1 = θc ), the angle of refraction is 90º ( θ2 = 90º ). Noting that sin 90º=1
, Snell’s law in this case becomes

(25.16)n1 sin θ1 = n2.

The critical angle θc for a given combination of materials is thus

(25.17)θc = sin−1⎛
⎝n2 / n1

⎞
⎠ for n1 > n2.

Total internal reflection occurs for any incident angle greater than the critical angle θc , and it can only occur when the second

medium has an index of refraction less than the first. Note the above equation is written for a light ray that travels in medium 1
and reflects from medium 2, as shown in the figure.

Example 25.4 How Big is the Critical Angle Here?

What is the critical angle for light traveling in a polystyrene (a type of plastic) pipe surrounded by air?

Strategy

The index of refraction for polystyrene is found to be 1.49 in Figure 25.14, and the index of refraction of air can be taken to
be 1.00, as before. Thus, the condition that the second medium (air) has an index of refraction less than the first (plastic) is

satisfied, and the equation θc = sin−1⎛
⎝n2 / n1

⎞
⎠ can be used to find the critical angle θc . Here, then, n2 = 1.00 and

n1 = 1.49 .

Solution

The critical angle is given by

(25.18)θc = sin−1⎛
⎝n2 / n1

⎞
⎠.

Substituting the identified values gives

(25.19)θc = sin−1(1.00 / 1.49) = sin−1(0.671)
42.2º.

Discussion

This means that any ray of light inside the plastic that strikes the surface at an angle greater than 42.2º will be totally

reflected. This will make the inside surface of the clear plastic a perfect mirror for such rays without any need for the
silvering used on common mirrors. Different combinations of materials have different critical angles, but any combination
with n1 > n2 can produce total internal reflection. The same calculation as made here shows that the critical angle for a

ray going from water to air is 48.6º , while that from diamond to air is 24.4º , and that from flint glass to crown glass is

66.3º . There is no total reflection for rays going in the other direction—for example, from air to water—since the condition

that the second medium must have a smaller index of refraction is not satisfied. A number of interesting applications of total
internal reflection follow.

Fiber Optics: Endoscopes to Telephones

Fiber optics is one application of total internal reflection that is in wide use. In communications, it is used to transmit telephone,
internet, and cable TV signals. Fiber optics employs the transmission of light down fibers of plastic or glass. Because the fibers
are thin, light entering one is likely to strike the inside surface at an angle greater than the critical angle and, thus, be totally
reflected (See Figure 25.14.) The index of refraction outside the fiber must be smaller than inside, a condition that is easily
satisfied by coating the outside of the fiber with a material having an appropriate refractive index. In fact, most fibers have a
varying refractive index to allow more light to be guided along the fiber through total internal refraction. Rays are reflected around
corners as shown, making the fibers into tiny light pipes.
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Figure 25.14 Light entering a thin fiber may strike the inside surface at large or grazing angles and is completely reflected if these angles exceed the
critical angle. Such rays continue down the fiber, even following it around corners, since the angles of reflection and incidence remain large.

Bundles of fibers can be used to transmit an image without a lens, as illustrated in Figure 25.15. The output of a device called an
endoscope is shown in Figure 25.15(b). Endoscopes are used to explore the body through various orifices or minor incisions.
Light is transmitted down one fiber bundle to illuminate internal parts, and the reflected light is transmitted back out through
another to be observed. Surgery can be performed, such as arthroscopic surgery on the knee joint, employing cutting tools
attached to and observed with the endoscope. Samples can also be obtained, such as by lassoing an intestinal polyp for external
examination.

Fiber optics has revolutionized surgical techniques and observations within the body. There are a host of medical diagnostic and
therapeutic uses. The flexibility of the fiber optic bundle allows it to navigate around difficult and small regions in the body, such
as the intestines, the heart, blood vessels, and joints. Transmission of an intense laser beam to burn away obstructing plaques in
major arteries as well as delivering light to activate chemotherapy drugs are becoming commonplace. Optical fibers have in fact
enabled microsurgery and remote surgery where the incisions are small and the surgeon’s fingers do not need to touch the
diseased tissue.

Figure 25.15 (a) An image is transmitted by a bundle of fibers that have fixed neighbors. (b) An endoscope is used to probe the body, both transmitting
light to the interior and returning an image such as the one shown. (credit: Med_Chaos, Wikimedia Commons)

Fibers in bundles are surrounded by a cladding material that has a lower index of refraction than the core. (See Figure 25.16.)
The cladding prevents light from being transmitted between fibers in a bundle. Without cladding, light could pass between fibers
in contact, since their indices of refraction are identical. Since no light gets into the cladding (there is total internal reflection back
into the core), none can be transmitted between clad fibers that are in contact with one another. The cladding prevents light from
escaping out of the fiber; instead most of the light is propagated along the length of the fiber, minimizing the loss of signal and
ensuring that a quality image is formed at the other end. The cladding and an additional protective layer make optical fibers
flexible and durable.

Figure 25.16 Fibers in bundles are clad by a material that has a lower index of refraction than the core to ensure total internal reflection, even when
fibers are in contact with one another. This shows a single fiber with its cladding.
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Cladding

The cladding prevents light from being transmitted between fibers in a bundle.

Special tiny lenses that can be attached to the ends of bundles of fibers are being designed and fabricated. Light emerging from
a fiber bundle can be focused and a tiny spot can be imaged. In some cases the spot can be scanned, allowing quality imaging
of a region inside the body. Special minute optical filters inserted at the end of the fiber bundle have the capacity to image tens of
microns below the surface without cutting the surface—non-intrusive diagnostics. This is particularly useful for determining the
extent of cancers in the stomach and bowel.

Most telephone conversations and Internet communications are now carried by laser signals along optical fibers. Extensive
optical fiber cables have been placed on the ocean floor and underground to enable optical communications. Optical fiber
communication systems offer several advantages over electrical (copper) based systems, particularly for long distances. The
fibers can be made so transparent that light can travel many kilometers before it becomes dim enough to require
amplification—much superior to copper conductors. This property of optical fibers is called low loss. Lasers emit light with
characteristics that allow far more conversations in one fiber than are possible with electric signals on a single conductor. This
property of optical fibers is called high bandwidth. Optical signals in one fiber do not produce undesirable effects in other
adjacent fibers. This property of optical fibers is called reduced crosstalk. We shall explore the unique characteristics of laser
radiation in a later chapter.

Corner Reflectors and Diamonds

A light ray that strikes an object consisting of two mutually perpendicular reflecting surfaces is reflected back exactly parallel to
the direction from which it came. This is true whenever the reflecting surfaces are perpendicular, and it is independent of the
angle of incidence. Such an object, shown in Figure 25.17, is called a corner reflector, since the light bounces from its inside
corner. Many inexpensive reflector buttons on bicycles, cars, and warning signs have corner reflectors designed to return light in
the direction from which it originated. It was more expensive for astronauts to place one on the moon. Laser signals can be
bounced from that corner reflector to measure the gradually increasing distance to the moon with great precision.

Figure 25.17 (a) Astronauts placed a corner reflector on the moon to measure its gradually increasing orbital distance. (credit: NASA) (b) The bright
spots on these bicycle safety reflectors are reflections of the flash of the camera that took this picture on a dark night. (credit: Julo, Wikimedia
Commons)

Corner reflectors are perfectly efficient when the conditions for total internal reflection are satisfied. With common materials, it is
easy to obtain a critical angle that is less than 45º . One use of these perfect mirrors is in binoculars, as shown in Figure 25.18.

Another use is in periscopes found in submarines.
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Figure 25.18 These binoculars employ corner reflectors with total internal reflection to get light to the observer’s eyes.

The Sparkle of Diamonds

Total internal reflection, coupled with a large index of refraction, explains why diamonds sparkle more than other materials. The
critical angle for a diamond-to-air surface is only 24.4º , and so when light enters a diamond, it has trouble getting back out.

(See Figure 25.19.) Although light freely enters the diamond, it can exit only if it makes an angle less than 24.4º . Facets on

diamonds are specifically intended to make this unlikely, so that the light can exit only in certain places. Good diamonds are very
clear, so that the light makes many internal reflections and is concentrated at the few places it can exit—hence the sparkle.
(Zircon is a natural gemstone that has an exceptionally large index of refraction, but not as large as diamond, so it is not as
highly prized. Cubic zirconia is manufactured and has an even higher index of refraction ( ≈ 2.17 ), but still less than that of

diamond.) The colors you see emerging from a sparkling diamond are not due to the diamond’s color, which is usually nearly
colorless. Those colors result from dispersion, the topic of Dispersion: The Rainbow and Prisms. Colored diamonds get their
color from structural defects of the crystal lattice and the inclusion of minute quantities of graphite and other materials. The
Argyle Mine in Western Australia produces around 90% of the world’s pink, red, champagne, and cognac diamonds, while
around 50% of the world’s clear diamonds come from central and southern Africa.

Figure 25.19 Light cannot easily escape a diamond, because its critical angle with air is so small. Most reflections are total, and the facets are placed
so that light can exit only in particular ways—thus concentrating the light and making the diamond sparkle.

PhET Explorations: Bending Light

Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass
changes the bending angle. Play with prisms of different shapes and make rainbows.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42462/
1.11/#Phet_module_26.4)

Figure 25.20

25.5 Dispersion: The Rainbow and Prisms

Everyone enjoys the spectacle of a rainbow glimmering against a dark stormy sky. How does sunlight falling on clear drops of
rain get broken into the rainbow of colors we see? The same process causes white light to be broken into colors by a clear glass
prism or a diamond. (See Figure 25.21.)
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Figure 25.21 The colors of the rainbow (a) and those produced by a prism (b) are identical. (credit: Alfredo55, Wikimedia Commons; NASA)

We see about six colors in a rainbow—red, orange, yellow, green, blue, and violet; sometimes indigo is listed, too. Those colors
are associated with different wavelengths of light, as shown in Figure 25.22. When our eye receives pure-wavelength light, we
tend to see only one of the six colors, depending on wavelength. The thousands of other hues we can sense in other situations
are our eye’s response to various mixtures of wavelengths. White light, in particular, is a fairly uniform mixture of all visible
wavelengths. Sunlight, considered to be white, actually appears to be a bit yellow because of its mixture of wavelengths, but it
does contain all visible wavelengths. The sequence of colors in rainbows is the same sequence as the colors plotted versus
wavelength in Figure 25.22. What this implies is that white light is spread out according to wavelength in a rainbow. Dispersion
is defined as the spreading of white light into its full spectrum of wavelengths. More technically, dispersion occurs whenever there
is a process that changes the direction of light in a manner that depends on wavelength. Dispersion, as a general phenomenon,
can occur for any type of wave and always involves wavelength-dependent processes.

Dispersion

Dispersion is defined to be the spreading of white light into its full spectrum of wavelengths.

Figure 25.22 Even though rainbows are associated with seven colors, the rainbow is a continuous distribution of colors according to wavelengths.

Refraction is responsible for dispersion in rainbows and many other situations. The angle of refraction depends on the index of
refraction, as we saw in The Law of Refraction. We know that the index of refraction n depends on the medium. But for a given

medium, n also depends on wavelength. (See Table 25.2. Note that, for a given medium, n increases as wavelength

decreases and is greatest for violet light. Thus violet light is bent more than red light, as shown for a prism in Figure 25.23(b),
and the light is dispersed into the same sequence of wavelengths as seen in Figure 25.21 and Figure 25.22.

Making Connections: Dispersion

Any type of wave can exhibit dispersion. Sound waves, all types of electromagnetic waves, and water waves can be
dispersed according to wavelength. Dispersion occurs whenever the speed of propagation depends on wavelength, thus
separating and spreading out various wavelengths. Dispersion may require special circumstances and can result in
spectacular displays such as in the production of a rainbow. This is also true for sound, since all frequencies ordinarily travel
at the same speed. If you listen to sound through a long tube, such as a vacuum cleaner hose, you can easily hear it is
dispersed by interaction with the tube. Dispersion, in fact, can reveal a great deal about what the wave has encountered that
disperses its wavelengths. The dispersion of electromagnetic radiation from outer space, for example, has revealed much
about what exists between the stars—the so-called empty space.
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Table 25.2 Index of Refraction n in Selected Media at Various Wavelengths

Medium
Red (660
nm)

Orange (610
nm)

Yellow (580
nm)

Green (550
nm)

Blue (470
nm)

Violet (410
nm)

Water 1.331 1.332 1.333 1.335 1.338 1.342

Diamond 2.410 2.415 2.417 2.426 2.444 2.458

Glass,
crown

1.512 1.514 1.518 1.519 1.524 1.530

Glass, flint 1.662 1.665 1.667 1.674 1.684 1.698

Polystyrene 1.488 1.490 1.492 1.493 1.499 1.506

Quartz,
fused

1.455 1.456 1.458 1.459 1.462 1.468

Figure 25.23 (a) A pure wavelength of light falls onto a prism and is refracted at both surfaces. (b) White light is dispersed by the prism (shown
exaggerated). Since the index of refraction varies with wavelength, the angles of refraction vary with wavelength. A sequence of red to violet is
produced, because the index of refraction increases steadily with decreasing wavelength.

Rainbows are produced by a combination of refraction and reflection. You may have noticed that you see a rainbow only when
you look away from the sun. Light enters a drop of water and is reflected from the back of the drop, as shown in Figure 25.24.
The light is refracted both as it enters and as it leaves the drop. Since the index of refraction of water varies with wavelength, the
light is dispersed, and a rainbow is observed, as shown in Figure 25.25 (a). (There is no dispersion caused by reflection at the
back surface, since the law of reflection does not depend on wavelength.) The actual rainbow of colors seen by an observer
depends on the myriad of rays being refracted and reflected toward the observer’s eyes from numerous drops of water. The
effect is most spectacular when the background is dark, as in stormy weather, but can also be observed in waterfalls and lawn
sprinklers. The arc of a rainbow comes from the need to be looking at a specific angle relative to the direction of the sun, as
illustrated in Figure 25.25 (b). (If there are two reflections of light within the water drop, another “secondary” rainbow is
produced. This rare event produces an arc that lies above the primary rainbow arc—see Figure 25.25 (c).)

Rainbows

Rainbows are produced by a combination of refraction and reflection.
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Figure 25.24 Part of the light falling on this water drop enters and is reflected from the back of the drop. This light is refracted and dispersed both as it
enters and as it leaves the drop.
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Figure 25.25 (a) Different colors emerge in different directions, and so you must look at different locations to see the various colors of a rainbow. (b)
The arc of a rainbow results from the fact that a line between the observer and any point on the arc must make the correct angle with the parallel rays
of sunlight to receive the refracted rays. (c) Double rainbow. (credit: Nicholas, Wikimedia Commons)

Dispersion may produce beautiful rainbows, but it can cause problems in optical systems. White light used to transmit messages
in a fiber is dispersed, spreading out in time and eventually overlapping with other messages. Since a laser produces a nearly
pure wavelength, its light experiences little dispersion, an advantage over white light for transmission of information. In contrast,
dispersion of electromagnetic waves coming to us from outer space can be used to determine the amount of matter they pass
through. As with many phenomena, dispersion can be useful or a nuisance, depending on the situation and our human goals.

PhET Explorations: Geometric Optics

How does a lens form an image? See how light rays are refracted by a lens. Watch how the image changes when you adjust
the focal length of the lens, move the object, move the lens, or move the screen.
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(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42466/
1.9/#Phet_module_26.5)

Figure 25.26

25.6 Image Formation by Lenses

Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera’s zoom
lens. In this section, we will use the law of refraction to explore the properties of lenses and how they form images.

The word lens derives from the Latin word for a lentil bean, the shape of which is similar to the convex lens in Figure 25.27. The
convex lens shown has been shaped so that all light rays that enter it parallel to its axis cross one another at a single point on
the opposite side of the lens. (The axis is defined to be a line normal to the lens at its center, as shown in Figure 25.27.) Such a
lens is called a converging (or convex) lens for the converging effect it has on light rays. An expanded view of the path of one
ray through the lens is shown, to illustrate how the ray changes direction both as it enters and as it leaves the lens. Since the
index of refraction of the lens is greater than that of air, the ray moves towards the perpendicular as it enters and away from the
perpendicular as it leaves. (This is in accordance with the law of refraction.) Due to the lens’s shape, light is thus bent toward the
axis at both surfaces. The point at which the rays cross is defined to be the focal point F of the lens. The distance from the
center of the lens to its focal point is defined to be the focal length f of the lens. Figure 25.28 shows how a converging lens,

such as that in a magnifying glass, can converge the nearly parallel light rays from the sun to a small spot.

Figure 25.27 Rays of light entering a converging lens parallel to its axis converge at its focal point F. (Ray 2 lies on the axis of the lens.) The distance

from the center of the lens to the focal point is the lens’s focal length f . An expanded view of the path taken by ray 1 shows the perpendiculars and

the angles of incidence and refraction at both surfaces.

Converging or Convex Lens

The lens in which light rays that enter it parallel to its axis cross one another at a single point on the opposite side with a
converging effect is called converging lens.

Focal Point F

The point at which the light rays cross is called the focal point F of the lens.

Focal Length f

The distance from the center of the lens to its focal point is called focal length f .
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Figure 25.28 Sunlight focused by a converging magnifying glass can burn paper. Light rays from the sun are nearly parallel and cross at the focal point
of the lens. The more powerful the lens, the closer to the lens the rays will cross.

The greater effect a lens has on light rays, the more powerful it is said to be. For example, a powerful converging lens will focus
parallel light rays closer to itself and will have a smaller focal length than a weak lens. The light will also focus into a smaller and
more intense spot for a more powerful lens. The power P of a lens is defined to be the inverse of its focal length. In equation

form, this is

(25.20)P = 1
f .

Power P

The power P of a lens is defined to be the inverse of its focal length. In equation form, this is

(25.21)P = 1
f .

where f is the focal length of the lens, which must be given in meters (and not cm or mm). The power of a lens P has the

unit diopters (D), provided that the focal length is given in meters. That is, 1 D = 1 / m , or 1 m−1 . (Note that this power

(optical power, actually) is not the same as power in watts defined in Work, Energy, and Energy Resources. It is a concept
related to the effect of optical devices on light.) Optometrists prescribe common spectacles and contact lenses in units of
diopters.

Example 25.5 What is the Power of a Common Magnifying Glass?

Suppose you take a magnifying glass out on a sunny day and you find that it concentrates sunlight to a small spot 8.00 cm
away from the lens. What are the focal length and power of the lens?

Strategy

The situation here is the same as those shown in Figure 25.27 and Figure 25.28. The Sun is so far away that the Sun’s
rays are nearly parallel when they reach Earth. The magnifying glass is a convex (or converging) lens, focusing the nearly
parallel rays of sunlight. Thus the focal length of the lens is the distance from the lens to the spot, and its power is the
inverse of this distance (in m).

Solution

The focal length of the lens is the distance from the center of the lens to the spot, given to be 8.00 cm. Thus,

(25.22)f = 8.00 cm.

To find the power of the lens, we must first convert the focal length to meters; then, we substitute this value into the equation
for power. This gives

(25.23)P = 1
f = 1

0.0800 m = 12.5 D.

Discussion

This is a relatively powerful lens. The power of a lens in diopters should not be confused with the familiar concept of power
in watts. It is an unfortunate fact that the word “power” is used for two completely different concepts. If you examine a
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prescription for eyeglasses, you will note lens powers given in diopters. If you examine the label on a motor, you will note
energy consumption rate given as a power in watts.

Figure 25.29 shows a concave lens and the effect it has on rays of light that enter it parallel to its axis (the path taken by ray 2 in
the figure is the axis of the lens). The concave lens is a diverging lens, because it causes the light rays to bend away (diverge)
from its axis. In this case, the lens has been shaped so that all light rays entering it parallel to its axis appear to originate from the
same point, F , defined to be the focal point of a diverging lens. The distance from the center of the lens to the focal point is

again called the focal length f of the lens. Note that the focal length and power of a diverging lens are defined to be negative.

For example, if the distance to F in Figure 25.29 is 5.00 cm, then the focal length is f = –5.00 cm and the power of the lens

is P = –20 D . An expanded view of the path of one ray through the lens is shown in the figure to illustrate how the shape of the

lens, together with the law of refraction, causes the ray to follow its particular path and be diverged.

Figure 25.29 Rays of light entering a diverging lens parallel to its axis are diverged, and all appear to originate at its focal point F . The dashed lines

are not rays—they indicate the directions from which the rays appear to come. The focal length f of a diverging lens is negative. An expanded view

of the path taken by ray 1 shows the perpendiculars and the angles of incidence and refraction at both surfaces.

Diverging Lens

A lens that causes the light rays to bend away from its axis is called a diverging lens.

As noted in the initial discussion of the law of refraction in The Law of Refraction, the paths of light rays are exactly reversible.
This means that the direction of the arrows could be reversed for all of the rays in Figure 25.27 and Figure 25.29. For example,
if a point light source is placed at the focal point of a convex lens, as shown in Figure 25.30, parallel light rays emerge from the
other side.

Figure 25.30 A small light source, like a light bulb filament, placed at the focal point of a convex lens, results in parallel rays of light emerging from the
other side. The paths are exactly the reverse of those shown in Figure 25.27. This technique is used in lighthouses and sometimes in traffic lights to
produce a directional beam of light from a source that emits light in all directions.

Ray Tracing and Thin Lenses

Ray tracing is the technique of determining or following (tracing) the paths that light rays take. For rays passing through matter,
the law of refraction is used to trace the paths. Here we use ray tracing to help us understand the action of lenses in situations
ranging from forming images on film to magnifying small print to correcting nearsightedness. While ray tracing for complicated
lenses, such as those found in sophisticated cameras, may require computer techniques, there is a set of simple rules for tracing
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rays through thin lenses. A thin lens is defined to be one whose thickness allows rays to refract, as illustrated in Figure 25.27,
but does not allow properties such as dispersion and aberrations. An ideal thin lens has two refracting surfaces but the lens is
thin enough to assume that light rays bend only once. A thin symmetrical lens has two focal points, one on either side and both
at the same distance from the lens. (See Figure 25.31.) Another important characteristic of a thin lens is that light rays through
its center are deflected by a negligible amount, as seen in Figure 25.32.

Thin Lens

A thin lens is defined to be one whose thickness allows rays to refract but does not allow properties such as dispersion and
aberrations.

Take-Home Experiment: A Visit to the Optician

Look through your eyeglasses (or those of a friend) backward and forward and comment on whether they act like thin
lenses.

Figure 25.31 Thin lenses have the same focal length on either side. (a) Parallel light rays entering a converging lens from the right cross at its focal
point on the left. (b) Parallel light rays entering a diverging lens from the right seem to come from the focal point on the right.
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Figure 25.32 The light ray through the center of a thin lens is deflected by a negligible amount and is assumed to emerge parallel to its original path
(shown as a shaded line).

Using paper, pencil, and a straight edge, ray tracing can accurately describe the operation of a lens. The rules for ray tracing for
thin lenses are based on the illustrations already discussed:

1. A ray entering a converging lens parallel to its axis passes through the focal point F of the lens on the other side. (See rays
1 and 3 in Figure 25.27.)

2. A ray entering a diverging lens parallel to its axis seems to come from the focal point F. (See rays 1 and 3 in Figure 25.29.)

3. A ray passing through the center of either a converging or a diverging lens does not change direction. (See Figure 25.32,
and see ray 2 in Figure 25.27 and Figure 25.29.)

4. A ray entering a converging lens through its focal point exits parallel to its axis. (The reverse of rays 1 and 3 in Figure
25.27.)

5. A ray that enters a diverging lens by heading toward the focal point on the opposite side exits parallel to the axis. (The
reverse of rays 1 and 3 in Figure 25.29.)

Rules for Ray Tracing
1. A ray entering a converging lens parallel to its axis passes through the focal point F of the lens on the other side.

2. A ray entering a diverging lens parallel to its axis seems to come from the focal point F.

3. A ray passing through the center of either a converging or a diverging lens does not change direction.

4. A ray entering a converging lens through its focal point exits parallel to its axis.

5. A ray that enters a diverging lens by heading toward the focal point on the opposite side exits parallel to the axis.

Image Formation by Thin Lenses

In some circumstances, a lens forms an obvious image, such as when a movie projector casts an image onto a screen. In other
cases, the image is less obvious. Where, for example, is the image formed by eyeglasses? We will use ray tracing for thin lenses
to illustrate how they form images, and we will develop equations to describe the image formation quantitatively.

Consider an object some distance away from a converging lens, as shown in Figure 25.33. To find the location and size of the
image formed, we trace the paths of selected light rays originating from one point on the object, in this case the top of the
person’s head. The figure shows three rays from the top of the object that can be traced using the ray tracing rules given above.
(Rays leave this point going in many directions, but we concentrate on only a few with paths that are easy to trace.) The first ray
is one that enters the lens parallel to its axis and passes through the focal point on the other side (rule 1). The second ray passes
through the center of the lens without changing direction (rule 3). The third ray passes through the nearer focal point on its way
into the lens and leaves the lens parallel to its axis (rule 4). The three rays cross at the same point on the other side of the lens.
The image of the top of the person’s head is located at this point. All rays that come from the same point on the top of the
person’s head are refracted in such a way as to cross at the point shown. Rays from another point on the object, such as her belt
buckle, will also cross at another common point, forming a complete image, as shown. Although three rays are traced in Figure
25.33, only two are necessary to locate the image. It is best to trace rays for which there are simple ray tracing rules. Before
applying ray tracing to other situations, let us consider the example shown in Figure 25.33 in more detail.
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Figure 25.33 Ray tracing is used to locate the image formed by a lens. Rays originating from the same point on the object are traced—the three
chosen rays each follow one of the rules for ray tracing, so that their paths are easy to determine. The image is located at the point where the rays
cross. In this case, a real image—one that can be projected on a screen—is formed.

The image formed in Figure 25.33 is a real image, meaning that it can be projected. That is, light rays from one point on the
object actually cross at the location of the image and can be projected onto a screen, a piece of film, or the retina of an eye, for
example. Figure 25.34 shows how such an image would be projected onto film by a camera lens. This figure also shows how a
real image is projected onto the retina by the lens of an eye. Note that the image is there whether it is projected onto a screen or
not.

Real Image

The image in which light rays from one point on the object actually cross at the location of the image and can be projected
onto a screen, a piece of film, or the retina of an eye is called a real image.
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Figure 25.34 Real images can be projected. (a) A real image of the person is projected onto film. (b) The converging nature of the multiple surfaces
that make up the eye result in the projection of a real image on the retina.

Several important distances appear in Figure 25.33. We define do to be the object distance, the distance of an object from the

center of a lens. Image distance di is defined to be the distance of the image from the center of a lens. The height of the object

and height of the image are given the symbols ho and hi , respectively. Images that appear upright relative to the object have

heights that are positive and those that are inverted have negative heights. Using the rules of ray tracing and making a scale
drawing with paper and pencil, like that in Figure 25.33, we can accurately describe the location and size of an image. But the
real benefit of ray tracing is in visualizing how images are formed in a variety of situations. To obtain numerical information, we
use a pair of equations that can be derived from a geometric analysis of ray tracing for thin lenses. The thin lens equations are

(25.24)1
do

+ 1
di

= 1
f

and

(25.25)hi
ho

= − di
do

= m.

We define the ratio of image height to object height ( hi / ho ) to be the magnification m . (The minus sign in the equation above

will be discussed shortly.) The thin lens equations are broadly applicable to all situations involving thin lenses (and “thin” mirrors,
as we will see later). We will explore many features of image formation in the following worked examples.

Image Distance

The distance of the image from the center of the lens is called image distance.

Thin Lens Equations and Magnification
(25.26)1

do
+ 1

di
= 1

f
(25.27)hi

ho
= − di

do
= m

Example 25.6 Finding the Image of a Light Bulb Filament by Ray Tracing and by the Thin Lens
Equations

A clear glass light bulb is placed 0.750 m from a convex lens having a 0.500 m focal length, as shown in Figure 25.35. Use
ray tracing to get an approximate location for the image. Then use the thin lens equations to calculate (a) the location of the
image and (b) its magnification. Verify that ray tracing and the thin lens equations produce consistent results.
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Figure 25.35 A light bulb placed 0.750 m from a lens having a 0.500 m focal length produces a real image on a poster board as discussed in the
example above. Ray tracing predicts the image location and size.

Strategy and Concept

Since the object is placed farther away from a converging lens than the focal length of the lens, this situation is analogous to
those illustrated in Figure 25.33 and Figure 25.34. Ray tracing to scale should produce similar results for di . Numerical

solutions for di and m can be obtained using the thin lens equations, noting that do = 0.750 m and f = 0.500 m .

Solutions (Ray tracing)

The ray tracing to scale in Figure 25.35 shows two rays from a point on the bulb’s filament crossing about 1.50 m on the far
side of the lens. Thus the image distance di is about 1.50 m. Similarly, the image height based on ray tracing is greater

than the object height by about a factor of 2, and the image is inverted. Thus m is about –2. The minus sign indicates that

the image is inverted.

The thin lens equations can be used to find di from the given information:

(25.28)1
do

+ 1
di

= 1
f .

Rearranging to isolate di gives

(25.29)1
di

= 1
f − 1

do
.

Entering known quantities gives a value for 1 / di :

(25.30)1
di

= 1
0.500 m − 1

0.750 m = 0.667
m .

This must be inverted to find di :

(25.31)di = m
0.667 = 1.50 m.

Note that another way to find di is to rearrange the equation:

(25.32)1
di

= 1
f − 1

do
.

This yields the equation for the image distance as:

(25.33)
di = fdo

do − f .

Note that there is no inverting here.

The thin lens equations can be used to find the magnification m , since both di and do are known. Entering their values

gives

(25.34)
m = – di

do
= – 1.50 m

0.750 m = – 2.00.

Discussion

Note that the minus sign causes the magnification to be negative when the image is inverted. Ray tracing and the use of the
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thin lens equations produce consistent results. The thin lens equations give the most precise results, being limited only by
the accuracy of the given information. Ray tracing is limited by the accuracy with which you can draw, but it is highly useful
both conceptually and visually.

Real images, such as the one considered in the previous example, are formed by converging lenses whenever an object is
farther from the lens than its focal length. This is true for movie projectors, cameras, and the eye. We shall refer to these as case
1 images. A case 1 image is formed when do > f and f is positive, as in Figure 25.36(a). (A summary of the three cases or

types of image formation appears at the end of this section.)

A different type of image is formed when an object, such as a person's face, is held close to a convex lens. The image is upright
and larger than the object, as seen in Figure 25.36(b), and so the lens is called a magnifier. If you slowly pull the magnifier away
from the face, you will see that the magnification steadily increases until the image begins to blur. Pulling the magnifier even
farther away produces an inverted image as seen in Figure 25.36(a). The distance at which the image blurs, and beyond which it
inverts, is the focal length of the lens. To use a convex lens as a magnifier, the object must be closer to the converging lens than
its focal length. This is called a case 2 image. A case 2 image is formed when do < f and f is positive.

Figure 25.36 (a) When a converging lens is held farther away from the face than the lens’s focal length, an inverted image is formed. This is a case 1
image. Note that the image is in focus but the face is not, because the image is much closer to the camera taking this photograph than the face. (credit:
DaMongMan, Flickr) (b) A magnified image of a face is produced by placing it closer to the converging lens than its focal length. This is a case 2
image. (credit: Casey Fleser, Flickr)

Figure 25.37 uses ray tracing to show how an image is formed when an object is held closer to a converging lens than its focal
length. Rays coming from a common point on the object continue to diverge after passing through the lens, but all appear to
originate from a point at the location of the image. The image is on the same side of the lens as the object and is farther away
from the lens than the object. This image, like all case 2 images, cannot be projected and, hence, is called a virtual image. Light
rays only appear to originate at a virtual image; they do not actually pass through that location in space. A screen placed at the
location of a virtual image will receive only diffuse light from the object, not focused rays from the lens. Additionally, a screen
placed on the opposite side of the lens will receive rays that are still diverging, and so no image will be projected on it. We can
see the magnified image with our eyes, because the lens of the eye converges the rays into a real image projected on our retina.
Finally, we note that a virtual image is upright and larger than the object, meaning that the magnification is positive and greater
than 1.
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Figure 25.37 Ray tracing predicts the image location and size for an object held closer to a converging lens than its focal length. Ray 1 enters parallel
to the axis and exits through the focal point on the opposite side, while ray 2 passes through the center of the lens without changing path. The two rays
continue to diverge on the other side of the lens, but both appear to come from a common point, locating the upright, magnified, virtual image. This is a
case 2 image.

Virtual Image

An image that is on the same side of the lens as the object and cannot be projected on a screen is called a virtual image.

Example 25.7 Image Produced by a Magnifying Glass

Suppose the book page in Figure 25.37 (a) is held 7.50 cm from a convex lens of focal length 10.0 cm, such as a typical
magnifying glass might have. What magnification is produced?

Strategy and Concept

We are given that do = 7.50 cm and f = 10.0 cm , so we have a situation where the object is placed closer to the lens

than its focal length. We therefore expect to get a case 2 virtual image with a positive magnification that is greater than 1.
Ray tracing produces an image like that shown in Figure 25.37, but we will use the thin lens equations to get numerical
solutions in this example.

Solution

To find the magnification m , we try to use magnification equation, m = –di / do . We do not have a value for di , so that

we must first find the location of the image using lens equation. (The procedure is the same as followed in the preceding
example, where do and f were known.) Rearranging the magnification equation to isolate di gives

(25.35)1
di

= 1
f − 1

do
.

Entering known values, we obtain a value for 1/di :

(25.36)1
di

= 1
10.0 cm − 1

7.50 cm = −0.0333
cm .

This must be inverted to find di :

(25.37)di = − cm
0.0333 = −30.0 cm.
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Now the thin lens equation can be used to find the magnification m , since both di and do are known. Entering their

values gives

(25.38)
m = − di

do
= −−30.0 cm

7.50 cm = 4.00.

Discussion

A number of results in this example are true of all case 2 images, as well as being consistent with Figure 25.37.
Magnification is indeed positive (as predicted), meaning the image is upright. The magnification is also greater than 1,
meaning that the image is larger than the object—in this case, by a factor of 4. Note that the image distance is negative.
This means the image is on the same side of the lens as the object. Thus the image cannot be projected and is virtual.
(Negative values of di occur for virtual images.) The image is farther from the lens than the object, since the image

distance is greater in magnitude than the object distance. The location of the image is not obvious when you look through a
magnifier. In fact, since the image is bigger than the object, you may think the image is closer than the object. But the image
is farther away, a fact that is useful in correcting farsightedness, as we shall see in a later section.

A third type of image is formed by a diverging or concave lens. Try looking through eyeglasses meant to correct
nearsightedness. (See Figure 25.38.) You will see an image that is upright but smaller than the object. This means that the
magnification is positive but less than 1. The ray diagram in Figure 25.39 shows that the image is on the same side of the lens
as the object and, hence, cannot be projected—it is a virtual image. Note that the image is closer to the lens than the object. This
is a case 3 image, formed for any object by a negative focal length or diverging lens.

Figure 25.38 A car viewed through a concave or diverging lens looks upright. This is a case 3 image. (credit: Daniel Oines, Flickr)
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Figure 25.39 Ray tracing predicts the image location and size for a concave or diverging lens. Ray 1 enters parallel to the axis and is bent so that it
appears to originate from the focal point. Ray 2 passes through the center of the lens without changing path. The two rays appear to come from a
common point, locating the upright image. This is a case 3 image, which is closer to the lens than the object and smaller in height.

Example 25.8 Image Produced by a Concave Lens

Suppose an object such as a book page is held 7.50 cm from a concave lens of focal length –10.0 cm. Such a lens could be
used in eyeglasses to correct pronounced nearsightedness. What magnification is produced?

Strategy and Concept

This example is identical to the preceding one, except that the focal length is negative for a concave or diverging lens. The
method of solution is thus the same, but the results are different in important ways.

Solution

To find the magnification m , we must first find the image distance di using thin lens equation

(25.39)1
di

= 1
f − 1

do
,

or its alternative rearrangement

(25.40)
di = fdo

do − f .

We are given that f = –10.0 cm and do = 7.50 cm . Entering these yields a value for 1/di :

(25.41)1
di

= 1
−10.0 cm − 1

7.50 cm = −0.2333
cm .

This must be inverted to find di :

(25.42)di = − cm
0.2333 = −4.29 cm.

Or

(25.43)di = (7.5)(−10)
⎛
⎝7.5 − (−10)⎞⎠ = −75 / 17.5 = −4.29 cm.
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Now the magnification equation can be used to find the magnification m , since both di and do are known. Entering their

values gives

(25.44)
m = − di

do
= −−4.29 cm

7.50 cm = 0.571.

Discussion

A number of results in this example are true of all case 3 images, as well as being consistent with Figure 25.39.
Magnification is positive (as predicted), meaning the image is upright. The magnification is also less than 1, meaning the
image is smaller than the object—in this case, a little over half its size. The image distance is negative, meaning the image
is on the same side of the lens as the object. (The image is virtual.) The image is closer to the lens than the object, since the
image distance is smaller in magnitude than the object distance. The location of the image is not obvious when you look
through a concave lens. In fact, since the image is smaller than the object, you may think it is farther away. But the image is
closer than the object, a fact that is useful in correcting nearsightedness, as we shall see in a later section.

Table 25.3 summarizes the three types of images formed by single thin lenses. These are referred to as case 1, 2, and 3 images.
Convex (converging) lenses can form either real or virtual images (cases 1 and 2, respectively), whereas concave (diverging)
lenses can form only virtual images (always case 3). Real images are always inverted, but they can be either larger or smaller
than the object. For example, a slide projector forms an image larger than the slide, whereas a camera makes an image smaller
than the object being photographed. Virtual images are always upright and cannot be projected. Virtual images are larger than
the object only in case 2, where a convex lens is used. The virtual image produced by a concave lens is always smaller than the
object—a case 3 image. We can see and photograph virtual images only by using an additional lens to form a real image.

Table 25.3 Three Types of Images Formed By Thin Lenses

Type Formed when Image type di m

Case 1 f positive, do > f real positive negative

Case 2 f positive, do < f virtual negative positive m > 1

Case 3 f negative virtual negative positive m < 1

In Image Formation by Mirrors, we shall see that mirrors can form exactly the same types of images as lenses.

Take-Home Experiment: Concentrating Sunlight

Find several lenses and determine whether they are converging or diverging. In general those that are thicker near the
edges are diverging and those that are thicker near the center are converging. On a bright sunny day take the converging
lenses outside and try focusing the sunlight onto a piece of paper. Determine the focal lengths of the lenses. Be careful
because the paper may start to burn, depending on the type of lens you have selected.

Problem-Solving Strategies for Lenses

Step 1. Examine the situation to determine that image formation by a lens is involved.

Step 2. Determine whether ray tracing, the thin lens equations, or both are to be employed. A sketch is very useful even if ray
tracing is not specifically required by the problem. Write symbols and values on the sketch.

Step 3. Identify exactly what needs to be determined in the problem (identify the unknowns).

Step 4. Make alist of what is given or can be inferred from the problem as stated (identify the knowns). It is helpful to determine
whether the situation involves a case 1, 2, or 3 image. While these are just names for types of images, they have certain
characteristics (given in Table 25.3) that can be of great use in solving problems.

Step 5. If ray tracing is required, use the ray tracing rules listed near the beginning of this section.

Step 6. Most quantitative problems require the use of the thin lens equations. These are solved in the usual manner by
substituting knowns and solving for unknowns. Several worked examples serve as guides.

Step 7. Check to see if the answer is reasonable: Does it make sense? If you have identified the type of image (case 1, 2, or 3),
you should assess whether your answer is consistent with the type of image, magnification, and so on.

Misconception Alert

We do not realize that light rays are coming from every part of the object, passing through every part of the lens, and all can
be used to form the final image.

We generally feel the entire lens, or mirror, is needed to form an image. Actually, half a lens will form the same, though a
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fainter, image.

25.7 Image Formation by Mirrors

We only have to look as far as the nearest bathroom to find an example of an image formed by a mirror. Images in flat mirrors
are the same size as the object and are located behind the mirror. Like lenses, mirrors can form a variety of images. For
example, dental mirrors may produce a magnified image, just as makeup mirrors do. Security mirrors in shops, on the other
hand, form images that are smaller than the object. We will use the law of reflection to understand how mirrors form images, and
we will find that mirror images are analogous to those formed by lenses.

Figure 25.40 helps illustrate how a flat mirror forms an image. Two rays are shown emerging from the same point, striking the
mirror, and being reflected into the observer’s eye. The rays can diverge slightly, and both still get into the eye. If the rays are
extrapolated backward, they seem to originate from a common point behind the mirror, locating the image. (The paths of the
reflected rays into the eye are the same as if they had come directly from that point behind the mirror.) Using the law of
reflection—the angle of reflection equals the angle of incidence—we can see that the image and object are the same distance
from the mirror. This is a virtual image, since it cannot be projected—the rays only appear to originate from a common point
behind the mirror. Obviously, if you walk behind the mirror, you cannot see the image, since the rays do not go there. But in front
of the mirror, the rays behave exactly as if they had come from behind the mirror, so that is where the image is situated.

Figure 25.40 Two sets of rays from common points on an object are reflected by a flat mirror into the eye of an observer. The reflected rays seem to
originate from behind the mirror, locating the virtual image.

Now let us consider the focal length of a mirror—for example, the concave spherical mirrors in Figure 25.41. Rays of light that
strike the surface follow the law of reflection. For a mirror that is large compared with its radius of curvature, as in Figure
25.41(a), we see that the reflected rays do not cross at the same point, and the mirror does not have a well-defined focal point. If
the mirror had the shape of a parabola, the rays would all cross at a single point, and the mirror would have a well-defined focal
point. But parabolic mirrors are much more expensive to make than spherical mirrors. The solution is to use a mirror that is small
compared with its radius of curvature, as shown in Figure 25.41(b). (This is the mirror equivalent of the thin lens approximation.)
To a very good approximation, this mirror has a well-defined focal point at F that is the focal distance f from the center of the

mirror. The focal length f of a concave mirror is positive, since it is a converging mirror.
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Figure 25.41 (a) Parallel rays reflected from a large spherical mirror do not all cross at a common point. (b) If a spherical mirror is small compared with

its radius of curvature, parallel rays are focused to a common point. The distance of the focal point from the center of the mirror is its focal length f .

Since this mirror is converging, it has a positive focal length.

Just as for lenses, the shorter the focal length, the more powerful the mirror; thus, P = 1 / f for a mirror, too. A more strongly

curved mirror has a shorter focal length and a greater power. Using the law of reflection and some simple trigonometry, it can be
shown that the focal length is half the radius of curvature, or

(25.45)f = R
2 ,

where R is the radius of curvature of a spherical mirror. The smaller the radius of curvature, the smaller the focal length and,

thus, the more powerful the mirror.

The convex mirror shown in Figure 25.42 also has a focal point. Parallel rays of light reflected from the mirror seem to originate
from the point F at the focal distance f behind the mirror. The focal length and power of a convex mirror are negative, since it is

a diverging mirror.

Figure 25.42 Parallel rays of light reflected from a convex spherical mirror (small in size compared with its radius of curvature) seem to originate from a

well-defined focal point at the focal distance f behind the mirror. Convex mirrors diverge light rays and, thus, have a negative focal length.

Ray tracing is as useful for mirrors as for lenses. The rules for ray tracing for mirrors are based on the illustrations just discussed:

1. A ray approaching a concave converging mirror parallel to its axis is reflected through the focal point F of the mirror on the
same side. (See rays 1 and 3 in Figure 25.41(b).)

2. A ray approaching a convex diverging mirror parallel to its axis is reflected so that it seems to come from the focal point F
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behind the mirror. (See rays 1 and 3 in Figure 25.42.)

3. Any ray striking the center of a mirror is followed by applying the law of reflection; it makes the same angle with the axis
when leaving as when approaching. (See ray 2 in Figure 25.43.)

4. A ray approaching a concave converging mirror through its focal point is reflected parallel to its axis. (The reverse of rays 1
and 3 in Figure 25.41.)

5. A ray approaching a convex diverging mirror by heading toward its focal point on the opposite side is reflected parallel to
the axis. (The reverse of rays 1 and 3 in Figure 25.42.)

We will use ray tracing to illustrate how images are formed by mirrors, and we can use ray tracing quantitatively to obtain
numerical information. But since we assume each mirror is small compared with its radius of curvature, we can use the thin lens
equations for mirrors just as we did for lenses.

Consider the situation shown in Figure 25.43, concave spherical mirror reflection, in which an object is placed farther from a
concave (converging) mirror than its focal length. That is, f is positive and do > f , so that we may expect an image similar to

the case 1 real image formed by a converging lens. Ray tracing in Figure 25.43 shows that the rays from a common point on the
object all cross at a point on the same side of the mirror as the object. Thus a real image can be projected onto a screen placed
at this location. The image distance is positive, and the image is inverted, so its magnification is negative. This is a case 1 image
for mirrors. It differs from the case 1 image for lenses only in that the image is on the same side of the mirror as the object. It is
otherwise identical.

Figure 25.43 A case 1 image for a mirror. An object is farther from the converging mirror than its focal length. Rays from a common point on the object
are traced using the rules in the text. Ray 1 approaches parallel to the axis, ray 2 strikes the center of the mirror, and ray 3 goes through the focal point
on the way toward the mirror. All three rays cross at the same point after being reflected, locating the inverted real image. Although three rays are
shown, only two of the three are needed to locate the image and determine its height.

Example 25.9 A Concave Reflector

Electric room heaters use a concave mirror to reflect infrared (IR) radiation from hot coils. Note that IR follows the same law
of reflection as visible light. Given that the mirror has a radius of curvature of 50.0 cm and produces an image of the coils
3.00 m away from the mirror, where are the coils?

Strategy and Concept

We are given that the concave mirror projects a real image of the coils at an image distance di = 3.00 m . The coils are

the object, and we are asked to find their location—that is, to find the object distance do . We are also given the radius of

curvature of the mirror, so that its focal length is f = R / 2 = 25.0 cm (positive since the mirror is concave or

converging). Assuming the mirror is small compared with its radius of curvature, we can use the thin lens equations, to solve
this problem.

Solution

Since di and f are known, thin lens equation can be used to find do :

(25.46)1
do

+ 1
di

= 1
f .

Rearranging to isolate do gives

(25.47)1
do

= 1
f − 1

di
.

Entering known quantities gives a value for 1/do :

(25.48)1
do

= 1
0.250 m − 1

3.00 m = 3.667
m .
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This must be inverted to find do :

(25.49)do = 1 m
3.667 = 27.3 cm.

Discussion

Note that the object (the filament) is farther from the mirror than the mirror’s focal length. This is a case 1 image ( do > f
and f positive), consistent with the fact that a real image is formed. You will get the most concentrated thermal energy

directly in front of the mirror and 3.00 m away from it. Generally, this is not desirable, since it could cause burns. Usually, you
want the rays to emerge parallel, and this is accomplished by having the filament at the focal point of the mirror.

Note that the filament here is not much farther from the mirror than its focal length and that the image produced is
considerably farther away. This is exactly analogous to a slide projector. Placing a slide only slightly farther away from the
projector lens than its focal length produces an image significantly farther away. As the object gets closer to the focal
distance, the image gets farther away. In fact, as the object distance approaches the focal length, the image distance
approaches infinity and the rays are sent out parallel to one another.

Example 25.10 Solar Electric Generating System

One of the solar technologies used today for generating electricity is a device (called a parabolic trough or concentrating
collector) that concentrates the sunlight onto a blackened pipe that contains a fluid. This heated fluid is pumped to a heat
exchanger, where its heat energy is transferred to another system that is used to generate steam—and so generate
electricity through a conventional steam cycle. Figure 25.44 shows such a working system in southern California. Concave
mirrors are used to concentrate the sunlight onto the pipe. The mirror has the approximate shape of a section of a cylinder.
For the problem, assume that the mirror is exactly one-quarter of a full cylinder.

a. If we wish to place the fluid-carrying pipe 40.0 cm from the concave mirror at the mirror’s focal point, what will be the
radius of curvature of the mirror?

b. Per meter of pipe, what will be the amount of sunlight concentrated onto the pipe, assuming the insolation (incident

solar radiation) is 0.900 kW/m2 ?

c. If the fluid-carrying pipe has a 2.00-cm diameter, what will be the temperature increase of the fluid per meter of pipe
over a period of one minute? Assume all the solar radiation incident on the reflector is absorbed by the pipe, and that
the fluid is mineral oil.

Strategy

To solve an Integrated Concept Problem we must first identify the physical principles involved. Part (a) is related to the
current topic. Part (b) involves a little math, primarily geometry. Part (c) requires an understanding of heat and density.

Solution to (a)

To a good approximation for a concave or semi-spherical surface, the point where the parallel rays from the sun converge
will be at the focal point, so R = 2 f = 80.0 cm .

Solution to (b)

The insolation is 900 W/m2 . We must find the cross-sectional area A of the concave mirror, since the power delivered is

900 W/m2×A . The mirror in this case is a quarter-section of a cylinder, so the area for a length L of the mirror is

A = 1
4(2πR)L . The area for a length of 1.00 m is then

(25.50)A = π
2R(1.00 m) = (3.14)

2 (0.800 m)(1.00 m) = 1.26 m2.

The insolation on the 1.00-m length of pipe is then

(25.51)⎛
⎝9.00×102 W

m2
⎞
⎠
⎛
⎝1.26 m2⎞⎠ = 1130 W.

Solution to (c)

The increase in temperature is given by Q = mcΔT . The mass m of the mineral oil in the one-meter section of pipe is
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(25.52)
m = ρV = ρπ⎛⎝d2

⎞
⎠
2

(1.00 m)

= ⎛
⎝8.00×102 kg/m3⎞⎠(3.14)(0.0100 m)2 (1.00 m)

= 0.251 kg.

Therefore, the increase in temperature in one minute is

(25.53)ΔT = Q / mc

= (1130 W)(60.0 s)
(0.251 kg)(1670 J·kg/ºC)

= 162ºC.
Discussion for (c)

An array of such pipes in the California desert can provide a thermal output of 250 MW on a sunny day, with fluids reaching
temperatures as high as 400ºC . We are considering only one meter of pipe here, and ignoring heat losses along the pipe.

Figure 25.44 Parabolic trough collectors are used to generate electricity in southern California. (credit: kjkolb, Wikimedia Commons)

What happens if an object is closer to a concave mirror than its focal length? This is analogous to a case 2 image for lenses
( do < f and f positive), which is a magnifier. In fact, this is how makeup mirrors act as magnifiers. Figure 25.45(a) uses

ray tracing to locate the image of an object placed close to a concave mirror. Rays from a common point on the object are
reflected in such a manner that they appear to be coming from behind the mirror, meaning that the image is virtual and
cannot be projected. As with a magnifying glass, the image is upright and larger than the object. This is a case 2 image for
mirrors and is exactly analogous to that for lenses.
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Figure 25.45 (a) Case 2 images for mirrors are formed when a converging mirror has an object closer to it than its focal length. Ray 1 approaches
parallel to the axis, ray 2 strikes the center of the mirror, and ray 3 approaches the mirror as if it came from the focal point. (b) A magnifying mirror
showing the reflection. (credit: Mike Melrose, Flickr)

All three rays appear to originate from the same point after being reflected, locating the upright virtual image behind the
mirror and showing it to be larger than the object. (b) Makeup mirrors are perhaps the most common use of a concave mirror
to produce a larger, upright image.

A convex mirror is a diverging mirror ( f is negative) and forms only one type of image. It is a case 3 image—one that is

upright and smaller than the object, just as for diverging lenses. Figure 25.46(a) uses ray tracing to illustrate the location
and size of the case 3 image for mirrors. Since the image is behind the mirror, it cannot be projected and is thus a virtual
image. It is also seen to be smaller than the object.
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Figure 25.46 Case 3 images for mirrors are formed by any convex mirror. Ray 1 approaches parallel to the axis, ray 2 strikes the center of the
mirror, and ray 3 approaches toward the focal point. All three rays appear to originate from the same point after being reflected, locating the
upright virtual image behind the mirror and showing it to be smaller than the object. (b) Security mirrors are convex, producing a smaller, upright
image. Because the image is smaller, a larger area is imaged compared to what would be observed for a flat mirror (and hence security is
improved). (credit: Laura D’Alessandro, Flickr)

Example 25.11 Image in a Convex Mirror

A keratometer is a device used to measure the curvature of the cornea, particularly for fitting contact lenses. Light is
reflected from the cornea, which acts like a convex mirror, and the keratometer measures the magnification of the image.
The smaller the magnification, the smaller the radius of curvature of the cornea. If the light source is 12.0 cm from the
cornea and the image’s magnification is 0.0320, what is the cornea’s radius of curvature?

Strategy

If we can find the focal length of the convex mirror formed by the cornea, we can find its radius of curvature (the radius of
curvature is twice the focal length of a spherical mirror). We are given that the object distance is do = 12.0 cm and that

m = 0.0320 . We first solve for the image distance di , and then for f .

Solution

m = –di / do . Solving this expression for di gives

(25.54)di = −mdo.

Entering known values yields

(25.55)di = – (0.0320)(12.0 cm) = –0.384 cm.
(25.56)1

f = 1
do

+ 1
di

Substituting known values,
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converging lens:

converging mirror:

corner reflector:

critical angle:

dispersion:

diverging lens:

diverging mirror:

fiber optics:

focal length:

focal point:

geometric optics:

index of refraction:

law of reflection:

law of reflection:

(25.57)1
f = 1

12.0 cm + 1
−0.384 cm = −2.52

cm .

This must be inverted to find f :

(25.58)f = cm
– 2.52 = –0.400 cm.

The radius of curvature is twice the focal length, so that

(25.59)R = 2 ∣ f ∣ = 0.800 cm.

Discussion

Although the focal length f of a convex mirror is defined to be negative, we take the absolute value to give us a positive

value for R . The radius of curvature found here is reasonable for a cornea. The distance from cornea to retina in an adult

eye is about 2.0 cm. In practice, many corneas are not spherical, complicating the job of fitting contact lenses. Note that the
image distance here is negative, consistent with the fact that the image is behind the mirror, where it cannot be projected. In
this section’s Problems and Exercises, you will show that for a fixed object distance, the smaller the radius of curvature, the
smaller the magnification.

The three types of images formed by mirrors (cases 1, 2, and 3) are exactly analogous to those formed by lenses, as
summarized in the table at the end of Image Formation by Lenses. It is easiest to concentrate on only three types of
images—then remember that concave mirrors act like convex lenses, whereas convex mirrors act like concave lenses.

Take-Home Experiment: Concave Mirrors Close to Home

Find a flashlight and identify the curved mirror used in it. Find another flashlight and shine the first flashlight onto the second
one, which is turned off. Estimate the focal length of the mirror. You might try shining a flashlight on the curved mirror behind
the headlight of a car, keeping the headlight switched off, and determine its focal length.

Problem-Solving Strategy for Mirrors

Step 1. Examine the situation to determine that image formation by a mirror is involved.

Step 2. Refer to the Problem-Solving Strategies for Lenses. The same strategies are valid for mirrors as for lenses with one
qualification—use the ray tracing rules for mirrors listed earlier in this section.

Glossary

a convex lens in which light rays that enter it parallel to its axis converge at a single point on the opposite
side

a concave mirror in which light rays that strike it parallel to its axis converge at one or more points along
the axis

an object consisting of two mutually perpendicular reflecting surfaces, so that the light that enters is
reflected back exactly parallel to the direction from which it came

incident angle that produces an angle of refraction of 90º

spreading of white light into its full spectrum of wavelengths

a concave lens in which light rays that enter it parallel to its axis bend away (diverge) from its axis

a convex mirror in which light rays that strike it parallel to its axis bend away (diverge) from its axis

transmission of light down fibers of plastic or glass, applying the principle of total internal reflection

distance from the center of a lens or curved mirror to its focal point

for a converging lens or mirror, the point at which converging light rays cross; for a diverging lens or mirror, the
point from which diverging light rays appear to originate

part of optics dealing with the ray aspect of light

for a material, the ratio of the speed of light in vacuum to that in the material

angle of reflection equals the angle of incidence

angle of reflection equals the angle of incidence
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magnification:

mirror:

power:

rainbow:

ray:

real image:

refraction:

virtual image:

zircon:

ratio of image height to object height

smooth surface that reflects light at specific angles, forming an image of the person or object in front of it

inverse of focal length

dispersion of sunlight into a continuous distribution of colors according to wavelength, produced by the refraction
and reflection of sunlight by water droplets in the sky

straight line that originates at some point

image that can be projected

changing of a light ray’s direction when it passes through variations in matter

image that cannot be projected

natural gemstone with a large index of refraction

Section Summary

25.1 The Ray Aspect of Light
• A straight line that originates at some point is called a ray.
• The part of optics dealing with the ray aspect of light is called geometric optics.
• Light can travel in three ways from a source to another location: (1) directly from the source through empty space; (2)

through various media; (3) after being reflected from a mirror.

25.2 The Law of Reflection
• The angle of reflection equals the angle of incidence.
• A mirror has a smooth surface and reflects light at specific angles.
• Light is diffused when it reflects from a rough surface.
• Mirror images can be photographed and videotaped by instruments.

25.3 The Law of Refraction
• The changing of a light ray’s direction when it passes through variations in matter is called refraction.

• The speed of light in vacuum c = 2.99792458×108 m/s ≈ 3.00×108 m/s.
• Index of refraction n = c

v , where v is the speed of light in the material, c is the speed of light in vacuum, and n is the

index of refraction.
• Snell’s law, the law of refraction, is stated in equation form as n1 sin θ1 = n2 sin θ2 .

25.4 Total Internal Reflection
• The incident angle that produces an angle of refraction of 90º is called critical angle.

• Total internal reflection is a phenomenon that occurs at the boundary between two mediums, such that if the incident angle
in the first medium is greater than the critical angle, then all the light is reflected back into that medium.

• Fiber optics involves the transmission of light down fibers of plastic or glass, applying the principle of total internal
reflection.

• Endoscopes are used to explore the body through various orifices or minor incisions, based on the transmission of light
through optical fibers.

• Cladding prevents light from being transmitted between fibers in a bundle.
• Diamonds sparkle due to total internal reflection coupled with a large index of refraction.

25.5 Dispersion: The Rainbow and Prisms
• The spreading of white light into its full spectrum of wavelengths is called dispersion.
• Rainbows are produced by a combination of refraction and reflection and involve the dispersion of sunlight into a

continuous distribution of colors.
• Dispersion produces beautiful rainbows but also causes problems in certain optical systems.

25.6 Image Formation by Lenses
• Light rays entering a converging lens parallel to its axis cross one another at a single point on the opposite side.
• For a converging lens, the focal point is the point at which converging light rays cross; for a diverging lens, the focal point is

the point from which diverging light rays appear to originate.
• The distance from the center of the lens to its focal point is called the focal length f .
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• Power P of a lens is defined to be the inverse of its focal length, P = 1
f .

• A lens that causes the light rays to bend away from its axis is called a diverging lens.
• Ray tracing is the technique of graphically determining the paths that light rays take.
• The image in which light rays from one point on the object actually cross at the location of the image and can be projected

onto a screen, a piece of film, or the retina of an eye is called a real image.

• Thin lens equations are 1
do

+ 1
di

= 1
f and

hi
ho

= − di
do

= m (magnification).

• The distance of the image from the center of the lens is called image distance.
• An image that is on the same side of the lens as the object and cannot be projected on a screen is called a virtual image.

25.7 Image Formation by Mirrors
• The characteristics of an image formed by a flat mirror are: (a) The image and object are the same distance from the mirror,

(b) The image is a virtual image, and (c) The image is situated behind the mirror.
• Image length is half the radius of curvature.

f = R
2

• A convex mirror is a diverging mirror and forms only one type of image, namely a virtual image.

Conceptual Questions

25.2 The Law of Reflection

1. Using the law of reflection, explain how powder takes the shine off of a person’s nose. What is the name of the optical effect?

25.3 The Law of Refraction

2. Diffusion by reflection from a rough surface is described in this chapter. Light can also be diffused by refraction. Describe how
this occurs in a specific situation, such as light interacting with crushed ice.

3. Why is the index of refraction always greater than or equal to 1?

4. Does the fact that the light flash from lightning reaches you before its sound prove that the speed of light is extremely large or
simply that it is greater than the speed of sound? Discuss how you could use this effect to get an estimate of the speed of light.

5. Will light change direction toward or away from the perpendicular when it goes from air to water? Water to glass? Glass to
air?

6. Explain why an object in water always appears to be at a depth shallower than it actually is? Why do people sometimes
sustain neck and spinal injuries when diving into unfamiliar ponds or waters?

7. Explain why a person’s legs appear very short when wading in a pool. Justify your explanation with a ray diagram showing the
path of rays from the feet to the eye of an observer who is out of the water.

8. Why is the front surface of a thermometer curved as shown?

Figure 25.47 The curved surface of the thermometer serves a purpose.

9. Suppose light were incident from air onto a material that had a negative index of refraction, say –1.3; where does the refracted
light ray go?

25.4 Total Internal Reflection

10. A ring with a colorless gemstone is dropped into water. The gemstone becomes invisible when submerged. Can it be a
diamond? Explain.

11. A high-quality diamond may be quite clear and colorless, transmitting all visible wavelengths with little absorption. Explain
how it can sparkle with flashes of brilliant color when illuminated by white light.
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12. Is it possible that total internal reflection plays a role in rainbows? Explain in terms of indices of refraction and angles,
perhaps referring to Figure 25.48. Some of us have seen the formation of a double rainbow. Is it physically possible to observe a
triple rainbow?

Figure 25.48 Double rainbows are not a very common observance. (credit: InvictusOU812, Flickr)

13. The most common type of mirage is an illusion that light from faraway objects is reflected by a pool of water that is not really
there. Mirages are generally observed in deserts, when there is a hot layer of air near the ground. Given that the refractive index
of air is lower for air at higher temperatures, explain how mirages can be formed.

25.6 Image Formation by Lenses

14. It can be argued that a flat piece of glass, such as in a window, is like a lens with an infinite focal length. If so, where does it
form an image? That is, how are di and do related?

15. You can often see a reflection when looking at a sheet of glass, particularly if it is darker on the other side. Explain why you
can often see a double image in such circumstances.

16. When you focus a camera, you adjust the distance of the lens from the film. If the camera lens acts like a thin lens, why can it
not be a fixed distance from the film for both near and distant objects?

17. A thin lens has two focal points, one on either side, at equal distances from its center, and should behave the same for light
entering from either side. Look through your eyeglasses (or those of a friend) backward and forward and comment on whether
they are thin lenses.

18. Will the focal length of a lens change when it is submerged in water? Explain.

25.7 Image Formation by Mirrors

19. What are the differences between real and virtual images? How can you tell (by looking) whether an image formed by a
single lens or mirror is real or virtual?

20. Can you see a virtual image? Can you photograph one? Can one be projected onto a screen with additional lenses or
mirrors? Explain your responses.

21. Is it necessary to project a real image onto a screen for it to exist?

22. At what distance is an image always located—at do , di , or f ?

23. Under what circumstances will an image be located at the focal point of a lens or mirror?

24. What is meant by a negative magnification? What is meant by a magnification that is less than 1 in magnitude?

25. Can a case 1 image be larger than the object even though its magnification is always negative? Explain.

Chapter 25 | Geometric Optics 1023



26. Figure 25.49 shows a light bulb between two mirrors. One mirror produces a beam of light with parallel rays; the other keeps
light from escaping without being put into the beam. Where is the filament of the light in relation to the focal point or radius of
curvature of each mirror?

Figure 25.49 The two mirrors trap most of the bulb’s light and form a directional beam as in a headlight.

27. Devise an arrangement of mirrors allowing you to see the back of your head. What is the minimum number of mirrors needed
for this task?

28. If you wish to see your entire body in a flat mirror (from head to toe), how tall should the mirror be? Does its size depend
upon your distance away from the mirror? Provide a sketch.

29. It can be argued that a flat mirror has an infinite focal length. If so, where does it form an image? That is, how are di and

do related?

30. Why are diverging mirrors often used for rear-view mirrors in vehicles? What is the main disadvantage of using such a mirror
compared with a flat one?
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Problems & Exercises

25.1 The Ray Aspect of Light

1. Suppose a man stands in front of a mirror as shown in
Figure 25.50. His eyes are 1.65 m above the floor, and the
top of his head is 0.13 m higher. Find the height above the
floor of the top and bottom of the smallest mirror in which he
can see both the top of his head and his feet. How is this
distance related to the man’s height?

Figure 25.50 A full-length mirror is one in which you can see all of

yourself. It need not be as big as you, and its size is independent of your

distance from it.

25.2 The Law of Reflection

2. Show that when light reflects from two mirrors that meet
each other at a right angle, the outgoing ray is parallel to the
incoming ray, as illustrated in the following figure.

Figure 25.51 A corner reflector sends the reflected ray back in a

direction parallel to the incident ray, independent of incoming direction.

3. Light shows staged with lasers use moving mirrors to swing
beams and create colorful effects. Show that a light ray
reflected from a mirror changes direction by 2θ when the

mirror is rotated by an angle θ .

4. A flat mirror is neither converging nor diverging. To prove
this, consider two rays originating from the same point and
diverging at an angle θ . Show that after striking a plane

mirror, the angle between their directions remains θ .

Figure 25.52 A flat mirror neither converges nor diverges light rays. Two

rays continue to diverge at the same angle after reflection.

25.3 The Law of Refraction

5. What is the speed of light in water? In glycerine?

6. What is the speed of light in air? In crown glass?

7. Calculate the index of refraction for a medium in which the

speed of light is 2.012×108 m/s , and identify the most

likely substance based on Table 25.1.

8. In what substance in Table 25.1 is the speed of light

2.290×108 m/s ?

9. There was a major collision of an asteroid with the Moon in
medieval times. It was described by monks at Canterbury
Cathedral in England as a red glow on and around the Moon.
How long after the asteroid hit the Moon, which is

3.84×105 km away, would the light first arrive on Earth?
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10. A scuba diver training in a pool looks at his instructor as
shown in Figure 25.53. What angle does the ray from the
instructor’s face make with the perpendicular to the water at
the point where the ray enters? The angle between the ray in
the water and the perpendicular to the water is 25.0º .

Figure 25.53 A scuba diver in a pool and his trainer look at each other.

11. Components of some computers communicate with each
other through optical fibers having an index of refraction
n = 1.55 . What time in nanoseconds is required for a signal

to travel 0.200 m through such a fiber?

12. (a) Given that the angle between the ray in the water and
the perpendicular to the water is 25.0º , and using

information in Figure 25.53, find the height of the instructor’s
head above the water, noting that you will first have to
calculate the angle of incidence. (b) Find the apparent depth
of the diver’s head below water as seen by the instructor.

13. Suppose you have an unknown clear substance
immersed in water, and you wish to identify it by finding its
index of refraction. You arrange to have a beam of light enter
it at an angle of 45.0º , and you observe the angle of

refraction to be 40.3º . What is the index of refraction of the

substance and its likely identity?

14. On the Moon’s surface, lunar astronauts placed a corner
reflector, off which a laser beam is periodically reflected. The
distance to the Moon is calculated from the round-trip time.
What percent correction is needed to account for the delay in
time due to the slowing of light in Earth’s atmosphere?

Assume the distance to the Moon is precisely 3.84×108 m ,

and Earth’s atmosphere (which varies in density with altitude)
is equivalent to a layer 30.0 km thick with a constant index of
refraction n = 1.000293 .

15. Suppose Figure 25.54 represents a ray of light going
from air through crown glass into water, such as going into a
fish tank. Calculate the amount the ray is displaced by the
glass ( Δx ), given that the incident angle is 40.0º and the

glass is 1.00 cm thick.

16. Figure 25.54 shows a ray of light passing from one
medium into a second and then a third. Show that θ3 is the

same as it would be if the second medium were not present
(provided total internal reflection does not occur).

Figure 25.54 A ray of light passes from one medium to a third by

traveling through a second. The final direction is the same as if the

second medium were not present, but the ray is displaced by Δx
(shown exaggerated).

17. Unreasonable Results

Suppose light travels from water to another substance, with
an angle of incidence of 10.0º and an angle of refraction of

14.9º . (a) What is the index of refraction of the other

substance? (b) What is unreasonable about this result? (c)
Which assumptions are unreasonable or inconsistent?

18. Construct Your Own Problem

Consider sunlight entering the Earth’s atmosphere at sunrise
and sunset—that is, at a 90º incident angle. Taking the

boundary between nearly empty space and the atmosphere
to be sudden, calculate the angle of refraction for sunlight.
This lengthens the time the Sun appears to be above the
horizon, both at sunrise and sunset. Now construct a problem
in which you determine the angle of refraction for different
models of the atmosphere, such as various layers of varying
density. Your instructor may wish to guide you on the level of
complexity to consider and on how the index of refraction
varies with air density.

19. Unreasonable Results

Light traveling from water to a gemstone strikes the surface at
an angle of 80.0º and has an angle of refraction of 15.2º .

(a) What is the speed of light in the gemstone? (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?

25.4 Total Internal Reflection

20. Verify that the critical angle for light going from water to air
is 48.6º , as discussed at the end of Example 25.4,

regarding the critical angle for light traveling in a polystyrene
(a type of plastic) pipe surrounded by air.
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21. (a) At the end of Example 25.4, it was stated that the
critical angle for light going from diamond to air is 24.4º .

Verify this. (b) What is the critical angle for light going from
zircon to air?

22. An optical fiber uses flint glass clad with crown glass.
What is the critical angle?

23. At what minimum angle will you get total internal reflection
of light traveling in water and reflected from ice?

24. Suppose you are using total internal reflection to make an
efficient corner reflector. If there is air outside and the incident
angle is 45.0º , what must be the minimum index of

refraction of the material from which the reflector is made?

25. You can determine the index of refraction of a substance
by determining its critical angle. (a) What is the index of
refraction of a substance that has a critical angle of 68.4º
when submerged in water? What is the substance, based on
Table 25.1? (b) What would the critical angle be for this
substance in air?

26. A ray of light, emitted beneath the surface of an unknown
liquid with air above it, undergoes total internal reflection as
shown in Figure 25.55. What is the index of refraction for the
liquid and its likely identification?

Figure 25.55 A light ray inside a liquid strikes the surface at the critical

angle and undergoes total internal reflection.

27. A light ray entering an optical fiber surrounded by air is
first refracted and then reflected as shown in Figure 25.56.
Show that if the fiber is made from crown glass, any incident
ray will be totally internally reflected.

Figure 25.56 A light ray enters the end of a fiber, the surface of which is

perpendicular to its sides. Examine the conditions under which it may be

totally internally reflected.

25.5 Dispersion: The Rainbow and Prisms

28. (a) What is the ratio of the speed of red light to violet light
in diamond, based on Table 25.2? (b) What is this ratio in
polystyrene? (c) Which is more dispersive?

29. A beam of white light goes from air into water at an
incident angle of 75.0º . At what angles are the red (660 nm)

and violet (410 nm) parts of the light refracted?

30. By how much do the critical angles for red (660 nm) and
violet (410 nm) light differ in a diamond surrounded by air?

31. (a) A narrow beam of light containing yellow (580 nm) and
green (550 nm) wavelengths goes from polystyrene to air,
striking the surface at a 30.0º incident angle. What is the

angle between the colors when they emerge? (b) How far
would they have to travel to be separated by 1.00 mm?

32. A parallel beam of light containing orange (610 nm) and
violet (410 nm) wavelengths goes from fused quartz to water,
striking the surface between them at a 60.0º incident angle.

What is the angle between the two colors in water?

33. A ray of 610 nm light goes from air into fused quartz at an
incident angle of 55.0º . At what incident angle must 470 nm

light enter flint glass to have the same angle of refraction?

34. A narrow beam of light containing red (660 nm) and blue
(470 nm) wavelengths travels from air through a 1.00 cm thick
flat piece of crown glass and back to air again. The beam
strikes at a 30.0º incident angle. (a) At what angles do the

two colors emerge? (b) By what distance are the red and blue
separated when they emerge?

35. A narrow beam of white light enters a prism made of
crown glass at a 45.0º incident angle, as shown in Figure

25.57. At what angles, θR and θV , do the red (660 nm) and

violet (410 nm) components of the light emerge from the
prism?

Figure 25.57 This prism will disperse the white light into a rainbow of

colors. The incident angle is 45.0º , and the angles at which the red

and violet light emerge are θR and θV .

25.6 Image Formation by Lenses

36. What is the power in diopters of a camera lens that has a
50.0 mm focal length?

37. Your camera’s zoom lens has an adjustable focal length
ranging from 80.0 to 200 mm. What is its range of powers?

38. What is the focal length of 1.75 D reading glasses found
on the rack in a pharmacy?

39. You note that your prescription for new eyeglasses is
–4.50 D. What will their focal length be?

40. How far from the lens must the film in a camera be, if the
lens has a 35.0 mm focal length and is being used to
photograph a flower 75.0 cm away? Explicitly show how you
follow the steps in the Problem-Solving Strategy for lenses.

41. A certain slide projector has a 100 mm focal length lens.
(a) How far away is the screen, if a slide is placed 103 mm
from the lens and produces a sharp image? (b) If the slide is
24.0 by 36.0 mm, what are the dimensions of the image?
Explicitly show how you follow the steps in the Problem-
Solving Strategy for lenses.
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42. A doctor examines a mole with a 15.0 cm focal length
magnifying glass held 13.5 cm from the mole (a) Where is the
image? (b) What is its magnification? (c) How big is the image
of a 5.00 mm diameter mole?

43. How far from a piece of paper must you hold your father’s
2.25 D reading glasses to try to burn a hole in the paper with
sunlight?

44. A camera with a 50.0 mm focal length lens is being used
to photograph a person standing 3.00 m away. (a) How far
from the lens must the film be? (b) If the film is 36.0 mm high,
what fraction of a 1.75 m tall person will fit on it? (c) Discuss
how reasonable this seems, based on your experience in
taking or posing for photographs.

45. A camera lens used for taking close-up photographs has
a focal length of 22.0 mm. The farthest it can be placed from
the film is 33.0 mm. (a) What is the closest object that can be
photographed? (b) What is the magnification of this closest
object?

46. Suppose your 50.0 mm focal length camera lens is 51.0
mm away from the film in the camera. (a) How far away is an
object that is in focus? (b) What is the height of the object if
its image is 2.00 cm high?

47. (a) What is the focal length of a magnifying glass that
produces a magnification of 3.00 when held 5.00 cm from an
object, such as a rare coin? (b) Calculate the power of the
magnifier in diopters. (c) Discuss how this power compares to
those for store-bought reading glasses (typically 1.0 to 4.0 D).
Is the magnifier’s power greater, and should it be?

48. What magnification will be produced by a lens of power
–4.00 D (such as might be used to correct myopia) if an
object is held 25.0 cm away?

49. In Example 25.7, the magnification of a book held 7.50
cm from a 10.0 cm focal length lens was found to be 3.00. (a)
Find the magnification for the book when it is held 8.50 cm
from the magnifier. (b) Do the same for when it is held 9.50
cm from the magnifier. (c) Comment on the trend in m as the
object distance increases as in these two calculations.

50. Suppose a 200 mm focal length telephoto lens is being
used to photograph mountains 10.0 km away. (a) Where is
the image? (b) What is the height of the image of a 1000 m
high cliff on one of the mountains?

51. A camera with a 100 mm focal length lens is used to
photograph the sun and moon. What is the height of the

image of the sun on the film, given the sun is 1.40×106 km
in diameter and is 1.50×108 km away?

52. Combine thin lens equations to show that the
magnification for a thin lens is determined by its focal length
and the object distance and is given by m = f / ⎛⎝ f − do

⎞
⎠ .

25.7 Image Formation by Mirrors

53. What is the focal length of a makeup mirror that has a
power of 1.50 D?

54. Some telephoto cameras use a mirror rather than a lens.
What radius of curvature mirror is needed to replace a 800
mm focal length telephoto lens?

55. (a) Calculate the focal length of the mirror formed by the
shiny back of a spoon that has a 3.00 cm radius of curvature.
(b) What is its power in diopters?

56. Find the magnification of the heater element in Example
25.9. Note that its large magnitude helps spread out the
reflected energy.

57. What is the focal length of a makeup mirror that produces
a magnification of 1.50 when a person’s face is 12.0 cm
away? Explicitly show how you follow the steps in the
Problem-Solving Strategy for Mirrors.

58. A shopper standing 3.00 m from a convex security mirror
sees his image with a magnification of 0.250. (a) Where is his
image? (b) What is the focal length of the mirror? (c) What is
its radius of curvature? Explicitly show how you follow the
steps in the Problem-Solving Strategy for Mirrors.

59. An object 1.50 cm high is held 3.00 cm from a person’s
cornea, and its reflected image is measured to be 0.167 cm
high. (a) What is the magnification? (b) Where is the image?
(c) Find the radius of curvature of the convex mirror formed
by the cornea. (Note that this technique is used by
optometrists to measure the curvature of the cornea for
contact lens fitting. The instrument used is called a
keratometer, or curve measurer.)

60. Ray tracing for a flat mirror shows that the image is
located a distance behind the mirror equal to the distance of
the object from the mirror. This is stated di = –do , since this

is a negative image distance (it is a virtual image). (a) What is
the focal length of a flat mirror? (b) What is its power?

61. Show that for a flat mirror hi = ho , knowing that the

image is a distance behind the mirror equal in magnitude to
the distance of the object from the mirror.

62. Use the law of reflection to prove that the focal length of a
mirror is half its radius of curvature. That is, prove that
f = R / 2 . Note this is true for a spherical mirror only if its

diameter is small compared with its radius of curvature.

63. Referring to the electric room heater considered in the
first example in this section, calculate the intensity of IR

radiation in W/m2 projected by the concave mirror on a

person 3.00 m away. Assume that the heating element

radiates 1500 W and has an area of 100 cm2 , and that half

of the radiated power is reflected and focused by the mirror.

64. Consider a 250-W heat lamp fixed to the ceiling in a
bathroom. If the filament in one light burns out then the
remaining three still work. Construct a problem in which you
determine the resistance of each filament in order to obtain a
certain intensity projected on the bathroom floor. The ceiling
is 3.0 m high. The problem will need to involve concave
mirrors behind the filaments. Your instructor may wish to
guide you on the level of complexity to consider in the
electrical components.
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26 VISION AND OPTICAL INSTRUMENTS

Figure 26.1 A scientist examines minute details on the surface of a disk drive at a magnification of 100,000 times. The image was produced using an
electron microscope. (credit: Robert Scoble)

Chapter Outline
26.1. Physics of the Eye

• Explain the image formation by the eye.
• Explain why peripheral images lack detail and color.
• Define refractive indices.
• Analyze the accommodation of the eye for distant and near vision.

26.2. Vision Correction
• Identify and discuss common vision defects.
• Explain nearsightedness and farsightedness corrections.
• Explain laser vision correction.

26.3. Color and Color Vision
• Explain the simple theory of color vision.
• Outline the coloring properties of light sources.
• Describe the retinex theory of color vision.

26.4. Microscopes
• Investigate different types of microscopes.
• Learn how image is formed in a compound microscope.

26.5. Telescopes
• Outline the invention of a telescope.
• Describe the working of a telescope.

26.6. Aberrations
• Describe optical aberration.

Introduction to Vision and Optical Instruments

Explore how the image on the computer screen is formed. How is the image formation on the computer screen different from the
image formation in your eye as you look down the microscope? How can videos of living cell processes be taken for viewing later
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on, and by many different people?

Seeing faces and objects we love and cherish is a delight—one’s favorite teddy bear, a picture on the wall, or the sun rising over
the mountains. Intricate images help us understand nature and are invaluable for developing techniques and technologies in
order to improve the quality of life. The image of a red blood cell that almost fills the cross-sectional area of a tiny capillary makes
us wonder how blood makes it through and not get stuck. We are able to see bacteria and viruses and understand their structure.
It is the knowledge of physics that provides fundamental understanding and models required to develop new techniques and
instruments. Therefore, physics is called an enabling science—a science that enables development and advancement in other
areas. It is through optics and imaging that physics enables advancement in major areas of biosciences. This chapter illustrates
the enabling nature of physics through an understanding of how a human eye is able to see and how we are able to use optical
instruments to see beyond what is possible with the naked eye. It is convenient to categorize these instruments on the basis of
geometric optics (see Geometric Optics) and wave optics (see Wave Optics).

26.1 Physics of the Eye

The eye is perhaps the most interesting of all optical instruments. The eye is remarkable in how it forms images and in the
richness of detail and color it can detect. However, our eyes commonly need some correction, to reach what is called “normal”
vision, but should be called ideal rather than normal. Image formation by our eyes and common vision correction are easy to
analyze with the optics discussed in Geometric Optics.

Figure 26.2 shows the basic anatomy of the eye. The cornea and lens form a system that, to a good approximation, acts as a
single thin lens. For clear vision, a real image must be projected onto the light-sensitive retina, which lies at a fixed distance from
the lens. The lens of the eye adjusts its power to produce an image on the retina for objects at different distances. The center of
the image falls on the fovea, which has the greatest density of light receptors and the greatest acuity (sharpness) in the visual
field. The variable opening (or pupil) of the eye along with chemical adaptation allows the eye to detect light intensities from the

lowest observable to 1010 times greater (without damage). This is an incredible range of detection. Our eyes perform a vast

number of functions, such as sense direction, movement, sophisticated colors, and distance. Processing of visual nerve impulses
begins with interconnections in the retina and continues in the brain. The optic nerve conveys signals received by the eye to the
brain.

Figure 26.2 The cornea and lens of an eye act together to form a real image on the light-sensing retina, which has its densest concentration of
receptors in the fovea and a blind spot over the optic nerve. The power of the lens of an eye is adjustable to provide an image on the retina for varying
object distances. Layers of tissues with varying indices of refraction in the lens are shown here. However, they have been omitted from other pictures
for clarity.

Refractive indices are crucial to image formation using lenses. Table 26.1 shows refractive indices relevant to the eye. The
biggest change in the refractive index, and bending of rays, occurs at the cornea rather than the lens. The ray diagram in Figure
26.3 shows image formation by the cornea and lens of the eye. The rays bend according to the refractive indices provided in
Table 26.1. The cornea provides about two-thirds of the power of the eye, owing to the fact that speed of light changes
considerably while traveling from air into cornea. The lens provides the remaining power needed to produce an image on the
retina. The cornea and lens can be treated as a single thin lens, even though the light rays pass through several layers of
material (such as cornea, aqueous humor, several layers in the lens, and vitreous humor), changing direction at each interface.
The image formed is much like the one produced by a single convex lens. This is a case 1 image. Images formed in the eye are
inverted but the brain inverts them once more to make them seem upright.
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Table 26.1 Refractive Indices Relevant to the Eye

Material Index of Refraction

Water 1.33

Air 1.0

Cornea 1.38

Aqueous humor 1.34

Lens 1.41 average (varies throughout the lens, greatest in center)

Vitreous humor 1.34

Figure 26.3 An image is formed on the retina with light rays converging most at the cornea and upon entering and exiting the lens. Rays from the top
and bottom of the object are traced and produce an inverted real image on the retina. The distance to the object is drawn smaller than scale.

As noted, the image must fall precisely on the retina to produce clear vision — that is, the image distance di must equal the

lens-to-retina distance. Because the lens-to-retina distance does not change, the image distance di must be the same for

objects at all distances. The eye manages this by varying the power (and focal length) of the lens to accommodate for objects at
various distances. The process of adjusting the eye’s focal length is called accommodation. A person with normal (ideal) vision
can see objects clearly at distances ranging from 25 cm to essentially infinity. However, although the near point (the shortest
distance at which a sharp focus can be obtained) increases with age (becoming meters for some older people), we will consider
it to be 25 cm in our treatment here.

Figure 26.4 shows the accommodation of the eye for distant and near vision. Since light rays from a nearby object can diverge
and still enter the eye, the lens must be more converging (more powerful) for close vision than for distant vision. To be more
converging, the lens is made thicker by the action of the ciliary muscle surrounding it. The eye is most relaxed when viewing
distant objects, one reason that microscopes and telescopes are designed to produce distant images. Vision of very distant
objects is called totally relaxed, while close vision is termed accommodated, with the closest vision being fully accommodated.
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Figure 26.4 Relaxed and accommodated vision for distant and close objects. (a) Light rays from the same point on a distant object must be nearly
parallel while entering the eye and more easily converge to produce an image on the retina. (b) Light rays from a nearby object can diverge more and
still enter the eye. A more powerful lens is needed to converge them on the retina than if they were parallel.

We will use the thin lens equations to examine image formation by the eye quantitatively. First, note the power of a lens is given
as p = 1 / f , so we rewrite the thin lens equations as

(26.1)P = 1
do

+ 1
di

and

(26.2)hi
ho

= − di
do

= m.

We understand that di must equal the lens-to-retina distance to obtain clear vision, and that normal vision is possible for objects

at distances do = 25 cm to infinity.

Take-Home Experiment: The Pupil

Look at the central transparent area of someone’s eye, the pupil, in normal room light. Estimate the diameter of the pupil.
Now turn off the lights and darken the room. After a few minutes turn on the lights and promptly estimate the diameter of the
pupil. What happens to the pupil as the eye adjusts to the room light? Explain your observations.

The eye can detect an impressive amount of detail, considering how small the image is on the retina. To get some idea of how
small the image can be, consider the following example.
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Example 26.1 Size of Image on Retina

What is the size of the image on the retina of a 1.20×10−2 cm diameter human hair, held at arm’s length (60.0 cm) away?

Take the lens-to-retina distance to be 2.00 cm.

Strategy

We want to find the height of the image hi , given the height of the object is ho = 1.20×10−2 cm. We also know that the

object is 60.0 cm away, so that do = 60.0 cm . For clear vision, the image distance must equal the lens-to-retina distance,

and so di = 2.00 cm . The equation
hi
ho

= − di
do

= m can be used to find hi with the known information.

Solution

The only unknown variable in the equation
hi
ho

= − di
do

= m is hi :

(26.3)hi
ho

= − di
do

.

Rearranging to isolate hi yields

(26.4)
hi = −ho ⋅ di

do
.

Substituting the known values gives

(26.5)hi = −(1.20×10−2 cm)2.00 cm
60.0 cm

= −4.00×10−4 cm.
Discussion

This truly small image is not the smallest discernible—that is, the limit to visual acuity is even smaller than this. Limitations
on visual acuity have to do with the wave properties of light and will be discussed in the next chapter. Some limitation is also
due to the inherent anatomy of the eye and processing that occurs in our brain.

Example 26.2 Power Range of the Eye

Calculate the power of the eye when viewing objects at the greatest and smallest distances possible with normal vision,
assuming a lens-to-retina distance of 2.00 cm (a typical value).

Strategy

For clear vision, the image must be on the retina, and so di = 2.00 cm here. For distant vision, do ≈ ∞ , and for close

vision, do = 25.0 cm , as discussed earlier. The equation P = 1
do

+ 1
di

as written just above, can be used directly to

solve for P in both cases, since we know di and do . Power has units of diopters, where 1 D = 1/m , and so we should

express all distances in meters.

Solution

For distant vision,

(26.6)P = 1
do

+ 1
di

= 1
∞ + 1

0.0200 m.

Since 1 / ∞ = 0 , this gives

(26.7)P = 0 + 50.0 / m = 50.0 D (distant vision).

Now, for close vision,

(26.8)P = 1
do

+ 1
di

= 1
0.250 m + 1

0.0200 m

= 4.00
m + 50.0

m = 4.00 D + 50.0 D
= 54.0 D (close vision).
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Discussion

For an eye with this typical 2.00 cm lens-to-retina distance, the power of the eye ranges from 50.0 D (for distant totally
relaxed vision) to 54.0 D (for close fully accommodated vision), which is an 8% increase. This increase in power for close
vision is consistent with the preceding discussion and the ray tracing in Figure 26.4. An 8% ability to accommodate is
considered normal but is typical for people who are about 40 years old. Younger people have greater accommodation ability,
whereas older people gradually lose the ability to accommodate. When an optometrist identifies accommodation as a
problem in elder people, it is most likely due to stiffening of the lens. The lens of the eye changes with age in ways that tend
to preserve the ability to see distant objects clearly but do not allow the eye to accommodate for close vision, a condition
called presbyopia (literally, elder eye). To correct this vision defect, we place a converging, positive power lens in front of
the eye, such as found in reading glasses. Commonly available reading glasses are rated by their power in diopters,
typically ranging from 1.0 to 3.5 D.

26.2 Vision Correction

The need for some type of vision correction is very common. Common vision defects are easy to understand, and some are
simple to correct. Figure 26.5 illustrates two common vision defects. Nearsightedness, or myopia, is the inability to see distant
objects clearly while close objects are clear. The eye overconverges the nearly parallel rays from a distant object, and the rays
cross in front of the retina. More divergent rays from a close object are converged on the retina for a clear image. The distance to
the farthest object that can be seen clearly is called the far point of the eye (normally infinity). Farsightedness, or hyperopia, is
the inability to see close objects clearly while distant objects may be clear. A farsighted eye does not converge sufficient rays
from a close object to make the rays meet on the retina. Less diverging rays from a distant object can be converged for a clear
image. The distance to the closest object that can be seen clearly is called the near point of the eye (normally 25 cm).

Figure 26.5 (a) The nearsighted (myopic) eye converges rays from a distant object in front of the retina; thus, they are diverging when they strike the
retina, producing a blurry image. This can be caused by the lens of the eye being too powerful or the length of the eye being too great. (b) The
farsighted (hyperopic) eye is unable to converge the rays from a close object by the time they strike the retina, producing blurry close vision. This can
be caused by insufficient power in the lens or by the eye being too short.

Since the nearsighted eye over converges light rays, the correction for nearsightedness is to place a diverging spectacle lens in
front of the eye. This reduces the power of an eye that is too powerful. Another way of thinking about this is that a diverging
spectacle lens produces a case 3 image, which is closer to the eye than the object (see Figure 26.6). To determine the spectacle
power needed for correction, you must know the person’s far point—that is, you must know the greatest distance at which the
person can see clearly. Then the image produced by a spectacle lens must be at this distance or closer for the nearsighted
person to be able to see it clearly. It is worth noting that wearing glasses does not change the eye in any way. The eyeglass lens
is simply used to create an image of the object at a distance where the nearsighted person can see it clearly. Whereas someone
not wearing glasses can see clearly objects that fall between their near point and their far point, someone wearing glasses can
see images that fall between their near point and their far point.
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Figure 26.6 Correction of nearsightedness requires a diverging lens that compensates for the overconvergence by the eye. The diverging lens
produces an image closer to the eye than the object, so that the nearsighted person can see it clearly.

Example 26.3 Correcting Nearsightedness

What power of spectacle lens is needed to correct the vision of a nearsighted person whose far point is 30.0 cm? Assume
the spectacle (corrective) lens is held 1.50 cm away from the eye by eyeglass frames.

Strategy

You want this nearsighted person to be able to see very distant objects clearly. That means the spectacle lens must produce
an image 30.0 cm from the eye for an object very far away. An image 30.0 cm from the eye will be 28.5 cm to the left of the
spectacle lens (see Figure 26.6). Therefore, we must get di = −28.5 cm when do ≈ ∞ . The image distance is

negative, because it is on the same side of the spectacle as the object.

Solution

Since di and do are known, the power of the spectacle lens can be found using P = 1
do

+ 1
di

as written earlier:

(26.9)P = 1
do

+ 1
di

= 1
∞ + 1

−0.285 m.

Since 1/ ∞ = 0 , we obtain:

(26.10)P = 0 − 3.51 / m = −3.51 D.
Discussion

The negative power indicates a diverging (or concave) lens, as expected. The spectacle produces a case 3 image closer to
the eye, where the person can see it. If you examine eyeglasses for nearsighted people, you will find the lenses are thinnest
in the center. Additionally, if you examine a prescription for eyeglasses for nearsighted people, you will find that the
prescribed power is negative and given in units of diopters.

Since the farsighted eye under converges light rays, the correction for farsightedness is to place a converging spectacle lens in
front of the eye. This increases the power of an eye that is too weak. Another way of thinking about this is that a converging
spectacle lens produces a case 2 image, which is farther from the eye than the object (see Figure 26.7). To determine the
spectacle power needed for correction, you must know the person’s near point—that is, you must know the smallest distance at
which the person can see clearly. Then the image produced by a spectacle lens must be at this distance or farther for the
farsighted person to be able to see it clearly.
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Figure 26.7 Correction of farsightedness uses a converging lens that compensates for the under convergence by the eye. The converging lens
produces an image farther from the eye than the object, so that the farsighted person can see it clearly.

Example 26.4 Correcting Farsightedness

What power of spectacle lens is needed to allow a farsighted person, whose near point is 1.00 m, to see an object clearly
that is 25.0 cm away? Assume the spectacle (corrective) lens is held 1.50 cm away from the eye by eyeglass frames.

Strategy

When an object is held 25.0 cm from the person’s eyes, the spectacle lens must produce an image 1.00 m away (the near
point). An image 1.00 m from the eye will be 98.5 cm to the left of the spectacle lens because the spectacle lens is 1.50 cm
from the eye (see Figure 26.7). Therefore, di = −98.5 cm . The image distance is negative, because it is on the same

side of the spectacle as the object. The object is 23.5 cm to the left of the spectacle, so that do = 23.5 cm .

Solution

Since di and do are known, the power of the spectacle lens can be found using P = 1
do

+ 1
di

:

(26.11)P = 1
do

+ 1
di

= 1
0.235 m + 1

− 0.985 m
= 4.26 D − 1.02 D = 3.24 D.

Discussion

The positive power indicates a converging (convex) lens, as expected. The convex spectacle produces a case 2 image
farther from the eye, where the person can see it. If you examine eyeglasses of farsighted people, you will find the lenses to
be thickest in the center. In addition, a prescription of eyeglasses for farsighted people has a prescribed power that is
positive.

Another common vision defect is astigmatism, an unevenness or asymmetry in the focus of the eye. For example, rays passing
through a vertical region of the eye may focus closer than rays passing through a horizontal region, resulting in the image
appearing elongated. This is mostly due to irregularities in the shape of the cornea but can also be due to lens irregularities or
unevenness in the retina. Because of these irregularities, different parts of the lens system produce images at different locations.
The eye-brain system can compensate for some of these irregularities, but they generally manifest themselves as less distinct
vision or sharper images along certain axes. Figure 26.8 shows a chart used to detect astigmatism. Astigmatism can be at least
partially corrected with a spectacle having the opposite irregularity of the eye. If an eyeglass prescription has a cylindrical
correction, it is there to correct astigmatism. The normal corrections for short- or farsightedness are spherical corrections,
uniform along all axes.
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Figure 26.8 This chart can detect astigmatism, unevenness in the focus of the eye. Check each of your eyes separately by looking at the center cross
(without spectacles if you wear them). If lines along some axes appear darker or clearer than others, you have an astigmatism.

Contact lenses have advantages over glasses beyond their cosmetic aspects. One problem with glasses is that as the eye
moves, it is not at a fixed distance from the spectacle lens. Contacts rest on and move with the eye, eliminating this problem.
Because contacts cover a significant portion of the cornea, they provide superior peripheral vision compared with eyeglasses.
Contacts also correct some corneal astigmatism caused by surface irregularities. The tear layer between the smooth contact and
the cornea fills in the irregularities. Since the index of refraction of the tear layer and the cornea are very similar, you now have a
regular optical surface in place of an irregular one. If the curvature of a contact lens is not the same as the cornea (as may be
necessary with some individuals to obtain a comfortable fit), the tear layer between the contact and cornea acts as a lens. If the
tear layer is thinner in the center than at the edges, it has a negative power, for example. Skilled optometrists will adjust the
power of the contact to compensate.

Laser vision correction has progressed rapidly in the last few years. It is the latest and by far the most successful in a series of
procedures that correct vision by reshaping the cornea. As noted at the beginning of this section, the cornea accounts for about
two-thirds of the power of the eye. Thus, small adjustments of its curvature have the same effect as putting a lens in front of the
eye. To a reasonable approximation, the power of multiple lenses placed close together equals the sum of their powers. For
example, a concave spectacle lens (for nearsightedness) having P = −3.00 D has the same effect on vision as reducing the

power of the eye itself by 3.00 D. So to correct the eye for nearsightedness, the cornea is flattened to reduce its power. Similarly,
to correct for farsightedness, the curvature of the cornea is enhanced to increase the power of the eye—the same effect as the
positive power spectacle lens used for farsightedness. Laser vision correction uses high intensity electromagnetic radiation to
ablate (to remove material from the surface) and reshape the corneal surfaces.

Today, the most commonly used laser vision correction procedure is Laser in situ Keratomileusis (LASIK). The top layer of the
cornea is surgically peeled back and the underlying tissue ablated by multiple bursts of finely controlled ultraviolet radiation
produced by an excimer laser. Lasers are used because they not only produce well-focused intense light, but they also emit very
pure wavelength electromagnetic radiation that can be controlled more accurately than mixed wavelength light. The 193 nm
wavelength UV commonly used is extremely and strongly absorbed by corneal tissue, allowing precise evaporation of very thin
layers. A computer controlled program applies more bursts, usually at a rate of 10 per second, to the areas that require deeper
removal. Typically a spot less than 1 mm in diameter and about 0.3 μm in thickness is removed by each burst.

Nearsightedness, farsightedness, and astigmatism can be corrected with an accuracy that produces normal distant vision in
more than 90% of the patients, in many cases right away. The corneal flap is replaced; healing takes place rapidly and is nearly
painless. More than 1 million Americans per year undergo LASIK (see Figure 26.9).

Figure 26.9 Laser vision correction is being performed using the LASIK procedure. Reshaping of the cornea by laser ablation is based on a careful
assessment of the patient’s vision and is computer controlled. The upper corneal layer is temporarily peeled back and minimally disturbed in LASIK,
providing for more rapid and less painful healing of the less sensitive tissues below. (credit: U.S. Navy photo by Mass Communication Specialist 1st
Class Brien Aho)
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26.3 Color and Color Vision

The gift of vision is made richer by the existence of color. Objects and lights abound with thousands of hues that stimulate our
eyes, brains, and emotions. Two basic questions are addressed in this brief treatment—what does color mean in scientific terms,
and how do we, as humans, perceive it?

Simple Theory of Color Vision

We have already noted that color is associated with the wavelength of visible electromagnetic radiation. When our eyes receive
pure-wavelength light, we tend to see only a few colors. Six of these (most often listed) are red, orange, yellow, green, blue, and
violet. These are the rainbow of colors produced when white light is dispersed according to different wavelengths. There are
thousands of other hues that we can perceive. These include brown, teal, gold, pink, and white. One simple theory of color vision
implies that all these hues are our eye’s response to different combinations of wavelengths. This is true to an extent, but we find
that color perception is even subtler than our eye’s response for various wavelengths of light.

The two major types of light-sensing cells (photoreceptors) in the retina are rods and cones. Rods are more sensitive than
cones by a factor of about 1000 and are solely responsible for peripheral vision as well as vision in very dark environments. They
are also important for motion detection. There are about 120 million rods in the human retina. Rods do not yield color
information. You may notice that you lose color vision when it is very dark, but you retain the ability to discern grey scales.

Take-Home Experiment: Rods and Cones
1. Go into a darkened room from a brightly lit room, or from outside in the Sun. How long did it take to start seeing shapes

more clearly? What about color? Return to the bright room. Did it take a few minutes before you could see things
clearly?

2. Demonstrate the sensitivity of foveal vision. Look at the letter G in the word ROGERS. What about the clarity of the
letters on either side of G?

Cones are most concentrated in the fovea, the central region of the retina. There are no rods here. The fovea is at the center of
the macula, a 5 mm diameter region responsible for our central vision. The cones work best in bright light and are responsible for
high resolution vision. There are about 6 million cones in the human retina. There are three types of cones, and each type is
sensitive to different ranges of wavelengths, as illustrated in Figure 26.10. A simplified theory of color vision is that there are
three primary colors corresponding to the three types of cones. The thousands of other hues that we can distinguish among are
created by various combinations of stimulations of the three types of cones. Color television uses a three-color system in which
the screen is covered with equal numbers of red, green, and blue phosphor dots. The broad range of hues a viewer sees is
produced by various combinations of these three colors. For example, you will perceive yellow when red and green are
illuminated with the correct ratio of intensities. White may be sensed when all three are illuminated. Then, it would seem that all
hues can be produced by adding three primary colors in various proportions. But there is an indication that color vision is more
sophisticated. There is no unique set of three primary colors. Another set that works is yellow, green, and blue. A further
indication of the need for a more complex theory of color vision is that various different combinations can produce the same hue.
Yellow can be sensed with yellow light, or with a combination of red and green, and also with white light from which violet has
been removed. The three-primary-colors aspect of color vision is well established; more sophisticated theories expand on it
rather than deny it.

Figure 26.10 The image shows the relative sensitivity of the three types of cones, which are named according to wavelengths of greatest sensitivity.
Rods are about 1000 times more sensitive, and their curve peaks at about 500 nm. Evidence for the three types of cones comes from direct
measurements in animal and human eyes and testing of color blind people.

Consider why various objects display color—that is, why are feathers blue and red in a crimson rosella? The true color of an
object is defined by its absorptive or reflective characteristics. Figure 26.11 shows white light falling on three different objects,
one pure blue, one pure red, and one black, as well as pure red light falling on a white object. Other hues are created by more
complex absorption characteristics. Pink, for example on a galah cockatoo, can be due to weak absorption of all colors except
red. An object can appear a different color under non-white illumination. For example, a pure blue object illuminated with pure red
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light will appear black, because it absorbs all the red light falling on it. But, the true color of the object is blue, which is
independent of illumination.

Figure 26.11 Absorption characteristics determine the true color of an object. Here, three objects are illuminated by white light, and one by pure red
light. White is the equal mixture of all visible wavelengths; black is the absence of light.

Similarly, light sources have colors that are defined by the wavelengths they produce. A helium-neon laser emits pure red light. In
fact, the phrase “pure red light” is defined by having a sharp constrained spectrum, a characteristic of laser light. The Sun
produces a broad yellowish spectrum, fluorescent lights emit bluish-white light, and incandescent lights emit reddish-white hues
as seen in Figure 26.12. As you would expect, you sense these colors when viewing the light source directly or when
illuminating a white object with them. All of this fits neatly into the simplified theory that a combination of wavelengths produces
various hues.

Take-Home Experiment: Exploring Color Addition

This activity is best done with plastic sheets of different colors as they allow more light to pass through to our eyes. However,
thin sheets of paper and fabric can also be used. Overlay different colors of the material and hold them up to a white light.
Using the theory described above, explain the colors you observe. You could also try mixing different crayon colors.

Figure 26.12 Emission spectra for various light sources are shown. Curve A is average sunlight at Earth’s surface, curve B is light from a fluorescent
lamp, and curve C is the output of an incandescent light. The spike for a helium-neon laser (curve D) is due to its pure wavelength emission. The
spikes in the fluorescent output are due to atomic spectra—a topic that will be explored later.

Color Constancy and a Modified Theory of Color Vision

The eye-brain color-sensing system can, by comparing various objects in its view, perceive the true color of an object under
varying lighting conditions—an ability that is called color constancy. We can sense that a white tablecloth, for example, is white
whether it is illuminated by sunlight, fluorescent light, or candlelight. The wavelengths entering the eye are quite different in each
case, as the graphs in Figure 26.12 imply, but our color vision can detect the true color by comparing the tablecloth with its
surroundings.

Theories that take color constancy into account are based on a large body of anatomical evidence as well as perceptual studies.
There are nerve connections among the light receptors on the retina, and there are far fewer nerve connections to the brain than
there are rods and cones. This means that there is signal processing in the eye before information is sent to the brain. For
example, the eye makes comparisons between adjacent light receptors and is very sensitive to edges as seen in Figure 26.13.
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Rather than responding simply to the light entering the eye, which is uniform in the various rectangles in this figure, the eye
responds to the edges and senses false darkness variations.

Figure 26.13 The importance of edges is shown. Although the grey strips are uniformly shaded, as indicated by the graph immediately below them,
they do not appear uniform at all. Instead, they are perceived darker on the dark side and lighter on the light side of the edge, as shown in the bottom
graph. This is due to nerve impulse processing in the eye.

One theory that takes various factors into account was advanced by Edwin Land (1909 – 1991), the creative founder of the
Polaroid Corporation. Land proposed, based partly on his many elegant experiments, that the three types of cones are organized
into systems called retinexes. Each retinex forms an image that is compared with the others, and the eye-brain system thus can
compare a candle-illuminated white table cloth with its generally reddish surroundings and determine that it is actually white. This
retinex theory of color vision is an example of modified theories of color vision that attempt to account for its subtleties. One
striking experiment performed by Land demonstrates that some type of image comparison may produce color vision. Two
pictures are taken of a scene on black-and-white film, one using a red filter, the other a blue filter. Resulting black-and-white
slides are then projected and superimposed on a screen, producing a black-and-white image, as expected. Then a red filter is
placed in front of the slide taken with a red filter, and the images are again superimposed on a screen. You would expect an
image in various shades of pink, but instead, the image appears to humans in full color with all the hues of the original scene.
This implies that color vision can be induced by comparison of the black-and-white and red images. Color vision is not
completely understood or explained, and the retinex theory is not totally accepted. It is apparent that color vision is much subtler
than what a first look might imply.

PhET Explorations: Color Vision

Make a whole rainbow by mixing red, green, and blue light. Change the wavelength of a monochromatic beam or filter white
light. View the light as a solid beam, or see the individual photons.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42487/
1.8/#Phet_module_27.3)

Figure 26.14

26.4 Microscopes

Although the eye is marvelous in its ability to see objects large and small, it obviously has limitations to the smallest details it can
detect. Human desire to see beyond what is possible with the naked eye led to the use of optical instruments. In this section we
will examine microscopes, instruments for enlarging the detail that we cannot see with the unaided eye. The microscope is a
multiple-element system having more than a single lens or mirror. (See Figure 26.15) A microscope can be made from two
convex lenses. The image formed by the first element becomes the object for the second element. The second element forms its
own image, which is the object for the third element, and so on. Ray tracing helps to visualize the image formed. If the device is
composed of thin lenses and mirrors that obey the thin lens equations, then it is not difficult to describe their behavior
numerically.
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Figure 26.15 Multiple lenses and mirrors are used in this microscope. (credit: U.S. Navy photo by Tom Watanabe)

Microscopes were first developed in the early 1600s by eyeglass makers in The Netherlands and Denmark. The simplest
compound microscope is constructed from two convex lenses as shown schematically in Figure 26.16. The first lens is called
the objective lens, and has typical magnification values from 5× to 100× . In standard microscopes, the objectives are

mounted such that when you switch between objectives, the sample remains in focus. Objectives arranged in this way are
described as parfocal. The second, the eyepiece, also referred to as the ocular, has several lenses which slide inside a
cylindrical barrel. The focusing ability is provided by the movement of both the objective lens and the eyepiece. The purpose of a
microscope is to magnify small objects, and both lenses contribute to the final magnification. Additionally, the final enlarged
image is produced in a location far enough from the observer to be easily viewed, since the eye cannot focus on objects or
images that are too close.

Figure 26.16 A compound microscope composed of two lenses, an objective and an eyepiece. The objective forms a case 1 image that is larger than
the object. This first image is the object for the eyepiece. The eyepiece forms a case 2 final image that is further magnified.

To see how the microscope in Figure 26.16 forms an image, we consider its two lenses in succession. The object is slightly
farther away from the objective lens than its focal length fo , producing a case 1 image that is larger than the object. This first

image is the object for the second lens, or eyepiece. The eyepiece is intentionally located so it can further magnify the image.
The eyepiece is placed so that the first image is closer to it than its focal length fe . Thus the eyepiece acts as a magnifying

glass, and the final image is made even larger. The final image remains inverted, but it is farther from the observer, making it
easy to view (the eye is most relaxed when viewing distant objects and normally cannot focus closer than 25 cm). Since each
lens produces a magnification that multiplies the height of the image, it is apparent that the overall magnification m is the

product of the individual magnifications:

(26.12)m = mome,

where mo is the magnification of the objective and me is the magnification of the eyepiece. This equation can be generalized

for any combination of thin lenses and mirrors that obey the thin lens equations.
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Overall Magnification

The overall magnification of a multiple-element system is the product of the individual magnifications of its elements.

Example 26.5 Microscope Magnification

Calculate the magnification of an object placed 6.20 mm from a compound microscope that has a 6.00 mm focal length
objective and a 50.0 mm focal length eyepiece. The objective and eyepiece are separated by 23.0 cm.

Strategy and Concept

This situation is similar to that shown in Figure 26.16. To find the overall magnification, we must find the magnification of the
objective, then the magnification of the eyepiece. This involves using the thin lens equation.

Solution

The magnification of the objective lens is given as

(26.13)
mo = – di

do
,

where do and di are the object and image distances, respectively, for the objective lens as labeled in Figure 26.16. The

object distance is given to be do = 6.20 mm , but the image distance di is not known. Isolating di , we have

(26.14)1
di

= 1
fo

− 1
do

,

where fo is the focal length of the objective lens. Substituting known values gives

(26.15)1
di

= 1
6.00 mm − 1

6.20 mm = 0.00538
mm .

We invert this to find di :

(26.16)di = 186 mm.

Substituting this into the expression for mo gives

(26.17)
mo = − di

do
= − 186 mm

6.20 mm = −30.0.

Now we must find the magnification of the eyepiece, which is given by

(26.18)
me = − di′

do′,

where di′ and do′ are the image and object distances for the eyepiece (see Figure 26.16). The object distance is the

distance of the first image from the eyepiece. Since the first image is 186 mm to the right of the objective and the eyepiece is
230 mm to the right of the objective, the object distance is do′ = 230 mm − 186 mm = 44.0 mm . This places the first

image closer to the eyepiece than its focal length, so that the eyepiece will form a case 2 image as shown in the figure. We
still need to find the location of the final image di′ in order to find the magnification. This is done as before to obtain a value

for 1 / di′ :

(26.19)1
di′

= 1
fe

− 1
do′ = 1

50.0 mm − 1
44.0 mm = −0.00273

mm .

Inverting gives

(26.20)di′ = − mm
0.00273 = −367 mm.

The eyepiece’s magnification is thus

(26.21)
me = − di′

do′ = −−367 mm
44.0 mm = 8.33.

So the overall magnification is

(26.22)m = mome = ( − 30.0)(8.33) = −250.
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Discussion

Both the objective and the eyepiece contribute to the overall magnification, which is large and negative, consistent with
Figure 26.16, where the image is seen to be large and inverted. In this case, the image is virtual and inverted, which cannot
happen for a single element (case 2 and case 3 images for single elements are virtual and upright). The final image is 367
mm (0.367 m) to the left of the eyepiece. Had the eyepiece been placed farther from the objective, it could have formed a
case 1 image to the right. Such an image could be projected on a screen, but it would be behind the head of the person in
the figure and not appropriate for direct viewing. The procedure used to solve this example is applicable in any multiple-
element system. Each element is treated in turn, with each forming an image that becomes the object for the next element.
The process is not more difficult than for single lenses or mirrors, only lengthier.

Normal optical microscopes can magnify up to 1500× with a theoretical resolution of – 0.2 μm . The lenses can be quite

complicated and are composed of multiple elements to reduce aberrations. Microscope objective lenses are particularly
important as they primarily gather light from the specimen. Three parameters describe microscope objectives: the numerical
aperture (NA) , the magnification (m) , and the working distance. The NA is related to the light gathering ability of a lens and

is obtained using the angle of acceptance θ formed by the maximum cone of rays focusing on the specimen (see Figure

26.17(a)) and is given by

(26.23)NA = n sin α,

where n is the refractive index of the medium between the lens and the specimen and α = θ / 2 . As the angle of acceptance

given by θ increases, NA becomes larger and more light is gathered from a smaller focal region giving higher resolution. A

0.75NA objective gives more detail than a 0.10NA objective.

Figure 26.17 (a) The numerical aperture (NA) of a microscope objective lens refers to the light-gathering ability of the lens and is calculated using

half the angle of acceptance θ . (b) Here, α is half the acceptance angle for light rays from a specimen entering a camera lens, and D is the

diameter of the aperture that controls the light entering the lens.

While the numerical aperture can be used to compare resolutions of various objectives, it does not indicate how far the lens
could be from the specimen. This is specified by the “working distance,” which is the distance (in mm usually) from the front lens
element of the objective to the specimen, or cover glass. The higher the NA the closer the lens will be to the specimen and the

more chances there are of breaking the cover slip and damaging both the specimen and the lens. The focal length of an
objective lens is different than the working distance. This is because objective lenses are made of a combination of lenses and
the focal length is measured from inside the barrel. The working distance is a parameter that microscopists can use more readily
as it is measured from the outermost lens. The working distance decreases as the NA and magnification both increase.

The term f / # in general is called the f -number and is used to denote the light per unit area reaching the image plane. In

photography, an image of an object at infinity is formed at the focal point and the f -number is given by the ratio of the focal

length f of the lens and the diameter D of the aperture controlling the light into the lens (see Figure 26.17(b)). If the

acceptance angle is small the NA of the lens can also be used as given below.

(26.24)
f /# = f

D ≈ 1
2NA .

As the f -number decreases, the camera is able to gather light from a larger angle, giving wide-angle photography. As usual
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there is a trade-off. A greater f / # means less light reaches the image plane. A setting of f / 16 usually allows one to take

pictures in bright sunlight as the aperture diameter is small. In optical fibers, light needs to be focused into the fiber. Figure 26.18
shows the angle used in calculating the NA of an optical fiber.

Figure 26.18 Light rays enter an optical fiber. The numerical aperture of the optical fiber can be determined by using the angle αmax.

Can the NA be larger than 1.00? The answer is ‘yes’ if we use immersion lenses in which a medium such as oil, glycerine or

water is placed between the objective and the microscope cover slip. This minimizes the mismatch in refractive indices as light
rays go through different media, generally providing a greater light-gathering ability and an increase in resolution. Figure 26.19
shows light rays when using air and immersion lenses.

Figure 26.19 Light rays from a specimen entering the objective. Paths for immersion medium of air (a), water (b) (n = 1.33) , and oil (c)

(n = 1.51) are shown. The water and oil immersions allow more rays to enter the objective, increasing the resolution.

When using a microscope we do not see the entire extent of the sample. Depending on the eyepiece and objective lens we see a
restricted region which we say is the field of view. The objective is then manipulated in two-dimensions above the sample to view
other regions of the sample. Electronic scanning of either the objective or the sample is used in scanning microscopy. The image
formed at each point during the scanning is combined using a computer to generate an image of a larger region of the sample at
a selected magnification.

When using a microscope, we rely on gathering light to form an image. Hence most specimens need to be illuminated,
particularly at higher magnifications, when observing details that are so small that they reflect only small amounts of light. To
make such objects easily visible, the intensity of light falling on them needs to be increased. Special illuminating systems called
condensers are used for this purpose. The type of condenser that is suitable for an application depends on how the specimen is
examined, whether by transmission, scattering or reflecting. See Figure 26.20 for an example of each. White light sources are
common and lasers are often used. Laser light illumination tends to be quite intense and it is important to ensure that the light
does not result in the degradation of the specimen.
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Figure 26.20 Illumination of a specimen in a microscope. (a) Transmitted light from a condenser lens. (b) Transmitted light from a mirror condenser. (c)
Dark field illumination by scattering (the illuminating beam misses the objective lens). (d) High magnification illumination with reflected light – normally
laser light.

We normally associate microscopes with visible light but x ray and electron microscopes provide greater resolution. The focusing
and basic physics is the same as that just described, even though the lenses require different technology. The electron
microscope requires vacuum chambers so that the electrons can proceed unheeded. Magnifications of 50 million times provide
the ability to determine positions of individual atoms within materials. An electron microscope is shown in Figure 26.21. We do
not use our eyes to form images; rather images are recorded electronically and displayed on computers. In fact observing and
saving images formed by optical microscopes on computers is now done routinely. Video recordings of what occurs in a
microscope can be made for viewing by many people at later dates. Physics provides the science and tools needed to generate
the sequence of time-lapse images of meiosis similar to the sequence sketched in Figure 26.22.

Figure 26.21 An electron microscope has the capability to image individual atoms on a material. The microscope uses vacuum technology,
sophisticated detectors and state of the art image processing software. (credit: Dave Pape)
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Figure 26.22 The image shows a sequence of events that takes place during meiosis. (credit: PatríciaR, Wikimedia Commons; National Center for
Biotechnology Information)

Take-Home Experiment: Make a Lens

Look through a clear glass or plastic bottle and describe what you see. Now fill the bottle with water and describe what you
see. Use the water bottle as a lens to produce the image of a bright object and estimate the focal length of the water bottle
lens. How is the focal length a function of the depth of water in the bottle?

26.5 Telescopes

Telescopes are meant for viewing distant objects, producing an image that is larger than the image that can be seen with the
unaided eye. Telescopes gather far more light than the eye, allowing dim objects to be observed with greater magnification and
better resolution. Although Galileo is often credited with inventing the telescope, he actually did not. What he did was more
important. He constructed several early telescopes, was the first to study the heavens with them, and made monumental
discoveries using them. Among these are the moons of Jupiter, the craters and mountains on the Moon, the details of sunspots,
and the fact that the Milky Way is composed of vast numbers of individual stars.

Figure 26.23(a) shows a telescope made of two lenses, the convex objective and the concave eyepiece, the same construction
used by Galileo. Such an arrangement produces an upright image and is used in spyglasses and opera glasses.
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Figure 26.23 (a) Galileo made telescopes with a convex objective and a concave eyepiece. These produce an upright image and are used in
spyglasses. (b) Most simple telescopes have two convex lenses. The objective forms a case 1 image that is the object for the eyepiece. The eyepiece
forms a case 2 final image that is magnified.

The most common two-lens telescope, like the simple microscope, uses two convex lenses and is shown in Figure 26.23(b). The
object is so far away from the telescope that it is essentially at infinity compared with the focal lengths of the lenses ( do ≈ ∞ ).

The first image is thus produced at di = fo , as shown in the figure. To prove this, note that

(26.25)1
di

= 1
fo

− 1
do

= 1
fo

− 1
∞ .

Because 1 / ∞ = 0 , this simplifies to

(26.26)1
di

= 1
fo

,

which implies that di = fo , as claimed. It is true that for any distant object and any lens or mirror, the image is at the focal

length.

The first image formed by a telescope objective as seen in Figure 26.23(b) will not be large compared with what you might see
by looking at the object directly. For example, the spot formed by sunlight focused on a piece of paper by a magnifying glass is
the image of the Sun, and it is small. The telescope eyepiece (like the microscope eyepiece) magnifies this first image. The
distance between the eyepiece and the objective lens is made slightly less than the sum of their focal lengths so that the first
image is closer to the eyepiece than its focal length. That is, do′ is less than fe , and so the eyepiece forms a case 2 image

that is large and to the left for easy viewing. If the angle subtended by an object as viewed by the unaided eye is θ , and the

angle subtended by the telescope image is θ′ , then the angular magnification M is defined to be their ratio. That is,

M = θ′ / θ . It can be shown that the angular magnification of a telescope is related to the focal lengths of the objective and

eyepiece; and is given by

(26.27)
M = θ′

θ = − fo
fe

.

The minus sign indicates the image is inverted. To obtain the greatest angular magnification, it is best to have a long focal length
objective and a short focal length eyepiece. The greater the angular magnification M , the larger an object will appear when
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viewed through a telescope, making more details visible. Limits to observable details are imposed by many factors, including
lens quality and atmospheric disturbance.

The image in most telescopes is inverted, which is unimportant for observing the stars but a real problem for other applications,
such as telescopes on ships or telescopic gun sights. If an upright image is needed, Galileo’s arrangement in Figure 26.23(a)
can be used. But a more common arrangement is to use a third convex lens as an eyepiece, increasing the distance between
the first two and inverting the image once again as seen in Figure 26.24.

Figure 26.24 This arrangement of three lenses in a telescope produces an upright final image. The first two lenses are far enough apart that the
second lens inverts the image of the first one more time. The third lens acts as a magnifier and keeps the image upright and in a location that is easy to
view.

A telescope can also be made with a concave mirror as its first element or objective, since a concave mirror acts like a convex
lens as seen in Figure 26.25. Flat mirrors are often employed in optical instruments to make them more compact or to send light
to cameras and other sensing devices. There are many advantages to using mirrors rather than lenses for telescope objectives.
Mirrors can be constructed much larger than lenses and can, thus, gather large amounts of light, as needed to view distant
galaxies, for example. Large and relatively flat mirrors have very long focal lengths, so that great angular magnification is
possible.

Figure 26.25 A two-element telescope composed of a mirror as the objective and a lens for the eyepiece is shown. This telescope forms an image in
the same manner as the two-convex-lens telescope already discussed, but it does not suffer from chromatic aberrations. Such telescopes can gather
more light, since larger mirrors than lenses can be constructed.

Telescopes, like microscopes, can utilize a range of frequencies from the electromagnetic spectrum. Figure 26.26(a) shows the
Australia Telescope Compact Array, which uses six 22-m antennas for mapping the southern skies using radio waves. Figure
26.26(b) shows the focusing of x rays on the Chandra X-ray Observatory—a satellite orbiting earth since 1999 and looking at
high temperature events as exploding stars, quasars, and black holes. X rays, with much more energy and shorter wavelengths
than RF and light, are mainly absorbed and not reflected when incident perpendicular to the medium. But they can be reflected
when incident at small glancing angles, much like a rock will skip on a lake if thrown at a small angle. The mirrors for the
Chandra consist of a long barrelled pathway and 4 pairs of mirrors to focus the rays at a point 10 meters away from the entrance.
The mirrors are extremely smooth and consist of a glass ceramic base with a thin coating of metal (iridium). Four pairs of
precision manufactured mirrors are exquisitely shaped and aligned so that x rays ricochet off the mirrors like bullets off a wall,
focusing on a spot.
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Figure 26.26 (a) The Australia Telescope Compact Array at Narrabri (500 km NW of Sydney). (credit: Ian Bailey) (b) The focusing of x rays on the
Chandra Observatory, a satellite orbiting earth. X rays ricochet off 4 pairs of mirrors forming a barrelled pathway leading to the focus point. (credit:
NASA)

A current exciting development is a collaborative effort involving 17 countries to construct a Square Kilometre Array (SKA) of
telescopes capable of covering from 80 MHz to 2 GHz. The initial stage of the project is the construction of the Australian Square
Kilometre Array Pathfinder in Western Australia (see Figure 26.27). The project will use cutting-edge technologies such as
adaptive optics in which the lens or mirror is constructed from lots of carefully aligned tiny lenses and mirrors that can be
manipulated using computers. A range of rapidly changing distortions can be minimized by deforming or tilting the tiny lenses
and mirrors. The use of adaptive optics in vision correction is a current area of research.

Figure 26.27 An artist’s impression of the Australian Square Kilometre Array Pathfinder in Western Australia is displayed. (credit: SPDO,
XILOSTUDIOS)

26.6 Aberrations

Real lenses behave somewhat differently from how they are modeled using the thin lens equations, producing aberrations. An
aberration is a distortion in an image. There are a variety of aberrations due to a lens size, material, thickness, and position of
the object. One common type of aberration is chromatic aberration, which is related to color. Since the index of refraction of
lenses depends on color or wavelength, images are produced at different places and with different magnifications for different
colors. (The law of reflection is independent of wavelength, and so mirrors do not have this problem. This is another advantage
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for mirrors in optical systems such as telescopes.) Figure 26.28(a) shows chromatic aberration for a single convex lens and its
partial correction with a two-lens system. Violet rays are bent more than red, since they have a higher index of refraction and are
thus focused closer to the lens. The diverging lens partially corrects this, although it is usually not possible to do so completely.
Lenses of different materials and having different dispersions may be used. For example an achromatic doublet consisting of a
converging lens made of crown glass and a diverging lens made of flint glass in contact can dramatically reduce chromatic
aberration (see Figure 26.28(b)).

Quite often in an imaging system the object is off-center. Consequently, different parts of a lens or mirror do not refract or reflect
the image to the same point. This type of aberration is called a coma and is shown in Figure 26.29. The image in this case often
appears pear-shaped. Another common aberration is spherical aberration where rays converging from the outer edges of a lens
converge to a focus closer to the lens and rays closer to the axis focus further (see Figure 26.30). Aberrations due to
astigmatism in the lenses of the eyes are discussed in Vision Correction, and a chart used to detect astigmatism is shown in
Figure 26.8. Such aberrations and can also be an issue with manufactured lenses.

Figure 26.28 (a) Chromatic aberration is caused by the dependence of a lens’s index of refraction on color (wavelength). The lens is more powerful for
violet (V) than for red (R), producing images with different locations and magnifications. (b) Multiple-lens systems can partially correct chromatic
aberrations, but they may require lenses of different materials and add to the expense of optical systems such as cameras.

Figure 26.29 A coma is an aberration caused by an object that is off-center, often resulting in a pear-shaped image. The rays originate from points that
are not on the optical axis and they do not converge at one common focal point.

Figure 26.30 Spherical aberration is caused by rays focusing at different distances from the lens.
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aberration:

accommodation:

adaptive optics:

angular magnification:

astigmatism:

color constancy:

compound microscope:

eyepiece:

far point:

farsightedness:

hues:

hyperopia:

laser vision correction:

myopia:

near point:

nearsightedness:

numerical aperture:

objective lens:

presbyopia:

retinex:

The image produced by an optical system needs to be bright enough to be discerned. It is often a challenge to obtain a
sufficiently bright image. The brightness is determined by the amount of light passing through the optical system. The optical
components determining the brightness are the diameter of the lens and the diameter of pupils, diaphragms or aperture stops
placed in front of lenses. Optical systems often have entrance and exit pupils to specifically reduce aberrations but they
inevitably reduce brightness as well. Consequently, optical systems need to strike a balance between the various components
used. The iris in the eye dilates and constricts, acting as an entrance pupil. You can see objects more clearly by looking through
a small hole made with your hand in the shape of a fist. Squinting, or using a small hole in a piece of paper, also will make the
object sharper.

So how are aberrations corrected? The lenses may also have specially shaped surfaces, as opposed to the simple spherical
shape that is relatively easy to produce. Expensive camera lenses are large in diameter, so that they can gather more light, and
need several elements to correct for various aberrations. Further, advances in materials science have resulted in lenses with a
range of refractive indices—technically referred to as graded index (GRIN) lenses. Spectacles often have the ability to provide a
range of focusing ability using similar techniques. GRIN lenses are particularly important at the end of optical fibers in
endoscopes. Advanced computing techniques allow for a range of corrections on images after the image has been collected and
certain characteristics of the optical system are known. Some of these techniques are sophisticated versions of what are
available on commercial packages like Adobe Photoshop.

Glossary

failure of rays to converge at one focus because of limitations or defects in a lens or mirror

the ability of the eye to adjust its focal length is known as accommodation

optical technology in which computers adjust the lenses and mirrors in a device to correct for image
distortions

a ratio related to the focal lengths of the objective and eyepiece and given as M = − fo
fe

the result of an inability of the cornea to properly focus an image onto the retina

a part of the visual perception system that allows people to perceive color in a variety of conditions and to
see some consistency in the color

a microscope constructed from two convex lenses, the first serving as the ocular lens(close to the
eye) and the second serving as the objective lens

the lens or combination of lenses in an optical instrument nearest to the eye of the observer

the object point imaged by the eye onto the retina in an unaccommodated eye

another term for hyperopia, the condition of an eye where incoming rays of light reach the retina before they
converge into a focused image

identity of a color as it relates specifically to the spectrum

the condition of an eye where incoming rays of light reach the retina before they converge into a focused image

a medical procedure used to correct astigmatism and eyesight deficiencies such as myopia and
hyperopia

a visual defect in which distant objects appear blurred because their images are focused in front of the retina rather
than being focused on the retina

the point nearest the eye at which an object is accurately focused on the retina at full accommodation

another term for myopia, a visual defect in which distant objects appear blurred because their images are
focused in front of the retina rather than being focused on the retina

a number or measure that expresses the ability of a lens to resolve fine detail in an object being
observed. Derived by mathematical formula

NA = n sin α,

where n is the refractive index of the medium between the lens and the specimen and α = θ / 2

the lens nearest to the object being examined

a condition in which the lens of the eye becomes progressively unable to focus on objects close to the viewer

a theory proposed to explain color and brightness perception and constancies; is a combination of the words retina
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retinex theory of color vision:

rods and cones:

simplified theory of color vision:

and cortex, which are the two areas responsible for the processing of visual information

the ability to perceive color in an ambient-colored environment

two types of photoreceptors in the human retina; rods are responsible for vision at low light levels, while
cones are active at higher light levels

a theory that states that there are three primary colors, which correspond to the three
types of cones

Section Summary

26.1 Physics of the Eye
• Image formation by the eye is adequately described by the thin lens equations:

P = 1
do

+ 1
di

and hi
ho

= − di
do

= m.

• The eye produces a real image on the retina by adjusting its focal length and power in a process called accommodation.
• For close vision, the eye is fully accommodated and has its greatest power, whereas for distant vision, it is totally relaxed

and has its smallest power.
• The loss of the ability to accommodate with age is called presbyopia, which is corrected by the use of a converging lens to

add power for close vision.

26.2 Vision Correction
• Nearsightedness, or myopia, is the inability to see distant objects and is corrected with a diverging lens to reduce power.
• Farsightedness, or hyperopia, is the inability to see close objects and is corrected with a converging lens to increase power.
• In myopia and hyperopia, the corrective lenses produce images at a distance that the person can see clearly—the far point

and near point, respectively.

26.3 Color and Color Vision
• The eye has four types of light receptors—rods and three types of color-sensitive cones.
• The rods are good for night vision, peripheral vision, and motion changes, while the cones are responsible for central vision

and color.
• We perceive many hues, from light having mixtures of wavelengths.
• A simplified theory of color vision states that there are three primary colors, which correspond to the three types of cones,

and that various combinations of the primary colors produce all the hues.
• The true color of an object is related to its relative absorption of various wavelengths of light. The color of a light source is

related to the wavelengths it produces.
• Color constancy is the ability of the eye-brain system to discern the true color of an object illuminated by various light

sources.
• The retinex theory of color vision explains color constancy by postulating the existence of three retinexes or image

systems, associated with the three types of cones that are compared to obtain sophisticated information.

26.4 Microscopes
• The microscope is a multiple-element system having more than a single lens or mirror.
• Many optical devices contain more than a single lens or mirror. These are analysed by considering each element

sequentially. The image formed by the first is the object for the second, and so on. The same ray tracing and thin lens
techniques apply to each lens element.

• The overall magnification of a multiple-element system is the product of the magnifications of its individual elements. For a
two-element system with an objective and an eyepiece, this is

m = mome,
where mo is the magnification of the objective and me is the magnification of the eyepiece, such as for a microscope.

• Microscopes are instruments for allowing us to see detail we would not be able to see with the unaided eye and consist of a
range of components.

• The eyepiece and objective contribute to the magnification. The numerical aperture (NA) of an objective is given by

NA = n sin α
where n is the refractive index and α the angle of acceptance.

• Immersion techniques are often used to improve the light gathering ability of microscopes. The specimen is illuminated by
transmitted, scattered or reflected light though a condenser.

• The f /# describes the light gathering ability of a lens. It is given by
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f /# = f
D ≈ 1

2NA .

26.5 Telescopes
• Simple telescopes can be made with two lenses. They are used for viewing objects at large distances and utilize the entire

range of the electromagnetic spectrum.
• The angular magnification M for a telescope is given by

M = θ′
θ = − fo

fe
,

where θ is the angle subtended by an object viewed by the unaided eye, θ′ is the angle subtended by a magnified image,

and fo and fe are the focal lengths of the objective and the eyepiece.

26.6 Aberrations
• Aberrations or image distortions can arise due to the finite thickness of optical instruments, imperfections in the optical

components, and limitations on the ways in which the components are used.
• The means for correcting aberrations range from better components to computational techniques.

Conceptual Questions

26.1 Physics of the Eye

1. If the lens of a person’s eye is removed because of cataracts (as has been done since ancient times), why would you expect a
spectacle lens of about 16 D to be prescribed?

2. A cataract is cloudiness in the lens of the eye. Is light dispersed or diffused by it?

3. When laser light is shone into a relaxed normal-vision eye to repair a tear by spot-welding the retina to the back of the eye, the
rays entering the eye must be parallel. Why?

4. How does the power of a dry contact lens compare with its power when resting on the tear layer of the eye? Explain.

5. Why is your vision so blurry when you open your eyes while swimming under water? How does a face mask enable clear
vision?

26.2 Vision Correction

6. It has become common to replace the cataract-clouded lens of the eye with an internal lens. This intraocular lens can be
chosen so that the person has perfect distant vision. Will the person be able to read without glasses? If the person was
nearsighted, is the power of the intraocular lens greater or less than the removed lens?

7. If the cornea is to be reshaped (this can be done surgically or with contact lenses) to correct myopia, should its curvature be
made greater or smaller? Explain. Also explain how hyperopia can be corrected.

8. If there is a fixed percent uncertainty in LASIK reshaping of the cornea, why would you expect those people with the greatest
correction to have a poorer chance of normal distant vision after the procedure?

9. A person with presbyopia has lost some or all of the ability to accommodate the power of the eye. If such a person’s distant
vision is corrected with LASIK, will she still need reading glasses? Explain.

26.3 Color and Color Vision

10. A pure red object on a black background seems to disappear when illuminated with pure green light. Explain why.

11. What is color constancy, and what are its limitations?

12. There are different types of color blindness related to the malfunction of different types of cones. Why would it be particularly
useful to study those rare individuals who are color blind only in one eye or who have a different type of color blindness in each
eye?

13. Propose a way to study the function of the rods alone, given they can sense light about 1000 times dimmer than the cones.

26.4 Microscopes

14. Geometric optics describes the interaction of light with macroscopic objects. Why, then, is it correct to use geometric optics to
analyse a microscope’s image?

15. The image produced by the microscope in Figure 26.16 cannot be projected. Could extra lenses or mirrors project it?
Explain.

16. Why not have the objective of a microscope form a case 2 image with a large magnification? (Hint: Consider the location of
that image and the difficulty that would pose for using the eyepiece as a magnifier.)

17. What advantages do oil immersion objectives offer?
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18. How does the NA of a microscope compare with the NA of an optical fiber?

26.5 Telescopes

19. If you want your microscope or telescope to project a real image onto a screen, how would you change the placement of the
eyepiece relative to the objective?

26.6 Aberrations

20. List the various types of aberrations. What causes them and how can each be reduced?
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Problems & Exercises

26.1 Physics of the Eye

Unless otherwise stated, the lens-to-retina distance is
2.00 cm.

1. What is the power of the eye when viewing an object 50.0
cm away?

2. Calculate the power of the eye when viewing an object
3.00 m away.

3. (a) The print in many books averages 3.50 mm in height.
How high is the image of the print on the retina when the
book is held 30.0 cm from the eye?

(b) Compare the size of the print to the sizes of rods and
cones in the fovea and discuss the possible details
observable in the letters. (The eye-brain system can perform
better because of interconnections and higher order image
processing.)

4. Suppose a certain person’s visual acuity is such that he
can see objects clearly that form an image 4.00 μm high on

his retina. What is the maximum distance at which he can
read the 75.0 cm high letters on the side of an airplane?

5. People who do very detailed work close up, such as
jewellers, often can see objects clearly at much closer
distance than the normal 25 cm.

(a) What is the power of the eyes of a woman who can see an
object clearly at a distance of only 8.00 cm?

(b) What is the size of an image of a 1.00 mm object, such as
lettering inside a ring, held at this distance?

(c) What would the size of the image be if the object were
held at the normal 25.0 cm distance?

26.2 Vision Correction

6. What is the far point of a person whose eyes have a
relaxed power of 50.5 D?

7. What is the near point of a person whose eyes have an
accommodated power of 53.5 D?

8. (a) A laser vision correction reshaping the cornea of a
myopic patient reduces the power of his eye by 9.00 D, with a
±5.0% uncertainty in the final correction. What is the range

of diopters for spectacle lenses that this person might need
after LASIK procedure? (b) Was the person nearsighted or
farsighted before the procedure? How do you know?

9. In a LASIK vision correction, the power of a patient’s eye is
increased by 3.00 D. Assuming this produces normal close
vision, what was the patient’s near point before the
procedure?

10. What was the previous far point of a patient who had laser
vision correction that reduced the power of her eye by 7.00 D,
producing normal distant vision for her?

11. A severely myopic patient has a far point of 5.00 cm. By
how many diopters should the power of his eye be reduced in
laser vision correction to obtain normal distant vision for him?

12. A student’s eyes, while reading the blackboard, have a
power of 51.0 D. How far is the board from his eyes?

13. The power of a physician’s eyes is 53.0 D while
examining a patient. How far from her eyes is the feature
being examined?

14. A young woman with normal distant vision has a 10.0%
ability to accommodate (that is, increase) the power of her
eyes. What is the closest object she can see clearly?

15. The far point of a myopic administrator is 50.0 cm. (a)
What is the relaxed power of his eyes? (b) If he has the
normal 8.00% ability to accommodate, what is the closest
object he can see clearly?

16. A very myopic man has a far point of 20.0 cm. What
power contact lens (when on the eye) will correct his distant
vision?

17. Repeat the previous problem for eyeglasses held 1.50 cm
from the eyes.

18. A myopic person sees that her contact lens prescription is
–4.00 D . What is her far point?

19. Repeat the previous problem for glasses that are 1.75 cm
from the eyes.

20. The contact lens prescription for a mildly farsighted
person is 0.750 D, and the person has a near point of 29.0
cm. What is the power of the tear layer between the cornea
and the lens if the correction is ideal, taking the tear layer into
account?

21. A nearsighted man cannot see objects clearly beyond 20
cm from his eyes. How close must he stand to a mirror in
order to see what he is doing when he shaves?

22. A mother sees that her child’s contact lens prescription is
0.750 D. What is the child’s near point?

23. Repeat the previous problem for glasses that are 2.20 cm
from the eyes.

24. The contact lens prescription for a nearsighted person is
–4.00 D and the person has a far point of 22.5 cm. What is

the power of the tear layer between the cornea and the lens if
the correction is ideal, taking the tear layer into account?

25. Unreasonable Results

A boy has a near point of 50 cm and a far point of 500 cm.
Will a –4.00 D lens correct his far point to infinity?

26.4 Microscopes

26. A microscope with an overall magnification of 800 has an
objective that magnifies by 200. (a) What is the magnification
of the eyepiece? (b) If there are two other objectives that can
be used, having magnifications of 100 and 400, what other
total magnifications are possible?

27. (a) What magnification is produced by a 0.150 cm focal
length microscope objective that is 0.155 cm from the object
being viewed? (b) What is the overall magnification if an 8×
eyepiece (one that produces a magnification of 8.00) is used?

28. (a) Where does an object need to be placed relative to a
microscope for its 0.500 cm focal length objective to produce
a magnification of –400 ? (b) Where should the 5.00 cm

focal length eyepiece be placed to produce a further fourfold
(4.00) magnification?

29. You switch from a 1.40NA 60× oil immersion objective

to a 1.40NA 60× oil immersion objective. What are the

acceptance angles for each? Compare and comment on the
values. Which would you use first to locate the target area on
your specimen?
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30. An amoeba is 0.305 cm away from the 0.300 cm focal
length objective lens of a microscope. (a) Where is the image
formed by the objective lens? (b) What is this image’s
magnification? (c) An eyepiece with a 2.00 cm focal length is
placed 20.0 cm from the objective. Where is the final image?
(d) What magnification is produced by the eyepiece? (e) What
is the overall magnification? (See Figure 26.16.)

31. You are using a standard microscope with a 0.10NA 4×
objective and switch to a 0.65NA 40× objective. What are

the acceptance angles for each? Compare and comment on
the values. Which would you use first to locate the target area
on of your specimen? (See Figure 26.17.)

32. Unreasonable Results

Your friends show you an image through a microscope. They
tell you that the microscope has an objective with a 0.500 cm
focal length and an eyepiece with a 5.00 cm focal length. The
resulting overall magnification is 250,000. Are these viable
values for a microscope?

26.5 Telescopes

Unless otherwise stated, the lens-to-retina distance is
2.00 cm.

33. What is the angular magnification of a telescope that has
a 100 cm focal length objective and a 2.50 cm focal length
eyepiece?

34. Find the distance between the objective and eyepiece
lenses in the telescope in the above problem needed to
produce a final image very far from the observer, where vision
is most relaxed. Note that a telescope is normally used to
view very distant objects.

35. A large reflecting telescope has an objective mirror with a
10.0 m radius of curvature. What angular magnification

does it produce when a 3.00 m focal length eyepiece is

used?

36. A small telescope has a concave mirror with a 2.00 m
radius of curvature for its objective. Its eyepiece is a 4.00 cm
focal length lens. (a) What is the telescope’s angular
magnification? (b) What angle is subtended by a 25,000 km
diameter sunspot? (c) What is the angle of its telescopic
image?

37. A 7.5× binocular produces an angular magnification of

−7.50 , acting like a telescope. (Mirrors are used to make

the image upright.) If the binoculars have objective lenses
with a 75.0 cm focal length, what is the focal length of the
eyepiece lenses?

38. Construct Your Own Problem

Consider a telescope of the type used by Galileo, having a
convex objective and a concave eyepiece as illustrated in
Figure 26.23(a). Construct a problem in which you calculate
the location and size of the image produced. Among the
things to be considered are the focal lengths of the lenses
and their relative placements as well as the size and location
of the object. Verify that the angular magnification is greater
than one. That is, the angle subtended at the eye by the
image is greater than the angle subtended by the object.

26.6 Aberrations

39. Integrated Concepts

(a) During laser vision correction, a brief burst of 193 nm
ultraviolet light is projected onto the cornea of the patient. It
makes a spot 1.00 mm in diameter and deposits 0.500 mJ of
energy. Calculate the depth of the layer ablated, assuming
the corneal tissue has the same properties as water and is
initially at 34.0ºC . The tissue’s temperature is increased to

100ºC and evaporated without further temperature increase.

(b) Does your answer imply that the shape of the cornea can
be finely controlled?
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27 WAVE OPTICS

Figure 27.1 The colors reflected by this compact disc vary with angle and are not caused by pigments. Colors such as these are direct evidence of the
wave character of light. (credit: Infopro, Wikimedia Commons)

Chapter Outline
27.1. The Wave Aspect of Light: Interference

• Discuss the wave character of light.
• Identify the changes when light enters a medium.

27.2. Huygens's Principle: Diffraction
• Discuss the propagation of transverse waves.
• Discuss Huygens’s principle.
• Explain the bending of light.

27.3. Young’s Double Slit Experiment
• Explain the phenomena of interference.
• Define constructive interference for a double slit and destructive interference for a double slit.

27.4. Multiple Slit Diffraction
• Discuss the pattern obtained from diffraction grating.
• Explain diffraction grating effects.

27.5. Single Slit Diffraction
• Discuss the single slit diffraction pattern.

27.6. Limits of Resolution: The Rayleigh Criterion
• Discuss the Rayleigh criterion.

27.7. Thin Film Interference
• Discuss the rainbow formation by thin films.

27.8. Polarization
• Discuss the meaning of polarization.
• Discuss the property of optical activity of certain materials.

27.9. *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light
• Discuss the different types of microscopes.
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Introduction to Wave Optics

Examine a compact disc under white light, noting the colors observed and locations of the colors. Determine if the spectra are
formed by diffraction from circular lines centered at the middle of the disc and, if so, what is their spacing. If not, determine the
type of spacing. Also with the CD, explore the spectra of a few light sources, such as a candle flame, incandescent bulb, halogen
light, and fluorescent light. Knowing the spacing of the rows of pits in the compact disc, estimate the maximum spacing that will
allow the given number of megabytes of information to be stored.

If you have ever looked at the reds, blues, and greens in a sunlit soap bubble and wondered how straw-colored soapy water
could produce them, you have hit upon one of the many phenomena that can only be explained by the wave character of light
(see Figure 27.2). The same is true for the colors seen in an oil slick or in the light reflected from a compact disc. These and
other interesting phenomena, such as the dispersion of white light into a rainbow of colors when passed through a narrow slit,
cannot be explained fully by geometric optics. In these cases, light interacts with small objects and exhibits its wave
characteristics. The branch of optics that considers the behavior of light when it exhibits wave characteristics (particularly when it
interacts with small objects) is called wave optics (sometimes called physical optics). It is the topic of this chapter.

Figure 27.2 These soap bubbles exhibit brilliant colors when exposed to sunlight. How are the colors produced if they are not pigments in the soap?
(credit: Scott Robinson, Flickr)

27.1 The Wave Aspect of Light: Interference

We know that visible light is the type of electromagnetic wave to which our eyes respond. Like all other electromagnetic waves, it
obeys the equation

(27.1)c = f λ,

where c = 3×108 m/s is the speed of light in vacuum, f is the frequency of the electromagnetic waves, and λ is its

wavelength. The range of visible wavelengths is approximately 380 to 760 nm. As is true for all waves, light travels in straight
lines and acts like a ray when it interacts with objects several times as large as its wavelength. However, when it interacts with
smaller objects, it displays its wave characteristics prominently. Interference is the hallmark of a wave, and in Figure 27.3 both
the ray and wave characteristics of light can be seen. The laser beam emitted by the observatory epitomizes a ray, traveling in a
straight line. However, passing a pure-wavelength beam through vertical slits with a size close to the wavelength of the beam
reveals the wave character of light, as the beam spreads out horizontally into a pattern of bright and dark regions caused by
systematic constructive and destructive interference. Rather than spreading out, a ray would continue traveling straight ahead
after passing through slits.

Making Connections: Waves

The most certain indication of a wave is interference. This wave characteristic is most prominent when the wave interacts
with an object that is not large compared with the wavelength. Interference is observed for water waves, sound waves, light
waves, and (as we will see in Special Relativity) for matter waves, such as electrons scattered from a crystal.

1058 Chapter 27 | Wave Optics

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Figure 27.3 (a) The laser beam emitted by an observatory acts like a ray, traveling in a straight line. This laser beam is from the Paranal Observatory
of the European Southern Observatory. (credit: Yuri Beletsky, European Southern Observatory) (b) A laser beam passing through a grid of vertical slits
produces an interference pattern—characteristic of a wave. (credit: Shim'on and Slava Rybka, Wikimedia Commons)

Light has wave characteristics in various media as well as in a vacuum. When light goes from a vacuum to some medium, like
water, its speed and wavelength change, but its frequency f remains the same. (We can think of light as a forced oscillation

that must have the frequency of the original source.) The speed of light in a medium is v = c / n , where n is its index of

refraction. If we divide both sides of equation c = f λ by n , we get c / n = v = f λ / n . This implies that v = f λn , where λn
is the wavelength in a medium and that

(27.2)λn = λ
n,

where λ is the wavelength in vacuum and n is the medium’s index of refraction. Therefore, the wavelength of light is smaller in

any medium than it is in vacuum. In water, for example, which has n = 1.333 , the range of visible wavelengths is

(380 nm)/1.333 to (760 nm)/1.333 , or λn = 285 to 570 nm . Although wavelengths change while traveling from one

medium to another, colors do not, since colors are associated with frequency.

27.2 Huygens's Principle: Diffraction

Figure 27.4 shows how a transverse wave looks as viewed from above and from the side. A light wave can be imagined to
propagate like this, although we do not actually see it wiggling through space. From above, we view the wavefronts (or wave
crests) as we would by looking down on the ocean waves. The side view would be a graph of the electric or magnetic field. The
view from above is perhaps the most useful in developing concepts about wave optics.
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Figure 27.4 A transverse wave, such as an electromagnetic wave like light, as viewed from above and from the side. The direction of propagation is
perpendicular to the wavefronts (or wave crests) and is represented by an arrow like a ray.

The Dutch scientist Christiaan Huygens (1629–1695) developed a useful technique for determining in detail how and where
waves propagate. Starting from some known position, Huygens’s principle states that:

Every point on a wavefront is a source of wavelets that spread out in the forward direction at the same speed as the
wave itself. The new wavefront is a line tangent to all of the wavelets.

Figure 27.5 shows how Huygens’s principle is applied. A wavefront is the long edge that moves, for example, the crest or the
trough. Each point on the wavefront emits a semicircular wave that moves at the propagation speed v . These are drawn at a

time t later, so that they have moved a distance s = vt . The new wavefront is a line tangent to the wavelets and is where we

would expect the wave to be a time t later. Huygens’s principle works for all types of waves, including water waves, sound

waves, and light waves. We will find it useful not only in describing how light waves propagate, but also in explaining the laws of
reflection and refraction. In addition, we will see that Huygens’s principle tells us how and where light rays interfere.

Figure 27.5 Huygens’s principle applied to a straight wavefront. Each point on the wavefront emits a semicircular wavelet that moves a distance
s = vt . The new wavefront is a line tangent to the wavelets.

Figure 27.6 shows how a mirror reflects an incoming wave at an angle equal to the incident angle, verifying the law of reflection.
As the wavefront strikes the mirror, wavelets are first emitted from the left part of the mirror and then the right. The wavelets
closer to the left have had time to travel farther, producing a wavefront traveling in the direction shown.
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Figure 27.6 Huygens’s principle applied to a straight wavefront striking a mirror. The wavelets shown were emitted as each point on the wavefront
struck the mirror. The tangent to these wavelets shows that the new wavefront has been reflected at an angle equal to the incident angle. The direction
of propagation is perpendicular to the wavefront, as shown by the downward-pointing arrows.

The law of refraction can be explained by applying Huygens’s principle to a wavefront passing from one medium to another (see
Figure 27.7). Each wavelet in the figure was emitted when the wavefront crossed the interface between the media. Since the
speed of light is smaller in the second medium, the waves do not travel as far in a given time, and the new wavefront changes
direction as shown. This explains why a ray changes direction to become closer to the perpendicular when light slows down.
Snell’s law can be derived from the geometry in Figure 27.7, but this is left as an exercise for ambitious readers.

Figure 27.7 Huygens’s principle applied to a straight wavefront traveling from one medium to another where its speed is less. The ray bends toward
the perpendicular, since the wavelets have a lower speed in the second medium.

What happens when a wave passes through an opening, such as light shining through an open door into a dark room? For light,
we expect to see a sharp shadow of the doorway on the floor of the room, and we expect no light to bend around corners into
other parts of the room. When sound passes through a door, we expect to hear it everywhere in the room and, thus, expect that
sound spreads out when passing through such an opening (see Figure 27.8). What is the difference between the behavior of
sound waves and light waves in this case? The answer is that light has very short wavelengths and acts like a ray. Sound has
wavelengths on the order of the size of the door and bends around corners (for frequency of 1000 Hz,

λ = c / f = (330 m / s) / (1000 s−1 ) = 0.33 m , about three times smaller than the width of the doorway).

Figure 27.8 (a) Light passing through a doorway makes a sharp outline on the floor. Since light’s wavelength is very small compared with the size of
the door, it acts like a ray. (b) Sound waves bend into all parts of the room, a wave effect, because their wavelength is similar to the size of the door.

If we pass light through smaller openings, often called slits, we can use Huygens’s principle to see that light bends as sound
does (see Figure 27.9). The bending of a wave around the edges of an opening or an obstacle is called diffraction. Diffraction is
a wave characteristic and occurs for all types of waves. If diffraction is observed for some phenomenon, it is evidence that the
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phenomenon is a wave. Thus the horizontal diffraction of the laser beam after it passes through slits in Figure 27.3 is evidence
that light is a wave.

Figure 27.9 Huygens’s principle applied to a straight wavefront striking an opening. The edges of the wavefront bend after passing through the
opening, a process called diffraction. The amount of bending is more extreme for a small opening, consistent with the fact that wave characteristics are
most noticeable for interactions with objects about the same size as the wavelength.

27.3 Young’s Double Slit Experiment

Although Christiaan Huygens thought that light was a wave, Isaac Newton did not. Newton felt that there were other explanations
for color, and for the interference and diffraction effects that were observable at the time. Owing to Newton’s tremendous stature,
his view generally prevailed. The fact that Huygens’s principle worked was not considered evidence that was direct enough to
prove that light is a wave. The acceptance of the wave character of light came many years later when, in 1801, the English
physicist and physician Thomas Young (1773–1829) did his now-classic double slit experiment (see Figure 27.10).

Figure 27.10 Young’s double slit experiment. Here pure-wavelength light sent through a pair of vertical slits is diffracted into a pattern on the screen of
numerous vertical lines spread out horizontally. Without diffraction and interference, the light would simply make two lines on the screen.

Why do we not ordinarily observe wave behavior for light, such as observed in Young’s double slit experiment? First, light must
interact with something small, such as the closely spaced slits used by Young, to show pronounced wave effects. Furthermore,
Young first passed light from a single source (the Sun) through a single slit to make the light somewhat coherent. By coherent,
we mean waves are in phase or have a definite phase relationship. Incoherent means the waves have random phase
relationships. Why did Young then pass the light through a double slit? The answer to this question is that two slits provide two
coherent light sources that then interfere constructively or destructively. Young used sunlight, where each wavelength forms its
own pattern, making the effect more difficult to see. We illustrate the double slit experiment with monochromatic (single λ ) light

to clarify the effect. Figure 27.11 shows the pure constructive and destructive interference of two waves having the same
wavelength and amplitude.
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Figure 27.11 The amplitudes of waves add. (a) Pure constructive interference is obtained when identical waves are in phase. (b) Pure destructive
interference occurs when identical waves are exactly out of phase, or shifted by half a wavelength.

When light passes through narrow slits, it is diffracted into semicircular waves, as shown in Figure 27.12(a). Pure constructive
interference occurs where the waves are crest to crest or trough to trough. Pure destructive interference occurs where they are
crest to trough. The light must fall on a screen and be scattered into our eyes for us to see the pattern. An analogous pattern for
water waves is shown in Figure 27.12(b). Note that regions of constructive and destructive interference move out from the slits
at well-defined angles to the original beam. These angles depend on wavelength and the distance between the slits, as we shall
see below.

Figure 27.12 Double slits produce two coherent sources of waves that interfere. (a) Light spreads out (diffracts) from each slit, because the slits are
narrow. These waves overlap and interfere constructively (bright lines) and destructively (dark regions). We can only see this if the light falls onto a
screen and is scattered into our eyes. (b) Double slit interference pattern for water waves are nearly identical to that for light. Wave action is greatest in
regions of constructive interference and least in regions of destructive interference. (c) When light that has passed through double slits falls on a
screen, we see a pattern such as this. (credit: PASCO)

To understand the double slit interference pattern, we consider how two waves travel from the slits to the screen, as illustrated in
Figure 27.13. Each slit is a different distance from a given point on the screen. Thus different numbers of wavelengths fit into
each path. Waves start out from the slits in phase (crest to crest), but they may end up out of phase (crest to trough) at the
screen if the paths differ in length by half a wavelength, interfering destructively as shown in Figure 27.13(a). If the paths differ
by a whole wavelength, then the waves arrive in phase (crest to crest) at the screen, interfering constructively as shown in
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Figure 27.13(b). More generally, if the paths taken by the two waves differ by any half-integral number of wavelengths [ (1 / 2)λ ,

(3 / 2)λ , (5 / 2)λ , etc.], then destructive interference occurs. Similarly, if the paths taken by the two waves differ by any integral

number of wavelengths ( λ , 2λ , 3λ , etc.), then constructive interference occurs.

Take-Home Experiment: Using Fingers as Slits

Look at a light, such as a street lamp or incandescent bulb, through the narrow gap between two fingers held close together.
What type of pattern do you see? How does it change when you allow the fingers to move a little farther apart? Is it more
distinct for a monochromatic source, such as the yellow light from a sodium vapor lamp, than for an incandescent bulb?

Figure 27.13 Waves follow different paths from the slits to a common point on a screen. (a) Destructive interference occurs here, because one path is
a half wavelength longer than the other. The waves start in phase but arrive out of phase. (b) Constructive interference occurs here because one path
is a whole wavelength longer than the other. The waves start out and arrive in phase.

Figure 27.14 shows how to determine the path length difference for waves traveling from two slits to a common point on a
screen. If the screen is a large distance away compared with the distance between the slits, then the angle θ between the path

and a line from the slits to the screen (see the figure) is nearly the same for each path. The difference between the paths is
shown in the figure; simple trigonometry shows it to be d sin θ , where d is the distance between the slits. To obtain

constructive interference for a double slit, the path length difference must be an integral multiple of the wavelength, or

(27.3)d sin θ = mλ, for m = 0, 1, −1, 2, −2, … (constructive).

Similarly, to obtain destructive interference for a double slit, the path length difference must be a half-integral multiple of the
wavelength, or

(27.4)d sin θ = ⎛⎝m + 1
2
⎞
⎠λ, for m = 0, 1, −1, 2, −2, … (destructive),

where λ is the wavelength of the light, d is the distance between slits, and θ is the angle from the original direction of the

beam as discussed above. We call m the order of the interference. For example, m = 4 is fourth-order interference.

Figure 27.14 The paths from each slit to a common point on the screen differ by an amount d sin θ , assuming the distance to the screen is much

greater than the distance between slits (not to scale here).

The equations for double slit interference imply that a series of bright and dark lines are formed. For vertical slits, the light
spreads out horizontally on either side of the incident beam into a pattern called interference fringes, illustrated in Figure 27.15.
The intensity of the bright fringes falls off on either side, being brightest at the center. The closer the slits are, the more is the
spreading of the bright fringes. We can see this by examining the equation
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(27.5)d sin θ = mλ, for m = 0, 1, −1, 2, −2, … .

For fixed λ and m , the smaller d is, the larger θ must be, since sin θ = mλ / d . This is consistent with our contention

that wave effects are most noticeable when the object the wave encounters (here, slits a distance d apart) is small. Small d
gives large θ , hence a large effect.

Figure 27.15 The interference pattern for a double slit has an intensity that falls off with angle. The photograph shows multiple bright and dark lines, or
fringes, formed by light passing through a double slit.

Example 27.1 Finding a Wavelength from an Interference Pattern

Suppose you pass light from a He-Ne laser through two slits separated by 0.0100 mm and find that the third bright line on a
screen is formed at an angle of 10.95º relative to the incident beam. What is the wavelength of the light?

Strategy

The third bright line is due to third-order constructive interference, which means that m = 3 . We are given

d = 0.0100 mm and θ = 10.95º . The wavelength can thus be found using the equation d sin θ = mλ for

constructive interference.

Solution

The equation is d sin θ = mλ . Solving for the wavelength λ gives

(27.6)λ = d sin θ
m .

Substituting known values yields

(27.7)λ = (0.0100 mm)(sin 10.95º)
3

= 6.33×10−4 mm = 633 nm.
Discussion

To three digits, this is the wavelength of light emitted by the common He-Ne laser. Not by coincidence, this red color is
similar to that emitted by neon lights. More important, however, is the fact that interference patterns can be used to measure
wavelength. Young did this for visible wavelengths. This analytical technique is still widely used to measure electromagnetic
spectra. For a given order, the angle for constructive interference increases with λ , so that spectra (measurements of

intensity versus wavelength) can be obtained.

Example 27.2 Calculating Highest Order Possible

Interference patterns do not have an infinite number of lines, since there is a limit to how big m can be. What is the highest-

order constructive interference possible with the system described in the preceding example?

Strategy and Concept

The equation d sin θ = mλ (for m = 0, 1, −1, 2, −2, … ⎞
⎠ describes constructive interference. For fixed values of d

and λ , the larger m is, the larger sin θ is. However, the maximum value that sin θ can have is 1, for an angle of 90º .

(Larger angles imply that light goes backward and does not reach the screen at all.) Let us find which m corresponds to this

maximum diffraction angle.
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Solution

Solving the equation d sin θ = mλ for m gives

(27.8)m = d sin θ
λ .

Taking sin θ = 1 and substituting the values of d and λ from the preceding example gives

(27.9)m = (0.0100 mm)(1)
633 nm ≈ 15.8.

Therefore, the largest integer m can be is 15, or

(27.10)m = 15.
Discussion

The number of fringes depends on the wavelength and slit separation. The number of fringes will be very large for large slit
separations. However, if the slit separation becomes much greater than the wavelength, the intensity of the interference
pattern changes so that the screen has two bright lines cast by the slits, as expected when light behaves like a ray. We also
note that the fringes get fainter further away from the center. Consequently, not all 15 fringes may be observable.

27.4 Multiple Slit Diffraction

An interesting thing happens if you pass light through a large number of evenly spaced parallel slits, called a diffraction grating.
An interference pattern is created that is very similar to the one formed by a double slit (see Figure 27.16). A diffraction grating
can be manufactured by scratching glass with a sharp tool in a number of precisely positioned parallel lines, with the untouched
regions acting like slits. These can be photographically mass produced rather cheaply. Diffraction gratings work both for
transmission of light, as in Figure 27.16, and for reflection of light, as on butterfly wings and the Australian opal in Figure 27.17
or the CD pictured in the opening photograph of this chapter, Figure 27.1. In addition to their use as novelty items, diffraction
gratings are commonly used for spectroscopic dispersion and analysis of light. What makes them particularly useful is the fact
that they form a sharper pattern than double slits do. That is, their bright regions are narrower and brighter, while their dark
regions are darker. Figure 27.18 shows idealized graphs demonstrating the sharper pattern. Natural diffraction gratings occur in
the feathers of certain birds. Tiny, finger-like structures in regular patterns act as reflection gratings, producing constructive
interference that gives the feathers colors not solely due to their pigmentation. This is called iridescence.

Figure 27.16 A diffraction grating is a large number of evenly spaced parallel slits. (a) Light passing through is diffracted in a pattern similar to a double
slit, with bright regions at various angles. (b) The pattern obtained for white light incident on a grating. The central maximum is white, and the higher-
order maxima disperse white light into a rainbow of colors.

Figure 27.17 (a) This Australian opal and (b) the butterfly wings have rows of reflectors that act like reflection gratings, reflecting different colors at
different angles. (credits: (a) Opals-On-Black.com, via Flickr (b) whologwhy, Flickr)
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Figure 27.18 Idealized graphs of the intensity of light passing through a double slit (a) and a diffraction grating (b) for monochromatic light. Maxima can
be produced at the same angles, but those for the diffraction grating are narrower and hence sharper. The maxima become narrower and the regions
between darker as the number of slits is increased.

The analysis of a diffraction grating is very similar to that for a double slit (see Figure 27.19). As we know from our discussion of
double slits in Young's Double Slit Experiment, light is diffracted by each slit and spreads out after passing through. Rays
traveling in the same direction (at an angle θ relative to the incident direction) are shown in the figure. Each of these rays travels

a different distance to a common point on a screen far away. The rays start in phase, and they can be in or out of phase when
they reach a screen, depending on the difference in the path lengths traveled. As seen in the figure, each ray travels a distance
d sin θ different from that of its neighbor, where d is the distance between slits. If this distance equals an integral number of

wavelengths, the rays all arrive in phase, and constructive interference (a maximum) is obtained. Thus, the condition necessary
to obtain constructive interference for a diffraction grating is

(27.11)d sin θ = mλ, for m = 0, 1, –1, 2, –2, … (constructive),

where d is the distance between slits in the grating, λ is the wavelength of light, and m is the order of the maximum. Note that

this is exactly the same equation as for double slits separated by d . However, the slits are usually closer in diffraction gratings

than in double slits, producing fewer maxima at larger angles.

Figure 27.19 Diffraction grating showing light rays from each slit traveling in the same direction. Each ray travels a different distance to reach a

common point on a screen (not shown). Each ray travels a distance d sin θ different from that of its neighbor.

Where are diffraction gratings used? Diffraction gratings are key components of monochromators used, for example, in optical
imaging of particular wavelengths from biological or medical samples. A diffraction grating can be chosen to specifically analyze
a wavelength emitted by molecules in diseased cells in a biopsy sample or to help excite strategic molecules in the sample with a
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selected frequency of light. Another vital use is in optical fiber technologies where fibers are designed to provide optimum
performance at specific wavelengths. A range of diffraction gratings are available for selecting specific wavelengths for such use.

Take-Home Experiment: Rainbows on a CD

The spacing d of the grooves in a CD or DVD can be well determined by using a laser and the equation

d sin θ = mλ, for m = 0, 1, –1, 2, –2, … . However, we can still make a good estimate of this spacing by using white

light and the rainbow of colors that comes from the interference. Reflect sunlight from a CD onto a wall and use your best
judgment of the location of a strongly diffracted color to find the separation d .

Example 27.3 Calculating Typical Diffraction Grating Effects

Diffraction gratings with 10,000 lines per centimeter are readily available. Suppose you have one, and you send a beam of
white light through it to a screen 2.00 m away. (a) Find the angles for the first-order diffraction of the shortest and longest
wavelengths of visible light (380 and 760 nm). (b) What is the distance between the ends of the rainbow of visible light
produced on the screen for first-order interference? (See Figure 27.20.)

Figure 27.20 The diffraction grating considered in this example produces a rainbow of colors on a screen a distance x = 2.00 m from the

grating. The distances along the screen are measured perpendicular to the x -direction. In other words, the rainbow pattern extends out of the

page.

Strategy

The angles can be found using the equation

(27.12)d sin θ = mλ (for m = 0, 1, –1, 2, –2, …)

once a value for the slit spacing d has been determined. Since there are 10,000 lines per centimeter, each line is separated

by 1/10,000 of a centimeter. Once the angles are found, the distances along the screen can be found using simple

trigonometry.

Solution for (a)

The distance between slits is d = (1 cm) / 10,000 = 1.00×10−4 cm or 1.00×10−6 m . Let us call the two angles θV
for violet (380 nm) and θR for red (760 nm). Solving the equation d sin θV = mλ for sin θV ,

(27.13)
sin θV = mλV

d ,
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where m = 1 for first order and λV = 380 nm = 3.80×10−7 m . Substituting these values gives

(27.14)
sin θV = 3.80×10−7 m

1.00×10−6 m
= 0.380.

Thus the angle θV is

(27.15)θV = sin−1 0.380 = 22.33º.

Similarly,

(27.16)
sin θR = 7.60×10−7 m

1.00×10−6 m
.

Thus the angle θR is

(27.17)θR = sin−1 0.760 = 49.46º.

Notice that in both equations, we reported the results of these intermediate calculations to four significant figures to use with
the calculation in part (b).

Solution for (b)

The distances on the screen are labeled yV and yR in Figure 27.20. Noting that tan θ = y / x , we can solve for yV and

yR . That is,

(27.18)yV = x tan θV = (2.00 m)(tan 22.33º) = 0.815 m

and

(27.19)yR = x tan θR = (2.00 m)(tan 49.46º) = 2.338 m.

The distance between them is therefore

(27.20)yR − yV = 1.52 m.

Discussion

The large distance between the red and violet ends of the rainbow produced from the white light indicates the potential this
diffraction grating has as a spectroscopic tool. The more it can spread out the wavelengths (greater dispersion), the more
detail can be seen in a spectrum. This depends on the quality of the diffraction grating—it must be very precisely made in
addition to having closely spaced lines.

27.5 Single Slit Diffraction

Light passing through a single slit forms a diffraction pattern somewhat different from those formed by double slits or diffraction
gratings. Figure 27.21 shows a single slit diffraction pattern. Note that the central maximum is larger than those on either side,
and that the intensity decreases rapidly on either side. In contrast, a diffraction grating produces evenly spaced lines that dim
slowly on either side of center.

Figure 27.21 (a) Single slit diffraction pattern. Monochromatic light passing through a single slit has a central maximum and many smaller and dimmer
maxima on either side. The central maximum is six times higher than shown. (b) The drawing shows the bright central maximum and dimmer and
thinner maxima on either side.

The analysis of single slit diffraction is illustrated in Figure 27.22. Here we consider light coming from different parts of the same
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slit. According to Huygens’s principle, every part of the wavefront in the slit emits wavelets. These are like rays that start out in
phase and head in all directions. (Each ray is perpendicular to the wavefront of a wavelet.) Assuming the screen is very far away
compared with the size of the slit, rays heading toward a common destination are nearly parallel. When they travel straight
ahead, as in Figure 27.22(a), they remain in phase, and a central maximum is obtained. However, when rays travel at an angle
θ relative to the original direction of the beam, each travels a different distance to a common location, and they can arrive in or

out of phase. In Figure 27.22(b), the ray from the bottom travels a distance of one wavelength λ farther than the ray from the

top. Thus a ray from the center travels a distance λ / 2 farther than the one on the left, arrives out of phase, and interferes

destructively. A ray from slightly above the center and one from slightly above the bottom will also cancel one another. In fact,
each ray from the slit will have another to interfere destructively, and a minimum in intensity will occur at this angle. There will be
another minimum at the same angle to the right of the incident direction of the light.

Figure 27.22 Light passing through a single slit is diffracted in all directions and may interfere constructively or destructively, depending on the angle.

The difference in path length for rays from either side of the slit is seen to be D sin θ .

At the larger angle shown in Figure 27.22(c), the path lengths differ by 3λ / 2 for rays from the top and bottom of the slit. One

ray travels a distance λ different from the ray from the bottom and arrives in phase, interfering constructively. Two rays, each

from slightly above those two, will also add constructively. Most rays from the slit will have another to interfere with constructively,
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and a maximum in intensity will occur at this angle. However, all rays do not interfere constructively for this situation, and so the
maximum is not as intense as the central maximum. Finally, in Figure 27.22(d), the angle shown is large enough to produce a
second minimum. As seen in the figure, the difference in path length for rays from either side of the slit is D sin θ , and we see

that a destructive minimum is obtained when this distance is an integral multiple of the wavelength.

Figure 27.23 A graph of single slit diffraction intensity showing the central maximum to be wider and much more intense than those to the sides. In fact
the central maximum is six times higher than shown here.

Thus, to obtain destructive interference for a single slit,

(27.21)D sin θ = mλ, for m = 1, –1, 2, –2, 3, … (destructive),

where D is the slit width, λ is the light’s wavelength, θ is the angle relative to the original direction of the light, and m is the

order of the minimum. Figure 27.23 shows a graph of intensity for single slit interference, and it is apparent that the maxima on
either side of the central maximum are much less intense and not as wide. This is consistent with the illustration in Figure
27.21(b).

Example 27.4 Calculating Single Slit Diffraction

Visible light of wavelength 550 nm falls on a single slit and produces its second diffraction minimum at an angle of 45.0º
relative to the incident direction of the light. (a) What is the width of the slit? (b) At what angle is the first minimum produced?

Figure 27.24 A graph of the single slit diffraction pattern is analyzed in this example.

Strategy

From the given information, and assuming the screen is far away from the slit, we can use the equation D sin θ = mλ first

to find D , and again to find the angle for the first minimum θ1 .

Solution for (a)

We are given that λ = 550 nm , m = 2 , and θ2 = 45.0º . Solving the equation D sin θ = mλ for D and substituting

known values gives
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(27.22)D = mλ
sin θ2

= 2(550 nm)
sin 45.0º

= 1100×10−9

0.707
= 1.56×10−6.

Solution for (b)

Solving the equation D sin θ = mλ for sin θ1 and substituting the known values gives

(27.23)

sin θ1 = mλ
D =

1⎛⎝550×10−9 m⎞⎠
1.56×10−6 m

.

Thus the angle θ1 is

(27.24)θ1 = sin−1 0.354 = 20.7º.

Discussion

We see that the slit is narrow (it is only a few times greater than the wavelength of light). This is consistent with the fact that
light must interact with an object comparable in size to its wavelength in order to exhibit significant wave effects such as this
single slit diffraction pattern. We also see that the central maximum extends 20.7º on either side of the original beam, for a

width of about 41º . The angle between the first and second minima is only about 24º (45.0º − 20.7º) . Thus the second

maximum is only about half as wide as the central maximum.

27.6 Limits of Resolution: The Rayleigh Criterion

Light diffracts as it moves through space, bending around obstacles, interfering constructively and destructively. While this can
be used as a spectroscopic tool—a diffraction grating disperses light according to wavelength, for example, and is used to
produce spectra—diffraction also limits the detail we can obtain in images. Figure 27.25(a) shows the effect of passing light
through a small circular aperture. Instead of a bright spot with sharp edges, a spot with a fuzzy edge surrounded by circles of
light is obtained. This pattern is caused by diffraction similar to that produced by a single slit. Light from different parts of the
circular aperture interferes constructively and destructively. The effect is most noticeable when the aperture is small, but the
effect is there for large apertures, too.

Figure 27.25 (a) Monochromatic light passed through a small circular aperture produces this diffraction pattern. (b) Two point light sources that are
close to one another produce overlapping images because of diffraction. (c) If they are closer together, they cannot be resolved or distinguished.

How does diffraction affect the detail that can be observed when light passes through an aperture? Figure 27.25(b) shows the
diffraction pattern produced by two point light sources that are close to one another. The pattern is similar to that for a single
point source, and it is just barely possible to tell that there are two light sources rather than one. If they were closer together, as
in Figure 27.25(c), we could not distinguish them, thus limiting the detail or resolution we can obtain. This limit is an inescapable
consequence of the wave nature of light.

There are many situations in which diffraction limits the resolution. The acuity of our vision is limited because light passes
through the pupil, the circular aperture of our eye. Be aware that the diffraction-like spreading of light is due to the limited
diameter of a light beam, not the interaction with an aperture. Thus light passing through a lens with a diameter D shows this

effect and spreads, blurring the image, just as light passing through an aperture of diameter D does. So diffraction limits the

resolution of any system having a lens or mirror. Telescopes are also limited by diffraction, because of the finite diameter D of

their primary mirror.

Take-Home Experiment: Resolution of the Eye

Draw two lines on a white sheet of paper (several mm apart). How far away can you be and still distinguish the two lines?
What does this tell you about the size of the eye’s pupil? Can you be quantitative? (The size of an adult’s pupil is discussed
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in Physics of the Eye.)

Just what is the limit? To answer that question, consider the diffraction pattern for a circular aperture, which has a central
maximum that is wider and brighter than the maxima surrounding it (similar to a slit) [see Figure 27.26(a)]. It can be shown that,
for a circular aperture of diameter D , the first minimum in the diffraction pattern occurs at θ = 1.22 λ / D (providing the

aperture is large compared with the wavelength of light, which is the case for most optical instruments). The accepted criterion
for determining the diffraction limit to resolution based on this angle was developed by Lord Rayleigh in the 19th century. The
Rayleigh criterion for the diffraction limit to resolution states that two images are just resolvable when the center of the
diffraction pattern of one is directly over the first minimum of the diffraction pattern of the other. See Figure 27.26(b). The first
minimum is at an angle of θ = 1.22 λ / D , so that two point objects are just resolvable if they are separated by the angle

(27.25)θ = 1.22 λ
D,

where λ is the wavelength of light (or other electromagnetic radiation) and D is the diameter of the aperture, lens, mirror, etc.,

with which the two objects are observed. In this expression, θ has units of radians.

Figure 27.26 (a) Graph of intensity of the diffraction pattern for a circular aperture. Note that, similar to a single slit, the central maximum is wider and
brighter than those to the sides. (b) Two point objects produce overlapping diffraction patterns. Shown here is the Rayleigh criterion for being just
resolvable. The central maximum of one pattern lies on the first minimum of the other.

Connections: Limits to Knowledge

All attempts to observe the size and shape of objects are limited by the wavelength of the probe. Even the small wavelength
of light prohibits exact precision. When extremely small wavelength probes as with an electron microscope are used, the
system is disturbed, still limiting our knowledge, much as making an electrical measurement alters a circuit. Heisenberg’s
uncertainty principle asserts that this limit is fundamental and inescapable, as we shall see in quantum mechanics.

Example 27.5 Calculating Diffraction Limits of the Hubble Space Telescope

The primary mirror of the orbiting Hubble Space Telescope has a diameter of 2.40 m. Being in orbit, this telescope avoids
the degrading effects of atmospheric distortion on its resolution. (a) What is the angle between two just-resolvable point light
sources (perhaps two stars)? Assume an average light wavelength of 550 nm. (b) If these two stars are at the 2 million light
year distance of the Andromeda galaxy, how close together can they be and still be resolved? (A light year, or ly, is the
distance light travels in 1 year.)

Strategy

The Rayleigh criterion stated in the equation θ = 1.22 λ
D gives the smallest possible angle θ between point sources, or

the best obtainable resolution. Once this angle is found, the distance between stars can be calculated, since we are given
how far away they are.

Solution for (a)

The Rayleigh criterion for the minimum resolvable angle is
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(27.26)θ = 1.22 λ
D.

Entering known values gives

(27.27)
θ = 1.22550×10−9 m

2.40 m
=  2.80×10−7 rad.

Solution for (b)

The distance s between two objects a distance r away and separated by an angle θ is s = rθ .

Substituting known values gives

(27.28)s = (2.0×106 ly)(2.80×10−7 rad)
= 0.56 ly.

Discussion

The angle found in part (a) is extraordinarily small (less than 1/50,000 of a degree), because the primary mirror is so large
compared with the wavelength of light. As noticed, diffraction effects are most noticeable when light interacts with objects
having sizes on the order of the wavelength of light. However, the effect is still there, and there is a diffraction limit to what is
observable. The actual resolution of the Hubble Telescope is not quite as good as that found here. As with all instruments,
there are other effects, such as non-uniformities in mirrors or aberrations in lenses that further limit resolution. However,
Figure 27.27 gives an indication of the extent of the detail observable with the Hubble because of its size and quality and
especially because it is above the Earth’s atmosphere.

Figure 27.27 These two photographs of the M82 galaxy give an idea of the observable detail using the Hubble Space Telescope compared with
that using a ground-based telescope. (a) On the left is a ground-based image. (credit: Ricnun, Wikimedia Commons) (b) The photo on the right
was captured by Hubble. (credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA))

The answer in part (b) indicates that two stars separated by about half a light year can be resolved. The average distance
between stars in a galaxy is on the order of 5 light years in the outer parts and about 1 light year near the galactic center.
Therefore, the Hubble can resolve most of the individual stars in Andromeda galaxy, even though it lies at such a huge
distance that its light takes 2 million years for its light to reach us. Figure 27.28 shows another mirror used to observe radio
waves from outer space.

Figure 27.28 A 305-m-diameter natural bowl at Arecibo in Puerto Rico is lined with reflective material, making it into a radio telescope. It is the

largest curved focusing dish in the world. Although D for Arecibo is much larger than for the Hubble Telescope, it detects much longer

wavelength radiation and its diffraction limit is significantly poorer than Hubble’s. Arecibo is still very useful, because important information is
carried by radio waves that is not carried by visible light. (credit: Tatyana Temirbulatova, Flickr)

Diffraction is not only a problem for optical instruments but also for the electromagnetic radiation itself. Any beam of light having a
finite diameter D and a wavelength λ exhibits diffraction spreading. The beam spreads out with an angle θ given by the

equation θ = 1.22 λ
D . Take, for example, a laser beam made of rays as parallel as possible (angles between rays as close to

θ = 0º as possible) instead spreads out at an angle θ = 1.22 λ / D , where D is the diameter of the beam and λ is its
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wavelength. This spreading is impossible to observe for a flashlight, because its beam is not very parallel to start with. However,
for long-distance transmission of laser beams or microwave signals, diffraction spreading can be significant (see Figure 27.29).
To avoid this, we can increase D . This is done for laser light sent to the Moon to measure its distance from the Earth. The laser

beam is expanded through a telescope to make D much larger and θ smaller.

Figure 27.29 The beam produced by this microwave transmission antenna will spread out at a minimum angle θ = 1.22 λ / D due to diffraction. It

is impossible to produce a near-parallel beam, because the beam has a limited diameter.

In most biology laboratories, resolution is presented when the use of the microscope is introduced. The ability of a lens to
produce sharp images of two closely spaced point objects is called resolution. The smaller the distance x by which two objects

can be separated and still be seen as distinct, the greater the resolution. The resolving power of a lens is defined as that
distance x . An expression for resolving power is obtained from the Rayleigh criterion. In Figure 27.30(a) we have two point

objects separated by a distance x . According to the Rayleigh criterion, resolution is possible when the minimum angular

separation is

(27.29)θ = 1.22 λ
D = x

d ,

where d is the distance between the specimen and the objective lens, and we have used the small angle approximation (i.e., we

have assumed that x is much smaller than d ), so that tan θ ≈ sin θ ≈ θ .

Therefore, the resolving power is

(27.30)x = 1.22λd
D .

Another way to look at this is by re-examining the concept of Numerical Aperture ( NA ) discussed in Microscopes. There, NA
is a measure of the maximum acceptance angle at which the fiber will take light and still contain it within the fiber. Figure
27.30(b) shows a lens and an object at point P. The NA here is a measure of the ability of the lens to gather light and resolve

fine detail. The angle subtended by the lens at its focus is defined to be θ = 2α . From the figure and again using the small

angle approximation, we can write

(27.31)sin α = D / 2
d = D

2d .

The NA for a lens is NA = n sin α , where n is the index of refraction of the medium between the objective lens and the

object at point P.

From this definition for NA , we can see that

(27.32)x = 1.22λd
D = 1.22 λ

2 sin α = 0.61 λn
NA .

In a microscope, NA is important because it relates to the resolving power of a lens. A lens with a large NA will be able to

resolve finer details. Lenses with larger NA will also be able to collect more light and so give a brighter image. Another way to

describe this situation is that the larger the NA , the larger the cone of light that can be brought into the lens, and so more of the

diffraction modes will be collected. Thus the microscope has more information to form a clear image, and so its resolving power
will be higher.
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Figure 27.30 (a) Two points separated by at distance x and a positioned a distance d away from the objective. (credit: Infopro, Wikimedia

Commons) (b) Terms and symbols used in discussion of resolving power for a lens and an object at point P. (credit: Infopro, Wikimedia Commons)

One of the consequences of diffraction is that the focal point of a beam has a finite width and intensity distribution. Consider
focusing when only considering geometric optics, shown in Figure 27.31(a). The focal point is infinitely small with a huge
intensity and the capacity to incinerate most samples irrespective of the NA of the objective lens. For wave optics, due to

diffraction, the focal point spreads to become a focal spot (see Figure 27.31(b)) with the size of the spot decreasing with
increasing NA . Consequently, the intensity in the focal spot increases with increasing NA . The higher the NA , the greater the

chances of photodegrading the specimen. However, the spot never becomes a true point.

Figure 27.31 (a) In geometric optics, the focus is a point, but it is not physically possible to produce such a point because it implies infinite intensity. (b)
In wave optics, the focus is an extended region.

27.7 Thin Film Interference

The bright colors seen in an oil slick floating on water or in a sunlit soap bubble are caused by interference. The brightest colors
are those that interfere constructively. This interference is between light reflected from different surfaces of a thin film; thus, the
effect is known as thin film interference. As noticed before, interference effects are most prominent when light interacts with
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something having a size similar to its wavelength. A thin film is one having a thickness t smaller than a few times the

wavelength of light, λ . Since color is associated indirectly with λ and since all interference depends in some way on the ratio of

λ to the size of the object involved, we should expect to see different colors for different thicknesses of a film, as in Figure

27.32.

Figure 27.32 These soap bubbles exhibit brilliant colors when exposed to sunlight. (credit: Scott Robinson, Flickr)

What causes thin film interference? Figure 27.33 shows how light reflected from the top and bottom surfaces of a film can
interfere. Incident light is only partially reflected from the top surface of the film (ray 1). The remainder enters the film and is itself
partially reflected from the bottom surface. Part of the light reflected from the bottom surface can emerge from the top of the film
(ray 2) and interfere with light reflected from the top (ray 1). Since the ray that enters the film travels a greater distance, it may be
in or out of phase with the ray reflected from the top. However, consider for a moment, again, the bubbles in Figure 27.32. The
bubbles are darkest where they are thinnest. Furthermore, if you observe a soap bubble carefully, you will note it gets dark at the
point where it breaks. For very thin films, the difference in path lengths of ray 1 and ray 2 in Figure 27.33 is negligible; so why
should they interfere destructively and not constructively? The answer is that a phase change can occur upon reflection. The rule
is as follows:

When light reflects from a medium having an index of refraction greater than that of the medium in which it is traveling,
a 180º phase change (or a λ / 2 shift) occurs.

Figure 27.33 Light striking a thin film is partially reflected (ray 1) and partially refracted at the top surface. The refracted ray is partially reflected at the
bottom surface and emerges as ray 2. These rays will interfere in a way that depends on the thickness of the film and the indices of refraction of the
various media.

If the film in Figure 27.33 is a soap bubble (essentially water with air on both sides), then there is a λ / 2 shift for ray 1 and none

for ray 2. Thus, when the film is very thin, the path length difference between the two rays is negligible, they are exactly out of
phase, and destructive interference will occur at all wavelengths and so the soap bubble will be dark here.
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The thickness of the film relative to the wavelength of light is the other crucial factor in thin film interference. Ray 2 in Figure
27.33 travels a greater distance than ray 1. For light incident perpendicular to the surface, ray 2 travels a distance approximately
2t farther than ray 1. When this distance is an integral or half-integral multiple of the wavelength in the medium ( λn = λ / n ,

where λ is the wavelength in vacuum and n is the index of refraction), constructive or destructive interference occurs,

depending also on whether there is a phase change in either ray.

Example 27.6 Calculating Non-reflective Lens Coating Using Thin Film Interference

Sophisticated cameras use a series of several lenses. Light can reflect from the surfaces of these various lenses and
degrade image clarity. To limit these reflections, lenses are coated with a thin layer of magnesium fluoride that causes
destructive thin film interference. What is the thinnest this film can be, if its index of refraction is 1.38 and it is designed to
limit the reflection of 550-nm light, normally the most intense visible wavelength? The index of refraction of glass is 1.52.

Strategy

Refer to Figure 27.33 and use n1 = 100 for air, n2 = 1.38 , and n3 = 1.52 . Both ray 1 and ray 2 will have a λ / 2 shift

upon reflection. Thus, to obtain destructive interference, ray 2 will need to travel a half wavelength farther than ray 1. For
rays incident perpendicularly, the path length difference is 2t .

Solution

To obtain destructive interference here,

(27.33)
2t =

λn2
2 ,

where λn2 is the wavelength in the film and is given by λn2 = λ
n2

.

Thus,

(27.34)
2t = λ / n2

2 .

Solving for t and entering known values yields

(27.35)
t = λ / n2

4 = (550 nm) / 1.38
4

= 99.6 nm.
Discussion

Films such as the one in this example are most effective in producing destructive interference when the thinnest layer is
used, since light over a broader range of incident angles will be reduced in intensity. These films are called non-reflective
coatings; this is only an approximately correct description, though, since other wavelengths will only be partially cancelled.
Non-reflective coatings are used in car windows and sunglasses.

Thin film interference is most constructive or most destructive when the path length difference for the two rays is an integral or
half-integral wavelength, respectively. That is, for rays incident perpendicularly, 2t = λn, 2λn , 3λn , … or

2t = λn / 2, 3λn / 2, 5λn / 2, … . To know whether interference is constructive or destructive, you must also determine if there

is a phase change upon reflection. Thin film interference thus depends on film thickness, the wavelength of light, and the
refractive indices. For white light incident on a film that varies in thickness, you will observe rainbow colors of constructive
interference for various wavelengths as the thickness varies.

Example 27.7 Soap Bubbles: More Than One Thickness can be Constructive

(a) What are the three smallest thicknesses of a soap bubble that produce constructive interference for red light with a
wavelength of 650 nm? The index of refraction of soap is taken to be the same as that of water. (b) What three smallest
thicknesses will give destructive interference?

Strategy and Concept

Use Figure 27.33 to visualize the bubble. Note that n1 = n3 = 1.00 for air, and n2 = 1.333 for soap (equivalent to

water). There is a λ / 2 shift for ray 1 reflected from the top surface of the bubble, and no shift for ray 2 reflected from the

bottom surface. To get constructive interference, then, the path length difference ( 2t ) must be a half-integral multiple of the

wavelength—the first three being λn / 2, 3λn / 2 , and 5λn / 2 . To get destructive interference, the path length difference
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must be an integral multiple of the wavelength—the first three being 0, λn , and 2λn .

Solution for (a)

Constructive interference occurs here when

(27.36)2tc = λn
2 , 3λn

2 , 5λn
2 , … .

The smallest constructive thickness tc thus is

(27.37)tc = λn
4 = λ / n

4 = (650 nm) / 1.333
4

= 122 nm.

The next thickness that gives constructive interference is t′c = 3λn / 4 , so that

(27.38)t′c = 366 nm.

Finally, the third thickness producing constructive interference is t′′c ≤ 5λn / 4 , so that

(27.39)t′′c = 610 nm.

Solution for (b)

For destructive interference, the path length difference here is an integral multiple of the wavelength. The first occurs for
zero thickness, since there is a phase change at the top surface. That is,

(27.40)td = 0.

The first non-zero thickness producing destructive interference is

(27.41)2t′d = λn.

Substituting known values gives

(27.42)t′d = λ
2 = λ / n

2 = (650 nm) / 1.333
2

= 244 nm.

Finally, the third destructive thickness is 2t′′d = 2λn , so that

(27.43)t′′d = λn = λ
n = 650 nm

1.333
= 488 nm.

Discussion

If the bubble was illuminated with pure red light, we would see bright and dark bands at very uniform increases in thickness.
First would be a dark band at 0 thickness, then bright at 122 nm thickness, then dark at 244 nm, bright at 366 nm, dark at
488 nm, and bright at 610 nm. If the bubble varied smoothly in thickness, like a smooth wedge, then the bands would be
evenly spaced.

Another example of thin film interference can be seen when microscope slides are separated (see Figure 27.34). The slides are
very flat, so that the wedge of air between them increases in thickness very uniformly. A phase change occurs at the second
surface but not the first, and so there is a dark band where the slides touch. The rainbow colors of constructive interference
repeat, going from violet to red again and again as the distance between the slides increases. As the layer of air increases, the
bands become more difficult to see, because slight changes in incident angle have greater effects on path length differences. If
pure-wavelength light instead of white light is used, then bright and dark bands are obtained rather than repeating rainbow
colors.
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Figure 27.34 (a) The rainbow color bands are produced by thin film interference in the air between the two glass slides. (b) Schematic of the paths
taken by rays in the wedge of air between the slides.

An important application of thin film interference is found in the manufacturing of optical instruments. A lens or mirror can be
compared with a master as it is being ground, allowing it to be shaped to an accuracy of less than a wavelength over its entire
surface. Figure 27.35 illustrates the phenomenon called Newton’s rings, which occurs when the plane surfaces of two lenses are
placed together. (The circular bands are called Newton’s rings because Isaac Newton described them and their use in detail.
Newton did not discover them; Robert Hooke did, and Newton did not believe they were due to the wave character of light.) Each
successive ring of a given color indicates an increase of only one wavelength in the distance between the lens and the blank, so
that great precision can be obtained. Once the lens is perfect, there will be no rings.

Figure 27.35 “Newton's rings” interference fringes are produced when two plano-convex lenses are placed together with their plane surfaces in
contact. The rings are created by interference between the light reflected off the two surfaces as a result of a slight gap between them, indicating that
these surfaces are not precisely plane but are slightly convex. (credit: Ulf Seifert, Wikimedia Commons)

The wings of certain moths and butterflies have nearly iridescent colors due to thin film interference. In addition to pigmentation,
the wing’s color is affected greatly by constructive interference of certain wavelengths reflected from its film-coated surface. Car
manufacturers are offering special paint jobs that use thin film interference to produce colors that change with angle. This
expensive option is based on variation of thin film path length differences with angle. Security features on credit cards,
banknotes, driving licenses and similar items prone to forgery use thin film interference, diffraction gratings, or holograms.
Australia led the way with dollar bills printed on polymer with a diffraction grating security feature making the currency difficult to
forge. Other countries such as New Zealand and Taiwan are using similar technologies, while the United States currency
includes a thin film interference effect.

Making Connections: Take-Home Experiment—Thin Film Interference

One feature of thin film interference and diffraction gratings is that the pattern shifts as you change the angle at which you
look or move your head. Find examples of thin film interference and gratings around you. Explain how the patterns change
for each specific example. Find examples where the thickness changes giving rise to changing colors. If you can find two
microscope slides, then try observing the effect shown in Figure 27.34. Try separating one end of the two slides with a hair
or maybe a thin piece of paper and observe the effect.

Problem-Solving Strategies for Wave Optics

Step 1. Examine the situation to determine that interference is involved. Identify whether slits or thin film interference are
considered in the problem.

Step 2. If slits are involved, note that diffraction gratings and double slits produce very similar interference patterns, but that
gratings have narrower (sharper) maxima. Single slit patterns are characterized by a large central maximum and smaller maxima
to the sides.

Step 3. If thin film interference is involved, take note of the path length difference between the two rays that interfere. Be certain
to use the wavelength in the medium involved, since it differs from the wavelength in vacuum. Note also that there is an
additional λ / 2 phase shift when light reflects from a medium with a greater index of refraction.

Step 4. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful. Draw a
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diagram of the situation. Labeling the diagram is useful.

Step 5. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

Step 6. Solve the appropriate equation for the quantity to be determined (the unknown), and enter the knowns. Slits, gratings,
and the Rayleigh limit involve equations.

Step 7. For thin film interference, you will have constructive interference for a total shift that is an integral number of
wavelengths. You will have destructive interference for a total shift of a half-integral number of wavelengths. Always keep in mind
that crest to crest is constructive whereas crest to trough is destructive.

Step 8. Check to see if the answer is reasonable: Does it make sense? Angles in interference patterns cannot be greater than
90º , for example.

27.8 Polarization

Polaroid sunglasses are familiar to most of us. They have a special ability to cut the glare of light reflected from water or glass
(see Figure 27.36). Polaroids have this ability because of a wave characteristic of light called polarization. What is polarization?
How is it produced? What are some of its uses? The answers to these questions are related to the wave character of light.

Figure 27.36 These two photographs of a river show the effect of a polarizing filter in reducing glare in light reflected from the surface of water. Part (b)
of this figure was taken with a polarizing filter and part (a) was not. As a result, the reflection of clouds and sky observed in part (a) is not observed in
part (b). Polarizing sunglasses are particularly useful on snow and water. (credit: Amithshs, Wikimedia Commons)

Light is one type of electromagnetic (EM) wave. As noted earlier, EM waves are transverse waves consisting of varying electric
and magnetic fields that oscillate perpendicular to the direction of propagation (see Figure 27.37). There are specific directions
for the oscillations of the electric and magnetic fields. Polarization is the attribute that a wave’s oscillations have a definite
direction relative to the direction of propagation of the wave. (This is not the same type of polarization as that discussed for the
separation of charges.) Waves having such a direction are said to be polarized. For an EM wave, we define the direction of
polarization to be the direction parallel to the electric field. Thus we can think of the electric field arrows as showing the direction
of polarization, as in Figure 27.37.

Figure 27.37 An EM wave, such as light, is a transverse wave. The electric and magnetic fields are perpendicular to the direction of propagation.

To examine this further, consider the transverse waves in the ropes shown in Figure 27.38. The oscillations in one rope are in a
vertical plane and are said to be vertically polarized. Those in the other rope are in a horizontal plane and are horizontally
polarized. If a vertical slit is placed on the first rope, the waves pass through. However, a vertical slit blocks the horizontally
polarized waves. For EM waves, the direction of the electric field is analogous to the disturbances on the ropes.
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Figure 27.38 The transverse oscillations in one rope are in a vertical plane, and those in the other rope are in a horizontal plane. The first is said to be
vertically polarized, and the other is said to be horizontally polarized. Vertical slits pass vertically polarized waves and block horizontally polarized
waves.

The Sun and many other light sources produce waves that are randomly polarized (see Figure 27.39). Such light is said to be
unpolarized because it is composed of many waves with all possible directions of polarization. Polaroid materials, invented by
the founder of Polaroid Corporation, Edwin Land, act as a polarizing slit for light, allowing only polarization in one direction to
pass through. Polarizing filters are composed of long molecules aligned in one direction. Thinking of the molecules as many slits,
analogous to those for the oscillating ropes, we can understand why only light with a specific polarization can get through. The
axis of a polarizing filter is the direction along which the filter passes the electric field of an EM wave (see Figure 27.40).

Figure 27.39 The slender arrow represents a ray of unpolarized light. The bold arrows represent the direction of polarization of the individual waves
composing the ray. Since the light is unpolarized, the arrows point in all directions.

Figure 27.40 A polarizing filter has a polarization axis that acts as a slit passing through electric fields parallel to its direction. The direction of
polarization of an EM wave is defined to be the direction of its electric field.

Figure 27.41 shows the effect of two polarizing filters on originally unpolarized light. The first filter polarizes the light along its
axis. When the axes of the first and second filters are aligned (parallel), then all of the polarized light passed by the first filter is
also passed by the second. If the second polarizing filter is rotated, only the component of the light parallel to the second filter’s
axis is passed. When the axes are perpendicular, no light is passed by the second.

Only the component of the EM wave parallel to the axis of a filter is passed. Let us call the angle between the direction of
polarization and the axis of a filter θ . If the electric field has an amplitude E , then the transmitted part of the wave has an

amplitude E cos θ (see Figure 27.42). Since the intensity of a wave is proportional to its amplitude squared, the intensity I of

the transmitted wave is related to the incident wave by

(27.44)I = I0 cos2 θ,

where I0 is the intensity of the polarized wave before passing through the filter. (The above equation is known as Malus’s law.)
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Figure 27.41 The effect of rotating two polarizing filters, where the first polarizes the light. (a) All of the polarized light is passed by the second
polarizing filter, because its axis is parallel to the first. (b) As the second is rotated, only part of the light is passed. (c) When the second is
perpendicular to the first, no light is passed. (d) In this photograph, a polarizing filter is placed above two others. Its axis is perpendicular to the filter on
the right (dark area) and parallel to the filter on the left (lighter area). (credit: P.P. Urone)

Figure 27.42 A polarizing filter transmits only the component of the wave parallel to its axis, E cos θ , reducing the intensity of any light not polarized

parallel to its axis.

Example 27.8 Calculating Intensity Reduction by a Polarizing Filter

What angle is needed between the direction of polarized light and the axis of a polarizing filter to reduce its intensity by
90.0% ?

Strategy

When the intensity is reduced by 90.0% , it is 10.0% or 0.100 times its original value. That is, I = 0.100I0 . Using this

information, the equation I = I0 cos2 θ can be used to solve for the needed angle.

Solution

Solving the equation I = I0 cos2 θ for cos θ and substituting with the relationship between I and I0 gives

(27.45)
cos θ = I

I0
= 0.100I0

I0
= 0.3162.

Solving for θ yields

(27.46)θ = cos−1 0.3162 = 71.6º.
Discussion

A fairly large angle between the direction of polarization and the filter axis is needed to reduce the intensity to 10.0% of its

original value. This seems reasonable based on experimenting with polarizing films. It is interesting that, at an angle of 45º ,

the intensity is reduced to 50% of its original value (as you will show in this section’s Problems & Exercises). Note that
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71.6º is 18.4º from reducing the intensity to zero, and that at an angle of 18.4º the intensity is reduced to 90.0% of its

original value (as you will also show in Problems & Exercises), giving evidence of symmetry.

Polarization by Reflection

By now you can probably guess that Polaroid sunglasses cut the glare in reflected light because that light is polarized. You can
check this for yourself by holding Polaroid sunglasses in front of you and rotating them while looking at light reflected from water
or glass. As you rotate the sunglasses, you will notice the light gets bright and dim, but not completely black. This implies the
reflected light is partially polarized and cannot be completely blocked by a polarizing filter.

Figure 27.43 illustrates what happens when unpolarized light is reflected from a surface. Vertically polarized light is preferentially
refracted at the surface, so that the reflected light is left more horizontally polarized. The reasons for this phenomenon are
beyond the scope of this text, but a convenient mnemonic for remembering this is to imagine the polarization direction to be like
an arrow. Vertical polarization would be like an arrow perpendicular to the surface and would be more likely to stick and not be
reflected. Horizontal polarization is like an arrow bouncing on its side and would be more likely to be reflected. Sunglasses with
vertical axes would then block more reflected light than unpolarized light from other sources.

Figure 27.43 Polarization by reflection. Unpolarized light has equal amounts of vertical and horizontal polarization. After interaction with a surface, the
vertical components are preferentially absorbed or refracted, leaving the reflected light more horizontally polarized. This is akin to arrows striking on
their sides bouncing off, whereas arrows striking on their tips go into the surface.

Since the part of the light that is not reflected is refracted, the amount of polarization depends on the indices of refraction of the
media involved. It can be shown that reflected light is completely polarized at a angle of reflection θb , given by

(27.47)tan θb = n2
n1

,

where n1 is the medium in which the incident and reflected light travel and n2 is the index of refraction of the medium that

forms the interface that reflects the light. This equation is known as Brewster’s law, and θb is known as Brewster’s angle,

named after the 19th-century Scottish physicist who discovered them.

Things Great and Small: Atomic Explanation of Polarizing Filters

Polarizing filters have a polarization axis that acts as a slit. This slit passes electromagnetic waves (often visible light) that
have an electric field parallel to the axis. This is accomplished with long molecules aligned perpendicular to the axis as
shown in Figure 27.44.
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Figure 27.44 Long molecules are aligned perpendicular to the axis of a polarizing filter. The component of the electric field in an EM wave
perpendicular to these molecules passes through the filter, while the component parallel to the molecules is absorbed.

Figure 27.45 illustrates how the component of the electric field parallel to the long molecules is absorbed. An
electromagnetic wave is composed of oscillating electric and magnetic fields. The electric field is strong compared with the
magnetic field and is more effective in exerting force on charges in the molecules. The most affected charged particles are
the electrons in the molecules, since electron masses are small. If the electron is forced to oscillate, it can absorb energy
from the EM wave. This reduces the fields in the wave and, hence, reduces its intensity. In long molecules, electrons can
more easily oscillate parallel to the molecule than in the perpendicular direction. The electrons are bound to the molecule
and are more restricted in their movement perpendicular to the molecule. Thus, the electrons can absorb EM waves that
have a component of their electric field parallel to the molecule. The electrons are much less responsive to electric fields
perpendicular to the molecule and will allow those fields to pass. Thus the axis of the polarizing filter is perpendicular to the
length of the molecule.

Figure 27.45 Artist’s conception of an electron in a long molecule oscillating parallel to the molecule. The oscillation of the electron absorbs
energy and reduces the intensity of the component of the EM wave that is parallel to the molecule.

Example 27.9 Calculating Polarization by Reflection

(a) At what angle will light traveling in air be completely polarized horizontally when reflected from water? (b) From glass?

Strategy
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All we need to solve these problems are the indices of refraction. Air has n1 = 1.00, water has n2 = 1.333, and crown

glass has n′2 = 1.520 . The equation tan θb = n2
n1

can be directly applied to find θb in each case.

Solution for (a)

Putting the known quantities into the equation

(27.48)tan θb = n2
n1

gives

(27.49)tan θb = n2
n1

= 1.333
1.00 = 1.333.

Solving for the angle θb yields

(27.50)θb = tan−1 1.333 = 53.1º.

Solution for (b)

Similarly, for crown glass and air,

(27.51)
tan θ′b = n′2

n1
= 1.520

1.00 = 1.52.

Thus,

(27.52)θ′b = tan−1 1.52 = 56.7º.

Discussion

Light reflected at these angles could be completely blocked by a good polarizing filter held with its axis vertical. Brewster’s
angle for water and air are similar to those for glass and air, so that sunglasses are equally effective for light reflected from
either water or glass under similar circumstances. Light not reflected is refracted into these media. So at an incident angle
equal to Brewster’s angle, the refracted light will be slightly polarized vertically. It will not be completely polarized vertically,
because only a small fraction of the incident light is reflected, and so a significant amount of horizontally polarized light is
refracted.

Polarization by Scattering

If you hold your Polaroid sunglasses in front of you and rotate them while looking at blue sky, you will see the sky get bright and
dim. This is a clear indication that light scattered by air is partially polarized. Figure 27.46 helps illustrate how this happens.
Since light is a transverse EM wave, it vibrates the electrons of air molecules perpendicular to the direction it is traveling. The
electrons then radiate like small antennae. Since they are oscillating perpendicular to the direction of the light ray, they produce
EM radiation that is polarized perpendicular to the direction of the ray. When viewing the light along a line perpendicular to the
original ray, as in Figure 27.46, there can be no polarization in the scattered light parallel to the original ray, because that would
require the original ray to be a longitudinal wave. Along other directions, a component of the other polarization can be projected
along the line of sight, and the scattered light will only be partially polarized. Furthermore, multiple scattering can bring light to
your eyes from other directions and can contain different polarizations.
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Figure 27.46 Polarization by scattering. Unpolarized light scattering from air molecules shakes their electrons perpendicular to the direction of the
original ray. The scattered light therefore has a polarization perpendicular to the original direction and none parallel to the original direction.

Photographs of the sky can be darkened by polarizing filters, a trick used by many photographers to make clouds brighter by
contrast. Scattering from other particles, such as smoke or dust, can also polarize light. Detecting polarization in scattered EM
waves can be a useful analytical tool in determining the scattering source.

There is a range of optical effects used in sunglasses. Besides being Polaroid, other sunglasses have colored pigments
embedded in them, while others use non-reflective or even reflective coatings. A recent development is photochromic lenses,
which darken in the sunlight and become clear indoors. Photochromic lenses are embedded with organic microcrystalline
molecules that change their properties when exposed to UV in sunlight, but become clear in artificial lighting with no UV.

Take-Home Experiment: Polarization

Find Polaroid sunglasses and rotate one while holding the other still and look at different surfaces and objects. Explain your
observations. What is the difference in angle from when you see a maximum intensity to when you see a minimum intensity?
Find a reflective glass surface and do the same. At what angle does the glass need to be oriented to give minimum glare?

Liquid Crystals and Other Polarization Effects in Materials

While you are undoubtedly aware of liquid crystal displays (LCDs) found in watches, calculators, computer screens, cellphones,
flat screen televisions, and other myriad places, you may not be aware that they are based on polarization. Liquid crystals are so
named because their molecules can be aligned even though they are in a liquid. Liquid crystals have the property that they can
rotate the polarization of light passing through them by 90º . Furthermore, this property can be turned off by the application of a

voltage, as illustrated in Figure 27.47. It is possible to manipulate this characteristic quickly and in small well-defined regions to
create the contrast patterns we see in so many LCD devices.

In flat screen LCD televisions, there is a large light at the back of the TV. The light travels to the front screen through millions of
tiny units called pixels (picture elements). One of these is shown in Figure 27.47 (a) and (b). Each unit has three cells, with red,
blue, or green filters, each controlled independently. When the voltage across a liquid crystal is switched off, the liquid crystal
passes the light through the particular filter. One can vary the picture contrast by varying the strength of the voltage applied to the
liquid crystal.
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Figure 27.47 (a) Polarized light is rotated 90º by a liquid crystal and then passed by a polarizing filter that has its axis perpendicular to the original

polarization direction. (b) When a voltage is applied to the liquid crystal, the polarized light is not rotated and is blocked by the filter, making the region
dark in comparison with its surroundings. (c) LCDs can be made color specific, small, and fast enough to use in laptop computers and TVs. (credit: Jon
Sullivan)

Many crystals and solutions rotate the plane of polarization of light passing through them. Such substances are said to be
optically active. Examples include sugar water, insulin, and collagen (see Figure 27.48). In addition to depending on the type of
substance, the amount and direction of rotation depends on a number of factors. Among these is the concentration of the
substance, the distance the light travels through it, and the wavelength of light. Optical activity is due to the asymmetric shape of
molecules in the substance, such as being helical. Measurements of the rotation of polarized light passing through substances
can thus be used to measure concentrations, a standard technique for sugars. It can also give information on the shapes of
molecules, such as proteins, and factors that affect their shapes, such as temperature and pH.

Figure 27.48 Optical activity is the ability of some substances to rotate the plane of polarization of light passing through them. The rotation is detected
with a polarizing filter or analyzer.

Glass and plastic become optically active when stressed; the greater the stress, the greater the effect. Optical stress analysis on
complicated shapes can be performed by making plastic models of them and observing them through crossed filters, as seen in
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Figure 27.49. It is apparent that the effect depends on wavelength as well as stress. The wavelength dependence is sometimes
also used for artistic purposes.

Figure 27.49 Optical stress analysis of a plastic lens placed between crossed polarizers. (credit: Infopro, Wikimedia Commons)

Another interesting phenomenon associated with polarized light is the ability of some crystals to split an unpolarized beam of
light into two. Such crystals are said to be birefringent (see Figure 27.50). Each of the separated rays has a specific
polarization. One behaves normally and is called the ordinary ray, whereas the other does not obey Snell’s law and is called the
extraordinary ray. Birefringent crystals can be used to produce polarized beams from unpolarized light. Some birefringent
materials preferentially absorb one of the polarizations. These materials are called dichroic and can produce polarization by this
preferential absorption. This is fundamentally how polarizing filters and other polarizers work. The interested reader is invited to
further pursue the numerous properties of materials related to polarization.

Figure 27.50 Birefringent materials, such as the common mineral calcite, split unpolarized beams of light into two. The ordinary ray behaves as
expected, but the extraordinary ray does not obey Snell’s law.

27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light

Physics research underpins the advancement of developments in microscopy. As we gain knowledge of the wave nature of
electromagnetic waves and methods to analyze and interpret signals, new microscopes that enable us to “see” more are being
developed. It is the evolution and newer generation of microscopes that are described in this section.

The use of microscopes (microscopy) to observe small details is limited by the wave nature of light. Owing to the fact that light
diffracts significantly around small objects, it becomes impossible to observe details significantly smaller than the wavelength of
light. One rule of thumb has it that all details smaller than about λ are difficult to observe. Radar, for example, can detect the

size of an aircraft, but not its individual rivets, since the wavelength of most radar is several centimeters or greater. Similarly,
visible light cannot detect individual atoms, since atoms are about 0.1 nm in size and visible wavelengths range from 380 to 760
nm. Ironically, special techniques used to obtain the best possible resolution with microscopes take advantage of the same wave
characteristics of light that ultimately limit the detail.

Making Connections: Waves

All attempts to observe the size and shape of objects are limited by the wavelength of the probe. Sonar and medical
ultrasound are limited by the wavelength of sound they employ. We shall see that this is also true in electron microscopy,
since electrons have a wavelength. Heisenberg’s uncertainty principle asserts that this limit is fundamental and inescapable,
as we shall see in quantum mechanics.

The most obvious method of obtaining better detail is to utilize shorter wavelengths. Ultraviolet (UV) microscopes have been
constructed with special lenses that transmit UV rays and utilize photographic or electronic techniques to record images. The
shorter UV wavelengths allow somewhat greater detail to be observed, but drawbacks, such as the hazard of UV to living tissue
and the need for special detection devices and lenses (which tend to be dispersive in the UV), severely limit the use of UV
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microscopes. Elsewhere, we will explore practical uses of very short wavelength EM waves, such as x rays, and other short-
wavelength probes, such as electrons in electron microscopes, to detect small details.

Another difficulty in microscopy is the fact that many microscopic objects do not absorb much of the light passing through them.
The lack of contrast makes image interpretation very difficult. Contrast is the difference in intensity between objects and the
background on which they are observed. Stains (such as dyes, fluorophores, etc.) are commonly employed to enhance contrast,
but these tend to be application specific. More general wave interference techniques can be used to produce contrast. Figure
27.51 shows the passage of light through a sample. Since the indices of refraction differ, the number of wavelengths in the paths
differs. Light emerging from the object is thus out of phase with light from the background and will interfere differently, producing
enhanced contrast, especially if the light is coherent and monochromatic—as in laser light.

Figure 27.51 Light rays passing through a sample under a microscope will emerge with different phases depending on their paths. The object shown
has a greater index of refraction than the background, and so the wavelength decreases as the ray passes through it. Superimposing these rays
produces interference that varies with path, enhancing contrast between the object and background.

Interference microscopes enhance contrast between objects and background by superimposing a reference beam of light upon
the light emerging from the sample. Since light from the background and objects differ in phase, there will be different amounts of
constructive and destructive interference, producing the desired contrast in final intensity. Figure 27.52 shows schematically how
this is done. Parallel rays of light from a source are split into two beams by a half-silvered mirror. These beams are called the
object and reference beams. Each beam passes through identical optical elements, except that the object beam passes through
the object we wish to observe microscopically. The light beams are recombined by another half-silvered mirror and interfere.
Since the light rays passing through different parts of the object have different phases, interference will be significantly different
and, hence, have greater contrast between them.

Figure 27.52 An interference microscope utilizes interference between the reference and object beam to enhance contrast. The two beams are split by
a half-silvered mirror; the object beam is sent through the object, and the reference beam is sent through otherwise identical optical elements. The
beams are recombined by another half-silvered mirror, and the interference depends on the various phases emerging from different parts of the object,
enhancing contrast.

Another type of microscope utilizing wave interference and differences in phases to enhance contrast is called the phase-
contrast microscope. While its principle is the same as the interference microscope, the phase-contrast microscope is simpler
to use and construct. Its impact (and the principle upon which it is based) was so important that its developer, the Dutch physicist
Frits Zernike (1888–1966), was awarded the Nobel Prize in 1953. Figure 27.53 shows the basic construction of a phase-contrast
microscope. Phase differences between light passing through the object and background are produced by passing the rays
through different parts of a phase plate (so called because it shifts the phase of the light passing through it). These two light rays
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are superimposed in the image plane, producing contrast due to their interference.

Figure 27.53 Simplified construction of a phase-contrast microscope. Phase differences between light passing through the object and background are
produced by passing the rays through different parts of a phase plate. The light rays are superimposed in the image plane, producing contrast due to
their interference.

A polarization microscope also enhances contrast by utilizing a wave characteristic of light. Polarization microscopes are
useful for objects that are optically active or birefringent, particularly if those characteristics vary from place to place in the object.
Polarized light is sent through the object and then observed through a polarizing filter that is perpendicular to the original
polarization direction. Nearly transparent objects can then appear with strong color and in high contrast. Many polarization effects
are wavelength dependent, producing color in the processed image. Contrast results from the action of the polarizing filter in
passing only components parallel to its axis.

Apart from the UV microscope, the variations of microscopy discussed so far in this section are available as attachments to fairly
standard microscopes or as slight variations. The next level of sophistication is provided by commercial confocal microscopes,
which use the extended focal region shown in Figure 27.31(b) to obtain three-dimensional images rather than two-dimensional
images. Here, only a single plane or region of focus is identified; out-of-focus regions above and below this plane are subtracted
out by a computer so the image quality is much better. This type of microscope makes use of fluorescence, where a laser
provides the excitation light. Laser light passing through a tiny aperture called a pinhole forms an extended focal region within the
specimen. The reflected light passes through the objective lens to a second pinhole and the photomultiplier detector, see Figure
27.54. The second pinhole is the key here and serves to block much of the light from points that are not at the focal point of the
objective lens. The pinhole is conjugate (coupled) to the focal point of the lens. The second pinhole and detector are scanned,
allowing reflected light from a small region or section of the extended focal region to be imaged at any one time. The out-of-focus
light is excluded. Each image is stored in a computer, and a full scanned image is generated in a short time. Live cell processes
can also be imaged at adequate scanning speeds allowing the imaging of three-dimensional microscopic movement. Confocal
microscopy enhances images over conventional optical microscopy, especially for thicker specimens, and so has become quite
popular.

The next level of sophistication is provided by microscopes attached to instruments that isolate and detect only a small
wavelength band of light—monochromators and spectral analyzers. Here, the monochromatic light from a laser is scattered from
the specimen. This scattered light shifts up or down as it excites particular energy levels in the sample. The uniqueness of the
observed scattered light can give detailed information about the chemical composition of a given spot on the sample with high
contrast—like molecular fingerprints. Applications are in materials science, nanotechnology, and the biomedical field. Fine details
in biochemical processes over time can even be detected. The ultimate in microscopy is the electron microscope—to be
discussed later. Research is being conducted into the development of new prototype microscopes that can become commercially
available, providing better diagnostic and research capacities.
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Figure 27.54 A confocal microscope provides three-dimensional images using pinholes and the extended depth of focus as described by wave optics.
The right pinhole illuminates a tiny region of the sample in the focal plane. In-focus light rays from this tiny region pass through the dichroic mirror and
the second pinhole to a detector and a computer. Out-of-focus light rays are blocked. The pinhole is scanned sideways to form an image of the entire
focal plane. The pinhole can then be scanned up and down to gather images from different focal planes. The result is a three-dimensional image of the
specimen.

Glossary

the direction along which the filter passes the electric field of an EM wave

crystals that split an unpolarized beam of light into two beams

θb = tan−1⎛⎝
n2
n1
⎞
⎠, where n2 is the index of refraction of the medium from which the light is reflected and

n1 is the index of refraction of the medium in which the reflected light travels

tan θb = n2
n1

, where n1 is the medium in which the incident and reflected light travel and n2 is the index

of refraction of the medium that forms the interface that reflects the light

waves are in phase or have a definite phase relationship

microscopes that use the extended focal region to obtain three-dimensional images rather than two-
dimensional images

occurs when the condition
d sin θ = mλ (for m = 0, 1, –1, 2, –2, …) is satisfied, where d is the distance between slits in the grating, λ is

the wavelength of light, and m is the order of the maximum

the path length difference must be an integral multiple of the wavelength

the difference in intensity between objects and the background on which they are observed

the path length difference must be a half-integral multiple of the wavelength

occurs when D sin θ = mλ, (for m = 1, –1, 2, –2, 3, …) , where D is the

slit width, λ is the light’s wavelength, θ is the angle relative to the original direction of the light, and m is the order of

the minimum

the bending of a wave around the edges of an opening or an obstacle

a large number of evenly spaced parallel slits

the direction parallel to the electric field for EM waves

the oscillations are in a horizontal plane

every point on a wavefront is a source of wavelets that spread out in the forward direction at the same
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incoherent:

interference microscopes:

optically active:

order:

phase-contrast microscope:

polarization:

polarization microscope:

polarized:

Rayleigh criterion:

reflected light that is completely polarized:

thin film interference:

ultraviolet (UV) microscopes:

unpolarized:

vertically polarized:

wavelength in a medium:

speed as the wave itself. The new wavefront is a line tangent to all of the wavelets

waves have random phase relationships

microscopes that enhance contrast between objects and background by superimposing a
reference beam of light upon the light emerging from the sample

substances that rotate the plane of polarization of light passing through them

the integer m used in the equations for constructive and destructive interference for a double slit

microscope utilizing wave interference and differences in phases to enhance contrast

the attribute that wave oscillations have a definite direction relative to the direction of propagation of the wave

microscope that enhances contrast by utilizing a wave characteristic of light, useful for objects that
are optically active

waves having the electric and magnetic field oscillations in a definite direction

two images are just resolvable when the center of the diffraction pattern of one is directly over the first
minimum of the diffraction pattern of the other

light reflected at the angle of reflection θb , known as Brewster’s angle

interference between light reflected from different surfaces of a thin film

microscopes constructed with special lenses that transmit UV rays and utilize photographic or
electronic techniques to record images

waves that are randomly polarized

the oscillations are in a vertical plane

λn = λ / n , where λ is the wavelength in vacuum, and n is the index of refraction of the medium

Section Summary

27.1 The Wave Aspect of Light: Interference
• Wave optics is the branch of optics that must be used when light interacts with small objects or whenever the wave

characteristics of light are considered.
• Wave characteristics are those associated with interference and diffraction.
• Visible light is the type of electromagnetic wave to which our eyes respond and has a wavelength in the range of 380 to 760

nm.

• Like all EM waves, the following relationship is valid in vacuum: c = f λ , where c = 3×108 m/s is the speed of light, f
is the frequency of the electromagnetic wave, and λ is its wavelength in vacuum.

• The wavelength λn of light in a medium with index of refraction n is λn = λ / n . Its frequency is the same as in vacuum.

27.2 Huygens's Principle: Diffraction
• An accurate technique for determining how and where waves propagate is given by Huygens’s principle: Every point on a

wavefront is a source of wavelets that spread out in the forward direction at the same speed as the wave itself. The new
wavefront is a line tangent to all of the wavelets.

• Diffraction is the bending of a wave around the edges of an opening or other obstacle.

27.3 Young’s Double Slit Experiment
• Young’s double slit experiment gave definitive proof of the wave character of light.
• An interference pattern is obtained by the superposition of light from two slits.
• There is constructive interference when d sin θ = mλ (for m = 0, 1, −1, 2, −2, …) , where d is the distance between

the slits, θ is the angle relative to the incident direction, and m is the order of the interference.

• There is destructive interference when d sin θ = ⎛⎝m + 1
2
⎞
⎠λ (for m = 0, 1, −1, 2, −2, …) .

27.4 Multiple Slit Diffraction
• A diffraction grating is a large collection of evenly spaced parallel slits that produces an interference pattern similar to but
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sharper than that of a double slit.
• There is constructive interference for a diffraction grating when d sin θ = mλ (for m = 0, 1, –1, 2, –2, …) , where d

is the distance between slits in the grating, λ is the wavelength of light, and m is the order of the maximum.

27.5 Single Slit Diffraction
• A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer maxima

to the sides.
• There is destructive interference for a single slit when D sin θ = mλ, (for m = 1, –1, 2, –2, 3, …) , where D is the

slit width, λ is the light’s wavelength, θ is the angle relative to the original direction of the light, and m is the order of the

minimum. Note that there is no m = 0 minimum.

27.6 Limits of Resolution: The Rayleigh Criterion
• Diffraction limits resolution.
• For a circular aperture, lens, or mirror, the Rayleigh criterion states that two images are just resolvable when the center of

the diffraction pattern of one is directly over the first minimum of the diffraction pattern of the other.

• This occurs for two point objects separated by the angle θ = 1.22 λ
D , where λ is the wavelength of light (or other

electromagnetic radiation) and D is the diameter of the aperture, lens, mirror, etc. This equation also gives the angular

spreading of a source of light having a diameter D .

27.7 Thin Film Interference
• Thin film interference occurs between the light reflected from the top and bottom surfaces of a film. In addition to the path

length difference, there can be a phase change.
• When light reflects from a medium having an index of refraction greater than that of the medium in which it is traveling, a

180º phase change (or a λ / 2 shift) occurs.

27.8 Polarization
• Polarization is the attribute that wave oscillations have a definite direction relative to the direction of propagation of the

wave.
• EM waves are transverse waves that may be polarized.
• The direction of polarization is defined to be the direction parallel to the electric field of the EM wave.
• Unpolarized light is composed of many rays having random polarization directions.
• Light can be polarized by passing it through a polarizing filter or other polarizing material. The intensity I of polarized light

after passing through a polarizing filter is I = I0 cos2 θ, where I0 is the original intensity and θ is the angle between

the direction of polarization and the axis of the filter.
• Polarization is also produced by reflection.
• Brewster’s law states that reflected light will be completely polarized at the angle of reflection θb , known as Brewster’s

angle, given by a statement known as Brewster’s law: tan θb = n2
n1

, where n1 is the medium in which the incident and

reflected light travel and n2 is the index of refraction of the medium that forms the interface that reflects the light.

• Polarization can also be produced by scattering.
• There are a number of types of optically active substances that rotate the direction of polarization of light passing through

them.

27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light
• To improve microscope images, various techniques utilizing the wave characteristics of light have been developed. Many of

these enhance contrast with interference effects.

Conceptual Questions

27.1 The Wave Aspect of Light: Interference

1. What type of experimental evidence indicates that light is a wave?

2. Give an example of a wave characteristic of light that is easily observed outside the laboratory.

27.2 Huygens's Principle: Diffraction

3. How do wave effects depend on the size of the object with which the wave interacts? For example, why does sound bend
around the corner of a building while light does not?
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4. Under what conditions can light be modeled like a ray? Like a wave?

5. Go outside in the sunlight and observe your shadow. It has fuzzy edges even if you do not. Is this a diffraction effect? Explain.

6. Why does the wavelength of light decrease when it passes from vacuum into a medium? State which attributes change and
which stay the same and, thus, require the wavelength to decrease.

7. Does Huygens’s principle apply to all types of waves?

27.3 Young’s Double Slit Experiment

8. Young’s double slit experiment breaks a single light beam into two sources. Would the same pattern be obtained for two
independent sources of light, such as the headlights of a distant car? Explain.

9. Suppose you use the same double slit to perform Young’s double slit experiment in air and then repeat the experiment in
water. Do the angles to the same parts of the interference pattern get larger or smaller? Does the color of the light change?
Explain.

10. Is it possible to create a situation in which there is only destructive interference? Explain.

11. Figure 27.55 shows the central part of the interference pattern for a pure wavelength of red light projected onto a double slit.
The pattern is actually a combination of single slit and double slit interference. Note that the bright spots are evenly spaced. Is
this a double slit or single slit characteristic? Note that some of the bright spots are dim on either side of the center. Is this a
single slit or double slit characteristic? Which is smaller, the slit width or the separation between slits? Explain your responses.

Figure 27.55 This double slit interference pattern also shows signs of single slit interference. (credit: PASCO)

27.4 Multiple Slit Diffraction

12. What is the advantage of a diffraction grating over a double slit in dispersing light into a spectrum?

13. What are the advantages of a diffraction grating over a prism in dispersing light for spectral analysis?

14. Can the lines in a diffraction grating be too close together to be useful as a spectroscopic tool for visible light? If so, what type
of EM radiation would the grating be suitable for? Explain.

15. If a beam of white light passes through a diffraction grating with vertical lines, the light is dispersed into rainbow colors on the
right and left. If a glass prism disperses white light to the right into a rainbow, how does the sequence of colors compare with that
produced on the right by a diffraction grating?

16. Suppose pure-wavelength light falls on a diffraction grating. What happens to the interference pattern if the same light falls on
a grating that has more lines per centimeter? What happens to the interference pattern if a longer-wavelength light falls on the
same grating? Explain how these two effects are consistent in terms of the relationship of wavelength to the distance between
slits.

17. Suppose a feather appears green but has no green pigment. Explain in terms of diffraction.

18. It is possible that there is no minimum in the interference pattern of a single slit. Explain why. Is the same true of double slits
and diffraction gratings?

27.5 Single Slit Diffraction

19. As the width of the slit producing a single-slit diffraction pattern is reduced, how will the diffraction pattern produced change?

27.6 Limits of Resolution: The Rayleigh Criterion

20. A beam of light always spreads out. Why can a beam not be created with parallel rays to prevent spreading? Why can
lenses, mirrors, or apertures not be used to correct the spreading?

27.7 Thin Film Interference

21. What effect does increasing the wedge angle have on the spacing of interference fringes? If the wedge angle is too large,
fringes are not observed. Why?

22. How is the difference in paths taken by two originally in-phase light waves related to whether they interfere constructively or
destructively? How can this be affected by reflection? By refraction?

23. Is there a phase change in the light reflected from either surface of a contact lens floating on a person’s tear layer? The index
of refraction of the lens is about 1.5, and its top surface is dry.
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24. In placing a sample on a microscope slide, a glass cover is placed over a water drop on the glass slide. Light incident from
above can reflect from the top and bottom of the glass cover and from the glass slide below the water drop. At which surfaces
will there be a phase change in the reflected light?

25. Answer the above question if the fluid between the two pieces of crown glass is carbon disulfide.

26. While contemplating the food value of a slice of ham, you notice a rainbow of color reflected from its moist surface. Explain
its origin.

27. An inventor notices that a soap bubble is dark at its thinnest and realizes that destructive interference is taking place for all
wavelengths. How could she use this knowledge to make a non-reflective coating for lenses that is effective at all wavelengths?
That is, what limits would there be on the index of refraction and thickness of the coating? How might this be impractical?

28. A non-reflective coating like the one described in Example 27.6 works ideally for a single wavelength and for perpendicular
incidence. What happens for other wavelengths and other incident directions? Be specific.

29. Why is it much more difficult to see interference fringes for light reflected from a thick piece of glass than from a thin film?
Would it be easier if monochromatic light were used?

27.8 Polarization

30. Under what circumstances is the phase of light changed by reflection? Is the phase related to polarization?

31. Can a sound wave in air be polarized? Explain.

32. No light passes through two perfect polarizing filters with perpendicular axes. However, if a third polarizing filter is placed
between the original two, some light can pass. Why is this? Under what circumstances does most of the light pass?

33. Explain what happens to the energy carried by light that it is dimmed by passing it through two crossed polarizing filters.

34. When particles scattering light are much smaller than its wavelength, the amount of scattering is proportional to 1 / λ4 . Does

this mean there is more scattering for small λ than large λ ? How does this relate to the fact that the sky is blue?

35. Using the information given in the preceding question, explain why sunsets are red.

36. When light is reflected at Brewster’s angle from a smooth surface, it is 100% polarized parallel to the surface. Part of the

light will be refracted into the surface. Describe how you would do an experiment to determine the polarization of the refracted
light. What direction would you expect the polarization to have and would you expect it to be 100% ?

27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light

37. Explain how microscopes can use wave optics to improve contrast and why this is important.

38. A bright white light under water is collimated and directed upon a prism. What range of colors does one see emerging?
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Problems & Exercises

27.1 The Wave Aspect of Light: Interference

1. Show that when light passes from air to water, its
wavelength decreases to 0.750 times its original value.

2. Find the range of visible wavelengths of light in crown
glass.

3. What is the index of refraction of a material for which the
wavelength of light is 0.671 times its value in a vacuum?
Identify the likely substance.

4. Analysis of an interference effect in a clear solid shows that
the wavelength of light in the solid is 329 nm. Knowing this
light comes from a He-Ne laser and has a wavelength of 633
nm in air, is the substance zircon or diamond?

5. What is the ratio of thicknesses of crown glass and water
that would contain the same number of wavelengths of light?

27.3 Young’s Double Slit Experiment

6. At what angle is the first-order maximum for 450-nm
wavelength blue light falling on double slits separated by
0.0500 mm?

7. Calculate the angle for the third-order maximum of 580-nm
wavelength yellow light falling on double slits separated by
0.100 mm.

8. What is the separation between two slits for which 610-nm
orange light has its first maximum at an angle of 30.0º ?

9. Find the distance between two slits that produces the first
minimum for 410-nm violet light at an angle of 45.0º .

10. Calculate the wavelength of light that has its third
minimum at an angle of 30.0º when falling on double slits

separated by 3.00 μm . Explicitly, show how you follow the

steps in Problem-Solving Strategies for Wave Optics.

11. What is the wavelength of light falling on double slits
separated by 2.00 μm if the third-order maximum is at an

angle of 60.0º ?

12. At what angle is the fourth-order maximum for the
situation in Exercise 27.6?

13. What is the highest-order maximum for 400-nm light
falling on double slits separated by 25.0 μm ?

14. Find the largest wavelength of light falling on double slits
separated by 1.20 μm for which there is a first-order

maximum. Is this in the visible part of the spectrum?

15. What is the smallest separation between two slits that will
produce a second-order maximum for 720-nm red light?

16. (a) What is the smallest separation between two slits that
will produce a second-order maximum for any visible light?
(b) For all visible light?

17. (a) If the first-order maximum for pure-wavelength light
falling on a double slit is at an angle of 10.0º , at what angle

is the second-order maximum? (b) What is the angle of the
first minimum? (c) What is the highest-order maximum
possible here?

18. Figure 27.56 shows a double slit located a distance x
from a screen, with the distance from the center of the screen
given by y . When the distance d between the slits is

relatively large, there will be numerous bright spots, called
fringes. Show that, for small angles (where sin θ ≈ θ , with

θ in radians), the distance between fringes is given by

Δy = xλ / d .

Figure 27.56 The distance between adjacent fringes is Δy = xλ / d ,

assuming the slit separation d is large compared with λ .

19. Using the result of the problem above, calculate the
distance between fringes for 633-nm light falling on double
slits separated by 0.0800 mm, located 3.00 m from a screen
as in Figure 27.56.

20. Using the result of the problem two problems prior, find
the wavelength of light that produces fringes 7.50 mm apart
on a screen 2.00 m from double slits separated by 0.120 mm
(see Figure 27.56).

27.4 Multiple Slit Diffraction

21. A diffraction grating has 2000 lines per centimeter. At
what angle will the first-order maximum be for 520-nm-
wavelength green light?

22. Find the angle for the third-order maximum for 580-nm-
wavelength yellow light falling on a diffraction grating having
1500 lines per centimeter.

23. How many lines per centimeter are there on a diffraction
grating that gives a first-order maximum for 470-nm blue light
at an angle of 25.0º ?

24. What is the distance between lines on a diffraction grating
that produces a second-order maximum for 760-nm red light
at an angle of 60.0º ?

25. Calculate the wavelength of light that has its second-order
maximum at 45.0º when falling on a diffraction grating that

has 5000 lines per centimeter.

26. An electric current through hydrogen gas produces
several distinct wavelengths of visible light. What are the
wavelengths of the hydrogen spectrum, if they form first-order
maxima at angles of 24.2º , 25.7º , 29.1º , and 41.0º
when projected on a diffraction grating having 10,000 lines
per centimeter? Explicitly show how you follow the steps in
Problem-Solving Strategies for Wave Optics
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27. (a) What do the four angles in the above problem become
if a 5000-line-per-centimeter diffraction grating is used? (b)
Using this grating, what would the angles be for the second-
order maxima? (c) Discuss the relationship between integral
reductions in lines per centimeter and the new angles of
various order maxima.

28. What is the maximum number of lines per centimeter a
diffraction grating can have and produce a complete first-
order spectrum for visible light?

29. The yellow light from a sodium vapor lamp seems to be of
pure wavelength, but it produces two first-order maxima at
36.093º and 36.129º when projected on a 10,000 line per

centimeter diffraction grating. What are the two wavelengths
to an accuracy of 0.1 nm?

30. What is the spacing between structures in a feather that
acts as a reflection grating, given that they produce a first-
order maximum for 525-nm light at a 30.0º angle?

31. Structures on a bird feather act like a reflection grating
having 8000 lines per centimeter. What is the angle of the
first-order maximum for 600-nm light?

32. An opal such as that shown in Figure 27.17 acts like a
reflection grating with rows separated by about 8 μm . If the

opal is illuminated normally, (a) at what angle will red light be
seen and (b) at what angle will blue light be seen?

33. At what angle does a diffraction grating produces a
second-order maximum for light having a first-order maximum
at 20.0º ?

34. Show that a diffraction grating cannot produce a second-
order maximum for a given wavelength of light unless the
first-order maximum is at an angle less than 30.0º .

35. If a diffraction grating produces a first-order maximum for
the shortest wavelength of visible light at 30.0º , at what

angle will the first-order maximum be for the longest
wavelength of visible light?

36. (a) Find the maximum number of lines per centimeter a
diffraction grating can have and produce a maximum for the
smallest wavelength of visible light. (b) Would such a grating
be useful for ultraviolet spectra? (c) For infrared spectra?

37. (a) Show that a 30,000-line-per-centimeter grating will not
produce a maximum for visible light. (b) What is the longest
wavelength for which it does produce a first-order maximum?
(c) What is the greatest number of lines per centimeter a
diffraction grating can have and produce a complete second-
order spectrum for visible light?

38. A He–Ne laser beam is reflected from the surface of a CD
onto a wall. The brightest spot is the reflected beam at an
angle equal to the angle of incidence. However, fringes are
also observed. If the wall is 1.50 m from the CD, and the first
fringe is 0.600 m from the central maximum, what is the
spacing of grooves on the CD?

39. The analysis shown in the figure below also applies to
diffraction gratings with lines separated by a distance d .

What is the distance between fringes produced by a
diffraction grating having 125 lines per centimeter for 600-nm
light, if the screen is 1.50 m away?

Figure 27.57 The distance between adjacent fringes is Δy = xλ / d ,

assuming the slit separation d is large compared with λ .

40. Unreasonable Results

Red light of wavelength of 700 nm falls on a double slit
separated by 400 nm. (a) At what angle is the first-order
maximum in the diffraction pattern? (b) What is unreasonable
about this result? (c) Which assumptions are unreasonable or
inconsistent?

41. Unreasonable Results

(a) What visible wavelength has its fourth-order maximum at
an angle of 25.0º when projected on a 25,000-line-per-

centimeter diffraction grating? (b) What is unreasonable about
this result? (c) Which assumptions are unreasonable or
inconsistent?

42. Construct Your Own Problem

Consider a spectrometer based on a diffraction grating.
Construct a problem in which you calculate the distance
between two wavelengths of electromagnetic radiation in your
spectrometer. Among the things to be considered are the
wavelengths you wish to be able to distinguish, the number of
lines per meter on the diffraction grating, and the distance
from the grating to the screen or detector. Discuss the
practicality of the device in terms of being able to discern
between wavelengths of interest.

27.5 Single Slit Diffraction

43. (a) At what angle is the first minimum for 550-nm light
falling on a single slit of width 1.00 μm ? (b) Will there be a

second minimum?

44. (a) Calculate the angle at which a 2.00-μm -wide slit

produces its first minimum for 410-nm violet light. (b) Where
is the first minimum for 700-nm red light?

45. (a) How wide is a single slit that produces its first
minimum for 633-nm light at an angle of 28.0º ? (b) At what

angle will the second minimum be?
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46. (a) What is the width of a single slit that produces its first
minimum at 60.0º for 600-nm light? (b) Find the wavelength

of light that has its first minimum at 62.0º .

47. Find the wavelength of light that has its third minimum at
an angle of 48.6º when it falls on a single slit of width

3.00 μm .

48. Calculate the wavelength of light that produces its first
minimum at an angle of 36.9º when falling on a single slit of

width 1.00 μm .

49. (a) Sodium vapor light averaging 589 nm in wavelength
falls on a single slit of width 7.50 μm . At what angle does it

produces its second minimum? (b) What is the highest-order
minimum produced?

50. (a) Find the angle of the third diffraction minimum for
633-nm light falling on a slit of width 20.0 μm . (b) What slit

width would place this minimum at 85.0º ? Explicitly show

how you follow the steps in Problem-Solving Strategies for
Wave Optics

51. (a) Find the angle between the first minima for the two
sodium vapor lines, which have wavelengths of 589.1 and
589.6 nm, when they fall upon a single slit of width 2.00 μm .

(b) What is the distance between these minima if the
diffraction pattern falls on a screen 1.00 m from the slit? (c)
Discuss the ease or difficulty of measuring such a distance.

52. (a) What is the minimum width of a single slit (in multiples
of λ ) that will produce a first minimum for a wavelength λ ?

(b) What is its minimum width if it produces 50 minima? (c)
1000 minima?

53. (a) If a single slit produces a first minimum at 14.5º , at

what angle is the second-order minimum? (b) What is the
angle of the third-order minimum? (c) Is there a fourth-order
minimum? (d) Use your answers to illustrate how the angular
width of the central maximum is about twice the angular width
of the next maximum (which is the angle between the first and
second minima).

54. A double slit produces a diffraction pattern that is a
combination of single and double slit interference. Find the
ratio of the width of the slits to the separation between them,
if the first minimum of the single slit pattern falls on the fifth
maximum of the double slit pattern. (This will greatly reduce
the intensity of the fifth maximum.)

55. Integrated Concepts

A water break at the entrance to a harbor consists of a rock
barrier with a 50.0-m-wide opening. Ocean waves of 20.0-m
wavelength approach the opening straight on. At what angle
to the incident direction are the boats inside the harbor most
protected against wave action?

56. Integrated Concepts

An aircraft maintenance technician walks past a tall hangar
door that acts like a single slit for sound entering the hangar.
Outside the door, on a line perpendicular to the opening in the
door, a jet engine makes a 600-Hz sound. At what angle with
the door will the technician observe the first minimum in
sound intensity if the vertical opening is 0.800 m wide and the
speed of sound is 340 m/s?

27.6 Limits of Resolution: The Rayleigh

Criterion

57. The 300-m-diameter Arecibo radio telescope pictured in
Figure 27.28 detects radio waves with a 4.00 cm average
wavelength.

(a) What is the angle between two just-resolvable point
sources for this telescope?

(b) How close together could these point sources be at the 2
million light year distance of the Andromeda galaxy?

58. Assuming the angular resolution found for the Hubble
Telescope in Example 27.5, what is the smallest detail that
could be observed on the Moon?

59. Diffraction spreading for a flashlight is insignificant
compared with other limitations in its optics, such as spherical
aberrations in its mirror. To show this, calculate the minimum
angular spreading of a flashlight beam that is originally 5.00
cm in diameter with an average wavelength of 600 nm.

60. (a) What is the minimum angular spread of a 633-nm
wavelength He-Ne laser beam that is originally 1.00 mm in
diameter?

(b) If this laser is aimed at a mountain cliff 15.0 km away, how
big will the illuminated spot be?

(c) How big a spot would be illuminated on the Moon,
neglecting atmospheric effects? (This might be done to hit a
corner reflector to measure the round-trip time and, hence,
distance.) Explicitly show how you follow the steps in
Problem-Solving Strategies for Wave Optics.

61. A telescope can be used to enlarge the diameter of a
laser beam and limit diffraction spreading. The laser beam is
sent through the telescope in opposite the normal direction
and can then be projected onto a satellite or the Moon.

(a) If this is done with the Mount Wilson telescope, producing
a 2.54-m-diameter beam of 633-nm light, what is the
minimum angular spread of the beam?

(b) Neglecting atmospheric effects, what is the size of the
spot this beam would make on the Moon, assuming a lunar

distance of 3.84×108 m ?

62. The limit to the eye’s acuity is actually related to diffraction
by the pupil.

(a) What is the angle between two just-resolvable points of
light for a 3.00-mm-diameter pupil, assuming an average
wavelength of 550 nm?

(b) Take your result to be the practical limit for the eye. What
is the greatest possible distance a car can be from you if you
can resolve its two headlights, given they are 1.30 m apart?

(c) What is the distance between two just-resolvable points
held at an arm’s length (0.800 m) from your eye?

(d) How does your answer to (c) compare to details you
normally observe in everyday circumstances?

63. What is the minimum diameter mirror on a telescope that
would allow you to see details as small as 5.00 km on the
Moon some 384,000 km away? Assume an average
wavelength of 550 nm for the light received.

64. You are told not to shoot until you see the whites of their
eyes. If the eyes are separated by 6.5 cm and the diameter of
your pupil is 5.0 mm, at what distance can you resolve the
two eyes using light of wavelength 555 nm?
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65. (a) The planet Pluto and its Moon Charon are separated
by 19,600 km. Neglecting atmospheric effects, should the
5.08-m-diameter Mount Palomar telescope be able to resolve

these bodies when they are 4.50×109 km from Earth?

Assume an average wavelength of 550 nm.

(b) In actuality, it is just barely possible to discern that Pluto
and Charon are separate bodies using an Earth-based
telescope. What are the reasons for this?

66. The headlights of a car are 1.3 m apart. What is the
maximum distance at which the eye can resolve these two
headlights? Take the pupil diameter to be 0.40 cm.

67. When dots are placed on a page from a laser printer, they
must be close enough so that you do not see the individual
dots of ink. To do this, the separation of the dots must be less
than Raleigh’s criterion. Take the pupil of the eye to be 3.0
mm and the distance from the paper to the eye of 35 cm; find
the minimum separation of two dots such that they cannot be
resolved. How many dots per inch (dpi) does this correspond
to?

68. Unreasonable Results

An amateur astronomer wants to build a telescope with a
diffraction limit that will allow him to see if there are people on
the moons of Jupiter.

(a) What diameter mirror is needed to be able to see 1.00 m

detail on a Jovian Moon at a distance of 7.50×108 km from

Earth? The wavelength of light averages 600 nm.

(b) What is unreasonable about this result?

(c) Which assumptions are unreasonable or inconsistent?

69. Construct Your Own Problem

Consider diffraction limits for an electromagnetic wave
interacting with a circular object. Construct a problem in which
you calculate the limit of angular resolution with a device,
using this circular object (such as a lens, mirror, or antenna)
to make observations. Also calculate the limit to spatial
resolution (such as the size of features observable on the
Moon) for observations at a specific distance from the device.
Among the things to be considered are the wavelength of
electromagnetic radiation used, the size of the circular object,
and the distance to the system or phenomenon being
observed.

27.7 Thin Film Interference

70. A soap bubble is 100 nm thick and illuminated by white
light incident perpendicular to its surface. What wavelength
and color of visible light is most constructively reflected,
assuming the same index of refraction as water?

71. An oil slick on water is 120 nm thick and illuminated by
white light incident perpendicular to its surface. What color
does the oil appear (what is the most constructively reflected
wavelength), given its index of refraction is 1.40?

72. Calculate the minimum thickness of an oil slick on water
that appears blue when illuminated by white light
perpendicular to its surface. Take the blue wavelength to be
470 nm and the index of refraction of oil to be 1.40.

73. Find the minimum thickness of a soap bubble that
appears red when illuminated by white light perpendicular to
its surface. Take the wavelength to be 680 nm, and assume
the same index of refraction as water.

74. A film of soapy water ( n = 1.33 ) on top of a plastic

cutting board has a thickness of 233 nm. What color is most
strongly reflected if it is illuminated perpendicular to its
surface?

75. What are the three smallest non-zero thicknesses of
soapy water ( n = 1.33 ) on Plexiglas if it appears green

(constructively reflecting 520-nm light) when illuminated
perpendicularly by white light? Explicitly show how you follow
the steps in Problem Solving Strategies for Wave Optics.

76. Suppose you have a lens system that is to be used
primarily for 700-nm red light. What is the second thinnest
coating of fluorite (magnesium fluoride) that would be non-
reflective for this wavelength?

77. (a) As a soap bubble thins it becomes dark, because the
path length difference becomes small compared with the
wavelength of light and there is a phase shift at the top
surface. If it becomes dark when the path length difference is
less than one-fourth the wavelength, what is the thickest the
bubble can be and appear dark at all visible wavelengths?
Assume the same index of refraction as water. (b) Discuss
the fragility of the film considering the thickness found.

78. A film of oil on water will appear dark when it is very thin,
because the path length difference becomes small compared
with the wavelength of light and there is a phase shift at the
top surface. If it becomes dark when the path length
difference is less than one-fourth the wavelength, what is the
thickest the oil can be and appear dark at all visible
wavelengths? Oil has an index of refraction of 1.40.

79. Figure 27.34 shows two glass slides illuminated by pure-
wavelength light incident perpendicularly. The top slide
touches the bottom slide at one end and rests on a
0.100-mm-diameter hair at the other end, forming a wedge of
air. (a) How far apart are the dark bands, if the slides are 7.50
cm long and 589-nm light is used? (b) Is there any difference
if the slides are made from crown or flint glass? Explain.

80. Figure 27.34 shows two 7.50-cm-long glass slides
illuminated by pure 589-nm wavelength light incident
perpendicularly. The top slide touches the bottom slide at one
end and rests on some debris at the other end, forming a
wedge of air. How thick is the debris, if the dark bands are
1.00 mm apart?

81. Repeat Exercise 27.70, but take the light to be incident at
a 45º angle.

82. Repeat Exercise 27.71, but take the light to be incident at
a 45º angle.

83. Unreasonable Results

To save money on making military aircraft invisible to radar,
an inventor decides to coat them with a non-reflective
material having an index of refraction of 1.20, which is
between that of air and the surface of the plane. This, he
reasons, should be much cheaper than designing Stealth
bombers. (a) What thickness should the coating be to inhibit
the reflection of 4.00-cm wavelength radar? (b) What is
unreasonable about this result? (c) Which assumptions are
unreasonable or inconsistent?

27.8 Polarization

84. What angle is needed between the direction of polarized
light and the axis of a polarizing filter to cut its intensity in
half?
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85. The angle between the axes of two polarizing filters is
45.0º . By how much does the second filter reduce the

intensity of the light coming through the first?

86. If you have completely polarized light of intensity

150 W / m2 , what will its intensity be after passing through

a polarizing filter with its axis at an 89.0º angle to the light’s

polarization direction?

87. What angle would the axis of a polarizing filter need to
make with the direction of polarized light of intensity

1.00 kW/m2 to reduce the intensity to 10.0 W/m2 ?

88. At the end of Example 27.8, it was stated that the
intensity of polarized light is reduced to 90.0% of its original

value by passing through a polarizing filter with its axis at an
angle of 18.4º to the direction of polarization. Verify this

statement.

89. Show that if you have three polarizing filters, with the
second at an angle of 45º to the first and the third at an

angle of 90.0º to the first, the intensity of light passed by the

first will be reduced to 25.0% of its value. (This is in contrast

to having only the first and third, which reduces the intensity
to zero, so that placing the second between them increases
the intensity of the transmitted light.)

90. Prove that, if I is the intensity of light transmitted by two

polarizing filters with axes at an angle θ and I′ is the

intensity when the axes are at an angle 90.0º−θ, then

I + I′ = I0, the original intensity. (Hint: Use the

trigonometric identities cos (90.0º−θ) = sin θ and

cos2 θ + sin2 θ = 1. )

91. At what angle will light reflected from diamond be
completely polarized?

92. What is Brewster’s angle for light traveling in water that is
reflected from crown glass?

93. A scuba diver sees light reflected from the water’s
surface. At what angle will this light be completely polarized?

94. At what angle is light inside crown glass completely
polarized when reflected from water, as in a fish tank?

95. Light reflected at 55.6º from a window is completely

polarized. What is the window’s index of refraction and the
likely substance of which it is made?

96. (a) Light reflected at 62.5º from a gemstone in a ring is

completely polarized. Can the gem be a diamond? (b) At what
angle would the light be completely polarized if the gem was
in water?

97. If θb is Brewster’s angle for light reflected from the top of

an interface between two substances, and θ′b is Brewster’s

angle for light reflected from below, prove that
θb + θ′b = 90.0º.

98. Integrated Concepts

If a polarizing filter reduces the intensity of polarized light to
50.0% of its original value, by how much are the electric and

magnetic fields reduced?

99. Integrated Concepts

Suppose you put on two pairs of Polaroid sunglasses with
their axes at an angle of 15.0º . How much longer will it take

the light to deposit a given amount of energy in your eye
compared with a single pair of sunglasses? Assume the
lenses are clear except for their polarizing characteristics.

100. Integrated Concepts

(a) On a day when the intensity of sunlight is 1.00 kW / m2 ,

a circular lens 0.200 m in diameter focuses light onto water in
a black beaker. Two polarizing sheets of plastic are placed in
front of the lens with their axes at an angle of 20.0º.
Assuming the sunlight is unpolarized and the polarizers are
100% efficient, what is the initial rate of heating of the water

in ºC / s , assuming it is 80.0% absorbed? The aluminum

beaker has a mass of 30.0 grams and contains 250 grams of
water. (b) Do the polarizing filters get hot? Explain.
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28 SPECIAL RELATIVITY

Figure 28.1 Special relativity explains why traveling to other star systems, such as these in the Orion Nebula, is unreasonable using our current level
of technology. (credit: s58y, Flickr)

Chapter Outline
28.1. Einstein’s Postulates

• State and explain both of Einstein’s postulates.
• Explain what an inertial frame of reference is.
• Describe one way the speed of light can be changed.

28.2. Simultaneity And Time Dilation
• Describe simultaneity.
• Describe time dilation.
• Calculate γ.
• Compare proper time and the observer’s measured time.
• Explain why the twin paradox is a false paradox.

28.3. Length Contraction
• Describe proper length.
• Calculate length contraction.
• Explain why we don’t notice these effects at everyday scales.

28.4. Relativistic Addition of Velocities
• Calculate relativistic velocity addition.
• Explain when relativistic velocity addition should be used instead of classical addition of velocities.
• Calculate relativistic Doppler shift.

28.5. Relativistic Momentum
• Calculate relativistic momentum.
• Explain why the only mass it makes sense to talk about is rest mass.

28.6. Relativistic Energy
• Compute total energy of a relativistic object.
• Compute the kinetic energy of a relativistic object.
• Describe rest energy, and explain how it can be converted to other forms.
• Explain why massive particles cannot reach C.

Introduction to Special Relativity

Have you ever looked up at the night sky and dreamed of traveling to other planets in faraway star systems? Would there be
other life forms? What would other worlds look like? You might imagine that such an amazing trip would be possible if we could
just travel fast enough, but you will read in this chapter why this is not true. In 1905 Albert Einstein developed the theory of
special relativity. This theory explains the limit on an object’s speed and describes the consequences.

Relativity. The word relativity might conjure an image of Einstein, but the idea did not begin with him. People have been exploring
relativity for many centuries. Relativity is the study of how different observers measure the same event. Galileo and Newton
developed the first correct version of classical relativity. Einstein developed the modern theory of relativity. Modern relativity is
divided into two parts. Special relativity deals with observers who are moving at constant velocity. General relativity deals with

Chapter 28 | Special Relativity 1103



observers who are undergoing acceleration. Einstein is famous because his theories of relativity made revolutionary predictions.
Most importantly, his theories have been verified to great precision in a vast range of experiments, altering forever our concept of
space and time.

Figure 28.2 Many people think that Albert Einstein (1879–1955) was the greatest physicist of the 20th century. Not only did he develop modern
relativity, thus revolutionizing our concept of the universe, he also made fundamental contributions to the foundations of quantum mechanics. (credit:
The Library of Congress)

It is important to note that although classical mechanics, in general, and classical relativity, in particular, are limited, they are
extremely good approximations for large, slow-moving objects. Otherwise, we could not use classical physics to launch satellites
or build bridges. In the classical limit (objects larger than submicroscopic and moving slower than about 1% of the speed of light),
relativistic mechanics becomes the same as classical mechanics. This fact will be noted at appropriate places throughout this
chapter.

28.1 Einstein’s Postulates

Figure 28.3 Special relativity resembles trigonometry in that both are reliable because they are based on postulates that flow one from another in a
logical way. (credit: Jon Oakley, Flickr)

Have you ever used the Pythagorean Theorem and gotten a wrong answer? Probably not, unless you made a mistake in either
your algebra or your arithmetic. Each time you perform the same calculation, you know that the answer will be the same.
Trigonometry is reliable because of the certainty that one part always flows from another in a logical way. Each part is based on a
set of postulates, and you can always connect the parts by applying those postulates. Physics is the same way with the
exception that all parts must describe nature. If we are careful to choose the correct postulates, then our theory will follow and
will be verified by experiment.

Einstein essentially did the theoretical aspect of this method for relativity. With two deceptively simple postulates and a careful
consideration of how measurements are made, he produced the theory of special relativity.

Einstein’s First Postulate

The first postulate upon which Einstein based the theory of special relativity relates to reference frames. All velocities are
measured relative to some frame of reference. For example, a car’s motion is measured relative to its starting point or the road it
is moving over, a projectile’s motion is measured relative to the surface it was launched from, and a planet’s orbit is measured
relative to the star it is orbiting around. The simplest frames of reference are those that are not accelerated and are not rotating.
Newton’s first law, the law of inertia, holds exactly in such a frame.
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Inertial Reference Frame

An inertial frame of reference is a reference frame in which a body at rest remains at rest and a body in motion moves at a
constant speed in a straight line unless acted on by an outside force.

The laws of physics seem to be simplest in inertial frames. For example, when you are in a plane flying at a constant altitude and
speed, physics seems to work exactly the same as if you were standing on the surface of the Earth. However, in a plane that is
taking off, matters are somewhat more complicated. In these cases, the net force on an object, F , is not equal to the product of

mass and acceleration, ma . Instead, F is equal to ma plus a fictitious force. This situation is not as simple as in an inertial

frame. Not only are laws of physics simplest in inertial frames, but they should be the same in all inertial frames, since there is no
preferred frame and no absolute motion. Einstein incorporated these ideas into his first postulate of special relativity.

First Postulate of Special Relativity

The laws of physics are the same and can be stated in their simplest form in all inertial frames of reference.

As with many fundamental statements, there is more to this postulate than meets the eye. The laws of physics include only those
that satisfy this postulate. We shall find that the definitions of relativistic momentum and energy must be altered to fit. Another

outcome of this postulate is the famous equation E = mc2 .

Einstein’s Second Postulate

The second postulate upon which Einstein based his theory of special relativity deals with the speed of light. Late in the 19th
century, the major tenets of classical physics were well established. Two of the most important were the laws of electricity and
magnetism and Newton’s laws. In particular, the laws of electricity and magnetism predict that light travels at

c = 3.00×108 m/s in a vacuum, but they do not specify the frame of reference in which light has this speed.

There was a contradiction between this prediction and Newton’s laws, in which velocities add like simple vectors. If the latter
were true, then two observers moving at different speeds would see light traveling at different speeds. Imagine what a light wave
would look like to a person traveling along with it at a speed c . If such a motion were possible then the wave would be stationary

relative to the observer. It would have electric and magnetic fields that varied in strength at various distances from the observer
but were constant in time. This is not allowed by Maxwell’s equations. So either Maxwell’s equations are wrong, or an object with
mass cannot travel at speed c . Einstein concluded that the latter is true. An object with mass cannot travel at speed c . This

conclusion implies that light in a vacuum must always travel at speed c relative to any observer. Maxwell’s equations are

correct, and Newton’s addition of velocities is not correct for light.

Investigations such as Young’s double slit experiment in the early-1800s had convincingly demonstrated that light is a wave.
Many types of waves were known, and all travelled in some medium. Scientists therefore assumed that a medium carried light,
even in a vacuum, and light travelled at a speed c relative to that medium. Starting in the mid-1880s, the American physicist A.

A. Michelson, later aided by E. W. Morley, made a series of direct measurements of the speed of light. The results of their
measurements were startling.

Michelson-Morley Experiment

The Michelson-Morley experiment demonstrated that the speed of light in a vacuum is independent of the motion of the
Earth about the Sun.

The eventual conclusion derived from this result is that light, unlike mechanical waves such as sound, does not need a medium
to carry it. Furthermore, the Michelson-Morley results implied that the speed of light c is independent of the motion of the source

relative to the observer. That is, everyone observes light to move at speed c regardless of how they move relative to the source

or one another. For a number of years, many scientists tried unsuccessfully to explain these results and still retain the general
applicability of Newton’s laws.

It was not until 1905, when Einstein published his first paper on special relativity, that the currently accepted conclusion was
reached. Based mostly on his analysis that the laws of electricity and magnetism would not allow another speed for light, and
only slightly aware of the Michelson-Morley experiment, Einstein detailed his second postulate of special relativity.

Second Postulate of Special Relativity

The speed of light c is a constant, independent of the relative motion of the source.

Deceptively simple and counterintuitive, this and the first postulate leave all else open for change. Some fundamental concepts
do change. Among the changes are the loss of agreement on the elapsed time for an event, the variation of distance with speed,
and the realization that matter and energy can be converted into one another. You will read about these concepts in the following
sections.

Chapter 28 | Special Relativity 1105



Misconception Alert: Constancy of the Speed of Light

The speed of light is a constant c = 3.00×108 m/s in a vacuum. If you remember the effect of the index of refraction from

The Law of Refraction, the speed of light is lower in matter.

Check Your Understanding

Explain how special relativity differs from general relativity.

Solution

Special relativity applies only to unaccelerated motion, but general relativity applies to accelerated motion.

28.2 Simultaneity And Time Dilation

Figure 28.4 Elapsed time for a foot race is the same for all observers, but at relativistic speeds, elapsed time depends on the relative motion of the
observer and the event that is observed. (credit: Jason Edward Scott Bain, Flickr)

Do time intervals depend on who observes them? Intuitively, we expect the time for a process, such as the elapsed time for a
foot race, to be the same for all observers. Our experience has been that disagreements over elapsed time have to do with the
accuracy of measuring time. When we carefully consider just how time is measured, however, we will find that elapsed time
depends on the relative motion of an observer with respect to the process being measured.

Simultaneity

Consider how we measure elapsed time. If we use a stopwatch, for example, how do we know when to start and stop the watch?
One method is to use the arrival of light from the event, such as observing a light turning green to start a drag race. The timing
will be more accurate if some sort of electronic detection is used, avoiding human reaction times and other complications.

Now suppose we use this method to measure the time interval between two flashes of light produced by flash lamps. (See
Figure 28.5.) Two flash lamps with observer A midway between them are on a rail car that moves to the right relative to observer
B. Observer B arranges for the light flashes to be emitted just as A passes B, so that both A and B are equidistant from the
lamps when the light is emitted. Observer B measures the time interval between the arrival of the light flashes. According to
postulate 2, the speed of light is not affected by the motion of the lamps relative to B. Therefore, light travels equal distances to
him at equal speeds. Thus observer B measures the flashes to be simultaneous.

1106 Chapter 28 | Special Relativity

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Figure 28.5 Observer B measures the elapsed time between the arrival of light flashes as described in the text. Observer A moves with the lamps on a
rail car. Observer B perceives that the light flashes occurred simultaneously. Observer A perceives that the light on the right flashes before the light on
the left.

Now consider what observer B sees happen to observer A. Observer B perceives light from the right reaching observer A before
light from the left, because she has moved towards that flash lamp, lessening the distance the light must travel and reducing the
time it takes to get to her. Light travels at speed c relative to both observers, but observer B remains equidistant between the

points where the flashes were emitted, while A gets closer to the emission point on the right. From observer B’s point of view,
then, there is a time interval between the arrival of the flashes to observer A. In observer A's frame of reference, the flashes
occur at different times. Observer B measures the flashes to arrive simultaneously relative to him but not relative to A.

Now consider what observer A sees happening. She sees the light from the right arriving before light from the left. Since both
lamps are the same distance from her in her reference frame, from her perspective, the right flash occurred before the left flash.
Here a relative velocity between observers affects whether two events are observed to be simultaneous. Simultaneity is not
absolute

This illustrates the power of clear thinking. We might have guessed incorrectly that if light is emitted simultaneously, then two
observers halfway between the sources would see the flashes simultaneously. But careful analysis shows this not to be the case.
Einstein was brilliant at this type of thought experiment (in German, “Gedankenexperiment”). He very carefully considered how
an observation is made and disregarded what might seem obvious. The validity of thought experiments, of course, is determined
by actual observation. The genius of Einstein is evidenced by the fact that experiments have repeatedly confirmed his theory of
relativity.

In summary: Two events are defined to be simultaneous if an observer measures them as occurring at the same time (such as
by receiving light from the events). Two events are not necessarily simultaneous to all observers.

Time Dilation

The consideration of the measurement of elapsed time and simultaneity leads to an important relativistic effect.

Time dilation

Time dilation is the phenomenon of time passing slower for an observer who is moving relative to another observer.

Suppose, for example, an astronaut measures the time it takes for light to cross her ship, bounce off a mirror, and return. (See
Figure 28.6.) How does the elapsed time the astronaut measures compare with the elapsed time measured for the same event
by a person on the Earth? Asking this question (another thought experiment) produces a profound result. We find that the
elapsed time for a process depends on who is measuring it. In this case, the time measured by the astronaut is smaller than the
time measured by the Earth-bound observer. The passage of time is different for the observers because the distance the light
travels in the astronaut’s frame is smaller than in the Earth-bound frame. Light travels at the same speed in each frame, and so it
will take longer to travel the greater distance in the Earth-bound frame.
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Figure 28.6 (a) An astronaut measures the time Δt0 for light to cross her ship using an electronic timer. Light travels a distance 2D in the

astronaut’s frame. (b) A person on the Earth sees the light follow the longer path 2s and take a longer time Δt . (c) These triangles are used to find

the relationship between the two distances 2D and 2s .

To quantitatively verify that time depends on the observer, consider the paths followed by light as seen by each observer. (See
Figure 28.6(c).) The astronaut sees the light travel straight across and back for a total distance of 2D , twice the width of her

ship. The Earth-bound observer sees the light travel a total distance 2s . Since the ship is moving at speed v to the right

relative to the Earth, light moving to the right hits the mirror in this frame. Light travels at a speed c in both frames, and because

time is the distance divided by speed, the time measured by the astronaut is

(28.1)Δt0 = 2D
c .

This time has a separate name to distinguish it from the time measured by the Earth-bound observer.

Proper Time

Proper time Δt0 is the time measured by an observer at rest relative to the event being observed.

In the case of the astronaut observe the reflecting light, the astronaut measures proper time. The time measured by the Earth-
bound observer is

(28.2)Δt = 2s
c .

To find the relationship between Δt0 and Δt , consider the triangles formed by D and s . (See Figure 28.6(c).) The third side

of these similar triangles is L , the distance the astronaut moves as the light goes across her ship. In the frame of the Earth-

bound observer,

(28.3)L = vΔt
2 .

Using the Pythagorean Theorem, the distance s is found to be

(28.4)
s = D2 + ⎛⎝vΔt

2
⎞
⎠
2
.

Substituting s into the expression for the time interval Δt gives
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(28.5)

Δt = 2s
c =

2 D2 + ⎛⎝vΔt
2
⎞
⎠
2

c .

We square this equation, which yields

(28.6)

(Δt)2 =
4⎛⎝D2 + v2(Δt)2

4
⎞
⎠

c2 = 4D2

c2 + v2

c2(Δt)2.

Note that if we square the first expression we had for Δt0 , we get (Δt0 )2 = 4D2

c2 . This term appears in the preceding

equation, giving us a means to relate the two time intervals. Thus,

(28.7)
(Δt)2 = (Δt0 )2 + v2

c2(Δt)2.

Gathering terms, we solve for Δt :

(28.8)
(Δt)2⎛⎝1 − v2

c2
⎞
⎠ = (Δt0 )2.

Thus,

(28.9)
(Δt)2 = (Δt0 )2

1 − v2

c2

.

Taking the square root yields an important relationship between elapsed times:

(28.10)
Δt = Δt0

1 − v2

c2

= γΔt0,

where

(28.11)γ = 1

1 − v2

c2

.

This equation for Δt is truly remarkable. First, as contended, elapsed time is not the same for different observers moving

relative to one another, even though both are in inertial frames. Proper time Δt0 measured by an observer, like the astronaut

moving with the apparatus, is smaller than time measured by other observers. Since those other observers measure a longer
time Δt , the effect is called time dilation. The Earth-bound observer sees time dilate (get longer) for a system moving relative to

the Earth. Alternatively, according to the Earth-bound observer, time slows in the moving frame, since less time passes there. All
clocks moving relative to an observer, including biological clocks such as aging, are observed to run slow compared with a clock
stationary relative to the observer.

Note that if the relative velocity is much less than the speed of light ( v<<c ), then v2

c2 is extremely small, and the elapsed times

Δt and Δt0 are nearly equal. At low velocities, modern relativity approaches classical physics—our everyday experiences

have very small relativistic effects.

The equation Δt = γΔt0 also implies that relative velocity cannot exceed the speed of light. As v approaches c , Δt
approaches infinity. This would imply that time in the astronaut’s frame stops at the speed of light. If v exceeded c , then we

would be taking the square root of a negative number, producing an imaginary value for Δt .

There is considerable experimental evidence that the equation Δt = γΔt0 is correct. One example is found in cosmic ray

particles that continuously rain down on the Earth from deep space. Some collisions of these particles with nuclei in the upper
atmosphere result in short-lived particles called muons. The half-life (amount of time for half of a material to decay) of a muon is
1.52 μs when it is at rest relative to the observer who measures the half-life. This is the proper time Δt0 . Muons produced by

cosmic ray particles have a range of velocities, with some moving near the speed of light. It has been found that the muon’s half-
life as measured by an Earth-bound observer ( Δt ) varies with velocity exactly as predicted by the equation Δt = γΔt0 . The

faster the muon moves, the longer it lives. We on the Earth see the muon’s half-life time dilated—as viewed from our frame, the
muon decays more slowly than it does when at rest relative to us.
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Example 28.1 Calculating Δt for a Relativistic Event: How Long Does a Speedy Muon Live?

Suppose a cosmic ray colliding with a nucleus in the Earth’s upper atmosphere produces a muon that has a velocity
v = 0.950c . The muon then travels at constant velocity and lives 1.52 μs as measured in the muon’s frame of reference.

(You can imagine this as the muon’s internal clock.) How long does the muon live as measured by an Earth-bound
observer? (See Figure 28.7.)

Figure 28.7 A muon in the Earth’s atmosphere lives longer as measured by an Earth-bound observer than measured by the muon’s internal
clock.

Strategy

A clock moving with the system being measured observes the proper time, so the time we are given is Δt0 = 1.52 μs . The

Earth-bound observer measures Δt as given by the equation Δt = γΔt0 . Since we know the velocity, the calculation is

straightforward.

Solution

1) Identify the knowns. v = 0.950c , Δt0 = 1.52 μs

2) Identify the unknown. Δt
3) Choose the appropriate equation.

Use,

(28.12)Δt = γΔt0,

where

(28.13)γ = 1

1 − v2

c2

.

4) Plug the knowns into the equation.

First find γ .

(28.14)γ = 1

1 − v2

c2

= 1

1 − (0.950c)2

c2

= 1
1 − (0.950)2

= 3.20.
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Use the calculated value of γ to determine Δt .

(28.15)Δt = γΔt0
= (3.20)(1.52 μs)
= 4.87 μs

Discussion

One implication of this example is that since γ = 3.20 at 95.0% of the speed of light ( v = 0.950c ), the relativistic effects

are significant. The two time intervals differ by this factor of 3.20, where classically they would be the same. Something
moving at 0.950c is said to be highly relativistic.

Another implication of the preceding example is that everything an astronaut does when moving at 95.0% of the speed of light

relative to the Earth takes 3.20 times longer when observed from the Earth. Does the astronaut sense this? Only if she looks
outside her spaceship. All methods of measuring time in her frame will be affected by the same factor of 3.20. This includes her
wristwatch, heart rate, cell metabolism rate, nerve impulse rate, and so on. She will have no way of telling, since all of her clocks
will agree with one another because their relative velocities are zero. Motion is relative, not absolute. But what if she does look
out the window?

Real-World Connections

It may seem that special relativity has little effect on your life, but it is probably more important than you realize. One of the
most common effects is through the Global Positioning System (GPS). Emergency vehicles, package delivery services,
electronic maps, and communications devices are just a few of the common uses of GPS, and the GPS system could not
work without taking into account relativistic effects. GPS satellites rely on precise time measurements to communicate. The
signals travel at relativistic speeds. Without corrections for time dilation, the satellites could not communicate, and the GPS
system would fail within minutes.

The Twin Paradox

An intriguing consequence of time dilation is that a space traveler moving at a high velocity relative to the Earth would age less
than her Earth-bound twin. Imagine the astronaut moving at such a velocity that γ = 30.0 , as in Figure 28.8. A trip that takes

2.00 years in her frame would take 60.0 years in her Earth-bound twin’s frame. Suppose the astronaut traveled 1.00 year to
another star system. She briefly explored the area, and then traveled 1.00 year back. If the astronaut was 40 years old when she
left, she would be 42 upon her return. Everything on the Earth, however, would have aged 60.0 years. Her twin, if still alive,
would be 100 years old.

The situation would seem different to the astronaut. Because motion is relative, the spaceship would seem to be stationary and
the Earth would appear to move. (This is the sensation you have when flying in a jet.) If the astronaut looks out the window of the
spaceship, she will see time slow down on the Earth by a factor of γ = 30.0 . To her, the Earth-bound sister will have aged only

2/30 (1/15) of a year, while she aged 2.00 years. The two sisters cannot both be correct.

Figure 28.8 The twin paradox asks why the traveling twin ages less than the Earth-bound twin. That is the prediction we obtain if we consider the
Earth-bound twin’s frame. In the astronaut’s frame, however, the Earth is moving and time runs slower there. Who is correct?

As with all paradoxes, the premise is faulty and leads to contradictory conclusions. In fact, the astronaut’s motion is significantly
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different from that of the Earth-bound twin. The astronaut accelerates to a high velocity and then decelerates to view the star
system. To return to the Earth, she again accelerates and decelerates. The Earth-bound twin does not experience these
accelerations. So the situation is not symmetric, and it is not correct to claim that the astronaut will observe the same effects as
her Earth-bound twin. If you use special relativity to examine the twin paradox, you must keep in mind that the theory is expressly
based on inertial frames, which by definition are not accelerated or rotating. Einstein developed general relativity to deal with
accelerated frames and with gravity, a prime source of acceleration. You can also use general relativity to address the twin
paradox and, according to general relativity, the astronaut will age less. Some important conceptual aspects of general relativity
are discussed in General Relativity and Quantum Gravity of this course.

In 1971, American physicists Joseph Hafele and Richard Keating verified time dilation at low relative velocities by flying
extremely accurate atomic clocks around the Earth on commercial aircraft. They measured elapsed time to an accuracy of a few
nanoseconds and compared it with the time measured by clocks left behind. Hafele and Keating’s results were within
experimental uncertainties of the predictions of relativity. Both special and general relativity had to be taken into account, since
gravity and accelerations were involved as well as relative motion.

Check Your Understanding

1. What is γ if v = 0.650c ?

Solution

γ = 1

1 − v2

c2

= 1

1 − (0.650c)2

c2

= 1.32

2. A particle travels at 1.90×108 m/s and lives 2.10×10−8 s when at rest relative to an observer. How long does the

particle live as viewed in the laboratory?

Solution

Δt = Δt

1 − v2

c2

= 2.10×10−8 s

1 − (1.90×108 m/s)2

(3.00×108 m/s)2

= 2.71×10−8 s

28.3 Length Contraction

Figure 28.9 People might describe distances differently, but at relativistic speeds, the distances really are different. (credit: Corey Leopold, Flickr)

Have you ever driven on a road that seems like it goes on forever? If you look ahead, you might say you have about 10 km left to
go. Another traveler might say the road ahead looks like it’s about 15 km long. If you both measured the road, however, you
would agree. Traveling at everyday speeds, the distance you both measure would be the same. You will read in this section,
however, that this is not true at relativistic speeds. Close to the speed of light, distances measured are not the same when
measured by different observers.

Proper Length

One thing all observers agree upon is relative speed. Even though clocks measure different elapsed times for the same process,
they still agree that relative speed, which is distance divided by elapsed time, is the same. This implies that distance, too,
depends on the observer’s relative motion. If two observers see different times, then they must also see different distances for
relative speed to be the same to each of them.

The muon discussed in Example 28.1 illustrates this concept. To an observer on the Earth, the muon travels at 0.950c for

7.05 μs from the time it is produced until it decays. Thus it travels a distance

(28.16)L0 = vΔt = (0.950)(3.00×108 m/s)(7.05×10−6 s) = 2.01 km
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relative to the Earth. In the muon’s frame of reference, its lifetime is only 2.20 μs . It has enough time to travel only

(28.17)L = vΔt0 = (0.950)(3.00×108 m/s)(2.20×10−6 s) = 0.627 km.

The distance between the same two events (production and decay of a muon) depends on who measures it and how they are
moving relative to it.

Proper Length

Proper length L0 is the distance between two points measured by an observer who is at rest relative to both of the points.

The Earth-bound observer measures the proper length L0 , because the points at which the muon is produced and decays are

stationary relative to the Earth. To the muon, the Earth, air, and clouds are moving, and so the distance L it sees is not the

proper length.

Figure 28.10 (a) The Earth-bound observer sees the muon travel 2.01 km between clouds. (b) The muon sees itself travel the same path, but only a
distance of 0.627 km. The Earth, air, and clouds are moving relative to the muon in its frame, and all appear to have smaller lengths along the direction
of travel.

Length Contraction

To develop an equation relating distances measured by different observers, we note that the velocity relative to the Earth-bound
observer in our muon example is given by

(28.18)
v = L0

Δt .

The time relative to the Earth-bound observer is Δt , since the object being timed is moving relative to this observer. The velocity

relative to the moving observer is given by

(28.19)v = L
Δt0

.

The moving observer travels with the muon and therefore observes the proper time Δt0 . The two velocities are identical; thus,

(28.20)L0
Δt = L

Δt0
.

We know that Δt = γΔt0 . Substituting this equation into the relationship above gives

(28.21)
L = L0

γ .

Substituting for γ gives an equation relating the distances measured by different observers.

Length Contraction

Length contraction L is the shortening of the measured length of an object moving relative to the observer’s frame.

(28.22)
L = L0 1 − v2

c2.

If we measure the length of anything moving relative to our frame, we find its length L to be smaller than the proper length L0
that would be measured if the object were stationary. For example, in the muon’s reference frame, the distance between the
points where it was produced and where it decayed is shorter. Those points are fixed relative to the Earth but moving relative to
the muon. Clouds and other objects are also contracted along the direction of motion in the muon’s reference frame.
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Example 28.2 Calculating Length Contraction: The Distance between Stars Contracts when You
Travel at High Velocity

Suppose an astronaut, such as the twin discussed in Simultaneity and Time Dilation, travels so fast that γ = 30.00 . (a)

She travels from the Earth to the nearest star system, Alpha Centauri, 4.300 light years (ly) away as measured by an Earth-
bound observer. How far apart are the Earth and Alpha Centauri as measured by the astronaut? (b) In terms of c , what is

her velocity relative to the Earth? You may neglect the motion of the Earth relative to the Sun. (See Figure 28.11.)

Figure 28.11 (a) The Earth-bound observer measures the proper distance between the Earth and the Alpha Centauri. (b) The astronaut observes
a length contraction, since the Earth and the Alpha Centauri move relative to her ship. She can travel this shorter distance in a smaller time (her
proper time) without exceeding the speed of light.

Strategy

First note that a light year (ly) is a convenient unit of distance on an astronomical scale—it is the distance light travels in a
year. For part (a), note that the 4.300 ly distance between the Alpha Centauri and the Earth is the proper distance L0 ,

because it is measured by an Earth-bound observer to whom both stars are (approximately) stationary. To the astronaut, the
Earth and the Alpha Centauri are moving by at the same velocity, and so the distance between them is the contracted length
L . In part (b), we are given γ , and so we can find v by rearranging the definition of γ to express v in terms of c .

Solution for (a)

1. Identify the knowns. L0 − 4.300 ly ; γ = 30.00

2. Identify the unknown. L

3. Choose the appropriate equation. L = L0
γ

4. Rearrange the equation to solve for the unknown.

(28.23)
L = L0

γ

= 4.300 ly
30.00

= 0.1433 ly

Solution for (b)

1. Identify the known. γ = 30.00

2. Identify the unknown. v in terms of c

3. Choose the appropriate equation. γ = 1

1 − v2

c2

4. Rearrange the equation to solve for the unknown.
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(28.24)γ = 1

1 − v2

c2

30.00 = 1

1 − v2

c2

Squaring both sides of the equation and rearranging terms gives

(28.25)900.0 = 1
1 − v2

c2

so that

(28.26)
1 − v2

c2 = 1
900.0

and

(28.27)v2

c2 = 1 − 1
900.0 = 0.99888....

Taking the square root, we find

(28.28)v
c = 0.99944,

which is rearranged to produce a value for the velocity

(28.29)v= 0.9994c.
Discussion

First, remember that you should not round off calculations until the final result is obtained, or you could get erroneous
results. This is especially true for special relativity calculations, where the differences might only be revealed after several
decimal places. The relativistic effect is large here ( γ=30.00 ), and we see that v is approaching (not equaling) the speed

of light. Since the distance as measured by the astronaut is so much smaller, the astronaut can travel it in much less time in
her frame.

People could be sent very large distances (thousands or even millions of light years) and age only a few years on the way if they
traveled at extremely high velocities. But, like emigrants of centuries past, they would leave the Earth they know forever. Even if
they returned, thousands to millions of years would have passed on the Earth, obliterating most of what now exists. There is also
a more serious practical obstacle to traveling at such velocities; immensely greater energies than classical physics predicts
would be needed to achieve such high velocities. This will be discussed in Relatavistic Energy.

Why don’t we notice length contraction in everyday life? The distance to the grocery shop does not seem to depend on whether

we are moving or not. Examining the equation L = L0 1 − v2

c2 , we see that at low velocities ( v<<c ) the lengths are nearly

equal, the classical expectation. But length contraction is real, if not commonly experienced. For example, a charged particle, like
an electron, traveling at relativistic velocity has electric field lines that are compressed along the direction of motion as seen by a
stationary observer. (See Figure 28.12.) As the electron passes a detector, such as a coil of wire, its field interacts much more
briefly, an effect observed at particle accelerators such as the 3 km long Stanford Linear Accelerator (SLAC). In fact, to an
electron traveling down the beam pipe at SLAC, the accelerator and the Earth are all moving by and are length contracted. The
relativistic effect is so great than the accelerator is only 0.5 m long to the electron. It is actually easier to get the electron beam
down the pipe, since the beam does not have to be as precisely aimed to get down a short pipe as it would down one 3 km long.
This, again, is an experimental verification of the Special Theory of Relativity.
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Figure 28.12 The electric field lines of a high-velocity charged particle are compressed along the direction of motion by length contraction. This
produces a different signal when the particle goes through a coil, an experimentally verified effect of length contraction.

Check Your Understanding

A particle is traveling through the Earth’s atmosphere at a speed of 0.750c . To an Earth-bound observer, the distance it

travels is 2.50 km. How far does the particle travel in the particle’s frame of reference?

Solution

(28.30)
L=L0 1 − v2

c2 = (2.50 km) 1 − (0.750c)2

c2 = 1.65 km

28.4 Relativistic Addition of Velocities

Figure 28.13 The total velocity of a kayak, like this one on the Deerfield River in Massachusetts, is its velocity relative to the water as well as the
water’s velocity relative to the riverbank. (credit: abkfenris, Flickr)

If you’ve ever seen a kayak move down a fast-moving river, you know that remaining in the same place would be hard. The river
current pulls the kayak along. Pushing the oars back against the water can move the kayak forward in the water, but that only
accounts for part of the velocity. The kayak’s motion is an example of classical addition of velocities. In classical physics,
velocities add as vectors. The kayak’s velocity is the vector sum of its velocity relative to the water and the water’s velocity
relative to the riverbank.

Classical Velocity Addition

For simplicity, we restrict our consideration of velocity addition to one-dimensional motion. Classically, velocities add like regular
numbers in one-dimensional motion. (See Figure 28.14.) Suppose, for example, a girl is riding in a sled at a speed 1.0 m/s
relative to an observer. She throws a snowball first forward, then backward at a speed of 1.5 m/s relative to the sled. We denote
direction with plus and minus signs in one dimension; in this example, forward is positive. Let v be the velocity of the sled

relative to the Earth, u the velocity of the snowball relative to the Earth-bound observer, and u′ the velocity of the snowball

relative to the sled.
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Figure 28.14 Classically, velocities add like ordinary numbers in one-dimensional motion. Here the girl throws a snowball forward and then backward

from a sled. The velocity of the sled relative to the Earth is v=1.0 m/s . The velocity of the snowball relative to the sled is u′ , while its velocity

relative to the Earth is u . Classically, u=v+u′ .

Classical Velocity Addition
(28.31)u=v+u′

Thus, when the girl throws the snowball forward, u = 1.0 m/s + 1.5 m/s = 2.5 m/s . It makes good intuitive sense that the

snowball will head towards the Earth-bound observer faster, because it is thrown forward from a moving vehicle. When the girl
throws the snowball backward, u = 1.0 m/s+( − 1.5 m/s) = −0.5 m/s . The minus sign means the snowball moves away

from the Earth-bound observer.

Relativistic Velocity Addition

The second postulate of relativity (verified by extensive experimental observation) says that classical velocity addition does not
apply to light. Imagine a car traveling at night along a straight road, as in Figure 28.15. If classical velocity addition applied to
light, then the light from the car’s headlights would approach the observer on the sidewalk at a speed u=v+c . But we know that

light will move away from the car at speed c relative to the driver of the car, and light will move towards the observer on the

sidewalk at speed c , too.
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Figure 28.15 According to experiment and the second postulate of relativity, light from the car’s headlights moves away from the car at speed c and

towards the observer on the sidewalk at speed c . Classical velocity addition is not valid.

Relativistic Velocity Addition

Either light is an exception, or the classical velocity addition formula only works at low velocities. The latter is the case. The
correct formula for one-dimensional relativistic velocity addition is

(28.32)u = v+u′
1 + vu′

c2
,

where v is the relative velocity between two observers, u is the velocity of an object relative to one observer, and u′ is the

velocity relative to the other observer. (For ease of visualization, we often choose to measure u in our reference frame,

while someone moving at v relative to us measures u′ .) Note that the term vu′
c2 becomes very small at low velocities, and

u = v+u′
1 + vu′

c2
gives a result very close to classical velocity addition. As before, we see that classical velocity addition is an

excellent approximation to the correct relativistic formula for small velocities. No wonder that it seems correct in our
experience.

Example 28.3 Showing that the Speed of Light towards an Observer is Constant (in a Vacuum):
The Speed of Light is the Speed of Light

Suppose a spaceship heading directly towards the Earth at half the speed of light sends a signal to us on a laser-produced
beam of light. Given that the light leaves the ship at speed c as observed from the ship, calculate the speed at which it

approaches the Earth.

Figure 28.16

Strategy

Because the light and the spaceship are moving at relativistic speeds, we cannot use simple velocity addition. Instead, we
can determine the speed at which the light approaches the Earth using relativistic velocity addition.
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Solution

1. Identify the knowns. v=0.500c ; u′ = c
2. Identify the unknown. u

3. Choose the appropriate equation. u = v+u′
1 + vu′

c2

4. Plug the knowns into the equation.

(28.33)u = v+u′
1 + vu′

c2

= 0.500c + c
1 + (0.500c)(c)

c2

= (0.500 + 1)c

1 + 0.500c2

c2

= 1.500c
1 + 0.500

= 1.500c
1.500

= c
Discussion

Relativistic velocity addition gives the correct result. Light leaves the ship at speed c and approaches the Earth at speed c
. The speed of light is independent of the relative motion of source and observer, whether the observer is on the ship or
Earth-bound.

Velocities cannot add to greater than the speed of light, provided that v is less than c and u′ does not exceed c . The

following example illustrates that relativistic velocity addition is not as symmetric as classical velocity addition.

Example 28.4 Comparing the Speed of Light towards and away from an Observer: Relativistic
Package Delivery

Suppose the spaceship in the previous example is approaching the Earth at half the speed of light and shoots a canister at a
speed of 0.750c . (a) At what velocity will an Earth-bound observer see the canister if it is shot directly towards the Earth?

(b) If it is shot directly away from the Earth? (See Figure 28.17.)

Figure 28.17

Strategy

Because the canister and the spaceship are moving at relativistic speeds, we must determine the speed of the canister by
an Earth-bound observer using relativistic velocity addition instead of simple velocity addition.

Solution for (a)

1. Identify the knowns. v=0.500c ; u′ = 0.750c
2. Identify the unknown. u
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3. Choose the appropriate equation. u= v+u′
1 + vu′

c2

4. Plug the knowns into the equation.

(28.34)u = v+u′
1 + vu′

c2

= 0.500c +0.750c
1 + (0.500c)(0.750c)

c2

= 1.250c
1 + 0.375

= 0.909c
Solution for (b)

1. Identify the knowns. v = 0.500c ; u′ = −0.750c
2. Identify the unknown. u

3. Choose the appropriate equation. u = v+u′
1 + vu′

c2

4. Plug the knowns into the equation.

(28.35)u = v+u′
1 + vu′

c2

= 0.500c +( − 0.750c)
1 + (0.500c)( − 0.750c)

c2

= −0.250c
1 − 0.375

= −0.400c
Discussion

The minus sign indicates velocity away from the Earth (in the opposite direction from v ), which means the canister is

heading towards the Earth in part (a) and away in part (b), as expected. But relativistic velocities do not add as simply as
they do classically. In part (a), the canister does approach the Earth faster, but not at the simple sum of 1.250c . The total

velocity is less than you would get classically. And in part (b), the canister moves away from the Earth at a velocity of
−0.400c , which is faster than the −0.250c you would expect classically. The velocities are not even symmetric. In part

(a) the canister moves 0.409c faster than the ship relative to the Earth, whereas in part (b) it moves 0.900c slower than

the ship.

Doppler Shift

Although the speed of light does not change with relative velocity, the frequencies and wavelengths of light do. First discussed for
sound waves, a Doppler shift occurs in any wave when there is relative motion between source and observer.

Relativistic Doppler Effects

The observed wavelength of electromagnetic radiation is longer (called a red shift) than that emitted by the source when the
source moves away from the observer and shorter (called a blue shift) when the source moves towards the observer.

(28.36)
=λobs =λs

1 + u
c

1 − u
c

.

In the Doppler equation, λobs is the observed wavelength, λs is the source wavelength, and u is the relative velocity of the

source to the observer. The velocity u is positive for motion away from an observer and negative for motion toward an observer.

In terms of source frequency and observed frequency, this equation can be written
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(28.37)
fobs =fs

1 − u
c

1 + u
c

.

Notice that the – and + signs are different than in the wavelength equation.

Career Connection: Astronomer

If you are interested in a career that requires a knowledge of special relativity, there’s probably no better connection than
astronomy. Astronomers must take into account relativistic effects when they calculate distances, times, and speeds of black
holes, galaxies, quasars, and all other astronomical objects. To have a career in astronomy, you need at least an
undergraduate degree in either physics or astronomy, but a Master’s or doctoral degree is often required. You also need a
good background in high-level mathematics.

Example 28.5 Calculating a Doppler Shift: Radio Waves from a Receding Galaxy

Suppose a galaxy is moving away from the Earth at a speed 0.825c . It emits radio waves with a wavelength of 0.525 m .

What wavelength would we detect on the Earth?

Strategy

Because the galaxy is moving at a relativistic speed, we must determine the Doppler shift of the radio waves using the
relativistic Doppler shift instead of the classical Doppler shift.

Solution

1. Identify the knowns. u=0.825c ; λs = 0.525 m

2. Identify the unknown. λobs

3. Choose the appropriate equation. λobs =λs
1 + u

c
1 − u

c

4. Plug the knowns into the equation.

(28.38)
λobs = λs

1 + u
c

1 − u
c

= (0.525 m) 1 + 0.825c
c

1 − 0.825c
c

= 1.70 m.
Discussion

Because the galaxy is moving away from the Earth, we expect the wavelengths of radiation it emits to be redshifted. The
wavelength we calculated is 1.70 m, which is redshifted from the original wavelength of 0.525 m.

The relativistic Doppler shift is easy to observe. This equation has everyday applications ranging from Doppler-shifted radar
velocity measurements of transportation to Doppler-radar storm monitoring. In astronomical observations, the relativistic Doppler
shift provides velocity information such as the motion and distance of stars.

Check Your Understanding

Suppose a space probe moves away from the Earth at a speed 0.350c . It sends a radio wave message back to the Earth

at a frequency of 1.50 GHz. At what frequency is the message received on the Earth?

Solution
(28.39)

fobs =fs
1 − u

c
1 + u

c
= (1.50 GHz) 1 − 0.350c

c
1 + 0.350c

c
= 1.04 GHz
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28.5 Relativistic Momentum

Figure 28.18 Momentum is an important concept for these football players from the University of California at Berkeley and the University of California
at Davis. Players with more mass often have a larger impact because their momentum is larger. For objects moving at relativistic speeds, the effect is
even greater. (credit: John Martinez Pavliga)

In classical physics, momentum is a simple product of mass and velocity. However, we saw in the last section that when special
relativity is taken into account, massive objects have a speed limit. What effect do you think mass and velocity have on the
momentum of objects moving at relativistic speeds?

Momentum is one of the most important concepts in physics. The broadest form of Newton’s second law is stated in terms of
momentum. Momentum is conserved whenever the net external force on a system is zero. This makes momentum conservation
a fundamental tool for analyzing collisions. All of Work, Energy, and Energy Resources is devoted to momentum, and
momentum has been important for many other topics as well, particularly where collisions were involved. We will see that
momentum has the same importance in modern physics. Relativistic momentum is conserved, and much of what we know about
subatomic structure comes from the analysis of collisions of accelerator-produced relativistic particles.

The first postulate of relativity states that the laws of physics are the same in all inertial frames. Does the law of conservation of
momentum survive this requirement at high velocities? The answer is yes, provided that the momentum is defined as follows.

Relativistic Momentum

Relativistic momentum p is classical momentum multiplied by the relativistic factor γ .

(28.40)p = γmu,

where m is the rest mass of the object, u is its velocity relative to an observer, and the relativistic factor

(28.41)γ = 1

1 − u2

c2

.

Note that we use u for velocity here to distinguish it from relative velocity v between observers. Only one observer is being

considered here. With p defined in this way, total momentum ptot is conserved whenever the net external force is zero, just as

in classical physics. Again we see that the relativistic quantity becomes virtually the same as the classical at low velocities. That
is, relativistic momentum γmu becomes the classical mu at low velocities, because γ is very nearly equal to 1 at low

velocities.

Relativistic momentum has the same intuitive feel as classical momentum. It is greatest for large masses moving at high
velocities, but, because of the factor γ , relativistic momentum approaches infinity as u approaches c . (See Figure 28.19.)

This is another indication that an object with mass cannot reach the speed of light. If it did, its momentum would become infinite,
an unreasonable value.
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Figure 28.19 Relativistic momentum approaches infinity as the velocity of an object approaches the speed of light.

Misconception Alert: Relativistic Mass and Momentum

The relativistically correct definition of momentum as p = γmu is sometimes taken to imply that mass varies with velocity:

mvar = γm , particularly in older textbooks. However, note that m is the mass of the object as measured by a person at

rest relative to the object. Thus, m is defined to be the rest mass, which could be measured at rest, perhaps using gravity.

When a mass is moving relative to an observer, the only way that its mass can be determined is through collisions or other
means in which momentum is involved. Since the mass of a moving object cannot be determined independently of
momentum, the only meaningful mass is rest mass. Thus, when we use the term mass, assume it to be identical to rest
mass.

Relativistic momentum is defined in such a way that the conservation of momentum will hold in all inertial frames. Whenever the
net external force on a system is zero, relativistic momentum is conserved, just as is the case for classical momentum. This has
been verified in numerous experiments.

In Relativistic Energy, the relationship of relativistic momentum to energy is explored. That subject will produce our first inkling
that objects without mass may also have momentum.

Check Your Understanding

What is the momentum of an electron traveling at a speed 0.985c ? The rest mass of the electron is 9.11×10−31 kg .

Solution
(28.42)

p = γmu = mu

1 − u2

c2

= (9.11×10−31 kg)(0.985)(3.00×108 m/s)

1 − (0.985c)2

c2

= 1.56×10−21 kg ⋅ m/s

28.6 Relativistic Energy

Figure 28.20 The National Spherical Torus Experiment (NSTX) has a fusion reactor in which hydrogen isotopes undergo fusion to produce helium. In
this process, a relatively small mass of fuel is converted into a large amount of energy. (credit: Princeton Plasma Physics Laboratory)

A tokamak is a form of experimental fusion reactor, which can change mass to energy. Accomplishing this requires an
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understanding of relativistic energy. Nuclear reactors are proof of the conservation of relativistic energy.

Conservation of energy is one of the most important laws in physics. Not only does energy have many important forms, but each
form can be converted to any other. We know that classically the total amount of energy in a system remains constant.
Relativistically, energy is still conserved, provided its definition is altered to include the possibility of mass changing to energy, as
in the reactions that occur within a nuclear reactor. Relativistic energy is intentionally defined so that it will be conserved in all
inertial frames, just as is the case for relativistic momentum. As a consequence, we learn that several fundamental quantities are
related in ways not known in classical physics. All of these relationships are verified by experiment and have fundamental
consequences. The altered definition of energy contains some of the most fundamental and spectacular new insights into nature
found in recent history.

Total Energy and Rest Energy

The first postulate of relativity states that the laws of physics are the same in all inertial frames. Einstein showed that the law of
conservation of energy is valid relativistically, if we define energy to include a relativistic factor.

Total Energy

Total energy E is defined to be

(28.43)E = γmc2,

where m is mass, c is the speed of light, γ = 1

1 − v2

c2

, and v is the velocity of the mass relative to an observer. There

are many aspects of the total energy E that we will discuss—among them are how kinetic and potential energies are

included in E , and how E is related to relativistic momentum. But first, note that at rest, total energy is not zero. Rather,

when v = 0 , we have γ = 1 , and an object has rest energy.

Rest Energy

Rest energy is

(28.44)E0 = mc2.

This is the correct form of Einstein’s most famous equation, which for the first time showed that energy is related to the mass of
an object at rest. For example, if energy is stored in the object, its rest mass increases. This also implies that mass can be
destroyed to release energy. The implications of these first two equations regarding relativistic energy are so broad that they
were not completely recognized for some years after Einstein published them in 1907, nor was the experimental proof that they
are correct widely recognized at first. Einstein, it should be noted, did understand and describe the meanings and implications of
his theory.

Example 28.6 Calculating Rest Energy: Rest Energy is Very Large

Calculate the rest energy of a 1.00-g mass.

Strategy

One gram is a small mass—less than half the mass of a penny. We can multiply this mass, in SI units, by the speed of light
squared to find the equivalent rest energy.

Solution

1. Identify the knowns. m = 1.00×10−3 kg ; c = 3.00×108 m/s

2. Identify the unknown. E0

3. Choose the appropriate equation. E0 = mc2

4. Plug the knowns into the equation.

(28.45)E0 = mc2 = (1.00×10−3 kg)(3.00×108 m/s)2

= 9.00×1013 kg ⋅ m2/s2

5. Convert units.

Noting that 1 kg ⋅ m2/s2 = 1 J , we see the rest mass energy is
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(28.46)E0 = 9.00×1013 J.

Discussion

This is an enormous amount of energy for a 1.00-g mass. We do not notice this energy, because it is generally not available.

Rest energy is large because the speed of light c is a large number and c2 is a very large number, so that mc2 is huge

for any macroscopic mass. The 9.00×1013 J rest mass energy for 1.00 g is about twice the energy released by the

Hiroshima atomic bomb and about 10,000 times the kinetic energy of a large aircraft carrier. If a way can be found to convert
rest mass energy into some other form (and all forms of energy can be converted into one another), then huge amounts of
energy can be obtained from the destruction of mass.

Today, the practical applications of the conversion of mass into another form of energy, such as in nuclear weapons and nuclear
power plants, are well known. But examples also existed when Einstein first proposed the correct form of relativistic energy, and
he did describe some of them. Nuclear radiation had been discovered in the previous decade, and it had been a mystery as to
where its energy originated. The explanation was that, in certain nuclear processes, a small amount of mass is destroyed and
energy is released and carried by nuclear radiation. But the amount of mass destroyed is so small that it is difficult to detect that
any is missing. Although Einstein proposed this as the source of energy in the radioactive salts then being studied, it was many
years before there was broad recognition that mass could be and, in fact, commonly is converted to energy. (See Figure 28.21.)

Figure 28.21 The Sun (a) and the Susquehanna Steam Electric Station (b) both convert mass into energy—the Sun via nuclear fusion, the electric
station via nuclear fission. (credits: (a) NASA/Goddard Space Flight Center, Scientific Visualization Studio; (b) U.S. government)

Because of the relationship of rest energy to mass, we now consider mass to be a form of energy rather than something
separate. There had not even been a hint of this prior to Einstein’s work. Such conversion is now known to be the source of the
Sun’s energy, the energy of nuclear decay, and even the source of energy keeping Earth’s interior hot.

Stored Energy and Potential Energy

What happens to energy stored in an object at rest, such as the energy put into a battery by charging it, or the energy stored in a
toy gun’s compressed spring? The energy input becomes part of the total energy of the object and, thus, increases its rest mass.
All stored and potential energy becomes mass in a system. Why is it we don’t ordinarily notice this? In fact, conservation of mass
(meaning total mass is constant) was one of the great laws verified by 19th-century science. Why was it not noticed to be
incorrect? The following example helps answer these questions.
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Example 28.7 Calculating Rest Mass: A Small Mass Increase due to Energy Input

A car battery is rated to be able to move 600 ampere-hours (A·h) of charge at 12.0 V. (a) Calculate the increase in rest

mass of such a battery when it is taken from being fully depleted to being fully charged. (b) What percent increase is this,
given the battery’s mass is 20.0 kg?

Strategy

In part (a), we first must find the energy stored in the battery, which equals what the battery can supply in the form of
electrical potential energy. Since PEelec = qV , we have to calculate the charge q in 600 A·h , which is the product of the

current I and the time t . We then multiply the result by 12.0 V. We can then calculate the battery’s increase in mass using

ΔE = PEelec = (Δm)c2 . Part (b) is a simple ratio converted to a percentage.

Solution for (a)

1. Identify the knowns. I ⋅ t = 600 A ⋅ h ; V = 12.0 V ; c = 3.00×108 m/s

2. Identify the unknown. Δm

3. Choose the appropriate equation. PEelec = (Δm)c2

4. Rearrange the equation to solve for the unknown. Δm = PEelec
c2

5. Plug the knowns into the equation.
(28.47)

Δm = PEelec
c2

= qV
c2

= (It)V
c2

= (600 A ⋅ h)(12.0 V)
(3.00×108)2 .

Write amperes A as coulombs per second (C/s), and convert hours to seconds.

(28.48)

Δm =
(600 C/s ⋅ h⎛⎝3600 s

1 h
⎞
⎠(12.0 J/C)

(3.00×108 m/s)2

= (2.16×106 C)(12.0 J/C)
(3.00×108 m/s)2

Using the conversion 1 kg ⋅ m2/s2 = 1 J , we can write the mass as

Δm = 2.88×10−10 kg.

Solution for (b)

1. Identify the knowns. Δm = 2.88×10−10 kg ; m = 20.0 kg

2. Identify the unknown. % change

3. Choose the appropriate equation. % increase = Δm
m ×100%

4. Plug the knowns into the equation.

(28.49)% increase = Δm
m ×100%

= 2.88×10−10 kg
20.0 kg ×100%

= 1.44×10−9 %.
Discussion

Both the actual increase in mass and the percent increase are very small, since energy is divided by c2 , a very large
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number. We would have to be able to measure the mass of the battery to a precision of a billionth of a percent, or 1 part in

1011 , to notice this increase. It is no wonder that the mass variation is not readily observed. In fact, this change in mass is

so small that we may question how you could verify it is real. The answer is found in nuclear processes in which the
percentage of mass destroyed is large enough to be measured. The mass of the fuel of a nuclear reactor, for example, is
measurably smaller when its energy has been used. In that case, stored energy has been released (converted mostly to
heat and electricity) and the rest mass has decreased. This is also the case when you use the energy stored in a battery,
except that the stored energy is much greater in nuclear processes, making the change in mass measurable in practice as
well as in theory.

Kinetic Energy and the Ultimate Speed Limit

Kinetic energy is energy of motion. Classically, kinetic energy has the familiar expression 1
2mv2 . The relativistic expression for

kinetic energy is obtained from the work-energy theorem. This theorem states that the net work on a system goes into kinetic
energy. If our system starts from rest, then the work-energy theorem is

(28.50)Wnet = KE.

Relativistically, at rest we have rest energy E0 = mc2 . The work increases this to the total energy E = γmc2 . Thus,

(28.51)Wnet = E − E0 = γmc2 − mc2 = ⎛
⎝γ − 1⎞⎠mc2.

Relativistically, we have Wnet = KErel .

Relativistic Kinetic Energy

Relativistic kinetic energy is

(28.52)KErel = ⎛
⎝γ − 1⎞⎠mc2.

When motionless, we have v = 0 and

(28.53)γ = 1

1 − v2

c2

= 1,

so that KErel = 0 at rest, as expected. But the expression for relativistic kinetic energy (such as total energy and rest energy)

does not look much like the classical 1
2mv2 . To show that the classical expression for kinetic energy is obtained at low

velocities, we note that the binomial expansion for γ at low velocities gives

(28.54)
γ = 1 + 1

2
v2

c2.

A binomial expansion is a way of expressing an algebraic quantity as a sum of an infinite series of terms. In some cases, as in
the limit of small velocity here, most terms are very small. Thus the expression derived for γ here is not exact, but it is a very

accurate approximation. Thus, at low velocities,

(28.55)
γ − 1 = 1

2
v2

c2.

Entering this into the expression for relativistic kinetic energy gives

(28.56)
KErel = ⎡⎣12 v2

c2
⎤
⎦mc2 = 1

2mv2 = KEclass.

So, in fact, relativistic kinetic energy does become the same as classical kinetic energy when v<<c .

It is even more interesting to investigate what happens to kinetic energy when the velocity of an object approaches the speed of
light. We know that γ becomes infinite as v approaches c , so that KErel also becomes infinite as the velocity approaches the

speed of light. (See Figure 28.22.) An infinite amount of work (and, hence, an infinite amount of energy input) is required to
accelerate a mass to the speed of light.
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The Speed of Light

No object with mass can attain the speed of light.

So the speed of light is the ultimate speed limit for any particle having mass. All of this is consistent with the fact that velocities
less than c always add to less than c . Both the relativistic form for kinetic energy and the ultimate speed limit being c have

been confirmed in detail in numerous experiments. No matter how much energy is put into accelerating a mass, its velocity can
only approach—not reach—the speed of light.

Figure 28.22 This graph of KErel versus velocity shows how kinetic energy approaches infinity as velocity approaches the speed of light. It is thus

not possible for an object having mass to reach the speed of light. Also shown is KEclass , the classical kinetic energy, which is similar to relativistic

kinetic energy at low velocities. Note that much more energy is required to reach high velocities than predicted classically.

Example 28.8 Comparing Kinetic Energy: Relativistic Energy Versus Classical Kinetic Energy

An electron has a velocity v = 0.990c . (a) Calculate the kinetic energy in MeV of the electron. (b) Compare this with the

classical value for kinetic energy at this velocity. (The mass of an electron is 9.11×10−31 kg .)

Strategy

The expression for relativistic kinetic energy is always correct, but for (a) it must be used since the velocity is highly
relativistic (close to c ). First, we will calculate the relativistic factor γ , and then use it to determine the relativistic kinetic

energy. For (b), we will calculate the classical kinetic energy (which would be close to the relativistic value if v were less

than a few percent of c ) and see that it is not the same.

Solution for (a)

1. Identify the knowns. v = 0.990c ; m = 9.11×10−31 kg

2. Identify the unknown. KErel

3. Choose the appropriate equation. KErel = ⎛
⎝γ − 1⎞⎠mc2

4. Plug the knowns into the equation.
First calculate γ . We will carry extra digits because this is an intermediate calculation.

(28.57)γ = 1

1 − v2

c2

= 1

1 − (0.990c)2

c2

= 1
1 − (0.990)2

= 7.0888
Next, we use this value to calculate the kinetic energy.
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(28.58)KErel = (γ − 1)mc2

= (7.0888 − 1)(9.11×10 – 31 kg)(3.00×108 m/s)2

= 4.99×10–13 J
5. Convert units.

(28.59)
KErel = (4.99×10–13 J)⎛⎝ 1 MeV

1.60×10 – 13 J
⎞
⎠

= 3.12 MeV
Solution for (b)

1. List the knowns. v = 0.990c ; m = 9.11×10−31 kg

2. List the unknown. KEclass

3. Choose the appropriate equation. KEclass = 1
2mv2

4. Plug the knowns into the equation.

(28.60)KEclass = 1
2mv2

= 1
2(9.00×10 – 31 kg)(0.990)2(3.00×108 m/s)2

= 4.02×10 – 14 J
5. Convert units.

(28.61)
KEclass = 4.02×10 – 14 J⎛⎝ 1 MeV

1.60×10 – 13 J
⎞
⎠

= 0.251 MeV
Discussion

As might be expected, since the velocity is 99.0% of the speed of light, the classical kinetic energy is significantly off from
the correct relativistic value. Note also that the classical value is much smaller than the relativistic value. In fact,
KErel /KEclass = 12.4 here. This is some indication of how difficult it is to get a mass moving close to the speed of light.

Much more energy is required than predicted classically. Some people interpret this extra energy as going into increasing
the mass of the system, but, as discussed in Relativistic Momentum, this cannot be verified unambiguously. What is
certain is that ever-increasing amounts of energy are needed to get the velocity of a mass a little closer to that of light. An
energy of 3 MeV is a very small amount for an electron, and it can be achieved with present-day particle accelerators.

SLAC, for example, can accelerate electrons to over 50×109 eV = 50,000 MeV .

Is there any point in getting v a little closer to c than 99.0% or 99.9%? The answer is yes. We learn a great deal by doing

this. The energy that goes into a high-velocity mass can be converted to any other form, including into entirely new masses.
(See Figure 28.23.) Most of what we know about the substructure of matter and the collection of exotic short-lived particles
in nature has been learned this way. Particles are accelerated to extremely relativistic energies and made to collide with
other particles, producing totally new species of particles. Patterns in the characteristics of these previously unknown
particles hint at a basic substructure for all matter. These particles and some of their characteristics will be covered in
Particle Physics.

Figure 28.23 The Fermi National Accelerator Laboratory, near Batavia, Illinois, was a subatomic particle collider that accelerated protons and
antiprotons to attain energies up to 1 Tev (a trillion electronvolts). The circular ponds near the rings were built to dissipate waste heat. This
accelerator was shut down in September 2011. (credit: Fermilab, Reidar Hahn)
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Relativistic Energy and Momentum

We know classically that kinetic energy and momentum are related to each other, since

(28.62)
KEclass = p2

2m = (mv)2

2m = 1
2mv2.

Relativistically, we can obtain a relationship between energy and momentum by algebraically manipulating their definitions. This
produces

(28.63)E2 = (pc)2 + (mc2)2,

where E is the relativistic total energy and p is the relativistic momentum. This relationship between relativistic energy and

relativistic momentum is more complicated than the classical, but we can gain some interesting new insights by examining it.
First, total energy is related to momentum and rest mass. At rest, momentum is zero, and the equation gives the total energy to

be the rest energy mc2 (so this equation is consistent with the discussion of rest energy above). However, as the mass is

accelerated, its momentum p increases, thus increasing the total energy. At sufficiently high velocities, the rest energy term

(mc2)2 becomes negligible compared with the momentum term (pc)2 ; thus, E = pc at extremely relativistic velocities.

If we consider momentum p to be distinct from mass, we can determine the implications of the equation

E2 = (pc)2 + (mc2)2, for a particle that has no mass. If we take m to be zero in this equation, then E = pc , or p = E / c .

Massless particles have this momentum. There are several massless particles found in nature, including photons (these are
quanta of electromagnetic radiation). Another implication is that a massless particle must travel at speed c and only at speed c
. While it is beyond the scope of this text to examine the relationship in the equation E2 = (pc)2 + (mc2)2, in detail, we can

see that the relationship has important implications in special relativity.

Problem-Solving Strategies for Relativity

1. Examine the situation to determine that it is necessary to use relativity. Relativistic effects are related to γ = 1

1 − v2

c2

,

the quantitative relativistic factor. If γ is very close to 1, then relativistic effects are small and differ very little from the

usually easier classical calculations.

2. Identify exactly what needs to be determined in the problem (identify the unknowns).

3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Look in particular for
information on relative velocity v .

4. Make certain you understand the conceptual aspects of the problem before making any calculations. Decide, for
example, which observer sees time dilated or length contracted before plugging into equations. If you have thought
about who sees what, who is moving with the event being observed, who sees proper time, and so on, you will find it
much easier to determine if your calculation is reasonable.

5. Determine the primary type of calculation to be done to find the unknowns identified above. You will find the section
summary helpful in determining whether a length contraction, relativistic kinetic energy, or some other concept is
involved.

6. Do not round off during the calculation. As noted in the text, you must often perform your calculations to many digits to
see the desired effect. You may round off at the very end of the problem, but do not use a rounded number in a
subsequent calculation.

7. Check the answer to see if it is reasonable: Does it make sense? This may be more difficult for relativity, since we do
not encounter it directly. But you can look for velocities greater than c or relativistic effects that are in the wrong

direction (such as a time contraction where a dilation was expected).

Check Your Understanding

A photon decays into an electron-positron pair. What is the kinetic energy of the electron if its speed is 0.992c ?

Solution
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classical velocity addition:

first postulate of special relativity:

inertial frame of reference:

length contraction:

Michelson-Morley experiment:

proper length:

proper time:

relativistic Doppler effects:

relativistic kinetic energy:

relativistic momentum:

(28.64)

KErel = (γ − 1)mc2 =

⎛

⎝
⎜
⎜
⎜ 1

1 − v2

c2

− 1

⎞

⎠
⎟
⎟
⎟
mc2

=

⎛

⎝
⎜
⎜
⎜

1

1 − (0.992c)2

c2

− 1

⎞

⎠
⎟
⎟
⎟
(9.11×10−31 kg)(3.00×108 m/s)2 = 5.67×10−13 J

Glossary

the method of adding velocities when v<<c ; velocities add like regular numbers in one-

dimensional motion: u = v+u′ , where v is the velocity between two observers, u is the velocity of an object relative

to one observer, and u′ is the velocity relative to the other observer

the idea that the laws of physics are the same and can be stated in their simplest form in
all inertial frames of reference

a reference frame in which a body at rest remains at rest and a body in motion moves at a
constant speed in a straight line unless acted on by an outside force

L , the shortening of the measured length of an object moving relative to the observer’s frame:

L=L0 1 − v2

c2 = L0
γ

an investigation performed in 1887 that proved that the speed of light in a vacuum is the
same in all frames of reference from which it is viewed

L0 ; the distance between two points measured by an observer who is at rest relative to both of the points;

Earth-bound observers measure proper length when measuring the distance between two points that are stationary
relative to the Earth

Δt0 . the time measured by an observer at rest relative to the event being observed: Δt = Δt0

1 − v2

c2

= γΔt0 ,

where γ = 1

1 − v2

c2

a change in wavelength of radiation that is moving relative to the observer; the wavelength of the
radiation is longer (called a red shift) than that emitted by the source when the source moves away from the observer
and shorter (called a blue shift) when the source moves toward the observer; the shifted wavelength is described by the
equation

λobs =λs
1 + u

c
1 − u

c
where λobs is the observed wavelength, λs is the source wavelength, and u is the velocity of the source to the

observer

the kinetic energy of an object moving at relativistic speeds: KErel = ⎛
⎝γ − 1⎞⎠mc2 , where

γ = 1

1 − v2

c2

p , the momentum of an object moving at relativistic velocity; p = γmu , where m is the rest mass

of the object, u is its velocity relative to an observer, and the relativistic factor γ = 1

1 − u2

c2
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relativistic velocity addition:

relativity:

rest energy:

rest mass:

second postulate of special relativity:

special relativity:

time dilation:

total energy:

twin paradox:

the method of adding velocities of an object moving at a relativistic speed: u= v+u′
1 + vu′

c2
, where

v is the relative velocity between two observers, u is the velocity of an object relative to one observer, and u′ is the

velocity relative to the other observer

the study of how different observers measure the same event

the energy stored in an object at rest: E0 = mc2

the mass of an object as measured by a person at rest relative to the object

the idea that the speed of light c is a constant, independent of the source

the theory that, in an inertial frame of reference, the motion of an object is relative to the frame from which
it is viewed or measured

the phenomenon of time passing slower to an observer who is moving relative to another observer

defined as E = γmc2 , where γ = 1

1 − v2

c2

this asks why a twin traveling at a relativistic speed away and then back towards the Earth ages less than the
Earth-bound twin. The premise to the paradox is faulty because the traveling twin is accelerating, and special relativity
does not apply to accelerating frames of reference

Section Summary

28.1 Einstein’s Postulates
• Relativity is the study of how different observers measure the same event.
• Modern relativity is divided into two parts. Special relativity deals with observers who are in uniform (unaccelerated) motion,

whereas general relativity includes accelerated relative motion and gravity. Modern relativity is correct in all circumstances
and, in the limit of low velocity and weak gravitation, gives the same predictions as classical relativity.

• An inertial frame of reference is a reference frame in which a body at rest remains at rest and a body in motion moves at a
constant speed in a straight line unless acted on by an outside force.

• Modern relativity is based on Einstein’s two postulates. The first postulate of special relativity is the idea that the laws of
physics are the same and can be stated in their simplest form in all inertial frames of reference. The second postulate of
special relativity is the idea that the speed of light c is a constant, independent of the relative motion of the source.

• The Michelson-Morley experiment demonstrated that the speed of light in a vacuum is independent of the motion of the
Earth about the Sun.

28.2 Simultaneity And Time Dilation
• Two events are defined to be simultaneous if an observer measures them as occurring at the same time. They are not

necessarily simultaneous to all observers—simultaneity is not absolute.
• Time dilation is the phenomenon of time passing slower for an observer who is moving relative to another observer.
• Observers moving at a relative velocity v do not measure the same elapsed time for an event. Proper time Δt0 is the

time measured by an observer at rest relative to the event being observed. Proper time is related to the time Δt measured

by an Earth-bound observer by the equation

Δt = Δt0

1 − v2

c2

= γΔt0,

where

γ = 1

1 − v2

c2

.

• The equation relating proper time and time measured by an Earth-bound observer implies that relative velocity cannot
exceed the speed of light.

• The twin paradox asks why a twin traveling at a relativistic speed away and then back towards the Earth ages less than the
Earth-bound twin. The premise to the paradox is faulty because the traveling twin is accelerating. Special relativity does not
apply to accelerating frames of reference.
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• Time dilation is usually negligible at low relative velocities, but it does occur, and it has been verified by experiment.

28.3 Length Contraction
• All observers agree upon relative speed.
• Distance depends on an observer’s motion. Proper length L0 is the distance between two points measured by an

observer who is at rest relative to both of the points. Earth-bound observers measure proper length when measuring the
distance between two points that are stationary relative to the Earth.

• Length contraction L is the shortening of the measured length of an object moving relative to the observer’s frame:

L=L0 1 − v2

c2 = L0
γ .

28.4 Relativistic Addition of Velocities
• With classical velocity addition, velocities add like regular numbers in one-dimensional motion: u=v+u′ , where v is the

velocity between two observers, u is the velocity of an object relative to one observer, and u′ is the velocity relative to the

other observer.
• Velocities cannot add to be greater than the speed of light. Relativistic velocity addition describes the velocities of an object

moving at a relativistic speed:

u= v+u′
1 + vu′

c2
• An observer of electromagnetic radiation sees relativistic Doppler effects if the source of the radiation is moving relative

to the observer. The wavelength of the radiation is longer (called a red shift) than that emitted by the source when the
source moves away from the observer and shorter (called a blue shift) when the source moves toward the observer. The
shifted wavelength is described by the equation

λobs =λs
1 + u

c
1 − u

c
λobs is the observed wavelength, λs is the source wavelength, and u is the relative velocity of the source to the

observer.

28.5 Relativistic Momentum
• The law of conservation of momentum is valid whenever the net external force is zero and for relativistic momentum.

Relativistic momentum p is classical momentum multiplied by the relativistic factor γ .

• p = γmu , where m is the rest mass of the object, u is its velocity relative to an observer, and the relativistic factor

γ = 1

1 − u2

c2

.

• At low velocities, relativistic momentum is equivalent to classical momentum.
• Relativistic momentum approaches infinity as u approaches c . This implies that an object with mass cannot reach the

speed of light.
• Relativistic momentum is conserved, just as classical momentum is conserved.

28.6 Relativistic Energy
• Relativistic energy is conserved as long as we define it to include the possibility of mass changing to energy.

• Total Energy is defined as: E = γmc2 , where γ = 1

1 − v2

c2

.

• Rest energy is E0 = mc2 , meaning that mass is a form of energy. If energy is stored in an object, its mass increases.

Mass can be destroyed to release energy.
• We do not ordinarily notice the increase or decrease in mass of an object because the change in mass is so small for a

large increase in energy.

• The relativistic work-energy theorem is Wnet = E − E0 = γmc2 − mc2 = ⎛
⎝γ − 1⎞⎠mc2 .

• Relativistically, Wnet = KErel , where KErel is the relativistic kinetic energy.
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• Relativistic kinetic energy is KErel = ⎛
⎝γ − 1⎞⎠mc2 , where γ = 1

1 − v2

c2

. At low velocities, relativistic kinetic energy

reduces to classical kinetic energy.
• No object with mass can attain the speed of light because an infinite amount of work and an infinite amount of energy

input is required to accelerate a mass to the speed of light.

• The equation E2 = (pc)2 + (mc2)2 relates the relativistic total energy E and the relativistic momentum p . At extremely

high velocities, the rest energy mc2 becomes negligible, and E = pc .

Conceptual Questions

28.1 Einstein’s Postulates

1. Which of Einstein’s postulates of special relativity includes a concept that does not fit with the ideas of classical physics?
Explain.

2. Is Earth an inertial frame of reference? Is the Sun? Justify your response.

3. When you are flying in a commercial jet, it may appear to you that the airplane is stationary and the Earth is moving beneath
you. Is this point of view valid? Discuss briefly.

28.2 Simultaneity And Time Dilation

4. Does motion affect the rate of a clock as measured by an observer moving with it? Does motion affect how an observer
moving relative to a clock measures its rate?

5. To whom does the elapsed time for a process seem to be longer, an observer moving relative to the process or an observer
moving with the process? Which observer measures proper time?

6. How could you travel far into the future without aging significantly? Could this method also allow you to travel into the past?

28.3 Length Contraction

7. To whom does an object seem greater in length, an observer moving with the object or an observer moving relative to the
object? Which observer measures the object’s proper length?

8. Relativistic effects such as time dilation and length contraction are present for cars and airplanes. Why do these effects seem
strange to us?

9. Suppose an astronaut is moving relative to the Earth at a significant fraction of the speed of light. (a) Does he observe the rate
of his clocks to have slowed? (b) What change in the rate of Earth-bound clocks does he see? (c) Does his ship seem to him to
shorten? (d) What about the distance between stars that lie on lines parallel to his motion? (e) Do he and an Earth-bound
observer agree on his velocity relative to the Earth?

28.4 Relativistic Addition of Velocities

10. Explain the meaning of the terms “red shift” and “blue shift” as they relate to the relativistic Doppler effect.

11. What happens to the relativistic Doppler effect when relative velocity is zero? Is this the expected result?

12. Is the relativistic Doppler effect consistent with the classical Doppler effect in the respect that λobs is larger for motion

away?

13. All galaxies farther away than about 50×106 ly exhibit a red shift in their emitted light that is proportional to distance, with

those farther and farther away having progressively greater red shifts. What does this imply, assuming that the only source of red
shift is relative motion? (Hint: At these large distances, it is space itself that is expanding, but the effect on light is the same.)

28.5 Relativistic Momentum

14. How does modern relativity modify the law of conservation of momentum?

15. Is it possible for an external force to be acting on a system and relativistic momentum to be conserved? Explain.

28.6 Relativistic Energy

16. How are the classical laws of conservation of energy and conservation of mass modified by modern relativity?

17. What happens to the mass of water in a pot when it cools, assuming no molecules escape or are added? Is this observable
in practice? Explain.

18. Consider a thought experiment. You place an expanded balloon of air on weighing scales outside in the early morning. The
balloon stays on the scales and you are able to measure changes in its mass. Does the mass of the balloon change as the day
progresses? Discuss the difficulties in carrying out this experiment.
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19. The mass of the fuel in a nuclear reactor decreases by an observable amount as it puts out energy. Is the same true for the
coal and oxygen combined in a conventional power plant? If so, is this observable in practice for the coal and oxygen? Explain.

20. We know that the velocity of an object with mass has an upper limit of c . Is there an upper limit on its momentum? Its

energy? Explain.

21. Given the fact that light travels at c , can it have mass? Explain.

22. If you use an Earth-based telescope to project a laser beam onto the Moon, you can move the spot across the Moon’s
surface at a velocity greater than the speed of light. Does this violate modern relativity? (Note that light is being sent from the
Earth to the Moon, not across the surface of the Moon.)
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Problems & Exercises

28.2 Simultaneity And Time Dilation

1. (a) What is γ if v = 0.250c ? (b) If v = 0.500c ?

2. (a) What is γ if v = 0.100c ? (b) If v = 0.900c ?

3. Particles called π -mesons are produced by accelerator

beams. If these particles travel at 2.70×108 m/s and live

2.60×10−8 s when at rest relative to an observer, how long

do they live as viewed in the laboratory?

4. Suppose a particle called a kaon is created by cosmic
radiation striking the atmosphere. It moves by you at 0.980c
, and it lives 1.24×10−8 s when at rest relative to an

observer. How long does it live as you observe it?

5. A neutral π -meson is a particle that can be created by

accelerator beams. If one such particle lives 1.40×10−16 s
as measured in the laboratory, and 0.840×10−16 s when at

rest relative to an observer, what is its velocity relative to the
laboratory?

6. A neutron lives 900 s when at rest relative to an observer.
How fast is the neutron moving relative to an observer who
measures its life span to be 2065 s?

7. If relativistic effects are to be less than 1%, then γ must be

less than 1.01. At what relative velocity is γ = 1.01 ?

8. If relativistic effects are to be less than 3%, then γ must be

less than 1.03. At what relative velocity is γ = 1.03 ?

9. (a) At what relative velocity is γ = 1.50 ? (b) At what

relative velocity is γ = 100 ?

10. (a) At what relative velocity is γ = 2.00 ? (b) At what

relative velocity is γ = 10.0 ?

11. Unreasonable Results

(a) Find the value of γ for the following situation. An Earth-

bound observer measures 23.9 h to have passed while
signals from a high-velocity space probe indicate that 24.0 h
have passed on board. (b) What is unreasonable about this
result? (c) Which assumptions are unreasonable or
inconsistent?

28.3 Length Contraction

12. A spaceship, 200 m long as seen on board, moves by the
Earth at 0.970c . What is its length as measured by an

Earth-bound observer?

13. How fast would a 6.0 m-long sports car have to be going
past you in order for it to appear only 5.5 m long?

14. (a) How far does the muon in Example 28.1 travel
according to the Earth-bound observer? (b) How far does it
travel as viewed by an observer moving with it? Base your
calculation on its velocity relative to the Earth and the time it
lives (proper time). (c) Verify that these two distances are
related through length contraction γ=3.20 .

15. (a) How long would the muon in Example 28.1 have lived
as observed on the Earth if its velocity was 0.0500c ? (b)

How far would it have traveled as observed on the Earth? (c)
What distance is this in the muon’s frame?

16. (a) How long does it take the astronaut in Example 28.2
to travel 4.30 ly at 0.99944c (as measured by the Earth-

bound observer)? (b) How long does it take according to the
astronaut? (c) Verify that these two times are related through
time dilation with γ=30.00 as given.

17. (a) How fast would an athlete need to be running for a
100-m race to look 100 yd long? (b) Is the answer consistent
with the fact that relativistic effects are difficult to observe in
ordinary circumstances? Explain.

18. Unreasonable Results

(a) Find the value of γ for the following situation. An

astronaut measures the length of her spaceship to be 25.0 m,
while an Earth-bound observer measures it to be 100 m. (b)
What is unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

19. Unreasonable Results

A spaceship is heading directly toward the Earth at a velocity
of 0.800c . The astronaut on board claims that he can send

a canister toward the Earth at 1.20c relative to the Earth. (a)

Calculate the velocity the canister must have relative to the
spaceship. (b) What is unreasonable about this result? (c)
Which assumptions are unreasonable or inconsistent?

28.4 Relativistic Addition of Velocities

20. Suppose a spaceship heading straight towards the Earth
at 0.750c can shoot a canister at 0.500c relative to the

ship. (a) What is the velocity of the canister relative to the
Earth, if it is shot directly at the Earth? (b) If it is shot directly
away from the Earth?

21. Repeat the previous problem with the ship heading
directly away from the Earth.

22. If a spaceship is approaching the Earth at 0.100c and a

message capsule is sent toward it at 0.100c relative to the

Earth, what is the speed of the capsule relative to the ship?

23. (a) Suppose the speed of light were only 3000 m/s . A jet

fighter moving toward a target on the ground at 800 m/s
shoots bullets, each having a muzzle velocity of 1000 m/s .

What are the bullets’ velocity relative to the target? (b) If the
speed of light was this small, would you observe relativistic
effects in everyday life? Discuss.

24. If a galaxy moving away from the Earth has a speed of
1000 km/s and emits 656 nm light characteristic of

hydrogen (the most common element in the universe). (a)
What wavelength would we observe on the Earth? (b) What
type of electromagnetic radiation is this? (c) Why is the speed
of the Earth in its orbit negligible here?

25. A space probe speeding towards the nearest star moves
at 0.250c and sends radio information at a broadcast

frequency of 1.00 GHz. What frequency is received on the
Earth?
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26. If two spaceships are heading directly towards each other
at 0.800c , at what speed must a canister be shot from the

first ship to approach the other at 0.999c as seen by the

second ship?

27. Two planets are on a collision course, heading directly
towards each other at 0.250c . A spaceship sent from one

planet approaches the second at 0.750c as seen by the

second planet. What is the velocity of the ship relative to the
first planet?

28. When a missile is shot from one spaceship towards
another, it leaves the first at 0.950c and approaches the

other at 0.750c . What is the relative velocity of the two

ships?

29. What is the relative velocity of two spaceships if one fires
a missile at the other at 0.750c and the other observes it to

approach at 0.950c ?

30. Near the center of our galaxy, hydrogen gas is moving
directly away from us in its orbit about a black hole. We
receive 1900 nm electromagnetic radiation and know that it
was 1875 nm when emitted by the hydrogen gas. What is the
speed of the gas?

31. A highway patrol officer uses a device that measures the
speed of vehicles by bouncing radar off them and measuring
the Doppler shift. The outgoing radar has a frequency of 100
GHz and the returning echo has a frequency 15.0 kHz higher.
What is the velocity of the vehicle? Note that there are two
Doppler shifts in echoes. Be certain not to round off until the
end of the problem, because the effect is small.

32. Prove that for any relative velocity v between two

observers, a beam of light sent from one to the other will
approach at speed c (provided that v is less than c , of

course).

33. Show that for any relative velocity v between two

observers, a beam of light projected by one directly away
from the other will move away at the speed of light (provided
that v is less than c , of course).

34. (a) All but the closest galaxies are receding from our own

Milky Way Galaxy. If a galaxy 12.0×109 ly ly away is

receding from us at 0. 0.900c , at what velocity relative to us

must we send an exploratory probe to approach the other
galaxy at 0.990c , as measured from that galaxy? (b) How

long will it take the probe to reach the other galaxy as
measured from the Earth? You may assume that the velocity
of the other galaxy remains constant. (c) How long will it then
take for a radio signal to be beamed back? (All of this is
possible in principle, but not practical.)

28.5 Relativistic Momentum

35. Find the momentum of a helium nucleus having a mass of

6.68×10–27 kg that is moving at 0.200c .

36. What is the momentum of an electron traveling at
0.980c ?

37. (a) Find the momentum of a 1.00×109 kg asteroid

heading towards the Earth at 30.0 km/s . (b) Find the ratio of

this momentum to the classical momentum. (Hint: Use the

approximation that γ = 1 + (1 / 2)v2 / c2 at low velocities.)

38. (a) What is the momentum of a 2000 kg satellite orbiting
at 4.00 km/s? (b) Find the ratio of this momentum to the
classical momentum. (Hint: Use the approximation that

γ = 1 + (1 / 2)v2 / c2 at low velocities.)

39. What is the velocity of an electron that has a momentum

of 3.04×10–21 kg⋅m/s ? Note that you must calculate the

velocity to at least four digits to see the difference from c .

40. Find the velocity of a proton that has a momentum of

4.48×–10-19 kg⋅m/s.

41. (a) Calculate the speed of a 1.00-μg particle of dust that

has the same momentum as a proton moving at 0.999c . (b)

What does the small speed tell us about the mass of a proton
compared to even a tiny amount of macroscopic matter?

42. (a) Calculate γ for a proton that has a momentum of

1.00 kg⋅m/s. (b) What is its speed? Such protons form a

rare component of cosmic radiation with uncertain origins.

28.6 Relativistic Energy

43. What is the rest energy of an electron, given its mass is

9.11×10−31 kg ? Give your answer in joules and MeV.

44. Find the rest energy in joules and MeV of a proton, given

its mass is 1.67×10−27 kg .

45. If the rest energies of a proton and a neutron (the two
constituents of nuclei) are 938.3 and 939.6 MeV respectively,
what is the difference in their masses in kilograms?

46. The Big Bang that began the universe is estimated to

have released 1068 J of energy. How many stars could half

this energy create, assuming the average star’s mass is

4.00×1030 kg ?

47. A supernova explosion of a 2.00×1031 kg star

produces 1.00×1044 J of energy. (a) How many kilograms

of mass are converted to energy in the explosion? (b) What is
the ratio Δm / m of mass destroyed to the original mass of

the star?

48. (a) Using data from Table 7.1, calculate the mass
converted to energy by the fission of 1.00 kg of uranium. (b)
What is the ratio of mass destroyed to the original mass,
Δm / m ?

49. (a) Using data from Table 7.1, calculate the amount of
mass converted to energy by the fusion of 1.00 kg of
hydrogen. (b) What is the ratio of mass destroyed to the
original mass, Δm / m ? (c) How does this compare with

Δm / m for the fission of 1.00 kg of uranium?
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50. There is approximately 1034 J of energy available from

fusion of hydrogen in the world’s oceans. (a) If 1033 J of this

energy were utilized, what would be the decrease in mass of
the oceans? Assume that 0.08% of the mass of a water
molecule is converted to energy during the fusion of
hydrogen. (b) How great a volume of water does this
correspond to? (c) Comment on whether this is a significant
fraction of the total mass of the oceans.

51. A muon has a rest mass energy of 105.7 MeV, and it
decays into an electron and a massless particle. (a) If all the
lost mass is converted into the electron’s kinetic energy, find
γ for the electron. (b) What is the electron’s velocity?

52. A π -meson is a particle that decays into a muon and a

massless particle. The π -meson has a rest mass energy of

139.6 MeV, and the muon has a rest mass energy of 105.7
MeV. Suppose the π -meson is at rest and all of the missing

mass goes into the muon’s kinetic energy. How fast will the
muon move?

53. (a) Calculate the relativistic kinetic energy of a 1000-kg
car moving at 30.0 m/s if the speed of light were only 45.0 m/
s. (b) Find the ratio of the relativistic kinetic energy to
classical.

54. Alpha decay is nuclear decay in which a helium nucleus is
emitted. If the helium nucleus has a mass of

6.80×10−27 kg and is given 5.00 MeV of kinetic energy,

what is its velocity?

55. (a) Beta decay is nuclear decay in which an electron is
emitted. If the electron is given 0.750 MeV of kinetic energy,
what is its velocity? (b) Comment on how the high velocity is
consistent with the kinetic energy as it compares to the rest
mass energy of the electron.

56. A positron is an antimatter version of the electron, having
exactly the same mass. When a positron and an electron
meet, they annihilate, converting all of their mass into energy.
(a) Find the energy released, assuming negligible kinetic
energy before the annihilation. (b) If this energy is given to a
proton in the form of kinetic energy, what is its velocity? (c) If
this energy is given to another electron in the form of kinetic
energy, what is its velocity?

57. What is the kinetic energy in MeV of a π -meson that lives

1.40×10−16 s as measured in the laboratory, and

0.840×10−16 s when at rest relative to an observer, given

that its rest energy is 135 MeV?

58. Find the kinetic energy in MeV of a neutron with a
measured life span of 2065 s, given its rest energy is 939.6
MeV, and rest life span is 900s.

59. (a) Show that (pc)2 / (mc2)2 = γ2 − 1 . This means that

at large velocities pc>>mc2 . (b) Is E ≈ pc when

γ = 30.0 , as for the astronaut discussed in the twin

paradox?

60. One cosmic ray neutron has a velocity of 0.250c relative

to the Earth. (a) What is the neutron’s total energy in MeV?
(b) Find its momentum. (c) Is E ≈ pc in this situation?

Discuss in terms of the equation given in part (a) of the
previous problem.

61. What is γ for a proton having a mass energy of 938.3

MeV accelerated through an effective potential of 1.0 TV
(teravolt) at Fermilab outside Chicago?

62. (a) What is the effective accelerating potential for
electrons at the Stanford Linear Accelerator, if

γ = 1.00×105 for them? (b) What is their total energy

(nearly the same as kinetic in this case) in GeV?

63. (a) Using data from Table 7.1, find the mass destroyed
when the energy in a barrel of crude oil is released. (b) Given
these barrels contain 200 liters and assuming the density of

crude oil is 750 kg/m3 , what is the ratio of mass destroyed

to original mass, Δm / m ?

64. (a) Calculate the energy released by the destruction of
1.00 kg of mass. (b) How many kilograms could be lifted to a
10.0 km height by this amount of energy?

65. A Van de Graaff accelerator utilizes a 50.0 MV potential
difference to accelerate charged particles such as protons. (a)
What is the velocity of a proton accelerated by such a
potential? (b) An electron?

66. Suppose you use an average of 500 kW·h of electric

energy per month in your home. (a) How long would 1.00 g of
mass converted to electric energy with an efficiency of 38.0%
last you? (b) How many homes could be supplied at the
500 kW·h per month rate for one year by the energy from

the described mass conversion?

67. (a) A nuclear power plant converts energy from nuclear
fission into electricity with an efficiency of 35.0%. How much
mass is destroyed in one year to produce a continuous 1000
MW of electric power? (b) Do you think it would be possible to

observe this mass loss if the total mass of the fuel is 104 kg
?

68. Nuclear-powered rockets were researched for some years
before safety concerns became paramount. (a) What fraction
of a rocket’s mass would have to be destroyed to get it into a
low Earth orbit, neglecting the decrease in gravity? (Assume
an orbital altitude of 250 km, and calculate both the kinetic
energy (classical) and the gravitational potential energy

needed.) (b) If the ship has a mass of 1.00×105 kg (100

tons), what total yield nuclear explosion in tons of TNT is
needed?

69. The Sun produces energy at a rate of 4.00×1026 W by

the fusion of hydrogen. (a) How many kilograms of hydrogen
undergo fusion each second? (b) If the Sun is 90.0%
hydrogen and half of this can undergo fusion before the Sun
changes character, how long could it produce energy at its
current rate? (c) How many kilograms of mass is the Sun
losing per second? (d) What fraction of its mass will it have
lost in the time found in part (b)?

70. Unreasonable Results

A proton has a mass of 1.67×10−27 kg . A physicist

measures the proton’s total energy to be 50.0 MeV. (a) What
is the proton’s kinetic energy? (b) What is unreasonable
about this result? (c) Which assumptions are unreasonable or
inconsistent?
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71. Construct Your Own Problem

Consider a highly relativistic particle. Discuss what is meant
by the term “highly relativistic.” (Note that, in part, it means
that the particle cannot be massless.) Construct a problem in
which you calculate the wavelength of such a particle and
show that it is very nearly the same as the wavelength of a
massless particle, such as a photon, with the same energy.
Among the things to be considered are the rest energy of the
particle (it should be a known particle) and its total energy,
which should be large compared to its rest energy.

72. Construct Your Own Problem

Consider an astronaut traveling to another star at a relativistic
velocity. Construct a problem in which you calculate the time
for the trip as observed on the Earth and as observed by the
astronaut. Also calculate the amount of mass that must be
converted to energy to get the astronaut and ship to the
velocity travelled. Among the things to be considered are the
distance to the star, the velocity, and the mass of the
astronaut and ship. Unless your instructor directs you
otherwise, do not include any energy given to other masses,
such as rocket propellants.
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29 INTRODUCTION TO QUANTUM PHYSICS

Figure 29.1 A black fly imaged by an electron microscope is as monstrous as any science-fiction creature. (credit: U.S. Department of Agriculture via
Wikimedia Commons)

Chapter Outline
29.1. Quantization of Energy

• Explain Max Planck’s contribution to the development of quantum mechanics.
• Explain why atomic spectra indicate quantization.

29.2. The Photoelectric Effect
• Describe a typical photoelectric-effect experiment.
• Determine the maximum kinetic energy of photoelectrons ejected by photons of one energy or wavelength, when

given the maximum kinetic energy of photoelectrons for a different photon energy or wavelength.
29.3. Photon Energies and the Electromagnetic Spectrum

• Explain the relationship between the energy of a photon in joules or electron volts and its wavelength or frequency.
• Calculate the number of photons per second emitted by a monochromatic source of specific wavelength and power.

29.4. Photon Momentum
• Relate the linear momentum of a photon to its energy or wavelength, and apply linear momentum conservation to

simple processes involving the emission, absorption, or reflection of photons.
• Account qualitatively for the increase of photon wavelength that is observed, and explain the significance of the

Compton wavelength.
29.5. The Particle-Wave Duality

• Explain what the term particle-wave duality means, and why it is applied to EM radiation.
29.6. The Wave Nature of Matter

• Describe the Davisson-Germer experiment, and explain how it provides evidence for the wave nature of electrons.
29.7. Probability: The Heisenberg Uncertainty Principle

• Use both versions of Heisenberg’s uncertainty principle in calculations.
• Explain the implications of Heisenberg’s uncertainty principle for measurements.
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29.8. The Particle-Wave Duality Reviewed
• Explain the concept of particle-wave duality, and its scope.

Introduction to Quantum Physics

Quantum mechanics is the branch of physics needed to deal with submicroscopic objects. Because these objects are smaller
than we can observe directly with our senses and generally must be observed with the aid of instruments, parts of quantum
mechanics seem as foreign and bizarre as parts of relativity. But, like relativity, quantum mechanics has been shown to be
valid—truth is often stranger than fiction.

Certain aspects of quantum mechanics are familiar to us. We accept as fact that matter is composed of atoms, the smallest unit
of an element, and that these atoms combine to form molecules, the smallest unit of a compound. (See Figure 29.2.) While we
cannot see the individual water molecules in a stream, for example, we are aware that this is because molecules are so small
and so numerous in that stream. When introducing atoms, we commonly say that electrons orbit atoms in discrete shells around
a tiny nucleus, itself composed of smaller particles called protons and neutrons. We are also aware that electric charge comes in
tiny units carried almost entirely by electrons and protons. As with water molecules in a stream, we do not notice individual
charges in the current through a lightbulb, because the charges are so small and so numerous in the macroscopic situations we
sense directly.

Figure 29.2 Atoms and their substructure are familiar examples of objects that require quantum mechanics to be fully explained. Certain of their
characteristics, such as the discrete electron shells, are classical physics explanations. In quantum mechanics we conceptualize discrete “electron
clouds” around the nucleus.

Making Connections: Realms of Physics

Classical physics is a good approximation of modern physics under conditions first discussed in the The Nature of Science
and Physics. Quantum mechanics is valid in general, and it must be used rather than classical physics to describe small
objects, such as atoms.

Atoms, molecules, and fundamental electron and proton charges are all examples of physical entities that are quantized—that
is, they appear only in certain discrete values and do not have every conceivable value. Quantized is the opposite of continuous.
We cannot have a fraction of an atom, or part of an electron’s charge, or 14-1/3 cents, for example. Rather, everything is built of
integral multiples of these substructures. Quantum physics is the branch of physics that deals with small objects and the
quantization of various entities, including energy and angular momentum. Just as with classical physics, quantum physics has
several subfields, such as mechanics and the study of electromagnetic forces. The correspondence principle states that in the
classical limit (large, slow-moving objects), quantum mechanics becomes the same as classical physics. In this chapter, we
begin the development of quantum mechanics and its description of the strange submicroscopic world. In later chapters, we will
examine many areas, such as atomic and nuclear physics, in which quantum mechanics is crucial.

29.1 Quantization of Energy

Planck’s Contribution

Energy is quantized in some systems, meaning that the system can have only certain energies and not a continuum of energies,
unlike the classical case. This would be like having only certain speeds at which a car can travel because its kinetic energy can
have only certain values. We also find that some forms of energy transfer take place with discrete lumps of energy. While most of
us are familiar with the quantization of matter into lumps called atoms, molecules, and the like, we are less aware that energy,
too, can be quantized. Some of the earliest clues about the necessity of quantum mechanics over classical physics came from
the quantization of energy.
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Figure 29.3 Graphs of blackbody radiation (from an ideal radiator) at three different radiator temperatures. The intensity or rate of radiation emission
increases dramatically with temperature, and the peak of the spectrum shifts toward the visible and ultraviolet parts of the spectrum. The shape of the
spectrum cannot be described with classical physics.

Where is the quantization of energy observed? Let us begin by considering the emission and absorption of electromagnetic (EM)
radiation. The EM spectrum radiated by a hot solid is linked directly to the solid’s temperature. (See Figure 29.3.) An ideal
radiator is one that has an emissivity of 1 at all wavelengths and, thus, is jet black. Ideal radiators are therefore called
blackbodies, and their EM radiation is called blackbody radiation. It was discussed that the total intensity of the radiation

varies as T 4 , the fourth power of the absolute temperature of the body, and that the peak of the spectrum shifts to shorter

wavelengths at higher temperatures. All of this seems quite continuous, but it was the curve of the spectrum of intensity versus
wavelength that gave a clue that the energies of the atoms in the solid are quantized. In fact, providing a theoretical explanation
for the experimentally measured shape of the spectrum was a mystery at the turn of the century. When this “ultraviolet
catastrophe” was eventually solved, the answers led to new technologies such as computers and the sophisticated imaging
techniques described in earlier chapters. Once again, physics as an enabling science changed the way we live.

The German physicist Max Planck (1858–1947) used the idea that atoms and molecules in a body act like oscillators to absorb
and emit radiation. The energies of the oscillating atoms and molecules had to be quantized to correctly describe the shape of
the blackbody spectrum. Planck deduced that the energy of an oscillator having a frequency f is given by

(29.1)E = ⎛⎝n + 1
2
⎞
⎠hf .

Here n is any nonnegative integer (0, 1, 2, 3, …). The symbol h stands for Planck’s constant, given by

(29.2)h = 6.626×10–34 J ⋅ s.

The equation E = ⎛⎝n + 1
2
⎞
⎠hf means that an oscillator having a frequency f (emitting and absorbing EM radiation of frequency

f ) can have its energy increase or decrease only in discrete steps of size

(29.3)ΔE = hf .

It might be helpful to mention some macroscopic analogies of this quantization of energy phenomena. This is like a pendulum
that has a characteristic oscillation frequency but can swing with only certain amplitudes. Quantization of energy also resembles
a standing wave on a string that allows only particular harmonics described by integers. It is also similar to going up and down a
hill using discrete stair steps rather than being able to move up and down a continuous slope. Your potential energy takes on
discrete values as you move from step to step.

Using the quantization of oscillators, Planck was able to correctly describe the experimentally known shape of the blackbody
spectrum. This was the first indication that energy is sometimes quantized on a small scale and earned him the Nobel Prize in
Physics in 1918. Although Planck’s theory comes from observations of a macroscopic object, its analysis is based on atoms and
molecules. It was such a revolutionary departure from classical physics that Planck himself was reluctant to accept his own idea
that energy states are not continuous. The general acceptance of Planck’s energy quantization was greatly enhanced by
Einstein’s explanation of the photoelectric effect (discussed in the next section), which took energy quantization a step further.
Planck was fully involved in the development of both early quantum mechanics and relativity. He quickly embraced Einstein’s
special relativity, published in 1905, and in 1906 Planck was the first to suggest the correct formula for relativistic momentum,
p = γmu .
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Figure 29.4 The German physicist Max Planck had a major influence on the early development of quantum mechanics, being the first to recognize that
energy is sometimes quantized. Planck also made important contributions to special relativity and classical physics. (credit: Library of Congress, Prints
and Photographs Division via Wikimedia Commons)

Note that Planck’s constant h is a very small number. So for an infrared frequency of 1014 Hz being emitted by a blackbody,

for example, the difference between energy levels is only ΔE = hf =(6.63×10–34 J·s)(1014 Hz)= 6.63×10–20 J, or about

0.4 eV. This 0.4 eV of energy is significant compared with typical atomic energies, which are on the order of an electron volt, or
thermal energies, which are typically fractions of an electron volt. But on a macroscopic or classical scale, energies are typically
on the order of joules. Even if macroscopic energies are quantized, the quantum steps are too small to be noticed. This is an
example of the correspondence principle. For a large object, quantum mechanics produces results indistinguishable from those
of classical physics.

Atomic Spectra

Now let us turn our attention to the emission and absorption of EM radiation by gases. The Sun is the most common example of
a body containing gases emitting an EM spectrum that includes visible light. We also see examples in neon signs and candle
flames. Studies of emissions of hot gases began more than two centuries ago, and it was soon recognized that these emission
spectra contained huge amounts of information. The type of gas and its temperature, for example, could be determined. We now
know that these EM emissions come from electrons transitioning between energy levels in individual atoms and molecules; thus,
they are called atomic spectra. Atomic spectra remain an important analytical tool today. Figure 29.5 shows an example of an
emission spectrum obtained by passing an electric discharge through a material. One of the most important characteristics of
these spectra is that they are discrete. By this we mean that only certain wavelengths, and hence frequencies, are emitted. This
is called a line spectrum. If frequency and energy are associated as ΔE = hf , the energies of the electrons in the emitting

atoms and molecules are quantized. This is discussed in more detail later in this chapter.

Figure 29.5 Emission spectrum of oxygen. When an electrical discharge is passed through a substance, its atoms and molecules absorb energy, which
is reemitted as EM radiation. The discrete nature of these emissions implies that the energy states of the atoms and molecules are quantized. Such
atomic spectra were used as analytical tools for many decades before it was understood why they are quantized. (credit: Teravolt, Wikimedia
Commons)

It was a major puzzle that atomic spectra are quantized. Some of the best minds of 19th-century science failed to explain why
this might be. Not until the second decade of the 20th century did an answer based on quantum mechanics begin to emerge.
Again a macroscopic or classical body of gas was involved in the studies, but the effect, as we shall see, is due to individual
atoms and molecules.

PhET Explorations: Models of the Hydrogen Atom

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the
atom. Check how the prediction of the model matches the experimental results.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42554/
1.10/#Phet_module_30.1)

Figure 29.6

29.2 The Photoelectric Effect

When light strikes materials, it can eject electrons from them. This is called the photoelectric effect, meaning that light (photo)
produces electricity. One common use of the photoelectric effect is in light meters, such as those that adjust the automatic iris on
various types of cameras. In a similar way, another use is in solar cells, as you probably have in your calculator or have seen on
a roof top or a roadside sign. These make use of the photoelectric effect to convert light into electricity for running different
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devices.

Figure 29.7 The photoelectric effect can be observed by allowing light to fall on the metal plate in this evacuated tube. Electrons ejected by the light
are collected on the collector wire and measured as a current. A retarding voltage between the collector wire and plate can then be adjusted so as to
determine the energy of the ejected electrons. For example, if it is sufficiently negative, no electrons will reach the wire. (credit: P.P. Urone)

This effect has been known for more than a century and can be studied using a device such as that shown in Figure 29.7. This
figure shows an evacuated tube with a metal plate and a collector wire that are connected by a variable voltage source, with the
collector more negative than the plate. When light (or other EM radiation) strikes the plate in the evacuated tube, it may eject
electrons. If the electrons have energy in electron volts (eV) greater than the potential difference between the plate and the wire
in volts, some electrons will be collected on the wire. Since the electron energy in eV is qV , where q is the electron charge and

V is the potential difference, the electron energy can be measured by adjusting the retarding voltage between the wire and the

plate. The voltage that stops the electrons from reaching the wire equals the energy in eV. For example, if –3.00 V barely stops

the electrons, their energy is 3.00 eV. The number of electrons ejected can be determined by measuring the current between the
wire and plate. The more light, the more electrons; a little circuitry allows this device to be used as a light meter.

What is really important about the photoelectric effect is what Albert Einstein deduced from it. Einstein realized that there were
several characteristics of the photoelectric effect that could be explained only if EM radiation is itself quantized: the apparently
continuous stream of energy in an EM wave is actually composed of energy quanta called photons. In his explanation of the
photoelectric effect, Einstein defined a quantized unit or quantum of EM energy, which we now call a photon, with an energy
proportional to the frequency of EM radiation. In equation form, the photon energy is

(29.4)E = hf ,

where E is the energy of a photon of frequency f and h is Planck’s constant. This revolutionary idea looks similar to Planck’s

quantization of energy states in blackbody oscillators, but it is quite different. It is the quantization of EM radiation itself. EM
waves are composed of photons and are not continuous smooth waves as described in previous chapters on optics. Their
energy is absorbed and emitted in lumps, not continuously. This is exactly consistent with Planck’s quantization of energy levels
in blackbody oscillators, since these oscillators increase and decrease their energy in steps of hf by absorbing and emitting

photons having E = hf . We do not observe this with our eyes, because there are so many photons in common light sources

that individual photons go unnoticed. (See Figure 29.8.) The next section of the text (Photon Energies and the
Electromagnetic Spectrum) is devoted to a discussion of photons and some of their characteristics and implications. For now,
we will use the photon concept to explain the photoelectric effect, much as Einstein did.

Figure 29.8 An EM wave of frequency f is composed of photons, or individual quanta of EM radiation. The energy of each photon is E = hf ,

where h is Planck’s constant and f is the frequency of the EM radiation. Higher intensity means more photons per unit area. The flashlight emits

large numbers of photons of many different frequencies, hence others have energy E′ = hf ′ , and so on.

The photoelectric effect has the properties discussed below. All these properties are consistent with the idea that individual
photons of EM radiation are absorbed by individual electrons in a material, with the electron gaining the photon’s energy. Some
of these properties are inconsistent with the idea that EM radiation is a simple wave. For simplicity, let us consider what happens
with monochromatic EM radiation in which all photons have the same energy hf .

1. If we vary the frequency of the EM radiation falling on a material, we find the following: For a given material, there is a
threshold frequency f0 for the EM radiation below which no electrons are ejected, regardless of intensity. Individual

photons interact with individual electrons. Thus if the photon energy is too small to break an electron away, no electrons will
be ejected. If EM radiation was a simple wave, sufficient energy could be obtained by increasing the intensity.

2. Once EM radiation falls on a material, electrons are ejected without delay. As soon as an individual photon of a sufficiently
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high frequency is absorbed by an individual electron, the electron is ejected. If the EM radiation were a simple wave,
several minutes would be required for sufficient energy to be deposited to the metal surface to eject an electron.

3. The number of electrons ejected per unit time is proportional to the intensity of the EM radiation and to no other
characteristic. High-intensity EM radiation consists of large numbers of photons per unit area, with all photons having the
same characteristic energy hf .

4. If we vary the intensity of the EM radiation and measure the energy of ejected electrons, we find the following: The
maximum kinetic energy of ejected electrons is independent of the intensity of the EM radiation. Since there are so many
electrons in a material, it is extremely unlikely that two photons will interact with the same electron at the same time,
thereby increasing the energy given it. Instead (as noted in 3 above), increased intensity results in more electrons of the
same energy being ejected. If EM radiation were a simple wave, a higher intensity could give more energy, and higher-
energy electrons would be ejected.

5. The kinetic energy of an ejected electron equals the photon energy minus the binding energy of the electron in the specific
material. An individual photon can give all of its energy to an electron. The photon’s energy is partly used to break the
electron away from the material. The remainder goes into the ejected electron’s kinetic energy. In equation form, this is
given by

(29.5)KEe = hf − BE,
where KEe is the maximum kinetic energy of the ejected electron, hf is the photon’s energy, and BE is the binding

energy of the electron to the particular material. (BE is sometimes called the work function of the material.) This equation,
due to Einstein in 1905, explains the properties of the photoelectric effect quantitatively. An individual photon of EM
radiation (it does not come any other way) interacts with an individual electron, supplying enough energy, BE, to break it
away, with the remainder going to kinetic energy. The binding energy is BE = hf0 , where f0 is the threshold frequency

for the particular material. Figure 29.9 shows a graph of maximum KEe versus the frequency of incident EM radiation

falling on a particular material.

Figure 29.9 Photoelectric effect. A graph of the kinetic energy of an ejected electron, KEe , versus the frequency of EM radiation impinging on a

certain material. There is a threshold frequency below which no electrons are ejected, because the individual photon interacting with an individual

electron has insufficient energy to break it away. Above the threshold energy, KEe increases linearly with f , consistent with KEe = hf − BE .

The slope of this line is h —the data can be used to determine Planck’s constant experimentally. Einstein gave the first successful explanation of such

data by proposing the idea of photons—quanta of EM radiation.

Einstein’s idea that EM radiation is quantized was crucial to the beginnings of quantum mechanics. It is a far more general
concept than its explanation of the photoelectric effect might imply. All EM radiation can also be modeled in the form of photons,
and the characteristics of EM radiation are entirely consistent with this fact. (As we will see in the next section, many aspects of
EM radiation, such as the hazards of ultraviolet (UV) radiation, can be explained only by photon properties.) More famous for
modern relativity, Einstein planted an important seed for quantum mechanics in 1905, the same year he published his first paper
on special relativity. His explanation of the photoelectric effect was the basis for the Nobel Prize awarded to him in 1921.
Although his other contributions to theoretical physics were also noted in that award, special and general relativity were not fully
recognized in spite of having been partially verified by experiment by 1921. Although hero-worshipped, this great man never
received Nobel recognition for his most famous work—relativity.

Example 29.1 Calculating Photon Energy and the Photoelectric Effect: A Violet Light

(a) What is the energy in joules and electron volts of a photon of 420-nm violet light? (b) What is the maximum kinetic
energy of electrons ejected from calcium by 420-nm violet light, given that the binding energy (or work function) of electrons
for calcium metal is 2.71 eV?
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Strategy

To solve part (a), note that the energy of a photon is given by E = hf . For part (b), once the energy of the photon is

calculated, it is a straightforward application of KEe = hf –BE to find the ejected electron’s maximum kinetic energy, since

BE is given.

Solution for (a)

Photon energy is given by

(29.6)E = hf

Since we are given the wavelength rather than the frequency, we solve the familiar relationship c = fλ for the frequency,

yielding

(29.7)f = c
λ.

Combining these two equations gives the useful relationship

(29.8)E = hc
λ .

Now substituting known values yields

(29.9)

E =
⎛
⎝6.63×10–34 J ⋅ s⎞⎠

⎛
⎝3.00×108 m/s⎞⎠

420×10–9 m
= 4.74×10–19 J.

Converting to eV, the energy of the photon is

(29.10)E = ⎛⎝4.74×10–19 J⎞⎠ 1 eV
1.6×10–19 J

= 2.96 eV.

Solution for (b)

Finding the kinetic energy of the ejected electron is now a simple application of the equation KEe = hf –BE . Substituting

the photon energy and binding energy yields

(29.11)KEe = hf – BE = 2.96 eV – 2.71 eV = 0.246 eV.

Discussion

The energy of this 420-nm photon of violet light is a tiny fraction of a joule, and so it is no wonder that a single photon would
be difficult for us to sense directly—humans are more attuned to energies on the order of joules. But looking at the energy in
electron volts, we can see that this photon has enough energy to affect atoms and molecules. A DNA molecule can be
broken with about 1 eV of energy, for example, and typical atomic and molecular energies are on the order of eV, so that the
UV photon in this example could have biological effects. The ejected electron (called a photoelectron) has a rather low
energy, and it would not travel far, except in a vacuum. The electron would be stopped by a retarding potential of but 0.26
eV. In fact, if the photon wavelength were longer and its energy less than 2.71 eV, then the formula would give a negative
kinetic energy, an impossibility. This simply means that the 420-nm photons with their 2.96-eV energy are not much above
the frequency threshold. You can show for yourself that the threshold wavelength is 459 nm (blue light). This means that if
calcium metal is used in a light meter, the meter will be insensitive to wavelengths longer than those of blue light. Such a
light meter would be completely insensitive to red light, for example.

PhET Explorations: Photoelectric Effect

See how light knocks electrons off a metal target, and recreate the experiment that spawned the field of quantum
mechanics.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42558/
1.9/#Phet_module_30.2)

Figure 29.10

29.3 Photon Energies and the Electromagnetic Spectrum

Ionizing Radiation

A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ of

the radiation by
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(29.12)E = hf = hc
λ (energy of a photon),

where E is the energy of a single photon and c is the speed of light. When working with small systems, energy in eV is often

useful. Note that Planck’s constant in these units is

(29.13)h = 4.14×10–15 eV ⋅ s.
Since many wavelengths are stated in nanometers (nm), it is also useful to know that

(29.14)hc = 1240 eV ⋅ nm.
These will make many calculations a little easier.

All EM radiation is composed of photons. Figure 29.11 shows various divisions of the EM spectrum plotted against wavelength,
frequency, and photon energy. Previously in this book, photon characteristics were alluded to in the discussion of some of the
characteristics of UV, x rays, and γ rays, the first of which start with frequencies just above violet in the visible spectrum. It was

noted that these types of EM radiation have characteristics much different than visible light. We can now see that such properties
arise because photon energy is larger at high frequencies.

Figure 29.11 The EM spectrum, showing major categories as a function of photon energy in eV, as well as wavelength and frequency. Certain
characteristics of EM radiation are directly attributable to photon energy alone.

Table 29.1 Representative Energies for Submicroscopic Effects
(Order of Magnitude Only)

Rotational energies of molecules 10−5 eV

Vibrational energies of molecules 0.1 eV

Energy between outer electron shells in atoms 1 eV

Binding energy of a weakly bound molecule 1 eV

Energy of red light 2 eV

Binding energy of a tightly bound molecule 10 eV

Energy to ionize atom or molecule 10 to 1000 eV

Photons act as individual quanta and interact with individual electrons, atoms, molecules, and so on. The energy a photon
carries is, thus, crucial to the effects it has. Table 29.1 lists representative submicroscopic energies in eV. When we compare
photon energies from the EM spectrum in Figure 29.11 with energies in the table, we can see how effects vary with the type of
EM radiation.

Gamma rays, a form of nuclear and cosmic EM radiation, can have the highest frequencies and, hence, the highest photon

energies in the EM spectrum. For example, a γ -ray photon with f = 1021 Hz has an energy

E = hf = 6.63×10–13 J = 4.14 MeV. This is sufficient energy to ionize thousands of atoms and molecules, since only 10 to

1000 eV are needed per ionization. In fact, γ rays are one type of ionizing radiation, as are x rays and UV, because they

produce ionization in materials that absorb them. Because so much ionization can be produced, a single γ -ray photon can
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cause significant damage to biological tissue, killing cells or damaging their ability to properly reproduce. When cell reproduction
is disrupted, the result can be cancer, one of the known effects of exposure to ionizing radiation. Since cancer cells are rapidly
reproducing, they are exceptionally sensitive to the disruption produced by ionizing radiation. This means that ionizing radiation
has positive uses in cancer treatment as well as risks in producing cancer.

Figure 29.12 One of the first x-ray images, taken by Röentgen himself. The hand belongs to Bertha Röentgen, his wife. (credit: Wilhelm Conrad
Röntgen, via Wikimedia Commons)

High photon energy also enables γ rays to penetrate materials, since a collision with a single atom or molecule is unlikely to

absorb all the γ ray’s energy. This can make γ rays useful as a probe, and they are sometimes used in medical imaging. x

rays, as you can see in Figure 29.11, overlap with the low-frequency end of the γ ray range. Since x rays have energies of keV

and up, individual x-ray photons also can produce large amounts of ionization. At lower photon energies, x rays are not as
penetrating as γ rays and are slightly less hazardous. X rays are ideal for medical imaging, their most common use, and a fact

that was recognized immediately upon their discovery in 1895 by the German physicist W. C. Roentgen (1845–1923). (See
Figure 29.12.) Within one year of their discovery, x rays (for a time called Roentgen rays) were used for medical diagnostics.
Roentgen received the 1901 Nobel Prize for the discovery of x rays.

Connections: Conservation of Energy

Once again, we find that conservation of energy allows us to consider the initial and final forms that energy takes, without
having to make detailed calculations of the intermediate steps. Example 29.2 is solved by considering only the initial and
final forms of energy.
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Figure 29.13 X rays are produced when energetic electrons strike the copper anode of this cathode ray tube (CRT). Electrons (shown here as
separate particles) interact individually with the material they strike, sometimes producing photons of EM radiation.

While γ rays originate in nuclear decay, x rays are produced by the process shown in Figure 29.13. Electrons ejected by

thermal agitation from a hot filament in a vacuum tube are accelerated through a high voltage, gaining kinetic energy from the
electrical potential energy. When they strike the anode, the electrons convert their kinetic energy to a variety of forms, including
thermal energy. But since an accelerated charge radiates EM waves, and since the electrons act individually, photons are also
produced. Some of these x-ray photons obtain the kinetic energy of the electron. The accelerated electrons originate at the
cathode, so such a tube is called a cathode ray tube (CRT), and various versions of them are found in older TV and computer
screens as well as in x-ray machines.

Example 29.2 X-ray Photon Energy and X-ray Tube Voltage

Find the maximum energy in eV of an x-ray photon produced by electrons accelerated through a potential difference of 50.0
kV in a CRT like the one in Figure 29.13.

Strategy

Electrons can give all of their kinetic energy to a single photon when they strike the anode of a CRT. (This is something like
the photoelectric effect in reverse.) The kinetic energy of the electron comes from electrical potential energy. Thus we can
simply equate the maximum photon energy to the electrical potential energy—that is, hf = qV. (We do not have to

calculate each step from beginning to end if we know that all of the starting energy qV is converted to the final form hf. )

Solution

The maximum photon energy is hf = qV , where q is the charge of the electron and V is the accelerating voltage. Thus,

(29.15)hf = (1.60×10–19 C)(50.0×103 V).

From the definition of the electron volt, we know 1 eV = 1.60×10–19 J , where 1 J = 1 C ⋅ V. Gathering factors and

converting energy to eV yields

(29.16)
hf = (50.0×103)(1.60×10–19 C ⋅ V)⎛⎝ 1 eV

1.60×10–19 C ⋅ V
⎞
⎠ = (50.0×103)(1 eV) = 50.0 keV.

Discussion

This example produces a result that can be applied to many similar situations. If you accelerate a single elementary charge,
like that of an electron, through a potential given in volts, then its energy in eV has the same numerical value. Thus a
50.0-kV potential generates 50.0 keV electrons, which in turn can produce photons with a maximum energy of 50 keV.
Similarly, a 100-kV potential in an x-ray tube can generate up to 100-keV x-ray photons. Many x-ray tubes have adjustable
voltages so that various energy x rays with differing energies, and therefore differing abilities to penetrate, can be generated.
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Figure 29.14 X-ray spectrum obtained when energetic electrons strike a material. The smooth part of the spectrum is bremsstrahlung, while the peaks
are characteristic of the anode material. Both are atomic processes that produce energetic photons known as x-ray photons.

Figure 29.14 shows the spectrum of x rays obtained from an x-ray tube. There are two distinct features to the spectrum. First,
the smooth distribution results from electrons being decelerated in the anode material. A curve like this is obtained by detecting
many photons, and it is apparent that the maximum energy is unlikely. This decelerating process produces radiation that is called
bremsstrahlung (German for braking radiation). The second feature is the existence of sharp peaks in the spectrum; these are
called characteristic x rays, since they are characteristic of the anode material. Characteristic x rays come from atomic
excitations unique to a given type of anode material. They are akin to lines in atomic spectra, implying the energy levels of atoms
are quantized. Phenomena such as discrete atomic spectra and characteristic x rays are explored further in Atomic Physics.

Ultraviolet radiation (approximately 4 eV to 300 eV) overlaps with the low end of the energy range of x rays, but UV is typically
lower in energy. UV comes from the de-excitation of atoms that may be part of a hot solid or gas. These atoms can be given
energy that they later release as UV by numerous processes, including electric discharge, nuclear explosion, thermal agitation,
and exposure to x rays. A UV photon has sufficient energy to ionize atoms and molecules, which makes its effects different from
those of visible light. UV thus has some of the same biological effects as γ rays and x rays. For example, it can cause skin

cancer and is used as a sterilizer. The major difference is that several UV photons are required to disrupt cell reproduction or kill
a bacterium, whereas single γ -ray and X-ray photons can do the same damage. But since UV does have the energy to alter

molecules, it can do what visible light cannot. One of the beneficial aspects of UV is that it triggers the production of vitamin D in
the skin, whereas visible light has insufficient energy per photon to alter the molecules that trigger this production. Infantile
jaundice is treated by exposing the baby to UV (with eye protection), called phototherapy, the beneficial effects of which are
thought to be related to its ability to help prevent the buildup of potentially toxic bilirubin in the blood.

Example 29.3 Photon Energy and Effects for UV

Short-wavelength UV is sometimes called vacuum UV, because it is strongly absorbed by air and must be studied in a
vacuum. Calculate the photon energy in eV for 100-nm vacuum UV, and estimate the number of molecules it could ionize or
break apart.

Strategy

Using the equation E = hf and appropriate constants, we can find the photon energy and compare it with energy

information in Table 29.1.

Solution

The energy of a photon is given by

(29.17)E = hf = hc
λ .

Using hc = 1240 eV ⋅ nm, we find that

(29.18)E = hc
λ = 1240 eV ⋅ nm

100 nm = 12.4 eV.

Discussion

According to Table 29.1, this photon energy might be able to ionize an atom or molecule, and it is about what is needed to
break up a tightly bound molecule, since they are bound by approximately 10 eV. This photon energy could destroy about a
dozen weakly bound molecules. Because of its high photon energy, UV disrupts atoms and molecules it interacts with. One
good consequence is that all but the longest-wavelength UV is strongly absorbed and is easily blocked by sunglasses. In
fact, most of the Sun’s UV is absorbed by a thin layer of ozone in the upper atmosphere, protecting sensitive organisms on
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Earth. Damage to our ozone layer by the addition of such chemicals as CFC’s has reduced this protection for us.

Visible Light

The range of photon energies for visible light from red to violet is 1.63 to 3.26 eV, respectively (left for this chapter’s Problems
and Exercises to verify). These energies are on the order of those between outer electron shells in atoms and molecules. This
means that these photons can be absorbed by atoms and molecules. A single photon can actually stimulate the retina, for
example, by altering a receptor molecule that then triggers a nerve impulse. Photons can be absorbed or emitted only by atoms
and molecules that have precisely the correct quantized energy step to do so. For example, if a red photon of frequency f
encounters a molecule that has an energy step, ΔE, equal to hf , then the photon can be absorbed. Violet flowers absorb

red and reflect violet; this implies there is no energy step between levels in the receptor molecule equal to the violet photon’s
energy, but there is an energy step for the red.

There are some noticeable differences in the characteristics of light between the two ends of the visible spectrum that are due to
photon energies. Red light has insufficient photon energy to expose most black-and-white film, and it is thus used to illuminate
darkrooms where such film is developed. Since violet light has a higher photon energy, dyes that absorb violet tend to fade more
quickly than those that do not. (See Figure 29.15.) Take a look at some faded color posters in a storefront some time, and you
will notice that the blues and violets are the last to fade. This is because other dyes, such as red and green dyes, absorb blue
and violet photons, the higher energies of which break up their weakly bound molecules. (Complex molecules such as those in
dyes and DNA tend to be weakly bound.) Blue and violet dyes reflect those colors and, therefore, do not absorb these more
energetic photons, thus suffering less molecular damage.

Figure 29.15 Why do the reds, yellows, and greens fade before the blues and violets when exposed to the Sun, as with this poster? The answer is
related to photon energy. (credit: Deb Collins, Flickr)

Transparent materials, such as some glasses, do not absorb any visible light, because there is no energy step in the atoms or
molecules that could absorb the light. Since individual photons interact with individual atoms, it is nearly impossible to have two
photons absorbed simultaneously to reach a large energy step. Because of its lower photon energy, visible light can sometimes
pass through many kilometers of a substance, while higher frequencies like UV, x ray, and γ rays are absorbed, because they

have sufficient photon energy to ionize the material.

Example 29.4 How Many Photons per Second Does a Typical Light Bulb Produce?

Assuming that 10.0% of a 100-W light bulb’s energy output is in the visible range (typical for incandescent bulbs) with an
average wavelength of 580 nm, calculate the number of visible photons emitted per second.

Strategy

Power is energy per unit time, and so if we can find the energy per photon, we can determine the number of photons per
second. This will best be done in joules, since power is given in watts, which are joules per second.
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Solution

The power in visible light production is 10.0% of 100 W, or 10.0 J/s. The energy of the average visible photon is found by
substituting the given average wavelength into the formula

(29.19)E = hc
λ .

This produces

(29.20)
E = (6.63×10–34 J ⋅ s)(3.00×108 m/s)

580×10–9 m
= 3.43×10–19 J.

The number of visible photons per second is thus

(29.21)photon/s = 10.0 J/s
3.43×10–19 J/photon

= 2.92×1019 photon/s.

Discussion

This incredible number of photons per second is verification that individual photons are insignificant in ordinary human
experience. It is also a verification of the correspondence principle—on the macroscopic scale, quantization becomes
essentially continuous or classical. Finally, there are so many photons emitted by a 100-W lightbulb that it can be seen by
the unaided eye many kilometers away.

Lower-Energy Photons

Infrared radiation (IR) has even lower photon energies than visible light and cannot significantly alter atoms and molecules. IR
can be absorbed and emitted by atoms and molecules, particularly between closely spaced states. IR is extremely strongly

absorbed by water, for example, because water molecules have many states separated by energies on the order of 10–5 eV to

10–2 eV, well within the IR and microwave energy ranges. This is why in the IR range, skin is almost jet black, with an

emissivity near 1—there are many states in water molecules in the skin that can absorb a large range of IR photon energies. Not
all molecules have this property. Air, for example, is nearly transparent to many IR frequencies.

Microwaves are the highest frequencies that can be produced by electronic circuits, although they are also produced naturally.
Thus microwaves are similar to IR but do not extend to as high frequencies. There are states in water and other molecules that

have the same frequency and energy as microwaves, typically about 10–5 eV. This is one reason why food absorbs

microwaves more strongly than many other materials, making microwave ovens an efficient way of putting energy directly into
food.

Photon energies for both IR and microwaves are so low that huge numbers of photons are involved in any significant energy
transfer by IR or microwaves (such as warming yourself with a heat lamp or cooking pizza in the microwave). Visible light, IR,
microwaves, and all lower frequencies cannot produce ionization with single photons and do not ordinarily have the hazards of
higher frequencies. When visible, IR, or microwave radiation is hazardous, such as the inducement of cataracts by microwaves,
the hazard is due to huge numbers of photons acting together (not to an accumulation of photons, such as sterilization by weak
UV). The negative effects of visible, IR, or microwave radiation can be thermal effects, which could be produced by any heat
source. But one difference is that at very high intensity, strong electric and magnetic fields can be produced by photons acting
together. Such electromagnetic fields (EMF) can actually ionize materials.

Misconception Alert: High-Voltage Power Lines

Although some people think that living near high-voltage power lines is hazardous to one’s health, ongoing studies of the
transient field effects produced by these lines show their strengths to be insufficient to cause damage. Demographic studies
also fail to show significant correlation of ill effects with high-voltage power lines. The American Physical Society issued a
report over 10 years ago on power-line fields, which concluded that the scientific literature and reviews of panels show no
consistent, significant link between cancer and power-line fields. They also felt that the “diversion of resources to eliminate a
threat which has no persuasive scientific basis is disturbing.”

It is virtually impossible to detect individual photons having frequencies below microwave frequencies, because of their low
photon energy. But the photons are there. A continuous EM wave can be modeled as photons. At low frequencies, EM waves are
generally treated as time- and position-varying electric and magnetic fields with no discernible quantization. This is another
example of the correspondence principle in situations involving huge numbers of photons.

PhET Explorations: Color Vision

Make a whole rainbow by mixing red, green, and blue light. Change the wavelength of a monochromatic beam or filter white
light. View the light as a solid beam, or see the individual photons.
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(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42563/
1.11/#Phet_module_30.3)

Figure 29.16

29.4 Photon Momentum

Measuring Photon Momentum

The quantum of EM radiation we call a photon has properties analogous to those of particles we can see, such as grains of
sand. A photon interacts as a unit in collisions or when absorbed, rather than as an extensive wave. Massive quanta, like
electrons, also act like macroscopic particles—something we expect, because they are the smallest units of matter. Particles
carry momentum as well as energy. Despite photons having no mass, there has long been evidence that EM radiation carries
momentum. (Maxwell and others who studied EM waves predicted that they would carry momentum.) It is now a well-established
fact that photons do have momentum. In fact, photon momentum is suggested by the photoelectric effect, where photons knock
electrons out of a substance. Figure 29.17 shows macroscopic evidence of photon momentum.

Figure 29.17 The tails of the Hale-Bopp comet point away from the Sun, evidence that light has momentum. Dust emanating from the body of the
comet forms this tail. Particles of dust are pushed away from the Sun by light reflecting from them. The blue ionized gas tail is also produced by
photons interacting with atoms in the comet material. (credit: Geoff Chester, U.S. Navy, via Wikimedia Commons)

Figure 29.17 shows a comet with two prominent tails. What most people do not know about the tails is that they always point
away from the Sun rather than trailing behind the comet (like the tail of Bo Peep’s sheep). Comet tails are composed of gases
and dust evaporated from the body of the comet and ionized gas. The dust particles recoil away from the Sun when photons
scatter from them. Evidently, photons carry momentum in the direction of their motion (away from the Sun), and some of this
momentum is transferred to dust particles in collisions. Gas atoms and molecules in the blue tail are most affected by other
particles of radiation, such as protons and electrons emanating from the Sun, rather than by the momentum of photons.

Connections: Conservation of Momentum

Not only is momentum conserved in all realms of physics, but all types of particles are found to have momentum. We expect
particles with mass to have momentum, but now we see that massless particles including photons also carry momentum.

Momentum is conserved in quantum mechanics just as it is in relativity and classical physics. Some of the earliest direct
experimental evidence of this came from scattering of x-ray photons by electrons in substances, named Compton scattering after
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the American physicist Arthur H. Compton (1892–1962). Around 1923, Compton observed that x rays scattered from materials
had a decreased energy and correctly analyzed this as being due to the scattering of photons from electrons. This phenomenon
could be handled as a collision between two particles—a photon and an electron at rest in the material. Energy and momentum
are conserved in the collision. (See Figure 29.18) He won a Nobel Prize in 1929 for the discovery of this scattering, now called
the Compton effect, because it helped prove that photon momentum is given by

(29.22)p = h
λ ,

where h is Planck’s constant and λ is the photon wavelength. (Note that relativistic momentum given as p = γmu is valid

only for particles having mass.)

Figure 29.18 The Compton effect is the name given to the scattering of a photon by an electron. Energy and momentum are conserved, resulting in a
reduction of both for the scattered photon. Studying this effect, Compton verified that photons have momentum.

We can see that photon momentum is small, since p = h / λ and h is very small. It is for this reason that we do not ordinarily

observe photon momentum. Our mirrors do not recoil when light reflects from them (except perhaps in cartoons). Compton saw
the effects of photon momentum because he was observing x rays, which have a small wavelength and a relatively large
momentum, interacting with the lightest of particles, the electron.

Example 29.5 Electron and Photon Momentum Compared

(a) Calculate the momentum of a visible photon that has a wavelength of 500 nm. (b) Find the velocity of an electron having
the same momentum. (c) What is the energy of the electron, and how does it compare with the energy of the photon?

Strategy

Finding the photon momentum is a straightforward application of its definition: p = h
λ . If we find the photon momentum is

small, then we can assume that an electron with the same momentum will be nonrelativistic, making it easy to find its
velocity and kinetic energy from the classical formulas.

Solution for (a)

Photon momentum is given by the equation:

(29.23)p = h
λ .

Entering the given photon wavelength yields

(29.24)
p = 6.63×10–34 J ⋅ s

500×10–9 m
= 1.33×10–27 kg ⋅ m/s.

Solution for (b)

Since this momentum is indeed small, we will use the classical expression p = mv to find the velocity of an electron with

this momentum. Solving for v and using the known value for the mass of an electron gives

(29.25)
v = p

m = 1.33×10–27 kg ⋅ m/s
9.11×10–31 kg

= 1460 m/s ≈ 1460 m/s.

Solution for (c)

The electron has kinetic energy, which is classically given by
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(29.26)KEe = 1
2mv2.

Thus,

(29.27)KEe = 1
2(9.11×10–3 kg)(1455 m/s)2 = 9.64×10–25 J.

Converting this to eV by multiplying by (1 eV) / (1.602×10–19 J) yields

(29.28)KEe = 6.02×10–6 eV.

The photon energy E is

(29.29)E = hc
λ = 1240 eV ⋅ nm

500 nm = 2.48 eV,

which is about five orders of magnitude greater.

Discussion

Photon momentum is indeed small. Even if we have huge numbers of them, the total momentum they carry is small. An
electron with the same momentum has a 1460 m/s velocity, which is clearly nonrelativistic. A more massive particle with the
same momentum would have an even smaller velocity. This is borne out by the fact that it takes far less energy to give an
electron the same momentum as a photon. But on a quantum-mechanical scale, especially for high-energy photons
interacting with small masses, photon momentum is significant. Even on a large scale, photon momentum can have an
effect if there are enough of them and if there is nothing to prevent the slow recoil of matter. Comet tails are one example,
but there are also proposals to build space sails that use huge low-mass mirrors (made of aluminized Mylar) to reflect
sunlight. In the vacuum of space, the mirrors would gradually recoil and could actually take spacecraft from place to place in
the solar system. (See Figure 29.19.)

Figure 29.19 (a) Space sails have been proposed that use the momentum of sunlight reflecting from gigantic low-mass sails to propel spacecraft about
the solar system. A Russian test model of this (the Cosmos 1) was launched in 2005, but did not make it into orbit due to a rocket failure. (b) A U.S.

version of this, labeled LightSail-1, is scheduled for trial launches in the first part of this decade. It will have a 40-m2 sail. (credit: Kim Newton/NASA)

Relativistic Photon Momentum

There is a relationship between photon momentum p and photon energy E that is consistent with the relation given previously

for the relativistic total energy of a particle as E2 = (pc)2 + (mc)2 . We know m is zero for a photon, but p is not, so that

E2 = (pc)2 + (mc)2 becomes

(29.30)E = pc,

or

(29.31)p = E
c (photons).

To check the validity of this relation, note that E = hc / λ for a photon. Substituting this into p = E/c yields

(29.32)p = (hc / λ) / c = h
λ ,

as determined experimentally and discussed above. Thus, p = E/c is equivalent to Compton’s result p = h / λ . For a further

verification of the relationship between photon energy and momentum, see Example 29.6.

1156 Chapter 29 | Introduction to Quantum Physics

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Photon Detectors

Almost all detection systems talked about thus far—eyes, photographic plates, photomultiplier tubes in microscopes, and
CCD cameras—rely on particle-like properties of photons interacting with a sensitive area. A change is caused and either
the change is cascaded or zillions of points are recorded to form an image we detect. These detectors are used in
biomedical imaging systems, and there is ongoing research into improving the efficiency of receiving photons, particularly by
cooling detection systems and reducing thermal effects.

Example 29.6 Photon Energy and Momentum

Show that p = E/c for the photon considered in the Example 29.5.

Strategy

We will take the energy E found in Example 29.5, divide it by the speed of light, and see if the same momentum is

obtained as before.

Solution

Given that the energy of the photon is 2.48 eV and converting this to joules, we get

(29.33)
p = E

c = (2.48 eV)(1.60×10–19 J/eV)
3.00×108 m/s

= 1.33×10–27 kg ⋅ m/s.

Discussion

This value for momentum is the same as found before (note that unrounded values are used in all calculations to avoid even
small rounding errors), an expected verification of the relationship p = E/c . This also means the relationship between

energy, momentum, and mass given by E2 = (pc)2 + (mc)2 applies to both matter and photons. Once again, note that

p is not zero, even when m is.

Problem-Solving Suggestion

Note that the forms of the constants h = 4.14×10–15 eV ⋅ s and hc = 1240 eV ⋅ nm may be particularly useful for this

section’s Problems and Exercises.

29.5 The Particle-Wave Duality

We have long known that EM radiation is a wave, capable of interference and diffraction. We now see that light can be modeled
as photons, which are massless particles. This may seem contradictory, since we ordinarily deal with large objects that never act
like both wave and particle. An ocean wave, for example, looks nothing like a rock. To understand small-scale phenomena, we
make analogies with the large-scale phenomena we observe directly. When we say something behaves like a wave, we mean it
shows interference effects analogous to those seen in overlapping water waves. (See Figure 29.20.) Two examples of waves
are sound and EM radiation. When we say something behaves like a particle, we mean that it interacts as a discrete unit with no
interference effects. Examples of particles include electrons, atoms, and photons of EM radiation. How do we talk about a
phenomenon that acts like both a particle and a wave?

Figure 29.20 (a) The interference pattern for light through a double slit is a wave property understood by analogy to water waves. (b) The properties of
photons having quantized energy and momentum and acting as a concentrated unit are understood by analogy to macroscopic particles.

Chapter 29 | Introduction to Quantum Physics 1157



There is no doubt that EM radiation interferes and has the properties of wavelength and frequency. There is also no doubt that it
behaves as particles—photons with discrete energy. We call this twofold nature the particle-wave duality, meaning that EM
radiation has both particle and wave properties. This so-called duality is simply a term for properties of the photon analogous to
phenomena we can observe directly, on a macroscopic scale. If this term seems strange, it is because we do not ordinarily
observe details on the quantum level directly, and our observations yield either particle or wavelike properties, but never both
simultaneously.

Since we have a particle-wave duality for photons, and since we have seen connections between photons and matter in that both
have momentum, it is reasonable to ask whether there is a particle-wave duality for matter as well. If the EM radiation we once
thought to be a pure wave has particle properties, is it possible that matter has wave properties? The answer is yes. The
consequences are tremendous, as we will begin to see in the next section.

PhET Explorations: Quantum Wave Interference

When do photons, electrons, and atoms behave like particles and when do they behave like waves? Watch waves spread
out and interfere as they pass through a double slit, then get detected on a screen as tiny dots. Use quantum detectors to
explore how measurements change the waves and the patterns they produce on the screen. Click to open media in new
browser. (https://phet.colorado.edu/en/simulation/legacy/quantum-wave-interference)

29.6 The Wave Nature of Matter

De Broglie Wavelength

In 1923 a French physics graduate student named Prince Louis-Victor de Broglie (1892–1987) made a radical proposal based on
the hope that nature is symmetric. If EM radiation has both particle and wave properties, then nature would be symmetric if
matter also had both particle and wave properties. If what we once thought of as an unequivocal wave (EM radiation) is also a
particle, then what we think of as an unequivocal particle (matter) may also be a wave. De Broglie’s suggestion, made as part of
his doctoral thesis, was so radical that it was greeted with some skepticism. A copy of his thesis was sent to Einstein, who said it
was not only probably correct, but that it might be of fundamental importance. With the support of Einstein and a few other
prominent physicists, de Broglie was awarded his doctorate.

De Broglie took both relativity and quantum mechanics into account to develop the proposal that all particles have a wavelength,
given by

(29.34)λ = h
p(matter and photons),

where h is Planck’s constant and p is momentum. This is defined to be the de Broglie wavelength. (Note that we already

have this for photons, from the equation p = h / λ .) The hallmark of a wave is interference. If matter is a wave, then it must

exhibit constructive and destructive interference. Why isn’t this ordinarily observed? The answer is that in order to see significant
interference effects, a wave must interact with an object about the same size as its wavelength. Since h is very small, λ is also

small, especially for macroscopic objects. A 3-kg bowling ball moving at 10 m/s, for example, has

(29.35)λ = h / p = (6.63×10–34 J·s) / [(3 kg)(10 m/s)] = 2×10–35 m.

This means that to see its wave characteristics, the bowling ball would have to interact with something about 10–35 m in

size—far smaller than anything known. When waves interact with objects much larger than their wavelength, they show
negligible interference effects and move in straight lines (such as light rays in geometric optics). To get easily observed
interference effects from particles of matter, the longest wavelength and hence smallest mass possible would be useful.
Therefore, this effect was first observed with electrons.

American physicists Clinton J. Davisson and Lester H. Germer in 1925 and, independently, British physicist G. P. Thomson (son
of J. J. Thomson, discoverer of the electron) in 1926 scattered electrons from crystals and found diffraction patterns. These
patterns are exactly consistent with interference of electrons having the de Broglie wavelength and are somewhat analogous to
light interacting with a diffraction grating. (See Figure 29.21.)

Connections: Waves

All microscopic particles, whether massless, like photons, or having mass, like electrons, have wave properties. The
relationship between momentum and wavelength is fundamental for all particles.

De Broglie’s proposal of a wave nature for all particles initiated a remarkably productive era in which the foundations for quantum
mechanics were laid. In 1926, the Austrian physicist Erwin Schrödinger (1887–1961) published four papers in which the wave
nature of particles was treated explicitly with wave equations. At the same time, many others began important work. Among them
was German physicist Werner Heisenberg (1901–1976) who, among many other contributions to quantum mechanics,
formulated a mathematical treatment of the wave nature of matter that used matrices rather than wave equations. We will deal
with some specifics in later sections, but it is worth noting that de Broglie’s work was a watershed for the development of
quantum mechanics. De Broglie was awarded the Nobel Prize in 1929 for his vision, as were Davisson and G. P. Thomson in
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1937 for their experimental verification of de Broglie’s hypothesis.

Figure 29.21 This diffraction pattern was obtained for electrons diffracted by crystalline silicon. Bright regions are those of constructive interference,
while dark regions are those of destructive interference. (credit: Ndthe, Wikimedia Commons)

Example 29.7 Electron Wavelength versus Velocity and Energy

For an electron having a de Broglie wavelength of 0.167 nm (appropriate for interacting with crystal lattice structures that are
about this size): (a) Calculate the electron’s velocity, assuming it is nonrelativistic. (b) Calculate the electron’s kinetic energy
in eV.

Strategy

For part (a), since the de Broglie wavelength is given, the electron’s velocity can be obtained from λ = h / p by using the

nonrelativistic formula for momentum, p = mv. For part (b), once v is obtained (and it has been verified that v is

nonrelativistic), the classical kinetic energy is simply (1 / 2)mv2 .

Solution for (a)

Substituting the nonrelativistic formula for momentum ( p = mv ) into the de Broglie wavelength gives

(29.36)λ = h
p = h

mv.

Solving for v gives

(29.37)v = h
mλ.

Substituting known values yields

(29.38)
v = 6.63×10–34 J ⋅ s

(9.11×10–31 kg)(0.167×10–9 m)
= 4.36×106 m/s.

Solution for (b)

While fast compared with a car, this electron’s speed is not highly relativistic, and so we can comfortably use the classical
formula to find the electron’s kinetic energy and convert it to eV as requested.

(29.39)KE = 1
2mv2

= 1
2(9.11×10–31 kg)(4.36×106 m/s)2

= (86.4×10–18 J)⎛⎝ 1 eV
1.602×10–19 J

⎞
⎠

= 54.0 eV
Discussion
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This low energy means that these 0.167-nm electrons could be obtained by accelerating them through a 54.0-V electrostatic
potential, an easy task. The results also confirm the assumption that the electrons are nonrelativistic, since their velocity is
just over 1% of the speed of light and the kinetic energy is about 0.01% of the rest energy of an electron (0.511 MeV). If the
electrons had turned out to be relativistic, we would have had to use more involved calculations employing relativistic
formulas.

Electron Microscopes

One consequence or use of the wave nature of matter is found in the electron microscope. As we have discussed, there is a limit
to the detail observed with any probe having a wavelength. Resolution, or observable detail, is limited to about one wavelength.
Since a potential of only 54 V can produce electrons with sub-nanometer wavelengths, it is easy to get electrons with much
smaller wavelengths than those of visible light (hundreds of nanometers). Electron microscopes can, thus, be constructed to
detect much smaller details than optical microscopes. (See Figure 29.22.)

There are basically two types of electron microscopes. The transmission electron microscope (TEM) accelerates electrons that
are emitted from a hot filament (the cathode). The beam is broadened and then passes through the sample. A magnetic lens
focuses the beam image onto a fluorescent screen, a photographic plate, or (most probably) a CCD (light sensitive camera),
from which it is transferred to a computer. The TEM is similar to the optical microscope, but it requires a thin sample examined in

a vacuum. However it can resolve details as small as 0.1 nm ( 10−10 m ), providing magnifications of 100 million times the size

of the original object. The TEM has allowed us to see individual atoms and structure of cell nuclei.

The scanning electron microscope (SEM) provides images by using secondary electrons produced by the primary beam
interacting with the surface of the sample (see Figure 29.22). The SEM also uses magnetic lenses to focus the beam onto the
sample. However, it moves the beam around electrically to “scan” the sample in the x and y directions. A CCD detector is used to
process the data for each electron position, producing images like the one at the beginning of this chapter. The SEM has the
advantage of not requiring a thin sample and of providing a 3-D view. However, its resolution is about ten times less than a TEM.

Figure 29.22 Schematic of a scanning electron microscope (SEM) (a) used to observe small details, such as those seen in this image of a tooth of a
Himipristis, a type of shark (b). (credit: Dallas Krentzel, Flickr)

Electrons were the first particles with mass to be directly confirmed to have the wavelength proposed by de Broglie.
Subsequently, protons, helium nuclei, neutrons, and many others have been observed to exhibit interference when they interact
with objects having sizes similar to their de Broglie wavelength. The de Broglie wavelength for massless particles was well
established in the 1920s for photons, and it has since been observed that all massless particles have a de Broglie wavelength
λ = h / p. The wave nature of all particles is a universal characteristic of nature. We shall see in following sections that

implications of the de Broglie wavelength include the quantization of energy in atoms and molecules, and an alteration of our
basic view of nature on the microscopic scale. The next section, for example, shows that there are limits to the precision with
which we may make predictions, regardless of how hard we try. There are even limits to the precision with which we may
measure an object’s location or energy.

Making Connections: A Submicroscopic Diffraction Grating

The wave nature of matter allows it to exhibit all the characteristics of other, more familiar, waves. Diffraction gratings, for
example, produce diffraction patterns for light that depend on grating spacing and the wavelength of the light. This effect, as
with most wave phenomena, is most pronounced when the wave interacts with objects having a size similar to its
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wavelength. For gratings, this is the spacing between multiple slits.) When electrons interact with a system having a spacing
similar to the electron wavelength, they show the same types of interference patterns as light does for diffraction gratings, as
shown at top left in Figure 29.23.

Atoms are spaced at regular intervals in a crystal as parallel planes, as shown in the bottom part of Figure 29.23. The
spacings between these planes act like the openings in a diffraction grating. At certain incident angles, the paths of electrons
scattering from successive planes differ by one wavelength and, thus, interfere constructively. At other angles, the path
length differences are not an integral wavelength, and there is partial to total destructive interference. This type of scattering
from a large crystal with well-defined lattice planes can produce dramatic interference patterns. It is called Bragg reflection,
for the father-and-son team who first explored and analyzed it in some detail. The expanded view also shows the path-
length differences and indicates how these depend on incident angle θ in a manner similar to the diffraction patterns for x

rays reflecting from a crystal.

Figure 29.23 The diffraction pattern at top left is produced by scattering electrons from a crystal and is graphed as a function of incident angle
relative to the regular array of atoms in a crystal, as shown at bottom. Electrons scattering from the second layer of atoms travel farther than
those scattered from the top layer. If the path length difference (PLD) is an integral wavelength, there is constructive interference.

Let us take the spacing between parallel planes of atoms in the crystal to be d . As mentioned, if the path length difference

(PLD) for the electrons is a whole number of wavelengths, there will be constructive interference—that is,
PLD = nλ(n = 1, 2, 3, … ) . Because AB = BC = d sin θ, we have constructive interference when nλ = 2d sin θ.
This relationship is called the Bragg equation and applies not only to electrons but also to x rays.

The wavelength of matter is a submicroscopic characteristic that explains a macroscopic phenomenon such as Bragg
reflection. Similarly, the wavelength of light is a submicroscopic characteristic that explains the macroscopic phenomenon of
diffraction patterns.

29.7 Probability: The Heisenberg Uncertainty Principle

Probability Distribution

Matter and photons are waves, implying they are spread out over some distance. What is the position of a particle, such as an
electron? Is it at the center of the wave? The answer lies in how you measure the position of an electron. Experiments show that
you will find the electron at some definite location, unlike a wave. But if you set up exactly the same situation and measure it
again, you will find the electron in a different location, often far outside any experimental uncertainty in your measurement.
Repeated measurements will display a statistical distribution of locations that appears wavelike. (See Figure 29.24.)
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Figure 29.24 The building up of the diffraction pattern of electrons scattered from a crystal surface. Each electron arrives at a definite location, which
cannot be precisely predicted. The overall distribution shown at the bottom can be predicted as the diffraction of waves having the de Broglie
wavelength of the electrons.

Figure 29.25 Double-slit interference for electrons (a) and protons (b) is identical for equal wavelengths and equal slit separations. Both patterns are
probability distributions in the sense that they are built up by individual particles traversing the apparatus, the paths of which are not individually
predictable.

After de Broglie proposed the wave nature of matter, many physicists, including Schrödinger and Heisenberg, explored the
consequences. The idea quickly emerged that, because of its wave character, a particle’s trajectory and destination cannot be
precisely predicted for each particle individually. However, each particle goes to a definite place (as illustrated in Figure 29.24).
After compiling enough data, you get a distribution related to the particle’s wavelength and diffraction pattern. There is a certain
probability of finding the particle at a given location, and the overall pattern is called a probability distribution. Those who
developed quantum mechanics devised equations that predicted the probability distribution in various circumstances.

It is somewhat disquieting to think that you cannot predict exactly where an individual particle will go, or even follow it to its
destination. Let us explore what happens if we try to follow a particle. Consider the double-slit patterns obtained for electrons and
photons in Figure 29.25. First, we note that these patterns are identical, following d sin θ = mλ , the equation for double-slit

constructive interference developed in Photon Energies and the Electromagnetic Spectrum, where d is the slit separation

and λ is the electron or photon wavelength.

Both patterns build up statistically as individual particles fall on the detector. This can be observed for photons or electrons—for
now, let us concentrate on electrons. You might imagine that the electrons are interfering with one another as any waves do. To
test this, you can lower the intensity until there is never more than one electron between the slits and the screen. The same
interference pattern builds up! This implies that a particle’s probability distribution spans both slits, and the particles actually
interfere with themselves. Does this also mean that the electron goes through both slits? An electron is a basic unit of matter that
is not divisible. But it is a fair question, and so we should look to see if the electron traverses one slit or the other, or both. One
possibility is to have coils around the slits that detect charges moving through them. What is observed is that an electron always
goes through one slit or the other; it does not split to go through both. But there is a catch. If you determine that the electron went
through one of the slits, you no longer get a double slit pattern—instead, you get single slit interference. There is no escape by
using another method of determining which slit the electron went through. Knowing the particle went through one slit forces a
single-slit pattern. If you do not observe which slit the electron goes through, you obtain a double-slit pattern.
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Heisenberg Uncertainty

How does knowing which slit the electron passed through change the pattern? The answer is fundamentally
important—measurement affects the system being observed. Information can be lost, and in some cases it is impossible to
measure two physical quantities simultaneously to exact precision. For example, you can measure the position of a moving
electron by scattering light or other electrons from it. Those probes have momentum themselves, and by scattering from the
electron, they change its momentum in a manner that loses information. There is a limit to absolute knowledge, even in principle.

Figure 29.26 Werner Heisenberg was one of the best of those physicists who developed early quantum mechanics. Not only did his work enable a
description of nature on the very small scale, it also changed our view of the availability of knowledge. Although he is universally recognized for his
brilliance and the importance of his work (he received the Nobel Prize in 1932, for example), Heisenberg remained in Germany during World War II and
headed the German effort to build a nuclear bomb, permanently alienating himself from most of the scientific community. (credit: Author Unknown, via
Wikimedia Commons)

It was Werner Heisenberg who first stated this limit to knowledge in 1929 as a result of his work on quantum mechanics and the
wave characteristics of all particles. (See Figure 29.26). Specifically, consider simultaneously measuring the position and
momentum of an electron (it could be any particle). There is an uncertainty in position Δx that is approximately equal to the

wavelength of the particle. That is,

(29.40)Δx ≈ λ.
As discussed above, a wave is not located at one point in space. If the electron’s position is measured repeatedly, a spread in
locations will be observed, implying an uncertainty in position Δx . To detect the position of the particle, we must interact with it,

such as having it collide with a detector. In the collision, the particle will lose momentum. This change in momentum could be
anywhere from close to zero to the total momentum of the particle, p = h / λ . It is not possible to tell how much momentum will

be transferred to a detector, and so there is an uncertainty in momentum Δp , too. In fact, the uncertainty in momentum may

be as large as the momentum itself, which in equation form means that

(29.41)Δp ≈ h
λ .

The uncertainty in position can be reduced by using a shorter-wavelength electron, since Δx ≈ λ . But shortening the

wavelength increases the uncertainty in momentum, since Δp ≈ h / λ . Conversely, the uncertainty in momentum can be

reduced by using a longer-wavelength electron, but this increases the uncertainty in position. Mathematically, you can express
this trade-off by multiplying the uncertainties. The wavelength cancels, leaving

(29.42)ΔxΔp ≈ h.

So if one uncertainty is reduced, the other must increase so that their product is ≈ h .

With the use of advanced mathematics, Heisenberg showed that the best that can be done in a simultaneous measurement of
position and momentum is

(29.43)ΔxΔp ≥ h
4π.

This is known as the Heisenberg uncertainty principle. It is impossible to measure position x and momentum p
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simultaneously with uncertainties Δx and Δp that multiply to be less than h / 4π . Neither uncertainty can be zero. Neither

uncertainty can become small without the other becoming large. A small wavelength allows accurate position measurement, but
it increases the momentum of the probe to the point that it further disturbs the momentum of a system being measured. For
example, if an electron is scattered from an atom and has a wavelength small enough to detect the position of electrons in the
atom, its momentum can knock the electrons from their orbits in a manner that loses information about their original motion. It is
therefore impossible to follow an electron in its orbit around an atom. If you measure the electron’s position, you will find it in a
definite location, but the atom will be disrupted. Repeated measurements on identical atoms will produce interesting probability
distributions for electrons around the atom, but they will not produce motion information. The probability distributions are referred
to as electron clouds or orbitals. The shapes of these orbitals are often shown in general chemistry texts and are discussed in
The Wave Nature of Matter Causes Quantization.

Example 29.8 Heisenberg Uncertainty Principle in Position and Momentum for an Atom

(a) If the position of an electron in an atom is measured to an accuracy of 0.0100 nm, what is the electron’s uncertainty in
velocity? (b) If the electron has this velocity, what is its kinetic energy in eV?

Strategy

The uncertainty in position is the accuracy of the measurement, or Δx = 0.0100 nm . Thus the smallest uncertainty in

momentum Δp can be calculated using ΔxΔp ≥ h/4π . Once the uncertainty in momentum Δp is found, the uncertainty

in velocity can be found from Δp = mΔv .

Solution for (a)

Using the equals sign in the uncertainty principle to express the minimum uncertainty, we have

(29.44)ΔxΔp = h
4π.

Solving for Δp and substituting known values gives

(29.45)
Δp = h

4πΔx = 6.63×10–34 J ⋅ s
4π(1.00×10–11 m)

= 5.28×10–24 kg ⋅ m/s.

Thus,

(29.46)Δp = 5.28×10–24 kg ⋅ m/s = mΔv.

Solving for Δv and substituting the mass of an electron gives

(29.47)
Δv = Δp

m = 5.28×10–24 kg ⋅ m/s
9.11×10–31 kg

= 5.79×106 m/s.

Solution for (b)

Although large, this velocity is not highly relativistic, and so the electron’s kinetic energy is

(29.48)KEe = 1
2mv2

= 1
2(9.11×10–31 kg)(5.79×106 m/s)2

= (1.53×10–17 J)⎛⎝ 1 eV
1.60×10–19 J

⎞
⎠ = 95.5 eV.

Discussion

Since atoms are roughly 0.1 nm in size, knowing the position of an electron to 0.0100 nm localizes it reasonably well inside
the atom. This would be like being able to see details one-tenth the size of the atom. But the consequent uncertainty in
velocity is large. You certainly could not follow it very well if its velocity is so uncertain. To get a further idea of how large the
uncertainty in velocity is, we assumed the velocity of the electron was equal to its uncertainty and found this gave a kinetic
energy of 95.5 eV. This is significantly greater than the typical energy difference between levels in atoms (see Table 29.1),
so that it is impossible to get a meaningful energy for the electron if we know its position even moderately well.

Why don’t we notice Heisenberg’s uncertainty principle in everyday life? The answer is that Planck’s constant is very small. Thus
the lower limit in the uncertainty of measuring the position and momentum of large objects is negligible. We can detect sunlight
reflected from Jupiter and follow the planet in its orbit around the Sun. The reflected sunlight alters the momentum of Jupiter and
creates an uncertainty in its momentum, but this is totally negligible compared with Jupiter’s huge momentum. The
correspondence principle tells us that the predictions of quantum mechanics become indistinguishable from classical physics for
large objects, which is the case here.
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Heisenberg Uncertainty for Energy and Time

There is another form of Heisenberg’s uncertainty principle for simultaneous measurements of energy and time. In equation
form,

(29.49)ΔEΔt ≥ h
4π,

where ΔE is the uncertainty in energy and Δt is the uncertainty in time. This means that within a time interval Δt , it is not

possible to measure energy precisely—there will be an uncertainty ΔE in the measurement. In order to measure energy more

precisely (to make ΔE smaller), we must increase Δt . This time interval may be the amount of time we take to make the

measurement, or it could be the amount of time a particular state exists, as in the next Example 29.9.

Example 29.9 Heisenberg Uncertainty Principle for Energy and Time for an Atom

An atom in an excited state temporarily stores energy. If the lifetime of this excited state is measured to be 1.0×10−10 s ,

what is the minimum uncertainty in the energy of the state in eV?

Strategy

The minimum uncertainty in energy ΔE is found by using the equals sign in ΔEΔt ≥ h/4π and corresponds to a

reasonable choice for the uncertainty in time. The largest the uncertainty in time can be is the full lifetime of the excited

state, or Δt = 1.0×10−10 s .

Solution

Solving the uncertainty principle for ΔE and substituting known values gives

(29.50)
ΔE = h

4πΔt = 6.63×10–34 J ⋅ s
4π(1.0×10–10 s)

= 5.3×10–25 J.

Now converting to eV yields

(29.51)
ΔE = (5.3×10–25 J)⎛⎝ 1 eV

1.6×10–19 J
⎞
⎠ = 3.3×10–6 eV.

Discussion

The lifetime of 10−10 s is typical of excited states in atoms—on human time scales, they quickly emit their stored energy.

An uncertainty in energy of only a few millionths of an eV results. This uncertainty is small compared with typical excitation
energies in atoms, which are on the order of 1 eV. So here the uncertainty principle limits the accuracy with which we can
measure the lifetime and energy of such states, but not very significantly.

The uncertainty principle for energy and time can be of great significance if the lifetime of a system is very short. Then Δt is

very small, and ΔE is consequently very large. Some nuclei and exotic particles have extremely short lifetimes (as small as

10−25 s ), causing uncertainties in energy as great as many GeV ( 109 eV ). Stored energy appears as increased rest mass,

and so this means that there is significant uncertainty in the rest mass of short-lived particles. When measured repeatedly, a
spread of masses or decay energies are obtained. The spread is ΔE . You might ask whether this uncertainty in energy could

be avoided by not measuring the lifetime. The answer is no. Nature knows the lifetime, and so its brevity affects the energy of the
particle. This is so well established experimentally that the uncertainty in decay energy is used to calculate the lifetime of short-
lived states. Some nuclei and particles are so short-lived that it is difficult to measure their lifetime. But if their decay energy can
be measured, its spread is ΔE , and this is used in the uncertainty principle ( ΔEΔt ≥ h/4π ) to calculate the lifetime Δt .

There is another consequence of the uncertainty principle for energy and time. If energy is uncertain by ΔE , then conservation

of energy can be violated by ΔE for a time Δt . Neither the physicist nor nature can tell that conservation of energy has been

violated, if the violation is temporary and smaller than the uncertainty in energy. While this sounds innocuous enough, we shall
see in later chapters that it allows the temporary creation of matter from nothing and has implications for how nature transmits
forces over very small distances.

Finally, note that in the discussion of particles and waves, we have stated that individual measurements produce precise or
particle-like results. A definite position is determined each time we observe an electron, for example. But repeated
measurements produce a spread in values consistent with wave characteristics. The great theoretical physicist Richard Feynman
(1918–1988) commented, “What there are, are particles.” When you observe enough of them, they distribute themselves as you
would expect for a wave phenomenon. However, what there are as they travel we cannot tell because, when we do try to
measure, we affect the traveling.
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29.8 The Particle-Wave Duality Reviewed

Particle-wave duality—the fact that all particles have wave properties—is one of the cornerstones of quantum mechanics. We
first came across it in the treatment of photons, those particles of EM radiation that exhibit both particle and wave properties, but
not at the same time. Later it was noted that particles of matter have wave properties as well. The dual properties of particles and
waves are found for all particles, whether massless like photons, or having a mass like electrons. (See Figure 29.27.)

Figure 29.27 On a quantum-mechanical scale (i.e., very small), particles with and without mass have wave properties. For example, both electrons
and photons have wavelengths but also behave as particles.

There are many submicroscopic particles in nature. Most have mass and are expected to act as particles, or the smallest units of
matter. All these masses have wave properties, with wavelengths given by the de Broglie relationship λ = h / p . So, too, do

combinations of these particles, such as nuclei, atoms, and molecules. As a combination of masses becomes large, particularly if
it is large enough to be called macroscopic, its wave nature becomes difficult to observe. This is consistent with our common
experience with matter.

Some particles in nature are massless. We have only treated the photon so far, but all massless entities travel at the speed of
light, have a wavelength, and exhibit particle and wave behaviors. They have momentum given by a rearrangement of the de
Broglie relationship, p = h / λ . In large combinations of these massless particles (such large combinations are common only for

photons or EM waves), there is mostly wave behavior upon detection, and the particle nature becomes difficult to observe. This
is also consistent with experience. (See Figure 29.28.)

Figure 29.28 On a classical scale (macroscopic), particles with mass behave as particles and not as waves. Particles without mass act as waves and
not as particles.

The particle-wave duality is a universal attribute. It is another connection between matter and energy. Not only has modern
physics been able to describe nature for high speeds and small sizes, it has also discovered new connections and symmetries.
There is greater unity and symmetry in nature than was known in the classical era—but they were dreamt of. A beautiful poem
written by the English poet William Blake some two centuries ago contains the following four lines:

To see the World in a Grain of Sand

And a Heaven in a Wild Flower

Hold Infinity in the palm of your hand

And Eternity in an hour

Integrated Concepts

The problem set for this section involves concepts from this chapter and several others. Physics is most interesting when applied
to general situations involving more than a narrow set of physical principles. For example, photons have momentum, hence the
relevance of Linear Momentum and Collisions. The following topics are involved in some or all of the problems in this section:

• Dynamics: Newton’s Laws of Motion
• Work, Energy, and Energy Resources
• Linear Momentum and Collisions
• Heat and Heat Transfer Methods
• Electric Potential and Electric Field
• Electric Current, Resistance, and Ohm’s Law
• Wave Optics
• Special Relativity
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Problem-Solving Strategy
1. Identify which physical principles are involved.

2. Solve the problem using strategies outlined in the text.

Example 29.10 illustrates how these strategies are applied to an integrated-concept problem.

Example 29.10 Recoil of a Dust Particle after Absorbing a Photon

The following topics are involved in this integrated concepts worked example:

Table 29.2 Topics

Photons (quantum mechanics)

Linear Momentum

A 550-nm photon (visible light) is absorbed by a 1.00-μg particle of dust in outer space. (a) Find the momentum of such a

photon. (b) What is the recoil velocity of the particle of dust, assuming it is initially at rest?

Strategy Step 1

To solve an integrated-concept problem, such as those following this example, we must first identify the physical principles
involved and identify the chapters in which they are found. Part (a) of this example asks for the momentum of a photon, a
topic of the present chapter. Part (b) considers recoil following a collision, a topic of Linear Momentum and Collisions.

Strategy Step 2

The following solutions to each part of the example illustrate how specific problem-solving strategies are applied. These
involve identifying knowns and unknowns, checking to see if the answer is reasonable, and so on.

Solution for (a)

The momentum of a photon is related to its wavelength by the equation:

(29.52)p = h
λ .

Entering the known value for Planck’s constant h and given the wavelength λ , we obtain

(29.53)
p = 6.63×10−34 J ⋅ s

550×10–9 m
= 1.21×10−27 kg ⋅ m/s.

Discussion for (a)

This momentum is small, as expected from discussions in the text and the fact that photons of visible light carry small
amounts of energy and momentum compared with those carried by macroscopic objects.

Solution for (b)

Conservation of momentum in the absorption of this photon by a grain of dust can be analyzed using the equation:

(29.54)p1 + p2 = p′1+ p′2(Fnet = 0).

The net external force is zero, since the dust is in outer space. Let 1 represent the photon and 2 the dust particle. Before the
collision, the dust is at rest (relative to some observer); after the collision, there is no photon (it is absorbed). So
conservation of momentum can be written

(29.55)p1 = p′2 = mv,

where p1 is the photon momentum before the collision and p′2 is the dust momentum after the collision. The mass and

recoil velocity of the dust are m and v , respectively. Solving this for v , the requested quantity, yields

(29.56)v = p
m,

where p is the photon momentum found in part (a). Entering known values (noting that a microgram is 10−9 kg ) gives

(29.57)
v = 1.21×10−27 kg ⋅ m/s

1.00×10 – 9 kg

= 1.21×10–18 m/s.
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atomic spectra:

binding energy:

blackbody:

blackbody radiation:

bremsstrahlung:

characteristic x rays:

Compton effect:

correspondence principle:

de Broglie wavelength:

gamma ray:

Heisenberg’s uncertainty principle:

infrared radiation:

ionizing radiation:

microwaves:

particle-wave duality:

photoelectric effect:

photon:

photon energy:

photon momentum:

Planck’s constant:

probability distribution:

quantized:

quantum mechanics:

ultraviolet radiation:

uncertainty in energy:

uncertainty in momentum:

uncertainty in position:

uncertainty in time:

Discussion

The recoil velocity of the particle of dust is extremely small. As we have noted, however, there are immense numbers of
photons in sunlight and other macroscopic sources. In time, collisions and absorption of many photons could cause a
significant recoil of the dust, as observed in comet tails.

Glossary

the electromagnetic emission from atoms and molecules

also called the work function; the amount of energy necessary to eject an electron from a material

an ideal radiator, which can radiate equally well at all wavelengths

the electromagnetic radiation from a blackbody

German for braking radiation; produced when electrons are decelerated

x rays whose energy depends on the material they were produced in

the phenomenon whereby x rays scattered from materials have decreased energy

in the classical limit (large, slow-moving objects), quantum mechanics becomes the same as
classical physics

the wavelength possessed by a particle of matter, calculated by λ = h / p

also γ -ray; highest-energy photon in the EM spectrum

a fundamental limit to the precision with which pairs of quantities (momentum and
position, and energy and time) can be measured

photons with energies slightly less than red light

radiation that ionizes materials that absorb it

photons with wavelengths on the order of a micron ( μm )

the property of behaving like either a particle or a wave; the term for the phenomenon that all particles
have wave characteristics

the phenomenon whereby some materials eject electrons when light is shined on them

a quantum, or particle, of electromagnetic radiation

the amount of energy a photon has; E = hf

the amount of momentum a photon has, calculated by p = h
λ = E

c

h = 6.626×10–34 J ⋅ s

the overall spatial distribution of probabilities to find a particle at a given location

the fact that certain physical entities exist only with particular discrete values and not every conceivable value

the branch of physics that deals with small objects and with the quantization of various entities,
especially energy

UV; ionizing photons slightly more energetic than violet light

lack of precision or lack of knowledge of precise results in measurements of energy

lack of precision or lack of knowledge of precise results in measurements of momentum

lack of precision or lack of knowledge of precise results in measurements of position

lack of precision or lack of knowledge of precise results in measurements of time
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visible light:

x ray:

the range of photon energies the human eye can detect

EM photon between γ -ray and UV in energy

Section Summary

29.1 Quantization of Energy
• The first indication that energy is sometimes quantized came from blackbody radiation, which is the emission of EM

radiation by an object with an emissivity of 1.
• Planck recognized that the energy levels of the emitting atoms and molecules were quantized, with only the allowed values

of E = ⎛⎝n + 1
2
⎞
⎠hf , where n is any non-negative integer (0, 1, 2, 3, …).

• h is Planck’s constant, whose value is h = 6.626×10–34 J ⋅ s.
• Thus, the oscillatory absorption and emission energies of atoms and molecules in a blackbody could increase or decrease

only in steps of size ΔE = hf where f is the frequency of the oscillatory nature of the absorption and emission of EM

radiation.
• Another indication of energy levels being quantized in atoms and molecules comes from the lines in atomic spectra, which

are the EM emissions of individual atoms and molecules.

29.2 The Photoelectric Effect
• The photoelectric effect is the process in which EM radiation ejects electrons from a material.
• Einstein proposed photons to be quanta of EM radiation having energy E = hf , where f is the frequency of the

radiation.
• All EM radiation is composed of photons. As Einstein explained, all characteristics of the photoelectric effect are due to the

interaction of individual photons with individual electrons.
• The maximum kinetic energy KEe of ejected electrons (photoelectrons) is given by KEe = hf – BE , where hf is the

photon energy and BE is the binding energy (or work function) of the electron to the particular material.

29.3 Photon Energies and the Electromagnetic Spectrum
• Photon energy is responsible for many characteristics of EM radiation, being particularly noticeable at high frequencies.
• Photons have both wave and particle characteristics.

29.4 Photon Momentum

• Photons have momentum, given by p = h
λ , where λ is the photon wavelength.

• Photon energy and momentum are related by p = E
c , where E = hf = hc / λ for a photon.

29.5 The Particle-Wave Duality
• EM radiation can behave like either a particle or a wave.
• This is termed particle-wave duality.

29.6 The Wave Nature of Matter

• Particles of matter also have a wavelength, called the de Broglie wavelength, given by λ = h
p , where p is momentum.

• Matter is found to have the same interference characteristics as any other wave.

29.7 Probability: The Heisenberg Uncertainty Principle
• Matter is found to have the same interference characteristics as any other wave.
• There is now a probability distribution for the location of a particle rather than a definite position.
• Another consequence of the wave character of all particles is the Heisenberg uncertainty principle, which limits the

precision with which certain physical quantities can be known simultaneously. For position and momentum, the uncertainty

principle is ΔxΔp ≥ h
4π , where Δx is the uncertainty in position and Δp is the uncertainty in momentum.

• For energy and time, the uncertainty principle is ΔEΔt ≥ h
4π where ΔE is the uncertainty in energy and Δt is the

uncertainty in time.
• These small limits are fundamentally important on the quantum-mechanical scale.
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29.8 The Particle-Wave Duality Reviewed
• The particle-wave duality refers to the fact that all particles—those with mass and those without mass—have wave

characteristics.
• This is a further connection between mass and energy.

Conceptual Questions

29.1 Quantization of Energy

1. Give an example of a physical entity that is quantized. State specifically what the entity is and what the limits are on its
values.

2. Give an example of a physical entity that is not quantized, in that it is continuous and may have a continuous range of values.

3. What aspect of the blackbody spectrum forced Planck to propose quantization of energy levels in its atoms and molecules?

4. If Planck’s constant were large, say 1034 times greater than it is, we would observe macroscopic entities to be quantized.

Describe the motions of a child’s swing under such circumstances.

5. Why don’t we notice quantization in everyday events?

29.2 The Photoelectric Effect

6. Is visible light the only type of EM radiation that can cause the photoelectric effect?

7. Which aspects of the photoelectric effect cannot be explained without photons? Which can be explained without photons? Are
the latter inconsistent with the existence of photons?

8. Is the photoelectric effect a direct consequence of the wave character of EM radiation or of the particle character of EM
radiation? Explain briefly.

9. Insulators (nonmetals) have a higher BE than metals, and it is more difficult for photons to eject electrons from insulators.
Discuss how this relates to the free charges in metals that make them good conductors.

10. If you pick up and shake a piece of metal that has electrons in it free to move as a current, no electrons fall out. Yet if you
heat the metal, electrons can be boiled off. Explain both of these facts as they relate to the amount and distribution of energy
involved with shaking the object as compared with heating it.

29.3 Photon Energies and the Electromagnetic Spectrum

11. Why are UV, x rays, and γ rays called ionizing radiation?

12. How can treating food with ionizing radiation help keep it from spoiling? UV is not very penetrating. What else could be
used?

13. Some television tubes are CRTs. They use an approximately 30-kV accelerating potential to send electrons to the screen,
where the electrons stimulate phosphors to emit the light that forms the pictures we watch. Would you expect x rays also to be
created?

14. Tanning salons use “safe” UV with a longer wavelength than some of the UV in sunlight. This “safe” UV has enough photon
energy to trigger the tanning mechanism. Is it likely to be able to cause cell damage and induce cancer with prolonged
exposure?

15. Your pupils dilate when visible light intensity is reduced. Does wearing sunglasses that lack UV blockers increase or
decrease the UV hazard to your eyes? Explain.

16. One could feel heat transfer in the form of infrared radiation from a large nuclear bomb detonated in the atmosphere 75 km
from you. However, none of the profusely emitted x rays or γ rays reaches you. Explain.

17. Can a single microwave photon cause cell damage? Explain.

18. In an x-ray tube, the maximum photon energy is given by hf = qV . Would it be technically more correct to say

hf = qV + BE, where BE is the binding energy of electrons in the target anode? Why isn’t the energy stated the latter way?

29.4 Photon Momentum

19. Which formula may be used for the momentum of all particles, with or without mass?

20. Is there any measurable difference between the momentum of a photon and the momentum of matter?

21. Why don’t we feel the momentum of sunlight when we are on the beach?

29.6 The Wave Nature of Matter

22. How does the interference of water waves differ from the interference of electrons? How are they analogous?

23. Describe one type of evidence for the wave nature of matter.
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24. Describe one type of evidence for the particle nature of EM radiation.

29.7 Probability: The Heisenberg Uncertainty Principle

25. What is the Heisenberg uncertainty principle? Does it place limits on what can be known?

29.8 The Particle-Wave Duality Reviewed

26. In what ways are matter and energy related that were not known before the development of relativity and quantum
mechanics?

In what ways are matter and energy related that were not known before the development of relativity and quantum mechanics?
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Problems & Exercises

29.1 Quantization of Energy

1. A LiBr molecule oscillates with a frequency of

1.7×1013 Hz. (a) What is the difference in energy in eV

between allowed oscillator states? (b) What is the
approximate value of n for a state having an energy of 1.0

eV?

2. The difference in energy between allowed oscillator states
in HBr molecules is 0.330 eV. What is the oscillation
frequency of this molecule?

3. A physicist is watching a 15-kg orangutan at a zoo swing
lazily in a tire at the end of a rope. He (the physicist) notices
that each oscillation takes 3.00 s and hypothesizes that the
energy is quantized. (a) What is the difference in energy in
joules between allowed oscillator states? (b) What is the
value of n for a state where the energy is 5.00 J? (c) Can the

quantization be observed?

29.2 The Photoelectric Effect

4. What is the longest-wavelength EM radiation that can eject
a photoelectron from silver, given that the binding energy is
4.73 eV? Is this in the visible range?

5. Find the longest-wavelength photon that can eject an
electron from potassium, given that the binding energy is 2.24
eV. Is this visible EM radiation?

6. What is the binding energy in eV of electrons in
magnesium, if the longest-wavelength photon that can eject
electrons is 337 nm?

7. Calculate the binding energy in eV of electrons in
aluminum, if the longest-wavelength photon that can eject
them is 304 nm.

8. What is the maximum kinetic energy in eV of electrons
ejected from sodium metal by 450-nm EM radiation, given
that the binding energy is 2.28 eV?

9. UV radiation having a wavelength of 120 nm falls on gold
metal, to which electrons are bound by 4.82 eV. What is the
maximum kinetic energy of the ejected photoelectrons?

10. Violet light of wavelength 400 nm ejects electrons with a
maximum kinetic energy of 0.860 eV from sodium metal.
What is the binding energy of electrons to sodium metal?

11. UV radiation having a 300-nm wavelength falls on
uranium metal, ejecting 0.500-eV electrons. What is the
binding energy of electrons to uranium metal?

12. What is the wavelength of EM radiation that ejects
2.00-eV electrons from calcium metal, given that the binding
energy is 2.71 eV? What type of EM radiation is this?

13. Find the wavelength of photons that eject 0.100-eV
electrons from potassium, given that the binding energy is
2.24 eV. Are these photons visible?

14. What is the maximum velocity of electrons ejected from a
material by 80-nm photons, if they are bound to the material
by 4.73 eV?

15. Photoelectrons from a material with a binding energy of
2.71 eV are ejected by 420-nm photons. Once ejected, how
long does it take these electrons to travel 2.50 cm to a
detection device?

16. A laser with a power output of 2.00 mW at a wavelength
of 400 nm is projected onto calcium metal. (a) How many
electrons per second are ejected? (b) What power is carried
away by the electrons, given that the binding energy is 2.71
eV?

17. (a) Calculate the number of photoelectrons per second

ejected from a 1.00-mm 2 area of sodium metal by 500-nm

EM radiation having an intensity of 1.30 kW/m2 (the

intensity of sunlight above the Earth’s atmosphere). (b) Given
that the binding energy is 2.28 eV, what power is carried away
by the electrons? (c) The electrons carry away less power
than brought in by the photons. Where does the other power
go? How can it be recovered?

18. Unreasonable Results

Red light having a wavelength of 700 nm is projected onto
magnesium metal to which electrons are bound by 3.68 eV.
(a) Use KEe = hf – BE to calculate the kinetic energy of

the ejected electrons. (b) What is unreasonable about this
result? (c) Which assumptions are unreasonable or
inconsistent?

19. Unreasonable Results

(a) What is the binding energy of electrons to a material from
which 4.00-eV electrons are ejected by 400-nm EM radiation?
(b) What is unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

29.3 Photon Energies and the Electromagnetic
Spectrum

20. What is the energy in joules and eV of a photon in a radio
wave from an AM station that has a 1530-kHz broadcast
frequency?

21. (a) Find the energy in joules and eV of photons in radio
waves from an FM station that has a 90.0-MHz broadcast
frequency. (b) What does this imply about the number of
photons per second that the radio station must broadcast?

22. Calculate the frequency in hertz of a 1.00-MeV γ -ray

photon.

23. (a) What is the wavelength of a 1.00-eV photon? (b) Find
its frequency in hertz. (c) Identify the type of EM radiation.

24. Do the unit conversions necessary to show that
hc = 1240 eV ⋅ nm, as stated in the text.

25. Confirm the statement in the text that the range of photon
energies for visible light is 1.63 to 3.26 eV, given that the
range of visible wavelengths is 380 to 760 nm.

26. (a) Calculate the energy in eV of an IR photon of

frequency 2.00×1013 Hz. (b) How many of these photons

would need to be absorbed simultaneously by a tightly bound
molecule to break it apart? (c) What is the energy in eV of a

γ ray of frequency 3.00×1020 Hz? (d) How many tightly

bound molecules could a single such γ ray break apart?

27. Prove that, to three-digit accuracy,

h = 4.14×10−15 eV ⋅ s, as stated in the text.

28. (a) What is the maximum energy in eV of photons
produced in a CRT using a 25.0-kV accelerating potential,
such as a color TV? (b) What is their frequency?
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29. What is the accelerating voltage of an x-ray tube that
produces x rays with a shortest wavelength of 0.0103 nm?

30. (a) What is the ratio of power outputs by two microwave
ovens having frequencies of 950 and 2560 MHz, if they emit
the same number of photons per second? (b) What is the
ratio of photons per second if they have the same power
output?

31. How many photons per second are emitted by the
antenna of a microwave oven, if its power output is 1.00 kW
at a frequency of 2560 MHz?

32. Some satellites use nuclear power. (a) If such a satellite
emits a 1.00-W flux of γ rays having an average energy of

0.500 MeV, how many are emitted per second? (b) These γ
rays affect other satellites. How far away must another
satellite be to only receive one γ ray per second per square

meter?

33. (a) If the power output of a 650-kHz radio station is 50.0
kW, how many photons per second are produced? (b) If the
radio waves are broadcast uniformly in all directions, find the
number of photons per second per square meter at a distance
of 100 km. Assume no reflection from the ground or
absorption by the air.

34. How many x-ray photons per second are created by an x-
ray tube that produces a flux of x rays having a power of 1.00
W? Assume the average energy per photon is 75.0 keV.

35. (a) How far away must you be from a 650-kHz radio
station with power 50.0 kW for there to be only one photon
per second per square meter? Assume no reflections or
absorption, as if you were in deep outer space. (b) Discuss
the implications for detecting intelligent life in other solar
systems by detecting their radio broadcasts.

36. Assuming that 10.0% of a 100-W light bulb’s energy
output is in the visible range (typical for incandescent bulbs)
with an average wavelength of 580 nm, and that the photons
spread out uniformly and are not absorbed by the
atmosphere, how far away would you be if 500 photons per
second enter the 3.00-mm diameter pupil of your eye? (This
number easily stimulates the retina.)

37. Construct Your Own Problem

Consider a laser pen. Construct a problem in which you
calculate the number of photons per second emitted by the
pen. Among the things to be considered are the laser pen’s
wavelength and power output. Your instructor may also wish
for you to determine the minimum diffraction spreading in the
beam and the number of photons per square centimeter the
pen can project at some large distance. In this latter case,
you will also need to consider the output size of the laser
beam, the distance to the object being illuminated, and any
absorption or scattering along the way.

29.4 Photon Momentum

38. (a) Find the momentum of a 4.00-cm-wavelength
microwave photon. (b) Discuss why you expect the answer to
(a) to be very small.

39. (a) What is the momentum of a 0.0100-nm-wavelength
photon that could detect details of an atom? (b) What is its
energy in MeV?

40. (a) What is the wavelength of a photon that has a

momentum of 5.00×10−29 kg ⋅ m/s ? (b) Find its energy in

eV.

41. (a) A γ -ray photon has a momentum of

8.00×10−21 kg ⋅ m/s . What is its wavelength? (b)

Calculate its energy in MeV.

42. (a) Calculate the momentum of a photon having a
wavelength of 2.50 μm . (b) Find the velocity of an electron

having the same momentum. (c) What is the kinetic energy of
the electron, and how does it compare with that of the
photon?

43. Repeat the previous problem for a 10.0-nm-wavelength
photon.

44. (a) Calculate the wavelength of a photon that has the
same momentum as a proton moving at 1.00% of the speed
of light. (b) What is the energy of the photon in MeV? (c)
What is the kinetic energy of the proton in MeV?

45. (a) Find the momentum of a 100-keV x-ray photon. (b)
Find the equivalent velocity of a neutron with the same
momentum. (c) What is the neutron’s kinetic energy in keV?

46. Take the ratio of relativistic rest energy, E = γmc2 , to

relativistic momentum, p = γmu , and show that in the limit

that mass approaches zero, you find E / p = c .

47. Construct Your Own Problem

Consider a space sail such as mentioned in Example 29.5.
Construct a problem in which you calculate the light pressure

on the sail in N/m2 produced by reflecting sunlight. Also

calculate the force that could be produced and how much
effect that would have on a spacecraft. Among the things to
be considered are the intensity of sunlight, its average
wavelength, the number of photons per square meter this
implies, the area of the space sail, and the mass of the
system being accelerated.

48. Unreasonable Results

A car feels a small force due to the light it sends out from its
headlights, equal to the momentum of the light divided by the
time in which it is emitted. (a) Calculate the power of each

headlight, if they exert a total force of 2.00×10−2 N
backward on the car. (b) What is unreasonable about this
result? (c) Which assumptions are unreasonable or
inconsistent?

29.6 The Wave Nature of Matter

49. At what velocity will an electron have a wavelength of
1.00 m?

50. What is the wavelength of an electron moving at 3.00% of
the speed of light?

51. At what velocity does a proton have a 6.00-fm wavelength
(about the size of a nucleus)? Assume the proton is

nonrelativistic. (1 femtometer = 10−15 m. )

52. What is the velocity of a 0.400-kg billiard ball if its
wavelength is 7.50 cm (large enough for it to interfere with
other billiard balls)?

53. Find the wavelength of a proton moving at 1.00% of the
speed of light.

54. Experiments are performed with ultracold neutrons having
velocities as small as 1.00 m/s. (a) What is the wavelength of
such a neutron? (b) What is its kinetic energy in eV?
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55. (a) Find the velocity of a neutron that has a 6.00-fm
wavelength (about the size of a nucleus). Assume the neutron
is nonrelativistic. (b) What is the neutron’s kinetic energy in
MeV?

56. What is the wavelength of an electron accelerated
through a 30.0-kV potential, as in a TV tube?

57. What is the kinetic energy of an electron in a TEM having
a 0.0100-nm wavelength?

58. (a) Calculate the velocity of an electron that has a
wavelength of 1.00 μm. (b) Through what voltage must the

electron be accelerated to have this velocity?

59. The velocity of a proton emerging from a Van de Graaff
accelerator is 25.0% of the speed of light. (a) What is the
proton’s wavelength? (b) What is its kinetic energy, assuming
it is nonrelativistic? (c) What was the equivalent voltage
through which it was accelerated?

60. The kinetic energy of an electron accelerated in an x-ray
tube is 100 keV. Assuming it is nonrelativistic, what is its
wavelength?

61. Unreasonable Results

(a) Assuming it is nonrelativistic, calculate the velocity of an
electron with a 0.100-fm wavelength (small enough to detect
details of a nucleus). (b) What is unreasonable about this
result? (c) Which assumptions are unreasonable or
inconsistent?

29.7 Probability: The Heisenberg Uncertainty
Principle

62. (a) If the position of an electron in a membrane is
measured to an accuracy of 1.00 μm , what is the electron’s

minimum uncertainty in velocity? (b) If the electron has this
velocity, what is its kinetic energy in eV? (c) What are the
implications of this energy, comparing it to typical molecular
binding energies?

63. (a) If the position of a chlorine ion in a membrane is
measured to an accuracy of 1.00 μm , what is its minimum

uncertainty in velocity, given its mass is 5.86×10−26 kg ?

(b) If the ion has this velocity, what is its kinetic energy in eV,
and how does this compare with typical molecular binding
energies?

64. Suppose the velocity of an electron in an atom is known

to an accuracy of 2.0×103 m/s (reasonably accurate

compared with orbital velocities). What is the electron’s
minimum uncertainty in position, and how does this compare
with the approximate 0.1-nm size of the atom?

65. The velocity of a proton in an accelerator is known to an
accuracy of 0.250% of the speed of light. (This could be small
compared with its velocity.) What is the smallest possible
uncertainty in its position?

66. A relatively long-lived excited state of an atom has a
lifetime of 3.00 ms. What is the minimum uncertainty in its
energy?

67. (a) The lifetime of a highly unstable nucleus is 10−20 s .

What is the smallest uncertainty in its decay energy? (b)
Compare this with the rest energy of an electron.

68. The decay energy of a short-lived particle has an
uncertainty of 1.0 MeV due to its short lifetime. What is the
smallest lifetime it can have?

69. The decay energy of a short-lived nuclear excited state
has an uncertainty of 2.0 eV due to its short lifetime. What is
the smallest lifetime it can have?

70. What is the approximate uncertainty in the mass of a
muon, as determined from its decay lifetime?

71. Derive the approximate form of Heisenberg’s uncertainty
principle for energy and time, ΔEΔt ≈ h , using the

following arguments: Since the position of a particle is
uncertain by Δx ≈ λ , where λ is the wavelength of the

photon used to examine it, there is an uncertainty in the time
the photon takes to traverse Δx . Furthermore, the photon

has an energy related to its wavelength, and it can transfer
some or all of this energy to the object being examined. Thus
the uncertainty in the energy of the object is also related to λ
. Find Δt and ΔE ; then multiply them to give the

approximate uncertainty principle.

29.8 The Particle-Wave Duality Reviewed

72. Integrated Concepts

The 54.0-eV electron in Example 29.7 has a 0.167-nm
wavelength. If such electrons are passed through a double slit
and have their first maximum at an angle of 25.0º , what is

the slit separation d ?

73. Integrated Concepts

An electron microscope produces electrons with a 2.00-pm
wavelength. If these are passed through a 1.00-nm single slit,
at what angle will the first diffraction minimum be found?

74. Integrated Concepts

A certain heat lamp emits 200 W of mostly IR radiation
averaging 1500 nm in wavelength. (a) What is the average
photon energy in joules? (b) How many of these photons are
required to increase the temperature of a person’s shoulder
by 2.0ºC , assuming the affected mass is 4.0 kg with a

specific heat of 0.83 kcal/kg ⋅ ºC . Also assume no other

significant heat transfer. (c) How long does this take?

75. Integrated Concepts

On its high power setting, a microwave oven produces 900 W
of 2560 MHz microwaves. (a) How many photons per second
is this? (b) How many photons are required to increase the
temperature of a 0.500-kg mass of pasta by 45.0ºC ,

assuming a specific heat of 0.900 kcal/kg ⋅ ºC ? Neglect all

other heat transfer. (c) How long must the microwave
operator wait for their pasta to be ready?

76. Integrated Concepts

(a) Calculate the amount of microwave energy in joules
needed to raise the temperature of 1.00 kg of soup from
20.0ºC to 100ºC . (b) What is the total momentum of all the

microwave photons it takes to do this? (c) Calculate the
velocity of a 1.00-kg mass with the same momentum. (d)
What is the kinetic energy of this mass?
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77. Integrated Concepts

(a) What is γ for an electron emerging from the Stanford

Linear Accelerator with a total energy of 50.0 GeV? (b) Find
its momentum. (c) What is the electron’s wavelength?

78. Integrated Concepts

(a) What is γ for a proton having an energy of 1.00 TeV,

produced by the Fermilab accelerator? (b) Find its
momentum. (c) What is the proton’s wavelength?

79. Integrated Concepts

An electron microscope passes 1.00-pm-wavelength
electrons through a circular aperture 2.00 μm in diameter.

What is the angle between two just-resolvable point sources
for this microscope?

80. Integrated Concepts

(a) Calculate the velocity of electrons that form the same
pattern as 450-nm light when passed through a double slit.
(b) Calculate the kinetic energy of each and compare them.
(c) Would either be easier to generate than the other?
Explain.

81. Integrated Concepts

(a) What is the separation between double slits that produces
a second-order minimum at 45.0º for 650-nm light? (b) What

slit separation is needed to produce the same pattern for
1.00-keV protons.

82. Integrated Concepts

A laser with a power output of 2.00 mW at a wavelength of
400 nm is projected onto calcium metal. (a) How many
electrons per second are ejected? (b) What power is carried
away by the electrons, given that the binding energy is 2.71
eV? (c) Calculate the current of ejected electrons. (d) If the
photoelectric material is electrically insulated and acts like a
2.00-pF capacitor, how long will current flow before the
capacitor voltage stops it?

83. Integrated Concepts

One problem with x rays is that they are not sensed.
Calculate the temperature increase of a researcher exposed
in a few seconds to a nearly fatal accidental dose of x rays
under the following conditions. The energy of the x-ray

photons is 200 keV, and 4.00×1013 of them are absorbed

per kilogram of tissue, the specific heat of which is
0.830 kcal/kg ⋅ ºC . (Note that medical diagnostic x-ray

machines cannot produce an intensity this great.)

84. Integrated Concepts

A 1.00-fm photon has a wavelength short enough to detect
some information about nuclei. (a) What is the photon
momentum? (b) What is its energy in joules and MeV? (c)
What is the (relativistic) velocity of an electron with the same
momentum? (d) Calculate the electron’s kinetic energy.

85. Integrated Concepts

The momentum of light is exactly reversed when reflected
straight back from a mirror, assuming negligible recoil of the
mirror. Thus the change in momentum is twice the photon

momentum. Suppose light of intensity 1.00 kW/m2 reflects

from a mirror of area 2.00 m2 . (a) Calculate the energy

reflected in 1.00 s. (b) What is the momentum imparted to the
mirror? (c) Using the most general form of Newton’s second
law, what is the force on the mirror? (d) Does the assumption
of no mirror recoil seem reasonable?

86. Integrated Concepts

Sunlight above the Earth’s atmosphere has an intensity of

1.30 kW/m2 . If this is reflected straight back from a mirror

that has only a small recoil, the light’s momentum is exactly
reversed, giving the mirror twice the incident momentum. (a)
Calculate the force per square meter of mirror. (b) Very low
mass mirrors can be constructed in the near weightlessness
of space, and attached to a spaceship to sail it. Once done,
the average mass per square meter of the spaceship is 0.100
kg. Find the acceleration of the spaceship if all other forces
are balanced. (c) How fast is it moving 24 hours later?
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30 ATOMIC PHYSICS

Figure 30.1 Individual carbon atoms are visible in this image of a carbon nanotube made by a scanning tunneling electron microscope. (credit: Taner
Yildirim, National Institute of Standards and Technology, via Wikimedia Commons)

Chapter Outline
30.1. Discovery of the Atom

• Describe the basic structure of the atom, the substructure of all matter.
30.2. Discovery of the Parts of the Atom: Electrons and Nuclei

• Describe how electrons were discovered.
• Explain the Millikan oil drop experiment.
• Describe Rutherford’s gold foil experiment.
• Describe Rutherford’s planetary model of the atom.

30.3. Bohr’s Theory of the Hydrogen Atom
• Describe the mysteries of atomic spectra.
• Explain Bohr’s theory of the hydrogen atom.
• Explain Bohr’s planetary model of the atom.
• Illustrate energy state using the energy-level diagram.
• Describe the triumphs and limits of Bohr’s theory.

30.4. X Rays: Atomic Origins and Applications
• Define x-ray tube and its spectrum.
• Show the x-ray characteristic energy.
• Specify the use of x rays in medical observations.
• Explain the use of x rays in CT scanners in diagnostics.

30.5. Applications of Atomic Excitations and De-Excitations
• Define and discuss fluorescence.
• Define metastable.
• Describe how laser emission is produced.
• Explain population inversion.
• Define and discuss holography.

30.6. The Wave Nature of Matter Causes Quantization
• Explain Bohr’s model of atom.
• Define and describe quantization of angular momentum.
• Calculate the angular momentum for an orbit of atom.
• Define and describe the wave-like properties of matter.

30.7. Patterns in Spectra Reveal More Quantization
• State and discuss the Zeeman effect.
• Define orbital magnetic field.
• Define orbital angular momentum.
• Define space quantization.

30.8. Quantum Numbers and Rules
• Define quantum number.
• Calculate angle of angular momentum vector with an axis.
• Define spin quantum number.

30.9. The Pauli Exclusion Principle
• Define the composition of an atom along with its electrons, neutrons, and protons.
• Explain the Pauli exclusion principle and its application to the atom.
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• Specify the shell and subshell symbols and their positions.
• Define the position of electrons in different shells of an atom.
• State the position of each element in the periodic table according to shell filling.

Introduction to Atomic Physics

From childhood on, we learn that atoms are a substructure of all things around us, from the air we breathe to the autumn leaves
that blanket a forest trail. Invisible to the eye, the existence and properties of atoms are used to explain many phenomena—a
theme found throughout this text. In this chapter, we discuss the discovery of atoms and their own substructures; we then apply
quantum mechanics to the description of atoms, and their properties and interactions. Along the way, we will find, much like the
scientists who made the original discoveries, that new concepts emerge with applications far beyond the boundaries of atomic
physics.

30.1 Discovery of the Atom

How do we know that atoms are really there if we cannot see them with our eyes? A brief account of the progression from the
proposal of atoms by the Greeks to the first direct evidence of their existence follows.

People have long speculated about the structure of matter and the existence of atoms. The earliest significant ideas to survive
are due to the ancient Greeks in the fifth century BCE, especially those of the philosophers Leucippus and Democritus. (There is
some evidence that philosophers in both India and China made similar speculations, at about the same time.) They considered
the question of whether a substance can be divided without limit into ever smaller pieces. There are only a few possible answers
to this question. One is that infinitesimally small subdivision is possible. Another is what Democritus in particular believed—that
there is a smallest unit that cannot be further subdivided. Democritus called this the atom. We now know that atoms themselves
can be subdivided, but their identity is destroyed in the process, so the Greeks were correct in a respect. The Greeks also felt
that atoms were in constant motion, another correct notion.

The Greeks and others speculated about the properties of atoms, proposing that only a few types existed and that all matter was
formed as various combinations of these types. The famous proposal that the basic elements were earth, air, fire, and water was
brilliant, but incorrect. The Greeks had identified the most common examples of the four states of matter (solid, gas, plasma, and
liquid), rather than the basic elements. More than 2000 years passed before observations could be made with equipment
capable of revealing the true nature of atoms.

Over the centuries, discoveries were made regarding the properties of substances and their chemical reactions. Certain
systematic features were recognized, but similarities between common and rare elements resulted in efforts to transmute them
(lead into gold, in particular) for financial gain. Secrecy was endemic. Alchemists discovered and rediscovered many facts but did
not make them broadly available. As the Middle Ages ended, alchemy gradually faded, and the science of chemistry arose. It
was no longer possible, nor considered desirable, to keep discoveries secret. Collective knowledge grew, and by the beginning
of the 19th century, an important fact was well established—the masses of reactants in specific chemical reactions always have a
particular mass ratio. This is very strong indirect evidence that there are basic units (atoms and molecules) that have these same
mass ratios. The English chemist John Dalton (1766–1844) did much of this work, with significant contributions by the Italian
physicist Amedeo Avogadro (1776–1856). It was Avogadro who developed the idea of a fixed number of atoms and molecules in
a mole, and this special number is called Avogadro’s number in his honor. The Austrian physicist Johann Josef Loschmidt was
the first to measure the value of the constant in 1865 using the kinetic theory of gases.

Patterns and Systematics

The recognition and appreciation of patterns has enabled us to make many discoveries. The periodic table of elements was
proposed as an organized summary of the known elements long before all elements had been discovered, and it led to
many other discoveries. We shall see in later chapters that patterns in the properties of subatomic particles led to the
proposal of quarks as their underlying structure, an idea that is still bearing fruit.

Knowledge of the properties of elements and compounds grew, culminating in the mid-19th-century development of the periodic
table of the elements by Dmitri Mendeleev (1834–1907), the great Russian chemist. Mendeleev proposed an ingenious array
that highlighted the periodic nature of the properties of elements. Believing in the systematics of the periodic table, he also
predicted the existence of then-unknown elements to complete it. Once these elements were discovered and determined to have
properties predicted by Mendeleev, his periodic table became universally accepted.

Also during the 19th century, the kinetic theory of gases was developed. Kinetic theory is based on the existence of atoms and
molecules in random thermal motion and provides a microscopic explanation of the gas laws, heat transfer, and thermodynamics
(see Introduction to Temperature, Kinetic Theory, and the Gas Laws and Introduction to Laws of Thermodynamics).
Kinetic theory works so well that it is another strong indication of the existence of atoms. But it is still indirect
evidence—individual atoms and molecules had not been observed. There were heated debates about the validity of kinetic
theory until direct evidence of atoms was obtained.

The first truly direct evidence of atoms is credited to Robert Brown, a Scottish botanist. In 1827, he noticed that tiny pollen grains
suspended in still water moved about in complex paths. This can be observed with a microscope for any small particles in a fluid.
The motion is caused by the random thermal motions of fluid molecules colliding with particles in the fluid, and it is now called
Brownian motion. (See Figure 30.2.) Statistical fluctuations in the numbers of molecules striking the sides of a visible particle
cause it to move first this way, then that. Although the molecules cannot be directly observed, their effects on the particle can be.

1178 Chapter 30 | Atomic Physics

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



By examining Brownian motion, the size of molecules can be calculated. The smaller and more numerous they are, the smaller
the fluctuations in the numbers striking different sides.

Figure 30.2 The position of a pollen grain in water, measured every few seconds under a microscope, exhibits Brownian motion. Brownian motion is
due to fluctuations in the number of atoms and molecules colliding with a small mass, causing it to move about in complex paths. This is nearly direct
evidence for the existence of atoms, providing a satisfactory alternative explanation cannot be found.

It was Albert Einstein who, starting in his epochal year of 1905, published several papers that explained precisely how Brownian
motion could be used to measure the size of atoms and molecules. (In 1905 Einstein created special relativity, proposed photons
as quanta of EM radiation, and produced a theory of Brownian motion that allowed the size of atoms to be determined. All of this
was done in his spare time, since he worked days as a patent examiner. Any one of these very basic works could have been the
crowning achievement of an entire career—yet Einstein did even more in later years.) Their sizes were only approximately

known to be 10−10 m , based on a comparison of latent heat of vaporization and surface tension made in about 1805 by

Thomas Young of double-slit fame and the famous astronomer and mathematician Simon Laplace.

Using Einstein’s ideas, the French physicist Jean-Baptiste Perrin (1870–1942) carefully observed Brownian motion; not only did
he confirm Einstein’s theory, he also produced accurate sizes for atoms and molecules. Since molecular weights and densities of
materials were well established, knowing atomic and molecular sizes allowed a precise value for Avogadro’s number to be
obtained. (If we know how big an atom is, we know how many fit into a certain volume.) Perrin also used these ideas to explain
atomic and molecular agitation effects in sedimentation, and he received the 1926 Nobel Prize for his achievements. Most
scientists were already convinced of the existence of atoms, but the accurate observation and analysis of Brownian motion was
conclusive—it was the first truly direct evidence.

A huge array of direct and indirect evidence for the existence of atoms now exists. For example, it has become possible to
accelerate ions (much as electrons are accelerated in cathode-ray tubes) and to detect them individually as well as measure
their masses (see More Applications of Magnetism for a discussion of mass spectrometers). Other devices that observe
individual atoms, such as the scanning tunneling electron microscope, will be discussed elsewhere. (See Figure 30.3.) All of our
understanding of the properties of matter is based on and consistent with the atom. The atom’s substructures, such as electron
shells and the nucleus, are both interesting and important. The nucleus in turn has a substructure, as do the particles of which it
is composed. These topics, and the question of whether there is a smallest basic structure to matter, will be explored in later
parts of the text.

Figure 30.3 Individual atoms can be detected with devices such as the scanning tunneling electron microscope that produced this image of individual
gold atoms on a graphite substrate. (credit: Erwin Rossen, Eindhoven University of Technology, via Wikimedia Commons)

30.2 Discovery of the Parts of the Atom: Electrons and Nuclei

Just as atoms are a substructure of matter, electrons and nuclei are substructures of the atom. The experiments that were used
to discover electrons and nuclei reveal some of the basic properties of atoms and can be readily understood using ideas such as
electrostatic and magnetic force, already covered in previous chapters.
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Charges and Electromagnetic Forces

In previous discussions, we have noted that positive charge is associated with nuclei and negative charge with electrons.
We have also covered many aspects of the electric and magnetic forces that affect charges. We will now explore the
discovery of the electron and nucleus as substructures of the atom and examine their contributions to the properties of
atoms.

The Electron

Gas discharge tubes, such as that shown in Figure 30.4, consist of an evacuated glass tube containing two metal electrodes and
a rarefied gas. When a high voltage is applied to the electrodes, the gas glows. These tubes were the precursors to today’s neon
lights. They were first studied seriously by Heinrich Geissler, a German inventor and glassblower, starting in the 1860s. The
English scientist William Crookes, among others, continued to study what for some time were called Crookes tubes, wherein
electrons are freed from atoms and molecules in the rarefied gas inside the tube and are accelerated from the cathode (negative)
to the anode (positive) by the high potential. These “cathode rays” collide with the gas atoms and molecules and excite them,
resulting in the emission of electromagnetic (EM) radiation that makes the electrons’ path visible as a ray that spreads and fades
as it moves away from the cathode.

Gas discharge tubes today are most commonly called cathode-ray tubes, because the rays originate at the cathode. Crookes
showed that the electrons carry momentum (they can make a small paddle wheel rotate). He also found that their normally
straight path is bent by a magnet in the direction expected for a negative charge moving away from the cathode. These were the
first direct indications of electrons and their charge.

Figure 30.4 A gas discharge tube glows when a high voltage is applied to it. Electrons emitted from the cathode are accelerated toward the anode;
they excite atoms and molecules in the gas, which glow in response. Once called Geissler tubes and later Crookes tubes, they are now known as
cathode-ray tubes (CRTs) and are found in older TVs, computer screens, and x-ray machines. When a magnetic field is applied, the beam bends in the
direction expected for negative charge. (credit: Paul Downey, Flickr)

The English physicist J. J. Thomson (1856–1940) improved and expanded the scope of experiments with gas discharge tubes.
(See Figure 30.5 and Figure 30.6.) He verified the negative charge of the cathode rays with both magnetic and electric fields.
Additionally, he collected the rays in a metal cup and found an excess of negative charge. Thomson was also able to measure
the ratio of the charge of the electron to its mass, qe / me —an important step to finding the actual values of both qe and

me . Figure 30.7 shows a cathode-ray tube, which produces a narrow beam of electrons that passes through charging plates

connected to a high-voltage power supply. An electric field E is produced between the charging plates, and the cathode-ray

tube is placed between the poles of a magnet so that the electric field E is perpendicular to the magnetic field B of the magnet.

These fields, being perpendicular to each other, produce opposing forces on the electrons. As discussed for mass spectrometers
in More Applications of Magnetism, if the net force due to the fields vanishes, then the velocity of the charged particle is
v = E / B . In this manner, Thomson determined the velocity of the electrons and then moved the beam up and down by

adjusting the electric field.
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Figure 30.5 J. J. Thomson (credit: www.firstworldwar.com, via Wikimedia Commons)

Figure 30.6 Diagram of Thomson’s CRT. (credit: Kurzon, Wikimedia Commons)

Figure 30.7 This schematic shows the electron beam in a CRT passing through crossed electric and magnetic fields and causing phosphor to glow
when striking the end of the tube.

To see how the amount of deflection is used to calculate qe / me , note that the deflection is proportional to the electric force on

the electron:

(30.1)F = qeE.

But the vertical deflection is also related to the electron’s mass, since the electron’s acceleration is

(30.2)a = F
me

.

The value of F is not known, since qe was not yet known. Substituting the expression for electric force into the expression for

acceleration yields
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(30.3)a = F
me

= qe E
me

.

Gathering terms, we have

(30.4)qe
me

= a
E .

The deflection is analyzed to get a , and E is determined from the applied voltage and distance between the plates; thus,
qe
me

can be determined. With the velocity known, another measurement of
qe
me

can be obtained by bending the beam of electrons

with the magnetic field. Since Fmag = qevB = mea , we have qe / me = a / vB . Consistent results are obtained using

magnetic deflection.

What is so important about qe / me , the ratio of the electron’s charge to its mass? The value obtained is

(30.5)qe
me

= −1.76×1011 C/kg (electron).

This is a huge number, as Thomson realized, and it implies that the electron has a very small mass. It was known from

electroplating that about 108 C/kg is needed to plate a material, a factor of about 1000 less than the charge per kilogram of

electrons. Thomson went on to do the same experiment for positively charged hydrogen ions (now known to be bare protons)
and found a charge per kilogram about 1000 times smaller than that for the electron, implying that the proton is about 1000 times
more massive than the electron. Today, we know more precisely that

(30.6)q p
m p

= 9.58×107 C/kg(proton),

where q p is the charge of the proton and m p is its mass. This ratio (to four significant figures) is 1836 times less charge per

kilogram than for the electron. Since the charges of electrons and protons are equal in magnitude, this implies m p = 1836me .

Thomson performed a variety of experiments using differing gases in discharge tubes and employing other methods, such as the
photoelectric effect, for freeing electrons from atoms. He always found the same properties for the electron, proving it to be an
independent particle. For his work, the important pieces of which he began to publish in 1897, Thomson was awarded the 1906
Nobel Prize in Physics. In retrospect, it is difficult to appreciate how astonishing it was to find that the atom has a substructure.
Thomson himself said, “It was only when I was convinced that the experiment left no escape from it that I published my belief in
the existence of bodies smaller than atoms.”

Thomson attempted to measure the charge of individual electrons, but his method could determine its charge only to the order of
magnitude expected.

Since Faraday’s experiments with electroplating in the 1830s, it had been known that about 100,000 C per mole was needed to
plate singly ionized ions. Dividing this by the number of ions per mole (that is, by Avogadro’s number), which was approximately

known, the charge per ion was calculated to be about 1.6×10−19 C , close to the actual value.

An American physicist, Robert Millikan (1868–1953) (see Figure 30.8), decided to improve upon Thomson’s experiment for
measuring qe and was eventually forced to try another approach, which is now a classic experiment performed by students.

The Millikan oil drop experiment is shown in Figure 30.9.
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Figure 30.8 Robert Millikan (credit: Unknown Author, via Wikimedia Commons)

Figure 30.9 The Millikan oil drop experiment produced the first accurate direct measurement of the charge on electrons, one of the most fundamental
constants in nature. Fine drops of oil become charged when sprayed. Their movement is observed between metal plates with a potential applied to
oppose the gravitational force. The balance of gravitational and electric forces allows the calculation of the charge on a drop. The charge is found to be

quantized in units of −1.6×10−19 C , thus determining directly the charge of the excess and missing electrons on the oil drops.

In the Millikan oil drop experiment, fine drops of oil are sprayed from an atomizer. Some of these are charged by the process and
can then be suspended between metal plates by a voltage between the plates. In this situation, the weight of the drop is
balanced by the electric force:

(30.7)mdrop g = qeE

The electric field is produced by the applied voltage, hence, E = V / d , and V is adjusted to just balance the drop’s weight.

The drops can be seen as points of reflected light using a microscope, but they are too small to directly measure their size and
mass. The mass of the drop is determined by observing how fast it falls when the voltage is turned off. Since air resistance is
very significant for these submicroscopic drops, the more massive drops fall faster than the less massive, and sophisticated
sedimentation calculations can reveal their mass. Oil is used rather than water, because it does not readily evaporate, and so
mass is nearly constant. Once the mass of the drop is known, the charge of the electron is given by rearranging the previous
equation:

(30.8)
q =

mdrop g
E =

mdrop gd
V ,

where d is the separation of the plates and V is the voltage that holds the drop motionless. (The same drop can be observed

for several hours to see that it really is motionless.) By 1913 Millikan had measured the charge of the electron qe to an accuracy

of 1%, and he improved this by a factor of 10 within a few years to a value of −1.60×10−19 C . He also observed that all

charges were multiples of the basic electron charge and that sudden changes could occur in which electrons were added or
removed from the drops. For this very fundamental direct measurement of qe and for his studies of the photoelectric effect,

Millikan was awarded the 1923 Nobel Prize in Physics.

With the charge of the electron known and the charge-to-mass ratio known, the electron’s mass can be calculated. It is
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(30.9)m = qe
⎛
⎝

qe
me
⎞
⎠
.

Substituting known values yields

(30.10)
me = −1.60×10−19 C

−1.76×1011 C/kg

or

(30.11)me = 9.11×10−31 kg (electron’s mass),

where the round-off errors have been corrected. The mass of the electron has been verified in many subsequent experiments
and is now known to an accuracy of better than one part in one million. It is an incredibly small mass and remains the smallest
known mass of any particle that has mass. (Some particles, such as photons, are massless and cannot be brought to rest, but
travel at the speed of light.) A similar calculation gives the masses of other particles, including the proton. To three digits, the
mass of the proton is now known to be

(30.12)m p = 1.67×10−27 kg (proton’s mass),

which is nearly identical to the mass of a hydrogen atom. What Thomson and Millikan had done was to prove the existence of
one substructure of atoms, the electron, and further to show that it had only a tiny fraction of the mass of an atom. The nucleus of
an atom contains most of its mass, and the nature of the nucleus was completely unanticipated.

Another important characteristic of quantum mechanics was also beginning to emerge. All electrons are identical to one another.
The charge and mass of electrons are not average values; rather, they are unique values that all electrons have. This is true of
other fundamental entities at the submicroscopic level. All protons are identical to one another, and so on.

The Nucleus

Here, we examine the first direct evidence of the size and mass of the nucleus. In later chapters, we will examine many other
aspects of nuclear physics, but the basic information on nuclear size and mass is so important to understanding the atom that we
consider it here.

Nuclear radioactivity was discovered in 1896, and it was soon the subject of intense study by a number of the best scientists in
the world. Among them was New Zealander Lord Ernest Rutherford, who made numerous fundamental discoveries and earned
the title of “father of nuclear physics.” Born in Nelson, Rutherford did his postgraduate studies at the Cavendish Laboratories in
England before taking up a position at McGill University in Canada where he did the work that earned him a Nobel Prize in
Chemistry in 1908. In the area of atomic and nuclear physics, there is much overlap between chemistry and physics, with
physics providing the fundamental enabling theories. He returned to England in later years and had six future Nobel Prize
winners as students. Rutherford used nuclear radiation to directly examine the size and mass of the atomic nucleus. The
experiment he devised is shown in Figure 30.10. A radioactive source that emits alpha radiation was placed in a lead container
with a hole in one side to produce a beam of alpha particles, which are a type of ionizing radiation ejected by the nuclei of a
radioactive source. A thin gold foil was placed in the beam, and the scattering of the alpha particles was observed by the glow
they caused when they struck a phosphor screen.

Figure 30.10 Rutherford’s experiment gave direct evidence for the size and mass of the nucleus by scattering alpha particles from a thin gold foil.

Alpha particles with energies of about 5 MeV are emitted from a radioactive source (which is a small metal container in which a specific amount of

a radioactive material is sealed), are collimated into a beam, and fall upon the foil. The number of particles that penetrate the foil or scatter to various
angles indicates that gold nuclei are very small and contain nearly all of the gold atom’s mass. This is particularly indicated by the alpha particles that
scatter to very large angles, much like a soccer ball bouncing off a goalie’s head.

Alpha particles were known to be the doubly charged positive nuclei of helium atoms that had kinetic energies on the order of
5 MeV when emitted in nuclear decay, which is the disintegration of the nucleus of an unstable nuclide by the spontaneous

emission of charged particles. These particles interact with matter mostly via the Coulomb force, and the manner in which they
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scatter from nuclei can reveal nuclear size and mass. This is analogous to observing how a bowling ball is scattered by an object
you cannot see directly. Because the alpha particle’s energy is so large compared with the typical energies associated with
atoms ( MeV versus eV ), you would expect the alpha particles to simply crash through a thin foil much like a supersonic

bowling ball would crash through a few dozen rows of bowling pins. Thomson had envisioned the atom to be a small sphere in
which equal amounts of positive and negative charge were distributed evenly. The incident massive alpha particles would suffer
only small deflections in such a model. Instead, Rutherford and his collaborators found that alpha particles occasionally were
scattered to large angles, some even back in the direction from which they came! Detailed analysis using conservation of
momentum and energy—particularly of the small number that came straight back—implied that gold nuclei are very small
compared with the size of a gold atom, contain almost all of the atom’s mass, and are tightly bound. Since the gold nucleus is
several times more massive than the alpha particle, a head-on collision would scatter the alpha particle straight back toward the
source. In addition, the smaller the nucleus, the fewer alpha particles that would hit one head on.

Although the results of the experiment were published by his colleagues in 1909, it took Rutherford two years to convince himself
of their meaning. Like Thomson before him, Rutherford was reluctant to accept such radical results. Nature on a small scale is so
unlike our classical world that even those at the forefront of discovery are sometimes surprised. Rutherford later wrote: “It was
almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you. On consideration, I
realized that this scattering backwards ... [meant] ... the greatest part of the mass of the atom was concentrated in a tiny
nucleus.” In 1911, Rutherford published his analysis together with a proposed model of the atom. The size of the nucleus was

determined to be about 10−15 m , or 100,000 times smaller than the atom. This implies a huge density, on the order of

1015 g/cm3 , vastly unlike any macroscopic matter. Also implied is the existence of previously unknown nuclear forces to

counteract the huge repulsive Coulomb forces among the positive charges in the nucleus. Huge forces would also be consistent
with the large energies emitted in nuclear radiation.

The small size of the nucleus also implies that the atom is mostly empty inside. In fact, in Rutherford’s experiment, most alphas
went straight through the gold foil with very little scattering, since electrons have such small masses and since the atom was
mostly empty with nothing for the alpha to hit. There were already hints of this at the time Rutherford performed his experiments,
since energetic electrons had been observed to penetrate thin foils more easily than expected. Figure 30.11 shows a schematic

of the atoms in a thin foil with circles representing the size of the atoms (about 10−10 m ) and dots representing the nuclei.

(The dots are not to scale—if they were, you would need a microscope to see them.) Most alpha particles miss the small nuclei
and are only slightly scattered by electrons. Occasionally, (about once in 8000 times in Rutherford’s experiment), an alpha hits a
nucleus head-on and is scattered straight backward.

Figure 30.11 An expanded view of the atoms in the gold foil in Rutherford’s experiment. Circles represent the atoms (about 10−10 m in diameter),

while the dots represent the nuclei (about 10−15 m in diameter). To be visible, the dots are much larger than scale. Most alpha particles crash

through but are relatively unaffected because of their high energy and the electron’s small mass. Some, however, head straight toward a nucleus and
are scattered straight back. A detailed analysis gives the size and mass of the nucleus.

Based on the size and mass of the nucleus revealed by his experiment, as well as the mass of electrons, Rutherford proposed
the planetary model of the atom. The planetary model of the atom pictures low-mass electrons orbiting a large-mass nucleus.
The sizes of the electron orbits are large compared with the size of the nucleus, with mostly vacuum inside the atom. This picture
is analogous to how low-mass planets in our solar system orbit the large-mass Sun at distances large compared with the size of
the sun. In the atom, the attractive Coulomb force is analogous to gravitation in the planetary system. (See Figure 30.12.) Note
that a model or mental picture is needed to explain experimental results, since the atom is too small to be directly observed with
visible light.
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Figure 30.12 Rutherford’s planetary model of the atom incorporates the characteristics of the nucleus, electrons, and the size of the atom. This model
was the first to recognize the structure of atoms, in which low-mass electrons orbit a very small, massive nucleus in orbits much larger than the
nucleus. The atom is mostly empty and is analogous to our planetary system.

Rutherford’s planetary model of the atom was crucial to understanding the characteristics of atoms, and their interactions and
energies, as we shall see in the next few sections. Also, it was an indication of how different nature is from the familiar classical
world on the small, quantum mechanical scale. The discovery of a substructure to all matter in the form of atoms and molecules
was now being taken a step further to reveal a substructure of atoms that was simpler than the 92 elements then known. We
have continued to search for deeper substructures, such as those inside the nucleus, with some success. In later chapters, we
will follow this quest in the discussion of quarks and other elementary particles, and we will look at the direction the search
seems now to be heading.

PhET Explorations: Rutherford Scattering

How did Rutherford figure out the structure of the atom without being able to see it? Simulate the famous experiment in
which he disproved the Plum Pudding model of the atom by observing alpha particles bouncing off atoms and determining
that they must have a small core.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42592/
1.10/#Phet_module_31.2)

Figure 30.13

30.3 Bohr’s Theory of the Hydrogen Atom

The great Danish physicist Niels Bohr (1885–1962) made immediate use of Rutherford’s planetary model of the atom. (Figure
30.14). Bohr became convinced of its validity and spent part of 1912 at Rutherford’s laboratory. In 1913, after returning to
Copenhagen, he began publishing his theory of the simplest atom, hydrogen, based on the planetary model of the atom. For
decades, many questions had been asked about atomic characteristics. From their sizes to their spectra, much was known about
atoms, but little had been explained in terms of the laws of physics. Bohr’s theory explained the atomic spectrum of hydrogen
and established new and broadly applicable principles in quantum mechanics.

Figure 30.14 Niels Bohr, Danish physicist, used the planetary model of the atom to explain the atomic spectrum and size of the hydrogen atom. His
many contributions to the development of atomic physics and quantum mechanics, his personal influence on many students and colleagues, and his
personal integrity, especially in the face of Nazi oppression, earned him a prominent place in history. (credit: Unknown Author, via Wikimedia
Commons)

Mysteries of Atomic Spectra

As noted in Quantization of Energy , the energies of some small systems are quantized. Atomic and molecular emission and
absorption spectra have been known for over a century to be discrete (or quantized). (See Figure 30.15.) Maxwell and others
had realized that there must be a connection between the spectrum of an atom and its structure, something like the resonant
frequencies of musical instruments. But, in spite of years of efforts by many great minds, no one had a workable theory. (It was a
running joke that any theory of atomic and molecular spectra could be destroyed by throwing a book of data at it, so complex
were the spectra.) Following Einstein’s proposal of photons with quantized energies directly proportional to their wavelengths, it
became even more evident that electrons in atoms can exist only in discrete orbits.
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Figure 30.15 Part (a) shows, from left to right, a discharge tube, slit, and diffraction grating producing a line spectrum. Part (b) shows the emission line
spectrum for iron. The discrete lines imply quantized energy states for the atoms that produce them. The line spectrum for each element is unique,
providing a powerful and much used analytical tool, and many line spectra were well known for many years before they could be explained with
physics. (credit for (b): Yttrium91, Wikimedia Commons)

In some cases, it had been possible to devise formulas that described the emission spectra. As you might expect, the simplest
atom—hydrogen, with its single electron—has a relatively simple spectrum. The hydrogen spectrum had been observed in the
infrared (IR), visible, and ultraviolet (UV), and several series of spectral lines had been observed. (See Figure 30.16.) These
series are named after early researchers who studied them in particular depth.

The observed hydrogen-spectrum wavelengths can be calculated using the following formula:

(30.13)
1
λ = R
⎛
⎝
⎜ 1
nf

2 − 1
ni

2

⎞
⎠
⎟,

where λ is the wavelength of the emitted EM radiation and R is the Rydberg constant, determined by the experiment to be

(30.14)R = 1.097×107 / m (or m−1).

The constant nf is a positive integer associated with a specific series. For the Lyman series, nf = 1 ; for the Balmer series,

nf = 2 ; for the Paschen series, nf = 3 ; and so on. The Lyman series is entirely in the UV, while part of the Balmer series is

visible with the remainder UV. The Paschen series and all the rest are entirely IR. There are apparently an unlimited number of
series, although they lie progressively farther into the infrared and become difficult to observe as nf increases. The constant ni
is a positive integer, but it must be greater than nf . Thus, for the Balmer series, nf = 2 and ni = 3, 4, 5, 6, ... . Note that ni
can approach infinity. While the formula in the wavelengths equation was just a recipe designed to fit data and was not based on
physical principles, it did imply a deeper meaning. Balmer first devised the formula for his series alone, and it was later found to
describe all the other series by using different values of nf . Bohr was the first to comprehend the deeper meaning. Again, we

see the interplay between experiment and theory in physics. Experimentally, the spectra were well established, an equation was
found to fit the experimental data, but the theoretical foundation was missing.
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Figure 30.16 A schematic of the hydrogen spectrum shows several series named for those who contributed most to their determination. Part of the
Balmer series is in the visible spectrum, while the Lyman series is entirely in the UV, and the Paschen series and others are in the IR. Values of nf
and ni are shown for some of the lines.

Example 30.1 Calculating Wave Interference of a Hydrogen Line

What is the distance between the slits of a grating that produces a first-order maximum for the second Balmer line at an
angle of 15º ?

Strategy and Concept

For an Integrated Concept problem, we must first identify the physical principles involved. In this example, we need to know
(a) the wavelength of light as well as (b) conditions for an interference maximum for the pattern from a double slit. Part (a)
deals with a topic of the present chapter, while part (b) considers the wave interference material of Wave Optics.

Solution for (a)

Hydrogen spectrum wavelength. The Balmer series requires that nf = 2 . The first line in the series is taken to be for

ni = 3 , and so the second would have ni = 4 .

The calculation is a straightforward application of the wavelength equation. Entering the determined values for nf and ni
yields

(30.15)
1
λ = R

⎛
⎝
⎜ 1
nf

2 − 1
ni

2

⎞
⎠
⎟

= ⎛
⎝1.097×107 m–1⎞⎠

⎛
⎝ 1

22 − 1
42
⎞
⎠

= 2.057×106 m–1 .

Inverting to find λ gives

(30.16)λ = 1
2.057×106 m–1 = 486×10−9 m

= 486 nm.
Discussion for (a)

This is indeed the experimentally observed wavelength, corresponding to the second (blue-green) line in the Balmer series.
More impressive is the fact that the same simple recipe predicts all of the hydrogen spectrum lines, including new ones
observed in subsequent experiments. What is nature telling us?

Solution for (b)

Double-slit interference (Wave Optics). To obtain constructive interference for a double slit, the path length difference from
two slits must be an integral multiple of the wavelength. This condition was expressed by the equation

(30.17)d sin θ = mλ,

where d is the distance between slits and θ is the angle from the original direction of the beam. The number m is the

order of the interference; m = 1 in this example. Solving for d and entering known values yields

(30.18)d = (1)(486 nm)
sin 15º = 1.88×10−6 m.

Discussion for (b)

This number is similar to those used in the interference examples of Introduction to Quantum Physics (and is close to the
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spacing between slits in commonly used diffraction glasses).

Bohr’s Solution for Hydrogen

Bohr was able to derive the formula for the hydrogen spectrum using basic physics, the planetary model of the atom, and some
very important new proposals. His first proposal is that only certain orbits are allowed: we say that the orbits of electrons in atoms
are quantized. Each orbit has a different energy, and electrons can move to a higher orbit by absorbing energy and drop to a
lower orbit by emitting energy. If the orbits are quantized, the amount of energy absorbed or emitted is also quantized, producing
discrete spectra. Photon absorption and emission are among the primary methods of transferring energy into and out of atoms.
The energies of the photons are quantized, and their energy is explained as being equal to the change in energy of the electron
when it moves from one orbit to another. In equation form, this is

(30.19)ΔE = hf = Ei − Ef.

Here, ΔE is the change in energy between the initial and final orbits, and hf is the energy of the absorbed or emitted photon. It

is quite logical (that is, expected from our everyday experience) that energy is involved in changing orbits. A blast of energy is
required for the space shuttle, for example, to climb to a higher orbit. What is not expected is that atomic orbits should be
quantized. This is not observed for satellites or planets, which can have any orbit given the proper energy. (See Figure 30.17.)

Figure 30.17 The planetary model of the atom, as modified by Bohr, has the orbits of the electrons quantized. Only certain orbits are allowed,
explaining why atomic spectra are discrete (quantized). The energy carried away from an atom by a photon comes from the electron dropping from one
allowed orbit to another and is thus quantized. This is likewise true for atomic absorption of photons.

Figure 30.18 shows an energy-level diagram, a convenient way to display energy states. In the present discussion, we take
these to be the allowed energy levels of the electron. Energy is plotted vertically with the lowest or ground state at the bottom
and with excited states above. Given the energies of the lines in an atomic spectrum, it is possible (although sometimes very
difficult) to determine the energy levels of an atom. Energy-level diagrams are used for many systems, including molecules and
nuclei. A theory of the atom or any other system must predict its energies based on the physics of the system.
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Figure 30.18 An energy-level diagram plots energy vertically and is useful in visualizing the energy states of a system and the transitions between

them. This diagram is for the hydrogen-atom electrons, showing a transition between two orbits having energies E4 and E2 .

Bohr was clever enough to find a way to calculate the electron orbital energies in hydrogen. This was an important first step that
has been improved upon, but it is well worth repeating here, because it does correctly describe many characteristics of
hydrogen. Assuming circular orbits, Bohr proposed that the angular momentum L of an electron in its orbit is quantized,

that is, it has only specific, discrete values. The value for L is given by the formula

(30.20)L = mevrn = n h
2π(n = 1, 2, 3, … ),

where L is the angular momentum, me is the electron’s mass, rn is the radius of the n th orbit, and h is Planck’s constant.

Note that angular momentum is L = Iω . For a small object at a radius r, I = mr2 and ω = v / r , so that

L = ⎛⎝mr2⎞⎠(v / r) = mvr . Quantization says that this value of mvr can only be equal to h / 2, 2h / 2, 3h / 2 , etc. At the time,

Bohr himself did not know why angular momentum should be quantized, but using this assumption he was able to calculate the
energies in the hydrogen spectrum, something no one else had done at the time.

From Bohr’s assumptions, we will now derive a number of important properties of the hydrogen atom from the classical physics
we have covered in the text. We start by noting the centripetal force causing the electron to follow a circular path is supplied by
the Coulomb force. To be more general, we note that this analysis is valid for any single-electron atom. So, if a nucleus has Z
protons ( Z = 1 for hydrogen, 2 for helium, etc.) and only one electron, that atom is called a hydrogen-like atom. The spectra

of hydrogen-like ions are similar to hydrogen, but shifted to higher energy by the greater attractive force between the electron

and nucleus. The magnitude of the centripetal force is me v2 / rn , while the Coulomb force is k⎛⎝Zqe
⎞
⎠(qe) / rn

2 . The tacit

assumption here is that the nucleus is more massive than the stationary electron, and the electron orbits about it. This is
consistent with the planetary model of the atom. Equating these,

(30.21)
kZqe

2

rn
2 = me v2

rn
(Coulomb = centripetal).

Angular momentum quantization is stated in an earlier equation. We solve that equation for v , substitute it into the above, and

rearrange the expression to obtain the radius of the orbit. This yields:

(30.22)
rn = n2

Z aB , for allowed orbits(n = 1,2,3, … ),

where aB is defined to be the Bohr radius, since for the lowest orbit (n = 1) and for hydrogen (Z = 1) , r1 = aB . It is left

for this chapter’s Problems and Exercises to show that the Bohr radius is

(30.23)
aB = h2

4π2 me kqe
2 = 0.529×10−10 m.

These last two equations can be used to calculate the radii of the allowed (quantized) electron orbits in any hydrogen-like
atom. It is impressive that the formula gives the correct size of hydrogen, which is measured experimentally to be very close to
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the Bohr radius. The earlier equation also tells us that the orbital radius is proportional to n2 , as illustrated in Figure 30.19.

Figure 30.19 The allowed electron orbits in hydrogen have the radii shown. These radii were first calculated by Bohr and are given by the equation

rn = n2

Z aB . The lowest orbit has the experimentally verified diameter of a hydrogen atom.

To get the electron orbital energies, we start by noting that the electron energy is the sum of its kinetic and potential energy:

(30.24)En = KE + PE.

Kinetic energy is the familiar KE = (1 / 2)me v2 , assuming the electron is not moving at relativistic speeds. Potential energy for

the electron is electrical, or PE = qeV , where V is the potential due to the nucleus, which looks like a point charge. The

nucleus has a positive charge Zqe ; thus, V = kZqe / rn , recalling an earlier equation for the potential due to a point charge.

Since the electron’s charge is negative, we see that PE = −kZqe / rn . Entering the expressions for KE and PE , we find

(30.25)
En = 1

2me v2 − kZqe
2

rn
.

Now we substitute rn and v from earlier equations into the above expression for energy. Algebraic manipulation yields

(30.26)
En = − Z 2

n2 E0(n = 1, 2, 3, ...)

for the orbital energies of hydrogen-like atoms. Here, E0 is the ground-state energy (n = 1) for hydrogen (Z = 1) and is

given by

(30.27)
E0 = 2π2 qe

4 me k2

h2 = 13.6 eV.

Thus, for hydrogen,

(30.28)En = −13.6 eV
n2 (n = 1, 2, 3, ...).

Figure 30.20 shows an energy-level diagram for hydrogen that also illustrates how the various spectral series for hydrogen are
related to transitions between energy levels.
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Figure 30.20 Energy-level diagram for hydrogen showing the Lyman, Balmer, and Paschen series of transitions. The orbital energies are calculated
using the above equation, first derived by Bohr.

Electron total energies are negative, since the electron is bound to the nucleus, analogous to being in a hole without enough
kinetic energy to escape. As n approaches infinity, the total energy becomes zero. This corresponds to a free electron with no

kinetic energy, since rn gets very large for large n , and the electric potential energy thus becomes zero. Thus, 13.6 eV is

needed to ionize hydrogen (to go from –13.6 eV to 0, or unbound), an experimentally verified number. Given more energy, the
electron becomes unbound with some kinetic energy. For example, giving 15.0 eV to an electron in the ground state of hydrogen
strips it from the atom and leaves it with 1.4 eV of kinetic energy.

Finally, let us consider the energy of a photon emitted in a downward transition, given by the equation to be

(30.29)ΔE = hf = Ei − Ef.

Substituting En = ( – 13.6 eV / n2) , we see that

(30.30)
hf = (13.6 eV)

⎛
⎝
⎜ 1
nf

2 − 1
ni

2

⎞
⎠
⎟.

Dividing both sides of this equation by hc gives an expression for 1 / λ :

(30.31)hf
hc = f

c = 1
λ = (13.6 eV)

hc
⎛
⎝
⎜ 1
nf

2 − 1
ni

2

⎞
⎠
⎟.

It can be shown that

(30.32)⎛
⎝13.6 eV

hc
⎞
⎠ =

(13.6 eV)⎛⎝1.602×10−19 J/eV⎞⎠
⎛
⎝6.626×10−34 J·s⎞⎠

⎛
⎝2.998×108 m/s⎞⎠

= 1.097×107 m–1 = R

is the Rydberg constant. Thus, we have used Bohr’s assumptions to derive the formula first proposed by Balmer years earlier
as a recipe to fit experimental data.
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(30.33)
1
λ = R
⎛
⎝
⎜ 1
nf

2 − 1
ni

2

⎞
⎠
⎟

We see that Bohr’s theory of the hydrogen atom answers the question as to why this previously known formula describes the

hydrogen spectrum. It is because the energy levels are proportional to 1 / n2 , where n is a non-negative integer. A downward

transition releases energy, and so ni must be greater than nf . The various series are those where the transitions end on a

certain level. For the Lyman series, nf = 1 — that is, all the transitions end in the ground state (see also Figure 30.20). For the

Balmer series, nf = 2 , or all the transitions end in the first excited state; and so on. What was once a recipe is now based in

physics, and something new is emerging—angular momentum is quantized.

Triumphs and Limits of the Bohr Theory

Bohr did what no one had been able to do before. Not only did he explain the spectrum of hydrogen, he correctly calculated the
size of the atom from basic physics. Some of his ideas are broadly applicable. Electron orbital energies are quantized in all
atoms and molecules. Angular momentum is quantized. The electrons do not spiral into the nucleus, as expected classically
(accelerated charges radiate, so that the electron orbits classically would decay quickly, and the electrons would sit on the
nucleus—matter would collapse). These are major triumphs.

But there are limits to Bohr’s theory. It cannot be applied to multielectron atoms, even one as simple as a two-electron helium
atom. Bohr’s model is what we call semiclassical. The orbits are quantized (nonclassical) but are assumed to be simple circular
paths (classical). As quantum mechanics was developed, it became clear that there are no well-defined orbits; rather, there are
clouds of probability. Bohr’s theory also did not explain that some spectral lines are doublets (split into two) when examined
closely. We shall examine many of these aspects of quantum mechanics in more detail, but it should be kept in mind that Bohr
did not fail. Rather, he made very important steps along the path to greater knowledge and laid the foundation for all of atomic
physics that has since evolved.

PhET Explorations: Models of the Hydrogen Atom

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the
atom. Check how the prediction of the model matches the experimental results.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42596/
1.11/#Phet_module_31.3)

Figure 30.21

30.4 X Rays: Atomic Origins and Applications

Each type of atom (or element) has its own characteristic electromagnetic spectrum. X rays lie at the high-frequency end of an
atom’s spectrum and are characteristic of the atom as well. In this section, we explore characteristic x rays and some of their
important applications.

We have previously discussed x rays as a part of the electromagnetic spectrum in Photon Energies and the Electromagnetic
Spectrum. That module illustrated how an x-ray tube (a specialized CRT) produces x rays. Electrons emitted from a hot filament
are accelerated with a high voltage, gaining significant kinetic energy and striking the anode.

There are two processes by which x rays are produced in the anode of an x-ray tube. In one process, the deceleration of
electrons produces x rays, and these x rays are called bremsstrahlung, or braking radiation. The second process is atomic in
nature and produces characteristic x rays, so called because they are characteristic of the anode material. The x-ray spectrum in
Figure 30.22 is typical of what is produced by an x-ray tube, showing a broad curve of bremsstrahlung radiation with
characteristic x-ray peaks on it.

Figure 30.22 X-ray spectrum obtained when energetic electrons strike a material, such as in the anode of a CRT. The smooth part of the spectrum is
bremsstrahlung radiation, while the peaks are characteristic of the anode material. A different anode material would have characteristic x-ray peaks at
different frequencies.
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The spectrum in Figure 30.22 is collected over a period of time in which many electrons strike the anode, with a variety of
possible outcomes for each hit. The broad range of x-ray energies in the bremsstrahlung radiation indicates that an incident
electron’s energy is not usually converted entirely into photon energy. The highest-energy x ray produced is one for which all of
the electron’s energy was converted to photon energy. Thus the accelerating voltage and the maximum x-ray energy are related
by conservation of energy. Electric potential energy is converted to kinetic energy and then to photon energy, so that
Emax = hfmax = qeV . Units of electron volts are convenient. For example, a 100-kV accelerating voltage produces x-ray

photons with a maximum energy of 100 keV.

Some electrons excite atoms in the anode. Part of the energy that they deposit by collision with an atom results in one or more of
the atom’s inner electrons being knocked into a higher orbit or the atom being ionized. When the anode’s atoms de-excite, they
emit characteristic electromagnetic radiation. The most energetic of these are produced when an inner-shell vacancy is
filled—that is, when an n = 1 or n = 2 shell electron has been excited to a higher level, and another electron falls into the

vacant spot. A characteristic x ray (see Photon Energies and the Electromagnetic Spectrum) is electromagnetic (EM)
radiation emitted by an atom when an inner-shell vacancy is filled. Figure 30.23 shows a representative energy-level diagram
that illustrates the labeling of characteristic x rays. X rays created when an electron falls into an n = 1 shell vacancy are called

Kα when they come from the next higher level; that is, an n = 2 to n = 1 transition. The labels K, L, M,... come from the

older alphabetical labeling of shells starting with K rather than using the principal quantum numbers 1, 2, 3, …. A more

energetic Kβ x ray is produced when an electron falls into an n = 1 shell vacancy from the n = 3 shell; that is, an n = 3 to

n = 1 transition. Similarly, when an electron falls into the n = 2 shell from the n = 3 shell, an Lα x ray is created. The

energies of these x rays depend on the energies of electron states in the particular atom and, thus, are characteristic of that
element: every element has it own set of x-ray energies. This property can be used to identify elements, for example, to find
trace (small) amounts of an element in an environmental or biological sample.

Figure 30.23 A characteristic x ray is emitted when an electron fills an inner-shell vacancy, as shown for several transitions in this approximate energy
level diagram for a multiple-electron atom. Characteristic x rays are labeled according to the shell that had the vacancy and the shell from which the

electron came. A Kα x ray, for example, is produced when an electron coming from the n = 2 shell fills the n = 1 shell vacancy.

Example 30.2 Characteristic X-Ray Energy

Calculate the approximate energy of a Kα x ray from a tungsten anode in an x-ray tube.

Strategy

How do we calculate energies in a multiple-electron atom? In the case of characteristic x rays, the following approximate
calculation is reasonable. Characteristic x rays are produced when an inner-shell vacancy is filled. Inner-shell electrons are
nearer the nucleus than others in an atom and thus feel little net effect from the others. This is similar to what happens inside
a charged conductor, where its excess charge is distributed over the surface so that it produces no electric field inside. It is

reasonable to assume the inner-shell electrons have hydrogen-like energies, as given by En = − Z 2

n2 E0 (n = 1, 2, 3, ...) .

As noted, a Kα x ray is produced by an n = 2 to n = 1 transition. Since there are two electrons in a filled K shell, a

vacancy would leave one electron, so that the effective charge would be Z − 1 rather than Z . For tungsten, Z = 74 , so

that the effective charge is 73.

Solution
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En = − Z 2

n2 E0 (n = 1, 2, 3, ...) gives the orbital energies for hydrogen-like atoms to be En = −(Z 2 / n2)E0 , where

E0 = 13.6 eV . As noted, the effective Z is 73. Now the Kα x-ray energy is given by

(30.34)EKα = ΔE = Ei−Ef = E2−E1,

where

(30.35)
E1 = − Z 2

12 E0 = −732

1
⎛
⎝13.6 eV⎞⎠ = − 72.5 keV

and

(30.36)
E2 = − Z 2

22 E0 = −732

4
⎛
⎝13.6 eV⎞⎠ = − 18.1 keV.

Thus,

(30.37)EKα = − 18.1 keV − ⎛⎝− 72.5 keV⎞⎠ = 54.4 keV.

Discussion

This large photon energy is typical of characteristic x rays from heavy elements. It is large compared with other atomic
emissions because it is produced when an inner-shell vacancy is filled, and inner-shell electrons are tightly bound.
Characteristic x ray energies become progressively larger for heavier elements because their energy increases

approximately as Z 2 . Significant accelerating voltage is needed to create these inner-shell vacancies. In the case of

tungsten, at least 72.5 kV is needed, because other shells are filled and you cannot simply bump one electron to a higher
filled shell. Tungsten is a common anode material in x-ray tubes; so much of the energy of the impinging electrons is
absorbed, raising its temperature, that a high-melting-point material like tungsten is required.

Medical and Other Diagnostic Uses of X-rays

All of us can identify diagnostic uses of x-ray photons. Among these are the universal dental and medical x rays that have
become an essential part of medical diagnostics. (See Figure 30.25 and Figure 30.26.) X rays are also used to inspect our
luggage at airports, as shown in Figure 30.24, and for early detection of cracks in crucial aircraft components. An x ray is not
only a noun meaning high-energy photon, it also is an image produced by x rays, and it has been made into a familiar verb—to
be x-rayed.

Figure 30.24 An x-ray image reveals fillings in a person’s teeth. (credit: Dmitry G, Wikimedia Commons)

Figure 30.25 This x-ray image of a person’s chest shows many details, including an artificial pacemaker. (credit: Sunzi99, Wikimedia Commons)
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Figure 30.26 This x-ray image shows the contents of a piece of luggage. The denser the material, the darker the shadow. (credit: IDuke, Wikimedia
Commons)

The most common x-ray images are simple shadows. Since x-ray photons have high energies, they penetrate materials that are
opaque to visible light. The more energy an x-ray photon has, the more material it will penetrate. So an x-ray tube may be
operated at 50.0 kV for a chest x ray, whereas it may need to be operated at 100 kV to examine a broken leg in a cast. The depth
of penetration is related to the density of the material as well as to the energy of the photon. The denser the material, the fewer
x-ray photons get through and the darker the shadow. Thus x rays excel at detecting breaks in bones and in imaging other
physiological structures, such as some tumors, that differ in density from surrounding material. Because of their high photon
energy, x rays produce significant ionization in materials and damage cells in biological organisms. Modern uses minimize
exposure to the patient and eliminate exposure to others. Biological effects of x rays will be explored in the next chapter along
with other types of ionizing radiation such as those produced by nuclei.

As the x-ray energy increases, the Compton effect (see Photon Momentum) becomes more important in the attenuation of the x
rays. Here, the x ray scatters from an outer electron shell of the atom, giving the ejected electron some kinetic energy while
losing energy itself. The probability for attenuation of the x rays depends upon the number of electrons present (the material’s
density) as well as the thickness of the material. Chemical composition of the medium, as characterized by its atomic number Z ,

is not important here. Low-energy x rays provide better contrast (sharper images). However, due to greater attenuation and less
scattering, they are more absorbed by thicker materials. Greater contrast can be achieved by injecting a substance with a large
atomic number, such as barium or iodine. The structure of the part of the body that contains the substance (e.g., the gastro-
intestinal tract or the abdomen) can easily be seen this way.

Breast cancer is the second-leading cause of death among women worldwide. Early detection can be very effective, hence the
importance of x-ray diagnostics. A mammogram cannot diagnose a malignant tumor, only give evidence of a lump or region of
increased density within the breast. X-ray absorption by different types of soft tissue is very similar, so contrast is difficult; this is
especially true for younger women, who typically have denser breasts. For older women who are at greater risk of developing
breast cancer, the presence of more fat in the breast gives the lump or tumor more contrast. MRI (Magnetic resonance imaging)
has recently been used as a supplement to conventional x rays to improve detection and eliminate false positives. The subject’s
radiation dose from x rays will be treated in a later chapter.

A standard x ray gives only a two-dimensional view of the object. Dense bones might hide images of soft tissue or organs. If you
took another x ray from the side of the person (the first one being from the front), you would gain additional information. While
shadow images are sufficient in many applications, far more sophisticated images can be produced with modern technology.
Figure 30.27 shows the use of a computed tomography (CT) scanner, also called computed axial tomography (CAT) scanner. X
rays are passed through a narrow section (called a slice) of the patient’s body (or body part) over a range of directions. An array
of many detectors on the other side of the patient registers the x rays. The system is then rotated around the patient and another
image is taken, and so on. The x-ray tube and detector array are mechanically attached and so rotate together. Complex
computer image processing of the relative absorption of the x rays along different directions produces a highly-detailed image.
Different slices are taken as the patient moves through the scanner on a table. Multiple images of different slices can also be
computer analyzed to produce three-dimensional information, sometimes enhancing specific types of tissue, as shown in Figure
30.28. G. Hounsfield (UK) and A. Cormack (US) won the Nobel Prize in Medicine in 1979 for their development of computed
tomography.

Figure 30.27 A patient being positioned in a CT scanner aboard the hospital ship USNS Mercy. The CT scanner passes x rays through slices of the
patient’s body (or body part) over a range of directions. The relative absorption of the x rays along different directions is computer analyzed to produce
highly detailed images. Three-dimensional information can be obtained from multiple slices. (credit: Rebecca Moat, U.S. Navy)
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Figure 30.28 This three-dimensional image of a skull was produced by computed tomography, involving analysis of several x-ray slices of the head.
(credit: Emailshankar, Wikimedia Commons)

X-Ray Diffraction and Crystallography

Since x-ray photons are very energetic, they have relatively short wavelengths. For example, the 54.4-keV Kα x ray of Example

30.2 has a wavelength λ = hc / E = 0.0228 nm . Thus, typical x-ray photons act like rays when they encounter macroscopic

objects, like teeth, and produce sharp shadows; however, since atoms are on the order of 0.1 nm in size, x rays can be used to
detect the location, shape, and size of atoms and molecules. The process is called x-ray diffraction, because it involves the
diffraction and interference of x rays to produce patterns that can be analyzed for information about the structures that scattered
the x rays. Perhaps the most famous example of x-ray diffraction is the discovery of the double-helix structure of DNA in 1953 by
an international team of scientists working at the Cavendish Laboratory—American James Watson, Englishman Francis Crick,
and New Zealand–born Maurice Wilkins. Using x-ray diffraction data produced by Rosalind Franklin, they were the first to discern
the structure of DNA that is so crucial to life. For this, Watson, Crick, and Wilkins were awarded the 1962 Nobel Prize in
Physiology or Medicine. There is much debate and controversy over the issue that Rosalind Franklin was not included in the
prize.

Figure 30.29 shows a diffraction pattern produced by the scattering of x rays from a crystal. This process is known as x-ray
crystallography because of the information it can yield about crystal structure, and it was the type of data Rosalind Franklin
supplied to Watson and Crick for DNA. Not only do x rays confirm the size and shape of atoms, they give information on the
atomic arrangements in materials. For example, current research in high-temperature superconductors involves complex
materials whose lattice arrangements are crucial to obtaining a superconducting material. These can be studied using x-ray
crystallography.

Figure 30.29 X-ray diffraction from the crystal of a protein, hen egg lysozyme, produced this interference pattern. Analysis of the pattern yields
information about the structure of the protein. (credit: Del45, Wikimedia Commons)

Historically, the scattering of x rays from crystals was used to prove that x rays are energetic EM waves. This was suspected
from the time of the discovery of x rays in 1895, but it was not until 1912 that the German Max von Laue (1879–1960) convinced
two of his colleagues to scatter x rays from crystals. If a diffraction pattern is obtained, he reasoned, then the x rays must be
waves, and their wavelength could be determined. (The spacing of atoms in various crystals was reasonably well known at the
time, based on good values for Avogadro’s number.) The experiments were convincing, and the 1914 Nobel Prize in Physics was
given to von Laue for his suggestion leading to the proof that x rays are EM waves. In 1915, the unique father-and-son team of
Sir William Henry Bragg and his son Sir William Lawrence Bragg were awarded a joint Nobel Prize for inventing the x-ray
spectrometer and the then-new science of x-ray analysis. The elder Bragg had migrated to Australia from England just after
graduating in mathematics. He learned physics and chemistry during his career at the University of Adelaide. The younger Bragg
was born in Adelaide but went back to the Cavendish Laboratories in England to a career in x-ray and neutron crystallography;
he provided support for Watson, Crick, and Wilkins for their work on unraveling the mysteries of DNA and to Max Perutz for his
1962 Nobel Prize-winning work on the structure of hemoglobin. Here again, we witness the enabling nature of
physics—establishing instruments and designing experiments as well as solving mysteries in the biomedical sciences.
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Certain other uses for x rays will be studied in later chapters. X rays are useful in the treatment of cancer because of the
inhibiting effect they have on cell reproduction. X rays observed coming from outer space are useful in determining the nature of
their sources, such as neutron stars and possibly black holes. Created in nuclear bomb explosions, x rays can also be used to
detect clandestine atmospheric tests of these weapons. X rays can cause excitations of atoms, which then fluoresce (emitting
characteristic EM radiation), making x-ray-induced fluorescence a valuable analytical tool in a range of fields from art to
archaeology.

30.5 Applications of Atomic Excitations and De-Excitations

Many properties of matter and phenomena in nature are directly related to atomic energy levels and their associated excitations
and de-excitations. The color of a rose, the output of a laser, and the transparency of air are but a few examples. (See Figure
30.30.) While it may not appear that glow-in-the-dark pajamas and lasers have much in common, they are in fact different
applications of similar atomic de-excitations.

Figure 30.30 Light from a laser is based on a particular type of atomic de-excitation. (credit: Jeff Keyzer)

The color of a material is due to the ability of its atoms to absorb certain wavelengths while reflecting or reemitting others. A
simple red material, for example a tomato, absorbs all visible wavelengths except red. This is because the atoms of its
hydrocarbon pigment (lycopene) have levels separated by a variety of energies corresponding to all visible photon energies
except red. Air is another interesting example. It is transparent to visible light, because there are few energy levels that visible
photons can excite in air molecules and atoms. Visible light, thus, cannot be absorbed. Furthermore, visible light is only weakly
scattered by air, because visible wavelengths are so much greater than the sizes of the air molecules and atoms. Light must
pass through kilometers of air to scatter enough to cause red sunsets and blue skies.

Fluorescence and Phosphorescence

The ability of a material to emit various wavelengths of light is similarly related to its atomic energy levels. Figure 30.31 shows a
scorpion illuminated by a UV lamp, sometimes called a black light. Some rocks also glow in black light, the particular colors being
a function of the rock’s mineral composition. Black lights are also used to make certain posters glow.

Figure 30.31 Objects glow in the visible spectrum when illuminated by an ultraviolet (black) light. Emissions are characteristic of the mineral involved,
since they are related to its energy levels. In the case of scorpions, proteins near the surface of their skin give off the characteristic blue glow. This is a
colorful example of fluorescence in which excitation is induced by UV radiation while de-excitation occurs in the form of visible light. (credit: Ken
Bosma, Flickr)

In the fluorescence process, an atom is excited to a level several steps above its ground state by the absorption of a relatively
high-energy UV photon. This is called atomic excitation. Once it is excited, the atom can de-excite in several ways, one of
which is to re-emit a photon of the same energy as excited it, a single step back to the ground state. This is called atomic de-
excitation. All other paths of de-excitation involve smaller steps, in which lower-energy (longer wavelength) photons are emitted.
Some of these may be in the visible range, such as for the scorpion in Figure 30.31. Fluorescence is defined to be any process
in which an atom or molecule, excited by a photon of a given energy, and de-excites by emission of a lower-energy photon.

Fluorescence can be induced by many types of energy input. Fluorescent paint, dyes, and even soap residues in clothes make
colors seem brighter in sunlight by converting some UV into visible light. X rays can induce fluorescence, as is done in x-ray
fluoroscopy to make brighter visible images. Electric discharges can induce fluorescence, as in so-called neon lights and in gas-
discharge tubes that produce atomic and molecular spectra. Common fluorescent lights use an electric discharge in mercury
vapor to cause atomic emissions from mercury atoms. The inside of a fluorescent light is coated with a fluorescent material that
emits visible light over a broad spectrum of wavelengths. By choosing an appropriate coating, fluorescent lights can be made
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more like sunlight or like the reddish glow of candlelight, depending on needs. Fluorescent lights are more efficient in converting
electrical energy into visible light than incandescent filaments (about four times as efficient), the blackbody radiation of which is
primarily in the infrared due to temperature limitations.

This atom is excited to one of its higher levels by absorbing a UV photon. It can de-excite in a single step, re-emitting a photon of
the same energy, or in several steps. The process is called fluorescence if the atom de-excites in smaller steps, emitting energy
different from that which excited it. Fluorescence can be induced by a variety of energy inputs, such as UV, x-rays, and electrical
discharge.

The spectacular Waitomo caves on North Island in New Zealand provide a natural habitat for glow-worms. The glow-worms hang
up to 70 silk threads of about 30 or 40 cm each to trap prey that fly towards them in the dark. The fluorescence process is very
efficient, with nearly 100% of the energy input turning into light. (In comparison, fluorescent lights are about 20% efficient.)

Fluorescence has many uses in biology and medicine. It is commonly used to label and follow a molecule within a cell. Such
tagging allows one to study the structure of DNA and proteins. Fluorescent dyes and antibodies are usually used to tag the
molecules, which are then illuminated with UV light and their emission of visible light is observed. Since the fluorescence of each
element is characteristic, identification of elements within a sample can be done this way.

Figure 30.32 shows a commonly used fluorescent dye called fluorescein. Below that, Figure 30.33 reveals the diffusion of a
fluorescent dye in water by observing it under UV light.

Figure 30.32 Fluorescein, shown here in powder form, is used to dye laboratory samples. (credit: Benjah-bmm27, Wikimedia Commons)

Figure 30.33 Here, fluorescent powder is added to a beaker of water. The mixture gives off a bright glow under ultraviolet light. (credit: Bricksnite,
Wikimedia Commons)

Nano-Crystals

Recently, a new class of fluorescent materials has appeared—“nano-crystals.” These are single-crystal molecules less than
100 nm in size. The smallest of these are called “quantum dots.” These semiconductor indicators are very small (2–6 nm)
and provide improved brightness. They also have the advantage that all colors can be excited with the same incident
wavelength. They are brighter and more stable than organic dyes and have a longer lifetime than conventional phosphors.
They have become an excellent tool for long-term studies of cells, including migration and morphology. (Figure 30.34.)
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Figure 30.34 Microscopic image of chicken cells using nano-crystals of a fluorescent dye. Cell nuclei exhibit blue fluorescence while neurofilaments
exhibit green. (credit: Weerapong Prasongchean, Wikimedia Commons)

Once excited, an atom or molecule will usually spontaneously de-excite quickly. (The electrons raised to higher levels are
attracted to lower ones by the positive charge of the nucleus.) Spontaneous de-excitation has a very short mean lifetime of

typically about 10−8 s . However, some levels have significantly longer lifetimes, ranging up to milliseconds to minutes or even

hours. These energy levels are inhibited and are slow in de-exciting because their quantum numbers differ greatly from those of
available lower levels. Although these level lifetimes are short in human terms, they are many orders of magnitude longer than is
typical and, thus, are said to be metastable, meaning relatively stable. Phosphorescence is the de-excitation of a metastable
state. Glow-in-the-dark materials, such as luminous dials on some watches and clocks and on children’s toys and pajamas, are
made of phosphorescent substances. Visible light excites the atoms or molecules to metastable states that decay slowly,
releasing the stored excitation energy partially as visible light. In some ceramics, atomic excitation energy can be frozen in after
the ceramic has cooled from its firing. It is very slowly released, but the ceramic can be induced to phosphoresce by heating—a
process called “thermoluminescence.” Since the release is slow, thermoluminescence can be used to date antiquities. The less
light emitted, the older the ceramic. (See Figure 30.35.)

Figure 30.35 Atoms frozen in an excited state when this Chinese ceramic figure was fired can be stimulated to de-excite and emit EM radiation by
heating a sample of the ceramic—a process called thermoluminescence. Since the states slowly de-excite over centuries, the amount of

thermoluminescence decreases with age, making it possible to use this effect to date and authenticate antiquities. This figure dates from the 11th

century. (credit: Vassil, Wikimedia Commons)

Lasers

Lasers today are commonplace. Lasers are used to read bar codes at stores and in libraries, laser shows are staged for
entertainment, laser printers produce high-quality images at relatively low cost, and lasers send prodigious numbers of telephone
messages through optical fibers. Among other things, lasers are also employed in surveying, weapons guidance, tumor
eradication, retinal welding, and for reading music CDs and computer CD-ROMs.

Why do lasers have so many varied applications? The answer is that lasers produce single-wavelength EM radiation that is also
very coherent—that is, the emitted photons are in phase. Laser output can, thus, be more precisely manipulated than incoherent
mixed-wavelength EM radiation from other sources. The reason laser output is so pure and coherent is based on how it is
produced, which in turn depends on a metastable state in the lasing material. Suppose a material had the energy levels shown in
Figure 30.36. When energy is put into a large collection of these atoms, electrons are raised to all possible levels. Most return to

the ground state in less than about 10−8 s , but those in the metastable state linger. This includes those electrons originally

excited to the metastable state and those that fell into it from above. It is possible to get a majority of the atoms into the
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metastable state, a condition called a population inversion.

Figure 30.36 (a) Energy-level diagram for an atom showing the first few states, one of which is metastable. (b) Massive energy input excites atoms to
a variety of states. (c) Most states decay quickly, leaving electrons only in the metastable and ground state. If a majority of electrons are in the
metastable state, a population inversion has been achieved.

Once a population inversion is achieved, a very interesting thing can happen, as shown in Figure 30.37. An electron
spontaneously falls from the metastable state, emitting a photon. This photon finds another atom in the metastable state and
stimulates it to decay, emitting a second photon of the same wavelength and in phase with the first, and so on. Stimulated
emission is the emission of electromagnetic radiation in the form of photons of a given frequency, triggered by photons of the
same frequency. For example, an excited atom, with an electron in an energy orbit higher than normal, releases a photon of a
specific frequency when the electron drops back to a lower energy orbit. If this photon then strikes another electron in the same
high-energy orbit in another atom, another photon of the same frequency is released. The emitted photons and the triggering
photons are always in phase, have the same polarization, and travel in the same direction. The probability of absorption of a
photon is the same as the probability of stimulated emission, and so a majority of atoms must be in the metastable state to
produce energy. Einstein (again Einstein, and back in 1917!) was one of the important contributors to the understanding of
stimulated emission of radiation. Among other things, Einstein was the first to realize that stimulated emission and absorption are
equally probable. The laser acts as a temporary energy storage device that subsequently produces a massive energy output of
single-wavelength, in-phase photons.

Figure 30.37 One atom in the metastable state spontaneously decays to a lower level, producing a photon that goes on to stimulate another atom to
de-excite. The second photon has exactly the same energy and wavelength as the first and is in phase with it. Both go on to stimulate the emission of
other photons. A population inversion is necessary for there to be a net production rather than a net absorption of the photons.

The name laser is an acronym for light amplification by stimulated emission of radiation, the process just described. The process
was proposed and developed following the advances in quantum physics. A joint Nobel Prize was awarded in 1964 to American
Charles Townes (1915–), and Nikolay Basov (1922–2001) and Aleksandr Prokhorov (1916–2002), from the Soviet Union, for the
development of lasers. The Nobel Prize in 1981 went to Arthur Schawlow (1921-1999) for pioneering laser applications. The
original devices were called masers, because they produced microwaves. The first working laser was created in 1960 at Hughes
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Research labs (CA) by T. Maiman. It used a pulsed high-powered flash lamp and a ruby rod to produce red light. Today the name
laser is used for all such devices developed to produce a variety of wavelengths, including microwave, infrared, visible, and
ultraviolet radiation. Figure 30.38 shows how a laser can be constructed to enhance the stimulated emission of radiation. Energy
input can be from a flash tube, electrical discharge, or other sources, in a process sometimes called optical pumping. A large
percentage of the original pumping energy is dissipated in other forms, but a population inversion must be achieved. Mirrors can
be used to enhance stimulated emission by multiple passes of the radiation back and forth through the lasing material. One of
the mirrors is semitransparent to allow some of the light to pass through. The laser output from a laser is a mere 1% of the light
passing back and forth in a laser.

Figure 30.38 Typical laser construction has a method of pumping energy into the lasing material to produce a population inversion. (a) Spontaneous
emission begins with some photons escaping and others stimulating further emissions. (b) and (c) Mirrors are used to enhance the probability of
stimulated emission by passing photons through the material several times.

Lasers are constructed from many types of lasing materials, including gases, liquids, solids, and semiconductors. But all lasers
are based on the existence of a metastable state or a phosphorescent material. Some lasers produce continuous output; others

are pulsed in bursts as brief as 10−14 s . Some laser outputs are fantastically powerful—some greater than 1012 W —but the

more common, everyday lasers produce something on the order of 10−3 W . The helium-neon laser that produces a familiar

red light is very common. Figure 30.39 shows the energy levels of helium and neon, a pair of noble gases that work well
together. An electrical discharge is passed through a helium-neon gas mixture in which the number of atoms of helium is ten
times that of neon. The first excited state of helium is metastable and, thus, stores energy. This energy is easily transferred by
collision to neon atoms, because they have an excited state at nearly the same energy as that in helium. That state in neon is
also metastable, and this is the one that produces the laser output. (The most likely transition is to the nearby state, producing
1.96 eV photons, which have a wavelength of 633 nm and appear red.) A population inversion can be produced in neon,
because there are so many more helium atoms and these put energy into the neon. Helium-neon lasers often have continuous
output, because the population inversion can be maintained even while lasing occurs. Probably the most common lasers in use
today, including the common laser pointer, are semiconductor or diode lasers, made of silicon. Here, energy is pumped into the
material by passing a current in the device to excite the electrons. Special coatings on the ends and fine cleavings of the
semiconductor material allow light to bounce back and forth and a tiny fraction to emerge as laser light. Diode lasers can usually
run continually and produce outputs in the milliwatt range.
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Figure 30.39 Energy levels in helium and neon. In the common helium-neon laser, an electrical discharge pumps energy into the metastable states of
both atoms. The gas mixture has about ten times more helium atoms than neon atoms. Excited helium atoms easily de-excite by transferring energy to
neon in a collision. A population inversion in neon is achieved, allowing lasing by the neon to occur.

There are many medical applications of lasers. Lasers have the advantage that they can be focused to a small spot. They also
have a well-defined wavelength. Many types of lasers are available today that provide wavelengths from the ultraviolet to the
infrared. This is important, as one needs to be able to select a wavelength that will be preferentially absorbed by the material of
interest. Objects appear a certain color because they absorb all other visible colors incident upon them. What wavelengths are
absorbed depends upon the energy spacing between electron orbitals in that molecule. Unlike the hydrogen atom, biological
molecules are complex and have a variety of absorption wavelengths or lines. But these can be determined and used in the
selection of a laser with the appropriate wavelength. Water is transparent to the visible spectrum but will absorb light in the UV
and IR regions. Blood (hemoglobin) strongly reflects red but absorbs most strongly in the UV.

Laser surgery uses a wavelength that is strongly absorbed by the tissue it is focused upon. One example of a medical application
of lasers is shown in Figure 30.40. A detached retina can result in total loss of vision. Burns made by a laser focused to a small
spot on the retina form scar tissue that can hold the retina in place, salvaging the patient’s vision. Other light sources cannot be
focused as precisely as a laser due to refractive dispersion of different wavelengths. Similarly, laser surgery in the form of cutting
or burning away tissue is made more accurate because laser output can be very precisely focused and is preferentially absorbed
because of its single wavelength. Depending upon what part or layer of the retina needs repairing, the appropriate type of laser
can be selected. For the repair of tears in the retina, a green argon laser is generally used. This light is absorbed well by tissues
containing blood, so coagulation or “welding” of the tear can be done.

Figure 30.40 A detached retina is burned by a laser designed to focus on a small spot on the retina, the resulting scar tissue holding it in place. The
lens of the eye is used to focus the light, as is the device bringing the laser output to the eye.

In dentistry, the use of lasers is rising. Lasers are most commonly used for surgery on the soft tissue of the mouth. They can be
used to remove ulcers, stop bleeding, and reshape gum tissue. Their use in cutting into bones and teeth is not quite so common;
here the erbium YAG (yttrium aluminum garnet) laser is used.

The massive combination of lasers shown in Figure 30.41 can be used to induce nuclear fusion, the energy source of the sun
and hydrogen bombs. Since lasers can produce very high power in very brief pulses, they can be used to focus an enormous
amount of energy on a small glass sphere containing fusion fuel. Not only does the incident energy increase the fuel temperature
significantly so that fusion can occur, it also compresses the fuel to great density, enhancing the probability of fusion. The
compression or implosion is caused by the momentum of the impinging laser photons.
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Figure 30.41 This system of lasers at Lawrence Livermore Laboratory is used to ignite nuclear fusion. A tremendous burst of energy is focused on a
small fuel pellet, which is imploded to the high density and temperature needed to make the fusion reaction proceed. (credit: Lawrence Livermore
National Laboratory, Lawrence Livermore National Security, LLC, and the Department of Energy)

Music CDs are now so common that vinyl records are quaint antiquities. CDs (and DVDs) store information digitally and have a
much larger information-storage capacity than vinyl records. An entire encyclopedia can be stored on a single CD. Figure 30.42
illustrates how the information is stored and read from the CD. Pits made in the CD by a laser can be tiny and very accurately
spaced to record digital information. These are read by having an inexpensive solid-state infrared laser beam scatter from pits as
the CD spins, revealing their digital pattern and the information encoded upon them.

Figure 30.42 A CD has digital information stored in the form of laser-created pits on its surface. These in turn can be read by detecting the laser light
scattered from the pit. Large information capacity is possible because of the precision of the laser. Shorter-wavelength lasers enable greater storage
capacity.

Holograms, such as those in Figure 30.43, are true three-dimensional images recorded on film by lasers. Holograms are used
for amusement, decoration on novelty items and magazine covers, security on credit cards and driver’s licenses (a laser and
other equipment is needed to reproduce them), and for serious three-dimensional information storage. You can see that a
hologram is a true three-dimensional image, because objects change relative position in the image when viewed from different
angles.

Figure 30.43 Credit cards commonly have holograms for logos, making them difficult to reproduce (credit: Dominic Alves, Flickr)

The name hologram means “entire picture” (from the Greek holo, as in holistic), because the image is three-dimensional.
Holography is the process of producing holograms and, although they are recorded on photographic film, the process is quite
different from normal photography. Holography uses light interference or wave optics, whereas normal photography uses
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geometric optics. Figure 30.44 shows one method of producing a hologram. Coherent light from a laser is split by a mirror, with
part of the light illuminating the object. The remainder, called the reference beam, shines directly on a piece of film. Light
scattered from the object interferes with the reference beam, producing constructive and destructive interference. As a result, the
exposed film looks foggy, but close examination reveals a complicated interference pattern stored on it. Where the interference
was constructive, the film (a negative actually) is darkened. Holography is sometimes called lensless photography, because it
uses the wave characteristics of light as contrasted to normal photography, which uses geometric optics and so requires lenses.

Figure 30.44 Production of a hologram. Single-wavelength coherent light from a laser produces a well-defined interference pattern on a piece of film.
The laser beam is split by a partially silvered mirror, with part of the light illuminating the object and the remainder shining directly on the film.

Light falling on a hologram can form a three-dimensional image. The process is complicated in detail, but the basics can be
understood as shown in Figure 30.45, in which a laser of the same type that exposed the film is now used to illuminate it. The
myriad tiny exposed regions of the film are dark and block the light, while less exposed regions allow light to pass. The film thus
acts much like a collection of diffraction gratings with various spacings. Light passing through the hologram is diffracted in
various directions, producing both real and virtual images of the object used to expose the film. The interference pattern is the
same as that produced by the object. Moving your eye to various places in the interference pattern gives you different
perspectives, just as looking directly at the object would. The image thus looks like the object and is three-dimensional like the
object.

Figure 30.45 A transmission hologram is one that produces real and virtual images when a laser of the same type as that which exposed the hologram
is passed through it. Diffraction from various parts of the film produces the same interference pattern as the object that was used to expose it.

The hologram illustrated in Figure 30.45 is a transmission hologram. Holograms that are viewed with reflected light, such as the
white light holograms on credit cards, are reflection holograms and are more common. White light holograms often appear a little
blurry with rainbow edges, because the diffraction patterns of various colors of light are at slightly different locations due to their
different wavelengths. Further uses of holography include all types of 3-D information storage, such as of statues in museums
and engineering studies of structures and 3-D images of human organs. Invented in the late 1940s by Dennis Gabor
(1900–1970), who won the 1971 Nobel Prize in Physics for his work, holography became far more practical with the development
of the laser. Since lasers produce coherent single-wavelength light, their interference patterns are more pronounced. The
precision is so great that it is even possible to record numerous holograms on a single piece of film by just changing the angle of
the film for each successive image. This is how the holograms that move as you walk by them are produced—a kind of lensless
movie.

In a similar way, in the medical field, holograms have allowed complete 3-D holographic displays of objects from a stack of
images. Storing these images for future use is relatively easy. With the use of an endoscope, high-resolution 3-D holographic
images of internal organs and tissues can be made.

30.6 The Wave Nature of Matter Causes Quantization

After visiting some of the applications of different aspects of atomic physics, we now return to the basic theory that was built upon
Bohr’s atom. Einstein once said it was important to keep asking the questions we eventually teach children not to ask. Why is
angular momentum quantized? You already know the answer. Electrons have wave-like properties, as de Broglie later proposed.
They can exist only where they interfere constructively, and only certain orbits meet proper conditions, as we shall see in the next
module.

Chapter 30 | Atomic Physics 1205



Following Bohr’s initial work on the hydrogen atom, a decade was to pass before de Broglie proposed that matter has wave
properties. The wave-like properties of matter were subsequently confirmed by observations of electron interference when
scattered from crystals. Electrons can exist only in locations where they interfere constructively. How does this affect electrons in
atomic orbits? When an electron is bound to an atom, its wavelength must fit into a small space, something like a standing wave
on a string. (See Figure 30.46.) Allowed orbits are those orbits in which an electron constructively interferes with itself. Not all
orbits produce constructive interference. Thus only certain orbits are allowed—the orbits are quantized.

Figure 30.46 (a) Waves on a string have a wavelength related to the length of the string, allowing them to interfere constructively. (b) If we imagine the
string bent into a closed circle, we get a rough idea of how electrons in circular orbits can interfere constructively. (c) If the wavelength does not fit into
the circumference, the electron interferes destructively; it cannot exist in such an orbit.

For a circular orbit, constructive interference occurs when the electron’s wavelength fits neatly into the circumference, so that
wave crests always align with crests and wave troughs align with troughs, as shown in Figure 30.46 (b). More precisely, when an
integral multiple of the electron’s wavelength equals the circumference of the orbit, constructive interference is obtained. In
equation form, the condition for constructive interference and an allowed electron orbit is

(30.38)nλn = 2πrn(n = 1, 2, 3 ...),

where λn is the electron’s wavelength and rn is the radius of that circular orbit. The de Broglie wavelength is

λ = h / p = h / mv , and so here λ = h / me v . Substituting this into the previous condition for constructive interference

produces an interesting result:

(30.39)nh
me v = 2πrn .

Rearranging terms, and noting that L = mvr for a circular orbit, we obtain the quantization of angular momentum as the

condition for allowed orbits:

(30.40)L = mevrn = n h
2π(n = 1, 2, 3 ...).

This is what Bohr was forced to hypothesize as the rule for allowed orbits, as stated earlier. We now realize that it is the condition
for constructive interference of an electron in a circular orbit. Figure 30.47 illustrates this for n = 3 and n = 4.

Waves and Quantization

The wave nature of matter is responsible for the quantization of energy levels in bound systems. Only those states where
matter interferes constructively exist, or are “allowed.” Since there is a lowest orbit where this is possible in an atom, the
electron cannot spiral into the nucleus. It cannot exist closer to or inside the nucleus. The wave nature of matter is what
prevents matter from collapsing and gives atoms their sizes.
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Figure 30.47 The third and fourth allowed circular orbits have three and four wavelengths, respectively, in their circumferences.

Because of the wave character of matter, the idea of well-defined orbits gives way to a model in which there is a cloud of
probability, consistent with Heisenberg’s uncertainty principle. Figure 30.48 shows how this applies to the ground state of
hydrogen. If you try to follow the electron in some well-defined orbit using a probe that has a small enough wavelength to get
some details, you will instead knock the electron out of its orbit. Each measurement of the electron’s position will find it to be in a
definite location somewhere near the nucleus. Repeated measurements reveal a cloud of probability like that in the figure, with
each speck the location determined by a single measurement. There is not a well-defined, circular-orbit type of distribution.
Nature again proves to be different on a small scale than on a macroscopic scale.

Figure 30.48 The ground state of a hydrogen atom has a probability cloud describing the position of its electron. The probability of finding the electron
is proportional to the darkness of the cloud. The electron can be closer or farther than the Bohr radius, but it is very unlikely to be a great distance from
the nucleus.

There are many examples in which the wave nature of matter causes quantization in bound systems such as the atom.
Whenever a particle is confined or bound to a small space, its allowed wavelengths are those which fit into that space. For
example, the particle in a box model describes a particle free to move in a small space surrounded by impenetrable barriers. This
is true in blackbody radiators (atoms and molecules) as well as in atomic and molecular spectra. Various atoms and molecules
will have different sets of electron orbits, depending on the size and complexity of the system. When a system is large, such as a
grain of sand, the tiny particle waves in it can fit in so many ways that it becomes impossible to see that the allowed states are
discrete. Thus the correspondence principle is satisfied. As systems become large, they gradually look less grainy, and
quantization becomes less evident. Unbound systems (small or not), such as an electron freed from an atom, do not have
quantized energies, since their wavelengths are not constrained to fit in a certain volume.

PhET Explorations: Quantum Wave Interference

When do photons, electrons, and atoms behave like particles and when do they behave like waves? Watch waves spread
out and interfere as they pass through a double slit, then get detected on a screen as tiny dots. Use quantum detectors to
explore how measurements change the waves and the patterns they produce on the screen. Click to open media in new
browser. (https://phet.colorado.edu/en/simulation/legacy/quantum-wave-interference)

30.7 Patterns in Spectra Reveal More Quantization

High-resolution measurements of atomic and molecular spectra show that the spectral lines are even more complex than they
first appear. In this section, we will see that this complexity has yielded important new information about electrons and their orbits
in atoms.
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In order to explore the substructure of atoms (and knowing that magnetic fields affect moving charges), the Dutch physicist
Hendrik Lorentz (1853–1930) suggested that his student Pieter Zeeman (1865–1943) study how spectra might be affected by
magnetic fields. What they found became known as the Zeeman effect, which involved spectral lines being split into two or more
separate emission lines by an external magnetic field, as shown in Figure 30.49. For their discoveries, Zeeman and Lorentz
shared the 1902 Nobel Prize in Physics.

Zeeman splitting is complex. Some lines split into three lines, some into five, and so on. But one general feature is that the
amount the split lines are separated is proportional to the applied field strength, indicating an interaction with a moving charge.
The splitting means that the quantized energy of an orbit is affected by an external magnetic field, causing the orbit to have
several discrete energies instead of one. Even without an external magnetic field, very precise measurements showed that
spectral lines are doublets (split into two), apparently by magnetic fields within the atom itself.

Figure 30.49 The Zeeman effect is the splitting of spectral lines when a magnetic field is applied. The number of lines formed varies, but the spread is
proportional to the strength of the applied field. (a) Two spectral lines with no external magnetic field. (b) The lines split when the field is applied. (c)
The splitting is greater when a stronger field is applied.

Bohr’s theory of circular orbits is useful for visualizing how an electron’s orbit is affected by a magnetic field. The circular orbit
forms a current loop, which creates a magnetic field of its own, Borb as seen in Figure 30.50. Note that the orbital magnetic

field Borb and the orbital angular momentum Lorb are along the same line. The external magnetic field and the orbital

magnetic field interact; a torque is exerted to align them. A torque rotating a system through some angle does work so that there
is energy associated with this interaction. Thus, orbits at different angles to the external magnetic field have different energies.
What is remarkable is that the energies are quantized—the magnetic field splits the spectral lines into several discrete lines that
have different energies. This means that only certain angles are allowed between the orbital angular momentum and the external
field, as seen in Figure 30.51.

Figure 30.50 The approximate picture of an electron in a circular orbit illustrates how the current loop produces its own magnetic field, called Borb . It

also shows how Borb is along the same line as the orbital angular momentum Lorb .
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Figure 30.51 Only certain angles are allowed between the orbital angular momentum and an external magnetic field. This is implied by the fact that the
Zeeman effect splits spectral lines into several discrete lines. Each line is associated with an angle between the external magnetic field and magnetic
fields due to electrons and their orbits.

We already know that the magnitude of angular momentum is quantized for electron orbits in atoms. The new insight is that the
direction of the orbital angular momentum is also quantized. The fact that the orbital angular momentum can have only certain
directions is called space quantization. Like many aspects of quantum mechanics, this quantization of direction is totally
unexpected. On the macroscopic scale, orbital angular momentum, such as that of the moon around the earth, can have any
magnitude and be in any direction.

Detailed treatment of space quantization began to explain some complexities of atomic spectra, but certain patterns seemed to
be caused by something else. As mentioned, spectral lines are actually closely spaced doublets, a characteristic called fine
structure, as shown in Figure 30.52. The doublet changes when a magnetic field is applied, implying that whatever causes the
doublet interacts with a magnetic field. In 1925, Sem Goudsmit and George Uhlenbeck, two Dutch physicists, successfully
argued that electrons have properties analogous to a macroscopic charge spinning on its axis. Electrons, in fact, have an internal
or intrinsic angular momentum called intrinsic spin S . Since electrons are charged, their intrinsic spin creates an intrinsic

magnetic field Bint , which interacts with their orbital magnetic field Borb . Furthermore, electron intrinsic spin is quantized in

magnitude and direction, analogous to the situation for orbital angular momentum. The spin of the electron can have only one
magnitude, and its direction can be at only one of two angles relative to a magnetic field, as seen in Figure 30.53. We refer to
this as spin up or spin down for the electron. Each spin direction has a different energy; hence, spectroscopic lines are split into
two. Spectral doublets are now understood as being due to electron spin.

Figure 30.52 Fine structure. Upon close examination, spectral lines are doublets, even in the absence of an external magnetic field. The electron has
an intrinsic magnetic field that interacts with its orbital magnetic field.
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Figure 30.53 The intrinsic magnetic field Bint of an electron is attributed to its spin, S , roughly pictured to be due to its charge spinning on its axis.

This is only a crude model, since electrons seem to have no size. The spin and intrinsic magnetic field of the electron can make only one of two angles
with another magnetic field, such as that created by the electron’s orbital motion. Space is quantized for spin as well as for orbital angular momentum.

These two new insights—that the direction of angular momentum, whether orbital or spin, is quantized, and that electrons have
intrinsic spin—help to explain many of the complexities of atomic and molecular spectra. In magnetic resonance imaging, it is the
way that the intrinsic magnetic field of hydrogen and biological atoms interact with an external field that underlies the diagnostic
fundamentals.

30.8 Quantum Numbers and Rules

Physical characteristics that are quantized—such as energy, charge, and angular momentum—are of such importance that
names and symbols are given to them. The values of quantized entities are expressed in terms of quantum numbers, and the
rules governing them are of the utmost importance in determining what nature is and does. This section covers some of the more
important quantum numbers and rules—all of which apply in chemistry, material science, and far beyond the realm of atomic
physics, where they were first discovered. Once again, we see how physics makes discoveries which enable other fields to grow.

The energy states of bound systems are quantized, because the particle wavelength can fit into the bounds of the system in only

certain ways. This was elaborated for the hydrogen atom, for which the allowed energies are expressed as En ∝ 1/n2 , where

n = 1, 2, 3, ... . We define n to be the principal quantum number that labels the basic states of a system. The lowest-energy

state has n = 1 , the first excited state has n = 2 , and so on. Thus the allowed values for the principal quantum number are

(30.41)n = 1, 2, 3, ....

This is more than just a numbering scheme, since the energy of the system, such as the hydrogen atom, can be expressed as
some function of n , as can other characteristics (such as the orbital radii of the hydrogen atom).

The fact that the magnitude of angular momentum is quantized was first recognized by Bohr in relation to the hydrogen atom; it is
now known to be true in general. With the development of quantum mechanics, it was found that the magnitude of angular
momentum L can have only the values

(30.42)L = l(l + 1) h
2π (l = 0, 1, 2, ..., n − 1),

where l is defined to be the angular momentum quantum number. The rule for l in atoms is given in the parentheses. Given

n , the value of l can be any integer from zero up to n − 1 . For example, if n = 4 , then l can be 0, 1, 2, or 3.

Note that for n = 1 , l can only be zero. This means that the ground-state angular momentum for hydrogen is actually zero, not

h / 2π as Bohr proposed. The picture of circular orbits is not valid, because there would be angular momentum for any circular

orbit. A more valid picture is the cloud of probability shown for the ground state of hydrogen in Figure 30.48. The electron
actually spends time in and near the nucleus. The reason the electron does not remain in the nucleus is related to Heisenberg’s
uncertainty principle—the electron’s energy would have to be much too large to be confined to the small space of the nucleus.
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Now the first excited state of hydrogen has n = 2 , so that l can be either 0 or 1, according to the rule in L = l(l + 1) h
2π .

Similarly, for n = 3 , l can be 0, 1, or 2. It is often most convenient to state the value of l , a simple integer, rather than

calculating the value of L from L = l(l + 1) h
2π . For example, for l = 2 , we see that

(30.43)L = 2(2 + 1) h
2π = 6 h

2π = 0.390h = 2.58×10−34 J ⋅ s.

It is much simpler to state l = 2 .

As recognized in the Zeeman effect, the direction of angular momentum is quantized. We now know this is true in all
circumstances. It is found that the component of angular momentum along one direction in space, usually called the z -axis, can

have only certain values of Lz . The direction in space must be related to something physical, such as the direction of the

magnetic field at that location. This is an aspect of relativity. Direction has no meaning if there is nothing that varies with direction,
as does magnetic force. The allowed values of Lz are

(30.44)Lz = ml
h
2π

⎛
⎝ml = −l, − l + 1, ..., − 1, 0, 1, ... l − 1, l⎞⎠,

where Lz is the z -component of the angular momentum and ml is the angular momentum projection quantum number. The

rule in parentheses for the values of ml is that it can range from −l to l in steps of one. For example, if l = 2 , then ml can

have the five values –2, –1, 0, 1, and 2. Each ml corresponds to a different energy in the presence of a magnetic field, so that

they are related to the splitting of spectral lines into discrete parts, as discussed in the preceding section. If the z -component of

angular momentum can have only certain values, then the angular momentum can have only certain directions, as illustrated in
Figure 30.54.

Figure 30.54 The component of a given angular momentum along the z -axis (defined by the direction of a magnetic field) can have only certain

values; these are shown here for l = 1 , for which ml = − 1, 0, and +1 . The direction of L is quantized in the sense that it can have only

certain angles relative to the z -axis.

Example 30.3 What Are the Allowed Directions?

Calculate the angles that the angular momentum vector L can make with the z -axis for l = 1 , as illustrated in Figure

30.54.

Strategy

Figure 30.54 represents the vectors L and Lz as usual, with arrows proportional to their magnitudes and pointing in the
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correct directions. L and Lz form a right triangle, with L being the hypotenuse and Lz the adjacent side. This means

that the ratio of Lz to L is the cosine of the angle of interest. We can find L and Lz using L = l(l + 1) h
2π and

Lz = m h
2π .

Solution

We are given l = 1 , so that ml can be +1, 0, or −1. Thus L has the value given by L = l(l + 1) h
2π .

(30.45)
L = l(l + 1)h

2π = 2h
2π

Lz can have three values, given by Lz = ml
h
2π .

(30.46)

Lz = ml
h
2π =

⎧

⎩
⎨
⎪
⎪

h
2π, ml = +1

0, ml = 0

− h
2π, ml = −1

As can be seen in Figure 30.54, cos θ = Lz /L, and so for ml =+1 , we have

(30.47)

cos θ1 = LZ
L =

h
2π
2h
2π

= 1
2

= 0.707.

Thus,

(30.48)θ1 = cos−10.707 = 45.0º.

Similarly, for ml = 0 , we find cos θ2 = 0 ; thus,

(30.49)θ2 = cos−10 = 90.0º.

And for ml = −1 ,

(30.50)

cos θ3 = LZ
L =

− h
2π
2h
2π

= − 1
2

= −0.707,

so that

(30.51)θ3 = cos−1(−0.707) = 135.0º.

Discussion

The angles are consistent with the figure. Only the angle relative to the z -axis is quantized. L can point in any direction as

long as it makes the proper angle with the z -axis. Thus the angular momentum vectors lie on cones as illustrated. This

behavior is not observed on the large scale. To see how the correspondence principle holds here, consider that the smallest
angle ( θ1 in the example) is for the maximum value of ml = 0 , namely ml = l . For that smallest angle,

(30.52)
cos θ = Lz

L = l
l(l + 1)

,

which approaches 1 as l becomes very large. If cos θ = 1 , then θ = 0º . Furthermore, for large l , there are many values

of ml , so that all angles become possible as l gets very large.

Intrinsic Spin Angular Momentum Is Quantized in Magnitude and Direction

There are two more quantum numbers of immediate concern. Both were first discovered for electrons in conjunction with fine
structure in atomic spectra. It is now well established that electrons and other fundamental particles have intrinsic spin, roughly
analogous to a planet spinning on its axis. This spin is a fundamental characteristic of particles, and only one magnitude of
intrinsic spin is allowed for a given type of particle. Intrinsic angular momentum is quantized independently of orbital angular
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momentum. Additionally, the direction of the spin is also quantized. It has been found that the magnitude of the intrinsic
(internal) spin angular momentum, S , of an electron is given by

(30.53)S = s(s + 1) h
2π (s = 1 / 2 for electrons),

where s is defined to be the spin quantum number. This is very similar to the quantization of L given in L = l(l + 1) h
2π ,

except that the only value allowed for s for electrons is 1/2.

The direction of intrinsic spin is quantized, just as is the direction of orbital angular momentum. The direction of spin angular
momentum along one direction in space, again called the z -axis, can have only the values

(30.54)Sz = ms
h
2π
⎛
⎝ms = −1

2, + 1
2
⎞
⎠

for electrons. Sz is the z -component of spin angular momentum and ms is the spin projection quantum number. For

electrons, s can only be 1/2, and ms can be either +1/2 or –1/2. Spin projection ms =+1 / 2 is referred to as spin up, whereas

ms = −1 / 2 is called spin down. These are illustrated in Figure 30.53.

Intrinsic Spin

In later chapters, we will see that intrinsic spin is a characteristic of all subatomic particles. For some particles s is half-

integral, whereas for others s is integral—there are crucial differences between half-integral spin particles and integral spin

particles. Protons and neutrons, like electrons, have s = 1 / 2 , whereas photons have s = 1 , and other particles called

pions have s = 0 , and so on.

To summarize, the state of a system, such as the precise nature of an electron in an atom, is determined by its particular

quantum numbers. These are expressed in the form ⎛
⎝n, l, ml , ms

⎞
⎠ —see Table 30.1 For electrons in atoms, the principal

quantum number can have the values n = 1, 2, 3, ... . Once n is known, the values of the angular momentum quantum

number are limited to l = 1, 2, 3, ...,n − 1 . For a given value of l , the angular momentum projection quantum number can

have only the values ml = −l, − l + 1, ..., − 1, 0, 1, ..., l − 1, l . Electron spin is independent of n, l, and ml , always

having s = 1 / 2 . The spin projection quantum number can have two values, ms = 1 / 2 or − 1 / 2 .

Table 30.1 Atomic Quantum Numbers

Name Symbol Allowed values

Principal quantum number n 1, 2, 3, ...

Angular momentum l 0, 1, 2, ...n − 1

Angular momentum projection ml −l, −l + 1, ..., − 1, 0, 1, ..., l − 1, l (or 0, ±1, ±2, ..., ± l)

Spin[1] s 1/2(electrons)

Spin projection ms −1/2, + 1/2

Figure 30.55 shows several hydrogen states corresponding to different sets of quantum numbers. Note that these clouds of
probability are the locations of electrons as determined by making repeated measurements—each measurement finds the
electron in a definite location, with a greater chance of finding the electron in some places rather than others. With repeated
measurements, the pattern of probability shown in the figure emerges. The clouds of probability do not look like nor do they
correspond to classical orbits. The uncertainty principle actually prevents us and nature from knowing how the electron gets from
one place to another, and so an orbit really does not exist as such. Nature on a small scale is again much different from that on
the large scale.

1. The spin quantum number s is usually not stated, since it is always 1/2 for electrons
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Figure 30.55 Probability clouds for the electron in the ground state and several excited states of hydrogen. The nature of these states is determined by

their sets of quantum numbers, here given as
⎛
⎝n, l, ml

⎞
⎠ . The ground state is (0, 0, 0); one of the possibilities for the second excited state is (3, 2, 1).

The probability of finding the electron is indicated by the shade of color; the darker the coloring the greater the chance of finding the electron.

We will see that the quantum numbers discussed in this section are valid for a broad range of particles and other systems, such
as nuclei. Some quantum numbers, such as intrinsic spin, are related to fundamental classifications of subatomic particles, and
they obey laws that will give us further insight into the substructure of matter and its interactions.

PhET Explorations: Stern-Gerlach Experiment

The classic Stern-Gerlach Experiment shows that atoms have a property called spin. Spin is a kind of intrinsic angular
momentum, which has no classical counterpart. When the z-component of the spin is measured, one always gets one of two
values: spin up or spin down.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42614/
1.14/#Phet_module_31.8)

Figure 30.56

30.9 The Pauli Exclusion Principle

Multiple-Electron Atoms

All atoms except hydrogen are multiple-electron atoms. The physical and chemical properties of elements are directly related to
the number of electrons a neutral atom has. The periodic table of the elements groups elements with similar properties into
columns. This systematic organization is related to the number of electrons in a neutral atom, called the atomic number, Z . We

shall see in this section that the exclusion principle is key to the underlying explanations, and that it applies far beyond the realm
of atomic physics.
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In 1925, the Austrian physicist Wolfgang Pauli (see Figure 30.57) proposed the following rule: No two electrons can have the
same set of quantum numbers. That is, no two electrons can be in the same state. This statement is known as the Pauli
exclusion principle, because it excludes electrons from being in the same state. The Pauli exclusion principle is extremely
powerful and very broadly applicable. It applies to any identical particles with half-integral intrinsic spin—that is, having
s = 1/2, 3/2, ... Thus no two electrons can have the same set of quantum numbers.

Pauli Exclusion Principle

No two electrons can have the same set of quantum numbers. That is, no two electrons can be in the same state.

Figure 30.57 The Austrian physicist Wolfgang Pauli (1900–1958) played a major role in the development of quantum mechanics. He proposed the
exclusion principle; hypothesized the existence of an important particle, called the neutrino, before it was directly observed; made fundamental
contributions to several areas of theoretical physics; and influenced many students who went on to do important work of their own. (credit: Nobel
Foundation, via Wikimedia Commons)

Let us examine how the exclusion principle applies to electrons in atoms. The quantum numbers involved were defined in
Quantum Numbers and Rules as n, l, ml , s , and ms . Since s is always 1 / 2 for electrons, it is redundant to list s , and so

we omit it and specify the state of an electron by a set of four numbers ⎛⎝n, l, ml , ms
⎞
⎠ . For example, the quantum numbers

(2, 1, 0, −1 / 2) completely specify the state of an electron in an atom.

Since no two electrons can have the same set of quantum numbers, there are limits to how many of them can be in the same
energy state. Note that n determines the energy state in the absence of a magnetic field. So we first choose n , and then we

see how many electrons can be in this energy state or energy level. Consider the n = 1 level, for example. The only value l
can have is 0 (see Table 30.1 for a list of possible values once n is known), and thus ml can only be 0. The spin projection

ms can be either +1 / 2 or −1 / 2 , and so there can be two electrons in the n = 1 state. One has quantum numbers

(1, 0, 0, +1/2) , and the other has (1, 0, 0, −1/2) . Figure 30.58 illustrates that there can be one or two electrons having

n = 1 , but not three.
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Figure 30.58 The Pauli exclusion principle explains why some configurations of electrons are allowed while others are not. Since electrons cannot

have the same set of quantum numbers, a maximum of two can be in the n = 1 level, and a third electron must reside in the higher-energy n = 2
level. If there are two electrons in the n = 1 level, their spins must be in opposite directions. (More precisely, their spin projections must differ.)

Shells and Subshells

Because of the Pauli exclusion principle, only hydrogen and helium can have all of their electrons in the n = 1 state. Lithium

(see the periodic table) has three electrons, and so one must be in the n = 2 level. This leads to the concept of shells and shell

filling. As we progress up in the number of electrons, we go from hydrogen to helium, lithium, beryllium, boron, and so on, and
we see that there are limits to the number of electrons for each value of n . Higher values of the shell n correspond to higher

energies, and they can allow more electrons because of the various combinations of l, ml , and ms that are possible. Each

value of the principal quantum number n thus corresponds to an atomic shell into which a limited number of electrons can go.

Shells and the number of electrons in them determine the physical and chemical properties of atoms, since it is the outermost
electrons that interact most with anything outside the atom.

The probability clouds of electrons with the lowest value of l are closest to the nucleus and, thus, more tightly bound. Thus

when shells fill, they start with l = 0 , progress to l = 1 , and so on. Each value of l thus corresponds to a subshell.

The table given below lists symbols traditionally used to denote shells and subshells.

Table 30.2 Shell and
Subshell Symbols

Shell Subshell

n l Symbol

1 0 s

2 1 p

3 2 d

4 3 f

5 4 g

5 h

6[2] i

To denote shells and subshells, we write nl with a number for n and a letter for l . For example, an electron in the n = 1 state

2. It is unusual to deal with subshells having l greater than 6, but when encountered, they continue to be labeled in

alphabetical order.
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must have l = 0 , and it is denoted as a 1s electron. Two electrons in the n = 1 state is denoted as 1s2 . Another example is

an electron in the n = 2 state with l = 1 , written as 2p . The case of three electrons with these quantum numbers is written

2p3 . This notation, called spectroscopic notation, is generalized as shown in Figure 30.59.

Figure 30.59

Counting the number of possible combinations of quantum numbers allowed by the exclusion principle, we can determine how
many electrons it takes to fill each subshell and shell.

Example 30.4 How Many Electrons Can Be in This Shell?

List all the possible sets of quantum numbers for the n = 2 shell, and determine the number of electrons that can be in the

shell and each of its subshells.

Strategy

Given n = 2 for the shell, the rules for quantum numbers limit l to be 0 or 1. The shell therefore has two subshells, labeled

2s and 2p . Since the lowest l subshell fills first, we start with the 2s subshell possibilities and then proceed with the 2p
subshell.

Solution

It is convenient to list the possible quantum numbers in a table, as shown below.

Figure 30.60

Discussion

It is laborious to make a table like this every time we want to know how many electrons can be in a shell or subshell. There
exist general rules that are easy to apply, as we shall now see.

The number of electrons that can be in a subshell depends entirely on the value of l . Once l is known, there are a fixed

number of values of ml , each of which can have two values for ms First, since ml goes from −l to l in steps of 1, there are

2l + 1 possibilities. This number is multiplied by 2, since each electron can be spin up or spin down. Thus the maximum

number of electrons that can be in a subshell is 2(2l + 1) .

For example, the 2s subshell in Example 30.4 has a maximum of 2 electrons in it, since 2(2l + 1) = 2(0 + 1) = 2 for this

subshell. Similarly, the 2p subshell has a maximum of 6 electrons, since 2(2l + 1) = 2(2 + 1) = 6 . For a shell, the maximum

number is the sum of what can fit in the subshells. Some algebra shows that the maximum number of electrons that can be in a

shell is 2n2 .

For example, for the first shell n = 1 , and so 2n2 = 2 . We have already seen that only two electrons can be in the n = 1
shell. Similarly, for the second shell, n = 2 , and so 2n2 = 8 . As found in Example 30.4, the total number of electrons in the
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n = 2 shell is 8.

Example 30.5 Subshells and Totals for n = 3

How many subshells are in the n = 3 shell? Identify each subshell, calculate the maximum number of electrons that will fit

into each, and verify that the total is 2n2 .

Strategy

Subshells are determined by the value of l ; thus, we first determine which values of l are allowed, and then we apply the

equation “maximum number of electrons that can be in a subshell = 2(2l + 1) ” to find the number of electrons in each

subshell.

Solution

Since n = 3 , we know that l can be 0, 1 , or 2 ; thus, there are three possible subshells. In standard notation, they are

labeled the 3s , 3p , and 3d subshells. We have already seen that 2 electrons can be in an s state, and 6 in a p state,

but let us use the equation “maximum number of electrons that can be in a subshell = 2(2l + 1) ” to calculate the maximum

number in each:

(30.55)3s has l = 0; thus, 2(2l + 1) = 2(0 + 1) = 2
3p has l = 1; thus, 2(2l + 1) = 2(2 + 1) = 6
3d has l = 2; thus, 2(2l + 1) = 2(4 + 1) = 10
Total = 18
(in the n = 3 shell)

The equation “maximum number of electrons that can be in a shell = 2n2 ” gives the maximum number in the n = 3 shell

to be

(30.56)Maximum number of electrons = 2n2 = 2(3)2 = 2(9) = 18.

Discussion

The total number of electrons in the three possible subshells is thus the same as the formula 2n2 . In standard

(spectroscopic) notation, a filled n = 3 shell is denoted as 3s2 3p6 3d10 . Shells do not fill in a simple manner. Before the

n = 3 shell is completely filled, for example, we begin to find electrons in the n = 4 shell.

Shell Filling and the Periodic Table

Table 30.3 shows electron configurations for the first 20 elements in the periodic table, starting with hydrogen and its single
electron and ending with calcium. The Pauli exclusion principle determines the maximum number of electrons allowed in each
shell and subshell. But the order in which the shells and subshells are filled is complicated because of the large numbers of
interactions between electrons.
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Table 30.3 Electron Configurations of Elements Hydrogen Through Calcium

Element Number of electrons (Z) Ground state configuration

H 1 1s1

He 2 1s2

Li 3 1s2 2s1

Be 4 " 2s2

B 5 " 2s2 2p1

C 6 " 2s2 2p2

N 7 " 2s2 2p3

O 8 " 2s2 2p4

F 9 " 2s2 2p5

Ne 10 " 2s2 2p6

Na 11 " 2s2 2p6 3s1

Mg 12 " " " 3s2

Al 13 " " " 3s2 3p1

Si 14 " " " 3s2 3p2

P 15 " " " 3s2 3p3

S 16 " " " 3s2 3p4

Cl 17 " " " 3s2 3p5

Ar 18 " " " 3s2 3p6

K 19 " " " 3s2 3p6 4s1

Ca 20 " " " " " 4s2

Examining the above table, you can see that as the number of electrons in an atom increases from 1 in hydrogen to 2 in helium
and so on, the lowest-energy shell gets filled first—that is, the n = 1 shell fills first, and then the n = 2 shell begins to fill.

Within a shell, the subshells fill starting with the lowest l , or with the s subshell, then the p , and so on, usually until all

subshells are filled. The first exception to this occurs for potassium, where the 4s subshell begins to fill before any electrons go

into the 3d subshell. The next exception is not shown in Table 30.3; it occurs for rubidium, where the 5s subshell starts to fill

before the 4d subshell. The reason for these exceptions is that l = 0 electrons have probability clouds that penetrate closer to

the nucleus and, thus, are more tightly bound (lower in energy).

Figure 30.61 shows the periodic table of the elements, through element 118. Of special interest are elements in the main
groups, namely, those in the columns numbered 1, 2, 13, 14, 15, 16, 17, and 18.
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angular momentum quantum number:

atom:

atomic de-excitation:

Figure 30.61 Periodic table of the elements (credit: National Institute of Standards and Technology, U.S. Department of Commerce)

The number of electrons in the outermost subshell determines the atom’s chemical properties, since it is these electrons that are
farthest from the nucleus and thus interact most with other atoms. If the outermost subshell can accept or give up an electron
easily, then the atom will be highly reactive chemically. Each group in the periodic table is characterized by its outermost electron
configuration. Perhaps the most familiar is Group 18 (Group VIII), the noble gases (helium, neon, argon, etc.). These gases are
all characterized by a filled outer subshell that is particularly stable. This means that they have large ionization energies and do
not readily give up an electron. Furthermore, if they were to accept an extra electron, it would be in a significantly higher level
and thus loosely bound. Chemical reactions often involve sharing electrons. Noble gases can be forced into unstable chemical
compounds only under high pressure and temperature.

Group 17 (Group VII) contains the halogens, such as fluorine, chlorine, iodine and bromine, each of which has one less electron

than a neighboring noble gas. Each halogen has 5 p electrons (a p5 configuration), while the p subshell can hold 6

electrons. This means the halogens have one vacancy in their outermost subshell. They thus readily accept an extra electron (it
becomes tightly bound, closing the shell as in noble gases) and are highly reactive chemically. The halogens are also likely to
form singly negative ions, such as C1− , fitting an extra electron into the vacancy in the outer subshell. In contrast, alkali metals,

such as sodium and potassium, all have a single s electron in their outermost subshell (an s1 configuration) and are members

of Group 1 (Group I). These elements easily give up their extra electron and are thus highly reactive chemically. As you might

expect, they also tend to form singly positive ions, such as Na+ , by losing their loosely bound outermost electron. They are

metals (conductors), because the loosely bound outer electron can move freely.

Of course, other groups are also of interest. Carbon, silicon, and germanium, for example, have similar chemistries and are in
Group 4 (Group IV). Carbon, in particular, is extraordinary in its ability to form many types of bonds and to be part of long chains,
such as inorganic molecules. The large group of what are called transitional elements is characterized by the filling of the d
subshells and crossing of energy levels. Heavier groups, such as the lanthanide series, are more complex—their shells do not fill
in simple order. But the groups recognized by chemists such as Mendeleev have an explanation in the substructure of atoms.

PhET Explorations: Stern-Gerlach Experiment

Build an atom out of protons, neutrons, and electrons, and see how the element, charge, and mass change. Then play a
game to test your ideas!

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42618/
1.11/#Phet_module_31.9)

Figure 30.62

Glossary

a quantum number associated with the angular momentum of electrons

basic unit of matter, which consists of a central, positively charged nucleus surrounded by negatively charged electrons

process by which an atom transfers from an excited electronic state back to the ground state electronic
configuration; often occurs by emission of a photon
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atomic excitation:

atomic number:

Bohr radius:

Brownian motion:

cathode-ray tube:

double-slit interference:

energies of hydrogen-like atoms:

energy-level diagram:

fine structure:

fluorescence:

hologram:

holography:

hydrogen spectrum wavelengths:

hydrogen-like atom:

intrinsic magnetic field:

intrinsic spin:

laser:

magnitude of the intrinsic (internal) spin angular momentum:

metastable:

orbital angular momentum:

orbital magnetic field:

Pauli exclusion principle:

phosphorescence:

planetary model of the atom:

population inversion:

quantum numbers:

Rydberg constant:

shell:

space quantization:

spin projection quantum number:

a state in which an atom or ion acquires the necessary energy to promote one or more of its electrons to
electronic states higher in energy than their ground state

the number of protons in the nucleus of an atom

the mean radius of the orbit of an electron around the nucleus of a hydrogen atom in its ground state

the continuous random movement of particles of matter suspended in a liquid or gas

a vacuum tube containing a source of electrons and a screen to view images

an experiment in which waves or particles from a single source impinge upon two slits so that the
resulting interference pattern may be observed

Bohr formula for energies of electron states in hydrogen-like atoms:

En = − Z 2

n2 E0(n = 1, 2, 3, … )

a diagram used to analyze the energy level of electrons in the orbits of an atom

the splitting of spectral lines of the hydrogen spectrum when the spectral lines are examined at very high
resolution

any process in which an atom or molecule, excited by a photon of a given energy, de-excites by emission of a
lower-energy photon

means entire picture (from the Greek word holo, as in holistic), because the image produced is three dimensional

the process of producing holograms

the wavelengths of visible light from hydrogen; can be calculated by 1
λ = R
⎛
⎝
⎜ 1
nf

2 − 1
ni

2

⎞
⎠
⎟

any atom with only a single electron

the magnetic field generated due to the intrinsic spin of electrons

the internal or intrinsic angular momentum of electrons

acronym for light amplification by stimulated emission of radiation

given by S = s(s + 1) h
2π

a state whose lifetime is an order of magnitude longer than the most short-lived states

an angular momentum that corresponds to the quantum analog of classical angular momentum

the magnetic field generated due to the orbital motion of electrons

a principle that states that no two electrons can have the same set of quantum numbers; that is,
no two electrons can be in the same state

the de-excitation of a metastable state

the most familiar model or illustration of the structure of the atom

the condition in which the majority of atoms in a sample are in a metastable state

the values of quantized entities, such as energy and angular momentum

a physical constant related to the atomic spectra with an established value of 1.097×107 m−1

a probability cloud for electrons that has a single principal quantum number

the fact that the orbital angular momentum can have only certain directions

quantum number that can be used to calculate the intrinsic electron angular momentum
along the z -axis
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spin quantum number:

stimulated emission:

subshell:

x rays:

x-ray diffraction:

z-component of spin angular momentum:

z-component of the angular momentum:

Zeeman effect:

the quantum number that parameterizes the intrinsic angular momentum (or spin angular
momentum, or simply spin) of a given particle

emission by atom or molecule in which an excited state is stimulated to decay, most readily caused by
a photon of the same energy that is necessary to excite the state

the probability cloud for electrons that has a single angular momentum quantum number l

a form of electromagnetic radiation

a technique that provides the detailed information about crystallographic structure of natural and
manufactured materials

component of intrinsic electron spin along the z -axis

component of orbital angular momentum of electron along the z -axis

the effect of external magnetic fields on spectral lines

Section Summary

30.1 Discovery of the Atom
• Atoms are the smallest unit of elements; atoms combine to form molecules, the smallest unit of compounds.
• The first direct observation of atoms was in Brownian motion.

• Analysis of Brownian motion gave accurate sizes for atoms ( 10−10 m on average) and a precise value for Avogadro’s

number.

30.2 Discovery of the Parts of the Atom: Electrons and Nuclei
• Atoms are composed of negatively charged electrons, first proved to exist in cathode-ray-tube experiments, and a positively

charged nucleus.
• All electrons are identical and have a charge-to-mass ratio of

qe
me

= − 1.76×1011 C/kg.
• The positive charge in the nuclei is carried by particles called protons, which have a charge-to-mass ratio of

q p
m p

= 9.57×107 C/kg.
• Mass of electron,

me = 9.11×10−31 kg.
• Mass of proton,

m p = 1.67×10−27 kg.
• The planetary model of the atom pictures electrons orbiting the nucleus in the same way that planets orbit the sun.

30.3 Bohr’s Theory of the Hydrogen Atom
• The planetary model of the atom pictures electrons orbiting the nucleus in the way that planets orbit the sun. Bohr used the

planetary model to develop the first reasonable theory of hydrogen, the simplest atom. Atomic and molecular spectra are
quantized, with hydrogen spectrum wavelengths given by the formula

1
λ = R
⎛
⎝
⎜ 1
nf

2 − 1
ni

2

⎞
⎠
⎟,

where λ is the wavelength of the emitted EM radiation and R is the Rydberg constant, which has the value

R = 1.097×107 m−1 .
• The constants ni and nf are positive integers, and ni must be greater than nf .

• Bohr correctly proposed that the energy and radii of the orbits of electrons in atoms are quantized, with energy for
transitions between orbits given by

ΔE = hf = Ei − Ef,
where ΔE is the change in energy between the initial and final orbits and hf is the energy of an absorbed or emitted

photon. It is useful to plot orbital energies on a vertical graph called an energy-level diagram.
• Bohr proposed that the allowed orbits are circular and must have quantized orbital angular momentum given by
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L = mevrn = n h
2π(n = 1, 2, 3 …),

where L is the angular momentum, rn is the radius of the nth orbit, and h is Planck’s constant. For all one-electron

(hydrogen-like) atoms, the radius of an orbit is given by

rn = n2

Z aB(allowed orbits n = 1, 2, 3, ...),

Z is the atomic number of an element (the number of electrons is has when neutral) and aB is defined to be the Bohr

radius, which is

aB = h2

4π2 me kqe
2 = 0.529×10−10 m.

• Furthermore, the energies of hydrogen-like atoms are given by

En = − Z 2

n2 E0(n = 1, 2, 3 ...),

where E0 is the ground-state energy and is given by

E0 = 2π2 qe
4 me k2

h2 = 13.6 eV.

Thus, for hydrogen,

En = −13.6 eV
n2 (n, = , 1, 2, 3 ...).

• The Bohr Theory gives accurate values for the energy levels in hydrogen-like atoms, but it has been improved upon in
several respects.

30.4 X Rays: Atomic Origins and Applications
• X rays are relatively high-frequency EM radiation. They are produced by transitions between inner-shell electron levels,

which produce x rays characteristic of the atomic element, or by decelerating electrons.
• X rays have many uses, including medical diagnostics and x-ray diffraction.

30.5 Applications of Atomic Excitations and De-Excitations
• An important atomic process is fluorescence, defined to be any process in which an atom or molecule is excited by

absorbing a photon of a given energy and de-excited by emitting a photon of a lower energy.
• Some states live much longer than others and are termed metastable.
• Phosphorescence is the de-excitation of a metastable state.
• Lasers produce coherent single-wavelength EM radiation by stimulated emission, in which a metastable state is stimulated

to decay.
• Lasing requires a population inversion, in which a majority of the atoms or molecules are in their metastable state.

30.6 The Wave Nature of Matter Causes Quantization
• Quantization of orbital energy is caused by the wave nature of matter. Allowed orbits in atoms occur for constructive

interference of electrons in the orbit, requiring an integral number of wavelengths to fit in an orbit’s circumference; that is,

nλn = 2πrn(n = 1, 2, 3 ...),
where λn is the electron’s de Broglie wavelength.

• Owing to the wave nature of electrons and the Heisenberg uncertainty principle, there are no well-defined orbits; rather,
there are clouds of probability.

• Bohr correctly proposed that the energy and radii of the orbits of electrons in atoms are quantized, with energy for
transitions between orbits given by

ΔE = hf = Ei − Ef,
where ΔE is the change in energy between the initial and final orbits and hf is the energy of an absorbed or emitted

photon.
• It is useful to plot orbit energies on a vertical graph called an energy-level diagram.
• The allowed orbits are circular, Bohr proposed, and must have quantized orbital angular momentum given by

L = mevrn = n h
2π(n = 1, 2, 3 ...),

where L is the angular momentum, rn is the radius of orbit n , and h is Planck’s constant.
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30.7 Patterns in Spectra Reveal More Quantization
• The Zeeman effect—the splitting of lines when a magnetic field is applied—is caused by other quantized entities in atoms.
• Both the magnitude and direction of orbital angular momentum are quantized.
• The same is true for the magnitude and direction of the intrinsic spin of electrons.

30.8 Quantum Numbers and Rules
• Quantum numbers are used to express the allowed values of quantized entities. The principal quantum number n labels

the basic states of a system and is given by

n = 1, 2, 3,....
• The magnitude of angular momentum is given by

L = l(l + 1) h
2π (l = 0, 1, 2, ..., n − 1),

where l is the angular momentum quantum number. The direction of angular momentum is quantized, in that its

component along an axis defined by a magnetic field, called the z -axis is given by

Lz = ml
h
2π

⎛
⎝ml = −l, − l + 1, ..., − 1, 0, 1, ... l − 1, l⎞⎠,

where Lz is the z -component of the angular momentum and ml is the angular momentum projection quantum number.

Similarly, the electron’s intrinsic spin angular momentum S is given by

S = s(s + 1) h
2π (s = 1 / 2 for electrons),

s is defined to be the spin quantum number. Finally, the direction of the electron’s spin along the z -axis is given by

Sz = ms
h
2π
⎛
⎝ms = −1

2, + 1
2
⎞
⎠,

where Sz is the z -component of spin angular momentum and ms is the spin projection quantum number. Spin projection

ms =+1 / 2 is referred to as spin up, whereas ms = −1 / 2 is called spin down. Table 30.1 summarizes the atomic

quantum numbers and their allowed values.

30.9 The Pauli Exclusion Principle
• The state of a system is completely described by a complete set of quantum numbers. This set is written as ⎛⎝n, l, ml , ms

⎞
⎠ .

• The Pauli exclusion principle says that no two electrons can have the same set of quantum numbers; that is, no two
electrons can be in the same state.

• This exclusion limits the number of electrons in atomic shells and subshells. Each value of n corresponds to a shell, and

each value of l corresponds to a subshell.

• The maximum number of electrons that can be in a subshell is 2(2l + 1) .

• The maximum number of electrons that can be in a shell is 2n2 .

Conceptual Questions

30.1 Discovery of the Atom

1. Name three different types of evidence for the existence of atoms.

2. Explain why patterns observed in the periodic table of the elements are evidence for the existence of atoms, and why
Brownian motion is a more direct type of evidence for their existence.

3. If atoms exist, why can’t we see them with visible light?

30.2 Discovery of the Parts of the Atom: Electrons and Nuclei

4. What two pieces of evidence allowed the first calculation of me , the mass of the electron?

(a) The ratios qe / me and q p / m p .

(b) The values of qe and EB .

(c) The ratio qe / me and qe .

Justify your response.
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5. How do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun? Explain how the
correspondence principle applies here.

30.3 Bohr’s Theory of the Hydrogen Atom

6. How do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun? Explain how the
correspondence principle applies here.

7. Explain how Bohr’s rule for the quantization of electron orbital angular momentum differs from the actual rule.

8. What is a hydrogen-like atom, and how are the energies and radii of its electron orbits related to those in hydrogen?

30.4 X Rays: Atomic Origins and Applications

9. Explain why characteristic x rays are the most energetic in the EM emission spectrum of a given element.

10. Why does the energy of characteristic x rays become increasingly greater for heavier atoms?

11. Observers at a safe distance from an atmospheric test of a nuclear bomb feel its heat but receive none of its copious x rays.
Why is air opaque to x rays but transparent to infrared?

12. Lasers are used to burn and read CDs. Explain why a laser that emits blue light would be capable of burning and reading
more information than one that emits infrared.

13. Crystal lattices can be examined with x rays but not UV. Why?

14. CT scanners do not detect details smaller than about 0.5 mm. Is this limitation due to the wavelength of x rays? Explain.

30.5 Applications of Atomic Excitations and De-Excitations

15. How do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun? Explain how the
correspondence principle applies here.

16. Atomic and molecular spectra are discrete. What does discrete mean, and how are discrete spectra related to the
quantization of energy and electron orbits in atoms and molecules?

17. Hydrogen gas can only absorb EM radiation that has an energy corresponding to a transition in the atom, just as it can only
emit these discrete energies. When a spectrum is taken of the solar corona, in which a broad range of EM wavelengths are
passed through very hot hydrogen gas, the absorption spectrum shows all the features of the emission spectrum. But when such
EM radiation passes through room-temperature hydrogen gas, only the Lyman series is absorbed. Explain the difference.

18. Lasers are used to burn and read CDs. Explain why a laser that emits blue light would be capable of burning and reading
more information than one that emits infrared.

19. The coating on the inside of fluorescent light tubes absorbs ultraviolet light and subsequently emits visible light. An inventor
claims that he is able to do the reverse process. Is the inventor’s claim possible?

20. What is the difference between fluorescence and phosphorescence?

21. How can you tell that a hologram is a true three-dimensional image and that those in 3-D movies are not?

30.6 The Wave Nature of Matter Causes Quantization

22. How is the de Broglie wavelength of electrons related to the quantization of their orbits in atoms and molecules?

30.7 Patterns in Spectra Reveal More Quantization

23. What is the Zeeman effect, and what type of quantization was discovered because of this effect?

30.8 Quantum Numbers and Rules

24. Define the quantum numbers n, l, ml , s , and ms .

25. For a given value of n , what are the allowed values of l ?

26. For a given value of l , what are the allowed values of ml ? What are the allowed values of ml for a given value of n ? Give

an example in each case.

27. List all the possible values of s and ms for an electron. Are there particles for which these values are different? The same?

30.9 The Pauli Exclusion Principle

28. Identify the shell, subshell, and number of electrons for the following: (a) 2p3 . (b) 4d9 . (c) 3s1 . (d) 5g16 .

29. Which of the following are not allowed? State which rule is violated for any that are not allowed. (a) 1p3 (b) 2p8 (c) 3g11

(d) 4 f 2
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Problems & Exercises

30.1 Discovery of the Atom

1. Using the given charge-to-mass ratios for electrons and
protons, and knowing the magnitudes of their charges are
equal, what is the ratio of the proton’s mass to the electron’s?
(Note that since the charge-to-mass ratios are given to only
three-digit accuracy, your answer may differ from the
accepted ratio in the fourth digit.)

2. (a) Calculate the mass of a proton using the charge-to-
mass ratio given for it in this chapter and its known charge.
(b) How does your result compare with the proton mass given
in this chapter?

3. If someone wanted to build a scale model of the atom with
a nucleus 1.00 m in diameter, how far away would the nearest
electron need to be?

30.2 Discovery of the Parts of the Atom:
Electrons and Nuclei

4. Rutherford found the size of the nucleus to be about

10−15 m . This implied a huge density. What would this

density be for gold?

5. In Millikan’s oil-drop experiment, one looks at a small oil
drop held motionless between two plates. Take the voltage
between the plates to be 2033 V, and the plate separation to

be 2.00 cm. The oil drop (of density 0.81 g/cm3 ) has a

diameter of 4.0×10−6 m . Find the charge on the drop, in

terms of electron units.

6. (a) An aspiring physicist wants to build a scale model of a
hydrogen atom for her science fair project. If the atom is 1.00
m in diameter, how big should she try to make the nucleus?

(b) How easy will this be to do?

30.3 Bohr’s Theory of the Hydrogen Atom

7. By calculating its wavelength, show that the first line in the
Lyman series is UV radiation.

8. Find the wavelength of the third line in the Lyman series,
and identify the type of EM radiation.

9. Look up the values of the quantities in aB = h2

4π2 me kqe
2 ,

and verify that the Bohr radius aB is 0.529×10−10 m .

10. Verify that the ground state energy E0 is 13.6 eV by

using E0 = 2π2 qe
4 me k2

h2 .

11. If a hydrogen atom has its electron in the n = 4 state,

how much energy in eV is needed to ionize it?

12. A hydrogen atom in an excited state can be ionized with
less energy than when it is in its ground state. What is n for

a hydrogen atom if 0.850 eV of energy can ionize it?

13. Find the radius of a hydrogen atom in the n = 2 state

according to Bohr’s theory.

14. Show that (13.6 eV) / hc = 1.097×107 m = R
(Rydberg’s constant), as discussed in the text.

15. What is the smallest-wavelength line in the Balmer
series? Is it in the visible part of the spectrum?

16. Show that the entire Paschen series is in the infrared part
of the spectrum. To do this, you only need to calculate the
shortest wavelength in the series.

17. Do the Balmer and Lyman series overlap? To answer this,
calculate the shortest-wavelength Balmer line and the
longest-wavelength Lyman line.

18. (a) Which line in the Balmer series is the first one in the
UV part of the spectrum?

(b) How many Balmer series lines are in the visible part of the
spectrum?

(c) How many are in the UV?

19. A wavelength of 4.653 μm is observed in a hydrogen

spectrum for a transition that ends in the nf = 5 level. What

was ni for the initial level of the electron?

20. A singly ionized helium ion has only one electron and is

denoted He+ . What is the ion’s radius in the ground state

compared to the Bohr radius of hydrogen atom?

21. A beryllium ion with a single electron (denoted Be3 + ) is

in an excited state with radius the same as that of the ground
state of hydrogen.

(a) What is n for the Be3 + ion?

(b) How much energy in eV is needed to ionize the ion from
this excited state?

22. Atoms can be ionized by thermal collisions, such as at the
high temperatures found in the solar corona. One such ion is

C+5 , a carbon atom with only a single electron.

(a) By what factor are the energies of its hydrogen-like levels
greater than those of hydrogen?

(b) What is the wavelength of the first line in this ion’s
Paschen series?

(c) What type of EM radiation is this?

23. Verify Equations rn = n2

Z aB and

aB = h2

4π2 me kqe
2 = 0.529×10−10 m using the approach

stated in the text. That is, equate the Coulomb and centripetal
forces and then insert an expression for velocity from the
condition for angular momentum quantization.

24. The wavelength of the four Balmer series lines for
hydrogen are found to be 410.3, 434.2, 486.3, and 656.5 nm.
What average percentage difference is found between these
wavelength numbers and those predicted by

1
λ = R
⎛
⎝
⎜ 1
nf

2 − 1
ni

2

⎞
⎠
⎟ ? It is amazing how well a simple formula

(disconnected originally from theory) could duplicate this
phenomenon.
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30.4 X Rays: Atomic Origins and Applications

25. (a) What is the shortest-wavelength x-ray radiation that
can be generated in an x-ray tube with an applied voltage of
50.0 kV? (b) Calculate the photon energy in eV. (c) Explain
the relationship of the photon energy to the applied voltage.

26. A color television tube also generates some x rays when
its electron beam strikes the screen. What is the shortest
wavelength of these x rays, if a 30.0-kV potential is used to
accelerate the electrons? (Note that TVs have shielding to
prevent these x rays from exposing viewers.)

27. An x ray tube has an applied voltage of 100 kV. (a) What
is the most energetic x-ray photon it can produce? Express
your answer in electron volts and joules. (b) Find the
wavelength of such an X–ray.

28. The maximum characteristic x-ray photon energy comes
from the capture of a free electron into a K shell vacancy.

What is this photon energy in keV for tungsten, assuming the
free electron has no initial kinetic energy?

29. What are the approximate energies of the Kα and Kβ x

rays for copper?

30.5 Applications of Atomic Excitations and
De-Excitations

30. Figure 30.39 shows the energy-level diagram for neon.
(a) Verify that the energy of the photon emitted when neon
goes from its metastable state to the one immediately below
is equal to 1.96 eV. (b) Show that the wavelength of this
radiation is 633 nm. (c) What wavelength is emitted when the
neon makes a direct transition to its ground state?

31. A helium-neon laser is pumped by electric discharge.
What wavelength electromagnetic radiation would be needed
to pump it? See Figure 30.39 for energy-level information.

32. Ruby lasers have chromium atoms doped in an aluminum
oxide crystal. The energy level diagram for chromium in a
ruby is shown in Figure 30.63. What wavelength is emitted by
a ruby laser?

Figure 30.63 Chromium atoms in an aluminum oxide crystal have these

energy levels, one of which is metastable. This is the basis of a ruby

laser. Visible light can pump the atom into an excited state above the

metastable state to achieve a population inversion.

33. (a) What energy photons can pump chromium atoms in a
ruby laser from the ground state to its second and third
excited states? (b) What are the wavelengths of these
photons? Verify that they are in the visible part of the
spectrum.

34. Some of the most powerful lasers are based on the
energy levels of neodymium in solids, such as glass, as
shown in Figure 30.64. (a) What average wavelength light
can pump the neodymium into the levels above its metastable
state? (b) Verify that the 1.17 eV transition produces
1.06 μm radiation.

Figure 30.64 Neodymium atoms in glass have these energy levels, one

of which is metastable. The group of levels above the metastable state

is convenient for achieving a population inversion, since photons of

many different energies can be absorbed by atoms in the ground state.

30.8 Quantum Numbers and Rules

35. If an atom has an electron in the n = 5 state with

ml = 3 , what are the possible values of l ?

36. An atom has an electron with ml = 2 . What is the

smallest value of n for this electron?

37. What are the possible values of ml for an electron in the

n = 4 state?

38. What, if any, constraints does a value of ml = 1 place

on the other quantum numbers for an electron in an atom?

39. (a) Calculate the magnitude of the angular momentum for
an l = 1 electron. (b) Compare your answer to the value

Bohr proposed for the n = 1 state.

40. (a) What is the magnitude of the angular momentum for
an l = 1 electron? (b) Calculate the magnitude of the

electron’s spin angular momentum. (c) What is the ratio of
these angular momenta?

41. Repeat Exercise 30.40 for l = 3 .

42. (a) How many angles can L make with the z -axis for an

l = 2 electron? (b) Calculate the value of the smallest

angle.

43. What angles can the spin S of an electron make with the

z -axis?

30.9 The Pauli Exclusion Principle

44. (a) How many electrons can be in the n = 4 shell?

(b) What are its subshells, and how many electrons can be in
each?
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45. (a) What is the minimum value of 1 for a subshell that has
11 electrons in it?

(b) If this subshell is in the n = 5 shell, what is the

spectroscopic notation for this atom?

46. (a) If one subshell of an atom has 9 electrons in it, what is
the minimum value of l ? (b) What is the spectroscopic

notation for this atom, if this subshell is part of the n = 3
shell?

47. (a) List all possible sets of quantum numbers
⎛
⎝n, l, ml , ms

⎞
⎠ for the n = 3 shell, and determine the

number of electrons that can be in the shell and each of its
subshells.

(b) Show that the number of electrons in the shell equals

2n2 and that the number in each subshell is 2(2l + 1) .

48. Which of the following spectroscopic notations are not

allowed? (a) 5s1 (b) 1d1 (c) 4s3 (d) 3p7 (e) 5g15 . State

which rule is violated for each that is not allowed.

49. Which of the following spectroscopic notations are
allowed (that is, which violate none of the rules regarding

values of quantum numbers)? (a) 1s1 (b) 1d3 (c) 4s2 (d)

3p7 (e) 6h20

50. (a) Using the Pauli exclusion principle and the rules
relating the allowed values of the quantum numbers
⎛
⎝n, l, ml , ms

⎞
⎠ , prove that the maximum number of electrons

in a subshell is 2n2 .

(b) In a similar manner, prove that the maximum number of

electrons in a shell is 2n2.

51. Integrated Concepts

Estimate the density of a nucleus by calculating the density of
a proton, taking it to be a sphere 1.2 fm in diameter. Compare
your result with the value estimated in this chapter.

52. Integrated Concepts

The electric and magnetic forces on an electron in the CRT in
Figure 30.7 are supposed to be in opposite directions. Verify
this by determining the direction of each force for the situation
shown. Explain how you obtain the directions (that is, identify
the rules used).

53. (a) What is the distance between the slits of a diffraction
grating that produces a first-order maximum for the first
Balmer line at an angle of 20.0º ?

(b) At what angle will the fourth line of the Balmer series
appear in first order?

(c) At what angle will the second-order maximum be for the
first line?

54. Integrated Concepts

A galaxy moving away from the earth has a speed of
0.0100c . What wavelength do we observe for an ni = 7 to

nf = 2 transition for hydrogen in that galaxy?

55. Integrated Concepts

Calculate the velocity of a star moving relative to the earth if
you observe a wavelength of 91.0 nm for ionized hydrogen
capturing an electron directly into the lowest orbital (that is, a
ni = ∞ to nf = 1 , or a Lyman series transition).

56. Integrated Concepts

In a Millikan oil-drop experiment using a setup like that in
Figure 30.9, a 500-V potential difference is applied to plates
separated by 2.50 cm. (a) What is the mass of an oil drop
having two extra electrons that is suspended motionless by
the field between the plates? (b) What is the diameter of the
drop, assuming it is a sphere with the density of olive oil?

57. Integrated Concepts

What double-slit separation would produce a first-order
maximum at 3.00º for 25.0-keV x rays? The small answer

indicates that the wave character of x rays is best determined
by having them interact with very small objects such as atoms
and molecules.

58. Integrated Concepts

In a laboratory experiment designed to duplicate Thomson’s
determination of qe / me , a beam of electrons having a

velocity of 6.00×107 m/s enters a 5.00×10−3 T
magnetic field. The beam moves perpendicular to the field in
a path having a 6.80-cm radius of curvature. Determine
qe / me from these observations, and compare the result

with the known value.

59. Integrated Concepts

Find the value of l , the orbital angular momentum quantum

number, for the moon around the earth. The extremely large
value obtained implies that it is impossible to tell the
difference between adjacent quantized orbits for macroscopic
objects.

60. Integrated Concepts

Particles called muons exist in cosmic rays and can be
created in particle accelerators. Muons are very similar to
electrons, having the same charge and spin, but they have a
mass 207 times greater. When muons are captured by an
atom, they orbit just like an electron but with a smaller radius,

since the mass in aB = h2

4π2 me kqe
2 = 0.529×10−10 m is

207 me .

(a) Calculate the radius of the n = 1 orbit for a muon in a

uranium ion ( Z = 92 ).

(b) Compare this with the 7.5-fm radius of a uranium nucleus.
Note that since the muon orbits inside the electron, it falls into
a hydrogen-like orbit. Since your answer is less than the
radius of the nucleus, you can see that the photons emitted
as the muon falls into its lowest orbit can give information
about the nucleus.

61. Integrated Concepts

Calculate the minimum amount of energy in joules needed to
create a population inversion in a helium-neon laser

containing 1.00×10−4 moles of neon.
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62. Integrated Concepts

A carbon dioxide laser used in surgery emits infrared
radiation with a wavelength of 10.6 μm . In 1.00 ms, this

laser raised the temperature of 1.00 cm3 of flesh to 100ºC
and evaporated it.

(a) How many photons were required? You may assume flesh
has the same heat of vaporization as water. (b) What was the
minimum power output during the flash?

63. Integrated Concepts

Suppose an MRI scanner uses 100-MHz radio waves.

(a) Calculate the photon energy.

(b) How does this compare to typical molecular binding
energies?

64. Integrated Concepts

(a) An excimer laser used for vision correction emits 193-nm
UV. Calculate the photon energy in eV.

(b) These photons are used to evaporate corneal tissue,
which is very similar to water in its properties. Calculate the
amount of energy needed per molecule of water to make the
phase change from liquid to gas. That is, divide the heat of
vaporization in kJ/kg by the number of water molecules in a
kilogram.

(c) Convert this to eV and compare to the photon energy.
Discuss the implications.

65. Integrated Concepts

A neighboring galaxy rotates on its axis so that stars on one
side move toward us as fast as 200 km/s, while those on the
other side move away as fast as 200 km/s. This causes the
EM radiation we receive to be Doppler shifted by velocities
over the entire range of ±200 km/s. What range of
wavelengths will we observe for the 656.0-nm line in the
Balmer series of hydrogen emitted by stars in this galaxy.
(This is called line broadening.)

66. Integrated Concepts

A pulsar is a rapidly spinning remnant of a supernova. It
rotates on its axis, sweeping hydrogen along with it so that
hydrogen on one side moves toward us as fast as 50.0 km/s,
while that on the other side moves away as fast as 50.0 km/s.
This means that the EM radiation we receive will be Doppler
shifted over a range of ±50.0 km/s . What range of

wavelengths will we observe for the 91.20-nm line in the
Lyman series of hydrogen? (Such line broadening is observed
and actually provides part of the evidence for rapid rotation.)

67. Integrated Concepts

Prove that the velocity of charged particles moving along a
straight path through perpendicular electric and magnetic
fields is v = E / B . Thus crossed electric and magnetic fields

can be used as a velocity selector independent of the charge
and mass of the particle involved.

68. Unreasonable Results

(a) What voltage must be applied to an X-ray tube to obtain
0.0100-fm-wavelength X-rays for use in exploring the details
of nuclei? (b) What is unreasonable about this result? (c)
Which assumptions are unreasonable or inconsistent?

69. Unreasonable Results

A student in a physics laboratory observes a hydrogen
spectrum with a diffraction grating for the purpose of
measuring the wavelengths of the emitted radiation. In the
spectrum, she observes a yellow line and finds its wavelength
to be 589 nm. (a) Assuming this is part of the Balmer series,
determine ni , the principal quantum number of the initial

state. (b) What is unreasonable about this result? (c) Which
assumptions are unreasonable or inconsistent?

70. Construct Your Own Problem

The solar corona is so hot that most atoms in it are ionized.
Consider a hydrogen-like atom in the corona that has only a
single electron. Construct a problem in which you calculate
selected spectral energies and wavelengths of the Lyman,
Balmer, or other series of this atom that could be used to
identify its presence in a very hot gas. You will need to
choose the atomic number of the atom, identify the element,
and choose which spectral lines to consider.

71. Construct Your Own Problem

Consider the Doppler-shifted hydrogen spectrum received
from a rapidly receding galaxy. Construct a problem in which
you calculate the energies of selected spectral lines in the
Balmer series and examine whether they can be described

with a formula like that in the equation 1
λ = R
⎛
⎝
⎜ 1
nf

2 − 1
ni

2

⎞
⎠
⎟ ,

but with a different constant R .
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31 RADIOACTIVITY AND NUCLEAR
PHYSICS

Figure 31.1 The synchrotron source produces electromagnetic radiation, as evident from the visible glow. (credit: United States Department of Energy,
via Wikimedia Commons)

Chapter Outline
31.1. Nuclear Radioactivity

• Explain nuclear radiation.
• Explain the types of radiation—alpha emission, beta emission, and gamma emission.
• Explain the ionization of radiation in an atom.
• Define the range of radiation.

31.2. Radiation Detection and Detectors
• Explain the working principle of a Geiger tube.
• Define and discuss radiation detectors.

31.3. Substructure of the Nucleus
• Define and discuss the nucleus in an atom.
• Define atomic number.
• Define and discuss isotopes.
• Calculate the density of the nucleus.
• Explain nuclear force.

31.4. Nuclear Decay and Conservation Laws
• Define and discuss nuclear decay.
• State the conservation laws.
• Explain parent and daughter nucleus.
• Calculate the energy emitted during nuclear decay.

31.5. Half-Life and Activity
• Define half-life.
• Define dating.
• Calculate age of old objects by radioactive dating.

31.6. Binding Energy
• Define and discuss binding energy.
• Calculate the binding energy per nucleon of a particle.

31.7. Tunneling
• Define and discuss tunneling.
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• Define potential barrier.
• Explain quantum tunneling.

Introduction to Radioactivity and Nuclear Physics

There is an ongoing quest to find substructures of matter. At one time, it was thought that atoms would be the ultimate
substructure, but just when the first direct evidence of atoms was obtained, it became clear that they have a substructure and a
tiny nucleus. The nucleus itself has spectacular characteristics. For example, certain nuclei are unstable, and their decay emits
radiations with energies millions of times greater than atomic energies. Some of the mysteries of nature, such as why the core of
the earth remains molten and how the sun produces its energy, are explained by nuclear phenomena. The exploration of
radioactivity and the nucleus revealed fundamental and previously unknown particles, forces, and conservation laws. That
exploration has evolved into a search for further underlying structures, such as quarks. In this chapter, the fundamentals of
nuclear radioactivity and the nucleus are explored. The following two chapters explore the more important applications of nuclear
physics in the field of medicine. We will also explore the basics of what we know about quarks and other substructures smaller
than nuclei.

31.1 Nuclear Radioactivity

The discovery and study of nuclear radioactivity quickly revealed evidence of revolutionary new physics. In addition, uses for
nuclear radiation also emerged quickly—for example, people such as Ernest Rutherford used it to determine the size of the
nucleus and devices were painted with radon-doped paint to make them glow in the dark (see Figure 31.2). We therefore begin
our study of nuclear physics with the discovery and basic features of nuclear radioactivity.

Figure 31.2 The dials of this World War II aircraft glow in the dark, because they are painted with radium-doped phosphorescent paint. It is a poignant
reminder of the dual nature of radiation. Although radium paint dials are conveniently visible day and night, they emit radon, a radioactive gas that is
hazardous and is not directly sensed. (credit: U.S. Air Force Photo)

Discovery of Nuclear Radioactivity

In 1896, the French physicist Antoine Henri Becquerel (1852–1908) accidentally found that a uranium-rich mineral called
pitchblende emits invisible, penetrating rays that can darken a photographic plate enclosed in an opaque envelope. The rays
therefore carry energy; but amazingly, the pitchblende emits them continuously without any energy input. This is an apparent
violation of the law of conservation of energy, one that we now understand is due to the conversion of a small amount of mass

into energy, as related in Einstein’s famous equation E = mc2 . It was soon evident that Becquerel’s rays originate in the nuclei

of the atoms and have other unique characteristics. The emission of these rays is called nuclear radioactivity or simply
radioactivity. The rays themselves are called nuclear radiation. A nucleus that spontaneously destroys part of its mass to emit
radiation is said to decay (a term also used to describe the emission of radiation by atoms in excited states). A substance or
object that emits nuclear radiation is said to be radioactive.

Two types of experimental evidence imply that Becquerel’s rays originate deep in the heart (or nucleus) of an atom. First, the
radiation is found to be associated with certain elements, such as uranium. Radiation does not vary with chemical state—that is,
uranium is radioactive whether it is in the form of an element or compound. In addition, radiation does not vary with temperature,
pressure, or ionization state of the uranium atom. Since all of these factors affect electrons in an atom, the radiation cannot come
from electron transitions, as atomic spectra do. The huge energy emitted during each event is the second piece of evidence that

the radiation cannot be atomic. Nuclear radiation has energies of the order of 106 eV per event, which is much greater than

the typical atomic energies (a few eV ), such as that observed in spectra and chemical reactions, and more than ten times as

high as the most energetic characteristic x rays. Becquerel did not vigorously pursue his discovery for very long. In 1898, Marie
Curie (1867–1934), then a graduate student married to the already well-known French physicist Pierre Curie (1859–1906),
began her doctoral study of Becquerel’s rays. She and her husband soon discovered two new radioactive elements, which she
named polonium (after her native land) and radium (because it radiates). These two new elements filled holes in the periodic
table and, further, displayed much higher levels of radioactivity per gram of material than uranium. Over a period of four years,
working under poor conditions and spending their own funds, the Curies processed more than a ton of uranium ore to isolate a
gram of radium salt. Radium became highly sought after, because it was about two million times as radioactive as uranium.
Curie’s radium salt glowed visibly from the radiation that took its toll on them and other unaware researchers. Shortly after
completing her Ph.D., both Curies and Becquerel shared the 1903 Nobel Prize in physics for their work on radioactivity. Pierre
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was killed in a horse cart accident in 1906, but Marie continued her study of radioactivity for nearly 30 more years. Awarded the
1911 Nobel Prize in chemistry for her discovery of two new elements, she remains the only person to win Nobel Prizes in physics
and chemistry. Marie’s radioactive fingerprints on some pages of her notebooks can still expose film, and she suffered from
radiation-induced lesions. She died of leukemia likely caused by radiation, but she was active in research almost until her death
in 1934. The following year, her daughter and son-in-law, Irene and Frederic Joliot-Curie, were awarded the Nobel Prize in
chemistry for their discovery of artificially induced radiation, adding to a remarkable family legacy.

Alpha, Beta, and Gamma

Research begun by people such as New Zealander Ernest Rutherford soon after the discovery of nuclear radiation indicated that
different types of rays are emitted. Eventually, three types were distinguished and named alpha (α) , beta ⎛⎝β⎞⎠ , and gamma (γ) ,

because, like x-rays, their identities were initially unknown. Figure 31.3 shows what happens if the rays are passed through a
magnetic field. The γ s are unaffected, while the α s and β s are deflected in opposite directions, indicating the α s are

positive, the β s negative, and the γ s uncharged. Rutherford used both magnetic and electric fields to show that α s have a

positive charge twice the magnitude of an electron, or +2 ∣ qe ∣ . In the process, he found the α s charge to mass ratio to be

several thousand times smaller than the electron’s. Later on, Rutherford collected α s from a radioactive source and passed an

electric discharge through them, obtaining the spectrum of recently discovered helium gas. Among many important discoveries
made by Rutherford and his collaborators was the proof that α radiation is the emission of a helium nucleus. Rutherford won the

Nobel Prize in chemistry in 1908 for his early work. He continued to make important contributions until his death in 1934.

Figure 31.3 Alpha, beta, and gamma rays are passed through a magnetic field on the way to a phosphorescent screen. The α s and β s bend in

opposite directions, while the γ s are unaffected, indicating a positive charge for α s, negative for β s, and neutral for γ s. Consistent results are

obtained with electric fields. Collection of the radiation offers further confirmation from the direct measurement of excess charge.

Other researchers had already proved that β s are negative and have the same mass and same charge-to-mass ratio as the

recently discovered electron. By 1902, it was recognized that β radiation is the emission of an electron. Although β s are

electrons, they do not exist in the nucleus before it decays and are not ejected atomic electrons—the electron is created in the
nucleus at the instant of decay.

Since γ s remain unaffected by electric and magnetic fields, it is natural to think they might be photons. Evidence for this grew,

but it was not until 1914 that this was proved by Rutherford and collaborators. By scattering γ radiation from a crystal and

observing interference, they demonstrated that γ radiation is the emission of a high-energy photon by a nucleus. In fact, γ
radiation comes from the de-excitation of a nucleus, just as an x ray comes from the de-excitation of an atom. The names " γ
ray" and "x ray" identify the source of the radiation. At the same energy, γ rays and x rays are otherwise identical.
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Table 31.1 Properties of Nuclear Radiation

Type of Radiation Range

α -Particles A sheet of paper, a few cm of air, fractions of a mm of tissue

β -Particles A thin aluminum plate, or tens of cm of tissue

γ Rays Several cm of lead or meters of concrete

Ionization and Range

Two of the most important characteristics of α , β , and γ rays were recognized very early. All three types of nuclear radiation

produce ionization in materials, but they penetrate different distances in materials—that is, they have different ranges. Let us
examine why they have these characteristics and what are some of the consequences.

Like x rays, nuclear radiation in the form of α s, β s, and γ s has enough energy per event to ionize atoms and molecules in

any material. The energy emitted in various nuclear decays ranges from a few keV to more than 10 MeV , while only a few

eV are needed to produce ionization. The effects of x rays and nuclear radiation on biological tissues and other materials, such

as solid state electronics, are directly related to the ionization they produce. All of them, for example, can damage electronics or
kill cancer cells. In addition, methods for detecting x rays and nuclear radiation are based on ionization, directly or indirectly. All of
them can ionize the air between the plates of a capacitor, for example, causing it to discharge. This is the basis of inexpensive
personal radiation monitors, such as pictured in Figure 31.4. Apart from α , β , and γ , there are other forms of nuclear

radiation as well, and these also produce ionization with similar effects. We define ionizing radiation as any form of radiation
that produces ionization whether nuclear in origin or not, since the effects and detection of the radiation are related to ionization.

Figure 31.4 These dosimeters (literally, dose meters) are personal radiation monitors that detect the amount of radiation by the discharge of a
rechargeable internal capacitor. The amount of discharge is related to the amount of ionizing radiation encountered, a measurement of dose. One
dosimeter is shown in the charger. Its scale is read through an eyepiece on the top. (credit: L. Chang, Wikimedia Commons)

The range of radiation is defined to be the distance it can travel through a material. Range is related to several factors,
including the energy of the radiation, the material encountered, and the type of radiation (see Figure 31.5). The higher the
energy, the greater the range, all other factors being the same. This makes good sense, since radiation loses its energy in
materials primarily by producing ionization in them, and each ionization of an atom or a molecule requires energy that is removed
from the radiation. The amount of ionization is, thus, directly proportional to the energy of the particle of radiation, as is its range.
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Figure 31.5 The penetration or range of radiation depends on its energy, the material it encounters, and the type of radiation. (a) Greater energy
means greater range. (b) Radiation has a smaller range in materials with high electron density. (c) Alphas have the smallest range, betas have a
greater range, and gammas penetrate the farthest.

Radiation can be absorbed or shielded by materials, such as the lead aprons dentists drape on us when taking x rays. Lead is a
particularly effective shield compared with other materials, such as plastic or air. How does the range of radiation depend on
material? Ionizing radiation interacts best with charged particles in a material. Since electrons have small masses, they most
readily absorb the energy of the radiation in collisions. The greater the density of a material and, in particular, the greater the
density of electrons within a material, the smaller the range of radiation.

Collisions

Conservation of energy and momentum often results in energy transfer to a less massive object in a collision. This was
discussed in detail in Work, Energy, and Energy Resources, for example.

Different types of radiation have different ranges when compared at the same energy and in the same material. Alphas have the
shortest range, betas penetrate farther, and gammas have the greatest range. This is directly related to charge and speed of the
particle or type of radiation. At a given energy, each α , β , or γ will produce the same number of ionizations in a material (each

ionization requires a certain amount of energy on average). The more readily the particle produces ionization, the more quickly it
will lose its energy. The effect of charge is as follows: The α has a charge of +2qe , the β has a charge of −qe , and the γ
is uncharged. The electromagnetic force exerted by the α is thus twice as strong as that exerted by the β and it is more likely

to produce ionization. Although chargeless, the γ does interact weakly because it is an electromagnetic wave, but it is less likely

to produce ionization in any encounter. More quantitatively, the change in momentum Δp given to a particle in the material is

Δp = FΔt , where F is the force the α , β , or γ exerts over a time Δt . The smaller the charge, the smaller is F and the

smaller is the momentum (and energy) lost. Since the speed of alphas is about 5% to 10% of the speed of light, classical (non-
relativistic) formulas apply.

The speed at which they travel is the other major factor affecting the range of α s, β s, and γ s. The faster they move, the less

time they spend in the vicinity of an atom or a molecule, and the less likely they are to interact. Since α s and β s are particles

with mass (helium nuclei and electrons, respectively), their energy is kinetic, given classically by 1
2mv2 . The mass of the β

particle is thousands of times less than that of the α s, so that β s must travel much faster than α s to have the same energy.

Since β s move faster (most at relativistic speeds), they have less time to interact than α s. Gamma rays are photons, which

must travel at the speed of light. They are even less likely to interact than a β , since they spend even less time near a given

atom (and they have no charge). The range of γ s is thus greater than the range of β s.

Alpha radiation from radioactive sources has a range much less than a millimeter of biological tissues, usually not enough to
even penetrate the dead layers of our skin. On the other hand, the same α radiation can penetrate a few centimeters of air, so

mere distance from a source prevents α radiation from reaching us. This makes α radiation relatively safe for our body

compared to β and γ radiation. Typical β radiation can penetrate a few millimeters of tissue or about a meter of air. Beta

radiation is thus hazardous even when not ingested. The range of β s in lead is about a millimeter, and so it is easy to store β
sources in lead radiation-proof containers. Gamma rays have a much greater range than either α s or β s. In fact, if a given
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thickness of material, like a lead brick, absorbs 90% of the γ s, then a second lead brick will only absorb 90% of what got

through the first. Thus, γ s do not have a well-defined range; we can only cut down the amount that gets through. Typically, γ s

can penetrate many meters of air, go right through our bodies, and are effectively shielded (that is, reduced in intensity to
acceptable levels) by many centimeters of lead. One benefit of γ s is that they can be used as radioactive tracers (see Figure

31.6).

Figure 31.6 This image of the concentration of a radioactive tracer in a patient’s body reveals where the most active bone cells are, an indication of
bone cancer. A short-lived radioactive substance that locates itself selectively is given to the patient, and the radiation is measured with an external

detector. The emitted γ radiation has a sufficient range to leave the body—the range of α s and β s is too small for them to be observed outside

the patient. (credit: Kieran Maher, Wikimedia Commons)

PhET Explorations: Beta Decay

Build an atom out of protons, neutrons, and electrons, and see how the element, charge, and mass change. Then play a
game to test your ideas!

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42623/
1.12/#Phet_module_32.1)

Figure 31.7

31.2 Radiation Detection and Detectors

It is well known that ionizing radiation affects us but does not trigger nerve impulses. Newspapers carry stories about
unsuspecting victims of radiation poisoning who fall ill with radiation sickness, such as burns and blood count changes, but who
never felt the radiation directly. This makes the detection of radiation by instruments more than an important research tool. This
section is a brief overview of radiation detection and some of its applications.

Human Application

The first direct detection of radiation was Becquerel’s fogged photographic plate. Photographic film is still the most common
detector of ionizing radiation, being used routinely in medical and dental x rays. Nuclear radiation is also captured on film, such
as seen in Figure 31.8. The mechanism for film exposure by ionizing radiation is similar to that by photons. A quantum of energy
interacts with the emulsion and alters it chemically, thus exposing the film. The quantum come from an α -particle, β -particle, or

photon, provided it has more than the few eV of energy needed to induce the chemical change (as does all ionizing radiation).
The process is not 100% efficient, since not all incident radiation interacts and not all interactions produce the chemical change.
The amount of film darkening is related to exposure, but the darkening also depends on the type of radiation, so that absorbers
and other devices must be used to obtain energy, charge, and particle-identification information.
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Figure 31.8 Film badges contain film similar to that used in this dental x-ray film and is sandwiched between various absorbers to determine the
penetrating ability of the radiation as well as the amount. (credit: Werneuchen, Wikimedia Commons)

Another very common radiation detector is the Geiger tube. The clicking and buzzing sound we hear in dramatizations and
documentaries, as well as in our own physics labs, is usually an audio output of events detected by a Geiger counter. These
relatively inexpensive radiation detectors are based on the simple and sturdy Geiger tube, shown schematically in Figure
31.9(b). A conducting cylinder with a wire along its axis is filled with an insulating gas so that a voltage applied between the
cylinder and wire produces almost no current. Ionizing radiation passing through the tube produces free ion pairs that are
attracted to the wire and cylinder, forming a current that is detected as a count. The word count implies that there is no
information on energy, charge, or type of radiation with a simple Geiger counter. They do not detect every particle, since some
radiation can pass through without producing enough ionization to be detected. However, Geiger counters are very useful in
producing a prompt output that reveals the existence and relative intensity of ionizing radiation.

Figure 31.9 (a) Geiger counters such as this one are used for prompt monitoring of radiation levels, generally giving only relative intensity and not
identifying the type or energy of the radiation. (credit: TimVickers, Wikimedia Commons) (b) Voltage applied between the cylinder and wire in a Geiger
tube causes ions and electrons produced by radiation passing through the gas-filled cylinder to move towards them. The resulting current is detected
and registered as a count.

Another radiation detection method records light produced when radiation interacts with materials. The energy of the radiation is
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sufficient to excite atoms in a material that may fluoresce, such as the phosphor used by Rutherford’s group. Materials called
scintillators use a more complex collaborative process to convert radiation energy into light. Scintillators may be liquid or solid,
and they can be very efficient. Their light output can provide information about the energy, charge, and type of radiation.
Scintillator light flashes are very brief in duration, enabling the detection of a huge number of particles in short periods of time.
Scintillator detectors are used in a variety of research and diagnostic applications. Among these are the detection by satellite-
mounted equipment of the radiation from distant galaxies, the analysis of radiation from a person indicating body burdens, and
the detection of exotic particles in accelerator laboratories.

Light from a scintillator is converted into electrical signals by devices such as the photomultiplier tube shown schematically in
Figure 31.10. These tubes are based on the photoelectric effect, which is multiplied in stages into a cascade of electrons, hence
the name photomultiplier. Light entering the photomultiplier strikes a metal plate, ejecting an electron that is attracted by a
positive potential difference to the next plate, giving it enough energy to eject two or more electrons, and so on. The final output
current can be made proportional to the energy of the light entering the tube, which is in turn proportional to the energy deposited
in the scintillator. Very sophisticated information can be obtained with scintillators, including energy, charge, particle identification,
direction of motion, and so on.

Figure 31.10 Photomultipliers use the photoelectric effect on the photocathode to convert the light output of a scintillator into an electrical signal. Each
successive dynode has a more-positive potential than the last and attracts the ejected electrons, giving them more energy. The number of electrons is
thus multiplied at each dynode, resulting in an easily detected output current.

Solid-state radiation detectors convert ionization produced in a semiconductor (like those found in computer chips) directly into
an electrical signal. Semiconductors can be constructed that do not conduct current in one particular direction. When a voltage is
applied in that direction, current flows only when ionization is produced by radiation, similar to what happens in a Geiger tube.
Further, the amount of current in a solid-state detector is closely related to the energy deposited and, since the detector is solid, it
can have a high efficiency (since ionizing radiation is stopped in a shorter distance in solids fewer particles escape detection). As
with scintillators, very sophisticated information can be obtained from solid-state detectors.

PhET Explorations: Radioactive Dating Game

Learn about different types of radiometric dating, such as carbon dating. Understand how decay and half life work to enable
radiometric dating to work. Play a game that tests your ability to match the percentage of the dating element that remains to
the age of the object.

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42627/1.8/#fs-id1992725)
Figure 31.11

31.3 Substructure of the Nucleus

What is inside the nucleus? Why are some nuclei stable while others decay? (See Figure 31.12.) Why are there different types
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of decay ( α , β and γ )? Why are nuclear decay energies so large? Pursuing natural questions like these has led to far more

fundamental discoveries than you might imagine.

Figure 31.12 Why is most of the carbon in this coal stable (a), while the uranium in the disk (b) slowly decays over billions of years? Why is cesium in
this ampule (c) even less stable than the uranium, decaying in far less than 1/1,000,000 the time? What is the reason uranium and cesium undergo

different types of decay ( α and β , respectively)? (credits: (a) Bresson Thomas, Wikimedia Commons; (b) U.S. Department of Energy; (c)

Tomihahndorf, Wikimedia Commons)

We have already identified protons as the particles that carry positive charge in the nuclei. However, there are actually two types
of particles in the nuclei—the proton and the neutron, referred to collectively as nucleons, the constituents of nuclei. As its name
implies, the neutron is a neutral particle ( q = 0 ) that has nearly the same mass and intrinsic spin as the proton. Table 31.2

compares the masses of protons, neutrons, and electrons. Note how close the proton and neutron masses are, but the neutron is
slightly more massive once you look past the third digit. Both nucleons are much more massive than an electron. In fact,
m p = 1836me (as noted in Medical Applications of Nuclear Physics and mn = 1839me .

Table 31.2 also gives masses in terms of mass units that are more convenient than kilograms on the atomic and nuclear scale.
The first of these is the unified atomic mass unit (u), defined as

(31.1)1 u = 1.6605×10−27 kg.

This unit is defined so that a neutral carbon 12 C atom has a mass of exactly 12 u. Masses are also expressed in units of

MeV/c2 . These units are very convenient when considering the conversion of mass into energy (and vice versa), as is so

prominent in nuclear processes. Using E = mc2 and units of m in MeV/c2 , we find that c2 cancels and E comes out

conveniently in MeV. For example, if the rest mass of a proton is converted entirely into energy, then

(31.2)E = mc2 = (938.27 MeV/c2)c2 = 938.27 MeV.

It is useful to note that 1 u of mass converted to energy produces 931.5 MeV, or

(31.3)1 u = 931.5 MeV/c2.
All properties of a nucleus are determined by the number of protons and neutrons it has. A specific combination of protons and
neutrons is called a nuclide and is a unique nucleus. The following notation is used to represent a particular nuclide:

(31.4)
Z
A XN,

where the symbols A , X , Z , and N are defined as follows: The number of protons in a nucleus is the atomic number Z ,

as defined in Medical Applications of Nuclear Physics. X is the symbol for the element, such as Ca for calcium. However,
once Z is known, the element is known; hence, Z and X are redundant. For example, Z = 20 is always calcium, and

calcium always has Z = 20 . N is the number of neutrons in a nucleus. In the notation for a nuclide, the subscript N is usually

omitted. The symbol A is defined as the number of nucleons or the total number of protons and neutrons,

(31.5)A = N + Z,

where A is also called the mass number. This name for A is logical; the mass of an atom is nearly equal to the mass of its

nucleus, since electrons have so little mass. The mass of the nucleus turns out to be nearly equal to the sum of the masses of
the protons and neutrons in it, which is proportional to A . In this context, it is particularly convenient to express masses in units

of u. Both protons and neutrons have masses close to 1 u, and so the mass of an atom is close to A u. For example, in an

oxygen nucleus with eight protons and eight neutrons, A = 16 , and its mass is 16 u. As noticed, the unified atomic mass unit is

defined so that a neutral carbon atom (actually a 12 C atom) has a mass of exactly 12 u . Carbon was chosen as the standard,

partly because of its importance in organic chemistry (see Appendix A).
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Table 31.2 Masses of the Proton, Neutron, and Electron

Particle Symbol kg u MeVc2

Proton p 1.67262×10−27 1.007276 938.27

Neutron n 1.67493×10−27 1.008665 939.57

Electron e 9.1094×10−31 0.00054858 0.511

Let us look at a few examples of nuclides expressed in the Z
A XN notation. The nucleus of the simplest atom, hydrogen, is a

single proton, or 1
1 H (the zero for no neutrons is often omitted). To check this symbol, refer to the periodic table—you see that

the atomic number Z of hydrogen is 1. Since you are given that there are no neutrons, the mass number A is also 1. Suppose

you are told that the helium nucleus or α particle has two protons and two neutrons. You can then see that it is written 2
4 He2 .

There is a scarce form of hydrogen found in nature called deuterium; its nucleus has one proton and one neutron and, hence,

twice the mass of common hydrogen. The symbol for deuterium is, thus, 1
2 H1 (sometimes D is used, as for deuterated water

D2 O ). An even rarer—and radioactive—form of hydrogen is called tritium, since it has a single proton and two neutrons, and it

is written 1
3 H2 . These three varieties of hydrogen have nearly identical chemistries, but the nuclei differ greatly in mass,

stability, and other characteristics. Nuclei (such as those of hydrogen) having the same Z and different N s are defined to be

isotopes of the same element.

There is some redundancy in the symbols A , X , Z , and N . If the element X is known, then Z can be found in a periodic

table and is always the same for a given element. If both A and X are known, then N can also be determined (first find Z ;

then, N = A − Z ). Thus the simpler notation for nuclides is

(31.6)A X,

which is sufficient and is most commonly used. For example, in this simpler notation, the three isotopes of hydrogen are
1 H, 2 H, and 3 H, while the α particle is 4 He . We read this backward, saying helium-4 for 4 He , or uranium-238 for

238 U . So for 238 U , should we need to know, we can determine that Z = 92 for uranium from the periodic table, and, thus,

N = 238 − 92 = 146 .

A variety of experiments indicate that a nucleus behaves something like a tightly packed ball of nucleons, as illustrated in Figure
31.13. These nucleons have large kinetic energies and, thus, move rapidly in very close contact. Nucleons can be separated by
a large force, such as in a collision with another nucleus, but resist strongly being pushed closer together. The most compelling
evidence that nucleons are closely packed in a nucleus is that the radius of a nucleus, r , is found to be given approximately by

(31.7)r = r0A1 / 3,

where r0 = 1.2 fm and A is the mass number of the nucleus. Note that r3 ∝ A . Since many nuclei are spherical, and the

volume of a sphere is V = (4 / 3)πr3 , we see that V ∝ A —that is, the volume of a nucleus is proportional to the number of

nucleons in it. This is what would happen if you pack nucleons so closely that there is no empty space between them.

Figure 31.13 A model of the nucleus.

Nucleons are held together by nuclear forces and resist both being pulled apart and pushed inside one another. The volume of
the nucleus is the sum of the volumes of the nucleons in it, here shown in different colors to represent protons and neutrons.

Example 31.1 How Small and Dense Is a Nucleus?

(a) Find the radius of an iron-56 nucleus. (b) Find its approximate density in kg / m3 , approximating the mass of 56 Fe to

be 56 u.
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Strategy and Concept

(a) Finding the radius of 56 Fe is a straightforward application of r = r0A1 / 3, given A = 56 . (b) To find the

approximate density, we assume the nucleus is spherical (this one actually is), calculate its volume using the radius found in

part (a), and then find its density from ρ = m/V . Finally, we will need to convert density from units of u / fm3 to

kg / m3 .

Solution

(a) The radius of a nucleus is given by

(31.8)r = r0A1 / 3.

Substituting the values for r0 and A yields

(31.9)r = (1.2 fm)(56)1/3 = (1.2 fm)(3.83)
= 4.6 fm.

(b) Density is defined to be ρ = m/V , which for a sphere of radius r is

(31.10)ρ = m
V = m

(4/3)πr3.

Substituting known values gives

(31.11)ρ = 56 u
(1.33)(3.14)(4.6 fm)3

= 0.138 u/fm3.

Converting to units of kg / m3 , we find

(31.12)
ρ = (0.138 u/fm3)(1.66×10–27 kg/u)⎛⎝ 1 fm

10–15 m
⎞
⎠

= 2.3×1017 kg/m3.

Discussion

(a) The radius of this medium-sized nucleus is found to be approximately 4.6 fm, and so its diameter is about 10 fm, or

10–14 m . In our discussion of Rutherford’s discovery of the nucleus, we noticed that it is about 10–15 m in diameter

(which is for lighter nuclei), consistent with this result to an order of magnitude. The nucleus is much smaller in diameter

than the typical atom, which has a diameter of the order of 10–10 m .

(b) The density found here is so large as to cause disbelief. It is consistent with earlier discussions we have had about the
nucleus being very small and containing nearly all of the mass of the atom. Nuclear densities, such as found here, are about

2×1014 times greater than that of water, which has a density of “only” 103 kg/m3 . One cubic meter of nuclear matter,

such as found in a neutron star, has the same mass as a cube of water 61 km on a side.

Nuclear Forces and Stability

What forces hold a nucleus together? The nucleus is very small and its protons, being positive, exert tremendous repulsive

forces on one another. (The Coulomb force increases as charges get closer, since it is proportional to 1 / r2 , even at the tiny

distances found in nuclei.) The answer is that two previously unknown forces hold the nucleus together and make it into a tightly
packed ball of nucleons. These forces are called the weak and strong nuclear forces. Nuclear forces are so short ranged that
they fall to zero strength when nucleons are separated by only a few fm. However, like glue, they are strongly attracted when the
nucleons get close to one another. The strong nuclear force is about 100 times more attractive than the repulsive EM force,
easily holding the nucleons together. Nuclear forces become extremely repulsive if the nucleons get too close, making nucleons
strongly resist being pushed inside one another, something like ball bearings.

The fact that nuclear forces are very strong is responsible for the very large energies emitted in nuclear decay. During decay, the
forces do work, and since work is force times the distance ( W = Fd cos θ ), a large force can result in a large emitted energy.

In fact, we know that there are two distinct nuclear forces because of the different types of nuclear decay—the strong nuclear
force is responsible for α decay, while the weak nuclear force is responsible for β decay.
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The many stable and unstable nuclei we have explored, and the hundreds we have not discussed, can be arranged in a table
called the chart of the nuclides, a simplified version of which is shown in Figure 31.14. Nuclides are located on a plot of N
versus Z . Examination of a detailed chart of the nuclides reveals patterns in the characteristics of nuclei, such as stability,

abundance, and types of decay, analogous to but more complex than the systematics in the periodic table of the elements.

Figure 31.14 Simplified chart of the nuclides, a graph of N versus Z for known nuclides. The patterns of stable and unstable nuclides reveal

characteristics of the nuclear forces. The dashed line is for N = Z . Numbers along diagonals are mass numbers A .

In principle, a nucleus can have any combination of protons and neutrons, but Figure 31.14 shows a definite pattern for those
that are stable. For low-mass nuclei, there is a strong tendency for N and Z to be nearly equal. This means that the nuclear

force is more attractive when N = Z . More detailed examination reveals greater stability when N and Z are even

numbers—nuclear forces are more attractive when neutrons and protons are in pairs. For increasingly higher masses, there are
progressively more neutrons than protons in stable nuclei. This is due to the ever-growing repulsion between protons. Since
nuclear forces are short ranged, and the Coulomb force is long ranged, an excess of neutrons keeps the protons a little farther
apart, reducing Coulomb repulsion. Decay modes of nuclides out of the region of stability consistently produce nuclides closer to
the region of stability. There are more stable nuclei having certain numbers of protons and neutrons, called magic numbers.
Magic numbers indicate a shell structure for the nucleus in which closed shells are more stable. Nuclear shell theory has been
very successful in explaining nuclear energy levels, nuclear decay, and the greater stability of nuclei with closed shells. We have
been producing ever-heavier transuranic elements since the early 1940s, and we have now produced the element with
Z = 118 . There are theoretical predictions of an island of relative stability for nuclei with such high Z s.
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Figure 31.15 The German-born American physicist Maria Goeppert Mayer (1906–1972) shared the 1963 Nobel Prize in physics with J. Jensen for the
creation of the nuclear shell model. This successful nuclear model has nucleons filling shells analogous to electron shells in atoms. It was inspired by
patterns observed in nuclear properties. (credit: Nobel Foundation via Wikimedia Commons)

31.4 Nuclear Decay and Conservation Laws

Nuclear decay has provided an amazing window into the realm of the very small. Nuclear decay gave the first indication of the
connection between mass and energy, and it revealed the existence of two of the four basic forces in nature. In this section, we
explore the major modes of nuclear decay; and, like those who first explored them, we will discover evidence of previously
unknown particles and conservation laws.

Some nuclides are stable, apparently living forever. Unstable nuclides decay (that is, they are radioactive), eventually producing
a stable nuclide after many decays. We call the original nuclide the parent and its decay products the daughters. Some

radioactive nuclides decay in a single step to a stable nucleus. For example, 60 Co is unstable and decays directly to 60 Ni ,

which is stable. Others, such as 238 U , decay to another unstable nuclide, resulting in a decay series in which each

subsequent nuclide decays until a stable nuclide is finally produced. The decay series that starts from 238 U is of particular

interest, since it produces the radioactive isotopes 226 Ra and 210 Po , which the Curies first discovered (see Figure 31.16).

Radon gas is also produced ( 222 Rn in the series), an increasingly recognized naturally occurring hazard. Since radon is a

noble gas, it emanates from materials, such as soil, containing even trace amounts of 238 U and can be inhaled. The decay of

radon and its daughters produces internal damage. The 238 U decay series ends with 206 Pb , a stable isotope of lead.
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Figure 31.16 The decay series produced by
238 U , the most common uranium isotope. Nuclides are graphed in the same manner as in the chart of

nuclides. The type of decay for each member of the series is shown, as well as the half-lives. Note that some nuclides decay by more than one mode.
You can see why radium and polonium are found in uranium ore. A stable isotope of lead is the end product of the series.

Note that the daughters of α decay shown in Figure 31.16 always have two fewer protons and two fewer neutrons than the

parent. This seems reasonable, since we know that α decay is the emission of a 4 He nucleus, which has two protons and two

neutrons. The daughters of β decay have one less neutron and one more proton than their parent. Beta decay is a little more

subtle, as we shall see. No γ decays are shown in the figure, because they do not produce a daughter that differs from the

parent.

Alpha Decay

In alpha decay, a 4 He nucleus simply breaks away from the parent nucleus, leaving a daughter with two fewer protons and

two fewer neutrons than the parent (see Figure 31.17). One example of α decay is shown in Figure 31.16 for 238 U . Another

nuclide that undergoes α decay is 239 Pu . The decay equations for these two nuclides are

(31.13)238 U → 234 Th92
234 + 4He

and

(31.14)239 Pu → 235 U + 4He.
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Figure 31.17 Alpha decay is the separation of a
4 He nucleus from the parent. The daughter nucleus has two fewer protons and two fewer neutrons

than the parent. Alpha decay occurs spontaneously only if the daughter and
4 He nucleus have less total mass than the parent.

If you examine the periodic table of the elements, you will find that Th has Z = 90 , two fewer than U, which has Z = 92 .

Similarly, in the second decay equation, we see that U has two fewer protons than Pu, which has Z = 94 . The general rule for

α decay is best written in the format Z
A XN . If a certain nuclide is known to α decay (generally this information must be looked

up in a table of isotopes, such as in Appendix B), its α decay equation is

(31.15)
Z
A XN → Z − 2

A − 4 YN − 2 + 2
4He2

⎛
⎝α decay⎞⎠

where Y is the nuclide that has two fewer protons than X, such as Th having two fewer than U. So if you were told that 239 Pu
α decays and were asked to write the complete decay equation, you would first look up which element has two fewer protons

(an atomic number two lower) and find that this is uranium. Then since four nucleons have broken away from the original 239, its
atomic mass would be 235.

It is instructive to examine conservation laws related to α decay. You can see from the equation

Z
A XN → Z − 2

A − 4 YN − 2 + 2
4He2 that total charge is conserved. Linear and angular momentum are conserved, too. Although

conserved angular momentum is not of great consequence in this type of decay, conservation of linear momentum has
interesting consequences. If the nucleus is at rest when it decays, its momentum is zero. In that case, the fragments must fly in
opposite directions with equal-magnitude momenta so that total momentum remains zero. This results in the α particle carrying

away most of the energy, as a bullet from a heavy rifle carries away most of the energy of the powder burned to shoot it. Total
mass–energy is also conserved: the energy produced in the decay comes from conversion of a fraction of the original mass. As
discussed in Atomic Physics, the general relationship is

(31.16)E = ( Δ m)c2.

Here, E is the nuclear reaction energy (the reaction can be nuclear decay or any other reaction), and Δm is the difference in

mass between initial and final products. When the final products have less total mass, Δm is positive, and the reaction releases

energy (is exothermic). When the products have greater total mass, the reaction is endothermic ( Δm is negative) and must be

induced with an energy input. For α decay to be spontaneous, the decay products must have smaller mass than the parent.

Example 31.2 Alpha Decay Energy Found from Nuclear Masses

Find the energy emitted in the α decay of 239 Pu .

Strategy

Nuclear reaction energy, such as released in α decay, can be found using the equation E = (Δm)c2 . We must first find

Δm , the difference in mass between the parent nucleus and the products of the decay. This is easily done using masses

given in Appendix A.

Solution

The decay equation was given earlier for 239 Pu ; it is

(31.17)239 Pu → 235 U + 4He.

Thus the pertinent masses are those of 239 Pu , 235 U , and the α particle or 4 He , all of which are listed in Appendix A.

The initial mass was m(239Pu) = 239.052157 u . The final mass is the sum

m(235U)+m(4He)= 235.043924 u + 4.002602 u = 239.046526 u . Thus,

(31.18)Δm = m(239Pu) − [m(235U) + m(4 He)]
= 239.052157 u − 239.046526 u
= 0.0005631 u.

Chapter 31 | Radioactivity and Nuclear Physics 1245



Now we can find E by entering Δm into the equation:

(31.19)E = (Δm)c2 = (0.005631 u)c2.

We know 1 u = 931.5 MeV/c2 , and so

(31.20)E = (0.005631)(931.5 MeV / c2)(c2 ) = 5.25 MeV.

Discussion

The energy released in this α decay is in the MeV range, about 106 times as great as typical chemical reaction

energies, consistent with many previous discussions. Most of this energy becomes kinetic energy of the α particle (or

4 He nucleus), which moves away at high speed. The energy carried away by the recoil of the 235 U nucleus is much

smaller in order to conserve momentum. The 235 U nucleus can be left in an excited state to later emit photons ( γ rays).

This decay is spontaneous and releases energy, because the products have less mass than the parent nucleus. The
question of why the products have less mass will be discussed in Binding Energy. Note that the masses given in Appendix
A are atomic masses of neutral atoms, including their electrons. The mass of the electrons is the same before and after α
decay, and so their masses subtract out when finding Δm . In this case, there are 94 electrons before and after the decay.

Beta Decay

There are actually three types of beta decay. The first discovered was “ordinary” beta decay and is called β− decay or electron

emission. The symbol β− represents an electron emitted in nuclear beta decay. Cobalt-60 is a nuclide that β− decays in the

following manner:

(31.21)60 Co → 60 Ni + β− + neutrino.

The neutrino is a particle emitted in beta decay that was unanticipated and is of fundamental importance. The neutrino was not
even proposed in theory until more than 20 years after beta decay was known to involve electron emissions. Neutrinos are so
difficult to detect that the first direct evidence of them was not obtained until 1953. Neutrinos are nearly massless, have no
charge, and do not interact with nucleons via the strong nuclear force. Traveling approximately at the speed of light, they have
little time to affect any nucleus they encounter. This is, owing to the fact that they have no charge (and they are not EM waves),
they do not interact through the EM force. They do interact via the relatively weak and very short range weak nuclear force.
Consequently, neutrinos escape almost any detector and penetrate almost any shielding. However, neutrinos do carry energy,
angular momentum (they are fermions with half-integral spin), and linear momentum away from a beta decay. When accurate
measurements of beta decay were made, it became apparent that energy, angular momentum, and linear momentum were not
accounted for by the daughter nucleus and electron alone. Either a previously unsuspected particle was carrying them away, or
three conservation laws were being violated. Wolfgang Pauli made a formal proposal for the existence of neutrinos in 1930. The
Italian-born American physicist Enrico Fermi (1901–1954) gave neutrinos their name, meaning little neutral ones, when he
developed a sophisticated theory of beta decay (see Figure 31.18). Part of Fermi’s theory was the identification of the weak
nuclear force as being distinct from the strong nuclear force and in fact responsible for beta decay.
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Figure 31.18 Enrico Fermi was nearly unique among 20th-century physicists—he made significant contributions both as an experimentalist and a
theorist. His many contributions to theoretical physics included the identification of the weak nuclear force. The fermi (fm) is named after him, as are an
entire class of subatomic particles (fermions), an element (Fermium), and a major research laboratory (Fermilab). His experimental work included
studies of radioactivity, for which he won the 1938 Nobel Prize in physics, and creation of the first nuclear chain reaction. (credit: United States
Department of Energy, Office of Public Affairs)

The neutrino also reveals a new conservation law. There are various families of particles, one of which is the electron family. We
propose that the number of members of the electron family is constant in any process or any closed system. In our example of
beta decay, there are no members of the electron family present before the decay, but after, there is an electron and a neutrino.
So electrons are given an electron family number of +1 . The neutrino in β− decay is an electron’s antineutrino, given the

symbol ν¯ e , where ν is the Greek letter nu, and the subscript e means this neutrino is related to the electron. The bar indicates

this is a particle of antimatter. (All particles have antimatter counterparts that are nearly identical except that they have the
opposite charge. Antimatter is almost entirely absent on Earth, but it is found in nuclear decay and other nuclear and particle

reactions as well as in outer space.) The electron’s antineutrino ν¯ e , being antimatter, has an electron family number of –1 .

The total is zero, before and after the decay. The new conservation law, obeyed in all circumstances, states that the total electron
family number is constant. An electron cannot be created without also creating an antimatter family member. This law is
analogous to the conservation of charge in a situation where total charge is originally zero, and equal amounts of positive and
negative charge must be created in a reaction to keep the total zero.

If a nuclide Z
A XN is known to β− decay, then its β− decay equation is

(31.22)XN → YN − 1 + β− + ν- e (β− decay),

where Y is the nuclide having one more proton than X (see Figure 31.19). So if you know that a certain nuclide β− decays, you

can find the daughter nucleus by first looking up Z for the parent and then determining which element has atomic number

Z + 1 . In the example of the β− decay of 60 Co given earlier, we see that Z = 27 for Co and Z = 28 is Ni. It is as if one

of the neutrons in the parent nucleus decays into a proton, electron, and neutrino. In fact, neutrons outside of nuclei do just
that—they live only an average of a few minutes and β− decay in the following manner:

(31.23)n → p + β− + ν- e.

Figure 31.19 In β−
decay, the parent nucleus emits an electron and an antineutrino. The daughter nucleus has one more proton and one less

neutron than its parent. Neutrinos interact so weakly that they are almost never directly observed, but they play a fundamental role in particle physics.

We see that charge is conserved in β− decay, since the total charge is Z before and after the decay. For example, in 60 Co
decay, total charge is 27 before decay, since cobalt has Z = 27 . After decay, the daughter nucleus is Ni, which has Z = 28 ,
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and there is an electron, so that the total charge is also 28 + (–1) or 27. Angular momentum is conserved, but not obviously

(you have to examine the spins and angular momenta of the final products in detail to verify this). Linear momentum is also
conserved, again imparting most of the decay energy to the electron and the antineutrino, since they are of low and zero mass,
respectively. Another new conservation law is obeyed here and elsewhere in nature. The total number of nucleons A is

conserved. In 60 Co decay, for example, there are 60 nucleons before and after the decay. Note that total A is also conserved

in α decay. Also note that the total number of protons changes, as does the total number of neutrons, so that total Z and total

N are not conserved in β− decay, as they are in α decay. Energy released in β− decay can be calculated given the masses

of the parent and products.

Example 31.3 β− Decay Energy from Masses

Find the energy emitted in the β− decay of 60 Co .

Strategy and Concept

As in the preceding example, we must first find Δm , the difference in mass between the parent nucleus and the products of

the decay, using masses given in Appendix A. Then the emitted energy is calculated as before, using E = (Δm)c2 . The

initial mass is just that of the parent nucleus, and the final mass is that of the daughter nucleus and the electron created in
the decay. The neutrino is massless, or nearly so. However, since the masses given in Appendix A are for neutral atoms,
the daughter nucleus has one more electron than the parent, and so the extra electron mass that corresponds to the β– is

included in the atomic mass of Ni. Thus,

(31.24)Δm = m(60 Co) − m(60 Ni).

Solution

The β− decay equation for 60 Co is

(31.25)
27
60 Co33 → 28

60 Ni32 + β − + ν̄ e.

As noticed,

(31.26)Δm = m(60 Co) − m(60 Ni).

Entering the masses found in Appendix A gives

(31.27)Δm = 59.933820 u − 59.930789 u = 0.003031 u.
Thus,

(31.28)E = (Δm)c2 = (0.003031 u)c2.

Using 1 u = 931.5 MeV / c2 , we obtain

(31.29)E = (0.003031)(931.5 MeV / c2)(c2 ) = 2.82 MeV.

Discussion and Implications

Perhaps the most difficult thing about this example is convincing yourself that the β− mass is included in the atomic mass

of 60 Ni . Beyond that are other implications. Again the decay energy is in the MeV range. This energy is shared by all of

the products of the decay. In many 60 Co decays, the daughter nucleus 60 Ni is left in an excited state and emits photons

( γ rays). Most of the remaining energy goes to the electron and neutrino, since the recoil kinetic energy of the daughter

nucleus is small. One final note: the electron emitted in β− decay is created in the nucleus at the time of decay.

The second type of beta decay is less common than the first. It is β+ decay. Certain nuclides decay by the emission of a

positive electron. This is antielectron or positron decay (see Figure 31.20).
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Figure 31.20 β+
decay is the emission of a positron that eventually finds an electron to annihilate, characteristically producing gammas in opposite

directions.

The antielectron is often represented by the symbol e+ , but in beta decay it is written as β+ to indicate the antielectron was

emitted in a nuclear decay. Antielectrons are the antimatter counterpart to electrons, being nearly identical, having the same
mass, spin, and so on, but having a positive charge and an electron family number of –1 . When a positron encounters an

electron, there is a mutual annihilation in which all the mass of the antielectron-electron pair is converted into pure photon

energy. (The reaction, e+ + e− → γ + γ , conserves electron family number as well as all other conserved quantities.) If a

nuclide Z
A XN is known to β+ decay, then its β+ decay equation is

(31.30)
Z
A XN → YN + 1 + β+ + νe (β+ decay),

where Y is the nuclide having one less proton than X (to conserve charge) and νe is the symbol for the electron’s neutrino,

which has an electron family number of +1 . Since an antimatter member of the electron family (the β+ ) is created in the

decay, a matter member of the family (here the νe ) must also be created. Given, for example, that 22 Na β+ decays, you can

write its full decay equation by first finding that Z = 11 for 22 Na , so that the daughter nuclide will have Z = 10 , the atomic

number for neon. Thus the β+ decay equation for 22 Na is

(31.31)
11
22 Na11 → 10

22 Ne12 + β+ + νe.

In β+ decay, it is as if one of the protons in the parent nucleus decays into a neutron, a positron, and a neutrino. Protons do not

do this outside of the nucleus, and so the decay is due to the complexities of the nuclear force. Note again that the total number

of nucleons is constant in this and any other reaction. To find the energy emitted in β+ decay, you must again count the number

of electrons in the neutral atoms, since atomic masses are used. The daughter has one less electron than the parent, and one

electron mass is created in the decay. Thus, in β+ decay,

(31.32)Δm = m(parent) − [m(daughter) + 2me],

since we use the masses of neutral atoms.

Electron capture is the third type of beta decay. Here, a nucleus captures an inner-shell electron and undergoes a nuclear

reaction that has the same effect as β+ decay. Electron capture is sometimes denoted by the letters EC. We know that

electrons cannot reside in the nucleus, but this is a nuclear reaction that consumes the electron and occurs spontaneously only

when the products have less mass than the parent plus the electron. If a nuclide Z
A XN is known to undergo electron capture,

then its electron capture equation is

(31.33)
Z
A XN + e− → YN + 1 + νe(electron capture, or EC).

Any nuclide that can β+ decay can also undergo electron capture (and often does both). The same conservation laws are

obeyed for EC as for β+ decay. It is good practice to confirm these for yourself.

All forms of beta decay occur because the parent nuclide is unstable and lies outside the region of stability in the chart of
nuclides. Those nuclides that have relatively more neutrons than those in the region of stability will β− decay to produce a

daughter with fewer neutrons, producing a daughter nearer the region of stability. Similarly, those nuclides having relatively more
protons than those in the region of stability will β− decay or undergo electron capture to produce a daughter with fewer protons,

nearer the region of stability.
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Gamma Decay

Gamma decay is the simplest form of nuclear decay—it is the emission of energetic photons by nuclei left in an excited state by
some earlier process. Protons and neutrons in an excited nucleus are in higher orbitals, and they fall to lower levels by photon

emission (analogous to electrons in excited atoms). Nuclear excited states have lifetimes typically of only about 10−14 s, an

indication of the great strength of the forces pulling the nucleons to lower states. The γ decay equation is simply

(31.34)
Z
A XN

* → XN + γ1 + γ2 + ⋯ (γ decay)

where the asterisk indicates the nucleus is in an excited state. There may be one or more γ s emitted, depending on how the

nuclide de-excites. In radioactive decay, γ emission is common and is preceded by γ or β decay. For example, when 60 Co

β− decays, it most often leaves the daughter nucleus in an excited state, written 60 Ni* . Then the nickel nucleus quickly γ
decays by the emission of two penetrating γ s:

(31.35)60 Ni* → 60 Ni + γ1 + γ2.

These are called cobalt γ rays, although they come from nickel—they are used for cancer therapy, for example. It is again

constructive to verify the conservation laws for gamma decay. Finally, since γ decay does not change the nuclide to another

species, it is not prominently featured in charts of decay series, such as that in Figure 31.16.

There are other types of nuclear decay, but they occur less commonly than α , β , and γ decay. Spontaneous fission is the

most important of the other forms of nuclear decay because of its applications in nuclear power and weapons. It is covered in the
next chapter.

31.5 Half-Life and Activity

Unstable nuclei decay. However, some nuclides decay faster than others. For example, radium and polonium, discovered by the
Curies, decay faster than uranium. This means they have shorter lifetimes, producing a greater rate of decay. In this section we
explore half-life and activity, the quantitative terms for lifetime and rate of decay.

Half-Life

Why use a term like half-life rather than lifetime? The answer can be found by examining Figure 31.21, which shows how the
number of radioactive nuclei in a sample decreases with time. The time in which half of the original number of nuclei decay is
defined as the half-life, t1 / 2 . Half of the remaining nuclei decay in the next half-life. Further, half of that amount decays in the

following half-life. Therefore, the number of radioactive nuclei decreases from N to N / 2 in one half-life, then to N / 4 in the

next, and to N / 8 in the next, and so on. If N is a large number, then many half-lives (not just two) pass before all of the nuclei

decay. Nuclear decay is an example of a purely statistical process. A more precise definition of half-life is that each nucleus has
a 50% chance of living for a time equal to one half-life t1 / 2 . Thus, if N is reasonably large, half of the original nuclei decay in a

time of one half-life. If an individual nucleus makes it through that time, it still has a 50% chance of surviving through another
half-life. Even if it happens to make it through hundreds of half-lives, it still has a 50% chance of surviving through one more. The
probability of decay is the same no matter when you start counting. This is like random coin flipping. The chance of heads is
50%, no matter what has happened before.
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Figure 31.21 Radioactive decay reduces the number of radioactive nuclei over time. In one half-life t1 / 2 , the number decreases to half of its original

value. Half of what remains decay in the next half-life, and half of those in the next, and so on. This is an exponential decay, as seen in the graph of the
number of nuclei present as a function of time.

There is a tremendous range in the half-lives of various nuclides, from as short as 10−23 s for the most unstable, to more than

1016 y for the least unstable, or about 46 orders of magnitude. Nuclides with the shortest half-lives are those for which the

nuclear forces are least attractive, an indication of the extent to which the nuclear force can depend on the particular combination
of neutrons and protons. The concept of half-life is applicable to other subatomic particles, as will be discussed in Particle
Physics. It is also applicable to the decay of excited states in atoms and nuclei. The following equation gives the quantitative
relationship between the original number of nuclei present at time zero ( N0 ) and the number ( N ) at a later time t :

(31.36)N = N0e−λt,

where e = 2.71828... is the base of the natural logarithm, and λ is the decay constant for the nuclide. The shorter the half-

life, the larger is the value of λ , and the faster the exponential e−λt decreases with time. The relationship between the decay

constant λ and the half-life t1 / 2 is

(31.37)λ = ln(2)
t1/2

≈ 0.693
t1 / 2

.

To see how the number of nuclei declines to half its original value in one half-life, let t = t1 / 2 in the exponential in the equation

N = N0e−λt . This gives N = N0 e−λt = N0 e−0.693 = 0.500N0 . For integral numbers of half-lives, you can just divide the

original number by 2 over and over again, rather than using the exponential relationship. For example, if ten half-lives have
passed, we divide N by 2 ten times. This reduces it to N / 1024 . For an arbitrary time, not just a multiple of the half-life, the

exponential relationship must be used.

Radioactive dating is a clever use of naturally occurring radioactivity. Its most famous application is carbon-14 dating.

Carbon-14 has a half-life of 5730 years and is produced in a nuclear reaction induced when solar neutrinos strike 14 N in the

atmosphere. Radioactive carbon has the same chemistry as stable carbon, and so it mixes into the ecosphere, where it is
consumed and becomes part of every living organism. Carbon-14 has an abundance of 1.3 parts per trillion of normal carbon.
Thus, if you know the number of carbon nuclei in an object (perhaps determined by mass and Avogadro’s number), you multiply

that number by 1.3×10−12 to find the number of 14 C nuclei in the object. When an organism dies, carbon exchange with the

environment ceases, and 14 C is not replenished as it decays. By comparing the abundance of 14 C in an artifact, such as

mummy wrappings, with the normal abundance in living tissue, it is possible to determine the artifact’s age (or time since death).
Carbon-14 dating can be used for biological tissues as old as 50 or 60 thousand years, but is most accurate for younger

samples, since the abundance of 14 C nuclei in them is greater. Very old biological materials contain no 14 C at all. There are

instances in which the date of an artifact can be determined by other means, such as historical knowledge or tree-ring counting.
These cross-references have confirmed the validity of carbon-14 dating and permitted us to calibrate the technique as well.
Carbon-14 dating revolutionized parts of archaeology and is of such importance that it earned the 1960 Nobel Prize in chemistry
for its developer, the American chemist Willard Libby (1908–1980).

One of the most famous cases of carbon-14 dating involves the Shroud of Turin, a long piece of fabric purported to be the burial
shroud of Jesus (see Figure 31.22). This relic was first displayed in Turin in 1354 and was denounced as a fraud at that time by
a French bishop. Its remarkable negative imprint of an apparently crucified body resembles the then-accepted image of Jesus,
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and so the shroud was never disregarded completely and remained controversial over the centuries. Carbon-14 dating was not
performed on the shroud until 1988, when the process had been refined to the point where only a small amount of material
needed to be destroyed. Samples were tested at three independent laboratories, each being given four pieces of cloth, with only
one unidentified piece from the shroud, to avoid prejudice. All three laboratories found samples of the shroud contain 92% of the
14 C found in living tissues, allowing the shroud to be dated (see Example 31.4).

Figure 31.22 Part of the Shroud of Turin, which shows a remarkable negative imprint likeness of Jesus complete with evidence of crucifixion wounds.
The shroud first surfaced in the 14th century and was only recently carbon-14 dated. It has not been determined how the image was placed on the
material. (credit: Butko, Wikimedia Commons)

Example 31.4 How Old Is the Shroud of Turin?

Calculate the age of the Shroud of Turin given that the amount of 14 C found in it is 92% of that in living tissue.

Strategy

Knowing that 92% of the 14 C remains means that N / N0 = 0.92 . Therefore, the equation N = N0e−λt can be used to

find λt . We also know that the half-life of 14 C is 5730 y, and so once λt is known, we can use the equation λ = 0.693
t1 / 2

to find λ and then find t as requested. Here, we postulate that the decrease in 14 C is solely due to nuclear decay.

Solution

Solving the equation N = N0e−λt for N / N0 gives

(31.38)N
N0

= e−λt.

Thus,

(31.39)0.92 = e−λt.
Taking the natural logarithm of both sides of the equation yields

(31.40)ln 0.92 = –λt
so that

(31.41)−0.0834 = −λt.
Rearranging to isolate t gives

(31.42)t = 0.0834
λ .

Now, the equation λ = 0.693
t1 / 2

can be used to find λ for 14 C . Solving for λ and substituting the known half-life gives

(31.43)λ = 0.693
t1 / 2

= 0.693
5730 y.

We enter this value into the previous equation to find t :

(31.44)t = 0.0834
0.693
5730 y

= 690 y.

Discussion
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This dates the material in the shroud to 1988–690 = a.d. 1300. Our calculation is only accurate to two digits, so that the year
is rounded to 1300. The values obtained at the three independent laboratories gave a weighted average date of a.d.

1320 ± 60 . The uncertainty is typical of carbon-14 dating and is due to the small amount of 14 C in living tissues, the

amount of material available, and experimental uncertainties (reduced by having three independent measurements). It is
meaningful that the date of the shroud is consistent with the first record of its existence and inconsistent with the period in
which Jesus lived.

There are other forms of radioactive dating. Rocks, for example, can sometimes be dated based on the decay of 238 U . The

decay series for 238 U ends with 206 Pb , so that the ratio of these nuclides in a rock is an indication of how long it has been

since the rock solidified. The original composition of the rock, such as the absence of lead, must be known with some

confidence. However, as with carbon-14 dating, the technique can be verified by a consistent body of knowledge. Since 238 U

has a half-life of 4.5×109 y, it is useful for dating only very old materials, showing, for example, that the oldest rocks on Earth

solidified about 3.5×109 years ago.

Activity, the Rate of Decay

What do we mean when we say a source is highly radioactive? Generally, this means the number of decays per unit time is very
high. We define activity R to be the rate of decay expressed in decays per unit time. In equation form, this is

(31.45)R = ΔN
Δt

where ΔN is the number of decays that occur in time Δt . The SI unit for activity is one decay per second and is given the

name becquerel (Bq) in honor of the discoverer of radioactivity. That is,

(31.46)1 Bq = 1 decay/s.

Activity R is often expressed in other units, such as decays per minute or decays per year. One of the most common units for

activity is the curie (Ci), defined to be the activity of 1 g of 226 Ra , in honor of Marie Curie’s work with radium. The definition of

curie is

(31.47)1 Ci = 3.70×1010 Bq,

or 3.70×1010 decays per second. A curie is a large unit of activity, while a becquerel is a relatively small unit.

1 MBq = 100 microcuries (μCi) . In countries like Australia and New Zealand that adhere more to SI units, most radioactive

sources, such as those used in medical diagnostics or in physics laboratories, are labeled in Bq or megabecquerel (MBq).

Intuitively, you would expect the activity of a source to depend on two things: the amount of the radioactive substance present,
and its half-life. The greater the number of radioactive nuclei present in the sample, the more will decay per unit of time. The
shorter the half-life, the more decays per unit time, for a given number of nuclei. So activity R should be proportional to the

number of radioactive nuclei, N , and inversely proportional to their half-life, t1 / 2 . In fact, your intuition is correct. It can be

shown that the activity of a source is

(31.48)R = 0.693N
t1 / 2

where N is the number of radioactive nuclei present, having half-life t1 / 2 . This relationship is useful in a variety of calculations,

as the next two examples illustrate.

Example 31.5 How Great Is the 14 C Activity in Living Tissue?

Calculate the activity due to 14 C in 1.00 kg of carbon found in a living organism. Express the activity in units of Bq and Ci.

Strategy

To find the activity R using the equation R = 0.693N
t1 / 2

, we must know N and t1 / 2 . The half-life of 14 C can be found in

Appendix B, and was stated above as 5730 y. To find N , we first find the number of 12 C nuclei in 1.00 kg of carbon using
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the concept of a mole. As indicated, we then multiply by 1.3×10−12 (the abundance of 14 C in a carbon sample from a

living organism) to get the number of 14 C nuclei in a living organism.

Solution

One mole of carbon has a mass of 12.0 g, since it is nearly pure 12 C . (A mole has a mass in grams equal in magnitude to

A found in the periodic table.) Thus the number of carbon nuclei in a kilogram is

(31.49)
N(12 C) = 6.02×1023 mol–1

12.0 g/mol ×(1000 g) = 5.02×1025 .

So the number of 14 C nuclei in 1 kg of carbon is

(31.50)N(14 C) = (5.02×1025)(1.3×10−12) = 6.52×1013.

Now the activity R is found using the equation R = 0.693N
t1 / 2

.

Entering known values gives

(31.51)
R = 0.693(6.52×1013)

5730 y = 7.89×109 y–1,

or 7.89×109 decays per year. To convert this to the unit Bq, we simply convert years to seconds. Thus,

(31.52)
R = (7.89×109 y–1) 1.00 y

3.16×107 s
= 250 Bq,

or 250 decays per second. To express R in curies, we use the definition of a curie,

(31.53)
R = 250 Bq

3.7×1010 Bq/Ci
= 6.76×10−9 Ci.

Thus,

(31.54)R = 6.76 nCi.
Discussion

Our own bodies contain kilograms of carbon, and it is intriguing to think there are hundreds of 14 C decays per second

taking place in us. Carbon-14 and other naturally occurring radioactive substances in our bodies contribute to the
background radiation we receive. The small number of decays per second found for a kilogram of carbon in this example

gives you some idea of how difficult it is to detect 14 C in a small sample of material. If there are 250 decays per second in

a kilogram, then there are 0.25 decays per second in a gram of carbon in living tissue. To observe this, you must be able to
distinguish decays from other forms of radiation, in order to reduce background noise. This becomes more difficult with an

old tissue sample, since it contains less 14 C , and for samples more than 50 thousand years old, it is impossible.

Human-made (or artificial) radioactivity has been produced for decades and has many uses. Some of these include medical
therapy for cancer, medical imaging and diagnostics, and food preservation by irradiation. Many applications as well as the
biological effects of radiation are explored in Medical Applications of Nuclear Physics, but it is clear that radiation is
hazardous. A number of tragic examples of this exist, one of the most disastrous being the meltdown and fire at the Chernobyl
reactor complex in the Ukraine (see Figure 31.23). Several radioactive isotopes were released in huge quantities, contaminating
many thousands of square kilometers and directly affecting hundreds of thousands of people. The most significant releases were

of 131 I , 90 Sr , 137 Cs , 239 Pu , 238 U , and 235 U . Estimates are that the total amount of radiation released was about 100

million curies.
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Human and Medical Applications

Figure 31.23 The Chernobyl reactor. More than 100 people died soon after its meltdown, and there will be thousands of deaths from radiation-induced
cancer in the future. While the accident was due to a series of human errors, the cleanup efforts were heroic. Most of the immediate fatalities were
firefighters and reactor personnel. (credit: Elena Filatova)

Example 31.6 What Mass of 137 Cs Escaped Chernobyl?

It is estimated that the Chernobyl disaster released 6.0 MCi of 137 Cs into the environment. Calculate the mass of 137 Cs
released.

Strategy

We can calculate the mass released using Avogadro’s number and the concept of a mole if we can first find the number of

nuclei N released. Since the activity R is given, and the half-life of 137 Cs is found in Appendix B to be 30.2 y, we can

use the equation R = 0.693N
t1 / 2

to find N .

Solution

Solving the equation R = 0.693N
t1 / 2

for N gives

(31.55)
N = Rt1/2

0.693.

Entering the given values yields

(31.56)
N = (6.0 MCi)(30.2 y)

0.693 .

Converting curies to becquerels and years to seconds, we get

(31.57)
N = (6.0×106 Ci)(3.7×1010 Bq/Ci)(30.2 y)(3.16×107 s/y)

0.693
= 3.1×1026 .

One mole of a nuclide A X has a mass of A grams, so that one mole of 137 Cs has a mass of 137 g. A mole has

6.02×1023 nuclei. Thus the mass of 137 Cs released was

(31.58)
m = ⎛⎝ 137 g

6.02×1023
⎞
⎠(3.1×1026 ) = 70×103 g

= 70 kg.

Discussion

While 70 kg of material may not be a very large mass compared to the amount of fuel in a power plant, it is extremely
radioactive, since it only has a 30-year half-life. Six megacuries (6.0 MCi) is an extraordinary amount of activity but is only a
fraction of what is produced in nuclear reactors. Similar amounts of the other isotopes were also released at Chernobyl.
Although the chances of such a disaster may have seemed small, the consequences were extremely severe, requiring
greater caution than was used. More will be said about safe reactor design in the next chapter, but it should be noted that
Western reactors have a fundamentally safer design.

Activity R decreases in time, going to half its original value in one half-life, then to one-fourth its original value in the next half-
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life, and so on. Since R = 0.693N
t1 / 2

, the activity decreases as the number of radioactive nuclei decreases. The equation for R

as a function of time is found by combining the equations N = N0e−λt and R = 0.693N
t1 / 2

, yielding

(31.59)R = R0e−λt,

where R0 is the activity at t = 0 . This equation shows exponential decay of radioactive nuclei. For example, if a source

originally has a 1.00-mCi activity, it declines to 0.500 mCi in one half-life, to 0.250 mCi in two half-lives, to 0.125 mCi in three

half-lives, and so on. For times other than whole half-lives, the equation R = R0e−λt must be used to find R .

PhET Explorations: Alpha Decay

Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times
relate to the half life. Click to open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/alpha-
decay)

31.6 Binding Energy

The more tightly bound a system is, the stronger the forces that hold it together and the greater the energy required to pull it
apart. We can therefore learn about nuclear forces by examining how tightly bound the nuclei are. We define the binding energy
(BE) of a nucleus to be the energy required to completely disassemble it into separate protons and neutrons. We can determine

the BE of a nucleus from its rest mass. The two are connected through Einstein’s famous relationship E = (Δm)c2 . A bound

system has a smaller mass than its separate constituents; the more tightly the nucleons are bound together, the smaller the
mass of the nucleus.

Imagine pulling a nuclide apart as illustrated in Figure 31.24. Work done to overcome the nuclear forces holding the nucleus
together puts energy into the system. By definition, the energy input equals the binding energy BE. The pieces are at rest when
separated, and so the energy put into them increases their total rest mass compared with what it was when they were glued

together as a nucleus. That mass increase is thus Δm = BE / c2 . This difference in mass is known as mass defect. It implies

that the mass of the nucleus is less than the sum of the masses of its constituent protons and neutrons. A nuclide A X has Z
protons and N neutrons, so that the difference in mass is

(31.60)Δm = (Zm p + Nmn) − mtot.

Thus,

(31.61)BE = (Δm)c2 = [(Zmp + Nmn) − mtot]c2,

where mtot is the mass of the nuclide A X , m p is the mass of a proton, and mn is the mass of a neutron. Traditionally, we

deal with the masses of neutral atoms. To get atomic masses into the last equation, we first add Z electrons to mtot , which

gives m⎛⎝A X⎞⎠ , the atomic mass of the nuclide. We then add Z electrons to the Z protons, which gives Zm⎛⎝1 H⎞⎠ , or Z times

the mass of a hydrogen atom. Thus the binding energy of a nuclide A X is

(31.62)BE = ⎧
⎩
⎨[Zm(1 H) + Nmn] − m(A X)⎫⎭⎬c

2.

The atomic masses can be found in Appendix A, most conveniently expressed in unified atomic mass units u (

1 u = 931.5 MeV / c2 ). BE is thus calculated from known atomic masses.

Figure 31.24 Work done to pull a nucleus apart into its constituent protons and neutrons increases the mass of the system. The work to disassemble
the nucleus equals its binding energy BE. A bound system has less mass than the sum of its parts, especially noticeable in the nuclei, where forces
and energies are very large.
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Things Great and Small

Nuclear Decay Helps Explain Earth’s Hot Interior

A puzzle created by radioactive dating of rocks is resolved by radioactive heating of Earth’s interior. This intriguing story is
another example of how small-scale physics can explain large-scale phenomena.

Radioactive dating plays a role in determining the approximate age of the Earth. The oldest rocks on Earth solidified about

3.5×109 years ago—a number determined by uranium-238 dating. These rocks could only have solidified once the

surface of the Earth had cooled sufficiently. The temperature of the Earth at formation can be estimated based on
gravitational potential energy of the assemblage of pieces being converted to thermal energy. Using heat transfer concepts
discussed in Thermodynamics it is then possible to calculate how long it would take for the surface to cool to rock-

formation temperatures. The result is about 109 years. The first rocks formed have been solid for 3.5×109 years, so that

the age of the Earth is approximately 4.5×109 years. There is a large body of other types of evidence (both Earth-bound

and solar system characteristics are used) that supports this age. The puzzle is that, given its age and initial temperature,
the center of the Earth should be much cooler than it is today (see Figure 31.25).

Figure 31.25 The center of the Earth cools by well-known heat transfer methods. Convection in the liquid regions and conduction move thermal
energy to the surface, where it radiates into cold, dark space. Given the age of the Earth and its initial temperature, it should have cooled to a
lower temperature by now. The blowup shows that nuclear decay releases energy in the Earth’s interior. This energy has slowed the cooling
process and is responsible for the interior still being molten.

We know from seismic waves produced by earthquakes that parts of the interior of the Earth are liquid. Shear or transverse
waves cannot travel through a liquid and are not transmitted through the Earth’s core. Yet compression or longitudinal waves
can pass through a liquid and do go through the core. From this information, the temperature of the interior can be

estimated. As noticed, the interior should have cooled more from its initial temperature in the 4.5×109 years since its

formation. In fact, it should have taken no more than about 109 years to cool to its present temperature. What is keeping it

hot? The answer seems to be radioactive decay of primordial elements that were part of the material that formed the Earth
(see the blowup in Figure 31.25).

Nuclides such as 238 U and 40 K have half-lives similar to or longer than the age of the Earth, and their decay still

contributes energy to the interior. Some of the primordial radioactive nuclides have unstable decay products that also

release energy— 238 U has a long decay chain of these. Further, there were more of these primordial radioactive nuclides

early in the life of the Earth, and thus the activity and energy contributed were greater then (perhaps by an order of
magnitude). The amount of power created by these decays per cubic meter is very small. However, since a huge volume of
material lies deep below the surface, this relatively small amount of energy cannot escape quickly. The power produced near
the surface has much less distance to go to escape and has a negligible effect on surface temperatures.

A final effect of this trapped radiation merits mention. Alpha decay produces helium nuclei, which form helium atoms when
they are stopped and capture electrons. Most of the helium on Earth is obtained from wells and is produced in this manner.
Any helium in the atmosphere will escape in geologically short times because of its high thermal velocity.

What patterns and insights are gained from an examination of the binding energy of various nuclides? First, we find that BE is
approximately proportional to the number of nucleons A in any nucleus. About twice as much energy is needed to pull apart a

nucleus like 24 Mg compared with pulling apart 12 C , for example. To help us look at other effects, we divide BE by A and

consider the binding energy per nucleon, BE / A . The graph of BE / A in Figure 31.26 reveals some very interesting

aspects of nuclei. We see that the binding energy per nucleon averages about 8 MeV, but is lower for both the lightest and
heaviest nuclei. This overall trend, in which nuclei with A equal to about 60 have the greatest BE / A and are thus the most

tightly bound, is due to the combined characteristics of the attractive nuclear forces and the repulsive Coulomb force. It is
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especially important to note two things—the strong nuclear force is about 100 times stronger than the Coulomb force, and the
nuclear forces are shorter in range compared to the Coulomb force. So, for low-mass nuclei, the nuclear attraction dominates
and each added nucleon forms bonds with all others, causing progressively heavier nuclei to have progressively greater values
of BE / A . This continues up to A ≈ 60 , roughly corresponding to the mass number of iron. Beyond that, new nucleons added

to a nucleus will be too far from some others to feel their nuclear attraction. Added protons, however, feel the repulsion of all
other protons, since the Coulomb force is longer in range. Coulomb repulsion grows for progressively heavier nuclei, but nuclear
attraction remains about the same, and so BE / A becomes smaller. This is why stable nuclei heavier than A ≈ 40 have more

neutrons than protons. Coulomb repulsion is reduced by having more neutrons to keep the protons farther apart (see Figure
31.27).

Figure 31.26 A graph of average binding energy per nucleon, BE / A , for stable nuclei. The most tightly bound nuclei are those with A near 60,

where the attractive nuclear force has its greatest effect. At higher A s, the Coulomb repulsion progressively reduces the binding energy per nucleon,

because the nuclear force is short ranged. The spikes on the curve are very tightly bound nuclides and indicate shell closures.

Figure 31.27 The nuclear force is attractive and stronger than the Coulomb force, but it is short ranged. In low-mass nuclei, each nucleon feels the
nuclear attraction of all others. In larger nuclei, the range of the nuclear force, shown for a single nucleon, is smaller than the size of the nucleus, but
the Coulomb repulsion from all protons reaches all others. If the nucleus is large enough, the Coulomb repulsion can add to overcome the nuclear
attraction.

There are some noticeable spikes on the BE / A graph, which represent particularly tightly bound nuclei. These spikes reveal

further details of nuclear forces, such as confirming that closed-shell nuclei (those with magic numbers of protons or neutrons or
both) are more tightly bound. The spikes also indicate that some nuclei with even numbers for Z and N , and with Z = N , are

exceptionally tightly bound. This finding can be correlated with some of the cosmic abundances of the elements. The most
common elements in the universe, as determined by observations of atomic spectra from outer space, are hydrogen, followed by
4 He , with much smaller amounts of 12 C and other elements. It should be noted that the heavier elements are created in

supernova explosions, while the lighter ones are produced by nuclear fusion during the normal life cycles of stars, as will be
discussed in subsequent chapters. The most common elements have the most tightly bound nuclei. It is also no accident that

one of the most tightly bound light nuclei is 4 He , emitted in α decay.
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Example 31.7 What Is BE/ A for an Alpha Particle?

Calculate the binding energy per nucleon of 4 He , the α particle.

Strategy

To find BE / A , we first find BE using the Equation BE = {[Zm(1 H) + Nmn] − m(A X)}c2 and then divide by A . This

is straightforward once we have looked up the appropriate atomic masses in Appendix A.

Solution

The binding energy for a nucleus is given by the equation

(31.63)BE = {[Zm(1 H) + Nmn] − m(A X)}c2.

For 4 He , we have Z = N = 2 ; thus,

(31.64)BE = {[2m(1 H) + 2mn] − m(4 He)}c2.

Appendix A gives these masses as m(4 He) = 4.002602 u , m(1 H) = 1.007825 u , and mn = 1.008665 u . Thus,

(31.65)BE = (0.030378 u)c2.

Noting that 1 u = 931.5 MeV/c2 , we find

(31.66)BE = (0.030378)(931.5 MeV/c2)c2 = 28.3 MeV.

Since A = 4 , we see that BE / A is this number divided by 4, or

(31.67)BE / A = 7.07 MeV/nucleon.
Discussion

This is a large binding energy per nucleon compared with those for other low-mass nuclei, which have

BE / A ≈ 3 MeV/nucleon . This indicates that 4 He is tightly bound compared with its neighbors on the chart of the

nuclides. You can see the spike representing this value of BE / A for 4 He on the graph in Figure 31.26. This is why

4 He is stable. Since 4 He is tightly bound, it has less mass than other A = 4 nuclei and, therefore, cannot

spontaneously decay into them. The large binding energy also helps to explain why some nuclei undergo α decay. Smaller

mass in the decay products can mean energy release, and such decays can be spontaneous. Further, it can happen that
two protons and two neutrons in a nucleus can randomly find themselves together, experience the exceptionally large

nuclear force that binds this combination, and act as a 4 He unit within the nucleus, at least for a while. In some cases, the

4 He escapes, and α decay has then taken place.

There is more to be learned from nuclear binding energies. The general trend in BE / A is fundamental to energy production in

stars, and to fusion and fission energy sources on Earth, for example. This is one of the applications of nuclear physics covered
in Medical Applications of Nuclear Physics. The abundance of elements on Earth, in stars, and in the universe as a whole is
related to the binding energy of nuclei and has implications for the continued expansion of the universe.

Problem-Solving Strategies
For Reaction And Binding Energies and Activity Calculations in Nuclear Physics

1. Identify exactly what needs to be determined in the problem (identify the unknowns). This will allow you to decide whether
the energy of a decay or nuclear reaction is involved, for example, or whether the problem is primarily concerned with
activity (rate of decay).

2. Make a list of what is given or can be inferred from the problem as stated (identify the knowns).

3. For reaction and binding-energy problems, we use atomic rather than nuclear masses. Since the masses of neutral atoms

are used, you must count the number of electrons involved. If these do not balance (such as in β+ decay), then an energy

adjustment of 0.511 MeV per electron must be made. Also note that atomic masses may not be given in a problem; they
can be found in tables.

4. For problems involving activity, the relationship of activity to half-life, and the number of nuclei given in the equation

R = 0.693N
t1 / 2

can be very useful. Owing to the fact that number of nuclei is involved, you will also need to be familiar with

moles and Avogadro’s number.
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5. Perform the desired calculation; keep careful track of plus and minus signs as well as powers of 10.

6. Check the answer to see if it is reasonable: Does it make sense? Compare your results with worked examples and other
information in the text. (Heeding the advice in Step 5 will also help you to be certain of your result.) You must understand
the problem conceptually to be able to determine whether the numerical result is reasonable.

PhET Explorations: Nuclear Fission

Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor!

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42640/1.9/#eip-id3105212)
Figure 31.28

31.7 Tunneling

Protons and neutrons are bound inside nuclei, that means energy must be supplied to break them away. The situation is
analogous to a marble in a bowl that can roll around but lacks the energy to get over the rim. It is bound inside the bowl (see
Figure 31.29). If the marble could get over the rim, it would gain kinetic energy by rolling down outside. However classically, if
the marble does not have enough kinetic energy to get over the rim, it remains forever trapped in its well.

Figure 31.29 The marble in this semicircular bowl at the top of a volcano has enough kinetic energy to get to the altitude of the dashed line, but not
enough to get over the rim, so that it is trapped forever. If it could find a tunnel through the barrier, it would escape, roll downhill, and gain kinetic
energy.

In a nucleus, the attractive nuclear potential is analogous to the bowl at the top of a volcano (where the “volcano” refers only to
the shape). Protons and neutrons have kinetic energy, but it is about 8 MeV less than that needed to get out (see Figure 31.30).
That is, they are bound by an average of 8 MeV per nucleon. The slope of the hill outside the bowl is analogous to the repulsive
Coulomb potential for a nucleus, such as for an α particle outside a positive nucleus. In α decay, two protons and two neutrons

spontaneously break away as a 4 He unit. Yet the protons and neutrons do not have enough kinetic energy to get over the rim.

So how does the α particle get out?

Figure 31.30 Nucleons within an atomic nucleus are bound or trapped by the attractive nuclear force, as shown in this simplified potential energy
curve. An α particle outside the range of the nuclear force feels the repulsive Coulomb force. The α particle inside the nucleus does not have

enough kinetic energy to get over the rim, yet it does manage to get out by quantum mechanical tunneling.

The answer was supplied in 1928 by the Russian physicist George Gamow (1904–1968). The α particle tunnels through a

region of space it is forbidden to be in, and it comes out of the side of the nucleus. Like an electron making a transition between
orbits around an atom, it travels from one point to another without ever having been in between. Figure 31.31 indicates how this
works. The wave function of a quantum mechanical particle varies smoothly, going from within an atomic nucleus (on one side of
a potential energy barrier) to outside the nucleus (on the other side of the potential energy barrier). Inside the barrier, the wave
function does not become zero but decreases exponentially, and we do not observe the particle inside the barrier. The probability
of finding a particle is related to the square of its wave function, and so there is a small probability of finding the particle outside
the barrier, which implies that the particle can tunnel through the barrier. This process is called barrier penetration or quantum
mechanical tunneling. This concept was developed in theory by J. Robert Oppenheimer (who led the development of the first
nuclear bombs during World War II) and was used by Gamow and others to describe α decay.
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Figure 31.31 The wave function representing a quantum mechanical particle must vary smoothly, going from within the nucleus (to the left of the
barrier) to outside the nucleus (to the right of the barrier). Inside the barrier, the wave function does not abruptly become zero; rather, it decreases
exponentially. Outside the barrier, the wave function is small but finite, and there it smoothly becomes sinusoidal. Owing to the fact that there is a small
probability of finding the particle outside the barrier, the particle can tunnel through the barrier.

Good ideas explain more than one thing. In addition to qualitatively explaining how the four nucleons in an α particle can get out

of the nucleus, the detailed theory also explains quantitatively the half-life of various nuclei that undergo α decay. This

description is what Gamow and others devised, and it works for α decay half-lives that vary by 17 orders of magnitude.

Experiments have shown that the more energetic the α decay of a particular nuclide is, the shorter is its half-life. Tunneling

explains this in the following manner: For the decay to be more energetic, the nucleons must have more energy in the nucleus
and should be able to ascend a little closer to the rim. The barrier is therefore not as thick for more energetic decay, and the
exponential decrease of the wave function inside the barrier is not as great. Thus the probability of finding the particle outside the
barrier is greater, and the half-life is shorter.

Tunneling as an effect also occurs in quantum mechanical systems other than nuclei. Electrons trapped in solids can tunnel from
one object to another if the barrier between the objects is thin enough. The process is the same in principle as described for α
decay. It is far more likely for a thin barrier than a thick one. Scanning tunneling electron microscopes function on this principle.
The current of electrons that travels between a probe and a sample tunnels through a barrier and is very sensitive to its
thickness, allowing detection of individual atoms as shown in Figure 31.32.

Chapter 31 | Radioactivity and Nuclear Physics 1261



activity:

alpha decay:

alpha rays:

antielectron:

antimatter:

atomic mass:

atomic number:

barrier penetration:

becquerel:

Figure 31.32 (a) A scanning tunneling electron microscope can detect extremely small variations in dimensions, such as individual atoms. Electrons
tunnel quantum mechanically between the probe and the sample. The probability of tunneling is extremely sensitive to barrier thickness, so that the
electron current is a sensitive indicator of surface features. (b) Head and mouthparts of Coleoptera Chrysomelidea as seen through an electron
microscope (credit: Louisa Howard, Dartmouth College)

PhET Explorations: Quantum Tunneling and Wave Packets

Watch quantum "particles" tunnel through barriers. Explore the properties of the wave functions that describe these particles.
Click to open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/quantum-tunneling)

Glossary

the rate of decay for radioactive nuclides

type of radioactive decay in which an atomic nucleus emits an alpha particle

one of the types of rays emitted from the nucleus of an atom

another term for positron

composed of antiparticles

the total mass of the protons, neutrons, and electrons in a single atom

number of protons in a nucleus

quantum mechanical effect whereby a particle has a nonzero probability to cross through a potential
energy barrier despite not having sufficient energy to pass over the barrier; also called quantum mechanical tunneling

SI unit for rate of decay of a radioactive material
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beta decay:

beta rays:

binding energy:

binding energy per nucleon:

carbon-14 dating:

chart of the nuclides:

curie:

daughter:

decay:

decay constant:

decay equation:

decay series:

electron capture:

electron capture equation:

electron’s antineutrino:

electron’s neutrino:

gamma decay:

gamma rays:

Geiger tube:

half-life:

ionizing radiation:

isotopes:

magic numbers:

mass number:

neutrino:

neutron:

nuclear radiation:

nuclear reaction energy:

nucleons:

nucleus:

nuclide:

parent:

photomultiplier:

positron:

positron decay:

type of radioactive decay in which an atomic nucleus emits a beta particle

one of the types of rays emitted from the nucleus of an atom

the energy needed to separate nucleus into individual protons and neutrons

the binding energy calculated per nucleon; it reveals the details of the nuclear force—larger the
BE / A , the more stable the nucleus

a radioactive dating technique based on the radioactivity of carbon-14

a table comprising stable and unstable nuclei

the activity of 1g of 226 Ra , equal to 3.70×1010 Bq

the nucleus obtained when parent nucleus decays and produces another nucleus following the rules and the
conservation laws

the process by which an atomic nucleus of an unstable atom loses mass and energy by emitting ionizing particles

quantity that is inversely proportional to the half-life and that is used in equation for number of nuclei as a
function of time

the equation to find out how much of a radioactive material is left after a given period of time

process whereby subsequent nuclides decay until a stable nuclide is produced

the process in which a proton-rich nuclide absorbs an inner atomic electron and simultaneously emits a
neutrino

equation representing the electron capture

antiparticle of electron’s neutrino

a subatomic elementary particle which has no net electric charge

type of radioactive decay in which an atomic nucleus emits a gamma particle

one of the types of rays emitted from the nucleus of an atom

a very common radiation detector that usually gives an audio output

the time in which there is a 50% chance that a nucleus will decay

radiation (whether nuclear in origin or not) that produces ionization whether nuclear in origin or not

nuclei having the same Z and different N s

a number that indicates a shell structure for the nucleus in which closed shells are more stable

number of nucleons in a nucleus

an electrically neutral, weakly interacting elementary subatomic particle

a neutral particle that is found in a nucleus

rays that originate in the nuclei of atoms, the first examples of which were discovered by Becquerel

the energy created in a nuclear reaction

the particles found inside nuclei

a region consisting of protons and neutrons at the center of an atom

a type of atom whose nucleus has specific numbers of protons and neutrons

the original state of nucleus before decay

a device that converts light into electrical signals

the particle that results from positive beta decay; also known as an antielectron

type of beta decay in which a proton is converted to a neutron, releasing a positron and a neutrino

Chapter 31 | Radioactivity and Nuclear Physics 1263



protons:

quantum mechanical tunneling:

radiation detector:

radioactive:

radioactive dating:

radioactivity:

radius of a nucleus:

range of radiation:

rate of decay:

scintillators:

solid-state radiation detectors:

tunneling:

the positively charged nucleons found in a nucleus

quantum mechanical effect whereby a particle has a nonzero probability to cross through a
potential energy barrier despite not having sufficient energy to pass over the barrier; also called barrier penetration

a device that is used to detect and track the radiation from a radioactive reaction

a substance or object that emits nuclear radiation

an application of radioactive decay in which the age of a material is determined by the amount of
radioactivity of a particular type that occurs

the emission of rays from the nuclei of atoms

the radius of a nucleus is r = r0A1 / 3

the distance that the radiation can travel through a material

the number of radioactive events per unit time

a radiation detection method that records light produced when radiation interacts with materials

semiconductors fabricated to directly convert incident radiation into electrical current

a quantum mechanical process of potential energy barrier penetration

Section Summary

31.1 Nuclear Radioactivity
• Some nuclei are radioactive—they spontaneously decay destroying some part of their mass and emitting energetic rays, a

process called nuclear radioactivity.
• Nuclear radiation, like x rays, is ionizing radiation, because energy sufficient to ionize matter is emitted in each decay.
• The range (or distance traveled in a material) of ionizing radiation is directly related to the charge of the emitted particle and

its energy, with greater-charge and lower-energy particles having the shortest ranges.
• Radiation detectors are based directly or indirectly upon the ionization created by radiation, as are the effects of radiation

on living and inert materials.

31.2 Radiation Detection and Detectors
• Radiation detectors are based directly or indirectly upon the ionization created by radiation, as are the effects of radiation

on living and inert materials.

31.3 Substructure of the Nucleus
• Two particles, both called nucleons, are found inside nuclei. The two types of nucleons are protons and neutrons; they are

very similar, except that the proton is positively charged while the neutron is neutral. Some of their characteristics are given
in Table 31.2 and compared with those of the electron. A mass unit convenient to atomic and nuclear processes is the
unified atomic mass unit (u), defined to be

1 u = 1.6605×10−27 kg = 931.46 MeV / c2.
• A nuclide is a specific combination of protons and neutrons, denoted by

Z
A XN or simply A X,

Z is the number of protons or atomic number, X is the symbol for the element, N is the number of neutrons, and A is the

mass number or the total number of protons and neutrons,

A = N + Z.
• Nuclides having the same Z but different N are isotopes of the same element.

• The radius of a nucleus, r , is approximately

r = r0A1 / 3,
where r0 = 1.2 fm . Nuclear volumes are proportional to A . There are two nuclear forces, the weak and the strong.

Systematics in nuclear stability seen on the chart of the nuclides indicate that there are shell closures in nuclei for values of
Z and N equal to the magic numbers, which correspond to highly stable nuclei.

31.4 Nuclear Decay and Conservation Laws
• When a parent nucleus decays, it produces a daughter nucleus following rules and conservation laws. There are three
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major types of nuclear decay, called alpha (α), beta ⎛
⎝β⎞⎠, and gamma (γ) . The α decay equation is

Z
A XN → Z − 2

A − 4 YN − 2 + 2
4He2.

• Nuclear decay releases an amount of energy E related to the mass destroyed Δm by

E = (Δm)c2.
• There are three forms of beta decay. The β− decay equation is

Z
A XN → Z + 1

A YN − 1 + β− + ν̄ e.
• The β+ decay equation is

Z
A XN → Z − 1

A YN + 1 + β+ + νe.
• The electron capture equation is

Z
A XN + e− → Z − 1

A YN + 1 + νe.
• β− is an electron, β+ is an antielectron or positron, νe represents an electron’s neutrino, and ν̄ e is an electron’s

antineutrino. In addition to all previously known conservation laws, two new ones arise— conservation of electron family
number and conservation of the total number of nucleons. The γ decay equation is

XN* → XN + γ1 + γ2 + ⋯
γ is a high-energy photon originating in a nucleus.

31.5 Half-Life and Activity
• Half-life t1 / 2 is the time in which there is a 50% chance that a nucleus will decay. The number of nuclei N as a function

of time is

N = N0e−λt,
where N0 is the number present at t = 0 , and λ is the decay constant, related to the half-life by

λ = 0.693
t1 / 2

.
• One of the applications of radioactive decay is radioactive dating, in which the age of a material is determined by the

amount of radioactive decay that occurs. The rate of decay is called the activity R :

R = ΔN
Δt .

• The SI unit for R is the becquerel (Bq), defined by

1 Bq = 1 decay/s.
• R is also expressed in terms of curies (Ci), where

1 Ci = 3.70×1010 Bq.
• The activity R of a source is related to N and t1 / 2 by

R = 0.693N
t1 / 2

.

• Since N has an exponential behavior as in the equation N = N0e−λt , the activity also has an exponential behavior,

given by

R = R0e−λt,
where R0 is the activity at t = 0 .

31.6 Binding Energy
• The binding energy (BE) of a nucleus is the energy needed to separate it into individual protons and neutrons. In terms of

atomic masses,

BE = {[Zm(1 H) + Nmn] − m(A X)}c2,

where m⎛⎝1 H⎞⎠ is the mass of a hydrogen atom, m⎛⎝A X⎞⎠ is the atomic mass of the nuclide, and mn is the mass of a
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neutron. Patterns in the binding energy per nucleon, BE / A , reveal details of the nuclear force. The larger the BE / A ,

the more stable the nucleus.

31.7 Tunneling
• Tunneling is a quantum mechanical process of potential energy barrier penetration. The concept was first applied to explain

α decay, but tunneling is found to occur in other quantum mechanical systems.

Conceptual Questions

31.1 Nuclear Radioactivity

1. Suppose the range for 5.0 MeVα ray is known to be 2.0 mm in a certain material. Does this mean that every 5.0 MeVα a

ray that strikes this material travels 2.0 mm, or does the range have an average value with some statistical fluctuations in the
distances traveled? Explain.

2. What is the difference between γ rays and characteristic x rays? Is either necessarily more energetic than the other? Which

can be the most energetic?

3. Ionizing radiation interacts with matter by scattering from electrons and nuclei in the substance. Based on the law of
conservation of momentum and energy, explain why electrons tend to absorb more energy than nuclei in these interactions.

4. What characteristics of radioactivity show it to be nuclear in origin and not atomic?

5. What is the source of the energy emitted in radioactive decay? Identify an earlier conservation law, and describe how it was
modified to take such processes into account.

6. Consider Figure 31.3. If an electric field is substituted for the magnetic field with positive charge instead of the north pole and
negative charge instead of the south pole, in which directions will the α , β , and γ rays bend?

7. Explain how an α particle can have a larger range in air than a β particle with the same energy in lead.

8. Arrange the following according to their ability to act as radiation shields, with the best first and worst last. Explain your
ordering in terms of how radiation loses its energy in matter.

(a) A solid material with low density composed of low-mass atoms.

(b) A gas composed of high-mass atoms.

(c) A gas composed of low-mass atoms.

(d) A solid with high density composed of high-mass atoms.

9. Often, when people have to work around radioactive materials spills, we see them wearing white coveralls (usually a plastic
material). What types of radiation (if any) do you think these suits protect the worker from, and how?

31.2 Radiation Detection and Detectors

10. Is it possible for light emitted by a scintillator to be too low in frequency to be used in a photomultiplier tube? Explain.

31.3 Substructure of the Nucleus

11. The weak and strong nuclear forces are basic to the structure of matter. Why we do not experience them directly?

12. Define and make clear distinctions between the terms neutron, nucleon, nucleus, nuclide, and neutrino.

13. What are isotopes? Why do different isotopes of the same element have similar chemistries?

31.4 Nuclear Decay and Conservation Laws

14. Star Trek fans have often heard the term “antimatter drive.” Describe how you could use a magnetic field to trap antimatter,
such as produced by nuclear decay, and later combine it with matter to produce energy. Be specific about the type of antimatter,
the need for vacuum storage, and the fraction of matter converted into energy.

15. What conservation law requires an electron’s neutrino to be produced in electron capture? Note that the electron no longer
exists after it is captured by the nucleus.

16. Neutrinos are experimentally determined to have an extremely small mass. Huge numbers of neutrinos are created in a
supernova at the same time as massive amounts of light are first produced. When the 1987A supernova occurred in the Large
Magellanic Cloud, visible primarily in the Southern Hemisphere and some 100,000 light-years away from Earth, neutrinos from
the explosion were observed at about the same time as the light from the blast. How could the relative arrival times of neutrinos
and light be used to place limits on the mass of neutrinos?

17. What do the three types of beta decay have in common that is distinctly different from alpha decay?
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31.5 Half-Life and Activity

18. In a 3×109 -year-old rock that originally contained some 238 U , which has a half-life of 4.5×109 years, we expect to find

some 238 U remaining in it. Why are 226 Ra , 222 Rn , and 210 Po also found in such a rock, even though they have much

shorter half-lives (1600 years, 3.8 days, and 138 days, respectively)?

19. Does the number of radioactive nuclei in a sample decrease to exactly half its original value in one half-life? Explain in terms
of the statistical nature of radioactive decay.

20. Radioactivity depends on the nucleus and not the atom or its chemical state. Why, then, is one kilogram of uranium more
radioactive than one kilogram of uranium hexafluoride?

21. Explain how a bound system can have less mass than its components. Why is this not observed classically, say for a building
made of bricks?

22. Spontaneous radioactive decay occurs only when the decay products have less mass than the parent, and it tends to
produce a daughter that is more stable than the parent. Explain how this is related to the fact that more tightly bound nuclei are
more stable. (Consider the binding energy per nucleon.)

23. To obtain the most precise value of BE from the equation BE=⎡⎣ZM⎛⎝1 H⎞⎠+ Nmn
⎤
⎦c2 − m⎛⎝A X⎞⎠c2 , we should take into

account the binding energy of the electrons in the neutral atoms. Will doing this produce a larger or smaller value for BE? Why is
this effect usually negligible?

24. How does the finite range of the nuclear force relate to the fact that BE / A is greatest for A near 60?

31.6 Binding Energy

25. Why is the number of neutrons greater than the number of protons in stable nuclei having A greater than about 40, and why

is this effect more pronounced for the heaviest nuclei?

31.7 Tunneling

26. A physics student caught breaking conservation laws is imprisoned. She leans against the cell wall hoping to tunnel out
quantum mechanically. Explain why her chances are negligible. (This is so in any classical situation.)

27. When a nucleus α decays, does the α particle move continuously from inside the nucleus to outside? That is, does it travel

each point along an imaginary line from inside to out? Explain.
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Problems & Exercises

31.2 Radiation Detection and Detectors

1. The energy of 30.0 eV is required to ionize a molecule of

the gas inside a Geiger tube, thereby producing an ion pair.
Suppose a particle of ionizing radiation deposits 0.500 MeV of
energy in this Geiger tube. What maximum number of ion
pairs can it create?

2. A particle of ionizing radiation creates 4000 ion pairs in the
gas inside a Geiger tube as it passes through. What minimum
energy was deposited, if 30.0 eV is required to create each

ion pair?

3. (a) Repeat Exercise 31.2, and convert the energy to joules
or calories. (b) If all of this energy is converted to thermal
energy in the gas, what is its temperature increase, assuming

50.0 cm3 of ideal gas at 0.250-atm pressure? (The small

answer is consistent with the fact that the energy is large on a
quantum mechanical scale but small on a macroscopic
scale.)

4. Suppose a particle of ionizing radiation deposits 1.0 MeV in
the gas of a Geiger tube, all of which goes to creating ion
pairs. Each ion pair requires 30.0 eV of energy. (a) The
applied voltage sweeps the ions out of the gas in 1.00 μs .

What is the current? (b) This current is smaller than the actual
current since the applied voltage in the Geiger tube
accelerates the separated ions, which then create other ion
pairs in subsequent collisions. What is the current if this last
effect multiplies the number of ion pairs by 900?

31.3 Substructure of the Nucleus

5. Verify that a 2.3×1017 kg mass of water at normal

density would make a cube 60 km on a side, as claimed in
Example 31.1. (This mass at nuclear density would make a
cube 1.0 m on a side.)

6. Find the length of a side of a cube having a mass of 1.0 kg
and the density of nuclear matter, taking this to be

2.3×1017 kg/m3 .

7. What is the radius of an α particle?

8. Find the radius of a 238 Pu nucleus. 238 Pu is a

manufactured nuclide that is used as a power source on
some space probes.

9. (a) Calculate the radius of 58 Ni , one of the most tightly

bound stable nuclei.

(b) What is the ratio of the radius of 58 Ni to that of 258 Ha ,

one of the largest nuclei ever made? Note that the radius of
the largest nucleus is still much smaller than the size of an
atom.

10. The unified atomic mass unit is defined to be

1 u = 1.6605×10−27 kg . Verify that this amount of mass

converted to energy yields 931.5 MeV. Note that you must
use four-digit or better values for c and ∣ qe ∣ .

11. What is the ratio of the velocity of a β particle to that of

an α particle, if they have the same nonrelativistic kinetic

energy?

12. If a 1.50-cm-thick piece of lead can absorb 90.0% of the
γ rays from a radioactive source, how many centimeters of

lead are needed to absorb all but 0.100% of the γ rays?

13. The detail observable using a probe is limited by its
wavelength. Calculate the energy of a γ -ray photon that has

a wavelength of 1×10−16 m , small enough to detect details

about one-tenth the size of a nucleon. Note that a photon
having this energy is difficult to produce and interacts poorly
with the nucleus, limiting the practicability of this probe.

14. (a) Show that if you assume the average nucleus is

spherical with a radius r = r0A1 / 3 , and with a mass of A
u, then its density is independent of A .

(b) Calculate that density in u/fm3 and kg/m3 , and

compare your results with those found in Example 31.1 for
56 Fe .

15. What is the ratio of the velocity of a 5.00-MeV β ray to

that of an α particle with the same kinetic energy? This

should confirm that β s travel much faster than α s even

when relativity is taken into consideration. (See also Exercise
31.11.)

16. (a) What is the kinetic energy in MeV of a β ray that is

traveling at 0.998c ? This gives some idea of how energetic

a β ray must be to travel at nearly the same speed as a γ
ray. (b) What is the velocity of the γ ray relative to the β
ray?

31.4 Nuclear Decay and Conservation Laws

In the following eight problems, write the complete decay

equation for the given nuclide in the complete Z
A XN

notation. Refer to the periodic table for values of Z .

17. β− decay of 3 H (tritium), a manufactured isotope of

hydrogen used in some digital watch displays, and
manufactured primarily for use in hydrogen bombs.

18. β− decay of 40 K , a naturally occurring rare isotope of

potassium responsible for some of our exposure to
background radiation.

19. β+ decay of 50 Mn .

20. β+ decay of 52 Fe .

21. Electron capture by 7 Be .

22. Electron capture by 106 In .

23. α decay of 210 Po , the isotope of polonium in the decay

series of 238 U that was discovered by the Curies. A favorite

isotope in physics labs, since it has a short half-life and
decays to a stable nuclide.
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24. α decay of 226 Ra , another isotope in the decay series

of 238 U , first recognized as a new element by the Curies.

Poses special problems because its daughter is a radioactive
noble gas.

In the following four problems, identify the parent nuclide and

write the complete decay equation in the Z
A XN notation.

Refer to the periodic table for values of Z .

25. β− decay producing 137 Ba . The parent nuclide is a

major waste product of reactors and has chemistry similar to
potassium and sodium, resulting in its concentration in your
cells if ingested.

26. β− decay producing 90 Y . The parent nuclide is a

major waste product of reactors and has chemistry similar to

calcium, so that it is concentrated in bones if ingested ( 90 Y
is also radioactive.)

27. α decay producing 228 Ra . The parent nuclide is nearly

100% of the natural element and is found in gas lantern

mantles and in metal alloys used in jets ( 228 Ra is also

radioactive).

28. α decay producing 208 Pb . The parent nuclide is in the

decay series produced by 232 Th , the only naturally

occurring isotope of thorium.

29. When an electron and positron annihilate, both their
masses are destroyed, creating two equal energy photons to
preserve momentum. (a) Confirm that the annihilation

equation e+ + e− → γ + γ conserves charge, electron

family number, and total number of nucleons. To do this,
identify the values of each before and after the annihilation.
(b) Find the energy of each γ ray, assuming the electron and

positron are initially nearly at rest. (c) Explain why the two γ
rays travel in exactly opposite directions if the center of mass
of the electron-positron system is initially at rest.

30. Confirm that charge, electron family number, and the total
number of nucleons are all conserved by the rule for α
decay given in the equation Z

A XN → Z − 2
A − 4 YN − 2 + 2

4He2 .

To do this, identify the values of each before and after the
decay.

31. Confirm that charge, electron family number, and the total
number of nucleons are all conserved by the rule for β−

decay given in the equation

Z
A XN → Z + 1

A YN − 1 + β− + ν̄ e . To do this, identify the

values of each before and after the decay.

32. Confirm that charge, electron family number, and the total
number of nucleons are all conserved by the rule for β−

decay given in the equation

Z
A XN → Z − 1

A YN − 1 + β− + νe . To do this, identify the

values of each before and after the decay.

33. Confirm that charge, electron family number, and the total
number of nucleons are all conserved by the rule for electron
capture given in the equation

Z
A XN + e− → Z − 1

A YN + 1 + νe . To do this, identify the

values of each before and after the capture.

34. A rare decay mode has been observed in which 222 Ra

emits a 14 C nucleus. (a) The decay equation is

222 Ra →A X+14 C . Identify the nuclide A X . (b) Find the

energy emitted in the decay. The mass of 222 Ra is

222.015353 u.

35. (a) Write the complete α decay equation for 226 Ra .

(b) Find the energy released in the decay.

36. (a) Write the complete α decay equation for 249 Cf .

(b) Find the energy released in the decay.

37. (a) Write the complete β− decay equation for the

neutron. (b) Find the energy released in the decay.

38. (a) Write the complete β− decay equation for 90 Sr , a

major waste product of nuclear reactors. (b) Find the energy
released in the decay.

39. Calculate the energy released in the β+ decay of 22 Na
, the equation for which is given in the text. The masses of
22 Na and 22 Ne are 21.994434 and 21.991383 u,

respectively.

40. (a) Write the complete β+ decay equation for 11 C .

(b) Calculate the energy released in the decay. The masses

of 11 C and 11 B are 11.011433 and 11.009305 u,

respectively.

41. (a) Calculate the energy released in the α decay of

238 U .

(b) What fraction of the mass of a single 238 U is destroyed

in the decay? The mass of 234 Th is 234.043593 u.

(c) Although the fractional mass loss is large for a single
nucleus, it is difficult to observe for an entire macroscopic
sample of uranium. Why is this?

42. (a) Write the complete reaction equation for electron

capture by 7 Be.

(b) Calculate the energy released.

43. (a) Write the complete reaction equation for electron

capture by 15 O .

(b) Calculate the energy released.

31.5 Half-Life and Activity

Data from the appendices and the periodic table may be
needed for these problems.
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44. An old campfire is uncovered during an archaeological
dig. Its charcoal is found to contain less than 1/1000 the

normal amount of 14 C . Estimate the minimum age of the

charcoal, noting that 210 = 1024 .

45. A 60 Co source is labeled 4.00 mCi, but its present

activity is found to be 1.85×107 Bq. (a) What is the present

activity in mCi? (b) How long ago did it actually have a
4.00-mCi activity?

46. (a) Calculate the activity R in curies of 1.00 g of 226 Ra .

(b) Discuss why your answer is not exactly 1.00 Ci, given that
the curie was originally supposed to be exactly the activity of
a gram of radium.

47. Show that the activity of the 14 C in 1.00 g of 12 C
found in living tissue is 0.250 Bq.

48. Mantles for gas lanterns contain thorium, because it forms
an oxide that can survive being heated to incandescence for

long periods of time. Natural thorium is almost 100% 232 Th ,

with a half-life of 1.405×1010 y . If an average lantern

mantle contains 300 mg of thorium, what is its activity?

49. Cow’s milk produced near nuclear reactors can be tested

for as little as 1.00 pCi of 131 I per liter, to check for possible

reactor leakage. What mass of 131 I has this activity?

50. (a) Natural potassium contains 40 K , which has a half-

life of 1.277×109 y. What mass of 40 K in a person would

have a decay rate of 4140 Bq? (b) What is the fraction of
40 K in natural potassium, given that the person has 140 g

in his body? (These numbers are typical for a 70-kg adult.)

51. There is more than one isotope of natural uranium. If a

researcher isolates 1.00 mg of the relatively scarce 235 U
and finds this mass to have an activity of 80.0 Bq, what is its
half-life in years?

52. 50 V has one of the longest known radioactive half-lives.

In a difficult experiment, a researcher found that the activity of

1.00 kg of 50 V is 1.75 Bq. What is the half-life in years?

53. You can sometimes find deep red crystal vases in antique
stores, called uranium glass because their color was
produced by doping the glass with uranium. Look up the
natural isotopes of uranium and their half-lives, and calculate
the activity of such a vase assuming it has 2.00 g of uranium
in it. Neglect the activity of any daughter nuclides.

54. A tree falls in a forest. How many years must pass before

the 14 C activity in 1.00 g of the tree’s carbon drops to 1.00

decay per hour?

55. What fraction of the 40 K that was on Earth when it

formed 4.5×109 years ago is left today?

56. A 5000-Ci 60 Co source used for cancer therapy is

considered too weak to be useful when its activity falls to
3500 Ci. How long after its manufacture does this happen?

57. Natural uranium is 0.7200% 235 U and 99.27% 238 U .

What were the percentages of 235 U and 238 U in natural

uranium when Earth formed 4.5×109 years ago?

58. The β− particles emitted in the decay of 3 H (tritium)

interact with matter to create light in a glow-in-the-dark exit
sign. At the time of manufacture, such a sign contains 15.0 Ci

of 3 H . (a) What is the mass of the tritium? (b) What is its

activity 5.00 y after manufacture?

59. World War II aircraft had instruments with glowing radium-
painted dials (see Figure 31.2). The activity of one such

instrument was 1.0×105 Bq when new. (a) What mass of

226 Ra was present? (b) After some years, the phosphors on

the dials deteriorated chemically, but the radium did not
escape. What is the activity of this instrument 57.0 years after
it was made?

60. (a) The 210 Po source used in a physics laboratory is

labeled as having an activity of 1.0 μCi on the date it was

prepared. A student measures the radioactivity of this source
with a Geiger counter and observes 1500 counts per minute.
She notices that the source was prepared 120 days before
her lab. What fraction of the decays is she observing with her
apparatus? (b) Identify some of the reasons that only a
fraction of the α s emitted are observed by the detector.

61. Armor-piercing shells with depleted uranium cores are
fired by aircraft at tanks. (The high density of the uranium
makes them effective.) The uranium is called depleted

because it has had its 235 U removed for reactor use and is

nearly pure 238 U . Depleted uranium has been erroneously

called non-radioactive. To demonstrate that this is wrong: (a)

Calculate the activity of 60.0 g of pure 238 U . (b) Calculate

the activity of 60.0 g of natural uranium, neglecting the 234 U
and all daughter nuclides.

62. The ceramic glaze on a red-orange Fiestaware plate is

U2 O3 and contains 50.0 grams of 238 U , but very little

235 U . (a) What is the activity of the plate? (b) Calculate the

total energy that will be released by the 238 U decay. (c) If

energy is worth 12.0 cents per kW ⋅ h , what is the monetary

value of the energy emitted? (These plates went out of
production some 30 years ago, but are still available as
collectibles.)
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63. Large amounts of depleted uranium ( 238 U ) are

available as a by-product of uranium processing for reactor
fuel and weapons. Uranium is very dense and makes good
counter weights for aircraft. Suppose you have a 4000-kg

block of 238 U . (a) Find its activity. (b) How many calories

per day are generated by thermalization of the decay energy?
(c) Do you think you could detect this as heat? Explain.

64. The Galileo space probe was launched on its long journey
past several planets in 1989, with an ultimate goal of Jupiter.

Its power source is 11.0 kg of 238 Pu , a by-product of

nuclear weapons plutonium production. Electrical energy is
generated thermoelectrically from the heat produced when
the 5.59-MeV α particles emitted in each decay crash to a

halt inside the plutonium and its shielding. The half-life of
238 Pu is 87.7 years. (a) What was the original activity of the

238 Pu in becquerel? (b) What power was emitted in

kilowatts? (c) What power was emitted 12.0 y after launch?
You may neglect any extra energy from daughter nuclides
and any losses from escaping γ rays.

65. Construct Your Own Problem

Consider the generation of electricity by a radioactive isotope
in a space probe, such as described in Exercise 31.64.
Construct a problem in which you calculate the mass of a
radioactive isotope you need in order to supply power for a
long space flight. Among the things to consider are the
isotope chosen, its half-life and decay energy, the power
needs of the probe and the length of the flight.

66. Unreasonable Results

A nuclear physicist finds 1.0 μg of 236 U in a piece of

uranium ore and assumes it is primordial since its half-life is

2.3×107 y . (a) Calculate the amount of 236 U that would

had to have been on Earth when it formed 4.5×109 y ago

for 1.0 μg to be left today. (b) What is unreasonable about

this result? (c) What assumption is responsible?

67. Unreasonable Results

(a) Repeat Exercise 31.57 but include the 0.0055% natural

abundance of 234 U with its 2.45×105 y half-life. (b) What

is unreasonable about this result? (c) What assumption is

responsible? (d) Where does the 234 U come from if it is not

primordial?

68. Unreasonable Results

The manufacturer of a smoke alarm decides that the smallest
current of α radiation he can detect is 1.00 μA . (a) Find

the activity in curies of an α emitter that produces a

1.00 μA current of α particles. (b) What is unreasonable

about this result? (c) What assumption is responsible?

31.6 Binding Energy

69. 2 H is a loosely bound isotope of hydrogen. Called

deuterium or heavy hydrogen, it is stable but relatively
rare—it is 0.015% of natural hydrogen. Note that deuterium
has Z = N , which should tend to make it more tightly

bound, but both are odd numbers. Calculate BE/A , the

binding energy per nucleon, for 2 H and compare it with the

approximate value obtained from the graph in Figure 31.26.

70. 56 Fe is among the most tightly bound of all nuclides. It

is more than 90% of natural iron. Note that 56 Fe has even

numbers of both protons and neutrons. Calculate BE/A , the

binding energy per nucleon, for 56 Fe and compare it with

the approximate value obtained from the graph in Figure
31.26.

71. 209 Bi is the heaviest stable nuclide, and its BE / A is

low compared with medium-mass nuclides. Calculate BE/A ,

the binding energy per nucleon, for 209 Bi and compare it

with the approximate value obtained from the graph in Figure
31.26.

72. (a) Calculate BE / A for 235 U , the rarer of the two

most common uranium isotopes. (b) Calculate BE / A for

238 U . (Most of uranium is 238 U .) Note that 238 U has

even numbers of both protons and neutrons. Is the BE / A of

238 U significantly different from that of 235 U ?

73. (a) Calculate BE / A for 12 C . Stable and relatively

tightly bound, this nuclide is most of natural carbon. (b)

Calculate BE / A for 14 C . Is the difference in BE / A

between 12 C and 14 C significant? One is stable and

common, and the other is unstable and rare.

74. The fact that BE / A is greatest for A near 60 implies

that the range of the nuclear force is about the diameter of
such nuclides. (a) Calculate the diameter of an A = 60
nucleus. (b) Compare BE / A for 58 Ni and 90 Sr . The first

is one of the most tightly bound nuclides, while the second is
larger and less tightly bound.

75. The purpose of this problem is to show in three ways that
the binding energy of the electron in a hydrogen atom is
negligible compared with the masses of the proton and
electron. (a) Calculate the mass equivalent in u of the 13.6-eV
binding energy of an electron in a hydrogen atom, and
compare this with the mass of the hydrogen atom obtained
from Appendix A. (b) Subtract the mass of the proton given
in Table 31.2 from the mass of the hydrogen atom given in
Appendix A. You will find the difference is equal to the
electron’s mass to three digits, implying the binding energy is
small in comparison. (c) Take the ratio of the binding energy
of the electron (13.6 eV) to the energy equivalent of the
electron’s mass (0.511 MeV). (d) Discuss how your answers
confirm the stated purpose of this problem.
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76. Unreasonable Results

A particle physicist discovers a neutral particle with a mass of
2.02733 u that he assumes is two neutrons bound together.
(a) Find the binding energy. (b) What is unreasonable about
this result? (c) What assumptions are unreasonable or
inconsistent?

31.7 Tunneling

77. Derive an approximate relationship between the energy of
α decay and half-life using the following data. It may be

useful to graph the log of t1/2 against Eα to find some

straight-line relationship.

Table 31.3 Energy and Half-Life for α Decay

Nuclide Eα (MeV) t1/2

216 Ra 9.5 0.18 μs

194 Po 7.0 0.7 s

240 Cm 6.4 27 d

226 Ra 4.91 1600 y

232 Th 4.1 1.4×1010 y

78. Integrated Concepts

A 2.00-T magnetic field is applied perpendicular to the path of
charged particles in a bubble chamber. What is the radius of
curvature of the path of a 10 MeV proton in this field? Neglect
any slowing along its path.

79. (a) Write the decay equation for the α decay of 235 U .

(b) What energy is released in this decay? The mass of the
daughter nuclide is 231.036298 u. (c) Assuming the residual
nucleus is formed in its ground state, how much energy goes
to the α particle?

80. Unreasonable Results

The relatively scarce naturally occurring calcium isotope
48 Ca has a half-life of about 2×1016 y . (a) A small

sample of this isotope is labeled as having an activity of 1.0

Ci. What is the mass of the 48 Ca in the sample? (b) What is

unreasonable about this result? (c) What assumption is
responsible?

81. Unreasonable Results

A physicist scatters γ rays from a substance and sees

evidence of a nucleus 7.5×10–13 m in radius. (a) Find the

atomic mass of such a nucleus. (b) What is unreasonable
about this result? (c) What is unreasonable about the
assumption?

82. Unreasonable Results

A frazzled theoretical physicist reckons that all conservation
laws are obeyed in the decay of a proton into a neutron,

positron, and neutrino (as in β+ decay of a nucleus) and

sends a paper to a journal to announce the reaction as a
possible end of the universe due to the spontaneous decay of
protons. (a) What energy is released in this decay? (b) What
is unreasonable about this result? (c) What assumption is
responsible?

83. Construct Your Own Problem

Consider the decay of radioactive substances in the Earth’s
interior. The energy emitted is converted to thermal energy
that reaches the earth’s surface and is radiated away into
cold dark space. Construct a problem in which you estimate
the activity in a cubic meter of earth rock? And then calculate
the power generated. Calculate how much power must cross
each square meter of the Earth’s surface if the power is
dissipated at the same rate as it is generated. Among the
things to consider are the activity per cubic meter, the energy
per decay, and the size of the Earth.

1272 Chapter 31 | Radioactivity and Nuclear Physics

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



32 MEDICAL APPLICATIONS OF NUCLEAR
PHYSICS

Figure 32.1 Tori Randall, Ph.D., curator for the Department of Physical Anthropology at the San Diego Museum of Man, prepares a 550-year-old
Peruvian child mummy for a CT scan at Naval Medical Center San Diego. (credit: U.S. Navy photo by Mass Communication Specialist 3rd Class
Samantha A. Lewis)

Chapter Outline
32.1. Medical Imaging and Diagnostics

• Explain the working principle behind an anger camera.
• Describe the SPECT and PET imaging techniques.

32.2. Biological Effects of Ionizing Radiation
• Define various units of radiation.
• Describe RBE.

32.3. Therapeutic Uses of Ionizing Radiation
• Explain the concept of radiotherapy and list typical doses for cancer therapy.

32.4. Food Irradiation
• Define food irradiation low dose, and free radicals.

32.5. Fusion
• Define nuclear fusion.
• Discuss processes to achieve practical fusion energy generation.

32.6. Fission
• Define nuclear fission.
• Discuss how fission fuel reacts and describe what it produces.
• Describe controlled and uncontrolled chain reactions.

32.7. Nuclear Weapons
• Discuss different types of fission and thermonuclear bombs.
• Explain the ill effects of nuclear explosion.
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Introduction to Applications of Nuclear Physics

Applications of nuclear physics have become an integral part of modern life. From the bone scan that detects a cancer to the
radioiodine treatment that cures another, nuclear radiation has diagnostic and therapeutic effects on medicine. From the fission
power reactor to the hope of controlled fusion, nuclear energy is now commonplace and is a part of our plans for the future. Yet,
the destructive potential of nuclear weapons haunts us, as does the possibility of nuclear reactor accidents. Certainly, several
applications of nuclear physics escape our view, as seen in Figure 32.2. Not only has nuclear physics revealed secrets of
nature, it has an inevitable impact based on its applications, as they are intertwined with human values. Because of its potential
for alleviation of suffering, and its power as an ultimate destructor of life, nuclear physics is often viewed with ambivalence. But it
provides perhaps the best example that applications can be good or evil, while knowledge itself is neither.

Figure 32.2 Customs officers inspect vehicles using neutron irradiation. Cars and trucks pass through portable x-ray machines that reveal their
contents. (credit: Gerald L. Nino, CBP, U.S. Dept. of Homeland Security)

Figure 32.3 This image shows two stowaways caught illegally entering the United States from Canada. (credit: U.S. Customs and Border Protection)

32.1 Medical Imaging and Diagnostics

A host of medical imaging techniques employ nuclear radiation. What makes nuclear radiation so useful? First, γ radiation can

easily penetrate tissue; hence, it is a useful probe to monitor conditions inside the body. Second, nuclear radiation depends on
the nuclide and not on the chemical compound it is in, so that a radioactive nuclide can be put into a compound designed for
specific purposes. The compound is said to be tagged. A tagged compound used for medical purposes is called a
radiopharmaceutical. Radiation detectors external to the body can determine the location and concentration of a
radiopharmaceutical to yield medically useful information. For example, certain drugs are concentrated in inflamed regions of the
body, and this information can aid diagnosis and treatment as seen in Figure 32.4. Another application utilizes a
radiopharmaceutical which the body sends to bone cells, particularly those that are most active, to detect cancerous tumors or
healing points. Images can then be produced of such bone scans. Radioisotopes are also used to determine the functioning of
body organs, such as blood flow, heart muscle activity, and iodine uptake in the thyroid gland.
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Figure 32.4 A radiopharmaceutical is used to produce this brain image of a patient with Alzheimer’s disease. Certain features are computer enhanced.
(credit: National Institutes of Health)

Medical Application

Table 32.1 lists certain medical diagnostic uses of radiopharmaceuticals, including isotopes and activities that are typically
administered. Many organs can be imaged with a variety of nuclear isotopes replacing a stable element by a radioactive isotope.
One common diagnostic employs iodine to image the thyroid, since iodine is concentrated in that organ. The most active thyroid
cells, including cancerous cells, concentrate the most iodine and, therefore, emit the most radiation. Conversely, hypothyroidism
is indicated by lack of iodine uptake. Note that there is more than one isotope that can be used for several types of scans.
Another common nuclear diagnostic is the thallium scan for the cardiovascular system, particularly used to evaluate blockages in
the coronary arteries and examine heart activity. The salt TlCl can be used, because it acts like NaCl and follows the blood.
Gallium-67 accumulates where there is rapid cell growth, such as in tumors and sites of infection. Hence, it is useful in cancer
imaging. Usually, the patient receives the injection one day and has a whole body scan 3 or 4 days later because it can take
several days for the gallium to build up.
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Table 32.1 Diagnostic Uses of Radiopharmaceuticals

Procedure, isotope
Typical activity (mCi), where

1 mCi = 3.7×107 Bq

Brain scan

99m Tc 7.5

113m In 7.5

11 C (PET) 20

13 N (PET) 20

15 O (PET) 50

18 F (PET) 10

Lung scan

99m Tc 2

133 Xe 7.5

Cardiovascular blood pool

131 I 0.2

99m Tc 2

Cardiovascular arterial flow

201 Tl 3

24 Na 7.5

Thyroid scan

131 I 0.05

123 I 0.07

Liver scan

198 Au (colloid) 0.1

99m Tc (colloid) 2

Bone scan

85 Sr 0.1

99m Tc 10

Kidney scan

197 Hg 0.1

99m Tc 1.5

Note that Table 32.1 lists many diagnostic uses for 99m Tc , where “m” stands for a metastable state of the technetium nucleus.

Perhaps 80 percent of all radiopharmaceutical procedures employ 99m Tc because of its many advantages. One is that the

decay of its metastable state produces a single, easily identified 0.142-MeV γ ray. Additionally, the radiation dose to the patient
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is limited by the short 6.0-h half-life of 99m Tc . And, although its half-life is short, it is easily and continuously produced on site.

The basic process for production is neutron activation of molybdenum, which quickly β decays into 99m Tc . Technetium-99m

can be attached to many compounds to allow the imaging of the skeleton, heart, lungs, kidneys, etc.

Figure 32.5 shows one of the simpler methods of imaging the concentration of nuclear activity, employing a device called an
Anger camera or gamma camera. A piece of lead with holes bored through it collimates γ rays emerging from the patient,

allowing detectors to receive γ rays from specific directions only. The computer analysis of detector signals produces an image.

One of the disadvantages of this detection method is that there is no depth information (i.e., it provides a two-dimensional view of
the tumor as opposed to a three-dimensional view), because radiation from any location under that detector produces a signal.

Figure 32.5 An Anger or gamma camera consists of a lead collimator and an array of detectors. Gamma rays produce light flashes in the scintillators.
The light output is converted to an electrical signal by the photomultipliers. A computer constructs an image from the detector output.

Imaging techniques much like those in x-ray computed tomography (CT) scans use nuclear activity in patients to form three-
dimensional images. Figure 32.6 shows a patient in a circular array of detectors that may be stationary or rotated, with detector
output used by a computer to construct a detailed image. This technique is called single-photon-emission computed
tomography(SPECT) or sometimes simply SPET. The spatial resolution of this technique is poor, about 1 cm, but the contrast
(i.e. the difference in visual properties that makes an object distinguishable from other objects and the background) is good.

Figure 32.6 SPECT uses a geometry similar to a CT scanner to form an image of the concentration of a radiopharmaceutical compound. (credit:
Woldo, Wikimedia Commons)

Images produced by β+ emitters have become important in recent years. When the emitted positron ( β+ ) encounters an

electron, mutual annihilation occurs, producing two γ rays. These γ rays have identical 0.511-MeV energies (the energy comes

from the destruction of an electron or positron mass) and they move directly away from one another, allowing detectors to
determine their point of origin accurately, as shown in Figure 32.7. The system is called positron emission tomography (PET).
It requires detectors on opposite sides to simultaneously (i.e., at the same time) detect photons of 0.511-MeV energy and utilizes

computer imaging techniques similar to those in SPECT and CT scans. Examples of β+ -emitting isotopes used in PET are

11 C , 13 N , 15 O , and 18 F , as seen in Table 32.1. This list includes C, N, and O, and so they have the advantage of being

able to function as tags for natural body compounds. Its resolution of 0.5 cm is better than that of SPECT; the accuracy and
sensitivity of PET scans make them useful for examining the brain’s anatomy and function. The brain’s use of oxygen and water

can be monitored with 15 O . PET is used extensively for diagnosing brain disorders. It can note decreased metabolism in

certain regions prior to a confirmation of Alzheimer’s disease. PET can locate regions in the brain that become active when a
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person carries out specific activities, such as speaking, closing their eyes, and so on.

Figure 32.7 A PET system takes advantage of the two identical γ -ray photons produced by positron-electron annihilation. These γ rays are emitted

in opposite directions, so that the line along which each pair is emitted is determined. Various events detected by several pairs of detectors are then
analyzed by the computer to form an accurate image.

PhET Explorations: Simplified MRI

Is it a tumor? Magnetic Resonance Imaging (MRI) can tell. Your head is full of tiny radio transmitters (the nuclear spins of the
hydrogen nuclei of your water molecules). In an MRI unit, these little radios can be made to broadcast their positions, giving
a detailed picture of the inside of your head. Click to open media in new browser. (https://phet.colorado.edu/en/
simulation/legacy/mri)

32.2 Biological Effects of Ionizing Radiation

We hear many seemingly contradictory things about the biological effects of ionizing radiation. It can cause cancer, burns, and
hair loss, yet it is used to treat and even cure cancer. How do we understand these effects? Once again, there is an underlying
simplicity in nature, even in complicated biological organisms. All the effects of ionizing radiation on biological tissue can be
understood by knowing that ionizing radiation affects molecules within cells, particularly DNA molecules.

Let us take a brief look at molecules within cells and how cells operate. Cells have long, double-helical DNA molecules
containing chemical codes called genetic codes that govern the function and processes undertaken by the cell. It is for
unraveling the double-helical structure of DNA that James Watson, Francis Crick, and Maurice Wilkins received the Nobel Prize.
Damage to DNA consists of breaks in chemical bonds or other changes in the structural features of the DNA chain, leading to
changes in the genetic code. In human cells, we can have as many as a million individual instances of damage to DNA per cell
per day. It is remarkable that DNA contains codes that check whether the DNA is damaged or can repair itself. It is like an auto
check and repair mechanism. This repair ability of DNA is vital for maintaining the integrity of the genetic code and for the normal
functioning of the entire organism. It should be constantly active and needs to respond rapidly. The rate of DNA repair depends
on various factors such as the cell type and age of the cell. A cell with a damaged ability to repair DNA, which could have been
induced by ionizing radiation, can do one of the following:

• The cell can go into an irreversible state of dormancy, known as senescence.
• The cell can commit suicide, known as programmed cell death.
• The cell can go into unregulated cell division leading to tumors and cancers.

Since ionizing radiation damages the DNA, which is critical in cell reproduction, it has its greatest effect on cells that rapidly
reproduce, including most types of cancer. Thus, cancer cells are more sensitive to radiation than normal cells and can be killed
by it easily. Cancer is characterized by a malfunction of cell reproduction, and can also be caused by ionizing radiation. Without
contradiction, ionizing radiation can be both a cure and a cause.

To discuss quantitatively the biological effects of ionizing radiation, we need a radiation dose unit that is directly related to those
effects. All effects of radiation are assumed to be directly proportional to the amount of ionization produced in the biological
organism. The amount of ionization is in turn proportional to the amount of deposited energy. Therefore, we define a radiation
dose unit called the rad, as 1/100 of a joule of ionizing energy deposited per kilogram of tissue, which is

(32.1)1 rad = 0.01 J/kg.

For example, if a 50.0-kg person is exposed to ionizing radiation over her entire body and she absorbs 1.00 J, then her whole-
body radiation dose is

(32.2)(1.00 J) / (50.0 kg) = 0.0200 J/kg = 2.00 rad.

If the same 1.00 J of ionizing energy were absorbed in her 2.00-kg forearm alone, then the dose to the forearm would be
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(32.3)(1.00 J) / (2.00 kg) = 0.500 J/kg = 50.0 rad,

and the unaffected tissue would have a zero rad dose. While calculating radiation doses, you divide the energy absorbed by the
mass of affected tissue. You must specify the affected region, such as the whole body or forearm in addition to giving the
numerical dose in rads. The SI unit for radiation dose is the gray (Gy), which is defined to be

(32.4)1 Gy = 1 J/kg = 100 rad.

However, the rad is still commonly used. Although the energy per kilogram in 1 rad is small, it has significant effects since the

energy causes ionization. The energy needed for a single ionization is a few eV, or less than 10−18 J . Thus, 0.01 J of ionizing

energy can create a huge number of ion pairs and have an effect at the cellular level.

The effects of ionizing radiation may be directly proportional to the dose in rads, but they also depend on the type of radiation
and the type of tissue. That is, for a given dose in rads, the effects depend on whether the radiation is α, β, γ, x-ray, or some

other type of ionizing radiation. In the earlier discussion of the range of ionizing radiation, it was noted that energy is deposited in
a series of ionizations and not in a single interaction. Each ion pair or ionization requires a certain amount of energy, so that the
number of ion pairs is directly proportional to the amount of the deposited ionizing energy. But, if the range of the radiation is
small, as it is for α s, then the ionization and the damage created is more concentrated and harder for the organism to repair, as

seen in Figure 32.8. Concentrated damage is more difficult for biological organisms to repair than damage that is spread out, so
short-range particles have greater biological effects. The relative biological effectiveness (RBE) or quality factor (QF) is given
in Table 32.2 for several types of ionizing radiation—the effect of the radiation is directly proportional to the RBE. A dose unit
more closely related to effects in biological tissue is called the roentgen equivalent man or rem and is defined to be the dose in
rads multiplied by the relative biological effectiveness.

(32.5)rem = rad×RBE

Figure 32.8 The image shows ionization created in cells by α and γ radiation. Because of its shorter range, the ionization and damage created by

α is more concentrated and harder for the organism to repair. Thus, the RBE for α s is greater than the RBE for γ s, even though they create the

same amount of ionization at the same energy.

So, if a person had a whole-body dose of 2.00 rad of γ radiation, the dose in rem would be

(2.00 rad)(1) = 2.00 rem whole body . If the person had a whole-body dose of 2.00 rad of α radiation, then the dose in rem

would be (2.00 rad)(20) = 40.0 rem whole body . The α s would have 20 times the effect on the person than the γ s for

the same deposited energy. The SI equivalent of the rem is the sievert (Sv), defined to be Sv = Gy×RBE , so that

(32.6)1 Sv = 1 Gy×RBE = 100 rem.

The RBEs given in Table 32.2 are approximate, but they yield certain insights. For example, the eyes are more sensitive to
radiation, because the cells of the lens do not repair themselves. Neutrons cause more damage than γ rays, although both are

neutral and have large ranges, because neutrons often cause secondary radiation when they are captured. Note that the RBEs
are 1 for higher-energy β s, γ s, and x-rays, three of the most common types of radiation. For those types of radiation, the

numerical values of the dose in rem and rad are identical. For example, 1 rad of γ radiation is also 1 rem. For that reason, rads

are still widely quoted rather than rem. Table 32.3 summarizes the units that are used for radiation.

Misconception Alert: Activity vs. Dose

“Activity” refers to the radioactive source while “dose” refers to the amount of energy from the radiation that is deposited in a
person or object.

A high level of activity doesn’t mean much if a person is far away from the source. The activity R of a source depends upon the

quantity of material (kg) as well as the half-life. A short half-life will produce many more disintegrations per second. Recall that

R = 0.693N
t1 / 2

. Also, the activity decreases exponentially, which is seen in the equation R = R0e−λt .
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Table 32.2 Relative Biological Effectiveness

Type and energy of radiation RBE[1]

X-rays 1

γ rays 1

β rays greater than 32 keV 1

β rays less than 32 keV 1.7

Neutrons, thermal to slow (<20 keV) 2–5

Neutrons, fast (1–10 MeV) 10 (body), 32 (eyes)

Protons (1–10 MeV) 10 (body), 32 (eyes)

α rays from radioactive decay 10–20

Heavy ions from accelerators 10–20

Table 32.3 Units for Radiation

Quantity SI unit name Definition Former unit Conversion

Activity Becquerel (bq) decay/s Curie (Ci) 1 Bq = 2.7×10−11 Ci

Absorbed dose Gray (Gy) 1 J/kg rad Gy = 100 rad

Dose Equivalent Sievert (Sv) 1 J/kg × RBE rem Sv = 100 rem

The large-scale effects of radiation on humans can be divided into two categories: immediate effects and long-term effects. Table
32.4 gives the immediate effects of whole-body exposures received in less than one day. If the radiation exposure is spread out
over more time, greater doses are needed to cause the effects listed. This is due to the body’s ability to partially repair the
damage. Any dose less than 100 mSv (10 rem) is called a low dose, 0.1 Sv to 1 Sv (10 to 100 rem) is called a moderate dose,
and anything greater than 1 Sv (100 rem) is called a high dose. There is no known way to determine after the fact if a person
has been exposed to less than 10 mSv.

Table 32.4 Immediate Effects of Radiation (Adults, Whole Body, Single Exposure)

Dose in Sv [2] Effect

0–0.10 No observable effect.

0.1 – 1 Slight to moderate decrease in white blood cell counts.

0.5 Temporary sterility; 0.35 for women, 0.50 for men.

1 – 2 Significant reduction in blood cell counts, brief nausea and vomiting. Rarely fatal.

2 – 5 Nausea, vomiting, hair loss, severe blood damage, hemorrhage, fatalities.

4.5 LD50/32. Lethal to 50% of the population within 32 days after exposure if not treated.

5 – 20 Worst effects due to malfunction of small intestine and blood systems. Limited survival.

>20 Fatal within hours due to collapse of central nervous system.

Immediate effects are explained by the effects of radiation on cells and the sensitivity of rapidly reproducing cells to radiation.
The first clue that a person has been exposed to radiation is a change in blood count, which is not surprising since blood cells
are the most rapidly reproducing cells in the body. At higher doses, nausea and hair loss are observed, which may be due to
interference with cell reproduction. Cells in the lining of the digestive system also rapidly reproduce, and their destruction causes
nausea. When the growth of hair cells slows, the hair follicles become thin and break off. High doses cause significant cell death
in all systems, but the lowest doses that cause fatalities do so by weakening the immune system through the loss of white blood
cells.

The two known long-term effects of radiation are cancer and genetic defects. Both are directly attributable to the interference of
radiation with cell reproduction. For high doses of radiation, the risk of cancer is reasonably well known from studies of exposed
groups. Hiroshima and Nagasaki survivors and a smaller number of people exposed by their occupation, such as radium dial
painters, have been fully documented. Chernobyl victims will be studied for many decades, with some data already available. For
example, a significant increase in childhood thyroid cancer has been observed. The risk of a radiation-induced cancer for low
and moderate doses is generally assumed to be proportional to the risk known for high doses. Under this assumption, any dose

1. Values approximate, difficult to determine.
2. Multiply by 100 to obtain dose in rem.
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of radiation, no matter how small, involves a risk to human health. This is called the linear hypothesis and it may be prudent,
but it is controversial. There is some evidence that, unlike the immediate effects of radiation, the long-term effects are cumulative
and there is little self-repair. This is analogous to the risk of skin cancer from UV exposure, which is known to be cumulative.

There is a latency period for the onset of radiation-induced cancer of about 2 years for leukemia and 15 years for most other
forms. The person is at risk for at least 30 years after the latency period. Omitting many details, the overall risk of a radiation-

induced cancer death per year per rem of exposure is about 10 in a million, which can be written as 10 / 106 rem · y .

If a person receives a dose of 1 rem, his risk each year of dying from radiation-induced cancer is 10 in a million and that risk
continues for about 30 years. The lifetime risk is thus 300 in a million, or 0.03 percent. Since about 20 percent of all worldwide
deaths are from cancer, the increase due to a 1 rem exposure is impossible to detect demographically. But 100 rem (1 Sv), which
was the dose received by the average Hiroshima and Nagasaki survivor, causes a 3 percent risk, which can be observed in the
presence of a 20 percent normal or natural incidence rate.

The incidence of genetic defects induced by radiation is about one-third that of cancer deaths, but is much more poorly known.

The lifetime risk of a genetic defect due to a 1 rem exposure is about 100 in a million or 3.3 / 106 rem ⋅ y , but the normal

incidence is 60,000 in a million. Evidence of such a small increase, tragic as it is, is nearly impossible to obtain. For example,
there is no evidence of increased genetic defects among the offspring of Hiroshima and Nagasaki survivors. Animal studies do
not seem to correlate well with effects on humans and are not very helpful. For both cancer and genetic defects, the approach to
safety has been to use the linear hypothesis, which is likely to be an overestimate of the risks of low doses. Certain researchers
even claim that low doses are beneficial. Hormesis is a term used to describe generally favorable biological responses to low
exposures of toxins or radiation. Such low levels may help certain repair mechanisms to develop or enable cells to adapt to the
effects of the low exposures. Positive effects may occur at low doses that could be a problem at high doses.

Even the linear hypothesis estimates of the risks are relatively small, and the average person is not exposed to large amounts of
radiation. Table 32.5 lists average annual background radiation doses from natural and artificial sources for Australia, the United
States, Germany, and world-wide averages. Cosmic rays are partially shielded by the atmosphere, and the dose depends upon
altitude and latitude, but the average is about 0.40 mSv/y. A good example of the variation of cosmic radiation dose with altitude
comes from the airline industry. Monitored personnel show an average of 2 mSv/y. A 12-hour flight might give you an exposure of
0.02 to 0.03 mSv.

Doses from the Earth itself are mainly due to the isotopes of uranium, thorium, and potassium, and vary greatly by location.
Some places have great natural concentrations of uranium and thorium, yielding doses ten times as high as the average value.
Internal doses come from foods and liquids that we ingest. Fertilizers containing phosphates have potassium and uranium. So
we are all a little radioactive. Carbon-14 has about 66 Bq/kg radioactivity whereas fertilizers may have more than 3000 Bq/kg
radioactivity. Medical and dental diagnostic exposures are mostly from x-rays. It should be noted that x-ray doses tend to be
localized and are becoming much smaller with improved techniques. Table 32.6 shows typical doses received during various
diagnostic x-ray examinations. Note the large dose from a CT scan. While CT scans only account for less than 20 percent of the
x-ray procedures done today, they account for about 50 percent of the annual dose received.

Radon is usually more pronounced underground and in buildings with low air exchange with the outside world. Almost all soil

contains some 226 Ra and 222 Rn , but radon is lower in mainly sedimentary soils and higher in granite soils. Thus, the

exposure to the public can vary greatly, even within short distances. Radon can diffuse from the soil into homes, especially

basements. The estimated exposure for 222 Rn is controversial. Recent studies indicate there is more radon in homes than had

been realized, and it is speculated that radon may be responsible for 20 percent of lung cancers, being particularly hazardous to
those who also smoke. Many countries have introduced limits on allowable radon concentrations in indoor air, often requiring the
measurement of radon concentrations in a house prior to its sale. Ironically, it could be argued that the higher levels of radon
exposure and their geographic variability, taken with the lack of demographic evidence of any effects, means that low-level
radiation is less dangerous than previously thought.

Radiation Protection

Laws regulate radiation doses to which people can be exposed. The greatest occupational whole-body dose that is allowed
depends upon the country and is about 20 to 50 mSv/y and is rarely reached by medical and nuclear power workers. Higher
doses are allowed for the hands. Much lower doses are permitted for the reproductive organs and the fetuses of pregnant
women. Inadvertent doses to the public are limited to 1 / 10 of occupational doses, except for those caused by nuclear power,

which cannot legally expose the public to more than 1 / 1000 of the occupational limit or 0.05 mSv/y (5 mrem/y). This has been

exceeded in the United States only at the time of the Three Mile Island (TMI) accident in 1979. Chernobyl is another story.
Extensive monitoring with a variety of radiation detectors is performed to assure radiation safety. Increased ventilation in uranium
mines has lowered the dose there to about 1 mSv/y.
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Table 32.5 Background Radiation Sources and Average Doses

Source Dose (mSv/y)[3]

Source Australia Germany United States World

Natural Radiation - external

Cosmic Rays 0.30 0.28 0.30 0.39

Soil, building materials 0.40 0.40 0.30 0.48

Radon gas 0.90 1.1 2.0 1.2

Natural Radiation - internal

40 K, 14 C, 226 Ra 0.24 0.28 0.40 0.29

Medical & Dental 0.80 0.90 0.53 0.40

TOTAL 2.6 3.0 3.5 2.8

To physically limit radiation doses, we use shielding, increase the distance from a source, and limit the time of exposure.

Figure 32.9 illustrates how these are used to protect both the patient and the dental technician when an x-ray is taken. Shielding
absorbs radiation and can be provided by any material, including sufficient air. The greater the distance from the source, the
more the radiation spreads out. The less time a person is exposed to a given source, the smaller is the dose received by the
person. Doses from most medical diagnostics have decreased in recent years due to faster films that require less exposure time.

Figure 32.9 A lead apron is placed over the dental patient and shielding surrounds the x-ray tube to limit exposure to tissue other than the tissue that is
being imaged. Fast films limit the time needed to obtain images, reducing exposure to the imaged tissue. The technician stands a few meters away
behind a lead-lined door with a lead glass window, reducing her occupational exposure.

Table 32.6 Typical Doses Received During
Diagnostic X-ray Exams

Procedure Effective dose (mSv)

Chest 0.02

Dental 0.01

Skull 0.07

Leg 0.02

Mammogram 0.40

Barium enema 7.0

Upper GI 3.0

CT head 2.0

CT abdomen 10.0

Problem-Solving Strategy

You need to follow certain steps for dose calculations, which are

3. Multiply by 100 to obtain dose in mrem/y.
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Step 1. Examine the situation to determine that a person is exposed to ionizing radiation.

Step 2. Identify exactly what needs to be determined in the problem (identify the unknowns). The most straightforward problems
ask for a dose calculation.

Step 3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Look for information on
the type of radiation, the energy per event, the activity, and the mass of tissue affected.

Step 4. For dose calculations, you need to determine the energy deposited. This may take one or more steps, depending on the
given information.

Step 5. Divide the deposited energy by the mass of the affected tissue. Use units of joules for energy and kilograms for mass. If
a dose in Sv is involved, use the definition that 1 Sv = 1 J/kg .

Step 6. If a dose in mSv is involved, determine the RBE (QF) of the radiation. Recall that
1 mSv = 1 mGy×RBE (or 1 rem = 1 rad×RBE) .

Step 7. Check the answer to see if it is reasonable: Does it make sense? The dose should be consistent with the numbers given
in the text for diagnostic, occupational, and therapeutic exposures.

Example 32.1 Dose from Inhaled Plutonium

Calculate the dose in rem/y for the lungs of a weapons plant employee who inhales and retains an activity of

1.00 μCi of 239 Pu in an accident. The mass of affected lung tissue is 2.00 kg, the plutonium decays by emission of a

5.23-MeV α particle, and you may assume the higher value of the RBE for α s from Table 32.2.

Strategy

Dose in rem is defined by 1 rad = 0.01 J/kg and rem = rad×RBE . The energy deposited is divided by the mass of

tissue affected and then multiplied by the RBE. The latter two quantities are given, and so the main task in this example will
be to find the energy deposited in one year. Since the activity of the source is given, we can calculate the number of decays,
multiply by the energy per decay, and convert MeV to joules to get the total energy.

Solution

The activity R = 1.00 μCi = 3.70×104 Bq = 3.70×104 decays/s. So, the number of decays per year is obtained by

multiplying by the number of seconds in a year:

(32.7)⎛
⎝3.70×104 decays/s⎞⎠

⎛
⎝3.16×107 s⎞⎠ = 1.17×1012 decays.

Thus, the ionizing energy deposited per year is

(32.8)
E = ⎛⎝1.17×1012 decays⎞⎠⎛⎝5.23 MeV/decay⎞⎠×

⎛
⎝1.60×10−13 J

MeV
⎞
⎠ = 0.978 J.

Dividing by the mass of the affected tissue gives

(32.9)E
mass = 0.978 J

2.00 kg = 0.489 J/kg.

One Gray is 1.00 J/kg, and so the dose in Gy is

(32.10)
dose in Gy = 0.489 J/kg

1.00 (J/kg)/Gy = 0.489 Gy.

Now, the dose in Sv is

(32.11)dose in Sv = Gy×RBE
(32.12)= ⎛

⎝0.489 Gy⎞⎠(20) = 9.8 Sv.

Discussion

First note that the dose is given to two digits, because the RBE is (at best) known only to two digits. By any standard, this
yearly radiation dose is high and will have a devastating effect on the health of the worker. Worse yet, plutonium has a long
radioactive half-life and is not readily eliminated by the body, and so it will remain in the lungs. Being an α emitter makes

the effects 10 to 20 times worse than the same ionization produced by β s, γ rays, or x-rays. An activity of 1.00 μCi is

created by only 16 μg of 239 Pu (left as an end-of-chapter problem to verify), partly justifying claims that plutonium is the

most toxic substance known. Its actual hazard depends on how likely it is to be spread out among a large population and
then ingested. The Chernobyl disaster’s deadly legacy, for example, has nothing to do with the plutonium it put into the
environment.
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Risk versus Benefit

Medical doses of radiation are also limited. Diagnostic doses are generally low and have further lowered with improved
techniques and faster films. With the possible exception of routine dental x-rays, radiation is used diagnostically only when
needed so that the low risk is justified by the benefit of the diagnosis. Chest x-rays give the lowest doses—about 0.1 mSv to the
tissue affected, with less than 5 percent scattering into tissues that are not directly imaged. Other x-ray procedures range upward
to about 10 mSv in a CT scan, and about 5 mSv (0.5 rem) per dental x-ray, again both only affecting the tissue imaged. Medical
images with radiopharmaceuticals give doses ranging from 1 to 5 mSv, usually localized. One exception is the thyroid scan using
131 I . Because of its relatively long half-life, it exposes the thyroid to about 0.75 Sv. The isotope 123 I is more difficult to

produce, but its short half-life limits thyroid exposure to about 15 mSv.

PhET Explorations: Alpha Decay

Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times
relate to the half life. Click to open media in new browser. (https://phet.colorado.edu/en/simulation/legacy/alpha-
decay)

32.3 Therapeutic Uses of Ionizing Radiation

Therapeutic applications of ionizing radiation, called radiation therapy or radiotherapy, have existed since the discovery of x-
rays and nuclear radioactivity. Today, radiotherapy is used almost exclusively for cancer therapy, where it saves thousands of
lives and improves the quality of life and longevity of many it cannot save. Radiotherapy may be used alone or in combination
with surgery and chemotherapy (drug treatment) depending on the type of cancer and the response of the patient. A careful
examination of all available data has established that radiotherapy’s beneficial effects far outweigh its long-term risks.

Medical Application

The earliest uses of ionizing radiation on humans were mostly harmful, with many at the level of snake oil as seen in Figure
32.10. Radium-doped cosmetics that glowed in the dark were used around the time of World War I. As recently as the 1950s,
radon mine tours were promoted as healthful and rejuvenating—those who toured were exposed but gained no benefits. Radium
salts were sold as health elixirs for many years. The gruesome death of a wealthy industrialist, who became psychologically
addicted to the brew, alerted the unsuspecting to the dangers of radium salt elixirs. Most abuses finally ended after the legislation
in the 1950s.

Figure 32.10 The properties of radiation were once touted for far more than its modern use in cancer therapy. Until 1932, radium was advertised for a
variety of uses, often with tragic results. (credit: Struthious Bandersnatch.)

Radiotherapy is effective against cancer because cancer cells reproduce rapidly and, consequently, are more sensitive to
radiation. The central problem in radiotherapy is to make the dose for cancer cells as high as possible while limiting the dose for
normal cells. The ratio of abnormal cells killed to normal cells killed is called the therapeutic ratio, and all radiotherapy
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techniques are designed to enhance this ratio. Radiation can be concentrated in cancerous tissue by a number of techniques.
One of the most prevalent techniques for well-defined tumors is a geometric technique shown in Figure 32.11. A narrow beam of
radiation is passed through the patient from a variety of directions with a common crossing point in the tumor. This concentrates

the dose in the tumor while spreading it out over a large volume of normal tissue. The external radiation can be x-rays, 60 Co γ
rays, or ionizing-particle beams produced by accelerators. Accelerator-produced beams of neutrons, π-mesons , and heavy ions

such as nitrogen nuclei have been employed, and these can be quite effective. These particles have larger QFs or RBEs and
sometimes can be better localized, producing a greater therapeutic ratio. But accelerator radiotherapy is much more expensive
and less frequently employed than other forms.

Figure 32.11 The
60 Co source of γ -radiation is rotated around the patient so that the common crossing point is in the tumor, concentrating the

dose there. This geometric technique works for well-defined tumors.

Another form of radiotherapy uses chemically inert radioactive implants. One use is for prostate cancer. Radioactive seeds

(about 40 to 100 and the size of a grain of rice) are placed in the prostate region. The isotopes used are usually 135 I (6-month

half life) or 103 Pd (3-month half life). Alpha emitters have the dual advantages of a large QF and a small range for better

localization.

Radiopharmaceuticals are used for cancer therapy when they can be localized well enough to produce a favorable therapeutic
ratio. Thyroid cancer is commonly treated utilizing radioactive iodine. Thyroid cells concentrate iodine, and cancerous thyroid
cells are more aggressive in doing this. An ingenious use of radiopharmaceuticals in cancer therapy tags antibodies with
radioisotopes. Antibodies produced by a patient to combat his cancer are extracted, cultured, loaded with a radioisotope, and
then returned to the patient. The antibodies are concentrated almost entirely in the tissue they developed to fight, thus localizing
the radiation in abnormal tissue. The therapeutic ratio can be quite high for short-range radiation. There is, however, a significant
dose for organs that eliminate radiopharmaceuticals from the body, such as the liver, kidneys, and bladder. As with most
radiotherapy, the technique is limited by the tolerable amount of damage to the normal tissue.

Table 32.7 lists typical therapeutic doses of radiation used against certain cancers. The doses are large, but not fatal because
they are localized and spread out in time. Protocols for treatment vary with the type of cancer and the condition and response of
the patient. Three to five 200-rem treatments per week for a period of several weeks is typical. Time between treatments allows
the body to repair normal tissue. This effect occurs because damage is concentrated in the abnormal tissue, and the abnormal
tissue is more sensitive to radiation. Damage to normal tissue limits the doses. You will note that the greatest doses are given to
any tissue that is not rapidly reproducing, such as in the adult brain. Lung cancer, on the other end of the scale, cannot ordinarily
be cured with radiation because of the sensitivity of lung tissue and blood to radiation. But radiotherapy for lung cancer does
alleviate symptoms and prolong life and is therefore justified in some cases.
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Table 32.7 Cancer Radiotherapy

Type of Cancer Typical dose (Sv)

Lung 10–20

Hodgkin’s disease 40–45

Skin 40–50

Ovarian 50–75

Breast 50–80+

Brain 80+

Neck 80+

Bone 80+

Soft tissue 80+

Thyroid 80+

Finally, it is interesting to note that chemotherapy employs drugs that interfere with cell division and is, thus, also effective against
cancer. It also has almost the same side effects, such as nausea and hair loss, and risks, such as the inducement of another
cancer.

32.4 Food Irradiation

Ionizing radiation is widely used to sterilize medical supplies, such as bandages, and consumer products, such as tampons.
Worldwide, it is also used to irradiate food, an application that promises to grow in the future. Food irradiation is the treatment of
food with ionizing radiation. It is used to reduce pest infestation and to delay spoilage and prevent illness caused by
microorganisms. Food irradiation is controversial. Proponents see it as superior to pasteurization, preservatives, and
insecticides, supplanting dangerous chemicals with a more effective process. Opponents see its safety as unproven, perhaps
leaving worse toxic residues as well as presenting an environmental hazard at treatment sites. In developing countries, food
irradiation might increase crop production by 25.0% or more, and reduce food spoilage by a similar amount. It is used chiefly to
treat spices and some fruits, and in some countries, red meat, poultry, and vegetables. Over 40 countries have approved food
irradiation at some level.

Food irradiation exposes food to large doses of γ rays, x-rays, or electrons. These photons and electrons induce no nuclear

reactions and thus create no residual radioactivity. (Some forms of ionizing radiation, such as neutron irradiation, cause residual

radioactivity. These are not used for food irradiation.) The γ source is usually 60 Co or 137 Cs , the latter isotope being a major

by-product of nuclear power. Cobalt-60 γ rays average 1.25 MeV, while those of 137 Cs are 0.67 MeV and are less penetrating.

X-rays used for food irradiation are created with voltages of up to 5 million volts and, thus, have photon energies up to 5 MeV.
Electrons used for food irradiation are accelerated to energies up to 10 MeV. The higher the energy per particle, the more
penetrating the radiation is and the more ionization it can create. Figure 32.12 shows a typical γ -irradiation plant.

Figure 32.12 A food irradiation plant has a conveyor system to pass items through an intense radiation field behind thick shielding walls. The γ

source is lowered into a deep pool of water for safe storage when not in use. Exposure times of up to an hour expose food to doses up to 104 Gy .

Owing to the fact that food irradiation seeks to destroy organisms such as insects and bacteria, much larger doses than those
fatal to humans must be applied. Generally, the simpler the organism, the more radiation it can tolerate. (Cancer cells are a
partial exception, because they are rapidly reproducing and, thus, more sensitive.) Current licensing allows up to 1000 Gy to be
applied to fresh fruits and vegetables, called a low dose in food irradiation. Such a dose is enough to prevent or reduce the
growth of many microorganisms, but about 10,000 Gy is needed to kill salmonella, and even more is needed to kill fungi. Doses
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greater than 10,000 Gy are considered to be high doses in food irradiation and product sterilization.

The effectiveness of food irradiation varies with the type of food. Spices and many fruits and vegetables have dramatically longer
shelf lives. These also show no degradation in taste and no loss of food value or vitamins. If not for the mandatory labeling, such
foods subjected to low-level irradiation (up to 1000 Gy) could not be distinguished from untreated foods in quality. However,
some foods actually spoil faster after irradiation, particularly those with high water content like lettuce and peaches. Others, such
as milk, are given a noticeably unpleasant taste. High-level irradiation produces significant and chemically measurable changes
in foods. It produces about a 15% loss of nutrients and a 25% loss of vitamins, as well as some change in taste. Such losses are
similar to those that occur in ordinary freezing and cooking.

How does food irradiation work? Ionization produces a random assortment of broken molecules and ions, some with unstable
oxygen- or hydrogen-containing molecules known as free radicals. These undergo rapid chemical reactions, producing perhaps
four or five thousand different compounds called radiolytic products, some of which make cell function impossible by breaking
cell membranes, fracturing DNA, and so on. How safe is the food afterward? Critics argue that the radiolytic products present a
lasting hazard, perhaps being carcinogenic. However, the safety of irradiated food is not known precisely. We do know that low-
level food irradiation produces no compounds in amounts that can be measured chemically. This is not surprising, since trace
amounts of several thousand compounds may be created. We also know that there have been no observable negative short-
term effects on consumers. Long-term effects may show up if large number of people consume large quantities of irradiated food,
but no effects have appeared due to the small amounts of irradiated food that are consumed regularly. The case for safety is
supported by testing of animal diets that were irradiated; no transmitted genetic effects have been observed. Food irradiation (at
least up to a million rad) has been endorsed by the World Health Organization and the UN Food and Agricultural Organization.
Finally, the hazard to consumers, if it exists, must be weighed against the benefits in food production and preservation. It must
also be weighed against the very real hazards of existing insecticides and food preservatives.

32.5 Fusion

While basking in the warmth of the summer sun, a student reads of the latest breakthrough in achieving sustained thermonuclear
power and vaguely recalls hearing about the cold fusion controversy. The three are connected. The Sun’s energy is produced by
nuclear fusion (see Figure 32.13). Thermonuclear power is the name given to the use of controlled nuclear fusion as an energy
source. While research in the area of thermonuclear power is progressing, high temperatures and containment difficulties remain.
The cold fusion controversy centered around unsubstantiated claims of practical fusion power at room temperatures.

Figure 32.13 The Sun’s energy is produced by nuclear fusion. (credit: Spiralz)

Nuclear fusion is a reaction in which two nuclei are combined, or fused, to form a larger nucleus. We know that all nuclei have

less mass than the sum of the masses of the protons and neutrons that form them. The missing mass times c2 equals the

binding energy of the nucleus—the greater the binding energy, the greater the missing mass. We also know that BE / A , the

binding energy per nucleon, is greater for medium-mass nuclei and has a maximum at Fe (iron). This means that if two low-mass
nuclei can be fused together to form a larger nucleus, energy can be released. The larger nucleus has a greater binding energy
and less mass per nucleon than the two that combined. Thus mass is destroyed in the fusion reaction, and energy is released
(see Figure 32.14). On average, fusion of low-mass nuclei releases energy, but the details depend on the actual nuclides
involved.
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Figure 32.14 Fusion of light nuclei to form medium-mass nuclei destroys mass, because BE / A is greater for the product nuclei. The larger

BE / A is, the less mass per nucleon, and so mass is converted to energy and released in these fusion reactions.

The major obstruction to fusion is the Coulomb repulsion between nuclei. Since the attractive nuclear force that can fuse nuclei
together is short ranged, the repulsion of like positive charges must be overcome to get nuclei close enough to induce fusion.
Figure 32.15 shows an approximate graph of the potential energy between two nuclei as a function of the distance between their
centers. The graph is analogous to a hill with a well in its center. A ball rolled from the right must have enough kinetic energy to
get over the hump before it falls into the deeper well with a net gain in energy. So it is with fusion. If the nuclei are given enough
kinetic energy to overcome the electric potential energy due to repulsion, then they can combine, release energy, and fall into a
deep well. One way to accomplish this is to heat fusion fuel to high temperatures so that the kinetic energy of thermal motion is
sufficient to get the nuclei together.

Figure 32.15 Potential energy between two light nuclei graphed as a function of distance between them. If the nuclei have enough kinetic energy to get
over the Coulomb repulsion hump, they combine, release energy, and drop into a deep attractive well. Tunneling through the barrier is important in
practice. The greater the kinetic energy and the higher the particles get up the barrier (or the lower the barrier), the more likely the tunneling.

You might think that, in the core of our Sun, nuclei are coming into contact and fusing. However, in fact, temperatures on the

order of 108 K are needed to actually get the nuclei in contact, exceeding the core temperature of the Sun. Quantum

mechanical tunneling is what makes fusion in the Sun possible, and tunneling is an important process in most other practical
applications of fusion, too. Since the probability of tunneling is extremely sensitive to barrier height and width, increasing the
temperature greatly increases the rate of fusion. The closer reactants get to one another, the more likely they are to fuse (see
Figure 32.16). Thus most fusion in the Sun and other stars takes place at their centers, where temperatures are highest.
Moreover, high temperature is needed for thermonuclear power to be a practical source of energy.
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Figure 32.16 (a) Two nuclei heading toward each other slow down, then stop, and then fly away without touching or fusing. (b) At higher energies, the
two nuclei approach close enough for fusion via tunneling. The probability of tunneling increases as they approach, but they do not have to touch for
the reaction to occur.

The Sun produces energy by fusing protons or hydrogen nuclei 1 H (by far the Sun’s most abundant nuclide) into helium nuclei

4 He . The principal sequence of fusion reactions forms what is called the proton-proton cycle:

(32.13)1 H + 1H → 2 H + e+ + ve                 (0.42 MeV)
(32.14)1 H + 2H → 3 He + γ                         (5.49 MeV)
(32.15)3 He + 3He → 4 He + 1H + 1H       (12.86 MeV)

where e+ stands for a positron and ve is an electron neutrino. (The energy in parentheses is released by the reaction.) Note

that the first two reactions must occur twice for the third to be possible, so that the cycle consumes six protons ( 1 H ) but gives

back two. Furthermore, the two positrons produced will find two electrons and annihilate to form four more γ rays, for a total of

six. The overall effect of the cycle is thus

(32.16)2e− + 41 H → 4 He + 2ve + 6γ        (26.7 MeV)

where the 26.7 MeV includes the annihilation energy of the positrons and electrons and is distributed among all the reaction
products. The solar interior is dense, and the reactions occur deep in the Sun where temperatures are highest. It takes about
32,000 years for the energy to diffuse to the surface and radiate away. However, the neutrinos escape the Sun in less than two
seconds, carrying their energy with them, because they interact so weakly that the Sun is transparent to them. Negative
feedback in the Sun acts as a thermostat to regulate the overall energy output. For instance, if the interior of the Sun becomes
hotter than normal, the reaction rate increases, producing energy that expands the interior. This cools it and lowers the reaction
rate. Conversely, if the interior becomes too cool, it contracts, increasing the temperature and reaction rate (see Figure 32.17).
Stars like the Sun are stable for billions of years, until a significant fraction of their hydrogen has been depleted. What happens
then is discussed in Introduction to Frontiers of Physics .

Figure 32.17 Nuclear fusion in the Sun converts hydrogen nuclei into helium; fusion occurs primarily at the boundary of the helium core, where
temperature is highest and sufficient hydrogen remains. Energy released diffuses slowly to the surface, with the exception of neutrinos, which escape
immediately. Energy production remains stable because of negative feedback effects.

Theories of the proton-proton cycle (and other energy-producing cycles in stars) were pioneered by the German-born, American
physicist Hans Bethe (1906–2005), starting in 1938. He was awarded the 1967 Nobel Prize in physics for this work, and he has
made many other contributions to physics and society. Neutrinos produced in these cycles escape so readily that they provide us
an excellent means to test these theories and study stellar interiors. Detectors have been constructed and operated for more
than four decades now to measure solar neutrinos (see Figure 32.18). Although solar neutrinos are detected and neutrinos were
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observed from Supernova 1987A (Figure 32.19), too few solar neutrinos were observed to be consistent with predictions of solar
energy production. After many years, this solar neutrino problem was resolved with a blend of theory and experiment that
showed that the neutrino does indeed have mass. It was also found that there are three types of neutrinos, each associated with
a different type of nuclear decay.

Figure 32.18 This array of photomultiplier tubes is part of the large solar neutrino detector at the Fermi National Accelerator Laboratory in Illinois. In
these experiments, the neutrinos interact with heavy water and produce flashes of light, which are detected by the photomultiplier tubes. In spite of its
size and the huge flux of neutrinos that strike it, very few are detected each day since they interact so weakly. This, of course, is the same reason they
escape the Sun so readily. (credit: Fred Ullrich)

Figure 32.19 Supernovas are the source of elements heavier than iron. Energy released powers nucleosynthesis. Spectroscopic analysis of the ring of
material ejected by Supernova 1987A observable in the southern hemisphere, shows evidence of heavy elements. The study of this supernova also
provided indications that neutrinos might have mass. (credit: NASA, ESA, and P. Challis)

The proton-proton cycle is not a practical source of energy on Earth, in spite of the great abundance of hydrogen ( 1 H ). The

reaction 1 H + 1H → 2 H + e+ + ve has a very low probability of occurring. (This is why our Sun will last for about ten billion

years.) However, a number of other fusion reactions are easier to induce. Among them are:

(32.17)2 H + 2H → 3 H + 1H       (4.03 MeV)
(32.18)2 H + 2H → 3 He + n        (3.27 MeV)
(32.19)2 H + 3H → 4 He + n      (17.59 MeV)
(32.20)2 H + 2H → 4 He + γ        (23.85 MeV).

Deuterium ( 2 H ) is about 0.015% of natural hydrogen, so there is an immense amount of it in sea water alone. In addition to an

abundance of deuterium fuel, these fusion reactions produce large energies per reaction (in parentheses), but they do not

produce much radioactive waste. Tritium ( 3 H ) is radioactive, but it is consumed as a fuel (the reaction 2 H + 3H → 4 He + n
), and the neutrons and γ s can be shielded. The neutrons produced can also be used to create more energy and fuel in

reactions like

(32.21)n + 1H → 2 H + γ      (20.68 MeV)

and

(32.22)n + 1H → 2 H + γ     (2.22 MeV).

Note that these last two reactions, and 2 H + 2H → 4 He + γ , put most of their energy output into the γ ray, and such energy

is difficult to utilize.
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The three keys to practical fusion energy generation are to achieve the temperatures necessary to make the reactions likely, to
raise the density of the fuel, and to confine it long enough to produce large amounts of energy. These three
factors—temperature, density, and time—complement one another, and so a deficiency in one can be compensated for by the
others. Ignition is defined to occur when the reactions produce enough energy to be self-sustaining after external energy input is
cut off. This goal, which must be reached before commercial plants can be a reality, has not been achieved. Another milestone,
called break-even, occurs when the fusion power produced equals the heating power input. Break-even has nearly been
reached and gives hope that ignition and commercial plants may become a reality in a few decades.

Two techniques have shown considerable promise. The first of these is called magnetic confinement and uses the property that
charged particles have difficulty crossing magnetic field lines. The tokamak, shown in Figure 32.20, has shown particular
promise. The tokamak’s toroidal coil confines charged particles into a circular path with a helical twist due to the circulating ions
themselves. In 1995, the Tokamak Fusion Test Reactor at Princeton in the US achieved world-record plasma temperatures as
high as 500 million degrees Celsius. This facility operated between 1982 and 1997. A joint international effort is underway in
France to build a tokamak-type reactor that will be the stepping stone to commercial power. ITER, as it is called, will be a full-
scale device that aims to demonstrate the feasibility of fusion energy. It will generate 500 MW of power for extended periods of
time and will achieve break-even conditions. It will study plasmas in conditions similar to those expected in a fusion power plant.
Completion is scheduled for 2018.

Figure 32.20 (a) Artist’s rendition of ITER, a tokamak-type fusion reactor being built in southern France. It is hoped that this gigantic machine will reach
the break-even point. Completion is scheduled for 2018. (credit: Stephan Mosel, Flickr)

The second promising technique aims multiple lasers at tiny fuel pellets filled with a mixture of deuterium and tritium. Huge power
input heats the fuel, evaporating the confining pellet and crushing the fuel to high density with the expanding hot plasma
produced. This technique is called inertial confinement, because the fuel’s inertia prevents it from escaping before significant
fusion can take place. Higher densities have been reached than with tokamaks, but with smaller confinement times. In 2009, the
Lawrence Livermore Laboratory (CA) completed a laser fusion device with 192 ultraviolet laser beams that are focused upon a
D-T pellet (see Figure 32.21).

Figure 32.21 National Ignition Facility (CA). This image shows a laser bay where 192 laser beams will focus onto a small D-T target, producing fusion.
(credit: Lawrence Livermore National Laboratory, Lawrence Livermore National Security, LLC, and the Department of Energy)

Example 32.2 Calculating Energy and Power from Fusion

(a) Calculate the energy released by the fusion of a 1.00-kg mixture of deuterium and tritium, which produces helium. There
are equal numbers of deuterium and tritium nuclei in the mixture.

(b) If this takes place continuously over a period of a year, what is the average power output?

Strategy

According to 2 H + 3H → 4 He + n , the energy per reaction is 17.59 MeV. To find the total energy released, we must find

the number of deuterium and tritium atoms in a kilogram. Deuterium has an atomic mass of about 2 and tritium has an
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atomic mass of about 3, for a total of about 5 g per mole of reactants or about 200 mol in 1.00 kg. To get a more precise
figure, we will use the atomic masses from Appendix A. The power output is best expressed in watts, and so the energy
output needs to be calculated in joules and then divided by the number of seconds in a year.

Solution for (a)

The atomic mass of deuterium ( 2 H ) is 2.014102 u, while that of tritium ( 3 H ) is 3.016049 u, for a total of 5.032151 u per

reaction. So a mole of reactants has a mass of 5.03 g, and in 1.00 kg there are
(1000 g) / (5.03 g/mol)=198.8 mol of reactants . The number of reactions that take place is therefore

(32.23)(198.8 mol)⎛⎝6.02×1023 mol−1⎞⎠ = 1.20×1026 reactions.

The total energy output is the number of reactions times the energy per reaction:

(32.24)E = ⎛⎝1.20×1026 reactions⎞⎠(17.59 MeV/reaction)⎛⎝1.602×10−13 J/MeV⎞⎠
= 3.37×1014 J.

Solution for (b)

Power is energy per unit time. One year has 3.16×107 s , so

(32.25)
P = E

t = 3.37×1014 J
3.16×107 s

= 1.07×107 W = 10.7 MW.
Discussion

By now we expect nuclear processes to yield large amounts of energy, and we are not disappointed here. The energy output

of 3.37×1014 J from fusing 1.00 kg of deuterium and tritium is equivalent to 2.6 million gallons of gasoline and about eight

times the energy output of the bomb that destroyed Hiroshima. Yet the average backyard swimming pool has about 6 kg of
deuterium in it, so that fuel is plentiful if it can be utilized in a controlled manner. The average power output over a year is
more than 10 MW, impressive but a bit small for a commercial power plant. About 32 times this power output would allow
generation of 100 MW of electricity, assuming an efficiency of one-third in converting the fusion energy to electrical energy.

32.6 Fission

Nuclear fission is a reaction in which a nucleus is split (or fissured). Controlled fission is a reality, whereas controlled fusion is a
hope for the future. Hundreds of nuclear fission power plants around the world attest to the fact that controlled fission is practical
and, at least in the short term, economical, as seen in Figure 32.22. Whereas nuclear power was of little interest for decades
following TMI and Chernobyl (and now Fukushima Daiichi), growing concerns over global warming has brought nuclear power
back on the table as a viable energy alternative. By the end of 2009, there were 442 reactors operating in 30 countries, providing
15% of the world’s electricity. France provides over 75% of its electricity with nuclear power, while the US has 104 operating
reactors providing 20% of its electricity. Australia and New Zealand have none. China is building nuclear power plants at the rate
of one start every month.

Figure 32.22 The people living near this nuclear power plant have no measurable exposure to radiation that is traceable to the plant. About 16% of the
world’s electrical power is generated by controlled nuclear fission in such plants. The cooling towers are the most prominent features but are not unique
to nuclear power. The reactor is in the small domed building to the left of the towers. (credit: Kalmthouts)

Fission is the opposite of fusion and releases energy only when heavy nuclei are split. As noted in Fusion, energy is released if
the products of a nuclear reaction have a greater binding energy per nucleon ( BE / A ) than the parent nuclei. Figure 32.23

shows that BE / A is greater for medium-mass nuclei than heavy nuclei, implying that when a heavy nucleus is split, the
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products have less mass per nucleon, so that mass is destroyed and energy is released in the reaction. The amount of energy
per fission reaction can be large, even by nuclear standards. The graph in Figure 32.23 shows BE / A to be about 7.6 MeV/

nucleon for the heaviest nuclei ( A about 240), while BE / A is about 8.6 MeV/nucleon for nuclei having A about 120. Thus, if

a heavy nucleus splits in half, then about 1 MeV per nucleon, or approximately 240 MeV per fission, is released. This is about 10
times the energy per fusion reaction, and about 100 times the energy of the average α , β , or γ decay.

Example 32.3 Calculating Energy Released by Fission

Calculate the energy released in the following spontaneous fission reaction:

(32.26)238 U → 95 Sr + 140Xe + 3n

given the atomic masses to be m(238 U) = 238.050784 u , m(95 Sr) = 94.919388 u , m(140 Xe) = 139.921610 u ,

and m(n) = 1.008665 u .

Strategy

As always, the energy released is equal to the mass destroyed times c2 , so we must find the difference in mass between

the parent 238 U and the fission products.

Solution

The products have a total mass of

(32.27)mproducts = 94.919388 u + 139.921610 u + 3(1.008665 u)
= 237.866993 u.

The mass lost is the mass of 238 U minus mproducts , or

(32.28)Δm = 238.050784 u − 237.8669933 u = 0.183791 u,

so the energy released is

(32.29)E = (Δm)c2

= (0.183791 u)931.5 MeV/c2
u c2 = 171.2 MeV.

Discussion

A number of important things arise in this example. The 171-MeV energy released is large, but a little less than the earlier
estimated 240 MeV. This is because this fission reaction produces neutrons and does not split the nucleus into two equal

parts. Fission of a given nuclide, such as 238 U , does not always produce the same products. Fission is a statistical

process in which an entire range of products are produced with various probabilities. Most fission produces neutrons,
although the number varies with each fission. This is an extremely important aspect of fission, because neutrons can induce
more fission, enabling self-sustaining chain reactions.

Spontaneous fission can occur, but this is usually not the most common decay mode for a given nuclide. For example, 238 U
can spontaneously fission, but it decays mostly by α emission. Neutron-induced fission is crucial as seen in Figure 32.23.

Being chargeless, even low-energy neutrons can strike a nucleus and be absorbed once they feel the attractive nuclear force.
Large nuclei are described by a liquid drop model with surface tension and oscillation modes, because the large number of
nucleons act like atoms in a drop. The neutron is attracted and thus, deposits energy, causing the nucleus to deform as a liquid
drop. If stretched enough, the nucleus narrows in the middle. The number of nucleons in contact and the strength of the nuclear
force binding the nucleus together are reduced. Coulomb repulsion between the two ends then succeeds in fissioning the
nucleus, which pops like a water drop into two large pieces and a few neutrons. Neutron-induced fission can be written as

(32.30)n + AX → FF1 + FF2 + xn,

where FF1 and FF2 are the two daughter nuclei, called fission fragments, and x is the number of neutrons produced. Most

often, the masses of the fission fragments are not the same. Most of the released energy goes into the kinetic energy of the
fission fragments, with the remainder going into the neutrons and excited states of the fragments. Since neutrons can induce
fission, a self-sustaining chain reaction is possible, provided more than one neutron is produced on average — that is, if x > 1
in n + AX → FF1 + FF2 + xn . This can also be seen in Figure 32.24.

An example of a typical neutron-induced fission reaction is
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(32.31)n + 92
235U → 56

142 Ba + 36
91 Kr + 3n.

Note that in this equation, the total charge remains the same (is conserved): 92 + 0 = 56 + 36 . Also, as far as whole

numbers are concerned, the mass is constant: 1 + 235 = 142 + 91 + 3 . This is not true when we consider the masses out to

6 or 7 significant places, as in the previous example.

Figure 32.23 Neutron-induced fission is shown. First, energy is put into this large nucleus when it absorbs a neutron. Acting like a struck liquid drop,
the nucleus deforms and begins to narrow in the middle. Since fewer nucleons are in contact, the repulsive Coulomb force is able to break the nucleus
into two parts with some neutrons also flying away.
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Figure 32.24 A chain reaction can produce self-sustained fission if each fission produces enough neutrons to induce at least one more fission. This
depends on several factors, including how many neutrons are produced in an average fission and how easy it is to make a particular type of nuclide
fission.

Not every neutron produced by fission induces fission. Some neutrons escape the fissionable material, while others interact with
a nucleus without making it fission. We can enhance the number of fissions produced by neutrons by having a large amount of
fissionable material. The minimum amount necessary for self-sustained fission of a given nuclide is called its critical mass.

Some nuclides, such as 239 Pu , produce more neutrons per fission than others, such as 235 U . Additionally, some nuclides

are easier to make fission than others. In particular, 235 U and 239 Pu are easier to fission than the much more abundant

238 U . Both factors affect critical mass, which is smallest for 239 Pu .

The reason 235 U and 239 Pu are easier to fission than 238 U is that the nuclear force is more attractive for an even number

of neutrons in a nucleus than for an odd number. Consider that 92
235 U143 has 143 neutrons, and 94

239 P145 has 145 neutrons,

whereas 92
238 U146 has 146. When a neutron encounters a nucleus with an odd number of neutrons, the nuclear force is more

attractive, because the additional neutron will make the number even. About 2-MeV more energy is deposited in the resulting
nucleus than would be the case if the number of neutrons was already even. This extra energy produces greater deformation,

making fission more likely. Thus, 235 U and 239 Pu are superior fission fuels. The isotope 235 U is only 0.72 % of natural

uranium, while 238 U is 99.27%, and 239 Pu does not exist in nature. Australia has the largest deposits of uranium in the world,

standing at 28% of the total. This is followed by Kazakhstan and Canada. The US has only 3% of global reserves.

Most fission reactors utilize 235 U , which is separated from 238 U at some expense. This is called enrichment. The most

common separation method is gaseous diffusion of uranium hexafluoride ( UF6 ) through membranes. Since 235 U has less

mass than 238 U , its UF6 molecules have higher average velocity at the same temperature and diffuse faster. Another

interesting characteristic of 235 U is that it preferentially absorbs very slow moving neutrons (with energies a fraction of an eV),

whereas fission reactions produce fast neutrons with energies in the order of an MeV. To make a self-sustained fission reactor

with 235 U , it is thus necessary to slow down (“thermalize”) the neutrons. Water is very effective, since neutrons collide with

protons in water molecules and lose energy. Figure 32.25 shows a schematic of a reactor design, called the pressurized water
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reactor.

Figure 32.25 A pressurized water reactor is cleverly designed to control the fission of large amounts of
235 U , while using the heat produced in the

fission reaction to create steam for generating electrical energy. Control rods adjust neutron flux so that criticality is obtained, but not exceeded. In case
the reactor overheats and boils the water away, the chain reaction terminates, because water is needed to thermalize the neutrons. This inherent safety
feature can be overwhelmed in extreme circumstances.

Control rods containing nuclides that very strongly absorb neutrons are used to adjust neutron flux. To produce large power,
reactors contain hundreds to thousands of critical masses, and the chain reaction easily becomes self-sustaining, a condition
called criticality. Neutron flux should be carefully regulated to avoid an exponential increase in fissions, a condition called
supercriticality. Control rods help prevent overheating, perhaps even a meltdown or explosive disassembly. The water that is

used to thermalize neutrons, necessary to get them to induce fission in 235 U , and achieve criticality, provides a negative

feedback for temperature increases. In case the reactor overheats and boils the water to steam or is breached, the absence of
water kills the chain reaction. Considerable heat, however, can still be generated by the reactor’s radioactive fission products.
Other safety features, thus, need to be incorporated in the event of a loss of coolant accident, including auxiliary cooling water
and pumps.

Example 32.4 Calculating Energy from a Kilogram of Fissionable Fuel

Calculate the amount of energy produced by the fission of 1.00 kg of 235 U , given the average fission reaction of 235 U
produces 200 MeV.

Strategy

The total energy produced is the number of 235 U atoms times the given energy per 235 U fission. We should therefore

find the number of 235 U atoms in 1.00 kg.

Solution

The number of 235 U atoms in 1.00 kg is Avogadro’s number times the number of moles. One mole of 235 U has a mass

of 235.04 g; thus, there are (1000 g) / (235.04 g/mol) = 4.25 mol . The number of 235 U atoms is therefore,

(32.32)(4.25 mol)⎛⎝6.02×1023 235 U/mol⎞⎠ = 2.56×1024 235 U.

So the total energy released is

(32.33)
E = ⎛

⎝2.56×1024 235 U⎞⎠
⎛
⎝200 MeV

235 U
⎞
⎠
⎛
⎝1.60×10−13 J

MeV
⎞
⎠

= 8.21×1013 J.
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Discussion

This is another impressively large amount of energy, equivalent to about 14,000 barrels of crude oil or 600,000 gallons of
gasoline. But, it is only one-fourth the energy produced by the fusion of a kilogram mixture of deuterium and tritium as seen
in Example 32.2. Even though each fission reaction yields about ten times the energy of a fusion reaction, the energy per
kilogram of fission fuel is less, because there are far fewer moles per kilogram of the heavy nuclides. Fission fuel is also

much more scarce than fusion fuel, and less than 1% of uranium (the 235 U) is readily usable.

One nuclide already mentioned is 239 Pu , which has a 24,120-y half-life and does not exist in nature. Plutonium-239 is

manufactured from 238 U in reactors, and it provides an opportunity to utilize the other 99% of natural uranium as an energy

source. The following reaction sequence, called breeding, produces 239 Pu . Breeding begins with neutron capture by 238 U :

(32.34)238 U + n → 239 U + γ.

Uranium-239 then β– decays:

(32.35)239 U → 239 Np + β− + ve(t1/2 = 23 min).

Neptunium-239 also β– decays:

(32.36)239 Np → 239 Pu + β− + ve(t1/2 = 2.4 d).

Plutonium-239 builds up in reactor fuel at a rate that depends on the probability of neutron capture by 238 U (all reactor fuel

contains more 238 U than 235 U ). Reactors designed specifically to make plutonium are called breeder reactors. They seem

to be inherently more hazardous than conventional reactors, but it remains unknown whether their hazards can be made
economically acceptable. The four reactors at Chernobyl, including the one that was destroyed, were built to breed plutonium
and produce electricity. These reactors had a design that was significantly different from the pressurized water reactor illustrated
above.

Plutonium-239 has advantages over 235 U as a reactor fuel — it produces more neutrons per fission on average, and it is

easier for a thermal neutron to cause it to fission. It is also chemically different from uranium, so it is inherently easier to separate

from uranium ore. This means 239 Pu has a particularly small critical mass, an advantage for nuclear weapons.

PhET Explorations: Nuclear Fission

Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor!

(This media type is not supported in this reader. Click to open media in browser.) (http://cnx.org/content/m42662/1.13/#eip-id3105212)
Figure 32.26

32.7 Nuclear Weapons

The world was in turmoil when fission was discovered in 1938. The discovery of fission, made by two German physicists, Otto
Hahn and Fritz Strassman, was quickly verified by two Jewish refugees from Nazi Germany, Lise Meitner and her nephew Otto
Frisch. Fermi, among others, soon found that not only did neutrons induce fission; more neutrons were produced during fission.
The possibility of a self-sustained chain reaction was immediately recognized by leading scientists the world over. The enormous
energy known to be in nuclei, but considered inaccessible, now seemed to be available on a large scale.

Within months after the announcement of the discovery of fission, Adolf Hitler banned the export of uranium from newly occupied
Czechoslovakia. It seemed that the military value of uranium had been recognized in Nazi Germany, and that a serious effort to
build a nuclear bomb had begun.

Alarmed scientists, many of them who fled Nazi Germany, decided to take action. None was more famous or revered than
Einstein. It was felt that his help was needed to get the American government to make a serious effort at nuclear weapons as a
matter of survival. Leo Szilard, an escaped Hungarian physicist, took a draft of a letter to Einstein, who, although pacifistic,
signed the final version. The letter was for President Franklin Roosevelt, warning of the German potential to build extremely
powerful bombs of a new type. It was sent in August of 1939, just before the German invasion of Poland that marked the start of
World War II.

It was not until December 6, 1941, the day before the Japanese attack on Pearl Harbor, that the United States made a massive
commitment to building a nuclear bomb. The top secret Manhattan Project was a crash program aimed at beating the Germans.
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It was carried out in remote locations, such as Los Alamos, New Mexico, whenever possible, and eventually came to cost billions
of dollars and employ the efforts of more than 100,000 people. J. Robert Oppenheimer (1904–1967), whose talent and ambitions
made him ideal, was chosen to head the project. The first major step was made by Enrico Fermi and his group in December
1942, when they achieved the first self-sustained nuclear reactor. This first “atomic pile”, built in a squash court at the University
of Chicago, used carbon blocks to thermalize neutrons. It not only proved that the chain reaction was possible, it began the era
of nuclear reactors. Glenn Seaborg, an American chemist and physicist, received the Nobel Prize in physics in 1951 for
discovery of several transuranic elements, including plutonium. Carbon-moderated reactors are relatively inexpensive and simple
in design and are still used for breeding plutonium, such as at Chernobyl, where two such reactors remain in operation.

Plutonium was recognized as easier to fission with neutrons and, hence, a superior fission material very early in the Manhattan
Project. Plutonium availability was uncertain, and so a uranium bomb was developed simultaneously. Figure 32.27 shows a gun-
type bomb, which takes two subcritical uranium masses and blows them together. To get an appreciable yield, the critical mass
must be held together by the explosive charges inside the cannon barrel for a few microseconds. Since the buildup of the
uranium chain reaction is relatively slow, the device to hold the critical mass together can be relatively simple. Owing to the fact
that the rate of spontaneous fission is low, a neutron source is triggered at the same time the critical mass is assembled.

Figure 32.27 A gun-type fission bomb for
235 U utilizes two subcritical masses forced together by explosive charges inside a cannon barrel. The

energy yield depends on the amount of uranium and the time it can be held together before it disassembles itself.

Plutonium’s special properties necessitated a more sophisticated critical mass assembly, shown schematically in Figure 32.28. A
spherical mass of plutonium is surrounded by shape charges (high explosives that release most of their blast in one direction)
that implode the plutonium, crushing it into a smaller volume to form a critical mass. The implosion technique is faster and more
effective, because it compresses three-dimensionally rather than one-dimensionally as in the gun-type bomb. Again, a neutron
source must be triggered at just the correct time to initiate the chain reaction.

Figure 32.28 An implosion created by high explosives compresses a sphere of
239 Pu into a critical mass. The superior fissionability of plutonium

has made it the universal bomb material.

Owing to its complexity, the plutonium bomb needed to be tested before there could be any attempt to use it. On July 16, 1945,
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the test named Trinity was conducted in the isolated Alamogordo Desert about 200 miles south of Los Alamos (see Figure
32.29). A new age had begun. The yield of this device was about 10 kilotons (kT), the equivalent of 5000 of the largest
conventional bombs.

Figure 32.29 Trinity test (1945), the first nuclear bomb (credit: United States Department of Energy)

Although Germany surrendered on May 7, 1945, Japan had been steadfastly refusing to surrender for many months, forcing
large casualties. Invasion plans by the Allies estimated a million casualties of their own and untold losses of Japanese lives. The
bomb was viewed as a way to end the war. The first was a uranium bomb dropped on Hiroshima on August 6. Its yield of about
15 kT destroyed the city and killed an estimated 80,000 people, with 100,000 more being seriously injured (see Figure 32.30).
The second was a plutonium bomb dropped on Nagasaki only three days later, on August 9. Its 20 kT yield killed at least 50,000
people, something less than Hiroshima because of the hilly terrain and the fact that it was a few kilometers off target. The
Japanese were told that one bomb a week would be dropped until they surrendered unconditionally, which they did on August
14. In actuality, the United States had only enough plutonium for one more and as yet unassembled bomb.

Figure 32.30 Destruction in Hiroshima (credit: United States Federal Government)

Knowing that fusion produces several times more energy per kilogram of fuel than fission, some scientists pushed the idea of a
fusion bomb starting very early on. Calling this bomb the Super, they realized that it could have another advantage over

fission—high-energy neutrons would aid fusion, while they are ineffective in 239 Pu fission. Thus the fusion bomb could be

virtually unlimited in energy release. The first such bomb was detonated by the United States on October 31, 1952, at Eniwetok
Atoll with a yield of 10 megatons (MT), about 670 times that of the fission bomb that destroyed Hiroshima. The Soviets followed
with a fusion device of their own in August 1953, and a weapons race, beyond the aim of this text to discuss, continued until the
end of the Cold War.

Figure 32.31 shows a simple diagram of how a thermonuclear bomb is constructed. A fission bomb is exploded next to fusion
fuel in the solid form of lithium deuteride. Before the shock wave blows it apart, γ rays heat and compress the fuel, and neutrons

create tritium through the reaction n +6 Li →3 H +4 He . Additional fusion and fission fuels are enclosed in a dense shell of

238 U . The shell reflects some of the neutrons back into the fuel to enhance its fusion, but at high internal temperatures fast

neutrons are created that also cause the plentiful and inexpensive 238 U to fission, part of what allows thermonuclear bombs to

be so large.
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Figure 32.31 This schematic of a fusion bomb (H-bomb) gives some idea of how the
239 Pu fission trigger is used to ignite fusion fuel. Neutrons and

γ rays transmit energy to the fusion fuel, create tritium from deuterium, and heat and compress the fusion fuel. The outer shell of
238 U serves to

reflect some neutrons back into the fuel, causing more fusion, and it boosts the energy output by fissioning itself when neutron energies become high
enough.

The energy yield and the types of energy produced by nuclear bombs can be varied. Energy yields in current arsenals range
from about 0.1 kT to 20 MT, although the Soviets once detonated a 67 MT device. Nuclear bombs differ from conventional
explosives in more than size. Figure 32.32 shows the approximate fraction of energy output in various forms for conventional
explosives and for two types of nuclear bombs. Nuclear bombs put a much larger fraction of their output into thermal energy than
do conventional bombs, which tend to concentrate the energy in blast. Another difference is the immediate and residual radiation
energy from nuclear weapons. This can be adjusted to put more energy into radiation (the so-called neutron bomb) so that the
bomb can be used to irradiate advancing troops without killing friendly troops with blast and heat.
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Anger camera:

break-even:

Figure 32.32 Approximate fractions of energy output by conventional and two types of nuclear weapons. In addition to yielding more energy than
conventional weapons, nuclear bombs put a much larger fraction into thermal energy. This can be adjusted to enhance the radiation output to be more
effective against troops. An enhanced radiation bomb is also called a neutron bomb.

At its peak in 1986, the combined arsenals of the United States and the Soviet Union totaled about 60,000 nuclear warheads. In
addition, the British, French, and Chinese each have several hundred bombs of various sizes, and a few other countries have a
small number. Nuclear weapons are generally divided into two categories. Strategic nuclear weapons are those intended for
military targets, such as bases and missile complexes, and moderate to large cities. There were about 20,000 strategic weapons
in 1988. Tactical weapons are intended for use in smaller battles. Since the collapse of the Soviet Union and the end of the Cold
War in 1989, most of the 32,000 tactical weapons (including Cruise missiles, artillery shells, land mines, torpedoes, depth
charges, and backpacks) have been demobilized, and parts of the strategic weapon systems are being dismantled with
warheads and missiles being disassembled. According to the Treaty of Moscow of 2002, Russia and the United States have
been required to reduce their strategic nuclear arsenal down to about 2000 warheads each.

A few small countries have built or are capable of building nuclear bombs, as are some terrorist groups. Two things are
needed—a minimum level of technical expertise and sufficient fissionable material. The first is easy. Fissionable material is
controlled but is also available. There are international agreements and organizations that attempt to control nuclear proliferation,
but it is increasingly difficult given the availability of fissionable material and the small amount needed for a crude bomb. The
production of fissionable fuel itself is technologically difficult. However, the presence of large amounts of such material worldwide,
though in the hands of a few, makes control and accountability crucial.

Glossary

a common medical imaging device that uses a scintillator connected to a series of photomultipliers

when fusion power produced equals the heating power input
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breeder reactors:

breeding:

critical mass:

criticality:

fission fragments:

food irradiation:

free radicals:

gamma camera:

gray (Gy):

high dose:

hormesis:

ignition:

inertial confinement:

linear hypothesis:

liquid drop model:

low dose:

magnetic confinement:

moderate dose:

neutron-induced fission:

nuclear fission:

nuclear fusion:

positron emission tomography (PET):

proton-proton cycle:

quality factor:

rad:

radiolytic products:

radiopharmaceutical:

radiotherapy:

relative biological effectiveness (RBE):

roentgen equivalent man (rem):

shielding:

sievert:

single-photon-emission computed tomography (SPECT):

supercriticality:

reactors that are designed specifically to make plutonium

reaction process that produces 239Pu

minimum amount necessary for self-sustained fission of a given nuclide

condition in which a chain reaction easily becomes self-sustaining

a daughter nuclei

treatment of food with ionizing radiation

ions with unstable oxygen- or hydrogen-containing molecules

another name for an Anger camera

the SI unit for radiation dose which is defined to be 1 Gy = 1 J/kg = 100 rad

a dose greater than 1 Sv (100 rem)

a term used to describe generally favorable biological responses to low exposures of toxins or radiation

when a fusion reaction produces enough energy to be self-sustaining after external energy input is cut off

a technique that aims multiple lasers at tiny fuel pellets evaporating and crushing them to high density

assumption that risk is directly proportional to risk from high doses

a model of nucleus (only to understand some of its features) in which nucleons in a nucleus act like atoms
in a drop

a dose less than 100 mSv (10 rem)

a technique in which charged particles are trapped in a small region because of difficulty in crossing
magnetic field lines

a dose from 0.1 Sv to 1 Sv (10 to 100 rem)

fission that is initiated after the absorption of neutron

reaction in which a nucleus splits

a reaction in which two nuclei are combined, or fused, to form a larger nucleus

tomography technique that uses β+ emitters and detects the two annihilation γ
rays, aiding in source localization

the combined reactions 1H+1H→2H+e++ve, 1H+2H→3He+γ, and 3He+3He→4He+1H+1H

same as relative biological effectiveness

the ionizing energy deposited per kilogram of tissue

compounds produced due to chemical reactions of free radicals

compound used for medical imaging

the use of ionizing radiation to treat ailments

a number that expresses the relative amount of damage that a fixed amount of
ionizing radiation of a given type can inflict on biological tissues

a dose unit more closely related to effects in biological tissue

a technique to limit radiation exposure

the SI equivalent of the rem

tomography performed with γ -emitting radiopharmaceuticals

an exponential increase in fissions
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tagged:

therapeutic ratio:

process of attaching a radioactive substance to a chemical compound

the ratio of abnormal cells killed to normal cells killed

Section Summary

32.1 Medical Imaging and Diagnostics
• Radiopharmaceuticals are compounds that are used for medical imaging and therapeutics.
• The process of attaching a radioactive substance is called tagging.
• Table 32.1 lists certain diagnostic uses of radiopharmaceuticals including the isotope and activity typically used in

diagnostics.
• One common imaging device is the Anger camera, which consists of a lead collimator, radiation detectors, and an analysis

computer.
• Tomography performed with γ -emitting radiopharmaceuticals is called SPECT and has the advantages of x-ray CT scans

coupled with organ- and function-specific drugs.

• PET is a similar technique that uses β+ emitters and detects the two annihilation γ rays, which aid to localize the source.

32.2 Biological Effects of Ionizing Radiation
• The biological effects of ionizing radiation are due to two effects it has on cells: interference with cell reproduction, and

destruction of cell function.
• A radiation dose unit called the rad is defined in terms of the ionizing energy deposited per kilogram of tissue:

1 rad = 0.01 J/kg.
• The SI unit for radiation dose is the gray (Gy), which is defined to be 1 Gy = 1 J/kg = 100 rad.
• To account for the effect of the type of particle creating the ionization, we use the relative biological effectiveness (RBE) or

quality factor (QF) given in Table 32.2 and define a unit called the roentgen equivalent man (rem) as

rem = rad×RBE.
• Particles that have short ranges or create large ionization densities have RBEs greater than unity. The SI equivalent of the

rem is the sievert (Sv), defined to be

Sv = Gy×RBE and 1 Sv = 100 rem.
• Whole-body, single-exposure doses of 0.1 Sv or less are low doses while those of 0.1 to 1 Sv are moderate, and those over

1 Sv are high doses. Some immediate radiation effects are given in Table 32.4. Effects due to low doses are not observed,
but their risk is assumed to be directly proportional to those of high doses, an assumption known as the linear hypothesis.

Long-term effects are cancer deaths at the rate of 10 / 106 rem·y and genetic defects at roughly one-third this rate.

Background radiation doses and sources are given in Table 32.5. World-wide average radiation exposure from natural
sources, including radon, is about 3 mSv, or 300 mrem. Radiation protection utilizes shielding, distance, and time to limit
exposure.

32.3 Therapeutic Uses of Ionizing Radiation
• Radiotherapy is the use of ionizing radiation to treat ailments, now limited to cancer therapy.
• The sensitivity of cancer cells to radiation enhances the ratio of cancer cells killed to normal cells killed, which is called the

therapeutic ratio.
• Doses for various organs are limited by the tolerance of normal tissue for radiation. Treatment is localized in one region of

the body and spread out in time.

32.4 Food Irradiation
• Food irradiation is the treatment of food with ionizing radiation.
• Irradiating food can destroy insects and bacteria by creating free radicals and radiolytic products that can break apart cell

membranes.
• Food irradiation has produced no observable negative short-term effects for humans, but its long-term effects are unknown.

32.5 Fusion
• Nuclear fusion is a reaction in which two nuclei are combined to form a larger nucleus. It releases energy when light nuclei

are fused to form medium-mass nuclei.
• Fusion is the source of energy in stars, with the proton-proton cycle,

1 H + 1H → 2 H + e+ + ve      (0.42 MeV)
1 H + 2H → 3 He + γ         (5.49 MeV)

3 He + 3He → 4 He + 1H + 1H           (12.86 MeV)
being the principal sequence of energy-producing reactions in our Sun.
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• The overall effect of the proton-proton cycle is

2e− + 41 H → 4 He + 2ve + 6γ            (26.7 MeV),
where the 26.7 MeV includes the energy of the positrons emitted and annihilated.

• Attempts to utilize controlled fusion as an energy source on Earth are related to deuterium and tritium, and the reactions
play important roles.

• Ignition is the condition under which controlled fusion is self-sustaining; it has not yet been achieved. Break-even, in which
the fusion energy output is as great as the external energy input, has nearly been achieved.

• Magnetic confinement and inertial confinement are the two methods being developed for heating fuel to sufficiently high
temperatures, at sufficient density, and for sufficiently long times to achieve ignition. The first method uses magnetic fields
and the second method uses the momentum of impinging laser beams for confinement.

32.6 Fission
• Nuclear fission is a reaction in which a nucleus is split.
• Fission releases energy when heavy nuclei are split into medium-mass nuclei.
• Self-sustained fission is possible, because neutron-induced fission also produces neutrons that can induce other fissions,

n + AX → FF1 + FF2 + xn , where FF1 and FF2 are the two daughter nuclei, or fission fragments, and x is the

number of neutrons produced.
• A minimum mass, called the critical mass, should be present to achieve criticality.
• More than a critical mass can produce supercriticality.

• The production of new or different isotopes (especially 239 Pu ) by nuclear transformation is called breeding, and reactors

designed for this purpose are called breeder reactors.

32.7 Nuclear Weapons
• There are two types of nuclear weapons—fission bombs use fission alone, whereas thermonuclear bombs use fission to

ignite fusion.
• Both types of weapons produce huge numbers of nuclear reactions in a very short time.
• Energy yields are measured in kilotons or megatons of equivalent conventional explosives and range from 0.1 kT to more

than 20 MT.
• Nuclear bombs are characterized by far more thermal output and nuclear radiation output than conventional explosives.

Conceptual Questions

32.1 Medical Imaging and Diagnostics

1. In terms of radiation dose, what is the major difference between medical diagnostic uses of radiation and medical therapeutic
uses?

2. One of the methods used to limit radiation dose to the patient in medical imaging is to employ isotopes with short half-lives.
How would this limit the dose?

32.2 Biological Effects of Ionizing Radiation

3. Isotopes that emit α radiation are relatively safe outside the body and exceptionally hazardous inside. Yet those that emit γ
radiation are hazardous outside and inside. Explain why.

4. Why is radon more closely associated with inducing lung cancer than other types of cancer?

5. The RBE for low-energy β s is 1.7, whereas that for higher-energy β s is only 1. Explain why, considering how the range of

radiation depends on its energy.
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6. Which methods of radiation protection were used in the device shown in the first photo in Figure 32.33? Which were used in
the situation shown in the second photo?

(a)

Figure 32.33 (a) This x-ray fluorescence machine is one of the thousands used in shoe stores to produce images of feet as a check on the fit of shoes.

They are unshielded and remain on as long as the feet are in them, producing doses much greater than medical images. Children were fascinated with

them. These machines were used in shoe stores until laws preventing such unwarranted radiation exposure were enacted in the 1950s. (credit:

Andrew Kuchling ) (b) Now that we know the effects of exposure to radioactive material, safety is a priority. (credit: U.S. Navy)

7. What radioisotope could be a problem in homes built of cinder blocks made from uranium mine tailings? (This is true of homes
and schools in certain regions near uranium mines.)

8. Are some types of cancer more sensitive to radiation than others? If so, what makes them more sensitive?

9. Suppose a person swallows some radioactive material by accident. What information is needed to be able to assess possible
damage?

32.3 Therapeutic Uses of Ionizing Radiation

10. Radiotherapy is more likely to be used to treat cancer in elderly patients than in young ones. Explain why. Why is
radiotherapy used to treat young people at all?

32.4 Food Irradiation

11. Does food irradiation leave the food radioactive? To what extent is the food altered chemically for low and high doses in food
irradiation?

12. Compare a low dose of radiation to a human with a low dose of radiation used in food treatment.

13. Suppose one food irradiation plant uses a 137 Cs source while another uses an equal activity of 60 Co . Assuming equal

fractions of the γ rays from the sources are absorbed, why is more time needed to get the same dose using the 137 Cs
source?

32.5 Fusion

14. Why does the fusion of light nuclei into heavier nuclei release energy?

15. Energy input is required to fuse medium-mass nuclei, such as iron or cobalt, into more massive nuclei. Explain why.

16. In considering potential fusion reactions, what is the advantage of the reaction 2 H + 3H → 4 He + n over the reaction

2 H + 2H → 3 He + n?
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17. Give reasons justifying the contention made in the text that energy from the fusion reaction 2 H + 2H → 4 He + γ is

relatively difficult to capture and utilize.

32.6 Fission

18. Explain why the fission of heavy nuclei releases energy. Similarly, why is it that energy input is required to fission light
nuclei?

19. Explain, in terms of conservation of momentum and energy, why collisions of neutrons with protons will thermalize neutrons
better than collisions with oxygen.

20. The ruins of the Chernobyl reactor are enclosed in a huge concrete structure built around it after the accident. Some rain
penetrates the building in winter, and radioactivity from the building increases. What does this imply is happening inside?

21. Since the uranium or plutonium nucleus fissions into several fission fragments whose mass distribution covers a wide range
of pieces, would you expect more residual radioactivity from fission than fusion? Explain.

22. The core of a nuclear reactor generates a large amount of thermal energy from the decay of fission products, even when the
power-producing fission chain reaction is turned off. Would this residual heat be greatest after the reactor has run for a long time
or short time? What if the reactor has been shut down for months?

23. How can a nuclear reactor contain many critical masses and not go supercritical? What methods are used to control the
fission in the reactor?

24. Why can heavy nuclei with odd numbers of neutrons be induced to fission with thermal neutrons, whereas those with even
numbers of neutrons require more energy input to induce fission?

25. Why is a conventional fission nuclear reactor not able to explode as a bomb?

32.7 Nuclear Weapons

26. What are some of the reasons that plutonium rather than uranium is used in all fission bombs and as the trigger in all fusion
bombs?

27. Use the laws of conservation of momentum and energy to explain how a shape charge can direct most of the energy
released in an explosion in a specific direction. (Note that this is similar to the situation in guns and cannons—most of the energy
goes into the bullet.)

28. How does the lithium deuteride in the thermonuclear bomb shown in Figure 32.31 supply tritium (3 H) as well as deuterium

(2 H) ?

29. Fallout from nuclear weapons tests in the atmosphere is mainly 90 Sr and 137 Cs , which have 28.6- and 32.2-y half-lives,

respectively. Atmospheric tests were terminated in most countries in 1963, although China only did so in 1980. It has been found
that environmental activities of these two isotopes are decreasing faster than their half-lives. Why might this be?
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Problems & Exercises

32.1 Medical Imaging and Diagnostics

1. A neutron generator uses an α source, such as radium, to

bombard beryllium, inducing the reaction
4 He + 9Be → 12 C + n . Such neutron sources are called

RaBe sources, or PuBe sources if they use plutonium to get
the α s. Calculate the energy output of the reaction in MeV.

2. Neutrons from a source (perhaps the one discussed in the
preceding problem) bombard natural molybdenum, which is

24 percent 98 Mo . What is the energy output of the reaction

98 Mo + n → 99 Mo + γ ? The mass of 98 Mo is given in

Appendix A: Atomic Masses, and that of 99 Mo is

98.907711 u.

3. The purpose of producing 99 Mo (usually by neutron

activation of natural molybdenum, as in the preceding

problem) is to produce 99m Tc. Using the rules, verify that

the β− decay of 99 Mo produces 99m Tc . (Most 99m Tc
nuclei produced in this decay are left in a metastable excited

state denoted 99m Tc .)

4. (a) Two annihilation γ rays in a PET scan originate at the

same point and travel to detectors on either side of the
patient. If the point of origin is 9.00 cm closer to one of the
detectors, what is the difference in arrival times of the
photons? (This could be used to give position information, but
the time difference is small enough to make it difficult.)

(b) How accurately would you need to be able to measure
arrival time differences to get a position resolution of 1.00
mm?

5. Table 32.1 indicates that 7.50 mCi of 99m Tc is used in a

brain scan. What is the mass of technetium?

6. The activities of 131 I and 123 I used in thyroid scans are

given in Table 32.1 to be 50 and 70 μCi , respectively. Find

and compare the masses of 131 I and 123 I in such scans,

given their respective half-lives are 8.04 d and 13.2 h. The
masses are so small that the radioiodine is usually mixed with
stable iodine as a carrier to ensure normal chemistry and
distribution in the body.

7. (a) Neutron activation of sodium, which is 100% 23 Na ,

produces 24 Na , which is used in some heart scans, as seen

in Table 32.1. The equation for the reaction is
23 Na + n → 24 Na + γ . Find its energy output, given the

mass of 24 Na is 23.990962 u.

(b) What mass of 24 Na produces the needed 5.0-mCi

activity, given its half-life is 15.0 h?

32.2 Biological Effects of Ionizing Radiation

8. What is the dose in mSv for: (a) a 0.1 Gy x-ray? (b) 2.5
mGy of neutron exposure to the eye? (c) 1.5 mGy of α
exposure?

9. Find the radiation dose in Gy for: (a) A 10-mSv fluoroscopic
x-ray series. (b) 50 mSv of skin exposure by an α emitter. (c)

160 mSv of β– and γ rays from the 40 K in your body.

10. How many Gy of exposure is needed to give a cancerous
tumor a dose of 40 Sv if it is exposed to α activity?

11. What is the dose in Sv in a cancer treatment that exposes
the patient to 200 Gy of γ rays?

12. One half the γ rays from 99m Tc are absorbed by a

0.170-mm-thick lead shielding. Half of the γ rays that pass

through the first layer of lead are absorbed in a second layer
of equal thickness. What thickness of lead will absorb all but
one in 1000 of these γ rays?

13. A plumber at a nuclear power plant receives a whole-body
dose of 30 mSv in 15 minutes while repairing a crucial valve.
Find the radiation-induced yearly risk of death from cancer
and the chance of genetic defect from this maximum
allowable exposure.

14. In the 1980s, the term picowave was used to describe
food irradiation in order to overcome public resistance by
playing on the well-known safety of microwave radiation. Find
the energy in MeV of a photon having a wavelength of a
picometer.

15. Find the mass of 239 Pu that has an activity of

1.00 μCi .

32.3 Therapeutic Uses of Ionizing Radiation

16. A beam of 168-MeV nitrogen nuclei is used for cancer
therapy. If this beam is directed onto a 0.200-kg tumor and
gives it a 2.00-Sv dose, how many nitrogen nuclei were
stopped? (Use an RBE of 20 for heavy ions.)

17. (a) If the average molecular mass of compounds in food is
50.0 g, how many molecules are there in 1.00 kg of food? (b)
How many ion pairs are created in 1.00 kg of food, if it is
exposed to 1000 Sv and it takes 32.0 eV to create an ion
pair? (c) Find the ratio of ion pairs to molecules. (d) If these
ion pairs recombine into a distribution of 2000 new
compounds, how many parts per billion is each?

18. Calculate the dose in Sv to the chest of a patient given an
x-ray under the following conditions. The x-ray beam intensity

is 1.50 W/m2 , the area of the chest exposed is

0.0750 m2 , 35.0% of the x-rays are absorbed in 20.0 kg of

tissue, and the exposure time is 0.250 s.

19. (a) A cancer patient is exposed to γ rays from a 5000-Ci

60 Co transillumination unit for 32.0 s. The γ rays are

collimated in such a manner that only 1.00% of them strike
the patient. Of those, 20.0% are absorbed in a tumor having a
mass of 1.50 kg. What is the dose in rem to the tumor, if the
average γ energy per decay is 1.25 MeV? None of the β s

from the decay reach the patient. (b) Is the dose consistent
with stated therapeutic doses?
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20. What is the mass of 60 Co in a cancer therapy

transillumination unit containing 5.00 kCi of 60 Co ?

21. Large amounts of 65 Zn are produced in copper exposed

to accelerator beams. While machining contaminated copper,

a physicist ingests 50.0 μCi of 65 Zn . Each 65 Zn decay

emits an average γ -ray energy of 0.550 MeV, 40.0% of

which is absorbed in the scientist’s 75.0-kg body. What dose
in mSv is caused by this in one day?

22. Naturally occurring 40 K is listed as responsible for 16

mrem/y of background radiation. Calculate the mass of 40 K
that must be inside the 55-kg body of a woman to produce

this dose. Each 40 K decay emits a 1.32-MeV β , and 50%

of the energy is absorbed inside the body.

23. (a) Background radiation due to 226 Ra averages only

0.01 mSv/y, but it can range upward depending on where a

person lives. Find the mass of 226 Ra in the 80.0-kg body of

a man who receives a dose of 2.50-mSv/y from it, noting that

each 226 Ra decay emits a 4.80-MeV α particle. You may

neglect dose due to daughters and assume a constant
amount, evenly distributed due to balanced ingestion and
bodily elimination. (b) Is it surprising that such a small mass
could cause a measurable radiation dose? Explain.

24. The annual radiation dose from 14 C in our bodies is

0.01 mSv/y. Each 14 C decay emits a β– averaging 0.0750

MeV. Taking the fraction of 14 C to be 1.3×10–12 N of

normal 12 C , and assuming the body is 13% carbon,

estimate the fraction of the decay energy absorbed. (The rest
escapes, exposing those close to you.)

25. If everyone in Australia received an extra 0.05 mSv per
year of radiation, what would be the increase in the number of
cancer deaths per year? (Assume that time had elapsed for
the effects to become apparent.) Assume that there are

200×10−4 deaths per Sv of radiation per year. What

percent of the actual number of cancer deaths recorded is
this?

32.5 Fusion

26. Verify that the total number of nucleons, total charge, and
electron family number are conserved for each of the fusion
reactions in the proton-proton cycle in

1 H + 1H → 2 H + e+ + ve, 1 H + 2H → 3 He + γ,

and

3 He + 3He → 4 He + 1H + 1H.

(List the value of each of the conserved quantities before and
after each of the reactions.)

27. Calculate the energy output in each of the fusion
reactions in the proton-proton cycle, and verify the values
given in the above summary.

28. Show that the total energy released in the proton-proton
cycle is 26.7 MeV, considering the overall effect in

1 H + 1H → 2 H + e+ + ve , 1 H + 2H → 3 He + γ , and

3 He + 3He → 4 He + 1H + 1H and being certain to

include the annihilation energy.

29. Verify by listing the number of nucleons, total charge, and
electron family number before and after the cycle that these
quantities are conserved in the overall proton-proton cycle in

2e− + 41 H → 4 He + 2ve + 6γ .

30. The energy produced by the fusion of a 1.00-kg mixture of
deuterium and tritium was found in Example Calculating
Energy and Power from Fusion. Approximately how many
kilograms would be required to supply the annual energy use
in the United States?

31. Tritium is naturally rare, but can be produced by the

reaction n + 2H → 3 H + γ . How much energy in MeV is

released in this neutron capture?

32. Two fusion reactions mentioned in the text are

n + 3He → 4 He + γ

and

n + 1H → 2 H + γ .

Both reactions release energy, but the second also creates
more fuel. Confirm that the energies produced in the
reactions are 20.58 and 2.22 MeV, respectively. Comment on

which product nuclide is most tightly bound, 4 He or 2 H .

33. (a) Calculate the number of grams of deuterium in an
80,000-L swimming pool, given deuterium is 0.0150% of
natural hydrogen.

(b) Find the energy released in joules if this deuterium is

fused via the reaction 2 H + 2H → 3 He + n .

(c) Could the neutrons be used to create more energy?

(d) Discuss the amount of this type of energy in a swimming
pool as compared to that in, say, a gallon of gasoline, also
taking into consideration that water is far more abundant.

34. How many kilograms of water are needed to obtain the
198.8 mol of deuterium, assuming that deuterium is
0.01500% (by number) of natural hydrogen?

35. The power output of the Sun is 4×1026 W .

(a) If 90% of this is supplied by the proton-proton cycle, how
many protons are consumed per second?

(b) How many neutrinos per second should there be per
square meter at the Earth from this process? This huge
number is indicative of how rarely a neutrino interacts, since
large detectors observe very few per day.
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36. Another set of reactions that result in the fusing of
hydrogen into helium in the Sun and especially in hotter stars
is called the carbon cycle. It is
12 C + 1H → 13 N + γ,

13 N → 13 C + e+ + ve,
13 C + 1H → 14 N + γ,
14 N + 1H → 15 O + γ,
15 O → 15 N + e+ + ve,

15 N + 1H → 12 C + 4He.

Write down the overall effect of the carbon cycle (as was
done for the proton-proton cycle in

2e− + 41 H → 4 He + 2ve + 6γ ). Note the number of

protons ( 1 H ) required and assume that the positrons ( e+ )

annihilate electrons to form more γ rays.

37. (a) Find the total energy released in MeV in each carbon
cycle (elaborated in the above problem) including the
annihilation energy.

(b) How does this compare with the proton-proton cycle
output?

38. Verify that the total number of nucleons, total charge, and
electron family number are conserved for each of the fusion
reactions in the carbon cycle given in the above problem. (List
the value of each of the conserved quantities before and after
each of the reactions.)

39. Integrated Concepts

The laser system tested for inertial confinement can produce
a 100-kJ pulse only 1.00 ns in duration. (a) What is the power
output of the laser system during the brief pulse?

(b) How many photons are in the pulse, given their
wavelength is 1.06 µm ?

(c) What is the total momentum of all these photons?

(d) How does the total photon momentum compare with that
of a single 1.00 MeV deuterium nucleus?

40. Integrated Concepts

Find the amount of energy given to the 4 He nucleus and to

the γ ray in the reaction n +3 He →4 He + γ , using the

conservation of momentum principle and taking the reactants
to be initially at rest. This should confirm the contention that
most of the energy goes to the γ ray.

41. Integrated Concepts

(a) What temperature gas would have atoms moving fast

enough to bring two 3 He nuclei into contact? Note that,

because both are moving, the average kinetic energy only
needs to be half the electric potential energy of these doubly
charged nuclei when just in contact with one another.

(b) Does this high temperature imply practical difficulties for
doing this in controlled fusion?

42. Integrated Concepts

(a) Estimate the years that the deuterium fuel in the oceans
could supply the energy needs of the world. Assume world
energy consumption to be ten times that of the United States

which is 8×1019 J/y and that the deuterium in the oceans

could be converted to energy with an efficiency of 32%. You
must estimate or look up the amount of water in the oceans
and take the deuterium content to be 0.015% of natural
hydrogen to find the mass of deuterium available. Note that

approximate energy yield of deuterium is 3.37×1014 J/kg.

(b) Comment on how much time this is by any human
measure. (It is not an unreasonable result, only an impressive
one.)

32.6 Fission

43. (a) Calculate the energy released in the neutron-induced
fission (similar to the spontaneous fission in Example 32.3)

n + 238U → 96 Sr + 140 Xe + 3n,

given m(96 Sr) = 95.921750 u and

m(140 Xe) = 139.92164 . (b) This result is about 6 MeV

greater than the result for spontaneous fission. Why? (c)
Confirm that the total number of nucleons and total charge
are conserved in this reaction.

44. (a) Calculate the energy released in the neutron-induced
fission reaction

n + 235U → 92 Kr + 142 Ba + 2n,

given m(92 Kr) = 91.926269 u and

m(142 Ba) = 141.916361 u .

(b) Confirm that the total number of nucleons and total charge
are conserved in this reaction.

45. (a) Calculate the energy released in the neutron-induced
fission reaction

n + 239Pu → 96 Sr + 140Ba + 4n,

given m(96 Sr) = 95.921750 u and

m(140 Ba) = 139.910581 u .

(b) Confirm that the total number of nucleons and total charge
are conserved in this reaction.

46. Confirm that each of the reactions listed for plutonium
breeding just following Example 32.4 conserves the total
number of nucleons, the total charge, and electron family
number.

47. Breeding plutonium produces energy even before any
plutonium is fissioned. (The primary purpose of the four
nuclear reactors at Chernobyl was breeding plutonium for
weapons. Electrical power was a by-product used by the
civilian population.) Calculate the energy produced in each of
the reactions listed for plutonium breeding just following
Example 32.4. The pertinent masses are

m(239 U) = 239.054289 u , m(239 Np) = 239.052932 u

, and m(239 Pu) = 239.052157 u .
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48. The naturally occurring radioactive isotope 232 Th does

not make good fission fuel, because it has an even number of
neutrons; however, it can be bred into a suitable fuel (much

as 238 U is bred into 239 P ).

(a) What are Z and N for 232 Th ?

(b) Write the reaction equation for neutron captured by
232 Th and identify the nuclide A X produced in

n + 232Th → A X + γ .

(c) The product nucleus β− decays, as does its daughter.

Write the decay equations for each, and identify the final
nucleus.

(d) Confirm that the final nucleus has an odd number of
neutrons, making it a better fission fuel.

(e) Look up the half-life of the final nucleus to see if it lives
long enough to be a useful fuel.

49. The electrical power output of a large nuclear reactor
facility is 900 MW. It has a 35.0% efficiency in converting
nuclear power to electrical.

(a) What is the thermal nuclear power output in megawatts?

(b) How many 235 U nuclei fission each second, assuming

the average fission produces 200 MeV?

(c) What mass of 235 U is fissioned in one year of full-power

operation?

50. A large power reactor that has been in operation for some
months is turned off, but residual activity in the core still
produces 150 MW of power. If the average energy per decay
of the fission products is 1.00 MeV, what is the core activity in
curies?

32.7 Nuclear Weapons

51. Find the mass converted into energy by a 12.0-kT bomb.

52. What mass is converted into energy by a 1.00-MT bomb?

53. Fusion bombs use neutrons from their fission trigger to

create tritium fuel in the reaction n +6 Li →3 H +4 He .

What is the energy released by this reaction in MeV?

54. It is estimated that the total explosive yield of all the
nuclear bombs in existence currently is about 4,000 MT.

(a) Convert this amount of energy to kilowatt-hours, noting

that 1 kW ⋅ h = 3.60×106 J .

(b) What would the monetary value of this energy be if it could
be converted to electricity costing 10 cents per kW·h?

55. A radiation-enhanced nuclear weapon (or neutron bomb)
can have a smaller total yield and still produce more prompt
radiation than a conventional nuclear bomb. This allows the
use of neutron bombs to kill nearby advancing enemy forces
with radiation without blowing up your own forces with the
blast. For a 0.500-kT radiation-enhanced weapon and a
1.00-kT conventional nuclear bomb: (a) Compare the blast
yields. (b) Compare the prompt radiation yields.

56. (a) How many 239 Pu nuclei must fission to produce a

20.0-kT yield, assuming 200 MeV per fission? (b) What is the

mass of this much 239 Pu ?

57. Assume one-fourth of the yield of a typical 320-kT
strategic bomb comes from fission reactions averaging 200
MeV and the remainder from fusion reactions averaging 20
MeV.

(a) Calculate the number of fissions and the approximate
mass of uranium and plutonium fissioned, taking the average
atomic mass to be 238.

(b) Find the number of fusions and calculate the approximate
mass of fusion fuel, assuming an average total atomic mass
of the two nuclei in each reaction to be 5.

(c) Considering the masses found, does it seem reasonable
that some missiles could carry 10 warheads? Discuss, noting
that the nuclear fuel is only a part of the mass of a warhead.

58. This problem gives some idea of the magnitude of the
energy yield of a small tactical bomb. Assume that half the
energy of a 1.00-kT nuclear depth charge set off under an
aircraft carrier goes into lifting it out of the water—that is, into
gravitational potential energy. How high is the carrier lifted if
its mass is 90,000 tons?

59. It is estimated that weapons tests in the atmosphere have

deposited approximately 9 MCi of 90 Sr on the surface of the

earth. Find the mass of this amount of 90 Sr .

60. A 1.00-MT bomb exploded a few kilometers above the
ground deposits 25.0% of its energy into radiant heat.

(a) Find the calories per cm2 at a distance of 10.0 km by

assuming a uniform distribution over a spherical surface of
that radius.

(b) If this heat falls on a person’s body, what temperature
increase does it cause in the affected tissue, assuming it is
absorbed in a layer 1.00-cm deep?

61. Integrated Concepts

One scheme to put nuclear weapons to nonmilitary use is to
explode them underground in a geologically stable region and
extract the geothermal energy for electricity production. There
was a total yield of about 4,000 MT in the combined arsenals
in 2006. If 1.00 MT per day could be converted to electricity
with an efficiency of 10.0%:

(a) What would the average electrical power output be?

(b) How many years would the arsenal last at this rate?
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33 PARTICLE PHYSICS

Figure 33.1 Part of the Large Hadron Collider at CERN, on the border of Switzerland and France. The LHC is a particle accelerator, designed to study
fundamental particles. (credit: Image Editor, Flickr)

Chapter Outline
33.1. The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited

• Define Yukawa particle.
• State the Heisenberg uncertainty principle.
• Describe pion.
• Estimate the mass of a pion.
• Explain meson.

33.2. The Four Basic Forces
• State the four basic forces.
• Explain the Feynman diagram for the exchange of a virtual photon between two positive charges.
• Define QED.
• Describe the Feynman diagram for the exchange of a between a proton and a neutron.

33.3. Accelerators Create Matter from Energy
• State the principle of a cyclotron.
• Explain the principle of a synchrotron.
• Describe the voltage needed by an accelerator between accelerating tubes.
• State Fermilab’s accelerator principle.

33.4. Particles, Patterns, and Conservation Laws
• Define matter and antimatter.
• Outline the differences between hadrons and leptons.
• State the differences between mesons and baryons.

33.5. Quarks: Is That All There Is?
• Define fundamental particle.
• Describe quark and antiquark.
• List the flavors of quark.
• Outline the quark composition of hadrons.
• Determine quantum numbers from quark composition.

33.6. GUTs: The Unification of Forces
• State the grand unified theory.
• Explain the electroweak theory.
• Define gluons.
• Describe the principle of quantum chromodynamics.
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• Define the standard model.

Introduction to Particle Physics

Following ideas remarkably similar to those of the ancient Greeks, we continue to look for smaller and smaller structures in
nature, hoping ultimately to find and understand the most fundamental building blocks that exist. Atomic physics deals with the
smallest units of elements and compounds. In its study, we have found a relatively small number of atoms with systematic
properties that explained a tremendous range of phenomena. Nuclear physics is concerned with the nuclei of atoms and their
substructures. Here, a smaller number of components—the proton and neutron—make up all nuclei. Exploring the systematic
behavior of their interactions has revealed even more about matter, forces, and energy. Particle physics deals with the
substructures of atoms and nuclei and is particularly aimed at finding those truly fundamental particles that have no further
substructure. Just as in atomic and nuclear physics, we have found a complex array of particles and properties with systematic
characteristics analogous to the periodic table and the chart of nuclides. An underlying structure is apparent, and there is some
reason to think that we are finding particles that have no substructure. Of course, we have been in similar situations before. For
example, atoms were once thought to be the ultimate substructure. Perhaps we will find deeper and deeper structures and never
come to an ultimate substructure. We may never really know, as indicated in Figure 33.2.

Figure 33.2 The properties of matter are based on substructures called molecules and atoms. Atoms have the substructure of a nucleus with orbiting
electrons, the interactions of which explain atomic properties. Protons and neutrons, the interactions of which explain the stability and abundance of
elements, form the substructure of nuclei. Protons and neutrons are not fundamental—they are composed of quarks. Like electrons and a few other
particles, quarks may be the fundamental building blocks of all there is, lacking any further substructure. But the story is not complete, because quarks
and electrons may have substructure smaller than details that are presently observable.

This chapter covers the basics of particle physics as we know it today. An amazing convergence of topics is evolving in particle
physics. We find that some particles are intimately related to forces, and that nature on the smallest scale may have its greatest
influence on the large-scale character of the universe. It is an adventure exceeding the best science fiction because it is not only
fantastic, it is real.

33.1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited

Particle physics as we know it today began with the ideas of Hideki Yukawa in 1935. Physicists had long been concerned with
how forces are transmitted, finding the concept of fields, such as electric and magnetic fields to be very useful. A field surrounds
an object and carries the force exerted by the object through space. Yukawa was interested in the strong nuclear force in
particular and found an ingenious way to explain its short range. His idea is a blend of particles, forces, relativity, and quantum
mechanics that is applicable to all forces. Yukawa proposed that force is transmitted by the exchange of particles (called carrier
particles). The field consists of these carrier particles.

Figure 33.3 The strong nuclear force is transmitted between a proton and neutron by the creation and exchange of a pion. The pion is created through
a temporary violation of conservation of mass-energy and travels from the proton to the neutron and is recaptured. It is not directly observable and is
called a virtual particle. Note that the proton and neutron change identity in the process. The range of the force is limited by the fact that the pion can
only exist for the short time allowed by the Heisenberg uncertainty principle. Yukawa used the finite range of the strong nuclear force to estimate the
mass of the pion; the shorter the range, the larger the mass of the carrier particle.

Specifically for the strong nuclear force, Yukawa proposed that a previously unknown particle, now called a pion, is exchanged
between nucleons, transmitting the force between them. Figure 33.3 illustrates how a pion would carry a force between a proton
and a neutron. The pion has mass and can only be created by violating the conservation of mass-energy. This is allowed by the
Heisenberg uncertainty principle if it occurs for a sufficiently short period of time. As discussed in Probability: The Heisenberg
Uncertainty Principle the Heisenberg uncertainty principle relates the uncertainties ΔE in energy and Δt in time by
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(33.1)ΔEΔt ≥ h
4π ,

where h is Planck’s constant. Therefore, conservation of mass-energy can be violated by an amount ΔE for a time

Δt ≈ h
4πΔE in which time no process can detect the violation. This allows the temporary creation of a particle of mass m ,

where ΔE = mc2 . The larger the mass and the greater the ΔE , the shorter is the time it can exist. This means the range of

the force is limited, because the particle can only travel a limited distance in a finite amount of time. In fact, the maximum
distance is d ≈ cΔt , where c is the speed of light. The pion must then be captured and, thus, cannot be directly observed

because that would amount to a permanent violation of mass-energy conservation. Such particles (like the pion above) are called
virtual particles, because they cannot be directly observed but their effects can be directly observed. Realizing all this, Yukawa
used the information on the range of the strong nuclear force to estimate the mass of the pion, the particle that carries it. The
steps of his reasoning are approximately retraced in the following worked example:

Example 33.1 Calculating the Mass of a Pion

Taking the range of the strong nuclear force to be about 1 fermi ( 10−15 m ), calculate the approximate mass of the pion

carrying the force, assuming it moves at nearly the speed of light.

Strategy

The calculation is approximate because of the assumptions made about the range of the force and the speed of the pion,
but also because a more accurate calculation would require the sophisticated mathematics of quantum mechanics. Here, we
use the Heisenberg uncertainty principle in the simple form stated above, as developed in Probability: The Heisenberg
Uncertainty Principle. First, we must calculate the time Δt that the pion exists, given that the distance it travels at nearly

the speed of light is about 1 fermi. Then, the Heisenberg uncertainty principle can be solved for the energy ΔE , and from

that the mass of the pion can be determined. We will use the units of MeV / c2 for mass, which are convenient since we

are often considering converting mass to energy and vice versa.

Solution

The distance the pion travels is d ≈ cΔt , and so the time during which it exists is approximately

(33.2)
Δt ≈ d

c = 10−15 m
3.0×108 m/s

≈ 3.3×10−24 s.

Now, solving the Heisenberg uncertainty principle for ΔE gives

(33.3)
ΔE ≈ h

4πΔt ≈ 6.63×10−34 J ⋅ s
4π⎛⎝3.3×10−24 s⎞⎠

.

Solving this and converting the energy to MeV gives

(33.4)ΔE ≈ ⎛⎝1.6×10−11 J⎞⎠ 1 MeV
1.6×10−13 J

= 100 MeV.

Mass is related to energy by ΔE = mc2 , so that the mass of the pion is m = ΔE / c2 , or

(33.5)m ≈ 100 MeV/c2.
Discussion

This is about 200 times the mass of an electron and about one-tenth the mass of a nucleon. No such particles were known
at the time Yukawa made his bold proposal.

Yukawa’s proposal of particle exchange as the method of force transfer is intriguing. But how can we verify his proposal if we
cannot observe the virtual pion directly? If sufficient energy is in a nucleus, it would be possible to free the pion—that is, to create
its mass from external energy input. This can be accomplished by collisions of energetic particles with nuclei, but energies
greater than 100 MeV are required to conserve both energy and momentum. In 1947, pions were observed in cosmic-ray
experiments, which were designed to supply a small flux of high-energy protons that may collide with nuclei. Soon afterward,
accelerators of sufficient energy were creating pions in the laboratory under controlled conditions. Three pions were discovered,

two with charge and one neutral, and given the symbols π+ , π− , and π0 , respectively. The masses of π+ and π− are

identical at 139.6 MeV/c2 , whereas π0 has a mass of 135.0 MeV/c2 . These masses are close to the predicted value of
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100 MeV/c2 and, since they are intermediate between electron and nucleon masses, the particles are given the name meson

(now an entire class of particles, as we shall see in Particles, Patterns, and Conservation Laws).

The pions, or π -mesons as they are also called, have masses close to those predicted and feel the strong nuclear force.

Another previously unknown particle, now called the muon, was discovered during cosmic-ray experiments in 1936 (one of its
discoverers, Seth Neddermeyer, also originated the idea of implosion for plutonium bombs). Since the mass of a muon is around

106 MeV/c2 , at first it was thought to be the particle predicted by Yukawa. But it was soon realized that muons do not feel the

strong nuclear force and could not be Yukawa’s particle. Their role was unknown, causing the respected physicist I. I. Rabi to
comment, “Who ordered that?” This remains a valid question today. We have discovered hundreds of subatomic particles; the
roles of some are only partially understood. But there are various patterns and relations to forces that have led to profound
insights into nature’s secrets.

33.2 The Four Basic Forces

As first discussed in Problem-Solving Strategies and mentioned at various points in the text since then, there are only four
distinct basic forces in all of nature. This is a remarkably small number considering the myriad phenomena they explain. Particle
physics is intimately tied to these four forces. Certain fundamental particles, called carrier particles, carry these forces, and all
particles can be classified according to which of the four forces they feel. The table given below summarizes important
characteristics of the four basic forces.

Table 33.1 Properties of the Four Basic Forces

Force Approximate relative strength Range +/−[1] Carrier particle

Gravity 10−38 ∞ + only Graviton (conjectured)

Electromagnetic 10−2 ∞ + / − Photon (observed)

Weak force 10−13 < 10−18 m + / − W + , W − , Z 0 (observed[2])

Strong force 1 < 10−15 m + / − Gluons (conjectured[3])

Figure 33.4 The first image shows the exchange of a virtual photon transmitting the electromagnetic force between charges, just as virtual pion
exchange carries the strong nuclear force between nucleons. The second image shows that the photon cannot be directly observed in its passage,
because this would disrupt it and alter the force. In this case it does not get to the other charge.

1. + attractive; ‑ repulsive; +/− both.

2. Predicted by theory and first observed in 1983.
3. Eight proposed—indirect evidence of existence. Underlie meson exchange.
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Figure 33.5 The Feynman diagram for the exchange of a virtual photon between two positive charges illustrates how the electromagnetic force is
transmitted on a quantum mechanical scale. Time is graphed vertically while the distance is graphed horizontally. The two positive charges are seen to
be repelled by the photon exchange.

Although these four forces are distinct and differ greatly from one another under all but the most extreme circumstances, we can
see similarities among them. (In GUTs: the Unification of Forces, we will discuss how the four forces may be different
manifestations of a single unified force.) Perhaps the most important characteristic among the forces is that they are all
transmitted by the exchange of a carrier particle, exactly like what Yukawa had in mind for the strong nuclear force. Each carrier
particle is a virtual particle—it cannot be directly observed while transmitting the force. Figure 33.4 shows the exchange of a
virtual photon between two positive charges. The photon cannot be directly observed in its passage, because this would disrupt it
and alter the force.

Figure 33.5 shows a way of graphing the exchange of a virtual photon between two positive charges. This graph of time versus
position is called a Feynman diagram, after the brilliant American physicist Richard Feynman (1918–1988) who developed it.

Figure 33.6 is a Feynman diagram for the exchange of a virtual pion between a proton and a neutron representing the same
interaction as in Figure 33.3. Feynman diagrams are not only a useful tool for visualizing interactions at the quantum mechanical
level, they are also used to calculate details of interactions, such as their strengths and probability of occurring. Feynman was
one of the theorists who developed the field of quantum electrodynamics (QED), which is the quantum mechanics of
electromagnetism. QED has been spectacularly successful in describing electromagnetic interactions on the submicroscopic
scale. Feynman was an inspiring teacher, had a colorful personality, and made a profound impact on generations of physicists.
He shared the 1965 Nobel Prize with Julian Schwinger and S. I. Tomonaga for work in QED with its deep implications for particle
physics.

Why is it that particles called gluons are listed as the carrier particles for the strong nuclear force when, in The Yukawa Particle
and the Heisenberg Uncertainty Principle Revisited, we saw that pions apparently carry that force? The answer is that pions
are exchanged but they have a substructure and, as we explore it, we find that the strong force is actually related to the indirectly
observed but more fundamental gluons. In fact, all the carrier particles are thought to be fundamental in the sense that they
have no substructure. Another similarity among carrier particles is that they are all bosons (first mentioned in Patterns in
Spectra Reveal More Quantization), having integral intrinsic spins.
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Figure 33.6 The image shows a Feynman diagram for the exchange of a π+
between a proton and a neutron, carrying the strong nuclear force

between them. This diagram represents the situation shown more pictorially in Figure 33.4.

There is a relationship between the mass of the carrier particle and the range of the force. The photon is massless and has
energy. So, the existence of (virtual) photons is possible only by virtue of the Heisenberg uncertainty principle and can travel an
unlimited distance. Thus, the range of the electromagnetic force is infinite. This is also true for gravity. It is infinite in range
because its carrier particle, the graviton, has zero rest mass. (Gravity is the most difficult of the four forces to understand on a
quantum scale because it affects the space and time in which the others act. But gravity is so weak that its effects are extremely
difficult to observe quantum mechanically. We shall explore it further in General Relativity and Quantum Gravity). The

W + , W − , and Z 0 particles that carry the weak nuclear force have mass, accounting for the very short range of this force. In

fact, the W + , W − , and Z 0 are about 1000 times more massive than pions, consistent with the fact that the range of the weak

nuclear force is about 1/1000 that of the strong nuclear force. Gluons are actually massless, but since they act inside massive
carrier particles like pions, the strong nuclear force is also short ranged.

The relative strengths of the forces given in the Table 33.1 are those for the most common situations. When particles are brought
very close together, the relative strengths change, and they may become identical at extremely close range. As we shall see in
GUTs: the Unification of Forces, carrier particles may be altered by the energy required to bring particles very close
together—in such a manner that they become identical.

33.3 Accelerators Create Matter from Energy

Before looking at all the particles we now know about, let us examine some of the machines that created them. The fundamental
process in creating previously unknown particles is to accelerate known particles, such as protons or electrons, and direct a
beam of them toward a target. Collisions with target nuclei provide a wealth of information, such as information obtained by
Rutherford using energetic helium nuclei from natural α radiation. But if the energy of the incoming particles is large enough,

new matter is sometimes created in the collision. The more energy input or ΔE , the more matter m can be created, since

m = ΔE / c2 . Limitations are placed on what can occur by known conservation laws, such as conservation of mass-energy,

momentum, and charge. Even more interesting are the unknown limitations provided by nature. Some expected reactions do
occur, while others do not, and still other unexpected reactions may appear. New laws are revealed, and the vast majority of
what we know about particle physics has come from accelerator laboratories. It is the particle physicist’s favorite indoor sport,
which is partly inspired by theory.

Early Accelerators

An early accelerator is a relatively simple, large-scale version of the electron gun. The Van de Graaff (named after the Dutch
physicist), which you have likely seen in physics demonstrations, is a small version of the ones used for nuclear research since
their invention for that purpose in 1932. For more, see Figure 33.7. These machines are electrostatic, creating potentials as
great as 50 MV, and are used to accelerate a variety of nuclei for a range of experiments. Energies produced by Van de Graaffs
are insufficient to produce new particles, but they have been instrumental in exploring several aspects of the nucleus. Another,
equally famous, early accelerator is the cyclotron, invented in 1930 by the American physicist, E. O. Lawrence (1901–1958).
For a visual representation with more detail, see Figure 33.8. Cyclotrons use fixed-frequency alternating electric fields to
accelerate particles. The particles spiral outward in a magnetic field, making increasingly larger radius orbits during acceleration.
This clever arrangement allows the successive addition of electric potential energy and so greater particle energies are possible
than in a Van de Graaff. Lawrence was involved in many early discoveries and in the promotion of physics programs in American
universities. He was awarded the 1939 Nobel Prize in Physics for the cyclotron and nuclear activations, and he has an element
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and two major laboratories named for him.

A synchrotron is a version of a cyclotron in which the frequency of the alternating voltage and the magnetic field strength are
increased as the beam particles are accelerated. Particles are made to travel the same distance in a shorter time with each cycle
in fixed-radius orbits. A ring of magnets and accelerating tubes, as shown in Figure 33.9, are the major components of
synchrotrons. Accelerating voltages are synchronized (i.e., occur at the same time) with the particles to accelerate them, hence
the name. Magnetic field strength is increased to keep the orbital radius constant as energy increases. High-energy particles
require strong magnetic fields to steer them, so superconducting magnets are commonly employed. Still limited by achievable
magnetic field strengths, synchrotrons need to be very large at very high energies, since the radius of a high-energy particle’s
orbit is very large. Radiation caused by a magnetic field accelerating a charged particle perpendicular to its velocity is called
synchrotron radiation in honor of its importance in these machines. Synchrotron radiation has a characteristic spectrum and
polarization, and can be recognized in cosmic rays, implying large-scale magnetic fields acting on energetic and charged
particles in deep space. Synchrotron radiation produced by accelerators is sometimes used as a source of intense energetic
electromagnetic radiation for research purposes.

Figure 33.7 An artist’s rendition of a Van de Graaff generator.

Figure 33.8 Cyclotrons use a magnetic field to cause particles to move in circular orbits. As the particles pass between the plates of the Ds, the voltage
across the gap is oscillated to accelerate them twice in each orbit.

Modern Behemoths and Colliding Beams

Physicists have built ever-larger machines, first to reduce the wavelength of the probe and obtain greater detail, then to put
greater energy into collisions to create new particles. Each major energy increase brought new information, sometimes
producing spectacular progress, motivating the next step. One major innovation was driven by the desire to create more massive
particles. Since momentum needs to be conserved in a collision, the particles created by a beam hitting a stationary target
should recoil. This means that part of the energy input goes into recoil kinetic energy, significantly limiting the fraction of the
beam energy that can be converted into new particles. One solution to this problem is to have head-on collisions between
particles moving in opposite directions. Colliding beams are made to meet head-on at points where massive detectors are
located. Since the total incoming momentum is zero, it is possible to create particles with momenta and kinetic energies near
zero. Particles with masses equivalent to twice the beam energy can thus be created. Another innovation is to create the
antimatter counterpart of the beam particle, which thus has the opposite charge and circulates in the opposite direction in the
same beam pipe. For a schematic representation, see Figure 33.10.
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Figure 33.9 (a) A synchrotron has a ring of magnets and accelerating tubes. The frequency of the accelerating voltages is increased to cause the
beam particles to travel the same distance in shorter time. The magnetic field should also be increased to keep each beam burst traveling in a fixed-
radius path. Limits on magnetic field strength require these machines to be very large in order to accelerate particles to very high energies. (b) A
positive particle is shown in the gap between accelerating tubes. (c) While the particle passes through the tube, the potentials are reversed so that
there is another acceleration at the next gap. The frequency of the reversals needs to be varied as the particle is accelerated to achieve successive
accelerations in each gap.

Figure 33.10 This schematic shows the two rings of Fermilab’s accelerator and the scheme for colliding protons and antiprotons (not to scale).

Detectors capable of finding the new particles in the spray of material that emerges from colliding beams are as impressive as
the accelerators. While the Fermilab Tevatron had proton and antiproton beam energies of about 1 TeV, so that it can create

particles up to 2 TeV/c2 , the Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) has achieved

beam energies of 3.5 TeV, so that it has a 7-TeV collision energy; CERN hopes to double the beam energy in 2014. The now-
canceled Superconducting Super Collider was being constructed in Texas with a design energy of 20 TeV to give a 40-TeV
collision energy. It was to be an oval 30 km in diameter. Its cost as well as the politics of international research funding led to its
demise.

In addition to the large synchrotrons that produce colliding beams of protons and antiprotons, there are other large electron-
positron accelerators. The oldest of these was a straight-line or linear accelerator, called the Stanford Linear Accelerator
(SLAC), which accelerated particles up to 50 GeV as seen in Figure 33.11. Positrons created by the accelerator were brought to
the same energy and collided with electrons in specially designed detectors. Linear accelerators use accelerating tubes similar to
those in synchrotrons, but aligned in a straight line. This helps eliminate synchrotron radiation losses, which are particularly
severe for electrons made to follow curved paths. CERN had an electron-positron collider appropriately called the Large
Electron-Positron Collider (LEP), which accelerated particles to 100 GeV and created a collision energy of 200 GeV. It was 8.5
km in diameter, while the SLAC machine was 3.2 km long.
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Figure 33.11 The Stanford Linear Accelerator was 3.2 km long and had the capability of colliding electron and positron beams. SLAC was also used to
probe nucleons by scattering extremely short wavelength electrons from them. This produced the first convincing evidence of a quark structure inside
nucleons in an experiment analogous to those performed by Rutherford long ago.

Example 33.2 Calculating the Voltage Needed by the Accelerator Between Accelerating Tubes

A linear accelerator designed to produce a beam of 800-MeV protons has 2000 accelerating tubes. What average voltage
must be applied between tubes (such as in the gaps in Figure 33.9) to achieve the desired energy?

Strategy

The energy given to the proton in each gap between tubes is PEelec = qV where q is the proton’s charge and V is the

potential difference (voltage) across the gap. Since q = qe = 1.6×10−19 C and 1 eV = (1 V)⎛⎝1.6×10−19 C⎞⎠ , the

proton gains 1 eV in energy for each volt across the gap that it passes through. The AC voltage applied to the tubes is timed
so that it adds to the energy in each gap. The effective voltage is the sum of the gap voltages and equals 800 MV to give
each proton an energy of 800 MeV.

Solution

There are 2000 gaps and the sum of the voltages across them is 800 MV; thus,

(33.6)Vgap = 800 MV
2000 = 400 kV.

Discussion

A voltage of this magnitude is not difficult to achieve in a vacuum. Much larger gap voltages would be required for higher
energy, such as those at the 50-GeV SLAC facility. Synchrotrons are aided by the circular path of the accelerated particles,
which can orbit many times, effectively multiplying the number of accelerations by the number of orbits. This makes it
possible to reach energies greater than 1 TeV.

33.4 Particles, Patterns, and Conservation Laws

In the early 1930s only a small number of subatomic particles were known to exist—the proton, neutron, electron, photon and,
indirectly, the neutrino. Nature seemed relatively simple in some ways, but mysterious in others. Why, for example, should the
particle that carries positive charge be almost 2000 times as massive as the one carrying negative charge? Why does a neutral
particle like the neutron have a magnetic moment? Does this imply an internal structure with a distribution of moving charges?
Why is it that the electron seems to have no size other than its wavelength, while the proton and neutron are about 1 fermi in
size? So, while the number of known particles was small and they explained a great deal of atomic and nuclear phenomena,
there were many unexplained phenomena and hints of further substructures.

Things soon became more complicated, both in theory and in the prediction and discovery of new particles. In 1928, the British
physicist P.A.M. Dirac (see Figure 33.12) developed a highly successful relativistic quantum theory that laid the foundations of
quantum electrodynamics (QED). His theory, for example, explained electron spin and magnetic moment in a natural way. But
Dirac’s theory also predicted negative energy states for free electrons. By 1931, Dirac, along with Oppenheimer, realized this
was a prediction of positively charged electrons (or positrons). In 1932, American physicist Carl Anderson discovered the

positron in cosmic ray studies. The positron, or e+ , is the same particle as emitted in β+ decay and was the first antimatter
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that was discovered. In 1935, Yukawa predicted pions as the carriers of the strong nuclear force, and they were eventually
discovered. Muons were discovered in cosmic ray experiments in 1937, and they seemed to be heavy, unstable versions of
electrons and positrons. After World War II, accelerators energetic enough to create these particles were built. Not only were
predicted and known particles created, but many unexpected particles were observed. Initially called elementary particles, their
numbers proliferated to dozens and then hundreds, and the term “particle zoo” became the physicist’s lament at the lack of
simplicity. But patterns were observed in the particle zoo that led to simplifying ideas such as quarks, as we shall soon see.

Figure 33.12 P.A.M. Dirac’s theory of relativistic quantum mechanics not only explained a great deal of what was known, it also predicted antimatter.
(credit: Cambridge University, Cavendish Laboratory)

Matter and Antimatter

The positron was only the first example of antimatter. Every particle in nature has an antimatter counterpart, although some
particles, like the photon, are their own antiparticles. Antimatter has charge opposite to that of matter (for example, the positron is
positive while the electron is negative) but is nearly identical otherwise, having the same mass, intrinsic spin, half-life, and so on.
When a particle and its antimatter counterpart interact, they annihilate one another, usually totally converting their masses to
pure energy in the form of photons as seen in Figure 33.13. Neutral particles, such as neutrons, have neutral antimatter
counterparts, which also annihilate when they interact. Certain neutral particles are their own antiparticle and live

correspondingly short lives. For example, the neutral pion π0 is its own antiparticle and has a half-life about 10−8 shorter than

π+ and π− , which are each other’s antiparticles. Without exception, nature is symmetric—all particles have antimatter

counterparts. For example, antiprotons and antineutrons were first created in accelerator experiments in 1956 and the antiproton
is negative. Antihydrogen atoms, consisting of an antiproton and antielectron, were observed in 1995 at CERN, too. It is possible
to contain large-scale antimatter particles such as antiprotons by using electromagnetic traps that confine the particles within a
magnetic field so that they don't annihilate with other particles. However, particles of the same charge repel each other, so the
more particles that are contained in a trap, the more energy is needed to power the magnetic field that contains them. It is not
currently possible to store a significant quantity of antiprotons. At any rate, we now see that negative charge is associated with
both low-mass (electrons) and high-mass particles (antiprotons) and the apparent asymmetry is not there. But this knowledge
does raise another question—why is there such a predominance of matter and so little antimatter? Possible explanations emerge
later in this and the next chapter.

Hadrons and Leptons

Particles can also be revealingly grouped according to what forces they feel between them. All particles (even those that are
massless) are affected by gravity, since gravity affects the space and time in which particles exist. All charged particles are
affected by the electromagnetic force, as are neutral particles that have an internal distribution of charge (such as the neutron
with its magnetic moment). Special names are given to particles that feel the strong and weak nuclear forces. Hadrons are
particles that feel the strong nuclear force, whereas leptons are particles that do not. The proton, neutron, and the pions are
examples of hadrons. The electron, positron, muons, and neutrinos are examples of leptons, the name meaning low mass.
Leptons feel the weak nuclear force. In fact, all particles feel the weak nuclear force. This means that hadrons are distinguished
by being able to feel both the strong and weak nuclear forces.

Table 33.2 lists the characteristics of some of the most important subatomic particles, including the directly observed carrier
particles for the electromagnetic and weak nuclear forces, all leptons, and some hadrons. Several hints related to an underlying
substructure emerge from an examination of these particle characteristics. Note that the carrier particles are called gauge
bosons. First mentioned in Patterns in Spectra Reveal More Quantization, a boson is a particle with zero or an integer value
of intrinsic spin (such as s = 0, 1, 2, ... ), whereas a fermion is a particle with a half-integer value of intrinsic spin (

s = 1 / 2, 3 / 2, ... ). Fermions obey the Pauli exclusion principle whereas bosons do not. All the known and conjectured carrier

particles are bosons.
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Figure 33.13 When a particle encounters its antiparticle, they annihilate, often producing pure energy in the form of photons. In this case, an electron
and a positron convert all their mass into two identical energy rays, which move away in opposite directions to keep total momentum zero as it was
before. Similar annihilations occur for other combinations of a particle with its antiparticle, sometimes producing more particles while obeying all
conservation laws.

Chapter 33 | Particle Physics 1321



Table 33.2 Selected Particle Characteristics[4]

Category
Particle
name

Symbol Antiparticle
Rest mass

(MeV/ c2) B Le Lμ Lτ S Lifetime[5]

(s)

Gauge Photon γ Self 0 0 0 0 0 0 Stable

W W + W − 80.39×103 0 0 0 0 0 1.6×10−25

Bosons
Z Z 0 Self 91.19×103 0 0 0 0 0 1.32×10−25

Electron e− e+ 0.511 0 ±1 0 0 0 Stable

Neutrino
(e)

νe v̄ e 0(7.0eV) [6]
0 ±1 0 0 0 Stable

Muon μ− μ+
105.7 0 0 ±1 0 0 2.20×10−6

Neutrino
(μ) vμ v- μ 0( < 0.27) 0 0 ±1 0 0 Stable

Tau τ− τ+ 1777 0 0 0 ±1 0 2.91×10−13

Leptons

Neutrino
(τ) vτ v- τ 0( < 31) 0 0 0 ±1 0 Stable

Hadrons (selected)

π+ π−
139.6 0 0 0 0 0 2.60 × 10 −8

Pion
π0 Self 135.0 0 0 0 0 0 8.4 × 10 −17

K + K −
493.7 0 0 0 0 ±1 1.24 × 10 −8

Kaon
K 0 K- 0 497.6 0 0 0 0 ±1 0.90 × 10 −10

Mesons

Eta η0 Self 547.9 0 0 0 0 0 2.53 × 10 −19

(many other mesons known)

Proton p p- 938.3 ± 1 0 0 0 0 Stable[7]

Neutron n n- 939.6 ± 1 0 0 0 0 882

Lambda Λ0 Λ
- 0 1115.7 ± 1 0 0 0 ∓1 2.63 × 10 −10

Σ+ Σ- − 1189.4 ± 1 0 0 0 ∓1 0.80 × 10 −10

Σ0 Σ- 0 1192.6 ± 1 0 0 0 ∓1 7.4 × 10 −20Sigma

Σ− Σ- + 1197.4 ± 1 0 0 0 ∓1 1.48 × 10 −10

Ξ0 Ξ- 0 1314.9 ± 1 0 0 0 ∓2 2.90 × 10 −10

Xi
Ξ− Ξ+ 1321.7 ± 1 0 0 0 ∓2 1.64 × 10 −10

Baryons

Omega Ω− Ω+ 1672.5 ± 1 0 0 0 ∓3 0.82 × 10 −10

(many other baryons known)

All known leptons are listed in the table given above. There are only six leptons (and their antiparticles), and they seem to be
fundamental in that they have no apparent underlying structure. Leptons have no discernible size other than their wavelength, so

4. The lower of the ∓ or ± symbols are the values for antiparticles.

5. Lifetimes are traditionally given as t1 / 2 / 0.693 (which is 1 / λ , the inverse of the decay constant).

6. Neutrino masses may be zero. Experimental upper limits are given in parentheses.

7. Experimental lower limit is >5×1032 for proposed mode of decay.
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that we know they are pointlike down to about 10−18 m . The leptons fall into three families, implying three conservation laws

for three quantum numbers. One of these was known from β decay, where the existence of the electron’s neutrino implied that a

new quantum number, called the electron family number Le is conserved. Thus, in β decay, an antielectron’s neutrino v- e

must be created with Le = −1 when an electron with Le =+1 is created, so that the total remains 0 as it was before decay.

Once the muon was discovered in cosmic rays, its decay mode was found to be

(33.7)μ− → e− + v- e + vμ,

which implied another “family” and associated conservation principle. The particle vμ is a muon’s neutrino, and it is created to

conserve muon family number Lμ . So muons are leptons with a family of their own, and conservation of total Lμ also

seems to be obeyed in many experiments.

More recently, a third lepton family was discovered when τ particles were created and observed to decay in a manner similar to

muons. One principal decay mode is

(33.8)τ− → μ− + v- μ + vτ.

Conservation of total Lτ seems to be another law obeyed in many experiments. In fact, particle experiments have found that

lepton family number is not universally conserved, due to neutrino “oscillations,” or transformations of neutrinos from one family
type to another.

Mesons and Baryons

Now, note that the hadrons in the table given above are divided into two subgroups, called mesons (originally for medium mass)
and baryons (the name originally meaning large mass). The division between mesons and baryons is actually based on their
observed decay modes and is not strictly associated with their masses. Mesons are hadrons that can decay to leptons and leave
no hadrons, which implies that mesons are not conserved in number. Baryons are hadrons that always decay to another baryon.
A new physical quantity called baryon number B seems to always be conserved in nature and is listed for the various particles

in the table given above. Mesons and leptons have B = 0 so that they can decay to other particles with B = 0 . But baryons

have B=+1 if they are matter, and B = −1 if they are antimatter. The conservation of total baryon number is a more

general rule than first noted in nuclear physics, where it was observed that the total number of nucleons was always conserved
in nuclear reactions and decays. That rule in nuclear physics is just one consequence of the conservation of the total baryon
number.

Forces, Reactions, and Reaction Rates

The forces that act between particles regulate how they interact with other particles. For example, pions feel the strong force and
do not penetrate as far in matter as do muons, which do not feel the strong force. (This was the way those who discovered the
muon knew it could not be the particle that carries the strong force—its penetration or range was too great for it to be feeling the
strong force.) Similarly, reactions that create other particles, like cosmic rays interacting with nuclei in the atmosphere, have
greater probability if they are caused by the strong force than if they are caused by the weak force. Such knowledge has been
useful to physicists while analyzing the particles produced by various accelerators.

The forces experienced by particles also govern how particles interact with themselves if they are unstable and decay. For
example, the stronger the force, the faster they decay and the shorter is their lifetime. An example of a nuclear decay via the

strong force is 8 Be → α + α with a lifetime of about 10−16 s . The neutron is a good example of decay via the weak force.

The process n → p + e− + v- e has a longer lifetime of 882 s. The weak force causes this decay, as it does all β decay. An

important clue that the weak force is responsible for β decay is the creation of leptons, such as e− and v- e . None would be

created if the strong force was responsible, just as no leptons are created in the decay of 8Be . The systematics of particle

lifetimes is a little simpler than nuclear lifetimes when hundreds of particles are examined (not just the ones in the table given

above). Particles that decay via the weak force have lifetimes mostly in the range of 10−16 to 10−12 s, whereas those that

decay via the strong force have lifetimes mostly in the range of 10−16 to 10−23 s. Turning this around, if we measure the

lifetime of a particle, we can tell if it decays via the weak or strong force.

Yet another quantum number emerges from decay lifetimes and patterns. Note that the particles Λ, Σ, Ξ , and Ω decay with

lifetimes on the order of 10−10 s (the exception is Σ0 , whose short lifetime is explained by its particular quark substructure.),

implying that their decay is caused by the weak force alone, although they are hadrons and feel the strong force. The decay
modes of these particles also show patterns—in particular, certain decays that should be possible within all the known
conservation laws do not occur. Whenever something is possible in physics, it will happen. If something does not happen, it is
forbidden by a rule. All this seemed strange to those studying these particles when they were first discovered, so they named a
new quantum number strangeness, given the symbol S in the table given above. The values of strangeness assigned to

various particles are based on the decay systematics. It is found that strangeness is conserved by the strong force, which
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governs the production of most of these particles in accelerator experiments. However, strangeness is not conserved by the
weak force. This conclusion is reached from the fact that particles that have long lifetimes decay via the weak force and do not
conserve strangeness. All of this also has implications for the carrier particles, since they transmit forces and are thus involved in
these decays.

Example 33.3 Calculating Quantum Numbers in Two Decays

(a) The most common decay mode of the Ξ− particle is Ξ− → Λ0 + π− . Using the quantum numbers in the table given

above, show that strangeness changes by 1, baryon number and charge are conserved, and lepton family numbers are
unaffected.

(b) Is the decay K + → μ+ + νμ allowed, given the quantum numbers in the table given above?

Strategy

In part (a), the conservation laws can be examined by adding the quantum numbers of the decay products and comparing
them with the parent particle. In part (b), the same procedure can reveal if a conservation law is broken or not.

Solution for (a)

Before the decay, the Ξ− has strangeness S = −2 . After the decay, the total strangeness is –1 for the Λ0 , plus 0 for the

π − . Thus, total strangeness has gone from –2 to –1 or a change of +1. Baryon number for the Ξ − is B = +1 before

the decay, and after the decay the Λ0 has B = +1 and the π− has B = 0 so that the total baryon number remains +1.

Charge is –1 before the decay, and the total charge after is also 0 − 1 = −1 . Lepton numbers for all the particles are zero,

and so lepton numbers are conserved.

Discussion for (a)

The Ξ− decay is caused by the weak interaction, since strangeness changes, and it is consistent with the relatively long

1.64×10−10-s lifetime of the Ξ− .

Solution for (b)

The decay K + → μ+ + νμ is allowed if charge, baryon number, mass-energy, and lepton numbers are conserved.

Strangeness can change due to the weak interaction. Charge is conserved as s → d . Baryon number is conserved, since

all particles have B = 0 . Mass-energy is conserved in the sense that the K + has a greater mass than the products, so

that the decay can be spontaneous. Lepton family numbers are conserved at 0 for the electron and tau family for all
particles. The muon family number is Lμ = 0 before and Lμ = −1 + 1 = 0 after. Strangeness changes from +1 before

to 0 + 0 after, for an allowed change of 1. The decay is allowed by all these measures.

Discussion for (b)

This decay is not only allowed by our reckoning, it is, in fact, the primary decay mode of the K + meson and is caused by

the weak force, consistent with the long 1.24×10−8-s lifetime.

There are hundreds of particles, all hadrons, not listed in Table 33.2, most of which have shorter lifetimes. The systematics of
those particle lifetimes, their production probabilities, and decay products are completely consistent with the conservation laws
noted for lepton families, baryon number, and strangeness, but they also imply other quantum numbers and conservation laws.
There are a finite, and in fact relatively small, number of these conserved quantities, however, implying a finite set of
substructures. Additionally, some of these short-lived particles resemble the excited states of other particles, implying an internal
structure. All of this jigsaw puzzle can be tied together and explained relatively simply by the existence of fundamental
substructures. Leptons seem to be fundamental structures. Hadrons seem to have a substructure called quarks. Quarks: Is That
All There Is? explores the basics of the underlying quark building blocks.
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Figure 33.14 Murray Gell-Mann (b. 1929) proposed quarks as a substructure of hadrons in 1963 and was already known for his work on the concept of
strangeness. Although quarks have never been directly observed, several predictions of the quark model were quickly confirmed, and their properties
explain all known hadron characteristics. Gell-Mann was awarded the Nobel Prize in 1969. (credit: Luboš Motl)

33.5 Quarks: Is That All There Is?

Quarks have been mentioned at various points in this text as fundamental building blocks and members of the exclusive club of
truly elementary particles. Note that an elementary or fundamental particle has no substructure (it is not made of other
particles) and has no finite size other than its wavelength. This does not mean that fundamental particles are stable—some
decay, while others do not. Keep in mind that all leptons seem to be fundamental, whereasno hadrons are fundamental. There is
strong evidence that quarks are the fundamental building blocks of hadrons as seen in Figure 33.15. Quarks are the second
group of fundamental particles (leptons are the first). The third and perhaps final group of fundamental particles is the carrier
particles for the four basic forces. Leptons, quarks, and carrier particles may be all there is. In this module we will discuss the
quark substructure of hadrons and its relationship to forces as well as indicate some remaining questions and problems.

Figure 33.15 All baryons, such as the proton and neutron shown here, are composed of three quarks. All mesons, such as the pions shown here, are
composed of a quark-antiquark pair. Arrows represent the spins of the quarks, which, as we shall see, are also colored. The colors are such that they
need to add to white for any possible combination of quarks.

Conception of Quarks

Quarks were first proposed independently by American physicists Murray Gell-Mann and George Zweig in 1963. Their quaint
name was taken by Gell-Mann from a James Joyce novel—Gell-Mann was also largely responsible for the concept and name of
strangeness. (Whimsical names are common in particle physics, reflecting the personalities of modern physicists.) Originally,
three quark types—or flavors—were proposed to account for the then-known mesons and baryons. These quark flavors are
named up (u), down (d), and strange (s). All quarks have half-integral spin and are thus fermions. All mesons have integral spin
while all baryons have half-integral spin. Therefore, mesons should be made up of an even number of quarks while baryons
need to be made up of an odd number of quarks. Figure 33.15 shows the quark substructure of the proton, neutron, and two

pions. The most radical proposal by Gell-Mann and Zweig is the fractional charges of quarks, which are ±⎛⎝23
⎞
⎠qe and

⎛
⎝13
⎞
⎠qe ,
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whereas all directly observed particles have charges that are integral multiples of qe . Note that the fractional value of the quark

does not violate the fact that the e is the smallest unit of charge that is observed, because a free quark cannot exist. Table 33.3
lists characteristics of the six quark flavors that are now thought to exist. Discoveries made since 1963 have required extra quark
flavors, which are divided into three families quite analogous to leptons.

How Does it Work?

To understand how these quark substructures work, let us specifically examine the proton, neutron, and the two pions pictured in
Figure 33.15 before moving on to more general considerations. First, the proton p is composed of the three quarks uud, so that

its total charge is +⎛⎝23
⎞
⎠qe + ⎛⎝23

⎞
⎠qe − ⎛⎝13

⎞
⎠qe = qe , as expected. With the spins aligned as in the figure, the proton’s intrinsic

spin is +⎛⎝12
⎞
⎠+
⎛
⎝12
⎞
⎠−
⎛
⎝12
⎞
⎠ = ⎛⎝12

⎞
⎠ , also as expected. Note that the spins of the up quarks are aligned, so that they would be in

the same state except that they have different colors (another quantum number to be elaborated upon a little later). Quarks obey
the Pauli exclusion principle. Similar comments apply to the neutron n, which is composed of the three quarks udd. Note also
that the neutron is made of charges that add to zero but move internally, producing its well-known magnetic moment. When the
neutron β− decays, it does so by changing the flavor of one of its quarks. Writing neutron β− decay in terms of quarks,

(33.9)
n → p + β− + v- e  becomes udd → uud + β− + v- e.

We see that this is equivalent to a down quark changing flavor to become an up quark:

(33.10)d → u + β− + v- e

Table 33.3 Quarks and Antiquarks[8]

Name Symbol Antiparticle Spin Charge B [9] S c b t Mass (GeV/ c2)
[10]

Up u u- 1/2 ±2
3qe ±1

3 0 0 0 0 0.005

Down d d
-

1/2 ∓1
3qe ±1

3 0 0 0 0 0.008

Strange s s- 1/2 ∓1
3qe ±1

3 ∓1 0 0 0 0.50

Charmed c c- 1/2 ±2
3qe ±1

3 0 ±1 0 0 1.6

Bottom b b
-

1/2 ∓1
3qe ±1

3 0 0 ∓1 0 5

Top t t- 1/2 ±2
3qe ±1

3 0 0 0 ±1 173

8. The lower of the ± symbols are the values for antiquarks.

9. B is baryon number, S is strangeness, c is charm, b is bottomness, t is topness.

10. Values are approximate, are not directly observable, and vary with model.
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Table 33.4 Quark Composition of
Selected Hadrons[11]

Particle Quark Composition

Mesons

π+ u d
-

π− u- d

π0 u u- , d d
-

mixture[12]

η0 u u- , d d
-

mixture[13]

K 0 d s-

K- 0 d
-

s

K + u s-

K − u- s

J / ψ c c-

ϒ b b
-

Baryons[14],[15]

p uud

n udd

Δ0 udd

Δ+ uud

Δ− ddd

Δ++ uuu

Λ0 uds

Σ0 uds

Σ+ uus

Σ− dds

Ξ0 uss

Ξ− dss

Ω− sss

This is an example of the general fact that the weak nuclear force can change the flavor of a quark. By general, we mean
that any quark can be converted to any other (change flavor) by the weak nuclear force. Not only can we get d → u , we can

also get u → d . Furthermore, the strange quark can be changed by the weak force, too, making s → u and s → d possible.

This explains the violation of the conservation of strangeness by the weak force noted in the preceding section. Another general
fact is that the strong nuclear force cannot change the flavor of a quark.

11. These two mesons are different mixtures, but each is its own antiparticle, as indicated by its quark composition.
12. These two mesons are different mixtures, but each is its own antiparticle, as indicated by its quark composition.
13. These two mesons are different mixtures, but each is its own antiparticle, as indicated by its quark composition.

14. Antibaryons have the antiquarks of their counterparts. The antiproton p- is u- u- d
-

, for example.

15. Baryons composed of the same quarks are different states of the same particle. For example, the Δ + is an excited state of

the proton.
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Again, from Figure 33.15, we see that the π+ meson (one of the three pions) is composed of an up quark plus an antidown

quark, or u d
-

. Its total charge is thus +⎛⎝23
⎞
⎠qe + ⎛⎝13

⎞
⎠qe = qe , as expected. Its baryon number is 0, since it has a quark and an

antiquark with baryon numbers +⎛⎝13
⎞
⎠−
⎛
⎝13
⎞
⎠ = 0 . The π+ half-life is relatively long since, although it is composed of matter

and antimatter, the quarks are different flavors and the weak force should cause the decay by changing the flavor of one into that

of the other. The spins of the u and d
-

quarks are antiparallel, enabling the pion to have spin zero, as observed experimentally.

Finally, the π− meson shown in Figure 33.15 is the antiparticle of the π+ meson, and it is composed of the corresponding

quark antiparticles. That is, the π+ meson is u d
-

, while the π− meson is u- d . These two pions annihilate each other quickly,

because their constituent quarks are each other’s antiparticles.

Two general rules for combining quarks to form hadrons are:

1. Baryons are composed of three quarks, and antibaryons are composed of three antiquarks.

2. Mesons are combinations of a quark and an antiquark.

One of the clever things about this scheme is that only integral charges result, even though the quarks have fractional charge.

All Combinations are Possible

All quark combinations are possible. Table 33.4 lists some of these combinations. When Gell-Mann and Zweig proposed the
original three quark flavors, particles corresponding to all combinations of those three had not been observed. The pattern was
there, but it was incomplete—much as had been the case in the periodic table of the elements and the chart of nuclides. The
Ω− particle, in particular, had not been discovered but was predicted by quark theory. Its combination of three strange quarks,

sss , gives it a strangeness of −3 (see Table 33.2) and other predictable characteristics, such as spin, charge, approximate

mass, and lifetime. If the quark picture is complete, the Ω− should exist. It was first observed in 1964 at Brookhaven National

Laboratory and had the predicted characteristics as seen in Figure 33.16. The discovery of the Ω− was convincing indirect

evidence for the existence of the three original quark flavors and boosted theoretical and experimental efforts to further explore
particle physics in terms of quarks.

Patterns and Puzzles: Atoms, Nuclei, and Quarks

Patterns in the properties of atoms allowed the periodic table to be developed. From it, previously unknown elements were
predicted and observed. Similarly, patterns were observed in the properties of nuclei, leading to the chart of nuclides and
successful predictions of previously unknown nuclides. Now with particle physics, patterns imply a quark substructure that, if
taken literally, predicts previously unknown particles. These have now been observed in another triumph of underlying unity.
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Figure 33.16 The image relates to the discovery of the Ω−
. It is a secondary reaction in which an accelerator-produced K −

collides with a

proton via the strong force and conserves strangeness to produce the Ω−
with characteristics predicted by the quark model. As with other

predictions of previously unobserved particles, this gave a tremendous boost to quark theory. (credit: Brookhaven National Laboratory)

Example 33.4 Quantum Numbers From Quark Composition

Verify the quantum numbers given for the Ξ0 particle in Table 33.2 by adding the quantum numbers for its quark

composition as given in Table 33.4.

Strategy

The composition of the Ξ0 is given as uss in Table 33.4. The quantum numbers for the constituent quarks are given in

Table 33.3. We will not consider spin, because that is not given for the Ξ0 . But we can check on charge and the other

quantum numbers given for the quarks.

Solution

The total charge of uss is +⎛⎝23
⎞
⎠qe − ⎛⎝13

⎞
⎠qe − ⎛⎝13

⎞
⎠qe = 0 , which is correct for the Ξ0 . The baryon number is

+⎛⎝13
⎞
⎠+
⎛
⎝13
⎞
⎠+
⎛
⎝13
⎞
⎠ = 1 , also correct since the Ξ0 is a matter baryon and has B = 1 , as listed in Table 33.2. Its

strangeness is S = 0 − 1 − 1 = −2 , also as expected from Table 33.2. Its charm, bottomness, and topness are 0, as are

its lepton family numbers (it is not a lepton).

Discussion

This procedure is similar to what the inventors of the quark hypothesis did when checking to see if their solution to the
puzzle of particle patterns was correct. They also checked to see if all combinations were known, thereby predicting the
previously unobserved Ω− as the completion of a pattern.

Now, Let Us Talk About Direct Evidence

At first, physicists expected that, with sufficient energy, we should be able to free quarks and observe them directly. This has not
proved possible. There is still no direct observation of a fractional charge or any isolated quark. When large energies are put into
collisions, other particles are created—but no quarks emerge. There is nearly direct evidence for quarks that is quite compelling.
By 1967, experiments at SLAC scattering 20-GeV electrons from protons had produced results like Rutherford had obtained for
the nucleus nearly 60 years earlier. The SLAC scattering experiments showed unambiguously that there were three pointlike
(meaning they had sizes considerably smaller than the probe’s wavelength) charges inside the proton as seen in Figure 33.17.
This evidence made all but the most skeptical admit that there was validity to the quark substructure of hadrons.
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Figure 33.17 Scattering of high-energy electrons from protons at facilities like SLAC produces evidence of three point-like charges consistent with
proposed quark properties. This experiment is analogous to Rutherford’s discovery of the small size of the nucleus by scattering α particles. High-
energy electrons are used so that the probe wavelength is small enough to see details smaller than the proton.

More recent and higher-energy experiments have produced jets of particles in collisions, highly suggestive of three quarks in a
nucleon. Since the quarks are very tightly bound, energy put into separating them pulls them only so far apart before it starts
being converted into other particles. More energy produces more particles, not a separation of quarks. Conservation of
momentum requires that the particles come out in jets along the three paths in which the quarks were being pulled. Note that
there are only three jets, and that other characteristics of the particles are consistent with the three-quark substructure.

Figure 33.18 Simulation of a proton-proton collision at 14-TeV center-of-mass energy in the ALICE detector at CERN LHC. The lines follow particle
trajectories and the cyan dots represent the energy depositions in the sensitive detector elements. (credit: Matevž Tadel)

Quarks Have Their Ups and Downs

The quark model actually lost some of its early popularity because the original model with three quarks had to be modified. The
up and down quarks seemed to compose normal matter as seen in Table 33.4, while the single strange quark explained
strangeness. Why didn’t it have a counterpart? A fourth quark flavor called charm (c) was proposed as the counterpart of the
strange quark to make things symmetric—there would be two normal quarks (u and d) and two exotic quarks (s and c).
Furthermore, at that time only four leptons were known, two normal and two exotic. It was attractive that there would be four
quarks and four leptons. The problem was that no known particles contained a charmed quark. Suddenly, in November of 1974,
two groups (one headed by C. C. Ting at Brookhaven National Laboratory and the other by Burton Richter at SLAC)
independently and nearly simultaneously discovered a new meson with characteristics that made it clear that its substructure is
c c- . It was called J by one group and psi ( ψ ) by the other and now is known as the J / ψ meson. Since then, numerous

particles have been discovered containing the charmed quark, consistent in every way with the quark model. The discovery of
the J / ψ meson had such a rejuvenating effect on quark theory that it is now called the November Revolution. Ting and Richter

shared the 1976 Nobel Prize.

History quickly repeated itself. In 1975, the tau ( τ ) was discovered, and a third family of leptons emerged as seen in Table

33.2). Theorists quickly proposed two more quark flavors called top (t) or truth and bottom (b) or beauty to keep the number of
quarks the same as the number of leptons. And in 1976, the upsilon ( ϒ ) meson was discovered and shown to be composed of

a bottom and an antibottom quark or b b
-

, quite analogous to the J / ψ being c c- as seen in Table 33.4. Being a single flavor,

these mesons are sometimes called bare charm and bare bottom and reveal the characteristics of their quarks most clearly.
Other mesons containing bottom quarks have since been observed. In 1995, two groups at Fermilab confirmed the top quark’s
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existence, completing the picture of six quarks listed in Table 33.3. Each successive quark discovery—first c , then b , and

finally t —has required higher energy because each has higher mass. Quark masses in Table 33.3 are only approximately

known, because they are not directly observed. They must be inferred from the masses of the particles they combine to form.

What’s Color got to do with it?—A Whiter Shade of Pale

As mentioned and shown in Figure 33.15, quarks carry another quantum number, which we call color. Of course, it is not the
color we sense with visible light, but its properties are analogous to those of three primary and three secondary colors.
Specifically, a quark can have one of three color values we call red ( R ), green ( G ), and blue ( B ) in analogy to those primary

visible colors. Antiquarks have three values we call antired or cyan
⎛
⎝R
- ⎞
⎠ , antigreen or magenta

⎛
⎝G
- ⎞
⎠ , and antiblue or yellow

⎛
⎝B
- ⎞
⎠ in analogy to those secondary visible colors. The reason for these names is that when certain visual colors are combined,

the eye sees white. The analogy of the colors combining to white is used to explain why baryons are made of three quarks, why
mesons are a quark and an antiquark, and why we cannot isolate a single quark. The force between the quarks is such that their
combined colors produce white. This is illustrated in Figure 33.19. A baryon must have one of each primary color or RGB, which
produces white. A meson must have a primary color and its anticolor, also producing white.

Figure 33.19 The three quarks composing a baryon must be RGB, which add to white. The quark and antiquark composing a meson must be a color

and anticolor, here RR- also adding to white. The force between systems that have color is so great that they can neither be separated nor exist as

colored.

Why must hadrons be white? The color scheme is intentionally devised to explain why baryons have three quarks and mesons
have a quark and an antiquark. Quark color is thought to be similar to charge, but with more values. An ion, by analogy, exerts
much stronger forces than a neutral molecule. When the color of a combination of quarks is white, it is like a neutral atom. The
forces a white particle exerts are like the polarization forces in molecules, but in hadrons these leftovers are the strong nuclear
force. When a combination of quarks has color other than white, it exerts extremely large forces—even larger than the strong
force—and perhaps cannot be stable or permanently separated. This is part of the theory of quark confinement, which
explains how quarks can exist and yet never be isolated or directly observed. Finally, an extra quantum number with three values
(like those we assign to color) is necessary for quarks to obey the Pauli exclusion principle. Particles such as the Ω− , which is

composed of three strange quarks, sss , and the Δ++ , which is three up quarks, uuu, can exist because the quarks have

different colors and do not have the same quantum numbers. Color is consistent with all observations and is now widely
accepted. Quark theory including color is called quantum chromodynamics (QCD), also named by Gell-Mann.

The Three Families

Fundamental particles are thought to be one of three types—leptons, quarks, or carrier particles. Each of those three types is
further divided into three analogous families as illustrated in Figure 33.20. We have examined leptons and quarks in some detail.
Each has six members (and their six antiparticles) divided into three analogous families. The first family is normal matter, of
which most things are composed. The second is exotic, and the third more exotic and more massive than the second. The only
stable particles are in the first family, which also has unstable members.

Always searching for symmetry and similarity, physicists have also divided the carrier particles into three families, omitting the
graviton. Gravity is special among the four forces in that it affects the space and time in which the other forces exist and is
proving most difficult to include in a Theory of Everything or TOE (to stub the pretension of such a theory). Gravity is thus often
set apart. It is not certain that there is meaning in the groupings shown in Figure 33.20, but the analogies are tempting. In the
past, we have been able to make significant advances by looking for analogies and patterns, and this is an example of one under
current scrutiny. There are connections between the families of leptons, in that the τ decays into the μ and the μ into the e.

Similarly for quarks, the higher families eventually decay into the lowest, leaving only u and d quarks. We have long sought
connections between the forces in nature. Since these are carried by particles, we will explore connections between gluons,

W ±
and Z 0 , and photons as part of the search for unification of forces discussed in GUTs: The Unification of Forces..
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Figure 33.20 The three types of particles are leptons, quarks, and carrier particles. Each of those types is divided into three analogous families, with
the graviton left out.

33.6 GUTs: The Unification of Forces

Present quests to show that the four basic forces are different manifestations of a single unified force follow a long tradition. In
the 19th century, the distinct electric and magnetic forces were shown to be intimately connected and are now collectively called
the electromagnetic force. More recently, the weak nuclear force has been shown to be connected to the electromagnetic force in
a manner suggesting that a theory may be constructed in which all four forces are unified. Certainly, there are similarities in how
forces are transmitted by the exchange of carrier particles, and the carrier particles themselves (the gauge bosons in Table 33.2)
are also similar in important ways. The analogy to the unification of electric and magnetic forces is quite good—the four forces
are distinct under normal circumstances, but there are hints of connections even on the atomic scale, and there may be
conditions under which the forces are intimately related and even indistinguishable. The search for a correct theory linking the
forces, called the Grand Unified Theory (GUT), is explored in this section in the realm of particle physics. Frontiers of Physics
expands the story in making a connection with cosmology, on the opposite end of the distance scale.

Figure 33.21 is a Feynman diagram showing how the weak nuclear force is transmitted by the carrier particle Z 0 , similar to the

diagrams in Figure 33.5 and Figure 33.6 for the electromagnetic and strong nuclear forces. In the 1960s, a gauge theory, called
electroweak theory, was developed by Steven Weinberg, Sheldon Glashow, and Abdus Salam and proposed that the
electromagnetic and weak forces are identical at sufficiently high energies. One of its predictions, in addition to describing both

electromagnetic and weak force phenomena, was the existence of the W + ,W − , and Z 0 carrier particles. Not only were three

particles having spin 1 predicted, the mass of the W + and W − was predicted to be 81 GeV/c2 , and that of the Z 0 was

predicted to be 90 GeV/c2 . (Their masses had to be about 1000 times that of the pion, or about 100 GeV/c2 , since the

range of the weak force is about 1000 times less than the strong force carried by virtual pions.) In 1983, these carrier particles
were observed at CERN with the predicted characteristics, including masses having the predicted values as seen in Table 33.2.
This was another triumph of particle theory and experimental effort, resulting in the 1984 Nobel Prize to the experiment’s group
leaders Carlo Rubbia and Simon van der Meer. Theorists Weinberg, Glashow, and Salam had already been honored with the
1979 Nobel Prize for other aspects of electroweak theory.
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Figure 33.21 The exchange of a virtual Z 0
carries the weak nuclear force between an electron and a neutrino in this Feynman diagram. The Z 0

is

one of the carrier particles for the weak nuclear force that has now been created in the laboratory with characteristics predicted by electroweak theory.

Although the weak nuclear force is very short ranged ( < 10 – 18   m , as indicated in Table 33.1), its effects on atomic levels

can be measured given the extreme precision of modern techniques. Since electrons spend some time in the nucleus, their
energies are affected, and spectra can even indicate new aspects of the weak force, such as the possibility of other carrier
particles. So systems many orders of magnitude larger than the range of the weak force supply evidence of electroweak
unification in addition to evidence found at the particle scale.

Gluons ( g ) are the proposed carrier particles for the strong nuclear force, although they are not directly observed. Like quarks,

gluons may be confined to systems having a total color of white. Less is known about gluons than the fact that they are the
carriers of the weak and certainly of the electromagnetic force. QCD theory calls for eight gluons, all massless and all spin 1. Six
of the gluons carry a color and an anticolor, while two do not carry color, as illustrated in Figure 33.22(a). There is indirect
evidence of the existence of gluons in nucleons. When high-energy electrons are scattered from nucleons and evidence of
quarks is seen, the momenta of the quarks are smaller than they would be if there were no gluons. That means that the gluons
carrying force between quarks also carry some momentum, inferred by the already indirect quark momentum measurements. At
any rate, the gluons carry color charge and can change the colors of quarks when exchanged, as seen in Figure 33.22(b). In the
figure, a red down quark interacts with a green strange quark by sending it a gluon. That gluon carries red away from the down

quark and leaves it green, because it is an RG
-

(red-antigreen) gluon. (Taking antigreen away leaves you green.) Its

antigreenness kills the green in the strange quark, and its redness turns the quark red.

Figure 33.22 In figure (a), the eight types of gluons that carry the strong nuclear force are divided into a group of six that carry color and a group of two
that do not. Figure (b) shows that the exchange of gluons between quarks carries the strong force and may change the color of a quark.

The strong force is complicated, since observable particles that feel the strong force (hadrons) contain multiple quarks. Figure
33.23 shows the quark and gluon details of pion exchange between a proton and a neutron as illustrated earlier in Figure 33.3
and Figure 33.6. The quarks within the proton and neutron move along together exchanging gluons, until the proton and neutron

get close together. As the u quark leaves the proton, a gluon creates a pair of virtual particles, a d quark and a d
-

antiquark.

The d quark stays behind and the proton turns into a neutron, while the u and d
-

move together as a π+ (Table 33.4

confirms the u d
-

composition for the π+ .) The d
-

annihilates a d quark in the neutron, the u joins the neutron, and the

neutron becomes a proton. A pion is exchanged and a force is transmitted.
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Figure 33.23 This Feynman diagram is the same interaction as shown in Figure 33.6, but it shows the quark and gluon details of the strong force
interaction.

It is beyond the scope of this text to go into more detail on the types of quark and gluon interactions that underlie the observable
particles, but the theory ( quantum chromodynamics or QCD) is very self-consistent. So successful have QCD and the
electroweak theory been that, taken together, they are called the Standard Model. Advances in knowledge are expected to
modify, but not overthrow, the Standard Model of particle physics and forces.

Making Connections: Unification of Forces

Grand Unified Theory (GUT) is successful in describing the four forces as distinct under normal circumstances, but
connected in fundamental ways. Experiments have verified that the weak and electromagnetic force become identical at
very small distances and provide the GUT description of the carrier particles for the forces. GUT predicts that the other
forces become identical under conditions so extreme that they cannot be tested in the laboratory, although there may be
lingering evidence of them in the evolution of the universe. GUT is also successful in describing a system of carrier particles
for all four forces, but there is much to be done, particularly in the realm of gravity.

How can forces be unified? They are definitely distinct under most circumstances, for example, being carried by different
particles and having greatly different strengths. But experiments show that at extremely small distances, the strengths of the

forces begin to become more similar. In fact, electroweak theory’s prediction of the W+ , W- , and Z 0 carrier particles was

based on the strengths of the two forces being identical at extremely small distances as seen in Figure 33.24. As discussed in
case of the creation of virtual particles for extremely short times, the small distances or short ranges correspond to the large
masses of the carrier particles and the correspondingly large energies needed to create them. Thus, the energy scale on the
horizontal axis of Figure 33.24 corresponds to smaller and smaller distances, with 100 GeV corresponding to approximately,

10-18 m for example. At that distance, the strengths of the EM and weak forces are the same. To test physics at that distance,

energies of about 100 GeV must be put into the system, and that is sufficient to create and release the W+ , W- , and Z 0

carrier particles. At those and higher energies, the masses of the carrier particles becomes less and less relevant, and the Z 0 in

particular resembles the massless, chargeless, spin 1 photon. In fact, there is enough energy when things are pushed to even

smaller distances to transform the, and Z 0 into massless carrier particles more similar to photons and gluons. These have not

been observed experimentally, but there is a prediction of an associated particle called the Higgs boson. The mass of this

particle is not predicted with nearly the certainty with which the mass of the W + , W −, and Z 0 particles were predicted, but it

was hoped that the Higgs boson could be observed at the now-canceled Superconducting Super Collider (SSC). Ongoing
experiments at the Large Hadron Collider at CERN have presented some evidence for a Higgs boson with a mass of 125 GeV,
and there is a possibility of a direct discovery during 2012. The existence of this more massive particle would give validity to the
theory that the carrier particles are identical under certain circumstances.
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Figure 33.24 The relative strengths of the four basic forces vary with distance and, hence, energy is needed to probe small distances. At ordinary
energies (a few eV or less), the forces differ greatly as indicated in Table 33.1. However, at energies available at accelerators, the weak and EM forces
become identical, or unified. Unfortunately, the energies at which the strong and electroweak forces become the same are unreachable even in
principle at any conceivable accelerator. The universe may provide a laboratory, and nature may show effects at ordinary energies that give us clues
about the validity of this graph.

The small distances and high energies at which the electroweak force becomes identical with the strong nuclear force are not

reachable with any conceivable human-built accelerator. At energies of about 1014 GeV (16,000 J per particle), distances of

about 10−30 m can be probed. Such energies are needed to test theory directly, but these are about 1010 higher than the

proposed giant SSC would have had, and the distances are about 10−12 smaller than any structure we have direct knowledge

of. This would be the realm of various GUTs, of which there are many since there is no constraining evidence at these energies

and distances. Past experience has shown that any time you probe so many orders of magnitude further (here, about 1012 ),

you find the unexpected. Even more extreme are the energies and distances at which gravity is thought to unify with the other
forces in a TOE. Most speculative and least constrained by experiment are TOEs, one of which is called Superstring theory.

Superstrings are entities that are 10−35 m in scale and act like one-dimensional oscillating strings and are also proposed to

underlie all particles, forces, and space itself.

At the energy of GUTs, the carrier particles of the weak force would become massless and identical to gluons. If that happens,
then both lepton and baryon conservation would be violated. We do not see such violations, because we do not encounter such
energies. However, there is a tiny probability that, at ordinary energies, the virtual particles that violate the conservation of baryon
number may exist for extremely small amounts of time (corresponding to very small ranges). All GUTs thus predict that the

proton should be unstable, but would decay with an extremely long lifetime of about 1031 y . The predicted decay mode is

(33.11)p → π0 + e+, (proposed proton decay)

which violates both conservation of baryon number and electron family number. Although 1031 y is an extremely long time

(about 1021 times the age of the universe), there are a lot of protons, and detectors have been constructed to look for the

proposed decay mode as seen in Figure 33.25. It is somewhat comforting that proton decay has not been detected, and its

experimental lifetime is now greater than 5×1032 y . This does not prove GUTs wrong, but it does place greater constraints on

the theories, benefiting theorists in many ways.

From looking increasingly inward at smaller details for direct evidence of electroweak theory and GUTs, we turn around and look
to the universe for evidence of the unification of forces. In the 1920s, the expansion of the universe was discovered. Thinking
backward in time, the universe must once have been very small, dense, and extremely hot. At a tiny fraction of a second after the
fabled Big Bang, forces would have been unified and may have left their fingerprint on the existing universe. This, one of the
most exciting forefronts of physics, is the subject of Frontiers of Physics.
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baryon number:

baryons:

boson:

bottom:

charm:

colliding beams:

color:

conservation of total baryon number:

conservation of total electron family number:

conservation of total muon family number:

cyclotron:

down:

electron family number:

electroweak theory:

fermion:

Feynman diagram:

flavors:

fundamental particle:

Figure 33.25 In the Tevatron accelerator at Fermilab, protons and antiprotons collide at high energies, and some of those collisions could result in the
production of a Higgs boson in association with a W boson. When the W boson decays to a high-energy lepton and a neutrino, the detector triggers on
the lepton, whether it is an electron or a muon. (credit: D. J. Miller)

Glossary

a conserved physical quantity that is zero for mesons and leptons and ±1 for baryons and antibaryons,

respectively

hadrons that always decay to another baryon

particle with zero or an integer value of intrinsic spin

a quark flavor

a quark flavor, which is the counterpart of the strange quark

head-on collisions between particles moving in opposite directions

a quark flavor

a general rule based on the observation that the total number of nucleons was
always conserved in nuclear reactions and decays

a general rule stating that the total electron family number stays the same
through an interaction

a general rule stating that the total muon family number stays the same through
an interaction

accelerator that uses fixed-frequency alternating electric fields and fixed magnets to accelerate particles in a
circular spiral path

the second-lightest of all quarks

the number ±1 that is assigned to all members of the electron family, or the number 0 that is

assigned to all particles not in the electron family

theory showing connections between EM and weak forces

particle with a half-integer value of intrinsic spin

a graph of time versus position that describes the exchange of virtual particles between subatomic
particles

quark type

particle with no substructure
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gauge boson:

gluons:

gluons:

grand unified theory:

hadrons:

Higgs boson:

leptons:

linear accelerator:

meson:

meson:

muon family number:

particle physics:

pion:

quantum chromodynamics:

quantum chromodynamics:

quantum electrodynamics:

quark:

standard model:

strange:

strangeness:

superstring theory:

synchrotron:

synchrotron radiation:

tau family number:

theory of quark confinement:

top:

up:

Van de Graaff:

virtual particles:

particle that carries one of the four forces

exchange particles, analogous to the exchange of photons that gives rise to the electromagnetic force between two
charged particles

eight proposed particles which carry the strong force

theory that shows unification of the strong and electroweak forces

particles that feel the strong nuclear force

a massive particle that, if observed, would give validity to the theory that carrier particles are identical under
certain circumstances

particles that do not feel the strong nuclear force

accelerator that accelerates particles in a straight line

particle whose mass is intermediate between the electron and nucleon masses

hadrons that can decay to leptons and leave no hadrons

the number ±1 that is assigned to all members of the muon family, or the number 0 that is assigned

to all particles not in the muon family

the study of and the quest for those truly fundamental particles having no substructure

particle exchanged between nucleons, transmitting the force between them

quark theory including color

the governing theory of connecting quantum number color to gluons

the theory of electromagnetism on the particle scale

an elementary particle and a fundamental constituent of matter

combination of quantum chromodynamics and electroweak theory

the third lightest of all quarks

a physical quantity assigned to various particles based on decay systematics

a theory of everything based on vibrating strings some 10−35 m in length

a version of a cyclotron in which the frequency of the alternating voltage and the magnetic field strength are
increased as the beam particles are accelerated

radiation caused by a magnetic field accelerating a charged particle perpendicular to its velocity

the number ±1 that is assigned to all members of the tau family, or the number 0 that is assigned to all

particles not in the tau family

explains how quarks can exist and yet never be isolated or directly observed

a quark flavor

the lightest of all quarks

early accelerator: simple, large-scale version of the electron gun

particles which cannot be directly observed but their effects can be directly observed

Section Summary

33.1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited
• Yukawa’s idea of virtual particle exchange as the carrier of forces is crucial, with virtual particles being formed in temporary

violation of the conservation of mass-energy as allowed by the Heisenberg uncertainty principle.
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33.2 The Four Basic Forces
• The four basic forces and their carrier particles are summarized in the Table 33.1.
• Feynman diagrams are graphs of time versus position and are highly useful pictorial representations of particle processes.
• The theory of electromagnetism on the particle scale is called quantum electrodynamics (QED).

33.3 Accelerators Create Matter from Energy
• A variety of particle accelerators have been used to explore the nature of subatomic particles and to test predictions of

particle theories.
• Modern accelerators used in particle physics are either large synchrotrons or linear accelerators.
• The use of colliding beams makes much greater energy available for the creation of particles, and collisions between

matter and antimatter allow a greater range of final products.

33.4 Particles, Patterns, and Conservation Laws
• All particles of matter have an antimatter counterpart that has the opposite charge and certain other quantum numbers as

seen in Table 33.2. These matter-antimatter pairs are otherwise very similar but will annihilate when brought together.
Known particles can be divided into three major groups—leptons, hadrons, and carrier particles (gauge bosons).

• Leptons do not feel the strong nuclear force and are further divided into three groups—electron family designated by
electron family number Le ; muon family designated by muon family number Lμ ; and tau family designated by tau family

number Lτ . The family numbers are not universally conserved due to neutrino oscillations.

• Hadrons are particles that feel the strong nuclear force and are divided into baryons, with the baryon family number B
being conserved, and mesons.

33.5 Quarks: Is That All There Is?
• Hadrons are thought to be composed of quarks, with baryons having three quarks and mesons having a quark and an

antiquark.
• The characteristics of the six quarks and their antiquark counterparts are given in Table 33.3, and the quark compositions

of certain hadrons are given in Table 33.4.
• Indirect evidence for quarks is very strong, explaining all known hadrons and their quantum numbers, such as strangeness,

charm, topness, and bottomness.
• Quarks come in six flavors and three colors and occur only in combinations that produce white.
• Fundamental particles have no further substructure, not even a size beyond their de Broglie wavelength.
• There are three types of fundamental particles—leptons, quarks, and carrier particles. Each type is divided into three

analogous families as indicated in Figure 33.20.

33.6 GUTs: The Unification of Forces
• Attempts to show unification of the four forces are called Grand Unified Theories (GUTs) and have been partially

successful, with connections proven between EM and weak forces in electroweak theory.
• The strong force is carried by eight proposed particles called gluons, which are intimately connected to a quantum number

called color—their governing theory is thus called quantum chromodynamics (QCD). Taken together, QCD and the
electroweak theory are widely accepted as the Standard Model of particle physics.

• Unification of the strong force is expected at such high energies that it cannot be directly tested, but it may have observable
consequences in the as-yet unobserved decay of the proton and topics to be discussed in the next chapter. Although
unification of forces is generally anticipated, much remains to be done to prove its validity.

Conceptual Questions

33.3 Accelerators Create Matter from Energy

1. The total energy in the beam of an accelerator is far greater than the energy of the individual beam particles. Why isn’t this
total energy available to create a single extremely massive particle?

2. Synchrotron radiation takes energy from an accelerator beam and is related to acceleration. Why would you expect the
problem to be more severe for electron accelerators than proton accelerators?

3. What two major limitations prevent us from building high-energy accelerators that are physically small?

4. What are the advantages of colliding-beam accelerators? What are the disadvantages?

33.4 Particles, Patterns, and Conservation Laws

5. Large quantities of antimatter isolated from normal matter should behave exactly like normal matter. An antiatom, for example,
composed of positrons, antiprotons, and antineutrons should have the same atomic spectrum as its matter counterpart. Would
you be able to tell it is antimatter by its emission of antiphotons? Explain briefly.

6. Massless particles are not only neutral, they are chargeless (unlike the neutron). Why is this so?
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7. Massless particles must travel at the speed of light, while others cannot reach this speed. Why are all massless particles
stable? If evidence is found that neutrinos spontaneously decay into other particles, would this imply they have mass?

8. When a star erupts in a supernova explosion, huge numbers of electron neutrinos are formed in nuclear reactions. Such
neutrinos from the 1987A supernova in the relatively nearby Magellanic Cloud were observed within hours of the initial
brightening, indicating they traveled to earth at approximately the speed of light. Explain how this data can be used to set an
upper limit on the mass of the neutrino, noting that if the mass is small the neutrinos could travel very close to the speed of light
and have a reasonable energy (on the order of MeV).

9. Theorists have had spectacular success in predicting previously unknown particles. Considering past theoretical triumphs, why
should we bother to perform experiments?

10. What lifetime do you expect for an antineutron isolated from normal matter?

11. Why does the η0 meson have such a short lifetime compared to most other mesons?

12. (a) Is a hadron always a baryon?

(b) Is a baryon always a hadron?

(c) Can an unstable baryon decay into a meson, leaving no other baryon?

13. Explain how conservation of baryon number is responsible for conservation of total atomic mass (total number of nucleons) in
nuclear decay and reactions.

33.5 Quarks: Is That All There Is?

14. The quark flavor change d → u takes place in β− decay. Does this mean that the reverse quark flavor change u → d

takes place in β+ decay? Justify your response by writing the decay in terms of the quark constituents, noting that it looks as if

a proton is converted into a neutron in β+ decay.

15. Explain how the weak force can change strangeness by changing quark flavor.

16. Beta decay is caused by the weak force, as are all reactions in which strangeness changes. Does this imply that the weak
force can change quark flavor? Explain.

17. Why is it easier to see the properties of the c, b, and t quarks in mesons having composition W − or t t- rather than in

baryons having a mixture of quarks, such as udb?

18. How can quarks, which are fermions, combine to form bosons? Why must an even number combine to form a boson? Give
one example by stating the quark substructure of a boson.

19. What evidence is cited to support the contention that the gluon force between quarks is greater than the strong nuclear force
between hadrons? How is this related to color? Is it also related to quark confinement?

20. Discuss how we know that π-mesons ( π+ ,π,π0 ) are not fundamental particles and are not the basic carriers of the strong

force.

21. An antibaryon has three antiquarks with colors R- G
-

B- . What is its color?

22. Suppose leptons are created in a reaction. Does this imply the weak force is acting? (for example, consider β decay.)

23. How can the lifetime of a particle indicate that its decay is caused by the strong nuclear force? How can a change in
strangeness imply which force is responsible for a reaction? What does a change in quark flavor imply about the force that is
responsible?

24. (a) Do all particles having strangeness also have at least one strange quark in them?

(b) Do all hadrons with a strange quark also have nonzero strangeness?

25. The sigma-zero particle decays mostly via the reaction Σ0 → Λ0 + γ . Explain how this decay and the respective quark

compositions imply that the Σ0 is an excited state of the Λ0 .

26. What do the quark compositions and other quantum numbers imply about the relationships between the Δ+ and the

proton? The Δ0 and the neutron?

27. Discuss the similarities and differences between the photon and the Z 0 in terms of particle properties, including forces felt.

28. Identify evidence for electroweak unification.

29. The quarks in a particle are confined, meaning individual quarks cannot be directly observed. Are gluons confined as well?
Explain
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33.6 GUTs: The Unification of Forces

30. If a GUT is proven, and the four forces are unified, it will still be correct to say that the orbit of the moon is determined by the
gravitational force. Explain why.

31. If the Higgs boson is discovered and found to have mass, will it be considered the ultimate carrier of the weak force? Explain
your response.

32. Gluons and the photon are massless. Does this imply that the W + , W − , and Z 0 are the ultimate carriers of the weak

force?
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Problems & Exercises

33.1 The Yukawa Particle and the Heisenberg
Uncertainty Principle Revisited

1. A virtual particle having an approximate mass of

1014 GeV/c2 may be associated with the unification of the

strong and electroweak forces. For what length of time could
this virtual particle exist (in temporary violation of the
conservation of mass-energy as allowed by the Heisenberg
uncertainty principle)?

2. Calculate the mass in GeV/c2 of a virtual carrier particle

that has a range limited to 10−30 m by the Heisenberg

uncertainty principle. Such a particle might be involved in the
unification of the strong and electroweak forces.

3. Another component of the strong nuclear force is
transmitted by the exchange of virtual K-mesons. Taking

K-mesons to have an average mass of 495 MeV/c2 , what

is the approximate range of this component of the strong
force?

33.2 The Four Basic Forces

4. (a) Find the ratio of the strengths of the weak and
electromagnetic forces under ordinary circumstances.

(b) What does that ratio become under circumstances in
which the forces are unified?

5. The ratio of the strong to the weak force and the ratio of the
strong force to the electromagnetic force become 1 under
circumstances where they are unified. What are the ratios of
the strong force to those two forces under normal
circumstances?

33.3 Accelerators Create Matter from Energy

6. At full energy, protons in the 2.00-km-diameter Fermilab
synchrotron travel at nearly the speed of light, since their
energy is about 1000 times their rest mass energy.

(a) How long does it take for a proton to complete one trip
around?

(b) How many times per second will it pass through the target
area?

7. Suppose a W − created in a bubble chamber lives for

5.00×10−25 s. What distance does it move in this time if it

is traveling at 0.900 c? Since this distance is too short to
make a track, the presence of the W − must be inferred from

its decay products. Note that the time is longer than the given
W − lifetime, which can be due to the statistical nature of

decay or time dilation.

8. What length track does a π+ traveling at 0.100 c leave in

a bubble chamber if it is created there and lives for

2.60×10−8 s ? (Those moving faster or living longer may

escape the detector before decaying.)

9. The 3.20-km-long SLAC produces a beam of 50.0-GeV
electrons. If there are 15,000 accelerating tubes, what
average voltage must be across the gaps between them to
achieve this energy?

10. Because of energy loss due to synchrotron radiation in
the LHC at CERN, only 5.00 MeV is added to the energy of
each proton during each revolution around the main ring. How
many revolutions are needed to produce 7.00-TeV (7000
GeV) protons, if they are injected with an initial energy of 8.00
GeV?

11. A proton and an antiproton collide head-on, with each
having a kinetic energy of 7.00 TeV (such as in the LHC at
CERN). How much collision energy is available, taking into
account the annihilation of the two masses? (Note that this is
not significantly greater than the extremely relativistic kinetic
energy.)

12. When an electron and positron collide at the SLAC facility,
they each have 50.0 GeV kinetic energies. What is the total
collision energy available, taking into account the annihilation
energy? Note that the annihilation energy is insignificant,
because the electrons are highly relativistic.

33.4 Particles, Patterns, and Conservation
Laws

13. The π0 is its own antiparticle and decays in the following

manner: π0 → γ + γ . What is the energy of each γ ray if

the π0 is at rest when it decays?

14. The primary decay mode for the negative pion is

π− → μ− + ν- μ . What is the energy release in MeV in this

decay?

15. The mass of a theoretical particle that may be associated
with the unification of the electroweak and strong forces is

1014 GeV/c2 .

(a) How many proton masses is this?

(b) How many electron masses is this? (This indicates how
extremely relativistic the accelerator would have to be in order
to make the particle, and how large the relativistic quantity γ
would have to be.)

16. The decay mode of the negative muon is

μ− → e− + ν- e + νμ .

(a) Find the energy released in MeV.

(b) Verify that charge and lepton family numbers are
conserved.

17. The decay mode of the positive tau is

τ+ → μ+ + νμ + ν- τ .

(a) What energy is released?

(b) Verify that charge and lepton family numbers are
conserved.

(c) The τ+ is the antiparticle of the τ− .Verify that all the

decay products of the τ+ are the antiparticles of those in the

decay of the τ− given in the text.
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18. The principal decay mode of the sigma zero is

Σ0 → Λ0 + γ .

(a) What energy is released?

(b) Considering the quark structure of the two baryons, does it

appear that the Σ0 is an excited state of the Λ0 ?

(c) Verify that strangeness, charge, and baryon number are
conserved in the decay.

(d) Considering the preceding and the short lifetime, can the
weak force be responsible? State why or why not.

19. (a) What is the uncertainty in the energy released in the

decay of a π0 due to its short lifetime?

(b) What fraction of the decay energy is this, noting that the

decay mode is π0 → γ + γ (so that all the π0 mass is

destroyed)?

20. (a) What is the uncertainty in the energy released in the
decay of a τ− due to its short lifetime?

(b) Is the uncertainty in this energy greater than or less than
the uncertainty in the mass of the tau neutrino? Discuss the
source of the uncertainty.

33.5 Quarks: Is That All There Is?

21. (a) Verify from its quark composition that the Δ+ particle

could be an excited state of the proton.

(b) There is a spread of about 100 MeV in the decay energy

of the Δ+ , interpreted as uncertainty due to its short lifetime.

What is its approximate lifetime?

(c) Does its decay proceed via the strong or weak force?

22. Accelerators such as the Triangle Universities Meson
Facility (TRIUMF) in British Columbia produce secondary
beams of pions by having an intense primary proton beam
strike a target. Such “meson factories” have been used for
many years to study the interaction of pions with nuclei and,
hence, the strong nuclear force. One reaction that occurs is

π+ + p → Δ++ → π+ + p , where the Δ++ is a very

short-lived particle. The graph in Figure 33.26 shows the
probability of this reaction as a function of energy. The width
of the bump is the uncertainty in energy due to the short

lifetime of the Δ++ .

(a) Find this lifetime.

(b) Verify from the quark composition of the particles that this

reaction annihilates and then re-creates a d quark and a d
-

antiquark by writing the reaction and decay in terms of
quarks.

(c) Draw a Feynman diagram of the production and decay of

the Δ++ showing the individual quarks involved.

Figure 33.26 This graph shows the probability of an interaction between

a π+
and a proton as a function of energy. The bump is interpreted as

a very short lived particle called a Δ++
. The approximately 100-MeV

width of the bump is due to the short lifetime of the Δ++
.

23. The reaction π+ + p → Δ++ (described in the

preceding problem) takes place via the strong force. (a) What

is the baryon number of the Δ++ particle?

(b) Draw a Feynman diagram of the reaction showing the
individual quarks involved.

24. One of the decay modes of the omega minus is

Ω− → Ξ0 + π− .

(a) What is the change in strangeness?

(b) Verify that baryon number and charge are conserved,
while lepton numbers are unaffected.

(c) Write the equation in terms of the constituent quarks,
indicating that the weak force is responsible.

25. Repeat the previous problem for the decay mode

Ω− → Λ0 + K −.
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26. One decay mode for the eta-zero meson is η0 → γ + γ.

(a) Find the energy released.

(b) What is the uncertainty in the energy due to the short
lifetime?

(c) Write the decay in terms of the constituent quarks.

(d) Verify that baryon number, lepton numbers, and charge
are conserved.

27. One decay mode for the eta-zero meson is

η0 → π0 + π0 .

(a) Write the decay in terms of the quark constituents.

(b) How much energy is released?

(c) What is the ultimate release of energy, given the decay

mode for the pi zero is π0 → γ + γ ?

28. Is the decay n → e+ + e− possible considering the

appropriate conservation laws? State why or why not.

29. Is the decay μ− → e− + νe + νμ possible considering

the appropriate conservation laws? State why or why not.

30. (a) Is the decay Λ0 → n + π0 possible considering the

appropriate conservation laws? State why or why not.

(b) Write the decay in terms of the quark constituents of the
particles.

31. (a) Is the decay Σ− → n + π− possible considering the

appropriate conservation laws? State why or why not. (b)
Write the decay in terms of the quark constituents of the
particles.

32. The only combination of quark colors that produces a
white baryon is RGB. Identify all the color combinations that
can produce a white meson.

33. (a) Three quarks form a baryon. How many combinations
of the six known quarks are there if all combinations are
possible?

(b) This number is less than the number of known baryons.
Explain why.

34. (a) Show that the conjectured decay of the proton,

p → π0 + e+ , violates conservation of baryon number and

conservation of lepton number.

(b) What is the analogous decay process for the antiproton?

35. Verify the quantum numbers given for the Ω+ in Table

33.2 by adding the quantum numbers for its quark
constituents as inferred from Table 33.4.

36. Verify the quantum numbers given for the proton and
neutron in Table 33.2 by adding the quantum numbers for
their quark constituents as given in Table 33.4.

37. (a) How much energy would be released if the proton did

decay via the conjectured reaction p → π0 + e+ ?

(b) Given that the π0 decays to two γ s and that the e+

will find an electron to annihilate, what total energy is
ultimately produced in proton decay?

(c) Why is this energy greater than the proton’s total mass
(converted to energy)?

38. (a) Find the charge, baryon number, strangeness, charm,
and bottomness of the J / Ψ particle from its quark

composition.

(b) Do the same for the ϒ particle.

39. There are particles called D-mesons. One of them is the

D+ meson, which has a single positive charge and a baryon

number of zero, also the value of its strangeness, topness,
and bottomness. It has a charm of +1. What is its quark

configuration?

40. There are particles called bottom mesons or B-mesons.
One of them is the B− meson, which has a single negative

charge; its baryon number is zero, as are its strangeness,
charm, and topness. It has a bottomness of −1 . What is its

quark configuration?

41. (a) What particle has the quark composition u- u- d
-

?

(b) What should its decay mode be?

42. (a) Show that all combinations of three quarks produce
integral charges. Thus baryons must have integral charge.

(b) Show that all combinations of a quark and an antiquark
produce only integral charges. Thus mesons must have
integral charge.
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33.6 GUTs: The Unification of Forces

43. Integrated Concepts

The intensity of cosmic ray radiation decreases rapidly with
increasing energy, but there are occasionally extremely
energetic cosmic rays that create a shower of radiation from
all the particles they create by striking a nucleus in the
atmosphere as seen in the figure given below. Suppose a

cosmic ray particle having an energy of 1010 GeV converts

its energy into particles with masses averaging

200 MeV/c2 . (a) How many particles are created? (b) If the

particles rain down on a 1.00-km2 area, how many particles

are there per square meter?

Figure 33.27 An extremely energetic cosmic ray creates a shower of

particles on earth. The energy of these rare cosmic rays can approach a

joule (about 1010 GeV ) and, after multiple collisions, huge numbers

of particles are created from this energy. Cosmic ray showers have been

observed to extend over many square kilometers.

44. Integrated Concepts

Assuming conservation of momentum, what is the energy of
each γ ray produced in the decay of a neutral at rest pion, in

the reaction π0 → γ + γ ?

45. Integrated Concepts

What is the wavelength of a 50-GeV electron, which is
produced at SLAC? This provides an idea of the limit to the
detail it can probe.

46. Integrated Concepts

(a) Calculate the relativistic quantity γ = 1
1 − v2 / c2

for

1.00-TeV protons produced at Fermilab. (b) If such a proton

created a π+ having the same speed, how long would its life

be in the laboratory? (c) How far could it travel in this time?

47. Integrated Concepts

The primary decay mode for the negative pion is

π− → μ− + ν- μ . (a) What is the energy release in MeV in

this decay? (b) Using conservation of momentum, how much
energy does each of the decay products receive, given the
π− is at rest when it decays? You may assume the muon

antineutrino is massless and has momentum p = E / c , just

like a photon.

48. Integrated Concepts

Plans for an accelerator that produces a secondary beam of
K-mesons to scatter from nuclei, for the purpose of studying
the strong force, call for them to have a kinetic energy of 500
MeV. (a) What would the relativistic quantity

γ = 1
1 − v2 / c2

be for these particles? (b) How long would

their average lifetime be in the laboratory? (c) How far could
they travel in this time?

49. Integrated Concepts

Suppose you are designing a proton decay experiment and
you can detect 50 percent of the proton decays in a tank of
water. (a) How many kilograms of water would you need to

see one decay per month, assuming a lifetime of 1031 y ?

(b) How many cubic meters of water is this? (c) If the actual

lifetime is 1033 y , how long would you have to wait on an

average to see a single proton decay?

50. Integrated Concepts

In supernovas, neutrinos are produced in huge amounts.
They were detected from the 1987A supernova in the
Magellanic Cloud, which is about 120,000 light years away
from the Earth (relatively close to our Milky Way galaxy). If
neutrinos have a mass, they cannot travel at the speed of
light, but if their mass is small, they can get close. (a)

Suppose a neutrino with a 7-eV/c2 mass has a kinetic

energy of 700 keV. Find the relativistic quantity

γ = 1
1 − v2 / c2

for it. (b) If the neutrino leaves the 1987A

supernova at the same time as a photon and both travel to
Earth, how much sooner does the photon arrive? This is not a
large time difference, given that it is impossible to know which
neutrino left with which photon and the poor efficiency of the
neutrino detectors. Thus, the fact that neutrinos were
observed within hours of the brightening of the supernova
only places an upper limit on the neutrino’s mass. (Hint: You
may need to use a series expansion to find v for the neutrino,
since its γ is so large.)

51. Construct Your Own Problem

Consider an ultrahigh-energy cosmic ray entering the Earth’s
atmosphere (some have energies approaching a joule).
Construct a problem in which you calculate the energy of the
particle based on the number of particles in an observed
cosmic ray shower. Among the things to consider are the
average mass of the shower particles, the average number
per square meter, and the extent (number of square meters
covered) of the shower. Express the energy in eV and joules.

52. Construct Your Own Problem

Consider a detector needed to observe the proposed, but
extremely rare, decay of an electron. Construct a problem in
which you calculate the amount of matter needed in the
detector to be able to observe the decay, assuming that it has
a signature that is clearly identifiable. Among the things to
consider are the estimated half life (long for rare events), and
the number of decays per unit time that you wish to observe,
as well as the number of electrons in the detector substance.
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34 FRONTIERS OF PHYSICS

Figure 34.1 This galaxy is ejecting huge jets of matter, powered by an immensely massive black hole at its center. (credit: X-ray: NASA/CXC/CfA/R.
Kraft et al.)

Chapter Outline
34.1. Cosmology and Particle Physics

• Discuss the expansion of the universe.
• Explain the Big Bang.

34.2. General Relativity and Quantum Gravity
• Explain the effect of gravity on light.
• Discuss black hole.
• Explain quantum gravity.

34.3. Superstrings
• Define Superstring theory.
• Explain the relationship between Superstring theory and the Big Bang.

34.4. Dark Matter and Closure
• Discuss the existence of dark matter.
• Explain neutrino oscillations and their consequences.

34.5. Complexity and Chaos
• Explain complex systems.
• Discuss chaotic behavior of different systems.

34.6. High-temperature Superconductors
• Identify superconductors and their uses.
• Discuss the need for a high-Tc superconductor.

34.7. Some Questions We Know to Ask
• Identify sample questions to be asked on the largest scales.
• Identify sample questions to be asked on the intermediate scale.
• Identify sample questions to be asked on the smallest scales.

Introduction to Frontiers of Physics

Frontiers are exciting. There is mystery, surprise, adventure, and discovery. The satisfaction of finding the answer to a question is
made keener by the fact that the answer always leads to a new question. The picture of nature becomes more complete, yet
nature retains its sense of mystery and never loses its ability to awe us. The view of physics is beautiful looking both backward
and forward in time. What marvelous patterns we have discovered. How clever nature seems in its rules and connections. How
awesome. And we continue looking ever deeper and ever further, probing the basic structure of matter, energy, space, and time
and wondering about the scope of the universe, its beginnings and future.

You are now in a wonderful position to explore the forefronts of physics, both the new discoveries and the unanswered questions.
With the concepts, qualitative and quantitative, the problem-solving skills, the feeling for connections among topics, and all the
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rest you have mastered, you can more deeply appreciate and enjoy the brief treatments that follow. Years from now you will still
enjoy the quest with an insight all the greater for your efforts.

34.1 Cosmology and Particle Physics

Look at the sky on some clear night when you are away from city lights. There you will see thousands of individual stars and a
faint glowing background of millions more. The Milky Way, as it has been called since ancient times, is an arm of our galaxy of
stars—the word galaxy coming from the Greek word galaxias, meaning milky. We know a great deal about our Milky Way galaxy
and of the billions of other galaxies beyond its fringes. But they still provoke wonder and awe (see Figure 34.2). And there are
still many questions to be answered. Most remarkable when we view the universe on the large scale is that once again
explanations of its character and evolution are tied to the very small scale. Particle physics and the questions being asked about
the very small scales may also have their answers in the very large scales.

Figure 34.2 Take a moment to contemplate these clusters of galaxies, photographed by the Hubble Space Telescope. Trillions of stars linked by gravity
in fantastic forms, glowing with light and showing evidence of undiscovered matter. What are they like, these myriad stars? How did they evolve? What
can they tell us of matter, energy, space, and time? (credit: NASA, ESA, K. Sharon (Tel Aviv University) and E. Ofek (Caltech))

As has been noted in numerous Things Great and Small vignettes, this is not the first time the large has been explained by the
small and vice versa. Newton realized that the nature of gravity on Earth that pulls an apple to the ground could explain the
motion of the moon and planets so much farther away. Minute atoms and molecules explain the chemistry of substances on a
much larger scale. Decays of tiny nuclei explain the hot interior of the Earth. Fusion of nuclei likewise explains the energy of
stars. Today, the patterns in particle physics seem to be explaining the evolution and character of the universe. And the nature of
the universe has implications for unexplored regions of particle physics.

Cosmology is the study of the character and evolution of the universe. What are the major characteristics of the universe as we

know them today? First, there are approximately 1011 galaxies in the observable part of the universe. An average galaxy

contains more than 1011 stars, with our Milky Way galaxy being larger than average, both in its number of stars and its

dimensions. Ours is a spiral-shaped galaxy with a diameter of about 100,000 light years and a thickness of about 2000 light
years in the arms with a central bulge about 10,000 light years across. The Sun lies about 30,000 light years from the center
near the galactic plane. There are significant clouds of gas, and there is a halo of less-dense regions of stars surrounding the
main body. (See Figure 34.3.) Evidence strongly suggests the existence of a large amount of additional matter in galaxies that
does not produce light—the mysterious dark matter we shall later discuss.
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Figure 34.3 The Milky Way galaxy is typical of large spiral galaxies in its size, its shape, and the presence of gas and dust. We are fortunate to be in a
location where we can see out of the galaxy and observe the vastly larger and fascinating universe around us. (a) Side view. (b) View from above. (c)
The Milky Way as seen from Earth. (credits: (a) NASA, (b) Nick Risinger, (c) Andy)

Distances are great even within our galaxy and are measured in light years (the distance traveled by light in one year). The
average distance between galaxies is on the order of a million light years, but it varies greatly with galaxies forming clusters such
as shown in Figure 34.2. The Magellanic Clouds, for example, are small galaxies close to our own, some 160,000 light years
from Earth. The Andromeda galaxy is a large spiral galaxy like ours and lies 2 million light years away. It is just visible to the
naked eye as an extended glow in the Andromeda constellation. Andromeda is the closest large galaxy in our local group, and
we can see some individual stars in it with our larger telescopes. The most distant known galaxy is 14 billion light years from
Earth—a truly incredible distance. (See Figure 34.4.)
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Figure 34.4 (a) Andromeda is the closest large galaxy, at 2 million light years distance, and is very similar to our Milky Way. The blue regions harbor
young and emerging stars, while dark streaks are vast clouds of gas and dust. A smaller satellite galaxy is clearly visible. (b) The box indicates what
may be the most distant known galaxy, estimated to be 13 billion light years from us. It exists in a much older part of the universe. (credit: NASA, ESA,
G. Illingworth (University of California, Santa Cruz), R. Bouwens (University of California, Santa Cruz and Leiden University), and the HUDF09 Team)

Consider the fact that the light we receive from these vast distances has been on its way to us for a long time. In fact, the time in
years is the same as the distance in light years. For example, the Andromeda galaxy is 2 million light years away, so that the light
now reaching us left it 2 million years ago. If we could be there now, Andromeda would be different. Similarly, light from the most
distant galaxy left it 14 billion years ago. We have an incredible view of the past when looking great distances. We can try to see
if the universe was different then—if distant galaxies are more tightly packed or have younger-looking stars, for example, than
closer galaxies, in which case there has been an evolution in time. But the problem is that the uncertainties in our data are great.
Cosmology is almost typified by these large uncertainties, so that we must be especially cautious in drawing conclusions. One
consequence is that there are more questions than answers, and so there are many competing theories. Another consequence
is that any hard data produce a major result. Discoveries of some importance are being made on a regular basis, the hallmark of
a field in its golden age.

Perhaps the most important characteristic of the universe is that all galaxies except those in our local cluster seem to be moving
away from us at speeds proportional to their distance from our galaxy. It looks as if a gigantic explosion, universally called the
Big Bang, threw matter out some billions of years ago. This amazing conclusion is based on the pioneering work of Edwin
Hubble (1889–1953), the American astronomer. In the 1920s, Hubble first demonstrated conclusively that other galaxies, many
previously called nebulae or clouds of stars, were outside our own. He then found that all but the closest galaxies have a red shift
in their hydrogen spectra that is proportional to their distance. The explanation is that there is a cosmological red shift due to
the expansion of space itself. The photon wavelength is stretched in transit from the source to the observer. Double the distance,
and the red shift is doubled. While this cosmological red shift is often called a Doppler shift, it is not—space itself is expanding.
There is no center of expansion in the universe. All observers see themselves as stationary; the other objects in space appear to
be moving away from them. Hubble was directly responsible for discovering that the universe was much larger than had
previously been imagined and that it had this amazing characteristic of rapid expansion.

Universal expansion on the scale of galactic clusters (that is, galaxies at smaller distances are not uniformly receding from one
another) is an integral part of modern cosmology. For galaxies farther away than about 50 Mly (50 million light years), the
expansion is uniform with variations due to local motions of galaxies within clusters. A representative recession velocity v can

be obtained from the simple formula

(34.1)v = H0d,

where d is the distance to the galaxy and H0 is the Hubble constant. The Hubble constant is a central concept in cosmology.

Its value is determined by taking the slope of a graph of velocity versus distance, obtained from red shift measurements, such as
shown in Figure 34.5. We shall use an approximate value of H0 = 20 km/s ⋅  Mly. Thus, v = H0d is an average behavior

for all but the closest galaxies. For example, a galaxy 100 Mly away (as determined by its size and brightness) typically moves
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away from us at a speed of v = (20 km/s ⋅  Mly)(100 Mly) = 2000 km/s. There can be variations in this speed due to so-

called local motions or interactions with neighboring galaxies. Conversely, if a galaxy is found to be moving away from us at
speed of 100,000 km/s based on its red shift, it is at a distance

d = v / H0 = (10,000 km/s) / (20 km/s ⋅  Mly) = 5000 Mly = 5 Gly or 5×109 ly . This last calculation is approximate,

because it assumes the expansion rate was the same 5 billion years ago as now. A similar calculation in Hubble’s measurement
changed the notion that the universe is in a steady state.

Figure 34.5 This graph of red shift versus distance for galaxies shows a linear relationship, with larger red shifts at greater distances, implying an
expanding universe. The slope gives an approximate value for the expansion rate. (credit: John Cub).

One of the most intriguing developments recently has been the discovery that the expansion of the universe may be faster now
than in the past, rather than slowing due to gravity as expected. Various groups have been looking, in particular, at supernovas in
moderately distant galaxies (less than 1 Gly) to get improved distance measurements. Those distances are larger than expected
for the observed galactic red shifts, implying the expansion was slower when that light was emitted. This has cosmological
consequences that are discussed in Dark Matter and Closure. The first results, published in 1999, are only the beginning of
emerging data, with astronomy now entering a data-rich era.

Figure 34.6 shows how the recession of galaxies looks like the remnants of a gigantic explosion, the famous Big Bang.
Extrapolating backward in time, the Big Bang would have occurred between 13 and 15 billion years ago when all matter would
have been at a point. Questions instantly arise. What caused the explosion? What happened before the Big Bang? Was there a
before, or did time start then? Will the universe expand forever, or will gravity reverse it into a Big Crunch? And is there other
evidence of the Big Bang besides the well-documented red shifts?

Figure 34.6 Galaxies are flying apart from one another, with the more distant moving faster as if a primordial explosion expelled the matter from which
they formed. The most distant known galaxies move nearly at the speed of light relative to us.

The Russian-born American physicist George Gamow (1904–1968) was among the first to note that, if there was a Big Bang, the
remnants of the primordial fireball should still be evident and should be blackbody radiation. Since the radiation from this fireball
has been traveling to us since shortly after the Big Bang, its wavelengths should be greatly stretched. It will look as if the fireball
has cooled in the billions of years since the Big Bang. Gamow and collaborators predicted in the late 1940s that there should be
blackbody radiation from the explosion filling space with a characteristic temperature of about 7 K. Such blackbody radiation
would have its peak intensity in the microwave part of the spectrum. (See Figure 34.7.) In 1964, Arno Penzias and Robert
Wilson, two American scientists working with Bell Telephone Laboratories on a low-noise radio antenna, detected the radiation
and eventually recognized it for what it is.

Figure 34.7(b) shows the spectrum of this microwave radiation that permeates space and is of cosmic origin. It is the most
perfect blackbody spectrum known, and the temperature of the fireball remnant is determined from it to be 2.725 ± 0.002K .

The detection of what is now called the cosmic microwave background (CMBR) was so important (generally considered as
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important as Hubble’s detection that the galactic red shift is proportional to distance) that virtually every scientist has accepted
the expansion of the universe as fact. Penzias and Wilson shared the 1978 Nobel Prize in Physics for their discovery.

Figure 34.7 (a) The Big Bang is used to explain the present observed expansion of the universe. It was an incredibly energetic explosion some 10 to
20 billion years ago. After expanding and cooling, galaxies form inside the now-cold remnants of the primordial fireball. (b) The spectrum of cosmic
microwave radiation is the most perfect blackbody spectrum ever detected. It is characteristic of a temperature of 2.725 K, the expansion-cooled
temperature of the Big Bang’s remnant. This radiation can be measured coming from any direction in space not obscured by some other source. It is
compelling evidence of the creation of the universe in a gigantic explosion, already indicated by galactic red shifts.

Making Connections: Cosmology and Particle Physics

There are many connections of cosmology—by definition involving physics on the largest scale—with particle physics—by
definition physics on the smallest scale. Among these are the dominance of matter over antimatter, the nearly perfect
uniformity of the cosmic microwave background, and the mere existence of galaxies.

Matter versus antimatter We know from direct observation that antimatter is rare. The Earth and the solar system are nearly
pure matter. Space probes and cosmic rays give direct evidence—the landing of the Viking probes on Mars would have been
spectacular explosions of mutual annihilation energy if Mars were antimatter. We also know that most of the universe is
dominated by matter. This is proven by the lack of annihilation radiation coming to us from space, particularly the relative
absence of 0.511-MeV γ rays created by the mutual annihilation of electrons and positrons. It seemed possible that there could

be entire solar systems or galaxies made of antimatter in perfect symmetry with our matter-dominated systems. But the
interactions between stars and galaxies would sometimes bring matter and antimatter together in large amounts. The annihilation

radiation they would produce is simply not observed. Antimatter in nature is created in particle collisions and in β+ decays, but

only in small amounts that quickly annihilate, leaving almost pure matter surviving.

Particle physics seems symmetric in matter and antimatter. Why isn’t the cosmos? The answer is that particle physics is not quite
perfectly symmetric in this regard. The decay of one of the neutral K -mesons, for example, preferentially creates more matter

than antimatter. This is caused by a fundamental small asymmetry in the basic forces. This small asymmetry produced slightly
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more matter than antimatter in the early universe. If there was only one part in 109 more matter (a small asymmetry), the rest

would annihilate pair for pair, leaving nearly pure matter to form the stars and galaxies we see today. So the vast number of stars
we observe may be only a tiny remnant of the original matter created in the Big Bang. Here at last we see a very real and
important asymmetry in nature. Rather than be disturbed by an asymmetry, most physicists are impressed by how small it is.
Furthermore, if the universe were completely symmetric, the mutual annihilation would be more complete, leaving far less matter
to form us and the universe we know.

How can something so old have so few wrinkles? A troubling aspect of cosmic microwave background radiation (CMBR) was
soon recognized. True, the CMBR verified the Big Bang, had the correct temperature, and had a blackbody spectrum as
expected. But the CMBR was too smooth—it looked identical in every direction. Galaxies and other similar entities could not be
formed without the existence of fluctuations in the primordial stages of the universe and so there should be hot and cool spots in
the CMBR, nicknamed wrinkles, corresponding to dense and sparse regions of gas caused by turbulence or early fluctuations.
Over time, dense regions would contract under gravity and form stars and galaxies. Why aren’t the fluctuations there? (This is a
good example of an answer producing more questions.) Furthermore, galaxies are observed very far from us, so that they
formed very long ago. The problem was to explain how galaxies could form so early and so quickly after the Big Bang if its
remnant fingerprint is perfectly smooth. The answer is that if you look very closely, the CMBR is not perfectly smooth, only
extremely smooth.

A satellite called the Cosmic Background Explorer (COBE) carried an instrument that made very sensitive and accurate
measurements of the CMBR. In April of 1992, there was extraordinary publicity of COBE’s first results—there were small
fluctuations in the CMBR. Further measurements were carried out by experiments including NASA’s Wilkinson Microwave
Anisotropy Probe (WMAP), which launched in 2001. Data from WMAP provided a much more detailed picture of the CMBR
fluctuations. (See Figure 34.7.) These amount to temperature fluctuations of only 200 μk out of 2.7 K, better than one part in

1000. The WMAP experiment will be followed up by the European Space Agency’s Planck Surveyor, which launched in 2009.

Figure 34.8 This map of the sky uses color to show fluctuations, or wrinkles, in the cosmic microwave background observed with the WMAP
spacecraft. The Milky Way has been removed for clarity. Red represents higher temperature and higher density, while blue is lower temperature and
density. The fluctuations are small, less than one part in 1000, but these are still thought to be the cause of the eventual formation of galaxies. (credit:
NASA/WMAP Science Team)

Let us now examine the various stages of the overall evolution of the universe from the Big Bang to the present, illustrated in
Figure 34.9. Note that scientific notation is used to encompass the many orders of magnitude in time, energy, temperature, and
size of the universe. Going back in time, the two lines approach but do not cross (there is no zero on an exponential scale).
Rather, they extend indefinitely in ever-smaller time intervals to some infinitesimal point.
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Figure 34.9 The evolution of the universe from the Big Bang onward is intimately tied to the laws of physics, especially those of particle physics at the
earliest stages. The universe is relativistic throughout its history. Theories of the unification of forces at high energies may be verified by their shaping
of the universe and its evolution.

Going back in time is equivalent to what would happen if expansion stopped and gravity pulled all the galaxies together,
compressing and heating all matter. At a time long ago, the temperature and density were too high for stars and galaxies to exist.
Before then, there was a time when the temperature was too great for atoms to exist. And farther back yet, there was a time
when the temperature and density were so great that nuclei could not exist. Even farther back in time, the temperature was so
high that average kinetic energy was great enough to create short-lived particles, and the density was high enough to make this

likely. When we extrapolate back to the point of W ±
and Z 0 production (thermal energies reaching 1 TeV, or a temperature of

about 1015 K ), we reach the limits of what we know directly about particle physics. This is at a time about 10−12 s after the

Big Bang. While 10−12 s may seem to be negligibly close to the instant of creation, it is not. There are important stages before

this time that are tied to the unification of forces. At those stages, the universe was at extremely high energies and average

particle separations were smaller than we can achieve with accelerators. What happened in the early stages before 10−12 s is

crucial to all later stages and is possibly discerned by observing present conditions in the universe. One of these is the
smoothness of the CMBR.

Names are given to early stages representing key conditions. The stage before 10−11 s back to 10−34 s is called the

electroweak epoch, because the electromagnetic and weak forces become identical for energies above about 100 GeV. As
discussed earlier, theorists expect that the strong force becomes identical to and thus unified with the electroweak force at

energies of about 1014 GeV . The average particle energy would be this great at 10−34 s after the Big Bang, if there are no

surprises in the unknown physics at energies above about 1 TeV. At the immense energy of 1014 GeV (corresponding to a

temperature of about 1026 K ), the W ±
and Z 0 carrier particles would be transformed into massless gauge bosons to

accomplish the unification. Before 10−34 s back to about 10−43 s , we have Grand Unification in the GUT epoch, in which all

forces except gravity are identical. At 10−43 s , the average energy reaches the immense 1019 GeV needed to unify gravity

with the other forces in TOE, the Theory of Everything. Before that time is the TOE epoch, but we have almost no idea as to the
nature of the universe then, since we have no workable theory of quantum gravity. We call the hypothetical unified force
superforce.

Now let us imagine starting at TOE and moving forward in time to see what type of universe is created from various events along
the way. As temperatures and average energies decrease with expansion, the universe reaches the stage where average

particle separations are large enough to see differences between the strong and electroweak forces (at about 10−35 s ). After
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this time, the forces become distinct in almost all interactions—they are no longer unified or symmetric. This transition from GUT
to electroweak is an example of spontaneous symmetry breaking, in which conditions spontaneously evolved to a point where
the forces were no longer unified, breaking that symmetry. This is analogous to a phase transition in the universe, and a clever
proposal by American physicist Alan Guth in the early 1980s ties it to the smoothness of the CMBR. Guth proposed that
spontaneous symmetry breaking (like a phase transition during cooling of normal matter) released an immense amount of energy

that caused the universe to expand extremely rapidly for the brief time from 10−35 s to about 10−32 s . This expansion may

have been by an incredible factor of 1050 or more in the size of the universe and is thus called the inflationary scenario. One

result of this inflation is that it would stretch the wrinkles in the universe nearly flat, leaving an extremely smooth CMBR. While
speculative, there is as yet no other plausible explanation for the smoothness of the CMBR. Unless the CMBR is not really
cosmic but local in origin, the distances between regions of similar temperatures are too great for any coordination to have
caused them, since any coordination mechanism must travel at the speed of light. Again, particle physics and cosmology are
intimately entwined. There is little hope that we may be able to test the inflationary scenario directly, since it occurs at energies

near 1014 GeV , vastly greater than the limits of modern accelerators. But the idea is so attractive that it is incorporated into

most cosmological theories.

Characteristics of the present universe may help us determine the validity of this intriguing idea. Additionally, the recent
indications that the universe’s expansion rate may be increasing (see Dark Matter and Closure) could even imply that we are in
another inflationary epoch.

It is important to note that, if conditions such as those found in the early universe could be created in the laboratory, we would
see the unification of forces directly today. The forces have not changed in time, but the average energy and separation of
particles in the universe have. As discussed in The Four Basic Forces, the four basic forces in nature are distinct under most
circumstances found today. The early universe and its remnants provide evidence from times when they were unified under most
circumstances.

34.2 General Relativity and Quantum Gravity

When we talk of black holes or the unification of forces, we are actually discussing aspects of general relativity and quantum
gravity. We know from Special Relativity that relativity is the study of how different observers measure the same event,
particularly if they move relative to one another. Einstein’s theory of general relativity describes all types of relative motion
including accelerated motion and the effects of gravity. General relativity encompasses special relativity and classical relativity in
situations where acceleration is zero and relative velocity is small compared with the speed of light. Many aspects of general
relativity have been verified experimentally, some of which are better than science fiction in that they are bizarre but true.
Quantum gravity is the theory that deals with particle exchange of gravitons as the mechanism for the force, and with extreme
conditions where quantum mechanics and general relativity must both be used. A good theory of quantum gravity does not yet
exist, but one will be needed to understand how all four forces may be unified. If we are successful, the theory of quantum gravity
will encompass all others, from classical physics to relativity to quantum mechanics—truly a Theory of Everything (TOE).

General Relativity

Einstein first considered the case of no observer acceleration when he developed the revolutionary special theory of relativity,
publishing his first work on it in 1905. By 1916, he had laid the foundation of general relativity, again almost on his own. Much of
what Einstein did to develop his ideas was to mentally analyze certain carefully and clearly defined situations—doing this is to
perform a thought experiment. Figure 34.10 illustrates a thought experiment like the ones that convinced Einstein that light
must fall in a gravitational field. Think about what a person feels in an elevator that is accelerated upward. It is identical to being
in a stationary elevator in a gravitational field. The feet of a person are pressed against the floor, and objects released from hand
fall with identical accelerations. In fact, it is not possible, without looking outside, to know what is happening—acceleration
upward or gravity. This led Einstein to correctly postulate that acceleration and gravity will produce identical effects in all
situations. So, if acceleration affects light, then gravity will, too. Figure 34.10 shows the effect of acceleration on a beam of light
shone horizontally at one wall. Since the accelerated elevator moves up during the time light travels across the elevator, the
beam of light strikes low, seeming to the person to bend down. (Normally a tiny effect, since the speed of light is so great.) The
same effect must occur due to gravity, Einstein reasoned, since there is no way to tell the effects of gravity acting downward from
acceleration of the elevator upward. Thus gravity affects the path of light, even though we think of gravity as acting between
masses and photons are massless.
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Figure 34.10 (a) A beam of light emerges from a flashlight in an upward-accelerating elevator. Since the elevator moves up during the time the light
takes to reach the wall, the beam strikes lower than it would if the elevator were not accelerated. (b) Gravity has the same effect on light, since it is not
possible to tell whether the elevator is accelerating upward or acted upon by gravity.

Einstein’s theory of general relativity got its first verification in 1919 when starlight passing near the Sun was observed during a
solar eclipse. (See Figure 34.11.) During an eclipse, the sky is darkened and we can briefly see stars. Those in a line of sight
nearest the Sun should have a shift in their apparent positions. Not only was this shift observed, but it agreed with Einstein’s
predictions well within experimental uncertainties. This discovery created a scientific and public sensation. Einstein was now a
folk hero as well as a very great scientist. The bending of light by matter is equivalent to a bending of space itself, with light
following the curve. This is another radical change in our concept of space and time. It is also another connection that any
particle with mass or energy (massless photons) is affected by gravity.

There are several current forefront efforts related to general relativity. One is the observation and analysis of gravitational lensing
of light. Another is analysis of the definitive proof of the existence of black holes. Direct observation of gravitational waves or
moving wrinkles in space is being searched for. Theoretical efforts are also being aimed at the possibility of time travel and
wormholes into other parts of space due to black holes.

Gravitational lensing As you can see in Figure 34.11, light is bent toward a mass, producing an effect much like a converging
lens (large masses are needed to produce observable effects). On a galactic scale, the light from a distant galaxy could be
“lensed” into several images when passing close by another galaxy on its way to Earth. Einstein predicted this effect, but he
considered it unlikely that we would ever observe it. A number of cases of this effect have now been observed; one is shown in
Figure 34.12. This effect is a much larger scale verification of general relativity. But such gravitational lensing is also useful in
verifying that the red shift is proportional to distance. The red shift of the intervening galaxy is always less than that of the one
being lensed, and each image of the lensed galaxy has the same red shift. This verification supplies more evidence that red shift
is proportional to distance. Confidence that the multiple images are not different objects is bolstered by the observations that if
one image varies in brightness over time, the others also vary in the same manner.
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Figure 34.11 This schematic shows how light passing near a massive body like the Sun is curved toward it. The light that reaches the Earth then
seems to be coming from different locations than the known positions of the originating stars. Not only was this effect observed, the amount of bending
was precisely what Einstein predicted in his general theory of relativity.

Figure 34.12 (a) Light from a distant galaxy can travel different paths to the Earth because it is bent around an intermediary galaxy by gravity. This
produces several images of the more distant galaxy. (b) The images around the central galaxy are produced by gravitational lensing. Each image has
the same spectrum and a larger red shift than the intermediary. (credit: NASA, ESA, and STScI)

Black holes Black holes are objects having such large gravitational fields that things can fall in, but nothing, not even light, can
escape. Bodies, like the Earth or the Sun, have what is called an escape velocity. If an object moves straight up from the body,
starting at the escape velocity, it will just be able to escape the gravity of the body. The greater the acceleration of gravity on the
body, the greater is the escape velocity. As long ago as the late 1700s, it was proposed that if the escape velocity is greater than
the speed of light, then light cannot escape. Simon Laplace (1749–1827), the French astronomer and mathematician, even
incorporated this idea of a dark star into his writings. But the idea was dropped after Young’s double slit experiment showed light
to be a wave. For some time, light was thought not to have particle characteristics and, thus, could not be acted upon by gravity.
The idea of a black hole was very quickly reincarnated in 1916 after Einstein’s theory of general relativity was published. It is now
thought that black holes can form in the supernova collapse of a massive star, forming an object perhaps 10 km across and
having a mass greater than that of our Sun. It is interesting that several prominent physicists who worked on the concept,
including Einstein, firmly believed that nature would find a way to prohibit such objects.

Black holes are difficult to observe directly, because they are small and no light comes directly from them. In fact, no light comes
from inside the event horizon, which is defined to be at a distance from the object at which the escape velocity is exactly the
speed of light. The radius of the event horizon is known as the Schwarzschild radius RS and is given by

(34.2)RS = 2GM
c2 ,

where G is the universal gravitational constant, M is the mass of the body, and c is the speed of light. The event horizon is
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the edge of the black hole and RS is its radius (that is, the size of a black hole is twice RS ). Since G is small and c2 is large,

you can see that black holes are extremely small, only a few kilometers for masses a little greater than the Sun’s. The object
itself is inside the event horizon.

Physics near a black hole is fascinating. Gravity increases so rapidly that, as you approach a black hole, the tidal effects tear
matter apart, with matter closer to the hole being pulled in with much more force than that only slightly farther away. This can pull
a companion star apart and heat inflowing gases to the point of producing X rays. (See Figure 34.13.) We have observed X rays
from certain binary star systems that are consistent with such a picture. This is not quite proof of black holes, because the X rays
could also be caused by matter falling onto a neutron star. These objects were first discovered in 1967 by the British
astrophysicists, Jocelyn Bell and Anthony Hewish. Neutron stars are literally a star composed of neutrons. They are formed by
the collapse of a star’s core in a supernova, during which electrons and protons are forced together to form neutrons (the reverse
of neutron β decay). Neutron stars are slightly larger than a black hole of the same mass and will not collapse further because

of resistance by the strong force. However, neutron stars cannot have a mass greater than about eight solar masses or they
must collapse to a black hole. With recent improvements in our ability to resolve small details, such as with the orbiting Chandra
X-ray Observatory, it has become possible to measure the masses of X-ray-emitting objects by observing the motion of
companion stars and other matter in their vicinity. What has emerged is a plethora of X-ray-emitting objects too massive to be
neutron stars. This evidence is considered conclusive and the existence of black holes is widely accepted. These black holes are
concentrated near galactic centers.

We also have evidence that supermassive black holes may exist at the cores of many galaxies, including the Milky Way. Such a
black hole might have a mass millions or even billions of times that of the Sun, and it would probably have formed when matter
first coalesced into a galaxy billions of years ago. Supporting this is the fact that very distant galaxies are more likely to have
abnormally energetic cores. Some of the moderately distant galaxies, and hence among the younger, are known as quasars and
emit as much or more energy than a normal galaxy but from a region less than a light year across. Quasar energy outputs may
vary in times less than a year, so that the energy-emitting region must be less than a light year across. The best explanation of
quasars is that they are young galaxies with a supermassive black hole forming at their core, and that they become less
energetic over billions of years. In closer superactive galaxies, we observe tremendous amounts of energy being emitted from
very small regions of space, consistent with stars falling into a black hole at the rate of one or more a month. The Hubble Space
Telescope (1994) observed an accretion disk in the galaxy M87 rotating rapidly around a region of extreme energy emission.
(See Figure 34.13.) A jet of material being ejected perpendicular to the plane of rotation gives further evidence of a
supermassive black hole as the engine.

Figure 34.13 A black hole is shown pulling matter away from a companion star, forming a superheated accretion disk where X rays are emitted before
the matter disappears forever into the hole. The in-fall energy also ejects some material, forming the two vertical spikes. (See also the photograph in
Introduction to Frontiers of Physics.) There are several X-ray-emitting objects in space that are consistent with this picture and are likely to be black
holes.

Gravitational waves If a massive object distorts the space around it, like the foot of a water bug on the surface of a pond, then
movement of the massive object should create waves in space like those on a pond. Gravitational waves are mass-created
distortions in space that propagate at the speed of light and are predicted by general relativity. Since gravity is by far the weakest
force, extreme conditions are needed to generate significant gravitational waves. Gravity near binary neutron star systems is so
great that significant gravitational wave energy is radiated as the two neutron stars orbit one another. American astronomers,
Joseph Taylor and Russell Hulse, measured changes in the orbit of such a binary neutron star system. They found its orbit to
change precisely as predicted by general relativity, a strong indication of gravitational waves, and were awarded the 1993 Nobel
Prize. But direct detection of gravitational waves on Earth would be conclusive. For many years, various attempts have been
made to detect gravitational waves by observing vibrations induced in matter distorted by these waves. American physicist
Joseph Weber pioneered this field in the 1960s, but no conclusive events have been observed. (No gravity wave detectors were
in operation at the time of the 1987A supernova, unfortunately.) There are now several ambitious systems of gravitational wave
detectors in use around the world. These include the LIGO (Laser Interferometer Gravitational Wave Observatory) system with
two laser interferometer detectors, one in the state of Washington and another in Louisiana (See Figure 34.15) and the VIRGO
(Variability of Irradiance and Gravitational Oscillations) facility in Italy with a single detector.

Quantum Gravity

Black holes radiate Quantum gravity is important in those situations where gravity is so extremely strong that it has effects on
the quantum scale, where the other forces are ordinarily much stronger. The early universe was such a place, but black holes are
another. The first significant connection between gravity and quantum effects was made by the Russian physicist Yakov
Zel’dovich in 1971, and other significant advances followed from the British physicist Stephen Hawking. (See Figure 34.16.)
These two showed that black holes could radiate away energy by quantum effects just outside the event horizon (nothing can
escape from inside the event horizon). Black holes are, thus, expected to radiate energy and shrink to nothing, although
extremely slowly for most black holes. The mechanism is the creation of a particle-antiparticle pair from energy in the extremely
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strong gravitational field near the event horizon. One member of the pair falls into the hole and the other escapes, conserving
momentum. (See Figure 34.17.) When a black hole loses energy and, hence, rest mass, its event horizon shrinks, creating an
even greater gravitational field. This increases the rate of pair production so that the process grows exponentially until the black
hole is nuclear in size. A final burst of particles and γ rays ensues. This is an extremely slow process for black holes about the

mass of the Sun (produced by supernovas) or larger ones (like those thought to be at galactic centers), taking on the order of

1067 years or longer! Smaller black holes would evaporate faster, but they are only speculated to exist as remnants of the Big

Bang. Searches for characteristic γ -ray bursts have produced events attributable to more mundane objects like neutron stars

accreting matter.

Figure 34.14 This Hubble Space Telescope photograph shows the extremely energetic core of the NGC 4261 galaxy. With the superior resolution of
the orbiting telescope, it has been possible to observe the rotation of an accretion disk around the energy-producing object as well as to map jets of
material being ejected from the object. A supermassive black hole is consistent with these observations, but other possibilities are not quite eliminated.
(credit: NASA and ESA)

Figure 34.15 The control room of the LIGO gravitational wave detector. Gravitational waves will cause extremely small vibrations in a mass in this
detector, which will be detected by laser interferometer techniques. Such detection in coincidence with other detectors and with astronomical events,
such as supernovas, would provide direct evidence of gravitational waves. (credit: Tobin Fricke)
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Figure 34.16 Stephen Hawking (b. 1942) has made many contributions to the theory of quantum gravity. Hawking is a long-time survivor of ALS and
has produced popular books on general relativity, cosmology, and quantum gravity. (credit: Lwp Kommunikáció)

Figure 34.17 Gravity and quantum mechanics come into play when a black hole creates a particle-antiparticle pair from the energy in its gravitational
field. One member of the pair falls into the hole while the other escapes, removing energy and shrinking the black hole. The search is on for the
characteristic energy.

Wormholes and time travel The subject of time travel captures the imagination. Theoretical physicists, such as the American
Kip Thorne, have treated the subject seriously, looking into the possibility that falling into a black hole could result in popping up
in another time and place—a trip through a so-called wormhole. Time travel and wormholes appear in innumerable science
fiction dramatizations, but the consensus is that time travel is not possible in theory. While still debated, it appears that quantum
gravity effects inside a black hole prevent time travel due to the creation of particle pairs. Direct evidence is elusive.

The shortest time Theoretical studies indicate that, at extremely high energies and correspondingly early in the universe,
quantum fluctuations may make time intervals meaningful only down to some finite time limit. Early work indicated that this might

be the case for times as long as 10−43 s , the time at which all forces were unified. If so, then it would be meaningless to

consider the universe at times earlier than this. Subsequent studies indicate that the crucial time may be as short as 10−95 s .

But the point remains—quantum gravity seems to imply that there is no such thing as a vanishingly short time. Time may, in fact,
be grainy with no meaning to time intervals shorter than some tiny but finite size.

The future of quantum gravity Not only is quantum gravity in its infancy, no one knows how to get started on a theory of

gravitons and unification of forces. The energies at which TOE should be valid may be so high (at least 1019 GeV ) and the

necessary particle separation so small (less than 10−35 m ) that only indirect evidence can provide clues. For some time, the

common lament of theoretical physicists was one so familiar to struggling students—how do you even get started? But Hawking
and others have made a start, and the approach many theorists have taken is called Superstring theory, the topic of the
Superstrings.

34.3 Superstrings

Introduced earlier in GUTS: The Unification of Forces Superstring theory is an attempt to unify gravity with the other three
forces and, thus, must contain quantum gravity. The main tenet of Superstring theory is that fundamental particles, including the
graviton that carries the gravitational force, act like one-dimensional vibrating strings. Since gravity affects the time and space in
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which all else exists, Superstring theory is an attempt at a Theory of Everything (TOE). Each independent quantum number is
thought of as a separate dimension in some super space (analogous to the fact that the familiar dimensions of space are
independent of one another) and is represented by a different type of Superstring. As the universe evolved after the Big Bang
and forces became distinct (spontaneous symmetry breaking), some of the dimensions of superspace are imagined to have
curled up and become unnoticed.

Forces are expected to be unified only at extremely high energies and at particle separations on the order of 10−35 m . This

could mean that Superstrings must have dimensions or wavelengths of this size or smaller. Just as quantum gravity may imply
that there are no time intervals shorter than some finite value, it also implies that there may be no sizes smaller than some tiny

but finite value. That may be about 10−35 m . If so, and if Superstring theory can explain all it strives to, then the structures of

Superstrings are at the lower limit of the smallest possible size and can have no further substructure. This would be the ultimate
answer to the question the ancient Greeks considered. There is a finite lower limit to space.

Not only is Superstring theory in its infancy, it deals with dimensions about 17 orders of magnitude smaller than the 10−18 m
details that we have been able to observe directly. It is thus relatively unconstrained by experiment, and there are a host of
theoretical possibilities to choose from. This has led theorists to make choices subjectively (as always) on what is the most
elegant theory, with less hope than usual that experiment will guide them. It has also led to speculation of alternate universes,
with their Big Bangs creating each new universe with a random set of rules. These speculations may not be tested even in
principle, since an alternate universe is by definition unattainable. It is something like exploring a self-consistent field of
mathematics, with its axioms and rules of logic that are not consistent with nature. Such endeavors have often given insight to
mathematicians and scientists alike and occasionally have been directly related to the description of new discoveries.

34.4 Dark Matter and Closure

One of the most exciting problems in physics today is the fact that there is far more matter in the universe than we can see. The
motion of stars in galaxies and the motion of galaxies in clusters imply that there is about 10 times as much mass as in the
luminous objects we can see. The indirectly observed non-luminous matter is called dark matter. Why is dark matter a problem?
For one thing, we do not know what it is. It may well be 90% of all matter in the universe, yet there is a possibility that it is of a
completely unknown form—a stunning discovery if verified. Dark matter has implications for particle physics. It may be possible
that neutrinos actually have small masses or that there are completely unknown types of particles. Dark matter also has
implications for cosmology, since there may be enough dark matter to stop the expansion of the universe. That is another
problem related to dark matter—we do not know how much there is. We keep finding evidence for more matter in the universe,
and we have an idea of how much it would take to eventually stop the expansion of the universe, but whether there is enough is
still unknown.

Evidence

The first clues that there is more matter than meets the eye came from the Swiss-born American astronomer Fritz Zwicky in the
1930s; some initial work was also done by the American astronomer Vera Rubin. Zwicky measured the velocities of stars orbiting
the galaxy, using the relativistic Doppler shift of their spectra (see Figure 34.18(a)). He found that velocity varied with distance
from the center of the galaxy, as graphed in Figure 34.18(b). If the mass of the galaxy was concentrated in its center, as are its
luminous stars, the velocities should decrease as the square root of the distance from the center. Instead, the velocity curve is
almost flat, implying that there is a tremendous amount of matter in the galactic halo. Although not immediately recognized for its
significance, such measurements have now been made for many galaxies, with similar results. Further, studies of galactic
clusters have also indicated that galaxies have a mass distribution greater than that obtained from their brightness (proportional
to the number of stars), which also extends into large halos surrounding the luminous parts of galaxies. Observations of other
EM wavelengths, such as radio waves and X rays, have similarly confirmed the existence of dark matter. Take, for example, X
rays in the relatively dark space between galaxies, which indicates the presence of previously unobserved hot, ionized gas (see
Figure 34.18(c)).

Theoretical Yearnings for Closure

Is the universe open or closed? That is, will the universe expand forever or will it stop, perhaps to contract? This, until recently,
was a question of whether there is enough gravitation to stop the expansion of the universe. In the past few years, it has become
a question of the combination of gravitation and what is called the cosmological constant. The cosmological constant was
invented by Einstein to prohibit the expansion or contraction of the universe. At the time he developed general relativity, Einstein
considered that an illogical possibility. The cosmological constant was discarded after Hubble discovered the expansion, but has
been re-invoked in recent years.

Gravitational attraction between galaxies is slowing the expansion of the universe, but the amount of slowing down is not known
directly. In fact, the cosmological constant can counteract gravity’s effect. As recent measurements indicate, the universe is
expanding faster now than in the past—perhaps a “modern inflationary era” in which the dark energy is thought to be causing the
expansion of the present-day universe to accelerate. If the expansion rate were affected by gravity alone, we should be able to
see that the expansion rate between distant galaxies was once greater than it is now. However, measurements show it was less
than now. We can, however, calculate the amount of slowing based on the average density of matter we observe directly. Here
we have a definite answer—there is far less visible matter than needed to stop expansion. The critical density ρc is defined to

be the density needed to just halt universal expansion in a universe with no cosmological constant. It is estimated to be about

(34.3)ρc ≈ 10−26 kg/m3.
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However, this estimate of ρc is only good to about a factor of two, due to uncertainties in the expansion rate of the universe.

The critical density is equivalent to an average of only a few nucleons per cubic meter, remarkably small and indicative of how
truly empty intergalactic space is. Luminous matter seems to account for roughly 0.5% to 2% of the critical density, far less

than that needed for closure. Taking into account the amount of dark matter we detect indirectly and all other types of indirectly
observed normal matter, there is only 10% to 40% of what is needed for closure. If we are able to refine the measurements of

expansion rates now and in the past, we will have our answer regarding the curvature of space and we will determine a value for
the cosmological constant to justify this observation. Finally, the most recent measurements of the CMBR have implications for
the cosmological constant, so it is not simply a device concocted for a single purpose.

After the recent experimental discovery of the cosmological constant, most researchers feel that the universe should be just
barely open. Since matter can be thought to curve the space around it, we call an open universe negatively curved. This means
that you can in principle travel an unlimited distance in any direction. A universe that is closed is called positively curved. This
means that if you travel far enough in any direction, you will return to your starting point, analogous to circumnavigating the
Earth. In between these two is a flat (zero curvature) universe. The recent discovery of the cosmological constant has shown
the universe is very close to flat, and will expand forever. Why do theorists feel the universe is flat? Flatness is a part of the
inflationary scenario that helps explain the flatness of the microwave background. In fact, since general relativity implies that
matter creates the space in which it exists, there is a special symmetry to a flat universe.
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Figure 34.18 Evidence for dark matter: (a) We can measure the velocities of stars relative to their galaxies by observing the Doppler shift in emitted
light, usually using the hydrogen spectrum. These measurements indicate the rotation of a spiral galaxy. (b) A graph of velocity versus distance from
the galactic center shows that the velocity does not decrease as it would if the matter were concentrated in luminous stars. The flatness of the curve
implies a massive galactic halo of dark matter extending beyond the visible stars. (c) This is a computer-generated image of X rays from a galactic
cluster. The X rays indicate the presence of otherwise unseen hot clouds of ionized gas in the regions of space previously considered more empty.
(credit: NASA, ESA, CXC, M. Bradac (University of California, Santa Barbara), and S. Allen (Stanford University))

What Is the Dark Matter We See Indirectly?

There is no doubt that dark matter exists, but its form and the amount in existence are two facts that are still being studied
vigorously. As always, we seek to explain new observations in terms of known principles. However, as more discoveries are
made, it is becoming more and more difficult to explain dark matter as a known type of matter.

One of the possibilities for normal matter is being explored using the Hubble Space Telescope and employing the lensing effect
of gravity on light (see Figure 34.19). Stars glow because of nuclear fusion in them, but planets are visible primarily by reflected
light. Jupiter, for example, is too small to ignite fusion in its core and become a star, but we can see sunlight reflected from it,
since we are relatively close. If Jupiter orbited another star, we would not be able to see it directly. The question is open as to
how many planets or other bodies smaller than about 1/1000 the mass of the Sun are there. If such bodies pass between us and
a star, they will not block the star’s light, being too small, but they will form a gravitational lens, as discussed in General
Relativity and Quantum Gravity.

In a process called microlensing, light from the star is focused and the star appears to brighten in a characteristic manner.
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Searches for dark matter in this form are particularly interested in galactic halos because of the huge amount of mass that seems
to be there. Such microlensing objects are thus called massive compact halo objects, or MACHOs. To date, a few MACHOs
have been observed, but not predominantly in galactic halos, nor in the numbers needed to explain dark matter.

MACHOs are among the most conventional of unseen objects proposed to explain dark matter. Others being actively pursued
are red dwarfs, which are small dim stars, but too few have been seen so far, even with the Hubble Telescope, to be of
significance. Old remnants of stars called white dwarfs are also under consideration, since they contain about a solar mass, but
are small as the Earth and may dim to the point that we ordinarily do not observe them. While white dwarfs are known, old dim
ones are not. Yet another possibility is the existence of large numbers of smaller than stellar mass black holes left from the Big
Bang—here evidence is entirely absent.

There is a very real possibility that dark matter is composed of the known neutrinos, which may have small, but finite, masses.
As discussed earlier, neutrinos are thought to be massless, but we only have upper limits on their masses, rather than knowing
they are exactly zero. So far, these upper limits come from difficult measurements of total energy emitted in the decays and
reactions in which neutrinos are involved. There is an amusing possibility of proving that neutrinos have mass in a completely
different way.

We have noted in Particles, Patterns, and Conservation Laws that there are three flavors of neutrinos ( νe , vμ , and vτ ) and

that the weak interaction could change quark flavor. It should also change neutrino flavor—that is, any type of neutrino could
change spontaneously into any other, a process called neutrino oscillations. However, this can occur only if neutrinos have a
mass. Why? Crudely, because if neutrinos are massless, they must travel at the speed of light and time will not pass for them, so
that they cannot change without an interaction. In 1999, results began to be published containing convincing evidence that
neutrino oscillations do occur. Using the Super-Kamiokande detector in Japan, the oscillations have been observed and are
being verified and further explored at present at the same facility and others.

Neutrino oscillations may also explain the low number of observed solar neutrinos. Detectors for observing solar neutrinos are
specifically designed to detect electron neutrinos νe produced in huge numbers by fusion in the Sun. A large fraction of electron

neutrinos νe may be changing flavor to muon neutrinos vμ on their way out of the Sun, possibly enhanced by specific

interactions, reducing the flux of electron neutrinos to observed levels. There is also a discrepancy in observations of neutrinos
produced in cosmic ray showers. While these showers of radiation produced by extremely energetic cosmic rays should contain
twice as many vμ s as νe s, their numbers are nearly equal. This may be explained by neutrino oscillations from muon flavor to

electron flavor. Massive neutrinos are a particularly appealing possibility for explaining dark matter, since their existence is
consistent with a large body of known information and explains more than dark matter. The question is not settled at this writing.

The most radical proposal to explain dark matter is that it consists of previously unknown leptons (sometimes obtusely referred to
as non-baryonic matter). These are called weakly interacting massive particles, or WIMPs, and would also be chargeless,
thus interacting negligibly with normal matter, except through gravitation. One proposed group of WIMPs would have masses
several orders of magnitude greater than nucleons and are sometimes called neutralinos. Others are called axions and would

have masses about 10−10 that of an electron mass. Both neutralinos and axions would be gravitationally attached to galaxies,

but because they are chargeless and only feel the weak force, they would be in a halo rather than interact and coalesce into
spirals, and so on, like normal matter (see Figure 34.20).

Figure 34.19 The Hubble Space Telescope is producing exciting data with its corrected optics and with the absence of atmospheric distortion. It has
observed some MACHOs, disks of material around stars thought to precede planet formation, black hole candidates, and collisions of comets with
Jupiter. (credit: NASA (crew of STS-125))
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Figure 34.20 Dark matter may shepherd normal matter gravitationally in space, as this stream moves the leaves. Dark matter may be invisible and
even move through the normal matter, as neutrinos penetrate us without small-scale effect. (credit: Shinichi Sugiyama)

Some particle theorists have built WIMPs into their unified force theories and into the inflationary scenario of the evolution of the
universe so popular today. These particles would have been produced in just the correct numbers to make the universe flat,
shortly after the Big Bang. The proposal is radical in the sense that it invokes entirely new forms of matter, in fact two entirely
new forms, in order to explain dark matter and other phenomena. WIMPs have the extra burden of automatically being very
difficult to observe directly. This is somewhat analogous to quark confinement, which guarantees that quarks are there, but they
can never be seen directly. One of the primary goals of the LHC at CERN, however, is to produce and detect WIMPs. At any rate,
before WIMPs are accepted as the best explanation, all other possibilities utilizing known phenomena will have to be shown
inferior. Should that occur, we will be in the unanticipated position of admitting that, to date, all we know is only 10% of what
exists. A far cry from the days when people firmly believed themselves to be not only the center of the universe, but also the
reason for its existence.

34.5 Complexity and Chaos

Much of what impresses us about physics is related to the underlying connections and basic simplicity of the laws we have
discovered. The language of physics is precise and well defined because many basic systems we study are simple enough that
we can perform controlled experiments and discover unambiguous relationships. Our most spectacular successes, such as the
prediction of previously unobserved particles, come from the simple underlying patterns we have been able to recognize. But
there are systems of interest to physicists that are inherently complex. The simple laws of physics apply, of course, but complex
systems may reveal patterns that simple systems do not. The emerging field of complexity is devoted to the study of complex
systems, including those outside the traditional bounds of physics. Of particular interest is the ability of complex systems to adapt
and evolve.

What are some examples of complex adaptive systems? One is the primordial ocean. When the oceans first formed, they were a
random mix of elements and compounds that obeyed the laws of physics and chemistry. In a relatively short geological time
(about 500 million years), life had emerged. Laboratory simulations indicate that the emergence of life was far too fast to have
come from random combinations of compounds, even if driven by lightning and heat. There must be an underlying ability of the
complex system to organize itself, resulting in the self-replication we recognize as life. Living entities, even at the unicellular
level, are highly organized and systematic. Systems of living organisms are themselves complex adaptive systems. The grandest
of these evolved into the biological system we have today, leaving traces in the geological record of steps taken along the way.

Complexity as a discipline examines complex systems, how they adapt and evolve, looking for similarities with other complex
adaptive systems. Can, for example, parallels be drawn between biological evolution and the evolution of economic systems?
Economic systems do emerge quickly, they show tendencies for self-organization, they are complex (in the number and types of
transactions), and they adapt and evolve. Biological systems do all the same types of things. There are other examples of
complex adaptive systems being studied for fundamental similarities. Cultures show signs of adaptation and evolution. The
comparison of different cultural evolutions may bear fruit as well as comparisons to biological evolution. Science also is a
complex system of human interactions, like culture and economics, that adapts to new information and political pressure, and
evolves, usually becoming more organized rather than less. Those who study creative thinking also see parallels with complex
systems. Humans sometimes organize almost random pieces of information, often subconsciously while doing other things, and
come up with brilliant creative insights. The development of language is another complex adaptive system that may show similar
tendencies. Artificial intelligence is an overt attempt to devise an adaptive system that will self-organize and evolve in the same
manner as an intelligent living being learns. These are a few of the broad range of topics being studied by those who investigate
complexity. There are now institutes, journals, and meetings, as well as popularizations of the emerging topic of complexity.

In traditional physics, the discipline of complexity may yield insights in certain areas. Thermodynamics treats systems on the
average, while statistical mechanics deals in some detail with complex systems of atoms and molecules in random thermal
motion. Yet there is organization, adaptation, and evolution in those complex systems. Non-equilibrium phenomena, such as heat
transfer and phase changes, are characteristically complex in detail, and new approaches to them may evolve from complexity
as a discipline. Crystal growth is another example of self-organization spontaneously emerging in a complex system. Alloys are
also inherently complex mixtures that show certain simple characteristics implying some self-organization. The organization of
iron atoms into magnetic domains as they cool is another. Perhaps insights into these difficult areas will emerge from complexity.
But at the minimum, the discipline of complexity is another example of human effort to understand and organize the universe
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around us, partly rooted in the discipline of physics.

A predecessor to complexity is the topic of chaos, which has been widely publicized and has become a discipline of its own. It is
also based partly in physics and treats broad classes of phenomena from many disciplines. Chaos is a word used to describe
systems whose outcomes are extremely sensitive to initial conditions. The orbit of the planet Pluto, for example, may be chaotic
in that it can change tremendously due to small interactions with other planets. This makes its long-term behavior impossible to
predict with precision, just as we cannot tell precisely where a decaying Earth satellite will land or how many pieces it will break
into. But the discipline of chaos has found ways to deal with such systems and has been applied to apparently unrelated
systems. For example, the heartbeat of people with certain types of potentially lethal arrhythmias seems to be chaotic, and this
knowledge may allow more sophisticated monitoring and recognition of the need for intervention.

Chaos is related to complexity. Some chaotic systems are also inherently complex; for example, vortices in a fluid as opposed to
a double pendulum. Both are chaotic and not predictable in the same sense as other systems. But there can be organization in
chaos and it can also be quantified. Examples of chaotic systems are beautiful fractal patterns such as in Figure 34.21. Some
chaotic systems exhibit self-organization, a type of stable chaos. The orbits of the planets in our solar system, for example, may
be chaotic (we are not certain yet). But they are definitely organized and systematic, with a simple formula describing the orbital
radii of the first eight planets and the asteroid belt. Large-scale vortices in Jupiter’s atmosphere are chaotic, but the Great Red
Spot is a stable self-organization of rotational energy. (See Figure 34.22.) The Great Red Spot has been in existence for at least
400 years and is a complex self-adaptive system.

The emerging field of complexity, like the now almost traditional field of chaos, is partly rooted in physics. Both attempt to see
similar systematics in a very broad range of phenomena and, hence, generate a better understanding of them. Time will tell what
impact these fields have on more traditional areas of physics as well as on the other disciplines they relate to.

Figure 34.21 This image is related to the Mandelbrot set, a complex mathematical form that is chaotic. The patterns are infinitely fine as you look
closer and closer, and they indicate order in the presence of chaos. (credit: Gilberto Santa Rosa)

Figure 34.22 The Great Red Spot on Jupiter is an example of self-organization in a complex and chaotic system. Smaller vortices in Jupiter’s
atmosphere behave chaotically, but the triple-Earth-size spot is self-organized and stable for at least hundreds of years. (credit: NASA)

34.6 High-temperature Superconductors

Superconductors are materials with a resistivity of zero. They are familiar to the general public because of their practical
applications and have been mentioned at a number of points in the text. Because the resistance of a piece of superconductor is
zero, there are no heat losses for currents through them; they are used in magnets needing high currents, such as in MRI
machines, and could cut energy losses in power transmission. But most superconductors must be cooled to temperatures only a
few kelvin above absolute zero, a costly procedure limiting their practical applications. In the past decade, tremendous advances
have been made in producing materials that become superconductors at relatively high temperatures. There is hope that room
temperature superconductors may someday be manufactured.

Superconductivity was discovered accidentally in 1911 by the Dutch physicist H. Kamerlingh Onnes (1853–1926) when he used
liquid helium to cool mercury. Onnes had been the first person to liquefy helium a few years earlier and was surprised to observe
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the resistivity of a mediocre conductor like mercury drop to zero at a temperature of 4.2 K. We define the temperature at which
and below which a material becomes a superconductor to be its critical temperature, denoted by Tc . (See Figure 34.23.)

Progress in understanding how and why a material became a superconductor was relatively slow, with the first workable theory
coming in 1957. Certain other elements were also found to become superconductors, but all had Tc s less than 10 K, which are

expensive to maintain. Although Onnes received a Nobel prize in 1913, it was primarily for his work with liquid helium.

In 1986, a breakthrough was announced—a ceramic compound was found to have an unprecedented Tc of 35 K. It looked as if

much higher critical temperatures could be possible, and by early 1988 another ceramic (this of thallium, calcium, barium,
copper, and oxygen) had been found to have Tc = 125 K (see Figure 34.24.) The economic potential of perfect conductors

saving electric energy is immense for Tc s above 77 K, since that is the temperature of liquid nitrogen. Although liquid helium

has a boiling point of 4 K and can be used to make materials superconducting, it costs about $5 per liter. Liquid nitrogen boils at
77 K, but only costs about $0.30 per liter. There was general euphoria at the discovery of these complex ceramic
superconductors, but this soon subsided with the sobering difficulty of forming them into usable wires. The first commercial use
of a high temperature superconductor is in an electronic filter for cellular phones. High-temperature superconductors are used in
experimental apparatus, and they are actively being researched, particularly in thin film applications.

Figure 34.23 A graph of resistivity versus temperature for a superconductor shows a sharp transition to zero at the critical temperature Tc. High
temperature superconductors have verifiable Tc s greater than 125 K, well above the easily achieved 77-K temperature of liquid nitrogen.

Figure 34.24 One characteristic of a superconductor is that it excludes magnetic flux and, thus, repels other magnets. The small magnet levitated
above a high-temperature superconductor, which is cooled by liquid nitrogen, gives evidence that the material is superconducting. When the material
warms and becomes conducting, magnetic flux can penetrate it, and the magnet will rest upon it. (credit: Saperaud)

The search is on for even higher Tc superconductors, many of complex and exotic copper oxide ceramics, sometimes including

strontium, mercury, or yttrium as well as barium, calcium, and other elements. Room temperature (about 293 K) would be ideal,
but any temperature close to room temperature is relatively cheap to produce and maintain. There are persistent reports of Tc s

over 200 K and some in the vicinity of 270 K. Unfortunately, these observations are not routinely reproducible, with samples
losing their superconducting nature once heated and recooled (cycled) a few times (see Figure 34.25.) They are now called
USOs or unidentified superconducting objects, out of frustration and the refusal of some samples to show high Tc even though

produced in the same manner as others. Reproducibility is crucial to discovery, and researchers are justifiably reluctant to claim
the breakthrough they all seek. Time will tell whether USOs are real or an experimental quirk.

The theory of ordinary superconductors is difficult, involving quantum effects for widely separated electrons traveling through a
material. Electrons couple in a manner that allows them to get through the material without losing energy to it, making it a
superconductor. High- Tc superconductors are more difficult to understand theoretically, but theorists seem to be closing in on a

workable theory. The difficulty of understanding how electrons can sneak through materials without losing energy in collisions is
even greater at higher temperatures, where vibrating atoms should get in the way. Discoverers of high Tc may feel something

Chapter 34 | Frontiers of Physics 1365



analogous to what a politician once said upon an unexpected election victory—“I wonder what we did right?”

Figure 34.25 (a) This graph, adapted from an article in Physics Today, shows the behavior of a single sample of a high-temperature superconductor in

three different trials. In one case the sample exhibited a Tc of about 230 K, whereas in the others it did not become superconducting at all. The lack

of reproducibility is typical of forefront experiments and prohibits definitive conclusions. (b) This colorful diagram shows the complex but systematic
nature of the lattice structure of a high-temperature superconducting ceramic. (credit: en:Cadmium, Wikimedia Commons)

34.7 Some Questions We Know to Ask

Throughout the text we have noted how essential it is to be curious and to ask questions in order to first understand what is
known, and then to go a little farther. Some questions may go unanswered for centuries; others may not have answers, but some
bear delicious fruit. Part of discovery is knowing which questions to ask. You have to know something before you can even
phrase a decent question. As you may have noticed, the mere act of asking a question can give you the answer. The following
questions are a sample of those physicists now know to ask and are representative of the forefronts of physics. Although these
questions are important, they will be replaced by others if answers are found to them. The fun continues.

On the Largest Scale
1. Is the universe open or closed? Theorists would like it to be just barely closed and evidence is building toward that

conclusion. Recent measurements in the expansion rate of the universe and in CMBR support a flat universe. There is a
connection to small-scale physics in the type and number of particles that may contribute to closing the universe.

2. What is dark matter? It is definitely there, but we really do not know what it is. Conventional possibilities are being ruled out,
but one of them still may explain it. The answer could reveal whole new realms of physics and the disturbing possibility that
most of what is out there is unknown to us, a completely different form of matter.

3. How do galaxies form? They exist since very early in the evolution of the universe and it remains difficult to understand how
they evolved so quickly. The recent finer measurements of fluctuations in the CMBR may yet allow us to explain galaxy
formation.

4. What is the nature of various-mass black holes? Only recently have we become confident that many black hole candidates
cannot be explained by other, less exotic possibilities. But we still do not know much about how they form, what their role in
the history of galactic evolution has been, and the nature of space in their vicinity. However, so many black holes are now
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axions:

Big Bang:

black holes:

known that correlations between black hole mass and galactic nuclei characteristics are being studied.

5. What is the mechanism for the energy output of quasars? These distant and extraordinarily energetic objects now seem to
be early stages of galactic evolution with a supermassive black-hole-devouring material. Connections are now being made
with galaxies having energetic cores, and there is evidence consistent with less consuming, supermassive black holes at
the center of older galaxies. New instruments are allowing us to see deeper into our own galaxy for evidence of our own
massive black hole.

6. Where do the γ bursts come from? We see bursts of γ rays coming from all directions in space, indicating the sources

are very distant objects rather than something associated with our own galaxy. Some γ bursts finally are being correlated

with known sources so that the possibility they may originate in binary neutron star interactions or black holes eating a
companion neutron star can be explored.

On the Intermediate Scale
1. How do phase transitions take place on the microscopic scale? We know a lot about phase transitions, such as water

freezing, but the details of how they occur molecule by molecule are not well understood. Similar questions about specific
heat a century ago led to early quantum mechanics. It is also an example of a complex adaptive system that may yield
insights into other self-organizing systems.

2. Is there a way to deal with nonlinear phenomena that reveals underlying connections? Nonlinear phenomena lack a direct
or linear proportionality that makes analysis and understanding a little easier. There are implications for nonlinear optics
and broader topics such as chaos.

3. How do high- Tc superconductors become resistanceless at such high temperatures? Understanding how they work may

help make them more practical or may result in surprises as unexpected as the discovery of superconductivity itself.

4. There are magnetic effects in materials we do not understand—how do they work? Although beyond the scope of this text,
there is a great deal to learn in condensed matter physics (the physics of solids and liquids). We may find surprises
analogous to lasing, the quantum Hall effect, and the quantization of magnetic flux. Complexity may play a role here, too.

On the Smallest Scale
1. Are quarks and leptons fundamental, or do they have a substructure? The higher energy accelerators that are just

completed or being constructed may supply some answers, but there will also be input from cosmology and other
systematics.

2. Why do leptons have integral charge while quarks have fractional charge? If both are fundamental and analogous as
thought, this question deserves an answer. It is obviously related to the previous question.

3. Why are there three families of quarks and leptons? First, does this imply some relationship? Second, why three and only
three families?

4. Are all forces truly equal (unified) under certain circumstances? They don’t have to be equal just because we want them to
be. The answer may have to be indirectly obtained because of the extreme energy at which we think they are unified.

5. Are there other fundamental forces? There was a flurry of activity with claims of a fifth and even a sixth force a few years
ago. Interest has subsided, since those forces have not been detected consistently. Moreover, the proposed forces have
strengths similar to gravity, making them extraordinarily difficult to detect in the presence of stronger forces. But the
question remains; and if there are no other forces, we need to ask why only four and why these four.

6. Is the proton stable? We have discussed this in some detail, but the question is related to fundamental aspects of the
unification of forces. We may never know from experiment that the proton is stable, only that it is very long lived.

7. Are there magnetic monopoles? Many particle theories call for very massive individual north- and south-pole
particles—magnetic monopoles. If they exist, why are they so different in mass and elusiveness from electric charges, and
if they do not exist, why not?

8. Do neutrinos have mass? Definitive evidence has emerged for neutrinos having mass. The implications are significant, as
discussed in this chapter. There are effects on the closure of the universe and on the patterns in particle physics.

9. What are the systematic characteristics of high- Z nuclei? All elements with Z = 118 or less (with the exception of 115

and 117) have now been discovered. It has long been conjectured that there may be an island of relative stability near
Z = 114 , and the study of the most recently discovered nuclei will contribute to our understanding of nuclear forces.

These lists of questions are not meant to be complete or consistently important—you can no doubt add to it yourself. There are
also important questions in topics not broached in this text, such as certain particle symmetries, that are of current interest to
physicists. Hopefully, the point is clear that no matter how much we learn, there always seems to be more to know. Although we
are fortunate to have the hard-won wisdom of those who preceded us, we can look forward to new enlightenment, undoubtedly
sprinkled with surprise.

Glossary

a type of WIMPs having masses about 10−10 of an electron mass

a gigantic explosion that threw out matter a few billion years ago

objects having such large gravitational fields that things can fall in, but nothing, not even light, can escape
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chaos:

complexity:

cosmic microwave background:

cosmological constant:

cosmological red shift:

cosmology:

critical density:

critical temperature:

dark matter:

electroweak epoch:

escape velocity:

event horizon:

flat (zero curvature) universe:

general relativity:

gravitational waves:

GUT epoch:

Hubble constant:

inflationary scenario:

MACHOs:

microlensing:

negatively curved:

neutralinos:

neutrino oscillations:

neutron stars:

positively curved:

Quantum gravity:

quasars:

Schwarzschild radius:

spontaneous symmetry breaking:

Superconductors:

superforce:

Superstring theory:

thought experiment:

word used to describe systems the outcomes of which are extremely sensitive to initial conditions

an emerging field devoted to the study of complex systems

the spectrum of microwave radiation of cosmic origin

a theoretical construct intimately related to the expansion and closure of the universe

the photon wavelength is stretched in transit from the source to the observer because of the
expansion of space itself

the study of the character and evolution of the universe

the density of matter needed to just halt universal expansion

the temperature at which and below which a material becomes a superconductor

indirectly observed non-luminous matter

the stage before 10−11 back to 10−34 after the Big Bang

takeoff velocity when kinetic energy just cancels gravitational potential energy

the distance from the object at which the escape velocity is exactly the speed of light

a universe that is infinite but not curved

Einstein’s theory thatdescribes all types of relative motion including accelerated motion and the effects of
gravity

mass-created distortions in space that propagate at the speed of light and that are predicted by general
relativity

the time period from 10−43 to 10−34 after the Big Bang, when Grand Unification Theory, in which all forces except
gravity are identical, governed the universe

a central concept in cosmology whose value is determined by taking the slope of a graph of velocity versus
distance, obtained from red shift measurements

the rapid expansion of the universe by an incredible factor of 10−50 for the brief time from 10−35 to

about 10−32s

massive compact halo objects; microlensing objects of huge mass

a process in which light from a distant star is focused and the star appears to brighten in a characteristic
manner, when a small body (smaller than about 1/1000 the mass of the Sun) passes between us and the star

an open universe that expands forever

a type of WIMPs having masses several orders of magnitude greater than nucleon masses

a process in which any type of neutrino could change spontaneously into any other

literally a star composed of neutrons

a universe that is closed and eventually contracts

the theory that deals with particle exchange of gravitons as the mechanism for the force

the moderately distant galaxies that emit as much or more energy than a normal galaxy

the radius of the event horizon

the transition from GUT to electroweak where the forces were no longer unified

materials with resistivity of zero

hypothetical unified force in TOE epoch

a theory to unify gravity with the other three forces in which the fundamental particles are considered to
act like one-dimensional vibrating strings

mental analysis of certain carefully and clearly defined situations to develop an idea
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TOE epoch:

WIMPs:

before 10−43 after the Big Bang

weakly interacting massive particles; chargeless leptons (non-baryonic matter) interacting negligibly with normal
matter

Section Summary

34.1 Cosmology and Particle Physics
• Cosmology is the study of the character and evolution of the universe.
• The two most important features of the universe are the cosmological red shifts of its galaxies being proportional to

distance and its cosmic microwave background (CMBR). Both support the notion that there was a gigantic explosion,
known as the Big Bang that created the universe.

• Galaxies farther away than our local group have, on an average, a recessional velocity given by
v = H0 d,

where d is the distance to the galaxy and H0 is the Hubble constant, taken to have the average value

H0 = 20km/s ⋅ Mly.
• Explanations of the large-scale characteristics of the universe are intimately tied to particle physics.
• The dominance of matter over antimatter and the smoothness of the CMBR are two characteristics that are tied to particle

physics.
• The epochs of the universe are known back to very shortly after the Big Bang, based on known laws of physics.
• The earliest epochs are tied to the unification of forces, with the electroweak epoch being partially understood, the GUT

epoch being speculative, and the TOE epoch being highly speculative since it involves an unknown single superforce.
• The transition from GUT to electroweak is called spontaneous symmetry breaking. It released energy that caused the

inflationary scenario, which in turn explains the smoothness of the CMBR.

34.2 General Relativity and Quantum Gravity
• Einstein’s theory of general relativity includes accelerated frames and, thus, encompasses special relativity and gravity.

Created by use of careful thought experiments, it has been repeatedly verified by real experiments.
• One direct result of this behavior of nature is the gravitational lensing of light by massive objects, such as galaxies, also

seen in the microlensing of light by smaller bodies in our galaxy.
• Another prediction is the existence of black holes, objects for which the escape velocity is greater than the speed of light

and from which nothing can escape.
• The event horizon is the distance from the object at which the escape velocity equals the speed of light c . It is called the

Schwarzschild radius RS and is given by

RS = 2GM
c2 ,

where G is the universal gravitational constant, and M is the mass of the body.

• Physics is unknown inside the event horizon, and the possibility of wormholes and time travel are being studied.
• Candidates for black holes may power the extremely energetic emissions of quasars, distant objects that seem to be early

stages of galactic evolution.
• Neutron stars are stellar remnants, having the density of a nucleus, that hint that black holes could form from supernovas,

too.
• Gravitational waves are wrinkles in space, predicted by general relativity but not yet observed, caused by changes in very

massive objects.
• Quantum gravity is an incompletely developed theory that strives to include general relativity, quantum mechanics, and

unification of forces (thus, a TOE).
• One unconfirmed connection between general relativity and quantum mechanics is the prediction of characteristic radiation

from just outside black holes.

34.3 Superstrings
• Superstring theory holds that fundamental particles are one-dimensional vibrations analogous to those on strings and is an

attempt at a theory of quantum gravity.

34.4 Dark Matter and Closure
• Dark matter is non-luminous matter detected in and around galaxies and galactic clusters.
• It may be 10 times the mass of the luminous matter in the universe, and its amount may determine whether the universe is

open or closed (expands forever or eventually stops).
• The determining factor is the critical density of the universe and the cosmological constant, a theoretical construct

intimately related to the expansion and closure of the universe.

• The critical density ρc is the density needed to just halt universal expansion. It is estimated to be approximately 10–26 kg/

m3.
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• An open universe is negatively curved, a closed universe is positively curved, whereas a universe with exactly the critical
density is flat.

• Dark matter’s composition is a major mystery, but it may be due to the suspected mass of neutrinos or a completely
unknown type of leptonic matter.

• If neutrinos have mass, they will change families, a process known as neutrino oscillations, for which there is growing
evidence.

34.5 Complexity and Chaos
• Complexity is an emerging field, rooted primarily in physics, that considers complex adaptive systems and their evolution,

including self-organization.
• Complexity has applications in physics and many other disciplines, such as biological evolution.
• Chaos is a field that studies systems whose properties depend extremely sensitively on some variables and whose

evolution is impossible to predict.
• Chaotic systems may be simple or complex.
• Studies of chaos have led to methods for understanding and predicting certain chaotic behaviors.

34.6 High-temperature Superconductors
• High-temperature superconductors are materials that become superconducting at temperatures well above a few kelvin.
• The critical temperature Tc is the temperature below which a material is superconducting.

• Some high-temperature superconductors have verified Tc s above 125 K, and there are reports of Tc s as high as 250 K.

34.7 Some Questions We Know to Ask
• On the largest scale, the questions which can be asked may be about dark matter, dark energy, black holes, quasars, and

other aspects of the universe.
• On the intermediate scale, we can query about gravity, phase transitions, nonlinear phenomena, high- Tc

superconductors, and magnetic effects on materials.
• On the smallest scale, questions may be about quarks and leptons, fundamental forces, stability of protons, and existence

of monopoles.

Conceptual Questions

34.1 Cosmology and Particle Physics

1. Explain why it only appears that we are at the center of expansion of the universe and why an observer in another galaxy
would see the same relative motion of all but the closest galaxies away from her.

2. If there is no observable edge to the universe, can we determine where its center of expansion is? Explain.

3. If the universe is infinite, does it have a center? Discuss.

4. Another known cause of red shift in light is the source being in a high gravitational field. Discuss how this can be eliminated as
the source of galactic red shifts, given that the shifts are proportional to distance and not to the size of the galaxy.

5. If some unknown cause of red shift—such as light becoming “tired” from traveling long distances through empty space—is
discovered, what effect would there be on cosmology?

6. Olbers’s paradox poses an interesting question: If the universe is infinite, then any line of sight should eventually fall on a
star’s surface. Why then is the sky dark at night? Discuss the commonly accepted evolution of the universe as a solution to this
paradox.

7. If the cosmic microwave background radiation (CMBR) is the remnant of the Big Bang’s fireball, we expect to see hot and cold
regions in it. What are two causes of these wrinkles in the CMBR? Are the observed temperature variations greater or less than
originally expected?

8. The decay of one type of K -meson is cited as evidence that nature favors matter over antimatter. Since mesons are

composed of a quark and an antiquark, is it surprising that they would preferentially decay to one type over another? Is this an
asymmetry in nature? Is the predominance of matter over antimatter an asymmetry?

9. Distances to local galaxies are determined by measuring the brightness of stars, called Cepheid variables, that can be
observed individually and that have absolute brightnesses at a standard distance that are well known. Explain how the measured
brightness would vary with distance as compared with the absolute brightness.

10. Distances to very remote galaxies are estimated based on their apparent type, which indicate the number of stars in the
galaxy, and their measured brightness. Explain how the measured brightness would vary with distance. Would there be any
correction necessary to compensate for the red shift of the galaxy (all distant galaxies have significant red shifts)? Discuss
possible causes of uncertainties in these measurements.

11. If the smallest meaningful time interval is greater than zero, will the lines in Figure 34.9 ever meet?
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34.2 General Relativity and Quantum Gravity

12. Quantum gravity, if developed, would be an improvement on both general relativity and quantum mechanics, but more
mathematically difficult. Under what circumstances would it be necessary to use quantum gravity? Similarly, under what
circumstances could general relativity be used? When could special relativity, quantum mechanics, or classical physics be used?

13. Does observed gravitational lensing correspond to a converging or diverging lens? Explain briefly.

14. Suppose you measure the red shifts of all the images produced by gravitational lensing, such as in Figure 34.12.You find
that the central image has a red shift less than the outer images, and those all have the same red shift. Discuss how this not only
shows that the images are of the same object, but also implies that the red shift is not affected by taking different paths through
space. Does it imply that cosmological red shifts are not caused by traveling through space (light getting tired, perhaps)?

15. What are gravitational waves, and have they yet been observed either directly or indirectly?

16. Is the event horizon of a black hole the actual physical surface of the object?

17. Suppose black holes radiate their mass away and the lifetime of a black hole created by a supernova is about 1067 years.

How does this lifetime compare with the accepted age of the universe? Is it surprising that we do not observe the predicted
characteristic radiation?

34.4 Dark Matter and Closure

18. Discuss the possibility that star velocities at the edges of galaxies being greater than expected is due to unknown properties
of gravity rather than to the existence of dark matter. Would this mean, for example, that gravity is greater or smaller than
expected at large distances? Are there other tests that could be made of gravity at large distances, such as observing the
motions of neighboring galaxies?

19. How does relativistic time dilation prohibit neutrino oscillations if they are massless?

20. If neutrino oscillations do occur, will they violate conservation of the various lepton family numbers ( Le , Lμ , and Lτ )? Will

neutrino oscillations violate conservation of the total number of leptons?

21. Lacking direct evidence of WIMPs as dark matter, why must we eliminate all other possible explanations based on the known
forms of matter before we invoke their existence?

34.5 Complexity and Chaos

22. Must a complex system be adaptive to be of interest in the field of complexity? Give an example to support your answer.

23. State a necessary condition for a system to be chaotic.

34.6 High-temperature Superconductors

24. What is critical temperature Tc ? Do all materials have a critical temperature? Explain why or why not.

25. Explain how good thermal contact with liquid nitrogen can keep objects at a temperature of 77 K (liquid nitrogen’s boiling
point at atmospheric pressure).

26. Not only is liquid nitrogen a cheaper coolant than liquid helium, its boiling point is higher (77 K vs. 4.2 K). How does higher
temperature help lower the cost of cooling a material? Explain in terms of the rate of heat transfer being related to the
temperature difference between the sample and its surroundings.

34.7 Some Questions We Know to Ask

27. For experimental evidence, particularly of previously unobserved phenomena, to be taken seriously it must be reproducible
or of sufficiently high quality that a single observation is meaningful. Supernova 1987A is not reproducible. How do we know
observations of it were valid? The fifth force is not broadly accepted. Is this due to lack of reproducibility or poor-quality
experiments (or both)? Discuss why forefront experiments are more subject to observational problems than those involving
established phenomena.

28. Discuss whether you think there are limits to what humans can understand about the laws of physics. Support your
arguments.
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Problems & Exercises

34.1 Cosmology and Particle Physics

1. Find the approximate mass of the luminous matter in the

Milky Way galaxy, given it has approximately 1011 stars of

average mass 1.5 times that of our Sun.

2. Find the approximate mass of the dark and luminous
matter in the Milky Way galaxy. Assume the luminous matter

is due to approximately 1011 stars of average mass 1.5

times that of our Sun, and take the dark matter to be 10 times
as massive as the luminous matter.

3. (a) Estimate the mass of the luminous matter in the known

universe, given there are 1011 galaxies, each containing

1011 stars of average mass 1.5 times that of our Sun. (b)

How many protons (the most abundant nuclide) are there in
this mass? (c) Estimate the total number of particles in the
observable universe by multiplying the answer to (b) by two,

since there is an electron for each proton, and then by 109 ,

since there are far more particles (such as photons and
neutrinos) in space than in luminous matter.

4. If a galaxy is 500 Mly away from us, how fast do we expect
it to be moving and in what direction?

5. On average, how far away are galaxies that are moving
away from us at 2.0% of the speed of light?

6. Our solar system orbits the center of the Milky Way galaxy.
Assuming a circular orbit 30,000 ly in radius and an orbital
speed of 250 km/s, how many years does it take for one
revolution? Note that this is approximate, assuming constant
speed and circular orbit, but it is representative of the time for
our system and local stars to make one revolution around the
galaxy.

7. (a) What is the approximate speed relative to us of a
galaxy near the edge of the known universe, some 10 Gly
away? (b) What fraction of the speed of light is this? Note that
we have observed galaxies moving away from us at greater
than 0.9c .

8. (a) Calculate the approximate age of the universe from the
average value of the Hubble constant,
H0 = 20km/s ⋅ Mly . To do this, calculate the time it

would take to travel 1 Mly at a constant expansion rate of 20
km/s. (b) If deceleration is taken into account, would the
actual age of the universe be greater or less than that found
here? Explain.

9. Assuming a circular orbit for the Sun about the center of
the Milky Way galaxy, calculate its orbital speed using the
following information: The mass of the galaxy is equivalent to

a single mass 1.5×1011 times that of the Sun (or

3×1041 kg ), located 30,000 ly away.

10. (a) What is the approximate force of gravity on a 70-kg
person due to the Andromeda galaxy, assuming its total mass

is 1013 that of our Sun and acts like a single mass 2 Mly

away? (b) What is the ratio of this force to the person’s
weight? Note that Andromeda is the closest large galaxy.

11. Andromeda galaxy is the closest large galaxy and is
visible to the naked eye. Estimate its brightness relative to the

Sun, assuming it has luminosity 1012 times that of the Sun

and lies 2 Mly away.

12. (a) A particle and its antiparticle are at rest relative to an
observer and annihilate (completely destroying both masses),
creating two γ rays of equal energy. What is the

characteristic γ -ray energy you would look for if searching for

evidence of proton-antiproton annihilation? (The fact that
such radiation is rarely observed is evidence that there is very
little antimatter in the universe.) (b) How does this compare
with the 0.511-MeV energy associated with electron-positron
annihilation?

13. The average particle energy needed to observe

unification of forces is estimated to be 1019 GeV . (a) What

is the rest mass in kilograms of a particle that has a rest mass

of 1019 GeV/c2 ? (b) How many times the mass of a

hydrogen atom is this?

14. The peak intensity of the CMBR occurs at a wavelength of
1.1 mm. (a) What is the energy in eV of a 1.1-mm photon? (b)

There are approximately 109 photons for each massive

particle in deep space. Calculate the energy of 109 such

photons. (c) If the average massive particle in space has a
mass half that of a proton, what energy would be created by
converting its mass to energy? (d) Does this imply that space
is “matter dominated”? Explain briefly.

15. (a) What Hubble constant corresponds to an approximate

age of the universe of 1010 y? To get an approximate value,

assume the expansion rate is constant and calculate the
speed at which two galaxies must move apart to be separated
by 1 Mly (present average galactic separation) in a time of

1010 y. (b) Similarly, what Hubble constant corresponds to a

universe approximately 2×1010 -y old?

16. Show that the velocity of a star orbiting its galaxy in a
circular orbit is inversely proportional to the square root of its
orbital radius, assuming the mass of the stars inside its orbit
acts like a single mass at the center of the galaxy. You may
use an equation from a previous chapter to support your
conclusion, but you must justify its use and define all terms
used.

17. The core of a star collapses during a supernova, forming
a neutron star. Angular momentum of the core is conserved,
and so the neutron star spins rapidly. If the initial core radius

is 5.0×105 km and it collapses to 10.0 km, find the neutron

star’s angular velocity in revolutions per second, given the
core’s angular velocity was originally 1 revolution per 30.0
days.

18. Using data from the previous problem, find the increase in
rotational kinetic energy, given the core’s mass is 1.3 times
that of our Sun. Where does this increase in kinetic energy
come from?

19. Distances to the nearest stars (up to 500 ly away) can be
measured by a technique called parallax, as shown in Figure
34.26. What are the angles θ1 and θ2 relative to the plane

of the Earth’s orbit for a star 4.0 ly directly above the Sun?
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20. (a) Use the Heisenberg uncertainty principle to calculate
the uncertainty in energy for a corresponding time interval of

10−43 s . (b) Compare this energy with the 1019 GeV
unification-of-forces energy and discuss why they are similar.

21. Construct Your Own Problem

Consider a star moving in a circular orbit at the edge of a
galaxy. Construct a problem in which you calculate the mass
of that galaxy in kg and in multiples of the solar mass based
on the velocity of the star and its distance from the center of
the galaxy.

Figure 34.26 Distances to nearby stars are measured using

triangulation, also called the parallax method. The angle of line of sight

to the star is measured at intervals six months apart, and the distance is

calculated by using the known diameter of the Earth’s orbit. This can be

done for stars up to about 500 ly away.

34.2 General Relativity and Quantum Gravity

22. What is the Schwarzschild radius of a black hole that has
a mass eight times that of our Sun? Note that stars must be
more massive than the Sun to form black holes as a result of
a supernova.

23. Black holes with masses smaller than those formed in
supernovas may have been created in the Big Bang.
Calculate the radius of one that has a mass equal to the
Earth’s.

24. Supermassive black holes are thought to exist at the
center of many galaxies.

(a) What is the radius of such an object if it has a mass of

109 Suns?

(b) What is this radius in light years?

25. Construct Your Own Problem

Consider a supermassive black hole near the center of a
galaxy. Calculate the radius of such an object based on its
mass. You must consider how much mass is reasonable for
these large objects, and which is now nearly directly
observed. (Information on black holes posted on the Web by
NASA and other agencies is reliable, for example.)

34.3 Superstrings

26. The characteristic length of entities in Superstring theory

is approximately 10−35 m .

(a) Find the energy in GeV of a photon of this wavelength.

(b) Compare this with the average particle energy of

1019 GeV needed for unification of forces.

34.4 Dark Matter and Closure

27. If the dark matter in the Milky Way were composed
entirely of MACHOs (evidence shows it is not), approximately
how many would there have to be? Assume the average
mass of a MACHO is 1/1000 that of the Sun, and that dark
matter has a mass 10 times that of the luminous Milky Way

galaxy with its 1011 stars of average mass 1.5 times the

Sun’s mass.

28. The critical mass density needed to just halt the

expansion of the universe is approximately 10−26 kg / m3 .

(a) Convert this to eV / c2 ⋅ m3 .

(b) Find the number of neutrinos per cubic meter needed to

close the universe if their average mass is 7 eV / c2 and

they have negligible kinetic energies.

29. Assume the average density of the universe is 0.1 of the
critical density needed for closure. What is the average
number of protons per cubic meter, assuming the universe is
composed mostly of hydrogen?

30. To get an idea of how empty deep space is on the
average, perform the following calculations:

(a) Find the volume our Sun would occupy if it had an
average density equal to the critical density of

10−26 kg / m3 thought necessary to halt the expansion of

the universe.

(b) Find the radius of a sphere of this volume in light years.

(c) What would this radius be if the density were that of
luminous matter, which is approximately 5% that of the

critical density?

(d) Compare the radius found in part (c) with the 4-ly average
separation of stars in the arms of the Milky Way.
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34.6 High-temperature Superconductors

31. A section of superconducting wire carries a current of 100
A and requires 1.00 L of liquid nitrogen per hour to keep it
below its critical temperature. For it to be economically
advantageous to use a superconducting wire, the cost of
cooling the wire must be less than the cost of energy lost to
heat in the wire. Assume that the cost of liquid nitrogen is
$0.30 per liter, and that electric energy costs $0.10 per kW·h.
What is the resistance of a normal wire that costs as much in
wasted electric energy as the cost of liquid nitrogen for the
superconductor?
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APPENDIX A | ATOMIC MASSES

Table A1 Atomic Masses

Atomic
Number, Z

Name
Atomic Mass

Number, A
Symbol

Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

0 neutron 1 n 1.008 665 β−
10.37 min

1 Hydrogen 1 1H 1.007 825 99.985%

Deuterium 2 2H or D 2.014 102 0.015%

Tritium 3 3H or T 3.016 050 β−
12.33 y

2 Helium 3 3He 3.016 030 1.38×10−4%

4 4He 4.002 603 ≈100%

3 Lithium 6 6Li 6.015 121 7.5%

7 7Li 7.016 003 92.5%

4 Beryllium 7 7Be 7.016 928 EC 53.29 d

9 9Be 9.012 182 100%

5 Boron 10 10B 10.012 937 19.9%

11 11B 11.009 305 80.1%

6 Carbon 11 11C 11.011 432 EC, β+

12 12C 12.000 000 98.90%

13 13C 13.003 355 1.10%

14 14C 14.003 241 β−
5730 y

7 Nitrogen 13 13N 13.005 738 β+
9.96 min

14 14N 14.003 074 99.63%

15 15N 15.000 108 0.37%

8 Oxygen 15 15O 15.003 065 EC, β+
122 s

16 16O 15.994 915 99.76%

18 18O 17.999 160 0.200%

9 Fluorine 18 18F 18.000 937 EC, β+
1.83 h

19 19F 18.998 403 100%

10 Neon 20 20Ne 19.992 435 90.51%

22 22Ne 21.991 383 9.22%

11 Sodium 22 22Na 21.994 434 β+
2.602 y

23 23Na 22.989 767 100%
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Atomic
Number, Z

Name
Atomic Mass

Number, A
Symbol

Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

24 24Na 23.990 961 β−
14.96 h

12 Magnesium 24 24Mg 23.985 042 78.99%

13 Aluminum 27 27Al 26.981 539 100%

14 Silicon 28 28Si 27.976 927 92.23% 2.62h

31 31Si 30.975 362 β−

15 Phosphorus 31 31P 30.973 762 100%

32 32P 31.973 907 β−
14.28 d

16 Sulfur 32 32S 31.972 070 95.02%

35 35S 34.969 031 β−
87.4 d

17 Chlorine 35 35Cl 34.968 852 75.77%

37 37Cl 36.965 903 24.23%

18 Argon 40 40Ar 39.962 384 99.60%

19 Potassium 39 39K 38.963 707 93.26%

40 40K 39.963 999 0.0117%, EC, β− 1.28×109 y

20 Calcium 40 40Ca 39.962 591 96.94%

21 Scandium 45 45Sc 44.955 910 100%

22 Titanium 48 48Ti 47.947 947 73.8%

23 Vanadium 51 51V 50.943 962 99.75%

24 Chromium 52 52Cr 51.940 509 83.79%

25 Manganese 55 55Mn 54.938 047 100%

26 Iron 56 56Fe 55.934 939 91.72%

27 Cobalt 59 59Co 58.933 198 100%

60 60Co 59.933 819 β−
5.271 y

28 Nickel 58 58Ni 57.935 346 68.27%

60 60Ni 59.930 788 26.10%

29 Copper 63 63Cu 62.939 598 69.17%

65 65Cu 64.927 793 30.83%

30 Zinc 64 64Zn 63.929 145 48.6%

66 66Zn 65.926 034 27.9%

31 Gallium 69 69Ga 68.925 580 60.1%

32 Germanium 72 72Ge 71.922 079 27.4%
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Atomic
Number, Z

Name
Atomic Mass

Number, A
Symbol

Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

74 74Ge 73.921 177 36.5%

33 Arsenic 75 75As 74.921 594 100%

34 Selenium 80 80Se 79.916 520 49.7%

35 Bromine 79 79Br 78.918 336 50.69%

36 Krypton 84 84Kr 83.911 507 57.0%

37 Rubidium 85 85Rb 84.911 794 72.17%

38 Strontium 86 86Sr 85.909 267 9.86%

88 88Sr 87.905 619 82.58%

90 90Sr 89.907 738 β−
28.8 y

39 Yttrium 89 89Y 88.905 849 100%

90 90Y 89.907 152 β−
64.1 h

40 Zirconium 90 90Zr 89.904 703 51.45%

41 Niobium 93 93Nb 92.906 377 100%

42 Molybdenum 98 98Mo 97.905 406 24.13%

43 Technetium 98 98Tc 97.907 215 β− 4.2×106y

44 Ruthenium 102 102Ru 101.904 348 31.6%

45 Rhodium 103 103Rh 102.905 500 100%

46 Palladium 106 106Pd 105.903 478 27.33%

47 Silver 107 107Ag 106.905 092 51.84%

109 109Ag 108.904 757 48.16%

48 Cadmium 114 114Cd 113.903 357 28.73%

49 Indium 115 115In 114.903 880 95.7%, β− 4.4×1014y

50 Tin 120 120Sn 119.902 200 32.59%

51 Antimony 121 121Sb 120.903 821 57.3%

52 Tellurium 130 130Te 129.906 229 33.8%, β− 2.5×1021y

53 Iodine 127 127I 126.904 473 100%

131 131I 130.906 114 β−
8.040 d

54 Xenon 132 132Xe 131.904 144 26.9%

136 136Xe 135.907 214 8.9%

55 Cesium 133 133Cs 132.905 429 100%
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Atomic
Number, Z

Name
Atomic Mass

Number, A
Symbol

Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

134 134Cs 133.906 696 EC, β−
2.06 y

56 Barium 137 137Ba 136.905 812 11.23%

138 138Ba 137.905 232 71.70%

57 Lanthanum 139 139La 138.906 346 99.91%

58 Cerium 140 140Ce 139.905 433 88.48%

59 Praseodymium 141 141Pr 140.907 647 100%

60 Neodymium 142 142Nd 141.907 719 27.13%

61 Promethium 145 145Pm 144.912 743 EC, α 17.7 y

62 Samarium 152 152Sm 151.919 729 26.7%

63 Europium 153 153Eu 152.921 225 52.2%

64 Gadolinium 158 158Gd 157.924 099 24.84%

65 Terbium 159 159Tb 158.925 342 100%

66 Dysprosium 164 164Dy 163.929 171 28.2%

67 Holmium 165 165Ho 164.930 319 100%

68 Erbium 166 166Er 165.930 290 33.6%

69 Thulium 169 169Tm 168.934 212 100%

70 Ytterbium 174 174Yb 173.938 859 31.8%

71 Lutecium 175 175Lu 174.940 770 97.41%

72 Hafnium 180 180Hf 179.946 545 35.10%

73 Tantalum 181 181Ta 180.947 992 99.98%

74 Tungsten 184 184W 183.950 928 30.67%

75 Rhenium 187 187Re 186.955 744 62.6%, β− 4.6×1010y

76 Osmium 191 191Os 190.960 920 β−
15.4 d

192 192Os 191.961 467 41.0%

77 Iridium 191 191Ir 190.960 584 37.3%

193 193Ir 192.962 917 62.7%

78 Platinum 195 195Pt 194.964 766 33.8%

79 Gold 197 197Au 196.966 543 100%

198 198Au 197.968 217 β−
2.696 d

80 Mercury 199 199Hg 198.968 253 16.87%

1378 Appendix A

This OpenStax book is available for free at http://cnx.org/content/col11406/1.14



Atomic
Number, Z

Name
Atomic Mass

Number, A
Symbol

Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

202 202Hg 201.970 617 29.86%

81 Thallium 205 205Tl 204.974 401 70.48%

82 Lead 206 206Pb 205.974 440 24.1%

207 207Pb 206.975 872 22.1%

208 208Pb 207.976 627 52.4%

210 210Pb 209.984 163 α, β−
22.3 y

211 211Pb 210.988 735 β−
36.1 min

212 212Pb 211.991 871 β−
10.64 h

83 Bismuth 209 209Bi 208.980 374 100%

211 211Bi 210.987 255 α, β−
2.14 min

84 Polonium 210 210Po 209.982 848 α 138.38 d

85 Astatine 218 218At 218.008 684 α, β−
1.6 s

86 Radon 222 222Rn 222.017 570 α 3.82 d

87 Francium 223 223Fr 223.019 733 α, β−
21.8 min

88 Radium 226 226Ra 226.025 402 α 1.60×103y

89 Actinium 227 227Ac 227.027 750 α, β−
21.8 y

90 Thorium 228 228Th 228.028 715 α 1.91 y

232 232Th 232.038 054 100%, α 1.41×1010y

91 Protactinium 231 231Pa 231.035 880 α 3.28×104y

92 Uranium 233 233U 233.039 628 α 1.59×103y

235 235U 235.043 924 0.720%, α 7.04×108y

236 236U 236.045 562 α 2.34×107y

238 238U 238.050 784 99.2745%, α 4.47×109y

239 239U 239.054 289 β−
23.5 min

93 Neptunium 239 239Np 239.052 933 β−
2.355 d

94 Plutonium 239 239Pu 239.052 157 α 2.41×104y

95 Americium 243 243Am 243.061 375 α, fission 7.37×103y

96 Curium 245 245Cm 245.065 483 α 8.50×103y

97 Berkelium 247 247Bk 247.070 300 α 1.38×103y
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Atomic
Number, Z

Name
Atomic Mass

Number, A
Symbol

Atomic
Mass (u)

Percent Abundance or
Decay Mode

Half-life,
t1/2

98 Californium 249 249Cf 249.074 844 α 351 y

99 Einsteinium 254 254Es 254.088 019 α, β−
276 d

100 Fermium 253 253Fm 253.085 173 EC, α 3.00 d

101 Mendelevium 255 255Md 255.091 081 EC, α 27 min

102 Nobelium 255 255No 255.093 260 EC, α 3.1 min

103 Lawrencium 257 257Lr 257.099 480 EC, α 0.646 s

104 Rutherfordium 261 261Rf 261.108 690 α 1.08 min

105 Dubnium 262 262Db 262.113 760 α, fission 34 s

106 Seaborgium 263 263Sg 263.11 86 α, fission 0.8 s

107 Bohrium 262 262Bh 262.123 1 α 0.102 s

108 Hassium 264 264Hs 264.128 5 α 0.08 ms

109 Meitnerium 266 266Mt 266.137 8 α 3.4 ms
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APPENDIX B | SELECTED RADIOACTIVE
ISOTOPES

Decay modes are α , β− , β+ , electron capture (EC) and isomeric transition (IT). EC results in the same daughter nucleus as

would β+ decay. IT is a transition from a metastable excited state. Energies for β±
decays are the maxima; average energies

are roughly one-half the maxima.

Table B1 Selected Radioactive Isotopes

Isotope t 1/2 DecayMode(s) Energy(MeV) Percent γ -Ray Energy(MeV) Percent

3H 12.33 y β−
0.0186 100%

14C 5730 y β−
0.156 100%

13N 9.96 min β+
1.20 100%

22Na 2.602 y β+
0.55 90% γ 1.27 100%

32P 14.28 d β−
1.71 100%

35S 87.4 d β−
0.167 100%

36Cl 3.00×105y β−
0.710 100%

40K 1.28×109y β−
1.31 89%

43K 22.3 h β−
0.827 87% γ s 0.373 87%

0.618 87%

45Ca 165 d β−
0.257 100%

51Cr 27.70 d EC γ 0.320 10%

52Mn 5.59d β+
3.69 28% γ s 1.33 28%

1.43 28%

52Fe 8.27 h β+
1.80 43% 0.169 43%

0.378 43%

59Fe 44.6 d β− s 0.273 45% γ s 1.10 57%

0.466 55% 1.29 43%

60Co 5.271 y β−
0.318 100% γ s 1.17 100%

1.33 100%

65Zn 244.1 d EC γ 1.12 51%

67Ga 78.3 h EC γ s 0.0933 70%

0.185 35%

0.300 19%

others

75Se 118.5 d EC γ s 0.121 20%

0.136 65%
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Isotope t 1/2 DecayMode(s) Energy(MeV) Percent γ -Ray Energy(MeV) Percent

0.265 68%

0.280 20%

others

86Rb 18.8 d β− s 0.69 9% γ 1.08 9%

1.77 91%

85Sr 64.8 d EC γ 0.514 100%

90Sr 28.8 y β−
0.546 100%

90Y 64.1 h β−
2.28 100%

99mTc 6.02 h IT γ 0.142 100%

113mIn 99.5 min IT γ 0.392 100%

123I 13.0 h EC γ 0.159 ≈100%

131I 8.040 d β− s 0.248 7% γ s 0.364 85%

0.607 93% others

others

129Cs 32.3 h EC γ s 0.0400 35%

0.372 32%

0.411 25%

others

137Cs 30.17 y β− s 0.511 95% γ 0.662 95%

1.17 5%

140Ba 12.79 d β−
1.035 ≈100% γ s 0.030 25%

0.044 65%

0.537 24%

others

198Au 2.696 d β−
1.161 ≈100% γ 0.412 ≈100%

197Hg 64.1 h EC γ 0.0733 100%

210Po 138.38 d α 5.41 100%

226Ra 1.60×103y αs 4.68 5% γ 0.186 100%

4.87 95%

235U 7.038×108y α 4.68 ≈100% γ s numerous <0.400%

238U 4.468×109y αs 4.22 23% γ 0.050 23%

4.27 77%

237Np 2.14×106y αs numerous γ s numerous <0.250%

4.96 (max.)

239Pu 2.41×104y αs 5.19 11% γ s 7.5×10−5 73%

5.23 15% 0.013 15%
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Isotope t 1/2 DecayMode(s) Energy(MeV) Percent γ -Ray Energy(MeV) Percent

5.24 73% 0.052 10%

others

243Am 7.37×103y αs Max. 5.44 γ s 0.075

5.37 88% others

5.32 11%

others
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APPENDIX C | USEFUL INFORMATION
This appendix is broken into several tables.

• Table C1, Important Constants
• Table C2, Submicroscopic Masses
• Table C3, Solar System Data
• Table C4, Metric Prefixes for Powers of Ten and Their Symbols
• Table C5, The Greek Alphabet
• Table C6, SI units
• Table C7, Selected British Units
• Table C8, Other Units
• Table C9, Useful Formulae

Table C1 Important Constants
[1]

Symbol Meaning Best Value Approximate Value

c
Speed of
light in
vacuum

2.99792458 × 108 m / s 3.00 × 108 m / s

G Gravitational
constant

6.67408(31) × 10−11 N ⋅ m2 / kg2 6.67 × 10−11 N ⋅ m2 / kg2

NA
Avogadro’s
number

6.02214129(27) × 1023 6.02 × 1023

k Boltzmann’s
constant

1.3806488(13) × 10−23 J / K 1.38 × 10−23 J / K

R Gas
constant

8.3144621(75) J / mol ⋅ K 8.31 J / mol ⋅ K = 1.99 cal / mol ⋅ K = 0.0821atm ⋅ L / mol ⋅ K

σ
Stefan-
Boltzmann
constant

5.670373(21) × 10−8 W / m2 ⋅ K 5.67 × 10−8 W / m2 ⋅ K

k
Coulomb
force
constant

8.987551788... × 109 N ⋅ m2 / C2 8.99 × 109 N ⋅ m2 / C2

qe Charge on
electron

−1.602176565(35) × 10−19 C −1.60 × 10−19 C

ε0
Permittivity
of free
space

8.854187817... × 10−12 C2 / N ⋅ m2 8.85 × 10−12 C2 / N ⋅ m2

μ0
Permeability
of free
space

4π × 10−7 T ⋅ m / A 1.26 × 10−6 T ⋅ m / A

h Planck’s
constant

6.62606957(29) × 10−34 J ⋅ s 6.63 × 10−34 J ⋅ s

Table C2 Submicroscopic Masses
[2]

Symbol Meaning Best Value Approximate Value

me Electron mass 9.10938291(40)×10−31kg 9.11×10−31kg

m p Proton mass 1.672621777(74)×10−27kg 1.6726×10−27kg

mn Neutron mass 1.674927351(74)×10−27kg 1.6749×10−27kg

1. Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty,
www.physics.nist.gov/cuu (http://www.physics.nist.gov/cuu) (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits.
Numbers without uncertainties are exact as defined.
2. Stated values are according to the National Institute of Standards and Technology Reference on Constants, Units, and Uncertainty,
www.physics.nist.gov/cuu (http://www.physics.nist.gov/cuu) (accessed May 18, 2012). Values in parentheses are the uncertainties in the last digits.
Numbers without uncertainties are exact as defined.
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Symbol Meaning Best Value Approximate Value

u Atomic mass unit 1.660538921(73)×10−27kg 1.6605×10−27kg

Table C3 Solar System Data

Sun mass 1.99×1030kg

average radius 6.96×108m

Earth-sun distance (average) 1.496×1011m

Earth mass 5.9736×1024kg

average radius 6.376×106m

orbital period 3.16×107s

Moon mass 7.35×1022kg

average radius 1.74×106m

orbital period (average) 2.36×106s

Earth-moon distance (average) 3.84×108m

Table C4 Metric Prefixes for Powers of Ten and Their Symbols

Prefix Symbol Value Prefix Symbol Value

tera T 1012 deci d 10−1

giga G 109 centi c 10−2

mega M 106 milli m 10−3

kilo k 103 micro μ 10−6

hecto h 102 nano n 10−9

deka da 101 pico p 10−12

— — 100( = 1) femto f 10−15

Table C5 The Greek Alphabet

Alpha Α α Eta Η η Nu Ν ν Tau Τ τ

Beta Β β Theta Θ θ Xi Ξ ξ Upsilon Υ υ

Gamma Γ γ Iota Ι ι Omicron Ο ο Phi Φ ϕ

Delta Δ δ Kappa Κ κ Pi Π π Chi Χ χ

Epsilon Ε ε Lambda Λ λ Rho Ρ ρ Psi Ψ ψ

Zeta Ζ ζ Mu Μ μ Sigma Σ σ Omega Ω ω

Table C6 SI Units

Entity Abbreviation Name

Fundamental units Length m meter

Mass kg kilogram
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Entity Abbreviation Name

Time s second

Current A ampere

Supplementary unit Angle rad radian

Derived units Force N = kg ⋅ m / s2 newton

Energy J = kg ⋅ m2 / s2 joule

Power W = J / s watt

Pressure Pa = N / m2 pascal

Frequency Hz = 1 / s hertz

Electronic potential V = J / C volt

Capacitance F = C / V farad

Charge C = s ⋅ A coulomb

Resistance Ω = V / A ohm

Magnetic field T = N / (A ⋅ m) tesla

Nuclear decay rate Bq = 1 / s becquerel

Table C7 Selected British Units

Length 1 inch (in.) = 2.54 cm (exactly)

1 foot (ft) = 0.3048 m

1 mile (mi) = 1.609 km

Force 1 pound (lb) = 4.448 N

Energy 1 British thermal unit (Btu) = 1.055×103 J

Power 1 horsepower (hp) = 746 W

Pressure 1 lb / in2 = 6.895×103 Pa

Table C8 Other Units

Length 1 light year (ly) = 9.46×1015 m

1 astronomical unit (au) = 1.50×1011 m

1 nautical mile = 1.852 km

1 angstrom(Å) = 10−10 m

Area 1 acre (ac) = 4.05×103 m2

1 square foot (ft2) = 9.29×10−2 m2

1 barn (b) = 10−28 m2

Volume 1 liter (L) = 10−3 m3

1 U.S. gallon (gal) = 3.785×10−3 m3
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Mass 1 solar mass = 1.99×1030 kg

1 metric ton = 103 kg

1 atomic mass unit (u) = 1.6605×10−27 kg

Time 1 year (y) = 3.16×107 s

1 day (d) = 86,400 s

Speed 1 mile per hour (mph) = 1.609 km / h

1 nautical mile per hour (naut) = 1.852 km / h

Angle 1 degree (°) = 1.745×10−2 rad

1 minute of arc ( ') = 1 / 60 degree

1 second of arc ( '') = 1 / 60 minute of arc

1 grad = 1.571×10−2 rad

Energy 1 kiloton TNT (kT) = 4.2×1012 J

1 kilowatt hour (kW ⋅ h) = 3.60×106 J

1 food calorie (kcal) = 4186 J

1 calorie (cal) = 4.186 J

1 electron volt (eV) = 1.60×10−19 J

Pressure 1 atmosphere (atm) = 1.013×105 Pa

1 millimeter of mercury (mm Hg) = 133.3 Pa

1 torricelli (torr) = 1 mm Hg = 133.3 Pa

Nuclear decay rate 1 curie (Ci) = 3.70×1010 Bq

Table C9 Useful Formulae

Circumference of a circle with radius r or diameter d C = 2πr = πd

Area of a circle with radius r or diameter d A = πr2 = πd2 / 4

Area of a sphere with radius r A = 4πr2

Volume of a sphere with radius r V = (4 / 3)⎛⎝πr3⎞⎠
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APPENDIX D | GLOSSARY OF KEY SYMBOLS
AND NOTATION

In this glossary, key symbols and notation are briefly defined.

Table D1

Symbol Definition

any symbol average (indicated by a bar over a symbol—e.g., v̄ is average velocity)

°C Celsius degree

°F Fahrenheit degree

// parallel

⊥ perpendicular

∝ proportional to

± plus or minus

0 zero as a subscript denotes an initial value

α alpha rays

α angular acceleration

α temperature coefficient(s) of resistivity

β beta rays

β sound level

β volume coefficient of expansion

β−
electron emitted in nuclear beta decay

β+
positron decay

γ gamma rays

γ surface tension

γ = 1 / 1 − v2 / c2 a constant used in relativity

Δ change in whatever quantity follows

δ uncertainty in whatever quantity follows

ΔE change in energy between the initial and final orbits of an electron in an atom

ΔE uncertainty in energy

Δm difference in mass between initial and final products

ΔN number of decays that occur

Δp change in momentum

Δp uncertainty in momentum

ΔPEg change in gravitational potential energy

Δθ rotation angle

Appendix D 1389



Symbol Definition

Δs distance traveled along a circular path

Δt uncertainty in time

Δt0 proper time as measured by an observer at rest relative to the process

ΔV potential difference

Δx uncertainty in position

ε0 permittivity of free space

η viscosity

θ angle between the force vector and the displacement vector

θ angle between two lines

θ contact angle

θ direction of the resultant

θb Brewster's angle

θc critical angle

κ dielectric constant

λ decay constant of a nuclide

λ wavelength

λn wavelength in a medium

μ0 permeability of free space

μk coefficient of kinetic friction

μs coefficient of static friction

ve electron neutrino

π+ positive pion

π−
negative pion

π0 neutral pion

ρ density

ρc critical density, the density needed to just halt universal expansion

ρfl fluid density

ρ̄ obj average density of an object

ρ / ρw specific gravity

τ characteristic time constant for a resistance and inductance (RL) or resistance and capacitance (RC)
circuit

τ characteristic time for a resistor and capacitor (RC) circuit

τ torque

Υ upsilon meson

Φ magnetic flux
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Symbol Definition

ϕ phase angle

Ω ohm (unit)

ω angular velocity

A ampere (current unit)

A area

A cross-sectional area

A total number of nucleons

a acceleration

aB Bohr radius

ac centripetal acceleration

at tangential acceleration

AC alternating current

AM amplitude modulation

atm atmosphere

B baryon number

B blue quark color

B̄ antiblue (yellow) antiquark color

b quark flavor bottom or beauty

B bulk modulus

B magnetic field strength

Bint electron’s intrinsic magnetic field

Borb orbital magnetic field

BE binding energy of a nucleus—it is the energy required to completely disassemble it into separate protons
and neutrons

BE / A binding energy per nucleon

Bq becquerel—one decay per second

C capacitance (amount of charge stored per volt)

C coulomb (a fundamental SI unit of charge)

Cp total capacitance in parallel

Cs total capacitance in series

CG center of gravity

CM center of mass

c quark flavor charm

c specific heat

c speed of light

Cal kilocalorie
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Symbol Definition

cal calorie

COPhp heat pump’s coefficient of performance

COPref coefficient of performance for refrigerators and air conditioners

cos θ cosine

cot θ cotangent

csc θ cosecant

D diffusion constant

d displacement

d quark flavor down

dB decibel

di distance of an image from the center of a lens

do distance of an object from the center of a lens

DC direct current

E electric field strength

ε emf (voltage) or Hall electromotive force

emf electromotive force

E energy of a single photon

E nuclear reaction energy

E relativistic total energy

E total energy

E0 ground state energy for hydrogen

E0 rest energy

EC electron capture

Ecap energy stored in a capacitor

Eff efficiency—the useful work output divided by the energy input

EffC Carnot efficiency

Ein energy consumed (food digested in humans)

Eind energy stored in an inductor

Eout energy output

e emissivity of an object

e+ antielectron or positron

eV electron volt

F farad (unit of capacitance, a coulomb per volt)

F focal point of a lens

F force
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Symbol Definition

F magnitude of a force

F restoring force

FB buoyant force

Fc centripetal force

Fi force input

Fnet net force

Fo force output

FM frequency modulation

f focal length

f frequency

f0 resonant frequency of a resistance, inductance, and capacitance (RLC) series circuit

f0 threshold frequency for a particular material (photoelectric effect)

f1 fundamental

f2 first overtone

f3 second overtone

fB beat frequency

fk magnitude of kinetic friction

fs magnitude of static friction

G gravitational constant

G green quark color

G
¯ antigreen (magenta) antiquark color

g acceleration due to gravity

g gluons (carrier particles for strong nuclear force)

h change in vertical position

h height above some reference point

h maximum height of a projectile

h Planck's constant

hf photon energy

hi height of the image

ho height of the object

I electric current

I intensity

I intensity of a transmitted wave

I moment of inertia (also called rotational inertia)
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Symbol Definition

I0 intensity of a polarized wave before passing through a filter

Iave average intensity for a continuous sinusoidal electromagnetic wave

Irms average current

J joule

J / Ψ Joules/psi meson

K kelvin

k Boltzmann constant

k force constant of a spring

Kα x rays created when an electron falls into an n = 1 shell vacancy from the n = 3 shell

Kβ x rays created when an electron falls into an n = 2 shell vacancy from the n = 3 shell

kcal kilocalorie

KE translational kinetic energy

KE + PE mechanical energy

KEe kinetic energy of an ejected electron

KErel relativistic kinetic energy

KErot rotational kinetic energy

KE thermal energy

kg kilogram (a fundamental SI unit of mass)

L angular momentum

L liter

L magnitude of angular momentum

L self-inductance

ℓ angular momentum quantum number

Lα x rays created when an electron falls into an n = 2 shell from the n = 3 shell

Le electron total family number

Lμ muon family total number

Lτ tau family total number

Lf heat of fusion

Lf and Lv latent heat coefficients

Lorb orbital angular momentum

Ls heat of sublimation

Lv heat of vaporization

Lz z - component of the angular momentum

M angular magnification
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Symbol Definition

M mutual inductance

m indicates metastable state

m magnification

m mass

m mass of an object as measured by a person at rest relative to the object

m meter (a fundamental SI unit of length)

m order of interference

m overall magnification (product of the individual magnifications)

m⎛⎝A X⎞⎠ atomic mass of a nuclide

MA mechanical advantage

me magnification of the eyepiece

me mass of the electron

mℓ angular momentum projection quantum number

mn mass of a neutron

mo magnification of the objective lens

mol mole

m p mass of a proton

ms spin projection quantum number

N magnitude of the normal force

N newton

N normal force

N number of neutrons

n index of refraction

n number of free charges per unit volume

NA Avogadro's number

Nr Reynolds number

N ⋅ m newton-meter (work-energy unit)

N ⋅ m newtons times meters (SI unit of torque)

OE other energy

P power

P power of a lens

P pressure

p momentum

p momentum magnitude

p relativistic momentum

ptot total momentum

Appendix D 1395



Symbol Definition

ptot
'

total momentum some time later

Pabs absolute pressure

Patm atmospheric pressure

Patm standard atmospheric pressure

PE potential energy

PEel elastic potential energy

PEelec electric potential energy

PEs potential energy of a spring

Pg gauge pressure

Pin power consumption or input

Pout useful power output going into useful work or a desired, form of energy

Q latent heat

Q net heat transferred into a system

Q flow rate—volume per unit time flowing past a point

+Q positive charge

−Q negative charge

q electron charge

q p charge of a proton

q test charge

QF quality factor

R activity, the rate of decay

R radius of curvature of a spherical mirror

R red quark color

R̄ antired (cyan) quark color

R resistance

R resultant or total displacement

R Rydberg constant

R universal gas constant

r distance from pivot point to the point where a force is applied

r internal resistance

r⊥ perpendicular lever arm

r radius of a nucleus

r radius of curvature

r resistivity
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Symbol Definition

r or rad radiation dose unit

rem roentgen equivalent man

rad radian

RBE relative biological effectiveness

RC resistor and capacitor circuit

rms root mean square

rn radius of the nth H-atom orbit

Rp total resistance of a parallel connection

Rs total resistance of a series connection

Rs Schwarzschild radius

S entropy

S intrinsic spin (intrinsic angular momentum)

S magnitude of the intrinsic (internal) spin angular momentum

S shear modulus

S strangeness quantum number

s quark flavor strange

s second (fundamental SI unit of time)

s spin quantum number

s total displacement

sec θ secant

sin θ sine

sz z-component of spin angular momentum

T period—time to complete one oscillation

T temperature

Tc critical temperature—temperature below which a material becomes a superconductor

T tension

T tesla (magnetic field strength B)

t quark flavor top or truth

t time

t1 / 2 half-life—the time in which half of the original nuclei decay

tan θ tangent

U internal energy

u quark flavor up

u unified atomic mass unit

u velocity of an object relative to an observer

u' velocity relative to another observer
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Symbol Definition

V electric potential

V terminal voltage

V volt (unit)

V volume

v relative velocity between two observers

v speed of light in a material

v velocity

v̄ average fluid velocity

VB − VA change in potential

vd drift velocity

Vp transformer input voltage

Vrms rms voltage

Vs transformer output voltage

vtot total velocity

vw propagation speed of sound or other wave

vw wave velocity

W work

W net work done by a system

W watt

w weight

wfl weight of the fluid displaced by an object

Wc total work done by all conservative forces

Wnc total work done by all nonconservative forces

Wout useful work output

X amplitude

X symbol for an element

Z XN notation for a particular nuclide

x deformation or displacement from equilibrium

x displacement of a spring from its undeformed position

x horizontal axis

XC capacitive reactance

XL inductive reactance

xrms root mean square diffusion distance

y vertical axis

Y elastic modulus or Young's modulus
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Symbol Definition

Z atomic number (number of protons in a nucleus)

Z impedance
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Index
Symbols
(peak) emf, 911
RC circuit, 835

A
aberration, 1051
aberrations, 1049
absolute pressure, 401, 424
absolute zero, 474, 506
AC current, 782, 795
AC voltage, 782, 795
acceleration, 40, 76, 136, 165
acceleration due to gravity, 61, 76
accommodation, 1031, 1051
Accuracy, 20
accuracy, 26
acoustic impedance , 677, 683
active transport, 460, 460
activity, 1253, 1262
adaptive optics, 1049, 1051
adhesive forces, 411, 424
adiabatic, 566
adiabatic process, 594
air resistance, 106, 121
alpha, 1233
alpha decay, 1244, 1262
alpha rays, 1262
Alternating current, 781
alternating current, 795
ammeter, 839
ammeters, 829
ampere, 766, 795
Ampere’s law, 876, 882
amplitude, 612, 639, 955, 970, 971
amplitude modulation, 960
amplitude modulation (AM), 972
analog meter, 839
Analog meters, 830
analytical method, 121
Analytical methods, 100
Anger camera, 1277, 1301
angular acceleration, 348, 379
angular magnification, 1047, 1051
angular momentum, 367, 379
angular momentum quantum number,
1210, 1220
angular velocity, 204, 229
antielectron, 1248, 1262
antimatter, 1247, 1262
antinode, 634, 639, 666, 683
approximation, 26
approximations, 24
arc length, 203, 229
Archimedes’ principle, 406, 425
astigmatism, 1036, 1051
atom, 1178, 1220
atomic de-excitation, 1198, 1220
atomic excitation, 1198, 1221
atomic mass, 1239, 1262
atomic number, 1214, 1221, 1239,
1262
atomic spectra, 1144, 1168
Average Acceleration, 40
average acceleration, 78, 76
Average speed, 37
average speed, 76
Average velocity, 37

average velocity, 76
Avogadro’s number, 488, 506
axions, 1362, 1367
axis of a polarizing filter, 1082, 1092
B
B-field, 858, 882
back emf, 913, 937
banked curve, 229
banked curves, 212
barrier penetration, 1260, 1262
baryon number, 1323, 1336
Baryons, 1323
baryons, 1336
basal metabolic rate, 270, 275
beat frequency, 635, 639
becquerel, 1253, 1262
Bernoulli’s equation, 440, 460
Bernoulli’s principle, 441, 460
beta, 1233
beta decay, 1246, 1263
beta rays, 1263
Big Bang, 1348, 1367
binding energy, 1146, 1168, 1256,
1263
binding energy per nucleon, 1257,
1263
bioelectricity, 790, 795
Biot-Savart law, 876, 882
birefringent, 1089, 1092
Black holes, 1355
black holes, 1367
blackbodies, 1143
blackbody, 1168
blackbody radiation, 1143, 1168
Bohr radius, 1190, 1221
Boltzmann constant, 486, 506
boson, 1320, 1336
bottom, 1330, 1336
bow wake, 663, 683
break-even, 1291, 1301
breeder reactors, 1297, 1302
breeding, 1297, 1302
bremsstrahlung, 1151, 1168
Brewster’s angle, 1084, 1092
Brewster’s law, 1084, 1092
bridge device, 840
bridge devices, 834
Brownian motion, 1178, 1221
buoyant force, 405, 425
C
capacitance, 745, 756, 835, 840
capacitive reactance, 930, 937
capacitor, 744, 756, 835, 840
capillary action, 417, 425
carbon-14 dating, 1251, 1263
Carnot cycle, 574, 594
Carnot efficiency, 574, 594
Carnot engine, 574, 594
carrier particle, 165
carrier particles, 164
carrier wave, 960, 972
cathode-ray tube, 1221
cathode-ray tubes, 1180
Celsius, 473
Celsius scale, 506
center of gravity, 323, 339
center of mass, 218, 229
centrifugal force, 215, 229

centrifuge, 207
centripetal acceleration, 206, 229
centripetal force, 210, 229
change in angular velocity, 349, 379
change in entropy, 583, 594
change in momentum, 290, 308
Chaos, 1364
chaos, 1368
characteristic time constant, 926, 937
characteristic x rays, 1151, 1168
charm, 1330, 1336
chart of the nuclides, 1242, 1263
chemical energy, 263, 275
classical physics, 10, 26
Classical relativity, 118
classical relativity, 121
classical velocity addition, 1131
coefficient of linear expansion, 479,
506
coefficient of performance, 582, 594
coefficient of volume expansion, 481,
506
coherent, 1062, 1092
cohesive forces, 411, 425
Colliding beams, 1317
colliding beams, 1336
color, 1331, 1336
color constancy, 1039, 1051
commutative, 97, 122, 121
complexity, 1363, 1368
component (of a 2-d vector), 121
components , 100
compound microscope, 1041, 1051
Compton effect, 1155, 1168
Conduction, 529
conduction, 543
conductor, 697, 717, 717
Conductors, 709
confocal microscopes, 1091, 1092
conservation laws, 825, 840
Conservation of energy, 242
conservation of mechanical energy,
256, 275
conservation of momentum principle,
293, 308
Conservation of total , 1323
conservation of total baryon number,
1323, 1336
conservation of total electron family
number, 1336
conservation of total Lμ , 1323

conservation of total muon family
number, 1336
conservative force, 254, 275
constructive interference, 632, 639
constructive interference for a
diffraction grating, 1067, 1092
constructive interference for a double
slit, 1064, 1092
contact angle, 417, 425
Contrast, 1090
contrast, 1092
Convection, 529
convection, 544
converging (or convex) lens, 1000
converging lens, 1020
converging mirror, 1020
conversion factor, 17, 26
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Coriolis force, 215, 229
corner reflector, 994, 1020
correspondence principle, 1142, 1168
cosmic microwave background, 1349,
1368
cosmological constant, 1359, 1368
cosmological red shift, 1348, 1368
Cosmology, 1346
cosmology, 1368
Coulomb force, 703, 717
Coulomb forces, 702
Coulomb interaction, 708, 717
Coulomb’s law, 701, 717
critical angle, 991, 1020
Critical damping, 624
critical damping, 639
critical density, 1359, 1368
critical mass, 1295, 1302
critical point, 498, 506
Critical pressure, 498
critical pressure, 506
critical temperature, 498, 506, 1365,
1368
criticality, 1296, 1302
curie, 1253, 1263
Curie temperature, 855, 882
current, 808, 840
Current sensitivity, 830
current sensitivity, 840
cyclical process, 570, 594
cyclotron, 1316, 1336
D
Dalton’s law of partial pressures, 501,
506
dark matter, 1359, 1368
daughter, 1263
daughters, 1243
de Broglie wavelength, 1158, 1168
decay, 1232, 1243, 1263
decay constant, 1251, 1263
decay equation, 1245, 1245, 1249,
1263
decay series, 1243, 1263
deceleration, 40, 76
defibrillator, 754, 756
deformation, 185, 194, 606, 639
degree Celsius, 473, 506
degree Fahrenheit, 473, 506
Density, 391
density, 425
dependent variable, 69, 76
derived units, 14, 26
destructive interference, 632, 639
destructive interference for a double
slit, 1064, 1092
destructive interference for a single slit,
1071, 1092
dew point, 502, 506
dialysis, 459, 460
diastolic pressure, 402, 425, 425
Diastolic pressure, 420
dielectric, 748, 756
dielectric strength, 756
dielectric strengths, 748
diffraction, 1061, 1092
diffraction grating, 1066, 1092
Diffusion, 457
diffusion, 460

digital meter, 840
digital meters, 830
dipole, 708, 717
Direct current, 781
direct current, 795
direction, 95
direction (of a vector), 121
direction of magnetic field lines, 858,
882
direction of polarization, 1081, 1092
Dispersion, 996
dispersion, 1020
displacement, 32, 76
Distance, 34
distance, 76
Distance traveled, 34
distance traveled, 76
diverging lens, 1002, 1020
diverging mirror, 1020
domains, 854, 882
Doppler effect, 659, 684
Doppler shift, 659, 684
Doppler-shifted ultrasound, 681, 684
Double-slit interference, 1188
double-slit interference, 1221
down, 1325, 1336
drag force, 181, 194
drift velocity, 769, 795
dynamic equilibrium, 318, 339
Dynamics, 134, 135, 166
dynamics, 165
E
eddy current, 906, 937
efficiency, 265, 275
Elapsed time, 36
elapsed time, 77
elastic collision, 296, 296, 308
elastic potential energy, 608, 639
electric and magnetic fields, 970
electric charge, 693, 717
electric current, 766, 795
electric field, 709, 717, 955, 972
electric field lines, 718, 972
Electric field lines, 953
electric field strength, 704, 972
electric fields, 704
electric generator, 937
Electric generators, 909
electric potential, 733, 756
electric power, 778, 795
Electrical energy, 263
electrical energy, 275
electrocardiogram (ECG), 794, 795
electromagnet, 882
electromagnetic force, 692, 718
electromagnetic induction, 900, 938
electromagnetic spectrum, 972
electromagnetic waves, 951, 954, 970,
972
Electromagnetism, 855
electromagnetism, 882
electromagnets, 855
electromotive force, 817
electromotive force (emf), 840, 972
electron, 718
Electron capture, 1249
electron capture, 1263
electron capture equation, 1249, 1263

electron family number , 1323, 1336
electron volt, 735, 756
electrons, 693
electron’s antineutrino, 1247, 1263
electron’s neutrino, 1249, 1263
electrostatic equilibrium, 709, 718
electrostatic force, 701, 718
electrostatic precipitators, 715, 718
Electrostatic repulsion, 698
electrostatic repulsion, 718
electrostatics, 712, 718
electroweak epoch, 1352, 1368
electroweak theory, 1332, 1336
emf, 825
emf induced in a generator coil, 911,
938
emissivity, 540, 544
endoscope, 993
energies of hydrogen-like atoms, 1191,
1221
energy, 242, 275
energy stored in an inductor , 925, 938
energy-level diagram, 1189, 1221
English units, 13, 26
entropy, 583, 594
equipotential line, 756
equipotential lines, 742
escape velocity, 1355, 1368
event horizon, 1355, 1368
external force, 136, 165
external forces, 135
External forces, 166
Extremely low frequency (ELF), 959
extremely low frequency (ELF), 972
eyepiece, 1041, 1051
F
Fahrenheit, 473
Fahrenheit scale, 506
far point, 1034, 1051
Faraday cage, 711, 718
Faraday’s law of induction, 901, 938
Farsightedness, 1034
farsightedness, 1051
fermion, 1320, 1336
ferromagnetic, 854, 882
Feynman diagram, 1315, 1336
Fiber optics, 992
fiber optics, 1020
fictitious force, 215, 229
field, 718
fine structure, 1209, 1221
first law of thermodynamics, 556, 594
first postulate of special relativity, 1105,
1131
fission fragments, 1293, 1302
flat (zero curvature) universe, 1360,
1368
flavors, 1325, 1336
Flow rate, 436
flow rate, 460
fluid dynamics, 436, 460
fluids, 391, 425
Fluorescence, 1198
fluorescence, 1221
focal length, 1000, 1020
focal point, 1000, 1020
Food irradiation, 1286
food irradiation, 1302
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force, 135, 165
Force, 166
force constant, 607, 640
force field, 161, 162, 165, 703
fossil fuels, 273, 275
free charge, 718
free charges, 709
free electron, 718
free electrons, 697
free radicals, 1287, 1302
free-body diagram, 135, 166, 154, 165
free-fall, 61, 77, 139, 165
Frequency, 610
frequency, 640, 955, 972
frequency modulation, 960
frequency modulation (FM), 972
friction, 137, 166, 194, 275
Friction, 176, 257
full-scale deflection, 830, 840
fundamental, 666, 684
fundamental frequency, 634, 640
fundamental particle, 1325, 1336
fundamental units, 14, 26
G
galvanometer, 830, 840
gamma, 1233
gamma camera, 1277, 1302
Gamma decay, 1250
gamma decay, 1263
gamma ray, 968, 972, 1168
Gamma rays, 1148
gamma rays, 1263
gauge boson, 1337
gauge bosons, 1320
gauge pressure, 401, 425
gauss, 860, 882
Geiger tube, 1237, 1263
general relativity, 1353, 1368
geometric optics, 983, 1020
glaucoma, 422, 425
gluons, 1315, 1337, 1337
Gluons, 1333
grand unified theory, 1337
Grand Unified Theory (GUT), 1332
gravitational constant, 219
gravitational constant, G, 229
gravitational potential energy, 249, 276
Gravitational waves, 1356
gravitational waves, 1368
gray (Gy), 1279, 1302
greenhouse effect, 542, 544
grounded, 713, 718, 718
grounding, 742, 756
GUT epoch, 1352, 1368
H
Hadrons, 1320
hadrons, 1337
half-life, 1250, 1263
Hall effect, 866, 882
Hall emf, 866, 882
harmonics, 666, 684
head, 94
head (of a vector), 121
head-to-tail method, 94, 122, 121
Hearing, 650, 671
hearing, 684
heat, 516, 544
heat engine, 561, 594

heat of sublimation, 528, 544
heat pump, 595
heat pump’s coefficient of performance,
580
heat transfer, 472
Heisenberg uncertainty principle, 1163
Heisenberg’s uncertainty principle ,
1165, 1168
henry, 923, 938
hertz, 972
Higgs boson, 1334, 1337
high dose, 1280, 1302
hologram, 1204, 1221
Holography, 1204
holography, 1221
Hooke’s law, 185, 194
horizontally polarized, 1081, 1092
Hormesis, 1281
hormesis, 1302
horsepower, 268, 276
Hubble constant, 1348, 1368
hues, 1038, 1051
Human metabolism, 559
human metabolism, 595
Huygens’s principle, 1060, 1092
Hydrogen spectrum wavelength, 1188
hydrogen spectrum wavelengths, 1221
hydrogen-like atom, 1190, 1221
hydrogen-spectrum wavelengths, 1187
hyperopia, 1034, 1051
I
ideal angle, 229
ideal banking, 212, 229
ideal gas law, 486, 506
ideal speed, 229
Ignition, 1291
ignition, 1302
Image distance , 1006
impedance, 931, 938
impulse, 290, 308
Incoherent, 1062
incoherent, 1093
independent variable, 69, 77
index of refraction, 987, 1020
inductance, 922, 938
induction, 698, 718, 898, 938
inductive reactance, 928, 938
inductor, 923, 938
inelastic collision, 298, 308
inertia, 136, 166
Inertia, 166
inertial confinement, 1291, 1302
inertial frame of reference, 153, 166,
1105, 1131
inflationary scenario, 1353, 1368
Infrared radiation, 963
infrared radiation, 1168
infrared radiation (IR), 972
Infrared radiation (IR), 1153
infrasound, 671, 684
ink jet printer, 714
ink-jet printer, 718
Instantaneous acceleration, 43
instantaneous acceleration, 77
Instantaneous speed, 37
instantaneous speed, 77
Instantaneous velocity, 37
instantaneous velocity, 77

insulator, 718
insulators, 698
intensity, 637, 640, 656, 684, 970, 972
intensity reflection coefficient, 678, 684
Interference microscopes, 1090
interference microscopes, 1093
internal energy, 557, 595
Internal kinetic energy, 296, 296
internal kinetic energy, 308
internal resistance, 816, 840
intraocular pressure, 422, 425
intrinsic magnetic field , 1209, 1221
intrinsic spin, 1209, 1221
ionizing radiation, 1148, 1168, 1234,
1263
ionosphere, 710, 718
irreversible process, 568, 595
isobaric process, 562, 595
isochoric, 564
isochoric process, 595
isolated system, 294, 308
isothermal, 566
isothermal process, 595
isotopes, 1240, 1263
J
joule, 244, 276
Joule’s law, 810, 840
junction rule, 824, 840
K
Kelvin, 474
Kelvin scale, 506
kilocalorie, 516, 544
kilogram, 14, 26
kilowatt-hour, 276
kilowatt-hours, 269
kinematics, 32, 77, 107, 121
kinematics of rotational motion, 352,
379
kinetic energy, 246, 276
kinetic friction, 176, 194
Kirchhoff’s rules, 824, 840
L
Laminar, 446
laminar, 460
laser, 1201, 1221
laser printer, 718
Laser printers, 714
Laser vision correction, 1037
laser vision correction, 1051
latent heat coefficient, 544
latent heat coefficients, 524
law, 9, 26
law of conservation of angular
momentum, 371, 379
law of conservation of charge, 696, 718
law of conservation of energy, 262, 276
law of inertia, 136, 166, 166
law of reflection, 1020, 1020
law of refraction, 989
Length contraction , 1113
length contraction, 1131
Lenz’s law, 901, 938
leptons, 1320, 1337
linear accelerator, 1318, 1337
linear hypothesis, 1281, 1302
Linear momentum, 288
linear momentum, 308
liquid drop model, 1293, 1302
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liter, 436, 460
longitudinal wave, 631, 640
loop rule, 825, 840
Lorentz force, 859, 882
loudness, 671, 684
low dose, 1280, 1302
M
MACHOs, 1362, 1368
macrostate, 590, 595
magic numbers, 1242, 1263
magnetic confinement, 1291, 1302
magnetic damping, 906, 938
magnetic field, 858, 882, 955, 972
magnetic field lines, 858, 882, 972
Magnetic field lines, 953
magnetic field strength, 972
magnetic field strength (magnitude)
produced by a long straight current-
carrying wire, 875, 883
magnetic field strength at the center of
a circular loop, 876, 883
magnetic field strength inside a
solenoid, 877, 883
magnetic flux, 900, 938
magnetic force, 859, 883
magnetic monopoles, 857, 883
Magnetic resonance imaging (MRI),
881
magnetic resonance imaging (MRI),
883
magnetized, 854, 883
magnetocardiogram (MCG), 882, 883
magnetoencephalogram (MEG), 882,
883
magnification, 1006, 1021
magnitude, 95
magnitude (of a vector), 121
magnitude of kinetic friction, 194
magnitude of kinetic friction fk , 177

magnitude of static friction, 194
magnitude of static friction fs , 177

magnitude of the intrinsic (internal) spin
angular momentum, 1213, 1221
mass, 136, 166
Mass, 166
mass number, 1239, 1263
massive compact halo objects, 1362
maximum field strength, 970, 972
Maxwell’s equations, 876, 883, 952,
972
mechanical advantage, 330, 339
mechanical energy, 256, 276, 756
Mechanical energy, 736
mechanical equivalent of heat, 516,
544
meson, 1314, 1337, 1337
Mesons, 1323
metabolic rate, 270, 276
metastable, 1200, 1221
meter, 14, 26, 883
Meters, 873
method of adding percents, 22, 27
metric system, 15, 27
Michelson-Morley experiment, 1105,
1131
Microgravity, 223
microgravity, 229

microlensing, 1361, 1368
microshock sensitive, 789, 795
microstate, 590, 595
Microwaves, 962, 1153
microwaves, 972, 1168
micturition reflex, 424, 425
mirror, 1021
model, 9, 27, 38, 77
moderate dose, 1280, 1302
Modern physics, 12
modern physics, 27
mole, 488, 506
moment of inertia, 357, 357, 379
motion, 106, 121
motor, 883
Motors, 870
muon family number, 1323, 1337
Mutual inductance, 922
mutual inductance, 938
myopia, 1034, 1051
N
natural frequency, 627, 640
near point, 1034, 1051
Nearsightedness, 1034
nearsightedness, 1051
negatively curved, 1360, 1368
Nerve conduction, 790
nerve conduction, 795
net external force, 137, 166
net rate of heat transfer by radiation,
541, 544
net work, 245, 276
neutral equilibrium, 326, 339
neutralinos, 1362, 1368
neutrino, 1246, 1263
neutrino oscillations, 1362, 1368
neutron, 1239, 1263
Neutron stars, 1356
neutron stars, 1368
Neutron-induced fission, 1293
neutron-induced fission, 1302
newton, 138
newton-meters, 244
Newton’s first law of motion, 136, 136,
166, 166
Newton’s second law of motion, 136,
166
Newton’s third law of motion, 142, 167,
166
Newton’s universal law of gravitation,
218, 229
node, 666, 684
Nodes, 634
nodes, 640
non-inertial frame of reference, 215,
229
nonconservative force, 257, 276
normal force, 146, 166
north magnetic pole, 853, 883
note, 684
notes, 671
Nuclear energy, 263
nuclear energy, 276
Nuclear fission, 1292
nuclear fission, 1302
Nuclear fusion, 1287
nuclear fusion, 1302
nuclear magnetic resonance (NMR),

881, 883
nuclear radiation, 1232, 1263
nuclear reaction energy, 1245, 1263
nucleons, 1239, 1263
nucleus, 1263
nuclide, 1239, 1263
Null measurements, 832
null measurements, 840
numerical aperture, 1051
numerical aperture (NA) , 1043

O
objective lens, 1041, 1051
ohm, 771, 795
ohmic, 771, 795
ohmmeter, 840
ohmmeters, 834
Ohm’s law, 771, 795, 808, 840
optically active, 1088, 1093
orbital angular momentum, 1208, 1221
orbital magnetic field, 1208, 1221
order, 1064, 1093
order of magnitude, 15, 27
oscillate, 606, 640, 972
Osmosis, 459
osmosis, 460
osmotic pressure, 459, 460
Otto cycle, 572, 595
over damping, 640
overdamped, 624
overtones, 634, 640, 666, 684
P
parallel, 810, 840
parallel plate capacitor, 744, 756
parent, 1243, 1263
Partial pressure, 501
partial pressure, 506
Particle physics, 1312
particle physics, 1337
particle-wave duality, 1158, 1168
Particle-wave duality, 1166
Pascal’s principle, 398
Pascal’s Principle, 425
Pauli exclusion principle, 1215, 1221
peak emf, 938
percent relative humidity, 504, 506
percent uncertainty, 22, 27
perfectly inelastic collision, 298, 308
period, 610, 640
periodic motion, 610, 640
permeability of free space, 875, 883
perpendicular lever arm, 320, 339
phase angle, 935, 938
phase diagram, 506
phase diagrams, 499
phase-contrast microscope, 1090,
1093
phon, 672, 684
Phosphorescence, 1200
phosphorescence, 1221
photoconductor, 713, 718
photoelectric effect, 1144, 1168
photomultiplier, 1238, 1263
photon, 1145, 1154, 1168
photon energy, 1145, 1168
photon momentum, 1155, 1168
physical quantity, 13, 27
Physics, 6
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physics, 27
pion, 1312, 1337
pit, 202, 229
pitch, 652, 671, 684
Planck’s constant, 1143, 1168
planetary model of the atom, 1185,
1221
point charge, 703, 718
point masses, 302, 308
Poiseuille’s law, 449, 460
Poiseuille’s law for resistance, 448, 460
polar molecule, 708, 718, 749, 756
polarization, 698, 718, 1093
Polarization, 1081
polarization microscope, 1091, 1093
polarized, 709, 718, 1081, 1093
population inversion, 1201, 1221
position, 32, 77
positively curved, 1360, 1368
positron, 1249, 1263
positron decay, 1248, 1263
positron emission tomography (PET),
1277, 1302
potential difference, 733, 817, 840
potential difference (or voltage), 756
potential energy, 254, 255, 276
potential energy of a spring, 254, 276
potentiometer, 833, 840
power, 266, 276, 1001, 1021
power factor, 935, 938
precision, 20, 27
presbyopia, 1034, 1051
pressure, 393, 395, 425, 425
Pressure, 398
probability distribution, 1162, 1168
projectile, 106, 121
Projectile motion, 106
projectile motion, 121
Proper length , 1113
proper length, 1131
Proper time , 1108
proper time, 1131
proton, 718
proton-proton cycle, 1289, 1302
protons, 693, 1239, 1264
PV diagram, 498, 506
Q
quality factor, 1279, 1302
quantized, 1142, 1168
quantum chromodynamics, 1331,
1334, 1337, 1337
quantum electrodynamics, 1315, 1337
Quantum gravity, 1353, 1368
quantum mechanical tunneling, 1260,
1264
Quantum mechanics, 12
quantum mechanics, 27, 1142, 1168
quantum numbers, 1210, 1221
quark, 308, 1337
quarks, 295, 1325
quasars, 1356, 1368
R
R factor, 544
R factor, 533

rad, 1278, 1302
Radar, 962
radar, 972
radians, 203, 229

radiant energy, 263, 276
radiation, 529, 539, 544, 544
radiation detector, 1237, 1264
radio waves, 952, 959, 972
radioactive, 1232, 1264
Radioactive dating, 1251
radioactive dating, 1264
radioactivity, 1232, 1264
radiolytic products, 1287, 1302
radiopharmaceutical, 1274, 1302
radiotherapy, 1284, 1302
radius of a nucleus, 1240, 1264
radius of curvature, 203, 230
rainbow, 1021
range, 112, 121
range of radiation, 1234, 1264
rate of conductive heat transfer, 531,
544
rate of decay, 1253, 1264
ray, 982, 1021
Ray tracing, 1002
Rayleigh criterion, 1073, 1093
RC circuit, 840
real image, 1005, 1021
reflected light is completely polarized,
1084
reflected light that is completely
polarized, 1093
refraction, 985, 1021
relative biological effectiveness, 1279
relative biological effectiveness (RBE),
1302
relative humidity, 502, 506
relative osmotic pressure, 459, 460
relative velocities, 118
relative velocity, 121
relativistic Doppler effects, 1133, 1131
Relativistic kinetic energy, 1127
relativistic kinetic energy, 1131
Relativistic momentum, 1122
relativistic momentum, 1131
relativistic velocity addition, 1118, 1132
Relativity, 12
relativity, 27, 118, 121, 1104, 1132
Renewable forms of energy, 273
renewable forms of energy, 276
resistance, 771, 795, 808, 840
resistivity, 773, 795
resistor, 808, 835, 840
resonance, 627, 640
resonant, 956, 972
resonant frequency, 934, 938
resonate, 627, 640
Rest energy, 1124
rest energy, 1132
rest mass, 1122, 1132
restoring force, 606, 640
resultant, 95, 121
resultant vector, 94, 121
retinex, 1051
retinex theory of color vision, 1040,
1052
retinexes, 1040
reverse dialysis, 460, 460
Reverse osmosis, 460
reverse osmosis, 461
reversible process, 567, 595
Reynolds number, 454, 461

right hand rule 1, 860
right hand rule 1 (RHR-1), 883
right hand rule 2, 874
right hand rule 2 (RHR-2), 883
right-hand rule, 377, 379
RLC circuit, 972
rms current, 783, 795
rms voltage, 783, 795
rods and cones, 1038, 1052
roentgen equivalent man, 1279
roentgen equivalent man (rem), 1302
rotation angle, 202, 230
rotational inertia, 357, 379
rotational kinetic energy, 361, 362, 379
Rydberg constant, 1187, 1192, 1221
S
saturation, 502, 506
scalar, 35, 77, 100, 121, 737, 756
Schwarzschild radius, 1355, 1368
scientific method, 10, 27
scintillators, 1238, 1264
screening, 708, 718
second, 14, 27
second law of motion, 289, 308
second law of thermodynamics, 569,
570, 574, 595
second law of thermodynamics stated
in terms of entropy, 595
second postulate of special relativity,
1105, 1132
Self-inductance, 923
self-inductance, 938
semipermeable, 459, 461, 790, 796
series, 808, 840
shear deformation, 191, 194
shell, 1216, 1221
shielding, 1282, 1302
shock hazard, 785, 796, 918, 938
short circuit, 785, 796
shunt resistance, 830, 840
SI unit of torque, 321
SI units, 13, 27
SI units of torque, 339
sievert, 1279, 1302
significant figures, 23, 27
simple circuit, 771, 796
Simple Harmonic Motion, 611
simple harmonic motion, 640
simple harmonic oscillator, 611, 640
simple pendulum, 616, 640
simplified theory of color vision, 1038,
1052
single-photon-emission computed
tomography (SPECT), 1302
single-photon-emission computed
tomography(SPECT), 1277
slope, 69, 77
solenoid, 876, 883
Solid-state radiation detectors, 1238
solid-state radiation detectors, 1264
sonic boom, 662, 684
sound, 650, 684
sound intensity level, 656, 684
sound pressure level, 659, 684
south magnetic pole, 853, 883
space quantization, 1209, 1221
special relativity, 1132
special relativity., 1104
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specific gravity, 408, 425
specific heat, 518, 544
speed of light, 972
spin projection quantum number, 1213,
1221
spin quantum number, 1213, 1222
spontaneous symmetry breaking, 1353,
1368
stable equilibrium, 324, 339
Standard Model, 1334
standard model, 1337
standing wave, 633, 956, 972
static electricity, 692, 718
static equilibrium, 318, 328, 339, 339
static friction, 176, 194
statistical analysis, 592, 595
Stefan-Boltzmann law of radiation, 540,
544
step-down transformer, 915, 938
step-up transformer, 915, 938
Stimulated emission, 1201
stimulated emission, 1222
Stokes’ law, 184, 194
strain, 190, 194
strange, 1325, 1337
strangeness, 1323, 1337
stress, 190, 194
sublimation, 500, 506, 544
Sublimation, 528
subshell, 1216, 1222
Superconductors, 1364, 1368
supercriticality, 1296, 1302
superforce, 1352, 1368
superposition, 632, 640
Superstring theory, 1335, 1358, 1368
superstring theory, 1337
surface tension, 412, 425
synchrotron, 1317, 1337
synchrotron radiation, 1317, 1337
system, 136, 166
systolic pressure, 402, 425, 425
Systolic pressure, 420
T
tagged, 1274, 1303
tail, 94, 121
tangential acceleration, 350, 379
tau family number, 1337
Television, 961
Temperature, 472
temperature, 507
temperature coefficient of resistivity,
776, 796
Tensile strength, 186
tensile strength, 194
tension, 149, 166
terminal speed, 456, 461
terminal voltage, 818, 840
tesla, 859, 883
test charge , 703, 718
the second law of thermodynamics
stated in terms of entropy, 585
theory, 9, 27
theory of quark confinement, 1331,
1337
therapeutic ratio, 1284, 1303
thermal agitation, 962, 973
thermal conductivity, 532, 544
thermal energy, 257, 263, 276, 493,

507
thermal equilibrium, 478, 507
thermal expansion, 479, 507
thermal hazard, 785, 796, 918, 938
Thermal stress, 483
thermal stress, 507
thin film interference, 1076, 1093
thin lens, 1003
thin lens equations, 1006
thought experiment, 1353, 1368
three-wire system, 918, 938
thrust, 143, 167, 166
timbre, 672, 684
time, 36, 77
Time dilation, 1107
time dilation, 1132
TOE epoch, 1352, 1369
tone, 672, 684
top, 1330, 1337
Torque, 320
torque, 339, 357, 379
Total energy , 1124
total energy, 1132
total internal reflection, 991
trajectory, 106, 121
transformer, 938
transformer equation, 915, 938
Transformers, 914
transverse wave, 631, 640, 956, 973
triple point, 500, 507
Tunneling, 1261
tunneling, 1264
turbulence, 446, 461
TV, 973
twin paradox, 1132
U
ultra high frequency, 961
ultra-high frequency (UHF), 973
ultracentrifuge, 209, 230
ultrasound, 671, 684
Ultraviolet (UV) microscopes, 1089
ultraviolet (UV) microscopes, 1093
Ultraviolet radiation, 1151
ultraviolet radiation, 1168
ultraviolet radiation (UV), 965, 973
uncertainty, 21, 27
uncertainty in energy, 1165, 1168
uncertainty in momentum, 1163, 1168
uncertainty in position, 1163, 1168
uncertainty in time, 1165, 1168
under damping, 640
underdamped, 624
uniform circular motion, 202, 230
units, 13, 27
unpolarized, 1082, 1093
unstable equilibrium, 324, 339
up, 1325, 1337
useful work, 271, 276
V
Van de Graaff, 1316, 1337
Van de Graaff generator, 718
Van de Graaff generators, 712
vapor, 501, 507
Vapor pressure, 501
vapor pressure, 507
vector, 35, 77, 93, 121, 718, 737, 756
vector addition, 115, 121, 706, 718
vectors, 91, 704

velocity, 115, 121
vertically polarized, 1081, 1093
very high frequency, 961
very high frequency (VHF), 973
virtual image, 1008, 1021
virtual particles, 1313, 1337
viscosity, 447, 461
viscous drag, 455, 461
Visible light, 964
visible light, 973, 1152, 1169
voltage, 733, 808, 840
voltage drop, 808, 841
voltmeter, 841
Voltmeters, 829
W
watt, 267, 276
wave, 629, 640
wave velocity, 629, 640
wavelength, 630, 640, 955, 973
wavelength in a medium, 1059, 1093
waves, 606
weakly interacting massive particles,
1362
weight, 138, 166
Weight, 145
Wheatstone bridge, 834, 841
WIMPs, 1362, 1369
work, 242, 276
work-energy theorem, 246, 276, 362,
380, 379
X
x ray, 1169
x rays, 1149, 1222
X rays, 1193
X-ray, 968, 973
x-ray diffraction, 1197, 1222
xerography, 713, 719
Y
y-intercept, 69, 77
Z
z-component of spin angular
momentum, 1222
z-component of the angular
momentum, 1222
z -component of spin angular

momentum, 1213
z -component of the angular

momentum, 1211
Zeeman effect, 1208, 1222
zeroth law of thermodynamics, 478,
507
zircon, 1021
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